HACLXN: Verified Generic SIMD Crypto

(for all your favorite platforms)

Marina Polubelova
Inria

Benjamin Beurdouche
Inria and Mozilla

Karthikeyan Bhargavan

Aymeric Fromherz
Carnegie Mellon University Inria

Jonathan Protzenko
Microsoft Research

Natalia Kulatova

Santiago Zanella-Béguelin
Microsoft Research

ABSTRACT

We present a new methodology for building formally verified cryp-
tographic libraries that are optimized for multiple architectures. In
particular, we show how to write and verify generic crypto code in
the F* programming language that exploits single-instruction multi-
ple data (SIMD) parallelism. We show how this code can be compiled
to platforms that supports vector instructions, including ARM Neon
and Intel AVX, AVX2, and AVX512. We apply our methodology to
obtain verified vectorized implementations on all these platforms
for the Chacha20 encryption algorithm, the Poly1305 one-time
MAC, and the SHA-2 and Blake2 families of hash algorithms.

A distinctive feature of our approach is that we aggressively
share code and verification effort between scalar and vectorized
code, between vectorized code for different platforms, and between
implementations of different cryptographic primitives. By doing
so, we significantly reduce the manual effort needed to add new
implementations to our verified library. In this paper, we describe
our methodology and verification results, evaluate the performance
of our code, and describe its integration into the larger HACL*
crypto library. Our vectorized code has already been incorporated
into several software projects, including the Firefox web browser.

1 VERIFIED HIGH-PERFORMANCE CRYPTO

Modern cryptographic algorithms are evaluated not just for their
security, but also for their performance on various platforms. Slow
algorithms, even if provably secure, are rarely deployed at scale. For
example, the Diffie Hellman key exchange was largely unused for
decades in mainstream protocols like TLS, even though it provides
strong guarantees like forward secrecy, until the advent of fast
Elliptic Curve Diffie Hellman implementations. Even today, pow-
erful cryptographic constructions like homomorphic encryption
and post-quantum signatures are awaiting faster implementations
before they can be considered for widespread deployment.

When a new cryptographic algorithm is standardized, the de-
signers usually describe (and sometimes include as an appendix) a
reference implementation that would work on any 32-bit computer.
However, the algorithm and its parameters are often chosen care-
fully to admit platform-specific optimizations. For example, new
authenticated encryption schemes like ChaCha20-Poly1305 and
hash algorithms like Blake2 were deliberately designed to enable
Single Instruction Multiple Data (SIMD) vectorization. Since most
desktops and smartphones are now equipped with SIMD-enabled

Machine Vectors Library
(F*)
|
Crypto Standard SIMD Patterns Library
(IETF/NIST) (Low*)

Formal Crypto Spec Vectorized Crypto Code
(F*) (Low*)

VERIFY . FAL CORRECTNESS BUG,
(F*) " MEMORY SAFETY BUG,
or SIDE-CHANNEL LEAK
oxl

COMPILE
(KreMLin)

32-bit C Code 128-bit SIMD C Code 256-bit SIMD C Code 512-bit SIMD C Code Vector Instructions
(Portable) (Intel AVX/Arm Neon) (Intel AVX2) (Intel AVX512) (Intel/Arm Intrinsics)

COMPILE
(gee, clang, ...)

Optimized Executable
(assembly)

Figure 1: HACLXN programming and verification workflow.
We write SIMD crypto code in Low™ [29] and prove it memory-safe,
secret independent, and functionally correct with respect to a high-
level formal spec in F* [34], before compiling it to target-specific
C code linked with compiler intrinsics. (Code components in green
are verified; those in yellow are trusted and carefully tested.)

processors capable of computing over 4, 8, or 16 32-bit integers in
parallel, the performance impact of vectorization can be dramatic.

Algorithmic Parallelism and SIMD Vectorization. Consider
the ChaCha20 cipher, standardized in IETF RFC 7539. The OpenSSL
library includes a reference implementation of the Chacha20 encryp-
tion algorithm (written by D.J. Bernstein) in 122 lines of portable C
code. This C code takes between 4-9 cycles to encrypt a byte on a
modern Intel processor. However, OpenSSL also includes at least a
dozen other hand-written assembly implementations of Chacha20,
for various generations of Intel and ARM processors, totaling 10056
lines of code. The payoft for this additional programming effort is
improved performance: encryption takes just 1.6 cycles per byte
on an Apple iPhone with the Apple A7 ARMv8 processor, and 0.73
cycles per byte on a modern laptop with an Intel Skylake processor.

An algorithm like Chacha20 can be parallelized in many different
ways. First, the inner block cipher can be rearranged and executed
via SIMD instructions (this is by design). Second, one may exploit
the inherent parallelism in the counter-mode encryption (CTR)
algorithm to process multiple blocks in parallel. Third, one may
process multiple (equal sized) inputs in parallel. Each of these SIMD

Marina Polubelova, Karthikeyan Bhargavan, Jonathan Protzenko, Benjamin Beurdouche, Aymeric Fromherz, Natalia Kulatova, and Santiago Zanella-Béguelin

strategies can significantly increase performance, at the cost of
adding some memory rearrangement via matrix transposition.

SIMD vectorization should be seen as a generic high-level algo-
rithmic transformation that changes the shape and structure of a
cryptographic computation in order to make it parallelizable. In-
deed, processing blocks in parallel works for any CTR algorithm,
not just Chacha20. However, since each platform may offer subtly
different vector instructions, most vectorized crypto code is hand-
written in unreadable low-level assembly that is specialized for the
features of each algorithm and target platform.

How can we be sure that all these platform-specific implementa-
tions are correct? Testing helps, but the testing matrix gets expo-
nentially bigger as new platforms are added. Furthermore, each new
architecture inspires new implementation strategies and, therefore,
increases the potential for new bugs. For example, efficient imple-
mentations of the Poly1305 algorithm interleave complex bignum
arithmetic with SIMD vectorization, and so have to account for
the subtleties of both. And in addition to correctness, we also need
to ensure that the code is memory safe and secret independent
(“constant-time”). How do we make it easier for programmers to
build crypto implementations that are provably correct-by-design?

Cryptographic Software Verification. Recent works have ex-
plored several different approaches towards building verified cryp-
tographic software [11]. Some works, like the Verified Software
Toolchain [9, 14] and the Cryptol/SAW framework can prove the
functional correctness of C or Java code against a high-level mathe-
matical specification. Other tools like Vale [17, 24], Jasmin [7, 8], and
CryptoLine [25] target hand-written assembly implementations of
cryptographic primitives. A third approach, taken by HACL* [36]
and Fiat-Crypto [23], is to write and verify cryptographic code in a
high-level programming language and compile it to C.

Each approach has its own advantages and disadvantages. VST
and Cryptol can verify legacy C code, but they target unoptimized

reference implementations, not vectorized high-performance crypto.

Jasmin, Vale, and CryptoLine can verify highly-optimized assem-
bly implementations written by expert programmers who manually
allocate registers (to exploit locality), manually schedule instruc-
tions (to exploit pipelining), and exploit low-level hardware instruc-
tions that are invisible to C code. Furthermore, by directly targeting
assembly, these tools do not need to trust the correctness of the
C compiler. The cost of this approach is that one has to write and
verify custom low-level assembly code for each platform. For ex-
ample, Vale and Jasmin do not currently support ARM, and adding
a new verified implementation for (say) Intel AVX512 requires a
significant amount of new programming and verification effort.

HACL* and Fiat-Crypto are best suited to writing new crypto-
graphic code and provide high-level abstractions that make pro-
gramming and verification easier. However, they focus on gener-
ating portable C code, and hence do not exploit platform-specific
features like vector instructions. For example, the C code gener-
ated from HACL™ is highly performant for elliptic curve algorithms,
which do not usually rely on SIMD vectorization, but is significantly
slower than assembly code for encryption and hashing [36].

These approaches are not mutually exclusive. EverCrypt [28] is a
cryptographic provider that composes verified C code from HACL*

with verified assembly code from Vale to obtain best-in-class per-
formance on Intel platforms for elliptic curves like Curve25519 (by
relying on Intel ADX instructions) and authenticated encryption
schemes like AES-GCM (by relying on Intel AES-NI and CLMUL).

Our Approach. In this paper, we present a new hybrid approach
towards building a library of vectorized cryptographic algorithms.
We seek to balance coding and verification effort with high perfor-
mance, by following the high-level programming methodology of
HACL* but compiling it to platform-specific C code that relies on
compiler intrinsics for platform-specific vector instructions.

The main insight guiding our approach is that SIMD vectoriza-
tion is an algorithmic redesign which can be implemented and
verified generically, without relying on specific details of the under-
lying platform. Our second observation is that modern C compilers
are good enough (and constantly improving) at instruction schedul-
ing and register allocation, so manually writing optimized assembly
for each target platform is often not necessary for high performance.
Finally, we note that crypto code is typically embedded into larger
libraries and applications like browsers and operating systems that
already place a lot of trust in the C compiler; so in many deploy-
ments, compiling crypto code using a standard C compiler like GCC
or clang does not increase the Trusted Computing Base.

Figure 1 depicts our high-level methodology and workflow as a
sequence of programming, verification, and compilation tasks:

High-Level Spec We write a succinct formal specification for each
crypto algorithm in the F* language [34], by carefully transcrib-
ing the corresponding IETF or NIST standard. This specification
is trusted but executable; it serves as a testable, readable, refer-
ence implementation that can be audited by cryptographers.

Generic Vector Library We extend HACL* with libraries for ma-
chine integers and vectors of integers, designed to enable generic
SIMD programming. We implement the vector library as a (trusted)
C header file that maps each vector operation to platform-specific
vector instructions for Arm Neon, Intel AVX, AVX2, and AVX512.

SIMD Patterns for Crypto We identify, implement, and verify a
series of reusable SIMD programming patterns commonly used
in crypto algorithms, including generic constructions for multi-
buffer parallelism, CTR encryption, and polynomial evaluation.

Verified Vectorized Implementations We build vectorized im-
plementations of Blake2 (both versions), SHA-2 (all four versions),
Chacha20, and Poly1305, in Low™ [29] (a subset of F*). These
generic implementations are parameterized over a target vector
size and can be instantiated with vectors of any size: 1, 2, 4, 8, 16,
etc. (Vectors of size 1 correspond to scalar code.)

Target-Specific Compilation We exploit the meta-programming
features of F* to translate our generic Low* implementations to
custom C implementations for each target platform. The compiler
generates both portable 32-bit C code and vectorized C code for
Arm Neon and Intel AVX/AVX2/AVX512. Each C implementation
can then be compiled via GCC or CLANG to target machine code.

We illustrate this workflow on four (families of) cryptographic
algorithms, but our methodology is more generally applicable to
other algorithms, and even for non-cryptographic SIMD code. To
the best of our knowledge, ours are the first verified vectorized
crypto implementations on Arm Neon and AVX512, and the first

HACLXN: Verified Generic SIMD Crypto (for all your favorite platforms)

verified implementations of vectorized Blake2 and multi-buffer
SHA-2. Our vectorized Chacha20-Poly1305 code is deployed in
Mozilla Firefox Nightly, and our Blake2 code is used in Tezos.

Our goal is to create a usable verified crypto library, not just a
few isolated verified algorithms. Hence, we show how to embed
these vectorized algorithms into HACL* and safely compose them
with previously verified C and assembly code [17, 28, 36]. The re-
sulting library provides optimized verified code for many of the
most popular ciphersuites used in modern protocols like TLS 1.3,
WireGuard, and Signal. By aggressively sharing code and verifica-
tion effort across platforms and algorithms, we significantly reduce
the cost of adding a new platform or algorithm to the library. Fi-
nally, we show how we can use our methodology to easily generate
customized compact optimized verified cryptographic applications,
such as the upcoming HPKE standard [13].

2 BACKGROUND: HACL*, F*, LOW*

The HACL* cryptographic library [36] contains verified imple-
mentations of several modern cryptographic constructions such as
ChaCha20-Poly1305, AES-GCM, SHA-2 (256/384/512), Curve25519,
and Ed25519. HACL™ is written in the F* programming language [6]
and compiled to C for easy adoption in the existing software ecosys-
tem. The source code is verified using the F* type checker for
memory safety and for a side-channel resistance guarantee called
secret independence, which states that secret data cannot be used
in branches or to compute memory addresses. Crucially, each imple-
mentation in HACL™ is verified for functional correctness against a
high-level specification also written in F*, but closely reflecting the
corresponding published crypto standard. The C code generated
from our verified F* library is typically as fast as hand-optimized
scalar C code for each primitive. We now review these for context.

F* is a state-of-the-art verification-oriented programming lan-
guage [6]. It is a functional programming language with dependent
types and an effect system, and it relies on SMT-based automation to
prove properties about programs using a weakest-precondition cal-
culus. Once proven correct with regards to their specification, pro-
grams written in F* can be compiled to OCaml or F#. Recently [30],
F* gained the ability to generate C code, as long as the run-time
parts of the program are written in a low-level subset called Low™.
This allows the programmer to use the full power of F* for proofs
and verification and, relying on the fact that proofs are computa-
tionally irrelevant and hence erased, extract the remaining Low™
code to C. This approach was used by several verified software
projects, such as HACL*, but also a cryptographic provider [28], a
parsing library [31], and a QUIC implementation [20].

Specifications are expressed using the pure subset of F*, i.e.
cannot have side-effects. Specifications use high-level concepts,
such as mathematical (unbounded) integers, sequences, lists, maps
and folds. As such, specifications cannot extract to C; they are,
however, extracted to OCaml, and subjected to a substantial amount
of testing via standard vectors, to ensure they are trustworthy.

For instance, our Poly1305 specification module Spec.Poly1305
defines a prime field Zy150_5 in F* as follows:

let fadd (x:felem) (y:felem) : felem = (x + y) % prime
let fmul (x:felem) (y:felem) : felem = (x « y) % prime

The type pos is a refinement of nat, the type of natural integers.
The prime modulus is a mathematical constant, and field operations
are defined naturally via the use of mathematical operators for
addition, multiplication and modulo. The Poly1305 MAC is then
defined as the evaluation of a polynomial over this field (see §4.4).

Low™ is a low-level subset of F* which models the C memory
layout and basic data types. Using Low™*, the programmer ma-
nipulates arrays, reasoning about their liveness, disjointness and
location in memory. Low™ uses machine integers (instead of math-
ematical integers), which forces the programmer to reason about
their modulo-semantics. Each stateful function is defined using one
of the Low™ effects: Stack for functions that are only allowed to
allocate memory on the stack (hence trivially ensuring there are
no memory leaks), ST for all other Low™ functions.

As such, Low* requires the programmer to make choices about
low-level data representations for every high-level specification
value. We present the low-level signature of a non-vectorized init
function, which establishes the initial state for a low-level imple-
mentation of Poly1305. (§4 presents the vectorized implementation.)

let poly1305_ctx = Ibuffer uint32 5
val poly1305_init (ctx:poly1305_ctx) (key:Ibuffer uint8 32ul): Stack unit
(requires Ah — live h ctx A live h key A disjoint ctx key)
(ensures Ah0 _h1 — modifies (loc ctx) h0 h1 A state_inv h1 ctx A
(as_acc h1ctx, as_r h1 ctx) ==
Spec.Poly1305.poly1305_init (as_seq ho0 key))

The state ctx is an array of type Ibuffer holding 5 elements of
type uint32. The pre-condition of init talks about the liveness and
disjointness of the input arrays, needed for temporal and spatial
memory safety. Callers can reason about the effects of this function
on memory, via its modifies clause: only ctx is modified, leaving
key or any other disjoint object unchanged. The post-condition
guarantees that the result is a valid initial state vis-a-vis the spec.

KreMLin compiles Low™ code to auditable, readable C, using a
series of many small, composable passes. The Low* preservation
theorem [30] states that once compiled to C, a Low* program
exhibits the same observable behavior that was specified by the
Low™ memory model and semantics, including execution traces.

Meta-F* broadly, refers to the discipline of relying on the F*
compiler to generate or transform existing code at F*-compile-time.
Some meta-programming is built into F*, through keywords.

inline_for_extraction let pow4 (x: uint32 {x < 256 }) =
[@inline_let] let pow2 = x « x in
pow2 « pow?2

let pos = n:nat{n > 0}
let prime: pos = pow2 130 — 5
let felem = x:nat{x < prime}

At compile-time, F*, seeing that pow4 is “inline for extraction”,
replaces any call to pow4 with its definition; furthermore, seeing
that pow4 is a pure computation that does not touch memory, the
KreMLin compiler can further reduce the application of the function,
eliminate the intermediary let-binding (“inline let”). Hence, if the
programmer writes let x = pow4 2ul, F* reduces this to let x = 16ul.

Beyond these built-in meta-programming facilities, Meta-F*
provides a general-purpose meta-programming framework [27],
where the meta-language is F* itself, an approached known as
elaborator reflection and pioneered by the Lean and Idris theorem

Marina Polubelova, Karthikeyan Bhargavan, Jonathan Protzenko, Benjamin Beurdouche, Aymeric Fromherz, Natalia Kulatova, and Santiago Zanella-Béguelin

provers [18, 19]. Essentially, programs written in a special Tac ef-
fect are executed by F* at compile-time and allow scripting the
compiler, for proof purposes or code-generation purposes. When a
meta-program generates code, F* re-checks it, hence ensuring that
meta-programs cannot generate ill-typed terms.

3 WRITE & VERIFY ONCE; COMPILE N TIMES

HACLXN is a new SIMD-oriented extension of HACLv1, where
the motto is to verify once, but extract and specialize many times.
This approach of maximizing programmer productivity is achieved
through an intentional, careful scaffolding of libraries and tech-
niques that leverage the latest advances in F*, including Meta-F*,
and encourage the programmer to author generic code.

We now illustrate how this methodology plays out at all levels
of granularity in HACLXN, starting with overloading in integer
libraries and ending with C++-like templated meta-programming.

3.1 Universal integer and buffer libraries

By virtue of being a faithful and precise model of C, Low* defines
9 different types of machine integers, including an unsigned 128-
bit type. Similarly, the verification arsenal of Low™ features many
different types of arrays, depending on whether the array is mutable
or immutable, initialized with a default value or not, along with
another abstraction for const pointers. HACL* uses 3 of those.

Writing code directly on top of these Low™ base libraries is not
just tedious: it is also unproductive. Consider a simple dereference-
then-add: writing every possible instance of «x + »y in Low™* might
require as many as 27 variants! Any C++ programmer would write
template<T> T f(T «x, T »y) { return «x + «y; }, or a macro if in C.

In order to reconcile the convenience of templates or macros with
precise specifications and semantics, we introduce an agile layer of
libraries that offers universal operators for machine integers and
for pointer manipulation. The module Lib.IntTypes is as follows.

the desired machine integer, which the Low™ toolchain will extract
either to C’s native + or alibrary call such as LowStar_UInt128_add.
Nothing is revealed about the nature of secret integers: this
means that the only operations over them are those offered by
Lib.IntTypes. In particular, operations that are known to be non
constant-time (e.g. division) require in their precondition that the
arguments be public. Owing to the abstract type, F* will treat any
attempt to use a secret integer for branching or memory access as a
type error, as these require bool and LowStar.UInt32.t respectively.
The library defines several abbreviations for convenience, such
as let uint32 = int_t U32 SEC or uint8, which we use in this paper.
The same discipline of overloaded, universal operators is ap-
plied to array operations. Our module Lib.Buffer defines buffer #b t,
where b is an index that can be one of MUT, IMMUT or CONST.
Equipped with agile operators, we define the earlier dereference-
then-add snippet in a form that is both concise and generic.

let deref_add #b #t #s (x y: buffer #b (int_t #t #s)): Stack (int_t #t #s) ... =
x.[0ul] + y.[0oul]

type inttype = | U8 | U16 | U32 | U64 | U128 | S8 | S16 | $32 | S64
type secrecy_level = | SEC | PUB

inline_for_extraction val sec_int_t: inttype — Type0
inline_for_extraction let int_t (t:inttype) (l:secrecy_level) =
match [, t with
| PUB, U8 — LowStar.UInt8.t
| SEC, _—sec_int_tt]..

inline_for_extraction val (+!): #t:inttype — #l:secrecy_level
—aiint_tt| - b:int_t t {frange (va+vb)t} —int_ttl

3.2 An abstract vector type for SIMD code

SIMD programming in C usually requires dealing with a patch-
work of headers and compiler builtins. These depend on the target
instruction set, as Intel and ARM offer different intrinsics.

In order to establish clear interfaces and abstraction bound-
aries, we first abstract away platform differences by introducing
Lib.IntVector.Intrinsics, the machine vector library (Figure 1). This
module axiomatizes vector operations that are general enough to
be implemented using, say, either Neon or AVX. We carefully au-
dit its semantics, and perform rigorous testing to ensure that our
specifications carefully capture the intrinsics’ behavior.

At compile-time, we provide hand-written definitions for the
functions defined in Lib.IntVector.Intrinsics using macros. As an
example, the module defines vec128_xor; we hand-write a macro
that calls _mm_xor_si128 (AVX) or veorq_u32 (Neon).

Exposing a compendium of vector operations is useful, but does
not enable programmer productivity. As for integer types, we define
a vector library exposing a curated interface, designed to minimize
verification effort by using agility as well as strong abstractions.

The type int_t is parameterized over two indices: inttype enumer-
ates all known variants of integer types, while secrecy_level dis-
tinguishes public data from secret data. The former allows hiding
the proliferation of integer models under a single type. The latter
brings HACLv1’s side-channel resistance modeling under the same
abstraction, thus relieving the programmer from having to deal
with yet another set of operators for secret data.

Hence, the operator +! for non-overflowing addition works for
any width and secrecy level. The # denotes implicit arguments, in-
ferred automatically by F*. Thanks to inlining, as long as +! is used
at call-site with concrete values for t and |, F* will normalize away
the cascade of matches, resulting on a monomorphic addition on

inline_for_extraction val vec_t: t:inttype — width:nat — Type0
inline_for_extraction val (+)): #t:inttype — #w:width —
viivec_ttw —v2ivec_ttw —vec_ttw

val vec_v: #t:inttype — #w:width — vec t w — Iseq (uint_t t SEC) w
val vec_add_mod_lemma: #t:inttype — #w:width —
vlvec_ttw — v2:ivec_t t w — Lemma (ensures (
vec_v (vec_add_mod v1v2) == map2 (+.) (vec_v v1) (vec_v v2)))

The type vec_t is an abstract type, shielding clients from the
complexity and variety of Lib.IntVector.Intrinsics. (This is crucial
for SMT-based verification, where proof performance degrades as
too many definitions enter the SMT context.) A vec_t is parametric
over its length, or width, and the type t of its elements. The module
only offers constructors for valid combinations of width and t.

Similarly to +!, we define +| which is the point-wise lifting of inte-
ger addition to vectors. Just like with integers, both the type (vec_t)

HACLXN: Verified Generic SIMD Crypto (for all your favorite platforms)

and the operations (+|) are evaluated away by F* at verification-
time, leaving bare calls to Lib.IntVector.Intrinsics which later be-
come macro-expanded into the right intrinsics.

Reasoning about the semantics of vector operations is done with
the vec_v function, which reflects a low-level vector as a pure data
structure suitable for specification and reasoning, i.e. a sequence of
the right integer type and the right length. Addition is thus specified
via vec_v and +., addition-modulo restricted to unsigned integers.

3.3 Representation-agnostic algorithms

HACLXN embraces genericity not just at the level of operators, but
also for entire algorithms. By making sure algorithms are parametric
over their choice of representation, we only need to verify them
once, but can extract and specialize them many times. (We leave
a detailed discussion of SIMD techniques to §4 and discuss here
compilation and code specialization aspects.)

For illustration, we turn to Poly1305 and revisit our earlier exam-
ple (§2). This time, instead of being generic over the integer width or
the flavor of buffer, we introduce an index that captures genericity
at a larger scale over the choice of low-level representation:

As it stands, poly1305_update cannot be extracted to C, as it ma-
nipulates types of the form poly1305_ctx s, where the value of s
is not known. Such types are not valid Low™; even if they were,
they would be extracted to a C union of all possible cases, which is
not our goal. To generate valid Low™ code, it suffices to apply the
function to a concrete value for its argument s.

let update32 = poly1305_update #M32

At compile-time, F* processes the inline_for_extraction’s and re-
places all the functions and types of Poly1305 with their definitions:

let update32 =
(A #s (ctx: buffer MUT ((A | M32 > vec_t U641 ...) s) — ...) #M32

type field_spec = | M32 | M128 | M256 | M512

We make our Poly1305 implementation parametric over field_spec,
ensuring that it works for any choice of representation s. Doing so,
we aim to maximize code sharing, i.e. never examine the value of s
if avoidable: doing a case-split over field_spec requires considering
four different cases, which increases the verification burden.

For the state type, we have to discriminate over s. We define
poly1305_ctx to be a pointer to vectors of a suitable width:

The first ... stands for the rest of the definition of poly1305_ctx, and
the second for the remainder of the arguments of poly1305_update
along with its body. F* then performs f-reduction, applying the
outer M32 first, then reducing ((A| M32 — vec_t U64 1| ...) M32) to
vec U64 1, and eventually to LowStar.Buffer.buffer LowStar.UInt64.t.
All that is left is a fully monomorphic implementation of Poly1305,
specialized to a scalar system that uses a 64-bit integer for the in-
ternal state. Once compiled, the C function prototype is thus:

void Poly1305_32_update32(uint64_t «ctx, uint32_t len, uint8_t stext);

let poly1305_ctx (s: field_spec) = match s with
| M32 — buffer MUT (vec_t U64 1)
| M128 — buffer MUT (vec_t U64 2) | ...

For functions, we sometimes need to perform a case analysis
over s. This, however, is limited to helpers that sit at the leaves of
the call-graph. For instance, one such helper might compute the
block length associated to a particular representation s:

inline_for_extraction let blocklen (s:field_spec): int_t U32 PUB =
match s with
| M32 — 16ul
| M128 — 32ul | ...

Helpers are by nature simple functions that pose no particular
verification challenge, meaning that the cost of examining four
cases is very low. The core of Poly1305 lies outside of helpers and is
concerned with deep proofs and complex code. Fortunately, unlike
helpers, the Poly1305 core never talks about the concrete value of s,
meaning nearly all of Poly1305 is written and verified once for all
four representations. (Importantly, this generic code will not need
to be updated if we extend field_spec with another case.)

As an example, poly1305_update loops over the input data in
block-sized chunks, then processes each block at a time. We write a
generic proof stating that block-by-block processing has the desired
semantics. Nowhere does the proof refer to the actual value of s,
except indirectly in the 5-line definition of blocklen. We thus obtain:

inline_for_extraction val poly1305_update: #s:field_spec —
ctx:poly1305_ctx s — len:size_t — text:Ibuffer uint8 len — Stack unit

There is no verification cost associated to performing a partial
application of poly1305_update to a concrete argument: the three
other cases, for 128, 256 and 512-bit specialized variants of Poly1305,
also come for free, meaning our proof-to-C-code ratio is nearly
divided by 4 compared to HACLv1.

3.4 Large-Scale Program Specialization

The technique described above suffers from one caveat: the entire
algorithm must be inlined into the top-level function in order to
get fully applied matches to appear and be reduced away by F*.
While this is fine for a mid-size algorithm such as Poly1305, for
a larger piece of code such as HPKE (§5.2), this would generate
prohibitively large and unreadable C code.

We now address very-large scale genericity, and use the full
power of Meta-F* to solve this problem. We have written a tactic
(i.e. a meta-program) that takes an algorithm written in a normal
style and transforms its entire call-graph, rewriting the algorithm
in a form similar to C++ templatized code. After rewriting, the
programmer can generate specialized versions of their code like we
did above for Poly1305, with the added benefit that the structure of
the call-graph is preserved, rather than inlined away.

The tactic takes upon the burden of rewriting the code in a
slightly more convoluted form, meaning there is no extra cost for
its users. It is flexible, and allows the programmer to annotate
their code to specify which functions should be inlined away and
which ones should remain at extraction-time. As mentioned in §2,
the tactic is not part of the TCB, since whatever code the tactic
generates is type-checked again by F*. At the time of writing, our
tactic is the second largest Meta-F* program written (> 600 LoC),
and is used in almost every algorithm in HACLxN.

We now illustrate the mode of operation of our tactic on HPKE.
HPKE is a high-level cryptographic functionality described exten-
sively in §5.2 — suffices to know, for now, that HPKE calls into a

Marina Polubelova, Karthikeyan Bhargavan, Jonathan Protzenko, Benjamin Beurdouche, Aymeric Fromherz, Natalia Kulatova, and Santiago Zanella-Béguelin

Diffie-Hellman (DH), an AEAD and a hash algorithm. HPKE is de-
fined for any triplet of algorithms that implement their respective
functionalities, meaning that HPKE is generic at a very large scale
over the following index:

type hpke_index = dh_alg & aead_alg & hash_alg

HPKE differs from previous examples as each value of the index
may admit multiple instances. For instance, fixing aead_alg to be
Chacha20Poly 1305 still allows four possible ChaCha-Poly imple-
mentations, one for each degree of vectorization. Naturally, we
want to verify HPKE once, for each possible triplet of algorithms
(not implementations), and enjoy specialization for free for any
combination of implementations. Our tactic allows just that.

calls calls
sealBase — sealBaseayx — AEAD.encrypt

The (simplified) call-graph of HPKE is described above. Using
F*’s custom annotations, the programmer decorates both sealBase
and AEAD.encrypt with [@@Specialize], and sealBase_aux with
[@@Inline]. Doing so, they indicate to the tactic that sealBase
and AEAD.encrypt should both remain in the call-graph, while
sealBase_aux is to be inlined in its callers’ bodies.

Upon executing, the tactic traverses the call-graph, starting from
sealBase, and proceeds as follows. First, inlined functions are elimi-
nated, leaving a call-graph only made up of specialized nodes. Then,
sealBase is rewritten to take as extra parameters function pointers
for every specialized function that it calls into. The signature of
sealBase becomes as follows, where AEAD.encrypt_t a stands for
the type of an AEAD encryption function for algorithm a, and ...
stands for whichever arguments sealBase took before the rewriting.

let g (alg:blake2_alg) (st:state alg) (a b c d:idx) (x y:word alg): state alg =
let st = st.[a] « (st.[a] +. st.[b] +. x) in
let st = st.[d] « (st.[d] *. st.[a]) >>=>. (rotc alg 0) in
let st = st.[c] « (st.[c] +. st.[d]) in
let st = st.[b] < (st.[b] *. st.[c]) >>>. (rotc alg 1) in
let st = st.[a] « (st.[a] +. st.[b] +.y) in
let st = st.[d] « (st.[d] *. st.[a]) >>>. (rotc alg 2) in
let st = st.[c] « (st.[c] +. st.[d]) in
let st = st.[b] « (st.[b] *. st.[c]) >>>. (rotc alg 3) in
st
let mixing_core (alg:blake2_alg) (st:state alg) (m:state alg): state alg =
let st =galgst04812m.[0] m.[1] in
let st = g alg st 159 13 m.[2] m.[2] in
let st = g alg st 2 6 10 14 m.[4] m.[5] in
let st = g alg st 37 11 15 m.[6] m.[7] in
let st = g alg st 0510 15 m.[8] m.[9] in
let st =galgst161112m.[10] m.[11] in
let st =galgst27813m.[12] m.[13] in
let st = g alg st 34 9 14 m.[14] m.[15] in
st

let snd3 (_, x,_)=x
val sealBase: #i:hpke_index — encrypt:AEAD.encrypt_t (snd3 i) — ...

Instead of being applied to just a specialized index (like in Poly1305),
sealBase needs to also be applied to specialized implementations of
the algorithms it calls into.

inline_for_extraction let aead_alg = Chacha20Poly1305
let encrypt_cp32: encrypt_t aead_alg = ChachaPoly.encrypt #M32
let sealBase_cp32 = HPKE.sealBase (..., aead_alg, ...) encrypt_cp32

Figure 2: F* spec for the core computation in Blake2.

4 SIMD CRYPTO PROGRAMMING PATTERNS

We now explore a series of well-known SIMD programming pat-
terns used in cryptographic libraries. We show how we can factor
out these patterns into verified libraries and apply them to build and
verify generic vectorized implementations for several algorithms.

4.1 Exploiting Internal Parallelism (Blake2)

We first consider algorithms that are explicitly designed to allow
their core operations to be parallelized. We illustrate this pattern
for the Blake2 hash algorithm, but similar strategies apply to other
crypto algorithms like Chacha20 and Salsa20.

Formally Specifying Blake2. The Blake2 cryptographic hash al-
gorithm [10] is standardized in IETF RFC 7693 [33]. We formalized
this RFC in F* and the main types in the resulting spec are as
follows:

The encrypt_cp32 function above is a specialized implementation
of Chacha-Poly admissible for any index (..., Chacha20Poly 1305, ...).
The application of the tactic-rewritten sealBase to a concrete in-
dex and encrypt_cp32 generates a valid HPKE implementation for
Chacha-Poly that calls into a scalar implementation of Chacha-Poly.

The shape of the call-graph is preserved, as sealBase_cp32 calls
into encrypt_cp32; furthermore, this technique allows swapping
out encrypt_cp32 for any other variant, giving e.g. sealBase_cp256.

Using this technique, the proof of HPKE is exclusively concerned
with algorithmic agility, leaving implementation choices entirely up
to the module that performs concrete instantiations. This enforces
strong modularity, as HPKE need not be aware of the current or
future implementations for a given algorithm.

The methodology applies, naturally, to all possible combinations
of choices for DH, AEAD and hash, meaning we can obtain up to 54
specialized implementations of HPKE for free. We chose 15 relevant
ones that are currently packaged within HACLXN.

type blake2_alg = | Blake2s | Blake2b
let word_t (alg:blake2_alg) = match alg with
| Blake2s — U32
| Blake2b — U64
let word (alg:blake2_alg) = int_t (word_t alg) SEC
type state (alg:blake2_alg) = Iseq (word alg) 16

Blake2 has two variants, Blake2s and Blake2b; the first uses 32-
bit words, whereas the latter uses 64-bit words. We specify the word
type as an algorithm-dependent machine integer that is labeled
as secret (SEC), which enforces that all operations on these words
must be secret independent (“constant-time”). The Blake2 state, also
called a working vector, is a 4 X 4 matrix of words, represented in
the RFC as a sequence (Iseq) of 16 words, laid out row-by-row.

To hash an input message, Blake2 first splits it into state-sized
blocks (64 bytes for Blake2s, 128 bytes for Blake2b), and processes
each block in sequence by calling a compression function. The core
computation of the compression function is a loop that repeatedly
loads a message block, permutes it according to a table, and then
calls the mixing_core function depicted in Figure 2.

HACLXN: Verified Generic SIMD Crypto (for all your favorite platforms)

let g_vec (alg:blake2_alg) (st:vec_state alg) (x y: vec_row alg) =
let (a,b,c,d) = (0,1,2,3) in
let st = st.[a] « (st.[a] +| st.[b] +| x) in
let st = st.[d] « (st.[d] *| st.[a]) >>>]| (rotc alg 0) in
let st = st.[c] « (st.[c] +| st.[d]) in
let st = st.[b] «— (st.[b] *| st.[c]) >>>] (rotc alg 1) in
let st = st.[a] « (st.[a] +| st.[b] +| y) in
let st = st.[d] «(st.[d] *| st.[a]) >>>]| (rotc alg 2) in
let st = st.[c] « (st.[c] +| st.[d]) in
let st = st.[b] «— (st.[b] *| st.[c]) >>>] (rotc alg 3) in
st

let diagonalize (alg:blake2_alg) (st:vec_state alg) : vec_state alg =
let st = st.[1] « vec_rotate_right_lanes st.[1] 1ul in
let st = st.[2] « vec_rotate_right_lanes st.[2] 2ul in
let st = st.[3] « vec_rotate_right_lanes st.[3] 3ul in
st

let mixing_core_vec (alg:blake2_alg) (st:vec_state alg)

(m:vec_state alg) : vec_state alg =

let st = g_vec alg st m.[0] m.[1] in
let st = diagonalize alg st in
let st = g_vec alg st m.[2] m.[3] in
let st = undiagonalize alg st in
st

Figure 3: 4-Way Vectorized Specification for Blake2

The mixing_core function in turn calls a shuffling function g 8
times. Each call takes 2 words from the message (x,y), and reads,
shuffles, and writes four words in the Blake2 state (at indexes
a,b,c,d), using a combination of modular addition (+.), xor (*.), and
right-rotate (>>>.). We use overloaded operators that work for both
uint32 and uint64, and this allows us to write a single generic, yet
strongly-typed, formal specification for both Blake2s and Blake2b.

The resulting F* specification is executable and can be seen as
a reference implementation of the RFC. We tested it against test
vectors from the RFC and more comprehensive tests we added
ourselves. Interestingly, our tests revealed a bug in a corner case of
our specification when processing the last block. This bug was not
exercised by the RFC test vectors, and this serves to reemphasize
the need for comprehensive testing and formal verification.

Rearranging Code for 4-way Vectorization. Looking at the first
four calls to g in the mixing_core function (Figure 2), we can see that
each call reads and modifies a different column of the state matrix
((0,4,8,12),(1,3,5,7), ...). Hence, these calls can be executed in
parallel [10]. The next four calls process different diagonals of the
state and can also be executed in parallel. To exploit this 4-way
parallelism inherent in Blake2, we rearrange the state to use vectors:

type vec_row (alg:blake2_alg) = vec_t (word_t alg) 4
type vec_state (alg:blake2_alg) = Iseq (vec_row alg) 4

val to_vec (alg:blake2_alg) (st:state alg) : vec_state alg
val from_vec (alg:blake2_alg) (st:vec_state alg) : state alg

in parallel. Using our vector library, the code for this function is
remarkably similar to that of g; we simply replace the integer op-
erations (+.,".,>>>.) with their vector counterparts (+|,"|,>>>|) and
we set the indexes a, b, ¢, d to column numbers 0, 1, 2, 3.

The benefit of vectorization becomes clear in the mixing_core_vec
function; it now calls g_vec only twice, since each call processes
four columns at a time. If each vector operation has the same cost
as a scalar operation, this transformation can provide up to a 4x
performance improvement. However, one must account for the cost
of loading, storing, and transforming vectors. For example, before
the second call to g_vec we need to diagonalize the state, by rotating
three of the row vectors, and undiagonalize it after.

The vectorized F* spec acts as an intermediate step between the
original F* specification and the vectorized Low* implementation.
We prove that the two specs are equivalent via a series of lemmas.
For example, we prove that mixing_core_vec computes the same
function as mixing_core, but on the vectorized state:

V(alg:blake2_alg) (st:state alg) (m:state alg).
mixing_core alg st m ==
from_vec (mixing_core_vec alg (to_vec alg st) (to_vec alg m))

Implementing and Verifying Vectorized Blake2. Our Low*
implementation of Blake2 closely follows the vectorized specifica-
tion, but generalizes it further. On machines that support sufficiently
wide vector instructions (128-bit for Blake2s, 256-bit for Blake2b),
the implementation uses 4-way vectorization. On all other plat-
forms, it defaults to scalar 32-bit code. By carefully structuring our
code, we are able to define a single generic implementation for all
four variants: scalar and vector, Blake2b and Blake2s.

The only other difference between the vectorized spec and our
Low™ code is that the code modifies the state in-place, instead of
copying the state at each modification. We prove that this code is
memory-safe (it does not read or write arrays outside their bounds)
and we prove that it is functionally correct with respect to the
vectorized F* specification, and by composing this with spec equiv-
alence, we prove that it conforms to the original Blake2 spec.

Compiling to C with Vector Intrinsics. We compile the Low™
code using KreMLin to obtain 4 C files: Blake2s_32.c, Blake2b_32.c,
Blake2s_128.c, and Blake2b_256.c, each offering the same interface.
The first two contain portable code that runs on any 32-bit platform.

The C code in Blake2s_128.c is essentially a sequence of calls to
128-bit vector operations. This code can be linked with our library
of vector intrinsics, and executed on any machine that supports
Arm Neon or Intel AVX/AVX2/AVX512. For example, on Intel AVX,
the C code for the first two shuffling operations of g_vec looks like:

The state is now explicitly a matrix with four rows, and each
row is a vector with four words. Based on this vectorized state,
we can define a vectorized spec for Blake2 in F*. We will relate
the two specs using functions (to_vec, from_vec) that inter-convert
between the the original scalar state and its vectorized form.

The core Blake2 computations are rewritten as shown in Fig-
ure 3. The function g_vec applies the function g to each column

st[0U] = _mm_add_epi32(st[0U], st[1U]);

st[0U] = _mm_add_epi32(st[0U], x);

st[3U] = _mm_xor_si128(st[0U], st[3U]);

st[3U] = _mm_xor_si128(_mm_slli_epi32(st[3],32—rotc0),

_mm_srli_epi32(st[3],rotc0))

Similarly, Blake2b_256 relies on AVX2 intrinsics and can be exe-
cuted on any Intel AVX2/AVX512 machine. Performance numbers
for all these implementations are given in §6. On Intel processors,
vectorization speeds up Blake2 by about 30%.

Marina Polubelova, Karthikeyan Bhargavan, Jonathan Protzenko, Benjamin Beurdouche, Aymeric Fromherz, Natalia Kulatova, and Santiago Zanella-Béguelin

let sha2 (a:sha2_alg) (in_len:size_nat) (input:lseq uint8 in_len)
: Ibytes (hash_len a) =
let st0 = init a in
let blocks = in_len / blocksize a in
let st = repeati blocks (A i st —
let b = sub input (i « blocksize a) (blocksize a) in
compress_block a b st)
st0 in
let last_len = in_len % blocksize a in
let last = sub input (in_len — last_len) last_len in
let st = pad_compress_last a in_len last_len last st in
emit a st

Figure 4: F* Specification for the main SHA-2 hash function

Further Platform-Specific Optimizations. We have focused on
writing generic code to avoid duplication of coding and verification
effort. Hence, we wrote a single implementation for 4 different
variants of Blake2, obtaining good performance on all platforms.
However, one can sometimes get even better performance by writ-
ing platform-specific code for some operations.

Blake2 requires each input message block to be permuted accord-
ing to a known permutation schedule. In our code, we implement
these permutations naively, using vector loads. AVX512 offers more
powerful gather instructions that allow such permutations to be
performed when loading vectors. We implemented and used these
intrinsics but they provide no performance benefit on the machine
we tested; it is likely that they will get faster in future processors.
An alternative, used by several other Blake2 implementations, is to
write custom AVX2 and NEON permutation code for each round.
This code is tedious and non-generic (about 300 lines of C), but
can result in a significant speedup. We did not implement this
optimization in our code, leaving it for future work, if needed.

4.2 Multiple Input Parallelism (SHA-2)

The next pattern generally applies to any cryptographic algorithm
when it is applied to a number of independent inputs (of the same
size). In particular, this pattern is used in all our primitives that
process multiple block-sized inputs in parallel. Here, we illustrate
this pattern in our implementation of multi-buffer SHA-2.

Specifying the SHA-2 Family. The SHA-2 family of hash func-
tions [35] is perhaps the most widely used cryptographic construc-
tion today. It is used as a core component within method authenti-
cation codes (HMAC), key derivation (PBKDF2, HKDF), signature
schemes (Ed25519, ECDSA), and Merkle trees.

SHA-2 has four variants: SHA2—224, SHA2—-256, SHA2—-384, and
SHA2-512. The first two use 32-bit words, whereas the last two use
64-bit words. Like in Blake2, we define a generic F* specification for
all four variants using our integer library. The SHA2 state consists
of 8 words and each block consists of 16 words (i.e. 64 or 128 bytes).

Our F* spec for the main sha2 hash function is depicted in Fig-
ure 4. It calls init to initialize the state (with some known constants);
it then goes into a loop (repeati) that calls compress to mix each
block of the input into the state; finally, it processes the last (partial)
block by calling pad_compress_last and emits the output hash.

Multi-Buffer SHA-2. The sha2 function is not obviously paral-
lelizable, since the output of each block is fed into the input of the

1o s

S

Cl‘co%é}

M

E

b,

by

| C3 C2 4 c | dy ‘ Co by

dy

E

alela)

Figure 5: Transposing a 4x4 vectorized state. Each pair of vectors
is interleaved element by element, then each alternate pair is interleaved 2 at

a time. Transposing a n X n vectorized matrix needs n log(n) interleavings.

next. But if we were willing to hash 4, 8, or 16 independent equal-
sized inputs in parallel, performance could significantly improve.
This strategy is called multi-buffer SHA-2 [26] and has been applied
to other serial primitives like AES-CBC.

We write a generic vectorized specification for multi-buffer SHA-
2, defining the vectorized state as an array of w-word vectors:

type vec_state (w:width) (alg:sha2_alg) = Iseq (vec_t (word_t alg) w) 8
type multi_block (w:width) = Iseq (vec_t (word_t alg) w) 16

Seen as a w X 8 matrix, each column of this state corresponds to
one input message, and hence the state represents the intermediate
SHA-2 state for w inputs. We process all w inputs block-by-block by
calling a vectorized version of the compress function, which takes
the vectorized state and a multi_block as input. Each multi_block
corresponds to the ith blocks of each of the w inputs; hence it is an
array of 16 vectors and can be seen as a w X 16 matrix.

Writing and verifying the vectorized compress function follows
a standard pattern. Like in the Blake2 g_vec function, we replace
each integer operation with the corresponding vector operation.
We then prove that this transformation results in a mapped version
of compress: it independently compresses each column in parallel.

The main remaining task for multi-buffer SHA-2 is functions for
loading the message blocks and then emitting the result. Both of
these operations require matrix transpositions.

A Library for Transposing Vectors. When we load an input
block using vector instructions, we naturally get these blocks loaded
in row-wise form. When implementing multi-buffer SHA2_256 with
128-bit vectors, for example, we process 4 inputs in parallel. We
can efficiently load the 64-byte block from each input into 4 128-bit
vectors, hence obtaining 16 vectors where vectors 0..3 contain data
from input 0, 4..7 contain data from input 1 etc. To put this into the
column-wise multi_block format needed by vectorized compress,
we need to transpose vectors (0, 4, 8, 12) to obtain the first 4 vectors,
then transpose (1, 5, 9, 13) to obtain the next 4 vectors, and so on.

These kinds of transpositions are routinely needed in vectorized
cryptographic code (see Chacha20 below) and so we implemented
and verified a generic library of vectorized transpositions called
Lib.IntVector.Transpose. For each transposition, we prove that the
result, seen as a matrix, is the transposition of the input.

A typical function provided by this library implements the 4 x 4
transposition depicted in Figure 5. It takes an array of 4 vectors
each with 4 words as input. It uses a vector interleaving operation
to interleave each pair of vectors element-by-element, leaving the
low-half of the interleaved result in the first vector, putting the
high-half in the second vector. (Both Arm and Intel platforms offer

HACLXN: Verified Generic SIMD Crypto (for all your favorite platforms)

val sha256_4 (r0 r1 r2 r3: Ibuffer uint8 32ul)
(len:size_t) (b0 b1 b2 b3: Ibuffer uint8 len) : Stack unit
(requires (A h0 — all_live h0 [b0; b1; b2; b3; r0; r1;r2; 13] A
pairwise_disjoint [r0; r1; r2; r3 1))
(ensures (A h0 _h1 —
modifies (loc r0 |+| loc r1 |+| loc r2 |+| loc r3) hO h1 A
as_seq h1r0 == sha2 SHA2_256 (v len) (as_seq h0 b0
as_seq h1r1 ==sha2 SHA2_256 (v len) (as_seq h0 b1
as_seq h1r2 == sha2 SHA2_256 (v len) (as_seq h0 b2
as_seq h1r3 ==sha2 SHA2_256 (v len) (as_seq h0 b3

T o=

A
A
A
)

)

Figure 6: Low™ API for 4-way multi-buffer SHA2-256
these kinds of interleaving instructions.) We then interleave each
pair of alternate vectors 2-by-2 to obtain the final result.

Other functions in this library extend this pattern to 8 X 8 and
16 X 16 transpositions, and also for non-square matrices. The main
complexity in writing and verifying these functions is in choosing
the right sequence of vector operations (some interleaving instruc-
tions can be much more expensive than others).

Implementing and Compiling Multi-Buffer SHA-2. We build
a generic implementation of SHA-2 in Low™ that can be instantiated
for all 4 SHA-2 algorithms and can be used with 4 or 8 inputs at a
time. Hence, SHA2_256 can be run on 4 inputs at a time on ARM
Neon and 8 inputs at a time on Intel AVX2, while SHA2_512 can
be run on 4 inputs at a time on AVX2, and 8 at a time on AVX512.

The main complexity in writing and verifying this Low™ code is
that each function needs to input and manipulate a large number
of buffers. For example, the Low™ type for 4-buffer SHA2_256 is
depicted in Figure 6. It takes four equal-length buffers (b0, b1, b2, b3)
as input and four hash-length buffers (r0, r1,r2, r3) as output. We
require all 8 buffers to be live in the input heap, and we require
the four output buffers to be disjoint. F* can then prove that the
code for this function is memory safe, that it only modifies the four
output buffers, and that the final value in each output buffer is the
expected hash value of the corresponding input. To make these
types easier to write and verify, we use a library of multi-buffer
predicates like all_live, pairwise_disjoint that are meta-evaluated
into conjunctions of base predicates.

The performance results for all variants of multi-buffer SHA-2
are given in §6. On Intel platforms, 4-buffer SHA-2 is about 2.5x
faster than scalar SHA-2, and 8-buffer SHA-2 is up to 7x faster.

4.3 Counter Mode Encryption (Chacha20)

We next consider a SIMD pattern that applies to all counter-mode
encryption (CTR) algorithms, such as Chacha20, AES, Salsa20, etc.
More generally, we present a loop combinator called map_blocks,
which maps a block-to-block function on some input data, and show
how to parallelize any program that uses this combinator.

Specifying Generic CTR in F*. CTR is one of several block cipher
modes of operation standardized by [22]. It is notably used in the
two most popular modern authenticated encryption schemes: AES-
GCM and Chacha20-Poly1305. We formally specify CTR as a generic
construction over any block cipher that implements the interface:

let encrypt_block (st0:state) (i:nat) (b:block) : block =
map2 (*.) (key_block st0 i) b
let encrypt_last (st0:state) (i:nat) (len:natf{len < blocksize})
(r:Ibytes len) : Ibytes len =
let b = create blocksize (u8 0) in
let b = update_subb O lenrin
sub (encrypt_block st0 i b) 0 len
let ctr_encrypt (k:key) (n:nonce) (ctr0:nat) (msg:bytes)
: cipher:bytes{length cipher == length msg} =
let st0 = init k n ctr0 in
map_blocks blocksize msg (encrypt_block st0) (encrypt_last st0)

Figure 7: Generic F* Specification for CTR.

The block cipher must define a constant blocksize, and types
for the key, nonce, and cipher state. It must define a function init
to initialize the state, given a key, nonce, and initial counter ctr0.
Finally, it must provide a function key_block that generates a block
of key bytes given a block number i.

Given such a block cipher, we specify the CTR encryption algo-
rithm as depicted in Figure 7. The function encrypt_block encrypts
the ith message block by XORing it with the ith key block. The
function encrypt_last pads the last (partial) block with zeroes and
then encrypts it using encrypt_block.

Finally, the main encryption function ctr_encrypt (which is the
same as the decryption function) initializes the state and calls the
loop combinator map_blocks, which breaks the input msg into
blocks, sequentially calls encrypt_block for each block, and calls
encrypt_last for the last (partial) block.

Multi-Input Parallelism for the Block Cipher. The map_blocks
combinator exposes the inherently parallelism in CTR: it processes
each block independently, and so can process any number of blocks
in parallel. To exploit this parallelism, we first have to write a
vectorized version of the block cipher:

type blocksize_v (w:width) = w blocksize

type multi_block (w:width) = Ibytes (blocksize_v w)

type vec_state (w:width)

val init_v: w:width — k:key — n:nonce — ctr0:nat — vec_state w
val key_block_v: w:width — vec_state w — i:nat — multi_block w

type block = Ibytes blocksize
val init: k:key — n:nonce — ctr0:nat — state
val key_block: st:state — i:nat — block

Following the multi-input SIMD pattern, the vectorized block
cipher processes w blocks at a time. It has an internal vectorized
state vec_state that is initialized by the function init_v. The function
key_block_v generates w consecutive key blocks. The main proof
obligation is to show that these blocks correspond to the key blocks
numbered i+w,i*w+1,...,(i+1)xw—1 in the original spec.

For Chacha20, writing and verifying the vectorized block cipher
code follows the same pattern as SHA-2. The Chacha20 state is an
array of 16 32-bit words, and so the vectorized state is an array of 16
vectors with w words each (each column corresponds to one input
block). We replace each integer operation in the block cipher code
with its vector equivalent, and we need to transpose the state before
generating the output key blocks. By reusing library lemmas about
vector operations and transpositions, we prove the correctness of
the key_block_v function for Chacha20 with relatively little effort.

Parallelizing CTR. Vectorizing the block cipher effectively yields
a new block cipher with a larger blocksize. Hence, we can run
the standard CTR algorithm over this vectorized block cipher, by

Marina Polubelova, Karthikeyan Bhargavan, Jonathan Protzenko, Benjamin Beurdouche, Aymeric Fromherz, Natalia Kulatova, and Santiago Zanella-Béguelin

processing w sequential blocks at a time. This results in a vectorized
spec for the Chacha20.

Our loop combinator library includes general lemmas about
map_blocks, which allow us to prove the generic correctness of
vectorized CTR given a proof of correctness for the vectorized
block cipher. This gives us a proof for vectorized Chacha20, but the
pattern can also be easily applied to other block ciphers like AES.

Implementing and Compiling Vectorized Chacha20. We im-
plement Vectorized Chacha20 in Low* in two steps. We first write
a module for multi-block Chacha20 that can process w blocks at
the same time, for w=1,4,8,16. We then write a generic CTR module
that uses the map_blocks to process w blocks at the same time.

The implementation introduces a new optimization in the vec-
torized code for encrypt_block, which loads w blocks of data from
an input message, XORs it with w key blocks, and stores these
blocks into the output ciphertext. Using vector instructions, we
can implement this load-XOR-store loop generically and more effi-
ciently than the byte-by-byte XOR in encrypt_block. In some cases,
it is also beneficial to unroll this loop a few (say 4) times to take
maximum advantage of instruction pipelining.

Because of our generic code structure, adding new platforms
requires modest effort. For example, to add AVX512, the main addi-
tional effort was to add the relevant vector intrinsics and to define
and verify a 16 X 16 transpose function, which is now in the library
and can be used in other algorithms.

We note that this vectorization pattern is not the only one that
applies to Chacha20. The inner block cipher in Chacha20 is inher-
ently parallelizable (similarly to Blake2) and this parallelization has
been exploited in prior work [16] and even verified [36]. However,
in our experiments, we found that vectorizing CTR was generally
more effective on our target platforms.

4.4 Polynomial Evaluation (Poly1305)

We now describe a SIMD pattern used in cryptographic algorithms
like Poly1305 and GCM, which are written in terms of polynomial
evaluation over a (large) arithmetic field. We show that these algo-
rithms can be written using a loop combinator called reduce_blocks
and detail how this combinator can be parallelized if the body of
the loop satisfies some algebraic conditions.

Specifying Poly1305. The Poly1305 one-time MAC function [15]
is standardized in IETF RFC7539 [5]. It takes a 32-byte key as input
and splits into two 128-bit integers s and r. It then splits the input
message into 16-byte blocks, hence transforming it to a sequence
of 128-bit integers (m1, my . . . mp); if the last block is partial, it is
filled out with zeroes to obtain a full block.

The main computation in the Poly1305 MAC evaluates the fol-
lowing polynomial in the prime field Z,,, where p = 2130 5

n-1

a=(mXr*+myxr" 7 +...+mpxXr) modp

In practice, this polynomial is evaluated block by block, by applying
Horner’s method to rearrange the polynomial as follows:

a=((..(0+m)Xr+my)Xr+...+my)Xr) modp

We maintain an accumulator a, initially set to 0, and to process
each new block m;, we first add it to the accumulator, and then
multiply the result by r (all operations in Z). Once the final block

10

let process_block (r:felem) (b:block) (acc:felem) : felem =
fmul (fadd acc (encode b)) r
let process_last (r:felem) (len:nat{len < blocksize}) (b:Ibytes len)
(acc:felem) : felem =
if len = 0 then acc else process_block r (pad_last len b) acc
let poly_eval (msg:bytes) (accO r:felem) : felem =
reduce_blocks blocksize msg
(process_block r)
(process_last r)
acc0

Figure 8: F* spec for Poly1305 polynomial evaluation.

let process_blocks_v (w:width) (r_w:felem_v w)
(b:Ibytes (w=blocksize)) (acc:felem_v w) : felem_v w =
fadd_v w (fmul_v w acc r_w) (encode_v w b)
let process_last_v (w:width) (r:felem) (len:nat{len < w = blocksize})
(b:Ibytes len) (acc:felem_v w) : felem =
poly_eval b (normalize_v w r acc) r
let poly_eval_v (w:width) (msg:bytes) (accO r:felem) : felem =
let r_w = pow_vwrin
let accO_v = to_acc_v w acc0 in
reduce_blocks (w«blocksize) msg (process_blocks_v w r_w)
(process_last_v w r) accO_v

Figure 9: Vectorized spec for Poly1305 poly_eval.

is processed, we compute s + a mod 2! to obtain the Poly1305
MAC.

Figure 8 depicts our F* specification for the polynomial evalua-
tion described above. It uses a loop combinator called repeat_blocks
that splits the input into block-sized chunks. For each block, it calls
process_block, which in turn calls the two field arithmetic opera-
tions in Zy: fadd to add an encoded block to the accumulator acc,
and fmul to multiply the result with r. The function process_last
pads and processes the last block. Our full F* specification for
Poly1305 is not much larger than this; it only adds some concrete
details from the RFC about encoding blocks and keys.

Parallelizing Polynomial Evaluation. Several prior works (e.g. [16])

have observed that the algebraic shape of polynomial evaluation
lends itself to SIMD vectorization. For example, we can process
blocks two-by-two by rewriting the polynomial as follows:

a1 =(...((myxr?+m3)xr2+ms)xr?+...+my_1) modp

az=(...((maxr?> +mg) xr2 + mg) xr?>+...+my) modp
a=(a;xr’+azxr) modp

Let’s assume that n is even. We split the polynomial evaluation
into two computations, one processes odd-numbered blocks, and
the other processes even numbered blocks, but both computations
are otherwise identical. We now have two accumulators (a1, az)
initialized to (my, mz). We process two blocks (mz;—1, my;) at a time
by multiplying both (a1, az) by r? and adding the result point-wise
to (mai—1, ma;). After processing n blocks, a final normalization step
multiplies a; by 2 and az by r and adds them.

This refactored computation effectively computes two polynomi-
als in parallel and it is easy to informally see why it is correct. We
formalize and generalize this pattern as a vectorized specification
of Poly1305 in F* that can process any number (e.g. 1/2/4/8) of
blocks in parallel. Figure 9 depicts the vectorized spec.

HACLXN: Verified Generic SIMD Crypto (for all your favorite platforms)

The accumulator now has the type felem_v w, which represents a
vector of w field elements. The function process_blocks_v evaluates
w blocks in parallel by calling vectorized versions (fmul_v, fadd_v)
of the field arithmetic functions. If less than w blocks of input
are left, we call the process_last_v function that normalizes the
vectorized accumulator to get a regular field element (felem), then
calls the original (scalar) poly_eval function on the remaining input.

To set up the vectorized polynomial evaluation, poly_eval_v first
precomputes r* and stores it in a vector r_W whose elements all
hold r". It then loads the initial accumulator acc0 into the 0th
element of the vectorized accumulator acc0_v (all other elements
are set to zero) and calls reduce_blocks to process the input.

We generically prove, for all choices of w, that this vectorized
spec is functionally equivalent to the original Poly1305 spec:

Vw msg accO r. poly_eval_v w msg acc0 r == poly_eval msg accO r

The proof relies on general lemmas about field arithmetic and the
reduce_blocks combinator. We apply this lemma here to Poly1305
but it also applies to other polynomial MACs like GCM.

Implementing Multi-Input Field Arithmetic. The main effort
of implementing and verifying (scalar or vectorized) Poly1305 is in
the field arithmetic modulo p. Since Poly1305 uses a 130-bit field, a
typical way of implementing a field element in Low™ is as an array
of 5 26-bit limbs, where each limb can grow to at most 64-bits. We
then need to implement custom modular Bignum arithmetic (fadd,
fmul) for this representation and prove it correct. In the original
HACL™ release, Poly1305 was one of the largest developments with
4716 lines, most of it dedicated to field arithmetic [36].

To implement vectorized Poly1305, we need to implement and
verify a multi-input field arithmetic library that can add and multi-
ply (fadd_v, fmul_v) multiple field elements in parallel. We take the
original scalar Poly1305 code of HACL* and generalize it using the
standard multi-input pattern. Each limb is represented by a 64-bit
word, and a vectorized field element is an array of vectors, each of
which has w words. All functions are parameterized by the vector
width w and integer operations are replaced with vector ones. The
correctness proofs are adapted for vectorized inputs and outputs.

While the multi-input algorithmic transformation is itself straight-
forward, applying it to thousands of lines of scalar Poly1305 was a
challenge and constitutes our largest case study for the SIMD coding
and verification patterns in this paper. This is, however, a one-time
cost. Once we vectorized all the field arithmetic in Poly1305, adding
a new platform (such as AVX512) required only a modest amount
of work. Furthermore, the verified vectorized bignum library we
built for Poly1305 has many reusable components that can be used
in other primitives like Curve25519 in future work.

5 CRYPTOGRAPHY FOR ALL YOUR NEEDS

While cryptographic algorithms are often designed, standardized,
and implemented as independent components, they are typically
deployed and used as part of composite constructions. For example,
the Chacha20 cipher is only safe to use in conjunction with a one-
time MAC like Poly1305. The SHA-256 hash algorithm is used
within HMAC, HKDF, and a number of signature schemes. So,
even if the code for an individual algorithm is verified for memory
safety, correctness, or side-channel resistance, these guarantees
become quickly meaningless if the code is composed with a buggy
11

Portable I Arm A64 Intel x64
Algorithm Ccode [Neon [|AVX]AVX2][AVX512] Vale
AEAD
Chacha20-Poly1305 vV [36] (+) | vV (%) O V)
AES-GCM v [17]
Hashes
SHA2-224,256 vV [36] (+) | vV (%) OV V) v [17]
SHA2-384,512 v [36] (+) |V (%) OIVE) V)
Blake2s, Blake2b V(28] (+) |V (%))|V
SHA3-224,256,384,512 | v [28]
HMAC and HKDF
HMAC (SHA2 Blake2) | v [36] v () O V)
HKDF (SHA2,Blake2) | v [36] v () OV V)
ECC
Curve25519 v [36] v [28]
Ed25519 v [36]
P-256 v [28]
High-level APIs
Box v [36]
SecretBox v [36]
HPKE 40 V() OO (VO v ()

Table 1: Extending HACL* with vectorized crypto.
Implementations marked with (*) were newly developed for this paper;
those marked with a (+) replaced prior C implementations from [36]. These
C implementations are composed with platform-specific Intel assembly
code from Vale [17] (verified agains the same specs) to build the EverCrypt
provider [28]. (Vale assembly relies on AES-NI for AES-GCM, SHAEXT for
SHAZ2, and ADX+BMI2 instructions for Curve25519.)

algorithm, or if the API provided by the algorithm is easy for an
application to misuse. Consequently, it is important for verified
crypto code to be deployed as part of a comprehensive verified
library of cryptographic constructions with safe usable APIs.

5.1 Integration and Deployment with HACL*

We contributed all the verified code developed in this paper to
the HACL* project, and helped to integrate it with the existing
constructions and APIs in the HACL* library. Tab. 1 summarizes
our contributions. For Chacha20, Poly1305, Blake2, and SHA2, our
scalar code replaces the previous portable C code [36] and our vec-
torized implementations are offered as platform-dependent alterna-
tives. For each platform, we also build verified implementations of
the Chacha20Poly1305 AEAD construction, and we integrated our
hash implementations into HMAC, HKDF, Ed25519, and ECDSA.

Crucially, for each algorithm, we ensure that each of our imple-
mentations meets the same high-level specifications as the original
HACL* code, and retains the same API.

For existing clients of the HACL* library, such as the Linux
Kernel, Mozilla Firefox, or the Tezos Blockchain, this means that the
newer C code is a drop-in replacement, with no new specification or
API to be reviewed. Indeed, some of the new vectorized code from
HACLXN has already been deployed in production: Firefox Nightly
now uses our vectorized Chacha20-Poly1305 code and Tezos uses
our vectorized Blake2, yielding measurable performance benefits.
For verified clients, such as EverQuic [20], preserving specs means
that verification is not impacted.

HACL™* includes a verified provider called EverCrypt [28] that
offers an agile, multiplexing API on top of both HACL* and Vale
code. It uses CPU autodetection to dynamically dispatch API calls
to the most efficient implementation for the platform the code
is running on. We worked with the HACL* developers to make
our HACLXN code available through the agile EverCrypt API. We

Marina Polubelova, Karthikeyan Bhargavan, Jonathan Protzenko, Benjamin Beurdouche, Aymeric Fromherz, Natalia Kulatova, and Santiago Zanella-Béguelin

strongly encourage clients use this verified, future-proof API: as
more efficient implementations get added to HACL*, users of Ever-
Crypt automatically get upgraded to faster variants.

5.2 HPKE: a verified application of HACLXN

We now illustrate how HACLXN serves as a platform for authoring
verified cryptographic constructions and applications. We focus
on Hybrid Public Key Encryption (HPKE), a new cryptographic
construction that is undergoing standardization at the IETF [13],
and is already being used in several upcoming protocols [12, 32].
HPKE is a public-key encryption scheme with optional sender
authentication: any sender who knows the HPKE public key of a
recipient can encrypt a sequence of messages under this key and
send it over the network; the recipient can use the corresponding
private key to decrypt the messages. Optionally, the sender may
also use a pre-shared symmetric key or a private Diffie-Hellman
key to authenticate the message, but we do not support this feature.
At its core, HPKE relies on three components: (1) A key encap-
sulation mechanism (KEM) that generates a fresh secret shared
between the sender and recipient and encapsulates (encrypts) it
for the recipient’s public key; (2) A key derivation function (KDF)
that derives an encryption context containing a key and a nonce
from the shared secret; (3) An authenticated encryption algorithm
(AEAD) that uses the encryption key to encrypt and decrypt a se-
quence of messages. Hence, computationally expensive public-key
cryptography is only needed to initialize the encryption context,
which can then be used to efficiently encrypt any amount of data.
HPKE is an agile scheme that supports multiple ciphersuites.
The RFC recommends four KEMs (P-256, P-521, Curve25519 and
Curve448), two KDFs (HKDF-SHA256 and HKDF-SHA512) and

three AEADs (AES-GCM-128, AES-GCM-256 and ChaCha20Poly1305).

Any combination is valid: HPKE thus has 24 possible ciphersuites,
and many more implementation combinations.

Individually verifying all these would be intractable. However,
using the integrated HACL* library, we can build a generic imple-
mentation of HPKE in 800 lines of code, in a way that is abstract in
the choice of its KEM, KDF and AEAD implementation. To instanti-
ate this code for a specific ciphersuite on a particular platform, we
only need to provide implementations for KEM, KDF and AEAD on
that platform to perform program specialization (§3.4), so long as
these meet our agile specifications. We instantiate and compile our
code to obtain 15 verified variants of HPKE that build upon our new
implementations of Chacha-Poly and SHAZ2, as well as previously
verified implementations of AES-GCM, Curve25519 and P-256 from
Vale and HACL*. Each instantiation consists of about 10 lines of F*
code, and extracts to about 380 lines of verified C code.

To use our HPKE implementation, users have numerous options.
They can use the original (not tactic-rewritten) HPKE which sup-
ports any algorithm by calling into EverCrypt. Clients get the fastest
implementation available, at the expense of extra run-time checks
and a large amount of code for all variants. Another option is to use
one of the 15 specialized HPKE variants distributed with HACLXN.
Finally, a last option is to generate a customized, minimal library for
a specific platform and subset of ciphersuites. For example, a user
can compile just the code needed for the HPKE ciphersuite con-
sisting of Curve25519, SHA-256, and Chacha20-Poly1305 for ARM,

12

resulting in a self-contained vectorized HPKE implementation with
3000 lines of C (compared to 91K lines for the full library.)

6 EVALUATION

Benchmarking Performance. Appendix A presents performance
tables for our code obtained using the SUPERCOP framework [2]
and a user-space version of KBENCH9000 [21].

We benchmarked each cryptographic algorithm on a low-end
ARM device (Raspberry Pi 3B+ with a Broadcom BCM2837B0 Cortex-
A53 CPU supporting NEON), a mainstream Intel laptop (Dell XPS13
with a Core 17-7560U CPU supporting AVX2), and a high-end Intel
workstation (Dell Precision with a Xeon Gold 5122 CPU support-
ing AVX512). All three run 64-bit Ubuntu Linux and the code was
compiled with the latest GCC and clang compilers available for
the operating system (version > 9), at optimization level -03. We
also benchmarked our code using SUPERCOP on 4 Amazon EC2
instances; two with Intel Xeon CPUs: a general-usage t3.large,
and a compute-optimized c5.metal; two with ARMv8 CPUs: a low-
cost al.metal, and a higher-end m6g.metal. All these instances
ran 64-bit Amazon Linux, and the code was compiled with GCC
and CLANG (version 7 on ARMv8, versions 7 and 9 on Xeon). By
benchmarking across these 7 different machines with two popular
C compilers, we tried to get a wide range of performance measure-
ments from low-end clients to high-end servers.

With SUPERCOP, we measured performance in cycles per byte
for processing 16KB of input data, which is the maximum record
size for the Transport Layer Security protocol. With KBENCH9000,
we evaluated each algorithm on inputs sizes ranging from 1KB
to 32KB. We compared the performance of our code to popular li-
braries like OpenSSL and LibSodium, to optimized implementations
contributed to SUPERCOP, to verified assembly code from Jasmin,
and to reference implementations for each algorithm.

Table 2 summarizes the main results of our evaluation. Our goal
is to answer two questions: (1) what is the performance benefit
of using our vectorized HACLXN code over the portable C code
previously used in HACL*; and (2) how does our code compare to
state-of-the-art cryptographic code, both verified and unverified,
both in C and in hand-written assembly. The short answer: with
the exception of hash functions on ARM devices, vectorization
provides a measurable speedup for all algorithms on all platforms.
Furthermore, the C code extracted from our generic verified vec-
torized implementations is very close in performance to the fastest
available hand-optimized assembly code for each algorithm.

Chacha20 and Poly1305. On our Intel laptop, which supports
AVX2 but not AVX512, our vectorized AVX2 code for Chacha20 and
Poly1305 is 4.8X and 4.3X faster than portable code. On the Xeon
workstation, the speedup for our AVX512 code grows to 10.3X for
Chacha20 and 5.9X for Poly1305. On the Raspberry PI, the speedups
are more modest: 1.7X for Chacha20, and 1.4X fo Poly1305.
Among the other implementations we measured, Jasmin had
the fastest Chacha20 and Poly1305 AVX2 implementations. For
inputs of 16KB, our code was 3-5% slower than Jasmin, but the
difference is significantly greater for smaller inputs, where Jasmin
uses specialized code, but our implementation still uses generic
vectorization. For medium-to-large inputs, the speed difference is
because of the manual assembly-level instruction interleaving in

HACLXN: Verified Generic SIMD Crypto (for all your favorite platforms)

Algorithm Intel Kaby Lake Laptop Intel Xeon Workstation ARM Raspberry Pi 3B+ Coding and Verification Effort
Our Code Other Our Code Other Our Code Other Scalar | Vec | Equiv | Low™ | Output
Scalar | AVX2 Fastest | Scalar | AVX512 | Fastest | Scalar | Neon Fastest Spec Spec | Proof | Impl. | C Code
Chacha20 3.73 0.77 0.75 (j) | 5.74 0.56 0.56 (d) | 8.69 5.19 4.49 (o) 151 182 819 510 4083
Poly1305 1.59 0.37 0.35(j) | 231 0.39 0.51(j) | 4.20 3.11 1.50 (o) 56 122 370 2361 7136
(arith) +3594
Blake2b 256 | 2.26 2.02(b) | 397 | 3.13 284(b) | 699 | - 6.02 (b)
430 441 324 1077 2824
Blake2s 432 | 334 3.06(b) | 6.63 | 4.52 411(b) | 1142 | 15.30 9.80 (b)
SHA256-mb | 7.40 | 1.63 x8 | 4.96 (0) | 11.37 | 1.69x8 | 7.42 (o) | 15.70 | 12.92 x4 | 15.09 (0)
213 420 662 1360 4647
SHAS512-mb | 506 | 1.95%4 | 3.25(0) | 738 | 1.44x8 | 499 (o) | 11.27 | - 9.77 (0)
Total (lines of specs, proofs, and code): | 850 12242 18690

Table 2: Evaluating HACLXN Performance and Development Effort.
Performance (left): For each algorithm, we measure CPU cycles per byte when processing 16384 bytes of data. We list these numbers for our portable

(scalar) C code, for our best-performing vectorized implementation on the machine, and for the fastest alternative implementation we tested: (j) refers to
verified assembly code from Jasmin [8]; (0) is OpenSSL, (b) is code from the Blake2 team [10], (d) is code submitted by Romain Dolbeau to SUPERCOP. For
multi-buffer SHA-2, the total cycle count is divided by the number of inputs processed in parallel (indicated by XN).

Development Effort (right): All our specs and proofs are written in F*, our implementations are written in Low™ and then compiled to C. We calculate the

size of each file in the development using cloc, discarding comments. The Poly1305 implementation includes a large field arithmetic component, which is

separately listed. We write a single implementation of Blake2 and SHAZ2 for all variants of these algorithms.

the Jasmin code. By mimicking this interleaving in our C code, we
were able to get closer to Jasmin’s performance, but we decided not
to use this optimization because it obfuscates the structure of the
code and because it is unclear whether such low-level optimizations
will still be effective on future platforms.

This speed difference disappears entirely on the Xeon work-
station, where our Chacha20 and Poly1305 implementations are
uniformly the fastest among all the code we tested, matching the
performance of the fastest AVX512 implementation in SUPERCOP.
Interestingly, even our AVX2 code catches up to Jasmin’s AVX2 on
the AVX-512 machine, where the manual instruction interleaving
appears to offer less benefit. OpenSSL also includes AVX512 code
that we believe is at least as fast as ours but this code appears to
be disabled on our Xeon workstation and on the Amazon Xeon
instances because of frequency scaling issues with AVX-512 [3],
and hence could not be measured by us.

On the Raspberry Pi, the fastest implementation we found was
hand-optimized assembly from OpenSSL, which was 16% faster than
our Chacha20, and 2.1X faster than our Poly1305. Our code gets
closer to OpenSSL on newer ARMv8 chips, and is 46% slower than
OpenSSL on the Amazon Graviton2. On inspecting the OpenSSL
Poly1305 code, we found that the main difference is that it was mak-
ing use of efficient multiply-with-accumulate instructions available
in ARM NEON (but not on Intel), and we intend to extend our
vector libraries to support these instructions.

Blake2s and Blake2b. Compared to our portable C code, our 128-
bit vectorized code for Blake2s offers a modest speedup on Intel
machines: 1.29X on the laptop, 1.47X on Xeon. Our 256-bit vector-
ized code for Blake2b offers even smaller speedups: 1.13X on the
laptop, 1.27X on Xeon. These measurements match the speedups
we have observed for other Blake2 implementations. If the effect
of vectorization seems less pronounced than for Chacha20 and
Poly1305, it is perhaps because the portable C code for Blake2 is
already very fast, and easy to optimize for modern C compilers.
On all the ARM64 chips, however, we see a surprising perfor-
mance loss for vectorized code compared to portable C. This is
a known issue on ARM CPUs where the latency of vector shift

13

instructions (used extensively in hash functions like Blake2 and
SHAZ?) is quite high [1]. Consequently, for hash functions, vector-
ization on the cheap ARMv8 CPUs we measured does not appear
to provide many benefits. However, on higher-end ARM devices,
like the Apple A9, and on upcoming ARM servers, we expect that
vectorized code will reap significant benefits.

The fastest implementations of Blake2 we found were written
by Samuel Neves for the BLAKE2 team. Our vectorized code is
about 10% slower than this implementation on both the laptop
and workstation. This difference is because Neves’ implementation
uses AVX2 instructions to implement the Blake2 message permuta-
tion table in code, whereas our generic vectorized code uses load
instructions that are available on all platforms.

Multi-Buffer SHA2. Our multi-buffer SHA2 implementation of-
fers a large speedup over portable code on Intel platforms, but
as with Blake2, are not effective on the ARM devices we tested.
Our 8-way SHA-256 implementation is 4.5X faster (per input) than
portable code on AVX2, and 6.7X faster on AVX512. Our 4-way SHA-
512 implementation is 2.6X faster than portable code on AVX2, our
8-way SHA-512 is and 5.1X faster on AVX512.

On all platforms, the fastest other SHA-2 implementations are
from OpenSSL, which relies on vector instructions to speed up
message scheduling and uses native SHA instruction (SHA-EXT)
when available. On our laptop and workstation, the OpenSSL code
was 1.5X faster than our scalar code, but using multi-buffer vector-
ization, our code leapfrogged OpenSSL by significant margins and
were the fastest implementations we tested. OpenSSL also includes
multi-buffer SHA-2 but offers a non-standard API for them which is
hard to test; we did not benchmark this code but we believe that it
will be at least as fast as our multi-buffer SHA-2 implementations.

On ARM, our 4-way vectorized SHA-256 code is 22% faster than
our scalar code and 17% faster than OpenSSL. This is far less than
the speedups obtained on AVX2 and AVX512, and this is because
of the poor shift/rotate performance on NEON. Some Intel and
ARM processors support native SHA2 instructions, and using these

Marina Polubelova, Karthikeyan Bhargavan, Jonathan Protzenko, Benjamin Beurdouche, Aymeric Fromherz, Natalia Kulatova, and Santiago Zanella-Béguelin

instructions can provide much better performance than vectoriza-
tion. On Amazon Graviton, for instance, OpenSSL assembly uses
hardware SHA instructions and is by far the fastest implementation.

Coding and Verification Effort. It is hard to estimate the devel-
opment cost of a verification-oriented project like HACLXN, since
even the task of verifying a few algorithms often triggers the devel-
opment of new reusable libraries and tool improvements that are
generally useful. Table 2 tries to quantify the effort for each step in
our workflow, in terms of lines of code and proof.

For Chacha20, our code and proofs total to 1511 lines, this is
more than the 691 lines for scalar Chacha20 reported in [36], but
less than the 1656 lines for 128-bit vectorized Chacha20 in that same
paper. This three-way comparison provides a good estimate for the
cost-benefit tradeoff of our methodology: by writing about the same
amount of code and proofs as one vectorized implementation, we
are able to compile both scalar code and vectorized code for several
different platforms, generating 4083 lines of C.

For Blake2 and SHA2, our code and proofs generically cover
multiple algorithms as well as multiple vector sizes, so the table
includes only one row for each family.

For Chacha20, Blake2 and SHA2 most of the proof effort is in
proving spec equivalence for vectorization, and the rest is in proving
correctness and memory safety in Low*. If we calculate proof
overhead in terms of the number of lines of Low* and F* code we
had to write in order to verify each line of C code we generate, then
this number would be 0.37 lines for Chacha20, 0.65 lines for Blake2,
and 0.53 lines for SHA-2.

Our largest development is Poly1305, totalling 6447 lines, which
can itself be broken down into vectorized bignum code for the field
arithmetic (3594 lines) and vectorized polynomial evaluation (2853
lines). This implementation is about twice as large as the original
scalar code in [36] but we obtain both scalar and vector implemen-
tation from it, totalling 7136 lines of C. Hence, the proof overhead
for Poly1305 is at 0.9 lines of F* per line of C. However, more than
half of our code is for vectorized bignum, and we expect this code
to be reusable in other cryptographic algorithm implementations.

Overall, we estimate that the cost of adding a new vectorized
algorithm to HACLXN is under 1 line of proof for each line of
generated C, significantly better than the 3X overhead in [36].

Furthermore, the cost of adding a new vectorized platform to one
of our vectorized implememtations is very low. For example, once
we had verified our generic Chacha20 and Poly1305 implementa-
tions, it took a PhD student about one week to add AVX512 to our
framework and extend our proofs to support this new platform.

Comparison with Verified Assembly. Our closest competition
in terms of high-performance verified crypto is verified assembly
from Vale, Jasmin, and CryptoLine. On AVX2, Jasmin can produce
code that is measurably faster than our code by directly optimizing
and verifying assembly code. However, Jasmin does not include
verified code for AVX, NEON, or AVX512. Writing and verifying
new implementations for these platforms may be able use some
existing libraries, but are still likely to require significant effort.
In contrast, our code is compiled from a generic source imple-
mentation, yet remains competitive on all platforms, and ours are
the fastest verified implementations on AVX512. The trade-off is
that our code relies on unverified compilers like GCC and CLANG.

14

Going forward, we believe that both methodologies have a role
to play: one may begin with verified generic implementations like
ours, and then opportunistically replace some of their components
with verified assembly, e.g. using Vale or Jasmin, for performance.
Our methodology allows us to safely compose such verified imple-
mentations and use them in composite constructions.

7 DEPLOYMENT AND FUTURE WORK

HACLXN has been integrated into the HACL* cryptographic library
and all our code is publicly available at:
https://github.com/project-everest/hacl-star

Our vectorized Chacha20 and Poly1305 implementations have
been deployed in the NSS cryptographic library used by Mozilla
Firefox, and in the TLS stack used in Microsoft’s msQuic implemen-
tation. Our vectorized Blake2 code is being deployed in the Tezos
blockchain. Other deployments are ongoing.

Each deployment induces a new workflow that exercises different
aspects of our verified codebase. For example, integrating our code
into NSS requires spec and code review by the NSS developers.
Consequently, a good amount of our engineering effort goes into
generating readable C code from KreMLin, in a way that follows
NSS coding guidelines. The code is then subjected to static analysis
tools that check for unused variables, dead code and other issues
that sometimes require fixes in the Low™ source code. Finally, once
our C code passes the audit, it is integrated into the NSS continuous
integration (CI) infrastructure, where it is regularly tested on a large
number of platforms, against both hand-written unit tests and test
frameworks like Wycheproof [4]. The code is then pushed to the
main NSS branch and included in Firefox Nightly (a few thousand
users) to find early deployment problems. After 2-4 weeks, it is
deployed to Firefox Beta (a few million users) where more platform
compatibility issues may be found due to the increased coverage.
A month later, if no issues are found, the code is released in the
Firefox browser (about 250 million users.)

The above workflow requires close coordination between NSS
and HACL™* developers over an extended period of time. A similar
level of engagement is needed for successful deployments in Tezos
and msQuic. This additional time and effort should be seen as the
cost of transferring verified code from a research project like ours
to real-world software applications.

This paper has focused on a few algorithms, but we are working
on extending the library with many more vecrotized implementa-
tions, following the same SIMD patterns we have discussed here.
We also plan to optimize our code better for low-end ARM devices
and investigate new vectorization strategies for such platforms.

REFERENCES

[1] Blake2b neon suffers poor performance on armv8/aarch64 with cortex-a57. https:
//github.com/weidaill/cryptopp/issues/367.

[2] ebacs: Ecrypt benchmarking of cryptographic systems — supercop. https://bench.
cr.yp.to/supercop.html.

[3] On the dangers of intel’s frequency scaling. https://blog.cloudflare.com/on-the-
dangers-of-intels-frequency-scaling/.

[4] Project wycheproof. https://github.com/google/wycheproof.

[5] ChaCha20 and Poly1305 for IETF Protocols. IETF RFC 7539, 2015.

[6] Danel Ahman, Catalin Hritcu, Kenji Maillard, Guido Martinez, Gordon Plotkin,
Jonathan Protzenko, Aseem Rastogi, and Nikhil Swamy. Dijkstra monads for free.
In ACM Symposium on Principles of Programming Languages (POPL), January
2017.

[7] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin
Grégoire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt, and

https://github.com/project-everest/hacl-star
https://github.com/weidai11/cryptopp/issues/367
https://github.com/weidai11/cryptopp/issues/367
https://bench.cr.yp.to/supercop.html
https://bench.cr.yp.to/supercop.html
https://blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/
https://blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/
https://github.com/google/wycheproof

HACLXN: Verified Generic SIMD Crypto (for all your favorite platforms)

Pierre-Yves Strub. Jasmin: High-assurance and high-speed cryptography. 2017. [31] Tahina Ramananandro, Antoine Delignat-Lavaud, Cédric Fournet, Nikhil Swamy,

[8] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Benjamin Grégoire, Adrien Tej Chajed, Nadim Kobeissi, and Jonathan Protzenko. Everparse: verified secure
Koutsos, Vincent Laporte, Tiago Oliveira, and Pierre-Yves Strub. The last zero-copy parsers for authenticated message formats. In 28th {USENIX} Security
mile: High-assurance and high-speed cryptographic implementations. CoRR, Symposium ({USENIX} Security 19), pages 1465-1482, 2019.
abs/1904.04606, 2019. [32] E.Rescorla, K. Oku, N. Sullivan, and C.A. Wood. Encrypted server name indication

[9] Andrew W Appel. Verification of a cryptographic primitive: Sha-256. ACM for tls 1.3. IETF Internet-Draft draft-ietf-tls-esni-06, 2020.

Transactions on Programming Languages and Systems (TOPLAS), 37(2):7, 2015. [33] M-J. Saarinen and J-P. Aumasson. The blake2 cryptographic hash and message
[10] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn, and Christian authentication code (mac). IETF RFC 7693, 2015.

Winnerlein. Blake2: Simpler, smaller, fast as md5. In Applied Cryptography and [34] Nikhil Swamy, Catilin Hritcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-

Network Security, pages 119-135, 2013.

Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas Cremers,
Kevin Liao, and Bryan Parno. Sok: Computer-aided cryptography. Cryptology
ePrint Archive, Report 2019/1393, 2019. https://eprint.iacr.org/2019/1393.

R. Barnes, B. Beurdouche, J. Millican, E. Omara, K. Cohn-Gordon, and R. Robert.
The messaging layer security (mls) protocol. IETF Internet-Draft draft-ietf-mls-
protocol-09, 2020.

R. Barnes and K. Bhargavan. Hybrid public key encryption. IRTF Internet-Draft
draft-irtf-cfrg-hpke-02, 2019.

Lennart Beringer, Adam Petcher, Katherine Q. Ye, and Andrew W. Appel. Verified
correctness and security of openssl HMAC. In USENIX Security Symposium, pages

Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves Strub,
Markulf Kohlweiss, Jean-Karim Zinzindohoué, and Santiago Zanella-Béguelin.
Dependent types and multi-monadic effects in F*. In Proceedings of the ACM
Conference on Principles of Programming Languages (POPL), 2016.

National Institute of Standards US Department of Commerce and Technology
(NIST). Federal Information Processing Standards Publication 180-4: Secure hash
standard (SHS), 2012.

[36] Jean Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko, and

Benjamin Beurdouche. Hacl*: A verified modern cryptographic library. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS, pages 1789-1806, 2017.

207-221, 2015.

[15] Daniel J. Bernstein. The Poly1305-AES message-authentication code. In Proceed-

ings of Fast Software Encryption, March 2005.

Daniel J. Bernstein and Peter Schwabe. Neon crypto. In Cryptographic Hardware

and Embedded Systems (CHES), pages 320-339, 2012.

[17] Barry Bond, Chris Hawblitzel, Manos Kapritsos, K. Rustan M. Leino, Jacob R.
Lorch, Bryan Parno, Ashay Rane, Srinath Setty, and Laure Thompson. Vale:
Verifying high-performance cryptographic assembly code. In Proceedings of the
USENIX Security Symposium, August 2017.

[18] Edwin Brady. Idris, a general-purpose dependently typed programming language:

Design and implementation. Journal of functional programming, 23(5):552-593,

2013.

Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob

von Raumer. The lean theorem prover (system description). In International

Conference on Automated Deduction, pages 378-388. Springer, 2015.

[20] Antoine Delignat-Lavaud, Cédric Fournet, Bryan Parno, Jonathan Protzenko,
Tahina Ramananandro, Jay Bosamiya, Joseph Lallemand, Itsaka Rakotonirina,
and Yi Zhou. A security model and fully verified implementation for the ietf
quic record layer. Cryptology ePrint Archive, Report 2020/114, 2020. https:
//eprint.iacr.org/2020/114.

[21] Jason A. Donenfeld. kbench9000 - simple kernel land cycle counter. https:

//git.zx2c4.com/kbench9000/about/, February 2018.

Morris J. Dworkin. Sp 800-38a 2001 edition. recommendation for block cipher

modes of operation: Methods and techniques. Technical report, 2001.

[23] Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam Chlipala.
Simple high-level code for cryptographic arithmetic - with proofs, without com-
promises. In 2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco,
CA, USA, May 19-23, 2019, pages 1202-1219. IEEE, 2019.

[24] Aymeric Fromherz, Nick Giannarakis, Chris Hawblitzel, Bryan Parno, Aseem Ras-
togi, and Nikhil Swamy. A verified, efficient embedding of a verifiable assembly
language. Proc. ACM Program. Lang., 3(POPL):63:1-63:30, 2019.

[25] Yu-Fu Fu, Jiaxiang Liu, Xiaomu Shi, Ming-Hsien Tsai, Bow-Yaw Wang, and Bo-
Yin Yang. Signed cryptographic program verification with typed cryptoline. In
Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors,
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2019, London, UK, November 11-15, 2019, pages 1591-1606, 2019.

[26] Shay Gueron and Vlad Krasnov. Simultaneous hashing of multiple messages. 7.
Information Security, 3(4):319-325, 2012.

[27] Guido Martinez, Danel Ahman, Victor Dumitrescu, Nick Giannarakis, Chris Haw-
blitzel, Catalin Hritcu, Monal Narasimhamurthy, Zoe Paraskevopoulou, Clément
Pit-Claudel, Jonathan Protzenko, Tahina Ramananandro, Aseem Rastogi, and
Nikhil Swamy. Meta-F*: Proof automation with SMT, tactics, and metaprograms.
In 28th European Symposium on Programming (ESOP), pages 30-59. Springer,
2019.

[28] Jonathan Protzenko, Bryan Parno, Aymeric Fromherz, Chris Hawblitzel, Ma-
rina Polubelova, Karthikeyan Bhargavan, Benjamin Beurdouche, Joonwon Choi,
Antoine Delignat-Lavaud, Cédric Fournet, et al. Evercrypt: A fast, verified, cross-
platform cryptographic provider. In 2020 IEEE Symposium on Security and Privacy
(SP), pages 634-653, 2019.

[29] Jonathan Protzenko, Jean Karim Zinzindohoué, Aseem Rastogi, Tahina Ra-
mananandro, Peng Wang, Santiago Zanella Béguelin, Antoine Delignat-Lavaud,
Catalin Hritcu, Karthikeyan Bhargavan, Cédric Fournet, and Nikhil Swamy. Veri-
fied low-level programming embedded in F*. Proceedings of the ACM on Program-
ming Languages (PACMPL), 1(ICFP):17:1-17:29, 2017.

[30] Jonathan Protzenko, Jean-Karim Zinzindohoué, Aseem Rastogi, Tahina Ra-
mananandro, Peng Wang, Santiago Zanella-Béguelin, Antoine Delignat-Lavaud,
Catalin Hritcu, Karthikeyan Bhargavan, Cédric Fournet, and Nikhil Swamy. Veri-
fied low-level programming embedded in F*. PACMPL, (ICFP), September 2017.

[16

[19

[22

15

https://eprint.iacr.org/2019/1393
draft-ietf-mls-protocol-09
draft-ietf-mls-protocol-09
draft-irtf-cfrg-hpke-02
https://eprint.iacr.org/2020/114
https://eprint.iacr.org/2020/114
https://git.zx2c4.com/kbench9000/about/
https://git.zx2c4.com/kbench9000/about/
draft-ietf-tls-esni-06

Marina Polubelova, Karthikeyan Bhargavan, Jonathan Protzenko, Benjamin Beurdouche, Aymeric Fromherz, Natalia Kulatova, and Santiago Zanella-Béguelin

A PERFORMANCE BENCHMARKS

This appendix presents our performance measurements using two
benchmarking frameworks across seven machines:

Tables 3 & 6: a Dell XPS13 laptop, with an Intel Core i7-7560U
(Kaby Lake, AVX2) CPU

Tables 4 & 7: a Dell Precision workstation, with an Intel Xeon
Gold 5122 (AVX512) CPU,

Tables 5 & 8: a Raspberry PI 3B+ single-board computer, with a
Broadcom BCM2837B0 Cortex-A53 (64-bit, NEON) CPU

Table 9: an Amazon EC2 t3.1large instance, with an Intel Xeon
Platinum 8259CL (AVX512) CPU

Table 10: an Amazon EC2 c5.metal instance, with an Intel Xeon
Platinum 8275CL (AVX512) CPU,

Table 11: an Amazon EC2 al.metal instance, with an Amazon
Graviton Cortex-A72 (64-bit, Neon) CPU

Table 12: an Amazon EC2 m6g.metal instance, with an Amazon
Graviton2 Cortex-A76 (64-bit, Neon) CPU

All machines run 64-bit Linux: the first 3 run Ubuntu 18.04, the last
4 run Amazon Linux 2.

SUPERCOP. We downloaded supercop-20200417.tar.xz! and in-
stalled it on all seven machines above. We configured SUPERCOP
to use the default GCC and CLANG compilers installed on each
machine (typically gce-7 and clang-7) and we also isntalle the latest
versions of these compilers (typically gcc-9 and clang-9). SUPER-
COP evaluated each algorithm for all compilers under a variety of
optimization flags, with the best performance usually achieved by
the combination: -03 -march=native -mtune=native.

To the existing implementations in SUPERCOP, we added: (1) Jas-
min Intel assembly code?, including verified scalar x86 code, (un-
verified) AVX, and verified AVX2; (2) Blake2 reference source code
packageS, including scalar, NEON, and AVX code; (3) OpenSSL,
compiled from the latest source in the OpenSSL repository* with
both assembly enabled and disabled (no-asm)

For each algorithm, we set the input size (TUNE_BYTES) parameter
to 16384 bytes. For Poly1305, we modified the benchmarking code
to measure just a single call to the Poly1305 MAC function (the
original SUPERCOP measured two calls, one for MACing and one
for verification.) The rest of SUPERCOP was left unchanged.

We then ran SUPERCOP which tested and measured all the
implementations it could compile on each platform. For example, on
the Graviton, it ignores all the Intel assembly implementations. We
removed some redundant implementations from SUPERCOP (e.g.
many similar variants of Blake2 with identical perfomance). Finally,
we post-processed the results with a script to obtain the tables
shown below, adding implementation author names for clarity.

KBENCH9000. We downloaded the kernel benchmarking suite
KBENCHY9000°. We extensively use this benchmarking suite for our
own code (which runs in the Linux kernel), but many of the other
implementations we wanted to measure could not be run in the
kernel. Consequently, we ported this benchmarking suite to work
in user-space, along with a script that turns off Turbo-Boost and

!https://bench.cr.yp.to/supercop.html
Zhttps://github.com/tfaoliveira/libjc
3https://github.com/BLAKE2/BLAKE2
*https://github.com/openssl/openssl
Shttps://git.zx2c4.com/kbench9000/about/

16

HyperThreading and then runs the benchmark on a single core. We
measured each algorithm for a variety of input lengths; for each
length we pick the median measurement from 100000 runs.

In addition to our own code and Jasmin, Blake2 (reference) and
OpenSSL, we added calls to the LibSodium library®. We then ran
these measurements on the three machines we owned: the Dell
XPS13 laptop, the Xeon workstation, and the Raspberry Pi 3B+.

OpenSSL. We note that although OpenSSL has code for AVX512,
it appears to be disabled on the machines we tested because of
issues with frequency scaling [3]. Furthermore, although OpenSSL
includes multi-buffer SHA-2, it does not offer an easy-to-use API
for this code, and we were unable to benchmark this code. In both
cases, we inspected the OpenSSL code, and we expect that it should
be at least as fast as our code.

®https://github.com/jedisct1/libsodium

https://bench.cr.yp.to/supercop.html
https://github.com/tfaoliveira/libjc
https://github.com/BLAKE2/BLAKE2
https://github.com/openssl/openssl
https://git.zx2c4.com/kbench9000/about/
https://github.com/jedisct1/libsodium

HACLXN: Verified Generic SIMD Crypto (for all your favorite platforms)

Algorithm Implementation Language | SIMD Features | Compiler Cycles/Byte
ChaCha20 dolbeau/amdé64-avx2 C AVX2 clang-11 0.75
jasmin/avx2 assembly AVX2 gee-8 0.75
openssl assembly AVX2 clang-11 0.75
hacl-star/vec256 C AVX2 gee-8 0.77
dolbeau/generic-gecsimd256 C AVX2 clang-10 0.87
goll-gueron C AVX2 gee-8 0.90
krovetz/avx2 C AVX2 gee-8 1.00
jasmin/avx assembly AVX gee-9 1.44
hacl-star/vec128 C AVX gee-8 1.50
dolbeau/generic-gecsimd128 C AVX clang-11 1.57
krovetz/vec128 C SSSE3 gee-9 1.71
bernstein/e/amd64-xmm6 assembly SSE2 clang-11 1.83
jasmin/ref assembly gee-9 3.62
hacl-star/scalar C gee-8 3.73
openssl-portable C clang-11 4.10
bernstein/e/ref C gee-9 4.10
Poly1305 openssl assembly AVX2 clang-11 0.35
jasmin/avx2 assembly AVX2 clang-11 0.35
hacl-star/vec256 C AVX2 clang-11 0.37
moon/avx2/64 assembly AVX2 clang-10 0.37
jasmin/avx assembly AVX clang-10 0.56
moon/sse2/64 assembly SSE2 clang-11 0.58
moon/avx/64 assembly AVX clang-10 0.60
jasmin/ref3 assembly gee-9 0.65
hacl-star/vec128 C AVX clang-10 0.72
openssl-portable C clang-11 1.19
hacl-star/scalar C gee-9 1.59
bernstein/amd64 assembly SSE2 gee-8 1.65
bernstein/53 C gee-8 1.79
Blake2b neves/avx2 C AVX2 clang-11 2.02
neves/avxicc assembly AVX clang-10 2.12
moon/avx2/64 assembly AVX2 clang-10 2.20
moon/avx/64 assembly AVX gee-9 2.21
hacl-star/vec256 C AVX2 clang-11 2.26
neves/regs C gee-9 2.34
blake2-reference/sse C AVX gee-8 251
blake2-reference/ref C gee-9 2.52
hacl-star/scalar C gee-8 2.56
neves/ref C gee-8 2.72
Blake2s neves/xmm C AVX clang-11 3.06
neves/avxicc assembly AVX clang-11 3.07
blake2-reference/sse C AVX clang-11 3.07
moon/ssse3/64 assembly SSSE3 gee-9 3.29
hacl-star/vec128 C AVX gee-9 3.34
moon/avx/64 assembly AVX clang-11 3.48
moon/sse2/64 assembly SSE2 gee-8 3.81
neves/regs C gee-9 4.01
blake2-reference/ref C gee-8 4.28
hacl-star/scalar C gee-9 4.32
neves/ref C gee-9 4.33
SHA256 hacl-star/sha256-mb8 C AVX2 gee-9 1.63 (13.04/ 8)
hacl-star/sha256-mb4 C AVX clang-10 | 3.24 (12.97 / 4)
openssl assembly AVX2 clang-11 4.96
sphlib-small C gee-9 7.28
hacl-star/scalar C gee-8 7.40
sphlib C gee-9 7.73
openssl-portable C clang-10 10.45
SHA512 hacl-star/sha512-mb4 C AVX2 clang-10 1.95(7.81/ 4)
openssl assembly AVX2 clang-11 3.25
sphlib C gee-8 4.84
sphlib-small C gee-9 4.98
hacl-star/scalar C gee-8 5.06
openssl-portable C clang-10 5.83

Table 3: SUPERCOP Benchmarks on Dell XPS13 with Intel Kaby Lake i7-7560U processor, running 64-bit Ubuntu Linux. Im-
plementations are compiled with gcc-8, gce-9, clang-10, and clang-11.

17

Marina Polubelova, Karthikeyan Bhargavan, Jonathan Protzenko, Benjamin Beurdouche, Aymeric Fromherz, Natalia Kulatova, and Santiago Zanella-Béguelin

Algorithm Implementation Language | SIMD Features | Compiler Cycles/Byte
Chacha20 hacl-star/vec512 C AVX512 gee-9 0.56
dolbeau/amd64-avx2 C AVX512 clang-10 0.56
openssl assembly AVX2 clang-10 0.77
hacl-star/vec256 C AVX2 gee-7 0.84
dolbeau/generic-gcesimd256 C AVX2 clang-10 0.99
jasmin/avx2 assembly AVX2 clang-10 1.12
krovetz/avx2 C AVX2 gee-9 1.37
hacl-star/vec128 C AVX gee-9 1.53
dolbeau/generic-gccsimd128 C AVX clang-10 1.79
krovetz/vec128 C SSSE3 clang-10 1.99
jasmin/avx assembly AVX clang-10 2.21
bernstein/e/amd64-xmm6 assembly SSE2 gee-9 2.81
jasmin/ref assembly gee-9 5.57
hacl-star/scalar C gee-9 5.74
bernstein/e/ref C gee-9 5.97
openssl-portable C clang-10 6.00
Poly1305 hacl-star/vec512 C AVX512 gee-9 0.39
jasmin/avx2 assembly AVX2 clang-6 0.51
openssl assembly AVX2 gee-9 0.52
hacl-star/vec256 C AVX2 gee-9 0.52
moon/avx2/64 assembly AVX2 gee-7 0.57
jasmin/avx assembly AVX clang-10 0.87
moon/avx/64 assembly AVX gee-7 0.88
moon/sse2/64 assembly SSE2 clang-10 0.89
jasmin/ref3 assembly clang-10 0.97
hacl-star/vec128 C AVX gee-9 1.04
openssl-portable C gee-7 1.85
hacl-star/scalar C gee-9 231
bernstein/amd64 assembly gee-9 2.53
bernstein/53 C gee-9 2.73
Blake2b neves/avx2 C AVX2 clang-10 2.84
blake2-reference/sse C AVX clang-10 2.98
hacl-star/vec256 C AVX2 clang-10 3.13
neves/avxicc assembly AVX gee-9 3.26
moon/avx2/64 assembly AVX2 clang-10 3.39
moon/avx/64 assembly AVX gee-9 3.40
neves/regs C gee-9 3.61
blake2-reference/ref C gee-9 3.88
neves/ref C gee-7 3.97
hacl-star/scalar C gee-9 3.97
Blake2s neves/xmm C AVX clang-6 4.11
blake2-reference/sse C AVX clang-6 4.12
hacl-star/vec128 C AVX gee-7 4.52
neves/avxicc assembly AVX gee-9 4.72
moon/ssse3/64 assembly SSSE3 gee-9 5.06
moon/avx/64 assembly AVX gee-9 5.21
moon/sse2/64 assembly SSE2 gee-9 5.85
neves/regs C gee-9 6.17
blake2-reference/ref C gee-9 6.45
neves/ref C gee-9 6.57
hacl-star/scalar C gee-9 6.63
SHA256 hacl-star/sha256-mb8 C AVX2 gee-9 1.69 (13.52/ 8)
hacl-star/sha256-mb4 C AVX gee-9 3.22(12.90/ 4)
openssl assembly AVX2 gee-7 7.42
sphlib-small C gee-7 11.04
sphlib C gee-7 11.25
hacl-star/scalar C gee-9 11.37
openssl-portable C gee-9 15.35
SHAS512 hacl-star/sha512-mb8 C AVX512 clang-10 | 1.44 (11.49/8)
hacl-star/sha512-mb4 C AVX2 gee-9 2.07 (8.29/4)
openssl assembly AVX2 gee-9 4.99
sphlib C gee-9 6.72
sphlib-small C gee-9 6.75
hacl-star/scalar C gee-7 7.38
openssl-portable C clang-10 9.12

Table 4: SUPERCOP Benchmarks on Dell Precision Workstation with Intel Xeon Gold 5122 processor, running 64-bit Ubuntu
Linux. Implementations are compiled with gcc-7, gee-9, clang-6, and clang-10.

18

HACLXN: Verified Generic SIMD Crypto (for all your favorite platforms)

Algorithm Implementation Language | SIMD Features | Compiler Cycles/Byte

ChaCha20 openssl assembly NEON clang 4.49
hacl-star/vec128 C NEON gee 5.19
dolbeau/arm-neon C NEON clang 5.50
krovetz/vec128 C NEON gee 6.22
dolbeau/generic-gecsimd128 C NEON clang 7.01
hacl-star/scalar C gee 8.69
openssl-portable C gee 8.84
bernstein/e/ref C gee 9.08
Poly1305 openssl assembly NEON clang 1.50
hacl-star/vec128 C NEON clang 3.11
openssl-portable C clang 3.57
hacl-star/scalar C clang 4.20
bernstein/53 C gee 4.95
Blake2b neves/regs C gee 6.02
blake2-reference/ref C gee 6.70
hacl-star/scalar C clang 6.99
neves/ref C gee 7.35
blake2-reference/neon C NEON gee 10.27
Blake2s neves/regs C gee 9.80
blake2-reference/ref C gee 10.70
blake2-reference/neon C NEON clang 11.31
neves/ref C gee 11.31
hacl-star/scalar C gee 11.42
hacl-star/vec128 C NEON gee 15.30

SHA256 hacl-star/sha256-mb4 C NEON gee 12.92 (51.66 / 4)
openssl assembly NEON clang 15.09
hacl-star/scalar C clang 15.70
sphlib-small C NEON gee 15.97
sphlib C NEON gee 16.40
openssl-portable C gee 19.85
SHA512 openssl assembly NEON gee 9.77
openssl-portable C gee 10.07
hacl-star/scalar C gee 11.27
sphlib C NEON gce 12.40
sphlib-small C NEON gee 12.40

Table 5: SUPERCOP Benchmarks on Raspberry Pi 3B+, with a Broadcom BCM2837B0 quad-core Cortex-A53 (ARMvS8) @ 1.4GHz.
Implementations are compiled with gcc-9 and clang-9.

19

Marina Polubelova, Karthikeyan Bhargavan, Jonathan Protzenko, Benjamin Beurdouche, Aymeric Fromherz, Natalia Kulatova, and Santiago Zanella-Béguelin

Algorithm Implementation Compiler | 1024 | 2048 | 4096 | 8192 | 16384 | 32768
ChaCha20 jasmin/avx2 gee-9 1.21 1.18 1.17 1.16 1.16 1.16
openssl-assembly gee-9 1.24 1.19 1.17 1.16 1.17 1.17

libsodium gee-9 1.34 1.28 1.25 1.24 1.24 1.23
hacl-star/vec256 gee-9 1.38 1.29 1.25 1.23 1.28 1.27
hacl-star/vec128 gee-9 2.38 2.34 2.32 2.31 2.37 2.36
hacl-star/scalar gee-9 6.23 6.18 6.16 6.15 6.15 6.15
openssl-portable clang-9 6.23 6.20 6.18 6.17 6.17 6.16

Poly1305 openssl-assembly clang-9 0.75 0.63 0.57 0.54 0.52 0.51
jasmin/avx2 clang-9 0.67 0.59 0.55 0.53 0.52 0.52
hacl-star/vec256 clang-9 0.85 0.72 0.63 0.61 0.57 0.57

libsodium clang-9 1.23 1.10 1.04 1.00 0.99 0.99
hacl-star/vec128 clang-9 1.29 1.20 1.17 1.16 1.14 113
openssl-portable gee-9 1.99 1.94 1.91 1.90 1.89 1.89
hacl-star/scalar gee-9 2.50 2.44 241 2.39 2.38 2.39

Blake2b libsodium clang-9 3.34 3.22 3.15 3.12 3.11 3.10
hacl-star/vec256 clang-9 3.71 3.63 3.60 3.58 3.57 3.58
reference-avx gee-9 4.12 4.09 4.02 3.99 3.98 3.97
hacl-star/scalar gee-9 4.23 4.22 4.16 4.13 4.11 4.11
openssl-portable clang-9 6.42 5.31 4.75 4.49 4.36 4.29

Blake2s reference-avx clang-9 4.97 4.96 4.90 4.87 4.86 4.85
hacl-star/vec128 gee-9 5.42 5.36 5.34 5.32 5.32 5.35
hacl-star/scalar gee-9 7.03 6.93 6.89 6.86 6.85 6.86
openssl-portable gee-9 8.96 7.87 7.33 7.07 6.94 6.95

SHA256 hacl-star/mb8 clang-9 2.74 2.64 2.60 2.57 2.56 2.56
hacl-star/mb4 gee-9 5.31 5.14 5.05 5.00 4.98 4.98
openssl-assembly gee-9 8.38 8.04 7.86 7.78 7.74 7.73

libsodium gee-9 12.60 | 12.14 | 11.89 | 11.76 11.70 11.66
hacl-star/scalar gee-9 12.62 | 12.15 | 11.93 | 11.80 | 11.74 | 11.72
openssl-portable clang-9 17.30 | 16.73 | 16.43 | 16.27 | 16.19 | 16.15

SHA512 hacl-star/mb4 clang-9 3.50 3.29 3.18 3.13 3.11 3.10
openssl-assembly gee-9 6.03 5.59 5.36 5.25 5.20 5.18

libsodium clang-9 8.62 8.01 7.72 7.56 7.49 7.45
hacl-star/scalar gee-9 8.66 8.08 7.80 7.66 7.59 7.56
openssl-portable clang-9 10.48 | 9.82 9.50 9.31 9.22 9.18

Table 6: KBENCH9000 Benchmarks on Dell XPS13 with Intel Kaby Lake i7-7560U processor running 64-bit Ubuntu Linux. All
implementations are compiled with gce-9 and clang-9

20

HACLXN: Verified Generic SIMD Crypto (for all your favorite platforms)

Algorithm Implementation Compiler | 1024 | 2048 | 4096 | 8192 | 16384 | 32768
ChaCha20 | hacl-star/vec512 gee-9 0.68 0.61 0.58 0.56 0.56 0.56
openssl-assembly gee-9 0.89 0.83 0.81 0.80 0.79 0.79
hacl-star/vec256 gee-9 0.98 0.93 0.90 0.89 0.88 0.88

jasmin/avx2 gee-9 1.20 117 1.16 1.15 1.15 1.15

libsodium gee-9 1.26 1.21 1.18 1.17 1.16 1.16
hacl-star/vec128 gee-9 1.63 1.60 1.58 1.58 1.58 1.57
hacl-star/scalar gee-9 6.19 6.15 6.12 6.12 6.11 6.11
openssl-portable gee-9 6.23 6.19 6.17 6.17 6.16 6.16

Poly1305 hacl-star/vec512 gee-9 0.94 0.65 0.51 0.43 0.40 0.38
jasmin/avx2 gee-9 0.67 0.59 0.55 0.53 0.52 0.51
openssl-assembly clang-9 0.75 0.63 0.57 0.54 0.52 0.51
hacl-star/vec256 gee-9 0.82 0.66 0.58 0.54 0.52 0.51

libsodium clang-9 1.14 1.01 0.95 0.92 0.91 0.90
hacl-star/vec128 gee-9 1.27 1.16 1.11 1.09 1.07 1.06
openssl-portable gee-9 1.97 1.93 1.92 1.89 1.88 1.88
hacl-star/scalar gee-9 2.49 2.45 241 2.39 2.38 2.39

Blake2b reference-avx clang-9 3.23 3.14 3.09 3.07 3.06 3.05
libsodium gee-9 3.34 3.22 3.18 3.15 3.14 3.14
hacl-star/vec256 clang-9 3.40 3.36 3.33 3.32 3.31 3.31
hacl-star/scalar gee-9 4.21 4.14 4.11 4.10 4.09 4.09
openssl-portable gee-9 5.88 5.06 4.62 4.40 4.30 4.29

Blake2s reference-avx clang-9 4.60 4.53 4.50 4.49 4.48 4.48
hacl-star/vec128 gee-9 4.77 4.71 4.69 4.67 4.67 4.69
openssl-portable gee-9 8.33 7.46 7.02 6.82 6.71 6.73
hacl-star/scalar gee-9 6.90 6.86 6.85 6.83 6.82 6.84

SHAZ256 hacl-star/mb8 gee-9 1.87 1.80 1.76 1.75 1.74 1.74
hacl-star/mb4 gee-9 3.55 3.43 3.36 3.33 3.32 3.31
openssl-assembly clang-9 8.38 8.04 7.85 7.76 7.72 7.71

libsodium clang-9 12,57 | 12.10 | 11.85 | 1173 | 11.67 11.63
hacl-star/scalar gee-9 12,51 | 12.10 | 11.88 | 1176 | 11.71 11.69
openssl-portable clang-9 16.92 | 16.39 | 16.11 | 15.96 | 15.88 15.85

SHA512 hacl-star/mb8 clang-9 1.72 1.61 1.56 1.53 1.52 1.52
hacl-star/mb4 gee-9 2.40 2.25 2.18 2.14 2.12 2.11
openssl-assembly gee-9 6.06 5.58 5.33 5.22 5.17 5.14

libsodium gee-9 8.55 8.00 7.72 7.57 7.50 7.47
hacl-star/scalar gee-9 8.59 8.05 7.79 7.65 7.58 7.55
openssl-portable gee-9 10.63 | 9.95 9.63 9.45 9.37 9.32

Table 7: KBENCH9000 Benchmarks on Dell Precision workstation with Intel(R) Xeon(R) Gold 5122 CPU @ 3.60GHz processor
running 64-bit Ubuntu Linux. All implementations are compiled with gcc-9 and clang-9

Algorithm Implementation Compiler | 1024 | 2048 | 4096 | 8192 | 16384 | 32768
ChaCha20 openssl-assembly clang 4.59 4.53 4.50 4.49 4.50 4.55
hacl-star/vec128 gee 5.42 5.32 5.27 5.25 5.27 5.32
openssl-portable clang 8.88 8.84 8.82 8.82 8.84 8.94
hacl-star/scalar gee 8.91 8.86 8.84 8.83 8.87 8.99
libsodium clang 9.33 9.25 9.21 9.21 9.25 9.37
Poly1305 openssl-assembly gee 1.97 1.72 1.59 1.53 1.50 1.51
hacl-star/vec128 clang 3.48 3.30 3.21 3.17 3.15 3.16
openssl-portable gee 3.74 3.65 3.61 3.58 3.57 3.59
hacl-star/scalar gee 4.61 4.52 4.48 4.46 4.45 4.47
libsodium gee 5.35 5.27 5.23 5.21 5.20 5.22
Blake2b openssl-portable gce 11.33 | 8.71 7.39 6.74 6.43 6.30
hacl-star/scalar gee 7.12 7.01 6.95 6.93 6.92 6.96
libsodium gee 7.60 7.42 7.34 7.29 7.28 7.33
reference-neon gee 11.13 | 10.96 | 10.87 | 10.82 | 10.81 10.91
Blake2s openssl-portable gee 14.92 | 12.60 | 11.44 | 10.89 | 10.63 10.56
hacl-star/scalar gee 11.59 | 11.51 | 1148 | 11.46 | 11.47 | 11.57
reference-neon gee 11.83 | 11.68 | 11.61 11.57 11.58 11.66
hacl-star/vec128 gee 16.58 | 16.52 | 16.49 | 16.49 16.61 16.64
SHA256 hacl-star/mb4 gee 13.68 | 13.23 | 13.01 12.99 13.08 13.00
openssl-assembly gee 16.22 | 15.58 | 15.26 | 15.10 | 15.15 15.12
hacl-star/scalar gee 17.49 | 16.92 | 16.64 | 16.51 | 16.58 16.54
libsodium gee 19.43 | 18.68 | 1831 | 18.13 | 18.22 | 18.19
openssl-portable clang 21.01 | 20.25 | 19.88 | 19.70 | 19.79 | 19.73
SHA512 openssl-assembly gce 11.10 | 10.37 | 10.01 | 9.83 9.76 9.82
openssl-portable gee 1145 | 10.70 | 10.33 | 10.14 | 10.08 10.12
hacl-star/scalar gee 12.70 | 11.94 | 11.55 | 11.36 | 11.28 11.34
libsodium gee 13.73 | 12.76 | 12.27 | 12.03 11.94 11.98

Table 8: KBENCH9000 Benchmarks on Raspberry Pi 3B+, with a Broadcom BCM2837B0 quad-core Cortex-A53 (ARMv8) @
1.4GHz running 64-bit Ubuntu Linux. All implementations are compiled with gcc-9 and clang-9

21

Marina Polubelova, Karthikeyan Bhargavan, Jonathan Protzenko, Benjamin Beurdouche, Aymeric Fromherz, Natalia Kulatova, and Santiago Zanella-Béguelin

Algorithm Implementation Language | SIMD Features | Compiler Cycles/Byte
ChaCha20 hacl-star/vec512 C AVX512 gee-9 0.52
dolbeau/amd64-avx2 C AVX512 clang 0.52
openssl assembly AVX2 gee-9 0.64
hacl-star/vec256 C AVX2 gee-9 0.71
jasmin/avx2 assembly AVX2 gee-9 0.93
dolbeau/generic-gccsimd256 C AVX2 gee-9 0.94
krovetz/avx2 C AVX2 gee-9 1.14
hacl-star/vec128 C AVX gee-9 1.27
dolbeau/generic-gccsimd128 C AVX gee-9 1.51
jasmin/avx assembly AVX gee-9 1.83
krovetz/vec128 C SSSE3 clang 1.88
bernstein/e/amd64-xmm6 assembly SSE2 gee-9 233
jasmin/ref assembly clang-9 4.62
hacl-star/scalar C gee-9 4.76
bernstein/e/ref C gee-9 4.95
openssl-portable C gee-9 4.98
Poly1305 hacl-star/vec512 C AVX512 gee-9 0.40
jasmin/avx2 assembly AVX2 gee-9 0.49
openssl assembly AVX2 gee-9 0.49
hacl-star/vec256 C AVX2 gee-9 0.49
moon/avx2/64 assembly AVX2 clang-9 0.53
jasmin/avx assembly AVX gee-9 0.72
moon/avx/64 assembly AVX gee-9 0.77
jasmin/ref3 assembly gee-9 0.80
moon/sse2/64 assembly SSE2 gee-9 0.86
hacl-star/vec128 C AVX gee-9 0.88
openssl-portable C gee-9 1.53
hacl-star/scalar C gee-9 1.92
bernstein/amd64 assembly gee-9 2.20
bernstein/53 C gee-9 2.51
Blake2b neves/avx2 C AVX2 clang-9 2.60
neves/avxicc assembly AVX gee-9 2.70
moon/avx/64 assembly AVX gee-9 2.82
blake2-reference/sse C AVX clang-9 2.83
neves/regs C gee-9 2.99
hacl-star/vec256 C AVX2 gee-9 2.99
blake2-reference/ref C gee-9 3.21
moon/avx2/64 assembly AVX2 clang-9 3.23
hacl-star/scalar C gee-9 3.29
neves/ref C gee-9 3.34
Blake2s blake2-reference/sse C AVX clang 3.33
neves/xmm C AVX clang 3.37
hacl-star/vec128 C AVX gee-9 3.76
neves/avxicc assembly AVX gee-9 3.91
moon/ssse3/64 assembly SSSE3 gee-9 4.20
moon/avx/64 assembly AVX gee-9 4.32
moon/sse2/64 assembly SSE2 gee-9 4.85
neves/regs C gee-9 5.11
blake2-reference/ref C gee-9 5.35
neves/ref C gee-9 5.45
hacl-star/scalar C gee-9 5.49
SHA256 hacl-star/sha256-mb8 C AVX2 gee-9 1.40 (11.21/ 8)
hacl-star/sha256-mb4 C AVX gee-9 2.68 (10.70 / 4)
openssl assembly AVX2 clang-9 6.23
sphlib-small C gee 9.15
sphlib C gee-9 9.34
hacl-star/scalar C gee-9 9.43
openssl-portable C gee-9 12.73
SHAS512 hacl-star/sha512-mb8 C AVX512 clang 1.39(11.11/8)
hacl-star/sha512-mb4 C AVX2 gee-9 1.72 (6.89 / 4)
openssl assembly AVX2 gee-9 4.19
sphlib C gee-9 5.63
sphlib-small C gee-9 5.64
hacl-star/scalar C gee-9 6.19
openssl-portable C gee-9 7.56

Table 9: SUPERCOP Benchmarks on Amazon EC2 t3.large instance with Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz
processor, running 64-bit Ubuntu Linux. Implementations are compiled with gcc-7, clang-7, gcc-9, and clang-9.

22

HACLXN: Verified Generic SIMD Crypto (for all your favorite platforms)

Algorithm Implementation Language | SIMD Features | Compiler Cycles/Byte
ChaCha20 hacl-star/vec512 C AVX512 gee-9 0.44
dolbeau/amd64-avx2 C AVX512 clang-9 0.44
openssl assembly AVX2 gee-9 0.61
hacl-star/vec256 C AVX2 gee-9 0.67
dolbeau/generic-gcesimd256 C AVX2 clang-9 0.81
jasmin/avx2 assembly AVX2 gee-9 0.89
krovetz/avx2 C AVX2 gee-9 1.08
hacl-star/vec128 C AVX gee-9 1.21
dolbeau/generic-gccsimd128 C AVX clang-9 1.44
krovetz/vec128 C SSSE3 clang-9 1.61
jasmin/avx assembly AVX gee-9 1.74
bernstein/e/amd64-xmm6 assembly SSE2 gee-9 222
jasmin/ref assembly gee-9 4.40
hacl-star/scalar C gee-9 4.54
bernstein/e/ref C gee-9 4.72
openssl-portable C gee-9 4.75
Poly1305 hacl-star/vec512 C AVX512 gee-9 0.31
jasmin/avx2 assembly AVX2 gee-9 0.41
openssl assembly AVX2 clang 0.41
hacl-star/vec256 C AVX2 gee-9 0.41
moon/avx2/64 assembly AVX2 gee 0.46
jasmin/avx assembly AVX gee-9 0.69
moon/avx/64 assembly AVX gee-9 0.71
moon/sse2/64 assembly SSE2 gee-9 0.72
jasmin/ref3 assembly gee-9 0.76
hacl-star/vec128 C AVX gee-9 0.82
openssl-portable C gee-9 1.46
hacl-star/scalar C gee-9 1.83
bernstein/amd64 assembly gee-9 2.00
bernstein/53 C gee-9 2.14
Blake2b neves/avx2 C AVX2 clang-9 2.74
moon/avx2/64 assembly AVX2 clang-9 2.75
hacl-star/vec256 C AVX2 clang-9 2.85
blake2-reference/sse C AVX clang-9 3.06
moon/avx/64 assembly AVX clang-9 3.28
neves/avxicc assembly AVX clang-9 3.35
hacl-star/scalar C clang-9 3.85
neves/regs C clang-9 4.48
blake2-reference/ref C clang-9 4.58
neves/ref C clang-9 4.68
Blake2s blake2-reference/sse C AVX clang-9 3.53
moon/ssse3/64 assembly SSSE3 clang-9 4.01
hacl-star/vec128 C AVX clang-9 4.05
neves/xmm C AVX clang 4.11
neves/avxicc assembly AVX clang-9 4.15
moon/avx/64 assembly AVX clang 4.59
moon/sse2/64 assembly SSE2 clang 5.02
hacl-star/scalar C gee-9 5.68
neves/regs C clang 5.73
blake2-reference/ref C gee-9 6.22
neves/ref C gee-9 6.99
SHA256 hacl-star/sha256-mb8 C AVX2 gee-9 1.33 (10.60 / 8)
hacl-star/sha256-mb4 C AVX gee-9 2.55(10.20 / 4)
openssl assembly AVX2 gee-9 6.26
sphlib C clang-9 9.78
hacl-star/scalar C clang 9.81
sphlib-small C clang-9 9.93
openssl-portable C clang 12.14
SHA512 hacl-star/sha512-mb8 C AVX512 clang 1.18 (9.43/8)
hacl-star/sha512-mb4 C AVX2 clang 1.75 (6.99 / 4)
openssl assembly AVX2 clang-9 3.98
hacl-star/scalar C clang 6.39
sphlib C clang-9 6.67
openssl-portable C clang-9 7.40
sphlib-small C clang-9 7.45

Table 10: SUPERCOP Benchmarks on Amazon EC2 c5.metal instance with Intel(R) Xeon(R) Platinum 8275CL CPU @ 2.50GHz
processor, running 64-bit Ubuntu Linux. Implementations are compiled with gcc-7, clang-7, gcc-9, and clang-9.

23

Marina Polubelova, Karthikeyan Bhargavan, Jonathan Protzenko, Benjamin Beurdouche, Aymeric Fromherz, Natalia Kulatova, and Santiago Zanella-Béguelin

Algorithm Implementation Language | SIMD Features | Compiler Cycles/Byte
ChaCha20 openssl assembly NEON clang 4.40
hacl-star/vec128 C NEON gee 5.10
dolbeau/arm-neon C NEON gee 5.16
krovetz/vec128 C NEON clang 5.79
dolbeau/generic-gccsimd128 C NEON clang 5.87
hacl-star/scalar C gee 5.95
openssl-portable C gee 8.43
bernstein/e/ref C clang 8.90
Poly1305 openssl assembly NEON clang 1.16
hacl-star/vec128 C NEON clang 1.98
openssl-portable C clang 3.08
bernstein/53 C clang 3.74
hacl-star/scalar C gee 5.13
Blake2b neves/regs C gee 5.46
blake2-reference/ref C gee 5.78
hacl-star/scalar C gee 5.95
neves/ref C gee 6.21
blake2-reference/neon C NEON clang 11.63
Blake2s neves/regs C gee 9.10
blake2-reference/ref C gee 9.34
hacl-star/scalar C gce 9.78
neves/ref C gee 10.06
blake2-reference/neon C NEON clang 17.15
hacl-star/vec128 C NEON gee 19.15
SHA256 openssl assembly SHA-EXT clang 2.01
hacl-star/sha256-mb4 C NEON clang 10.12 (40.46 / 4)
sphlib-small C NEON clang 12.08
hacl-star/scalar C gee 12.15
sphlib C NEON gee 12.31
openssl-portable C gee 14.58
SHA512 openssl assembly NEON gee 7.28
openssl-portable C gee 7.75
hacl-star/scalar C gee 7.93
sphlib-small C NEON clang 9.81
sphlib C NEON clang 9.82

Table 11: SUPERCOP Benchmarks on Amazon EC2 a1.metal instance with Amazon Graviton1 Cortex-A72 @ 2.3GHz, running
64-bit Ubuntu Linux. Implementations are compiled with gcc-7 and clang-7.

24

HACLXN: Verified Generic SIMD Crypto (for all your favorite platforms)

Algorithm Implementation Language | SIMD Features | Compiler Cycles/Byte
ChaCha20 openssl assembly NEON gee 2.36
hacl-star/vec128 C NEON gee 2.95
dolbeau/arm-neon C NEON gee 3.16
krovetz/vec128 C NEON gee 3.58
hacl-star/scalar C gee 3.66
dolbeau/generic-gecsimd128 C NEON gee 3.74
openssl-portable C gee 5.78
bernstein/e/ref C clang 5.98
Poly1305 openssl assembly NEON clang 1.05
hacl-star/vec128 C NEON clang 1.54
openssl-portable C gee 2.82
bernstein/53 C gee 2.93
hacl-star/scalar C gee 5.07
Blake2b neves/regs C clang 3.78
blake2-reference/ref C gee 3.82
hacl-star/scalar C gee 3.98
neves/ref C gee 3.99
blake2-reference/neon C NEON clang 7.83
Blake2s neves/regs C gee 6.26
blake2-reference/ref C gee 6.45
neves/ref C gee 6.54
hacl-star/scalar C gee 6.60
hacl-star/vec128 C NEON clang 10.44
blake2-reference/neon C NEON clang 11.16
SHA256 openssl assembly SHA-EXT gee 1.57
hacl-star/sha256-mb4 C NEON clang 6.52 (26.09 / 4)
sphlib-small C NEON clang 9.76
sphlib C NEON gee 10.16
hacl-star/scalar C gee 10.44
openssl-portable C gee 11.72
SHA512 openssl assembly NEON gee 6.03
openssl-portable C gee 6.31
hacl-star/scalar C gee 7.00
sphlib-small C NEON clang 7.96
sphlib C NEON clang 7.99

Table 12: SUPERCOP Benchmarks on Amazon EC2 még.metal instance with Amazon Graviton2 Cortex-A76 @ 2.3GHz, running
64-bit Ubuntu Linux. Implementations are compiled with gcc-7 and clang-7.

25

	Abstract
	1 Verified High-Performance Crypto
	2 Background: HACL, F, Low
	3 Write & Verify once; compile N times
	3.1 Universal integer and buffer libraries
	3.2 An abstract vector type for SIMD code
	3.3 Representation-agnostic algorithms
	3.4 Large-Scale Program Specialization

	4 SIMD Crypto Programming Patterns
	4.1 Exploiting Internal Parallelism (Blake2)
	4.2 Multiple Input Parallelism (SHA-2)
	4.3 Counter Mode Encryption (Chacha20)
	4.4 Polynomial Evaluation (Poly1305)

	5 Cryptography for all your needs
	5.1 Integration and Deployment with HACL*
	5.2 HPKE: a verified application of HACLN

	6 Evaluation
	7 Deployment and Future Work
	References
	A Performance Benchmarks

