
IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, XXX 2015 1

Towards Interpreting Smart Contract against
Contract Fraud: A Practical and Automatic

Realization
Ming Li, Anjia Yang, Member, IEEE , Xinkai Chen

Abstract—Contract fraud is a big nuisance in our society. People are scammed largely because of vague language used in contracts,
which can cause misunderstandings. Therefore, people will seek professional help to review over ambiguous terms, especially, when
signing a big contract, for example, leasing or buying property. With the advent of Ethereum blockchain, a new type of contract, named
smart contract, is emerging nowadays, enabling people to describe a complicated logic as an automatically executable computer
program. However, due to the lack of the computer background and software development experience, many people have difficulty in
understanding blockchain-based smart contracts, which is adverse to the popularization of Ethereum. It has resulted in a new wave of
contract fraud caused by smart contracts, which are self-executing and self-enforcing but also hard to understand by people. To fill this
huge gap, we propose an approach to enable people without computer background to understand and operate Ethereum smart
contracts. In doing so, smart contract fraud can be deterred if people have a better understanding of contract terms. Particularly, we
investigate the general rules of the smart contract code, and build a novel tool named SMTranslator to automatically generate readable
document. SMTranslator first translates smart contracts into standard structured files and identifies the core statement of each function
in smart contracts. By exploiting the custom natural language generation, we generate the documents for smart contracts that can
provide correct and understandable descriptions. We collect numerous contracts in Ethereum and select a number of typical contracts
to conduct the experiments. Extensive experimental results demonstrate the feasibility and effectiveness of our approach.

Index Terms—Ethereum, smart contract, contract fraud, fraud deterrence, natural language generation.

F

1 INTRODUCTION

O VER the past ten years, blockchain technology has gained
considerable attention and adoption in both industrial and

academic area since it was coined in 2008 [1]. Bitcoin and
Ethereum, as two of the biggest blockchain platforms, have
achieved valuations of more than 745 billion US dollars in Decem-
ber 2018. The two blockchain platforms provide a promising way
to build a blockchain-based decentralized application (DAPP) that
mutually distrust parties can reach an agreement in a secure way
without reliance on a third-party. Nowadays, a great deal of DAPPs
have been established in the real world, such as Micropayment
scheme [2], naming system [3] and crowdsourcing system [4]. We
could expect that these decentralized applications will contribute
significantly to constitute a more fair society in the current digital
age.

One main reason that boosts the prosperous of blockchain is
the efficiently supporting for smart contract. Smart contract is
an automatic self-execution computer program that runs without
reliance on a central party. It is published as a transaction in
the blockchain network. Particularly, the underlying cryptogra-
phy techniques and consensus protocol constitute a secure envi-
ronment for running smart contract. Under the majority honest
security, a contract is tamper-resistant and trackable once being
confirmed by blockchain nodes (e.g., miners) for several blocks.
For this reason, data recordings in smart contract can be presented

• M. Li, A. yang, and X. Chen are with the College of Information Science
and Technology and the College of Cyber Security, Jinan University,
Guangzhou 510632, China. E-mail: limjnu@gmail.com.

as a valid proof for judgement in legal disputes [5], which provides
a promising way for digital forensics to gather effective evidences
against practical issues, e.g., financial criminal.

Generally, the program languages for developing smart con-
tracts are different among the existing blockchain platforms. For
example, Bitcoin can only run non Turing-complete scripting
language. The complicated program logics, such as functions and
exceptions, are not supported. This limitation makes Bitcoin have
the natural disadvantages when being used in other areas. To
support Turing-complete smart contracts, Ethereum is designed
and employed prevalently as the world’s second biggest cryptocur-
rency. According to the statistics of [6], there are total 14,205
smart contracts have been deployed in Ethereum in the last twelve
months in 2018. Our work focuses on Ethereum which involves
millions of US dollars in smart contract.

Currently, Ethereum supports three types of program language
to develop smart contract: Solidity, Serpent and LLL. Solidity is
the first choice and flagship programming language for developing
smart contract in Ethereum. It is a high-level program language
that supports arbitrary program logic. In the process of code
execution, Solidity is compiled into bytecode and executed in
Ethereum Virtual Machine. Specially, DAPPs are different from
other GUI-based (Graphic User Interface) applications that people
do not need to care about the underlying source code. DAPPs
require people to provide valid function inputs by using Ethereum
Wallet or Remix-IDE. Thus, the primary condition for people to
operate a contract is the ability of reading and understanding the
Solidity contract. However, people who work in some fields do
not have the programming skills but also show great interests in
blockchain, e.g., the financial worker. How to help these people to

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, XXX 2015 2

easily participate in the DAPP ecosystem is still an open challenge.
Apparently, it is not easy to enable an individual without any

programming skill to understand the contract code. One practical
way is to parse the source code into intelligible description sen-
tences. A series of attempts have been made to generate the source
code document for C/C++/Java [7], [8], [9], [10], [11]. However,
we can not adopt their schemes directly in Solidity document
generation for three reasons: 1) most of them are designed for
software maintenance persons or develpers who have a certain
programming skill, not for individuals without the computer
background [9]. 2) Some of their schemes summarize the meaning
of a function according to the function name [10], [11]. However,
not each function name in smart contract can present the accurate
meaning. According to our observation, the action performed in a
certain function may not correspond with the verb described in its
name. 3) The existing researches on documentation for program
language focus on explaining the meaning of the source code.
However, in terms of smart contract documentation generation, the
primary focus is to discover and present the vulnerabilities in the
generated document other than the original meaning. In summary,
solidity is a newly appeared program language that there does not
exist an effective tool to automatically generate understandable
document at present.

Motivated by the aforementioned issues, we propose SMart
contract Translator (SMTranslator), an automatic document gen-
eration scheme for the Solidity smart contract. We implement a
system prototype to verify our scheme. Particularly, we define
a standard template to describe a function which contains Sum-
mary Description, Short Description, Return Description, Input
Description, Core Statement Description and Call Description.
Summary Description is to help people to have a general view of
the contract. The rest parts are to generate comments for a special
function. First, SMTranslator translates the Solidity contract into
structured XML representation, which can facilitate us to obtain
each part of the source code. Then, we make the core statement
analysis to identify the most important action in a function, and
parse the identified core statements based on part-of-speech analy-
sis. Lastly, we build a custom natural language processing system
to reorganize the key words and generate the final document.
Evaluation results indicate that the generated document can help
people without programming background to understand Solidity
contract and provide correct inputs when publishing a transaction.
In a nutshell, our specific contributions can be recognized as
follows:

• An approach for automatically generating document for
Solidity smart contracts is proposed in this work. To the
best of our knowledge, this is the first work that generates
readable document of smart contract for people who do
not have the programming background.

• Our approach is different from the previous document
generation approaches for C/C++/Java. A novel approach
is designed to summarize the meaning of the contract
and present a readable description for each function. We
convert the Solidity contracts into XML format files. Then,
the core statement analysis is designed to find the core
action of the method. We also identify the special ex-
pressions and features of Solidity and represent them with
suitable words. The custom natural language processing is
developed to parse the key works and generate the readable
English sentences.

• A system prototype is developed for Solidity contract and
we have released our tool to the public as an helpful tool
to understand smart contract for people. We collect a large
number of Solidity contracts from Ethereum and conduct
extensive experiments to verify the usability and feasibility
of our approach.

The remainder of the paper is organized as follows. In Section
2, we introduce the background and formulate the motivation
of this work. In Section 3, we present our concrete approach
to generate Solidity document. In Section 4, we present the
experiments and evaluation results. The related works are give
in Section 5. Finally, the conclusion and future works are given in
Section 6.

2 BACKGROUND AND MOTIVATION

2.1 Background and Preliminaries

Blockchain and Smart Contract. Most recently, blockchain
has gained significant attention and has been deployed in different
scenarios [2], [12], [13]. It is essentially a distributed ledger which
are maintained by a number of network nodes [14]. These mutual
distrust nodes can reach an agreement by the consensus protocol,
e.g., proof of work and proof of stake. More in detail, blockchain
is compose of a series of blocks. Each block, organized together as
an ordered hash chain, contains lots of transactions. Particularly,
the review of main features on blockchain are listed as follows: 1)
Complete Decentralization: Blockchain is a global computer that
is maintained by distributed P2P network. Many mutual distrust n-
odes are able realize fairly data communication without relying on
a central third party. 2) Correctness and Traceability: Blockchain
is transparent data structure that each node can trace and verify
the correctness of the data. The validation of data is ensured
with the underlying cryptographic tools (e.g., digital signature,
hash function). 3) Immutability and Irreversibility: Transactions
are tamper-resistant since they are organized as Merkle has tree.
Blocks are also connected together as hash chain which ensures
the immutability and irreversibility. 4) Cryptography: The security
of blockchain is compose of the underlying cryptography tech-
niques which ensure the transfer of the digital currency or status
among different parties in a secure way.

And also, smart contract was first proposed by Szabo in
1997 [15] before the invention of blockchain. It is a main com-
ponent of blockchain technology that provides Turing-complete
programming language (i.e., arbitrary computer codes execution),
which allows blockchain to be applied in many applications [4],
[16], [17]. Ethereum is the first blockchain platform that supports
Turing-complete smart contracts which are executed in the form of
transactions. Specifically, smart contract in Ethereum is converted
into bytecodes that are run in Ethereum Virtual Machine (EVM). It
mainly contains two parts: 1) version declaration, and 2) contract
body. The version declaration is to ensure that the contract can
not be compiled with a breaking compiler version. The contract
body contains the variable declaration and function definition.
Each function is identified by a unique name and type parameters
which are regarded as the signature statement. In particular, there
exist comments which can be identified by the symbol /***/ in the
contract body to provide the overview of function. A declaration
of a function is called as a signature (or statement) 1.

1. We recommend the readers to refer to [18] for more information.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, XXX 2015 3

1 mapping(address => uint) private userBalances;

2 contract TokenSample {

3 function transfer(address to, uint amount) {

4 if (userBalances[msg.sender] >= amount) {

5 userBalance[to] += amount;

6 userBalance[msg.sender] -= amount;

7 }

8 }

9

10 function withdrawBalance() public {

11 uint amountToWithdraw = userBalances[msg.sender];

12 require(msg.sender.call.value(amountToWithdraw)());

13 userBalances[msg.sender] = 0;

14 }

15 }

Fig. 1: An example of smart contract vulnerability.

Control Flow Graph. Control flow graph (CFG) is a type of
graphical representation that a several nodes and edges are utilized
to represent the control flow of the execution of programs and
applications [19]. Each CFG node is a basic block which denotes
a straight-line piece of code in program. Direct edges are used
to denote the jumps among different blocks. Note that there are
two type of designated blocks, i.e., entry block and exit block.
The first one is the enters of the flow graph and the second one is
exit. Specifically, CFG has been used in many program execution
scenarios to show the visualization of the program. Our scheme
employs CFG to present the control flow of the smart contract,
which enables people to understand the process of the concrete
execution.

PageRank. PageRank is an algorithm that is proposed by
Google Search to rank the web pages in their search engine. It
can be used to approximate the importance of the nodes in a graph
[10]. Generally, PageRank computes the importance of a given
node based on the number of edges which point to the node and
the importance of the nodes from which those edges originate.
It has also been used to highlight the importance of functions or
methods in a software project [10], [20]. A method that is called
by many times by other methods is regraded as more important
that other method. We utilize PageRank to rank the importance of
smart contract codes in a specific function in this paper.

Natural Language Processing. Due to the complex and
diverse of the natural languages, it is not easy to make computers
truly understand what the meaning of a speech or text in the
real-world. Natural language processing (NLP), a subfield of
artificial intelligence, is used to mitigate this challenge that enables
computers to understand and process human natural languages
[21]. It can parse and produce human natural language under the
spoken or written form. NLP mainly involves three parts: speech
recognition, natural language understanding and natural language
generation. Stanford CoreNLP is a widely used toolkit which has
realized core steps for NLP [22]. We use this toolkit to analyze
the statement of the contract code and generate readable English
sentences.

Vacuous description contract
Partial description contract
Complete description contract

8.23%

89.26%

2.51%
0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

Vacuous description

contract

Partial description

contract

Complete description

contract

D
es

cr
ip

ti
o

n
 r

a
ti

o

Transactions description distribution

Fig. 2: Ethereum transaction volume statistics.

2.2 Problem Statement and Motivation

The main motivation for this work is described as follows:
currently, contract fraud in blockchain has caused tremendous
economic losses. There does not existing an effective approach
to guide people without technique background to understand the
correct meaning of smart contracts and run the functions, which
is apparently adverse to the popularization of blockchain. More
preciously, people who intend to take participate in a DAPP should
first understand its purpose, then they can call the function of
a smart contract using the secret key. They can only resort to
the skilled developers or contract comments if they are short of
the special technique background. However, both methods have
some limitations. On the one hand, part of contract developers
do not provide contract comments, or the code comments are not
completed to illustrate the meaning of the contracts according to
our investigation. On the other hand, solidity is a newly emerging
program language that the corresponding developers are few at
present.

Particularly, there exist many security vulnerabilities which are
hard to be distinguished even for the developers. To illustrate, we
take an example as shown in Fig. 1. This contract allows people
to earn the token by transfer ETH to this contract. It is not easy to
identify the vulnerability of this contract for majority of people.
So they may choose to participate in this DAPP without doubt.
However, an attacker can call transfer() when his code is executed
on the external call in withdrawBalance(). Thus, before his balance
not being set to 0, the attacker can still transfer the tokens even
though he has received the withdrawal. This vulnerability is called
cross-function reentrancy which is also exploited in “DAO attack”
[17].

In addition, as for the smart contract comments, we classify
the smart contracts into three types based on the completeness
of comments [23]: Vacuous description contract refers to the
contracts that contain hardly any comments. Partial description
contract refers to the contracts that only part of some special
functions are commented. Complete description contract refers
to the contracts that all of their functions have been commented,
including the signature, and input/output parameters. Specifically,
we download 6,862 smart contracts which have launched more
than 100 transactions after being deployed from the beginning
of Ethereum2. The transactions distribution of these contracts are
shown as in Fig. 2. According to our observations, only 41.81% of
the total functions (74,615 out of 178,445) have been commented
in the total 6,862 contracts. Furthermore, 8.23% (i.e., 565 out of
6,862) of the contracts belong to the vacuous description contract,
89.26% (i.e., 6,125 out of 6,862) of the contracts belongs to partial

2. Etherscan just shows only the latest 500 verified contracts source code at
the time of writing.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, XXX 2015 4

description contract, and only 2.51% (i.e., 172 out of 6,862) of the
contracts belong to complete description contract. Namely, more
than 97% of smart contracts do not provide complete comments.
Specially, we find that some comments are even inaccurate. In
“CAIDCrowdsale.sol”, the developers claim the copyright notice
in the comments but not present the correct meaning. In addi-
tion, we find some of the comments are written by non-English
languages, which precludes some people from understanding the
contract. Besides, “SiaCashCoin.sol” which has the maximum
number of transactions (837,794 transactions) does not provide
any descriptions or comments in the contract.

The above issues motivate us to design an effective approach
to normalize Solidity contract comments and guide people to
participate in the DAPP without being defrauded. Based on our
approach, people without technique skills can understand how to
utilize the smart contract to participate in the Ethereum ecosystem.
Furthermore, we mark the vulnerabilities of a smart contract,
which can prevent people from suffering from the economic
losses.

3 APPROACH

In this section, we will first present the overview of our
approach SMTranslator, and then describe the details.

3.1 Overview of SMTranslator

Our approach is based on the analysis on the deployed Solidity
contracts in Ethereum. The methodology can be summarized
as four phases: Data Collection, Smart Contract Structure
Processing, Smart Contract Analysis and Natural Language
Generation. As for the first phase, we collect Solidity contracts
from the open public Ethereum website Etherscan3. We identify
the differences between Solidity and other program languages, and
figure out the main features of the published contracts. During
the second phase, SMTranslator converts Solidity contract code
into regular data structure, which can effectively improve the
interpretation with the code details. After the two preparation
phases, we analyze the key words and core statements performed
in functions and aim to obtain the core meaning of each method in
the third phase, and draw the visual CFG to depict the process of
contract functions. Specially, the vulnerabilities within a function
will be marked in the CFG. The last phase is to generate the final
readable contract documentation based on NLG.

The design of SMTranslator is illustrated in Fig. 3. During the
contract structure processing phase, we generate the customized
XML file for Solidity based on SmartCheck [24], which can
promote the efficiency of the latter parts (e.g., contract visualiza-
tion and contract analysis). After that, we analyze smart contract
from two aspects: contract visualization and contract analysis. We
utilize CFG to describe the execution process of a function with a
graph, and enumerate the importance of statements by PageRank.
The special statements are identified in Solidity, such as ether
transfer, event and modifier claim. These statements are useful to
enable people to understand the main meaning of functions.

3.2 Data Collection

We collect smart contracts which are published in succession
from the launch of July 30th, 2015. Due to the restrictions of the

3. https://etherscan.io/contractsVerified

Solidity Smart Contract

XML Generate

Control Flow Graph

Natural Language

Generation

Part-of-Speech

Tagger

Smart

Contract

Document

PageRank

Contract Visualization

Core Statement Analysis

Contract Vulnerability Detection

Contract Analysis

Fig. 3: The architecture of SMTranslator.

Etherscan, it is not allowed to crawl all of smart contract source
codes. We extract two principles to collect some representative
smart contracts: first, the developers deploy their smart contracts
in Ethereum to support practical applications, so the number
of confirmed transactions on a smart contract can represent the
activity and utility of the smart contract to a certain content.
However, 66.82% of smart contracts do not have more than 10
transactions after being deployed. We collect the highly visited
smart contracts that have more than 100 confirmed transactions.
Second, we choose smart contracts that their size is more than
1KB, i.e., about more than 100 lines code. Based to the two rules,
we collect 964 Solidity contracts from Etherscan. The majority of
smart contracts have more than 150 lines of code.

3.3 Smart Contract Structure Processing
The design goal of XML generation in SMTranslator is to sim-

plify Solidity contract into general structured document format.
SMTranslator adopts the standard Extensible Markup Language
(XML) to represent the original contract code. XML is a makeup
language that is easy to be understood both for human and
computer. It does not lose any information from Solidity contract
into XML representation, which is vital to maintain the original
meaning of the contract. We generate the XML document by
referring to SmartCheck [24], a static analysis tool which aims to
automatic vulnerability detection. SMTranslator translates source
code into XML, and also includes all the original information in
contract (e.g., comments and description), which are helpful to
generate the contract document.

As shown in Fig.??, it is the generated XML file for “Sim-
pleStorage.xml” by SMTranslator. The declaration of contract is
in the element of “< contract >< \contract >”. The identifier of
the contract is the short description of a contract. We can interpret
the identifier by our custom NLP. The element of “< comment ><
\comment >” refers to the method comments. Each method
is identified in the element of “< f unction >< \ f unction >”.
According to the explicit XML elements, SMTranslator can lo-
cate and obtain a specific code easily through XML Application
Programming Interfaces (APIs).

3.4 Smart Contract Analysis
The reminder of this section describes the analysis of the

contract core statement, stereotype identification, and vulnerability

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, XXX 2015 5

detection.

3.4.1 Core Statement Analysis
The expected results of Solidity document generation is to

reveal the function and utility of a contract. To achieve this, we
need to analyze the core actions or important statements performed
in a given function and present the call dependency. In general,
consider the distinctiveness of public blockchain platform, it is
inadvisable to develop an application only by using Solidity.
Developers are inclined to develop a blockchain-based application
with multiple program languages. For example, they may develop
the core process (coin transfer or status transition) in Solidity, and
develop the intermediate logic and user interfaces (UI) in Java and
Javascript, respectively. It is usually considered that the codes in
Solidity contract are important statements in most cases. Namely,
it is more easily to identify the core statement in Solidity contract
compared with other program languages. We aim to use a few
descriptive sentences to enable readers to know the meaning of a
method. Based on the previous experience of Hill, et al. [9] and
our extensive observation, we summarize the following principles
to obtain the core statement of a function.4

Ending Statement. It refers to the statements that lie in the
end of a method. It is usually used to change the state/value of a
variable, or execute method call. The core statement for a function
with a return value corresponds to the assignment statement for
the end return. It is easy to identify Ending in the void return
type function that he last lines are usually the core statements.
For example, in the below fucntion vote(uint8 toProposal), we
can not summarize the meaning of this method according to its
name (vote). In view of the void return type, we locate the end
of the three lines from 4 to 6 as the core statements and use
them to improve the summary. Specifically, “.” in Solidity refers
to an attribution of a variable. Thus, “sender.voted” is described
as “sender’s voted”.

EtherUpdate Statement. In Ethereum, the primary concern
for participants is the security of their accounts. So any update on
their account balance may be corresponding to the core statement.
EtherUpdate is the statements that are related with account up-
date. Particularly, there are three ways to perform Ether (the digital
asset in Ethereum) transfer in Solidity: 1) address.transfer(), 2)
address.send(), 3) address.call.value().gas(). We observed that
most of the contracts use the first method address.transfer() to
transfer currency. The main reason is that address.transfer() can
throw exception if there exist an error, which may be more secure
for individuals.

In the above function, the name distr is not a normal word that
can be understood easily. SMTranslator generates the description
by combining the main action performed in the method. The first
two lines are to set the status of the variables. The third line is
the main purpose of this method. It sends amount Ether from
address(0) to to. The action “Transfer” reminds people that their
account will update after the execution of this method. In addition,
according to our observing, many contracts adopt the name “from”
and “to” to present the currency from sender’s address to receiver’s
address. SMTranslator interprets this type of Ether transfer action
as: “amount is sent from address from to address to”.

EventClaim Statement. It refers to the statements that in-
dicate important events in a function. Solidity contract contains
a special declaration called “event”. It reminds people that an

4. The contract codes we analyzed below take from Ethereum.

important action will be executed in this function. Generally,
people can use the interface of Ethereum client to listen to an
“event”. Once it is called, the arguments will be recorded in the
transaction log. We find some general rules in terms of “event”
method that some particular functions appear with high frequency,
such as Deposit(·), Transfer(·). These events are related with the
update of the account balance. On the other hand, there exist some
“event” methods which are used to change the status of a variable
or execute specific action, such as Approval(·), OwnerChanged(·)
and Pause(·). SMTranslator identifies the declaration of Event-
Claim statement by the declared verb “emit”, and interprets the
meaning with the “event” name and its input parameters. Apart
from the “event” statement to record important actions, some
methods may also contain other core statement declarations. Thus,
in terms of the “event” method interpretation, we usually combine
EventClaim statement with other statements together.

SameAction Statement. It refers to the statements that there
exists a method call Func which has the same action with the
function. In general, Func contains the same verb word with the
method name. For example, line 1 is the method signature and
the method name is “issueMaxSynths”. On line 5, the method call
“issueSynths()” can be analyzed by the camel-case that it has the
same action with the method signature. They have the same verb
“issue” and noun “Synths”. If there exist only one line code in
a method, it is obviously the core statement and the method call
usually has the same action with the method.

Conditional Statement. It refers to the executions which are
based on special conditions. Detailedly, it ensures that the specific
codes can be executed only if some special conditions are satisfied.
SMTranslator identifies this type of statement with the key words
if, while, for or switch. There may have multilayer nestings using
if statement. In this situation, SMTranslator reveals the main
execution code in the statement and illustrates the meaning of
the judgements together. Particularly, Solidity contract contains
some special conditional judgement statements which are used
to handle error, e.g., require and assert. They can throw an
exception and return immediately in case of the conditions are
not met. We can see that the conditional statements contribute a
lot to help users to understand when or how a method can be
executed. So SMTranslator illustrates the conditional statements
in the document.

Modifier Statement. It is the declaration that verifies some
special conditions before a method execution. It is declared in the
signature of a method. Modifier statement usually defines some
conditional judgements with require statements and can change
the performed action of the method. SMTranslator identifies
Modifier statements with the declaration “modifier”. A method
can have multiple ‘modifier” statements. SMTranslator interprets
the condition judgement of “modifier” one by one and generates
fixed description format for any method.

3.5 Natural Language Generation

Natural language processing (NLP) is described as the process
of producing meaningful phrases and sentences in the form of
natural language to do useful things [25]. It is used to analyze hu-
man language by combining machine learning and deep learning
algorithms, and aims to make computer understand the meaning
of various differences of language without being explicitly told.
In our work, we utilize NLP technology to analyze the core
statements and input/output parameters of Solidity contract. For

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, XXX 2015 6

example, a specific word with camel-casing naming is parsed as
the gerund form and recognized as a readable sentence with proper
preposition.

SMTranslator adopts the Stanford CoreNLP NLP Toolkit
which is a Java annotation pipeline framework [22] to provide core
natural language analysis. It contains many NLP tools, including
Part-of-Speech (POS) tagger, Named Entity Recognizer (NER),
Parser, Coreference Resolution System and so on. Most of the
Solidity contracts follow the naming rules of variable and method.
So SMTranslator can interpret different part of words accurately
in the statement and declaration based on POS tagger. Take a
method ManagedAccount(address owner, bool payOwnerOnly)
in “DAO.sol” for example. The method name “ManagedAccount”
is parsed into two words. The first word “Managed” is the past
tense verb which is marked as {“pos”: “VBD”} and shows
the base form as {“lema”: “manage”}. “Account” is marked as
{“pos”: “NN”} and the base form is {“lema”: “account”}. The
input parameter “ payOwnerOnly” can be parsed as the same way,
“Only” is marked as {“pos”: “RB”}. “pos” refers to element of
the part of speech. POS tagger has defined more than 40 types of
“pos”. “VBD”, “NN” and “RB” represent the verb with base form,
noun with singular or mass and adverb, respectively.

After the analysis of POS tagger, the parameters and core
statement are turn into structured data, which let us obtain the
separate key words. Based on this, the final phase of SMTranslator
is to use Natural Language Generation to organize these words and
generate readable English sentences.

Compared with POS tagger that deals with “Reading” task
in Solidity contract, Natural Language Generation (NLG) can be
deemed as executing “Writing” task. It aims to turn structured data
into human readable sentences. Particularly, SMTranslator follows
the typical architecture of NLG described in [26]. It mainly
contains three components: Document Planner, Microplanner
and Surface Realizer. Document planner is the component that
interprets the performed fact/action in each method and organizes
them as a sequence which can be easily understood. Microplanner
is the component that determines which suitable words or phrases
can be used to describe the sequence. To interpret different parts of
a method, the microplanner adds some specific words into a phrase
(e.g., adjectives or adverbs), which can smooth it more readable.
The last component surface realizer is to organize these phrases as
natural language sentences. As described above (Subsection 3.3,
3.4 and 3.5), we first convert Solidity contract into the structured
XML format and analyze the core statements and important
declarations as the inputs of document planner. Then, we generate
the fixed structure for each specific statement in surface realizer.

It is worth noting that we identify an important point which
can help us to generate the document in NLG: parsing global
variables and functions under the explanation of Solidity docu-
mentation 5. We aware that many global variables and functions
have deterministic meaning in Solidity contract. Interpreting these
variables and functions in advance can effectively help people to
understand the function more clearly. For example, msg is the
initiator of a contract, e.g., msg.sender refers to the initiator’s
address, msg.value refers to the number of currency that the
initiator transfers to the contract. The method sha256(var m) is
to compute a hash value of m which is the digest of this message.
It is a cryptography algorithm that people can not understand the
meaning only by its method name. In addition, there is another

5. https://Solidity.readthedocs.io/en/latest/Solidity-in-depth.html

TABLE 1: The explanation of description type.

Description Type Explanation
Short Description The summary about this method.

Return Description Return type and value explanation.
Modifier Description Special conditions that the method should

satisfy.
Input Description Input parameter explanation.
Core Description The core statement about this method.
Call Description Method calls about this method.

special method called selfdestruct(address recipient). It destroys
the current contract and sends its remaining currency to the
specific address recipient, which is a very special method that
does not exist in other languages. SMTranslator interprets these
special variables and functions with pre-described sentences in
the generated document.

SMTranslator organizes the document structure by creating 6
types of description for each method in document planner [10]:
Short Description, Return Description, Modifier Description, In-
put Description, Core Statement Description and Call Description.
The order of these descriptions is determined by the sentences
logic and semantic analysis. Short description reveals the most
important information of the method which is put in the first
place, which requires people to pay more attention. It emphasizes
some specific actions or facts like Ether transfer or status change,
and represents a brief, highlevel action summarizing a whole
method. Return description describes the return value. It clarifies
the type of output parameters. It is usually put together with Short
description. Modifier description is to declare special conditions
(i.e., method with “modifier”) that should be satisfied before the
execution. Input Description clarifies all of the input parameters.
Core Statement Description serves to indicate the main function
of this method. Call Description is to illustrate which methods
depend on this method. It is used to evaluate the importance of a
method. These descriptions are briefly shown in Table 1.

We describe the above 6 type of descriptions with different
phases. Short Description uses the subject ”This method”, the
verb phase “can be used to”, the verb identified from its name
to represent main function, and combines with a noun to represent
the direct-object. Return Description is added in the end of Short
Description with the conjunction “and returns”. For example, in
the method function receiveEther() returns(bool), it is interpreted
as: “This method receiveEther() can be used to receive Ether
and returns bool value”. Modifier Description is to describe
the special conditions. SMTranslator analyzes the conditions to
be met in the declaration of the modifier and interprets it as:
“This method can only be called if”. In Input Description,
SMTranslator presents the number of inputs unless there exists
only one input. It uses the verb “is” to illustrate each parameter
one by one. For the convenient operation of people, SMTrans-
lator interprets the type meaning of each input and presents the
base form of this type. For example, the parameter “address
receiver”, SMTranslator interprets the variable receiver as: “The
variable receiver is the address type that holds a 20 byte val-
ue, e.g., 0x72ba7d8e73fe8eb666ea66babc8116a41bfb10e2”. Call
Description clarifies which functions have called this method. SM-
Translator parses it as “This method is called by:”. These phases
and sentences are organized together to generate the complete
document in the surface realizer.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, XXX 2015 7

 Natural Language Processing

XML Generation

Natural Language Generation

Core Statement Analysis

Smart

Contract

Graphical User Interface

Generated

Document

Fig. 4: The system design of SMTranslator.

4 EVALUATION RESULTS AND ANALYSIS

In this section, we introduce the developed SMTranslator
tool and present the evaluation results. We discuss the efficiency
and feasibility of SMTranslator by referring to the principles
formulated in [10], [11], [27], and mainly focus on three aspects:
1) to access whether our tool can help people without program-
ming background to understand the functionality of a method
in smart contract, 2) to access whether our tool can help them
to understand how to use a method, 3) to access whether the
generated documentation can be more instructive or accurate than
the existed comments. For the last point, we consider that whether
the generated document can contribute more information about a
contract, not only repeat the information that already exists in the
comments.

The reminder of this section first presents the prototype imple-
mentation of SMTranslator, then introduces the preparation and
metrics of the evaluation, and analyzes the experiment results
lastly.

4.1 Prototype Implementation

We implemented SMTranslator in Java with roughly
4000 lines of code. Our source code is available at http-
s://github.com/lim60/SMTranslator. We develop SMTranslator as
a graphical user interface (GUI) tool based on Java Swing library
in Eclipse platform, which could make it more easily be operated
by people. SMTranslator takes Solidity contract as input and
support to bulk import a number of smart contracts. In particular,
we have already downloaded numerous smart contracts locally.
People can check the existence of a particular contract using its
contract name. After finishing the interpretation, people could
get a generated document for contract name which is named as
“{name} document.txt”.

There are four main modules in SMTranslator. In terms of
XML generation, we adopt ANTLR v4, a parser generator for
reading, processing and translating structured text or binary files. It
converts Solidity contract format into structured XML data format.
SMTranslator integrates Stanford CoreNLP toolkit to provide part
of speech analysis. It is worth noting that CoreNLP provides
numerous APIs, which allows us more easily to develop the
application. Fig. 5 is the system design of SMTranslator. We
run our experiments on a PC with a 3.5-GHz CPU, and 16-GB
memory.

TABLE 2: The questions we ask in the questionnaire. The
optional answers are “Strongly Agree”, “Agree”, “Disagree” and

“Strongly Disagree”.

Type Question
Q1−Usability I feel this tool is easy to use and operate.
Q2−Accuracy The explanations and summaries for a

method is accurate.
Q3−Readability The summaries generated by this tool are

easy to read and I can totally understand the
meaning of each generated sentences.

Q4−Conciseness The summaries generated by this tool do not
contain unnecessary information.

Q5− Instructiveness I can easily use a specific method by the
Ethereum wallet under the direction of the
explanations.

Q6−CoreAnalysis I feel the tool for core statement analysis of
a method is accurate and does not miss some
important information.

4.2 Participants

To verify the readability and intelligibility of document gen-
erated by SMTranslator, we invited 10 student volunteers from
Jinan University in China. They all have some basic knowledge
of blockchain technology and Ethereum platform. 4 of them
are graduate students who come from Computer-Science. They
have the experiences of software development. 3 of them are
graduate students who come from Marketing-Management. The
rest of them come from Economics. In particular, the volunteers
are required to finish the questionnaires based on the generated
documents and the contract codes.

4.3 Questions and Metrics

To access whether SMTranslator performs well for the above
mentioned principles, we list several questions by the form of
a questionnaire. As shown in Table 2, there are seven questions
about the usability of the tool, the accuracy, readability, concise-
ness, intelligibility and instructiveness of the generated document.
We assign an extra question for the volunteers who are the
Computer-Science background. Only they can verify the accuracy
of the core statement analysis by checking the Solidity contract
code. The optional answers for each question can be “Strongly
Agree”, “Agree”, “Disagree”, and “Strongly Disagree”. We also
assigned a value for each answer which are 4, 3, 2, 1, respectively
[10].

4.4 Selected Smart Contract

As shown in table 3, we used 10 typical Solidity contracts
to evaluate SMTranslator and conduct the investigation. First, to
compare our generated summaries with the comments written by
contract authors, we select 4 contracts that belong to complete
description type. We intend to find whether the existing comment
represents the core action of the method. Participants could first
check whether the existing comments can help them to use the
methods in these 4 contracts. Then they refer to the generated
summaries by our tool. In addition, we choose another 6 contracts
belong to vacuous description and partial description type. Most
of the methods in the 10 contracts are public and can be used,
which let people to test the instructiveness of the document. Take
the “SiaCashCoin.sol” for example, it creates a cryptocurrency

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, XXX 2015 8

TABLE 3: The selected smart contracts in the experiments.

Type Contract Total
Functions

Commented
Functions Size (KB)

Particial
Description

MossCoin 13 5 7.8

CCEToken 18 12 7.9

DeusETH 26 3 6.8

TutorialToken 19 12 7.7

VocToken 26 9 7.3

AMNToken 19 13 7.7

ZmineToken 20 9 7.8

Vacuous
Description

XBORNID 30 0 7.9

XBR 32 0 7.8

SiaCashCoin 29 0 7.1

0

10

20

30

40

50

60

70

80

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89

T
im

e
co

n
su

m
pt

io
n

 (s
)

Smart contracts

CFG
Solidity->Xml
Xml->Bean
NLP

Fig. 5: Time performance on the smart contract analysis.

that aims to improve the payment of data storage based on smart
contract. It contains 29 methods and none of them have com-
ments. Using the Ethereum wallet, people could use the method
and pay for the service for saving their data. Generally, it can
not be finished by people without software background. In our
experiments, we will verify whether the 6 persons who come from
non-Computer Science can understand and use the method. The
next section will analyze the results of the questionnaires based
on the generated 10 summary documents.

4.5 Results Analysis

Usability. In the usability judgement over the 10 participants, there
were 8 participants who rated “Agree” (5) and “Strongly Agree”
(3). The majority of the volunteers agreed that the tool was easy to
generate a summary document for a Solidity contract. There were
still 2 participants rated “Disagree”. The main concern of them
was the size of the tool. They hoped that the size of SMTranslator
could become small. We found that the reason for the big size
lied in the library of Standford CoreNLP (stanford-corenlp-3.9.2-
models.jar) which was about 345M. To address this issue, we
will consider to provide the Solidity contract interpretation service
based on browser/server architecture which is more convenient to
use.

Readability and Conciseness. The readability and conciseness
mainly focus on the correctness and intelligibility of the generated
sentences. In most of the cases, the sentences are short and have
fixed form, which make volunteers be easy to understand. We
added some verb to describe a method when there does not exist

verb in the signature, e.g., “handle”, “process” and “create”. 6 of
10 participants responses shown that the generated summary was
readable and concise. However, there are some issues when the
declaration of the method signature is irregular. For example, in
the method memcpy(uint dest, uint src, uint len) in “Ether-
DogCore.sol”, CoreNLP identifies “cpy” as the verb and “mem”
as the noun. The short description is described as “The function
is used to cpy mem”. Apparently, the verb “cpy” is not a correct
word and can not reveal any meaning. We will tackle the irregular
words interpretation in our future work.

Instructiveness. It is a very important measurable indicator of
SMTranslator on whether SMTranslator can guide people to use
the method. We require each volunteer obtains her/his key pair in
the test Blockchain network, and conducts the practical operation
for some method. We found that 9 of 10 participants rated
“Strongly Agree” and “Agree” for the document. 1 participants felt
the introduction of some input parameters were hard to understand,
e.g., struct. We also got some feedbacks on the introduction of the
input parameters that it is better to illustrate what a suitable value
should be given for an input.

Accuracy. In terms of accuracy, only the Computer-Science back-
ground volunteers are required to conduct the investigation. It aims
to identify that the main function of a method are corresponding
with the generated summary in the document. We found that 3
of the 4 participants rated “Agree” for the generated summary
documents. 1 volunteer rated as “Disagree”.

Core Analysis. In the investigation of core statement analysis, we
just let the 4 participants with Computer-Science background to
participate in and randomly select 50 methods interpretation from
the generated document. Each volunteer is required to to check
whether the identified core statement is accurate. We marked out
the core statement for each method and provided some instructions
when they read the Solidity contract code. They examined the
generated summary and rated them with the four answers. In
addition, they have the opportunity to provide some suggestions
for improvement on SMTranslator.

According to the analysis of the results, we found that about
65.3% of the methods are rated with “Agree” and 23.6% were
rated with “Disagree”. There has 13.6% of the methods were
rated with “Strongly Disagree”. When the participants read the
summaries for a special method, they found some important
information is missed. SMTranslator just gave part of the core
statements. In Solidity contract, there exist lots of methods that
belongs to bool return type. In these method, the last lines set the
value of status for a variable. Thus, it is necessary to parse all
the lines to summarize the meaning. In addition, we found that
when a method has many lines, we missed to parse some core
statements in the middle position. We realize that most of source
code in Solidity contract have some important revealing and need
to interpret the whole method by analyze all of the lines. We will
introduce the action dependency analysis into SMTranslator.

5 RELATED WORK

To the best of our knowledge, SMTranslator is the first work
that generates readable English sentences for Solidity smart con-
tract. We also identify that there are some related research works.
A briefly discussion is given in this section.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, XXX 2015 9

5.1 Documentation Generation for Code
Documentation generation techniques in program language

attempt to generate readable natural language sentences for de-
velopers, which can significantly improve their work efficiency.
Developers can be relieved from tedious writing source code
documentation and help the successor to understand the code
quickly. As smart contract is a newly emerging program language,
the previous works mainly focused on Java/C ++/C/C# lan-
guage. Emily et al. presented a technique to automatically generate
descriptive summary comments for Java methods [9], [28]. They
designed the Software Word Usage Model (SWUM) to capture
the action, theme and arguments for a given method. Due to
the limitation that the generated documents can not interpret the
context of the source code accurately in some situation, Paul et
al. proposed a automatically documentation generation technique
which can analyze how a specific method was invoked [10]. They
utilized static call graph and PageRank algorithm to analyze the
relationship and importance of the code methods. Recently, Ben-
wen et al. proposed an approach to generate descriptive name for
unit tests [11]. Their goal was to let the developers to understand
the purpose of a test. This approach built the action dependency
graph to identify the test scenario.

Our approach is different from these approaches in that we
aim to create the readable English sentences that people without
any programming skill can understand the contract code. Thus,
we combine the different parts of a method (e.g., method name,
modifier, input/output parameters and core statement) with Natural
Language Processing to illustrate how the method works and its
main function.

5.2 Smart Contract Analysis
There exist some research works on smart contract analysis

which are mainly related with Bitcoin and Ethereum. Most of the
them focused on the security and privacy issues of the contract
code [24], [29], [30], [31]. Sergei et al. proposed SmartCheck
which aimed to detect code issues in Solidity contract [24]. It
translated Solidity contract into XML-based intermediate format,
which can be utilized to analyze the source code by SMTranslator.
Loi et al. designed a symbolic execution tool called Oyente to
detect the potential security bugs in Solidity [17]. But due to
the different design goals, SmartCheck and Oyente can not be
directly adopted to generate descriptive sentences to make people
understand smart contract.

6 CONCLUSION AND FUTURE WORK

We find a practical problem that people in different areas
show great interests in blockchain-based applications while lack of
programming skill in understanding the contract code. To fill this
gap, we propose an approach for automatic document generation
for Solidity smart contract and design a system prototype named
SMTranslator. By analyzing the particularities and features of the
Solidity contract, we covert the code into the structured XML
formation and use core statement analysis to obtain the important
function of a method. Natural language processing method is used
to interpret the identified statements and generate the understand-
able English sentences. Finally, the implementation and evaluation
are conducted for our tool with a large number of smart contracts
in the real world.

In addition to extend and improve this tool, we identify
several directions for the future work. First, the goal of people

to understand the smart contract is to use the blockchain-based
application. However, it will cause severe loss if there exist
potential security issues in the contract code. Thus, it is critical
for SMTranslator not only interpret the source code correctly, but
also can recognize the security issues and reveal the issues to
people. Second, supporting static action dependency analysis for
a particular method is necessary to reveal the whole meaning of a
method.

ACKNOWLEDGMENTS

This work was supported by National Key R&D Plan
of China (Grant No. 2017YFB0802203, 2018YFB1003701),
National Natural Science Foundation of China (Grant
Nos. 61825203, U1736203, 61702222, 61472165, 61732021,
61877029, 61872153, 61802145, U1636209), National Joint En-
gineering Research Center of Network Security Detection and
Protection Technology, Guangdong Provincial Special Funds for
Applied Technology Research and Development and Transforma-
tion of Important Scientific and Technological Achieve (Grant
Nos. 2016B010124009 and 2017B010124002), Guangdong Key
Laboratory of Data Security and Privacy Preserving (Grant No.
2017B030301004), Guangzhou Key Laboratory of Data Security
and Privacy Preserving (Grant No. 201705030004), Fundamen-
tal Research Funds for the Central Universities under Grant
21618329.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[2] “Wikipedia. list of cryptocurrencies,” ”https://en.wikipedia.org/wiki/

List\ of\ cryptocurrencies”, [Online].
[3] H. A. Kalodner, M. Carlsten, P. Ellenbogen, J. Bonneau, and

A. Narayanan, “An empirical study of namecoin and lessons for decen-
tralized namespace design.” in WEIS. Citeseer, 2015.

[4] M. Li, J. Weng, A. Yang, W. Lu, Y. Zhang, L. Hou, J.-N. Liu, Y. Xiang,
and R. Deng, “Crowdbc: A blockchain-based decentralized framework
for crowdsourcing,” IEEE Transactions on Parallel and Distributed
Systems, 2018.

[5] “Blockchain can legally authenticate evidence,
chinese judge rules,” ”https://www.coindesk.com/
blockchain-can-legally-authenticate-evidence-chinese-judge-rules”,
2018, [Online].

[6] “Etherscan,” ”https://etherscan.io/contractsVerified”, 2018, [Online].
[7] C. Riva and Y. Yang, “Generation of architectural documentation using

xml,” in Reverse Engineering, 2002. Proceedings. Ninth Working Con-
ference on. IEEE, 2002, pp. 161–169.

[8] D. R. Day and O. O. Fox, “Object oriented programming system with
displayable natural language documentation through dual translation of
program source code,” Sep. 14 1999, uS Patent 5,953,526.

[9] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker,
“Towards automatically generating summary comments for java meth-
ods,” in Proceedings of the IEEE/ACM international conference on
Automated software engineering. ACM, 2010, pp. 43–52.

[10] P. W. McBurney and C. McMillan, “Automatic source code summa-
rization of context for java methods,” IEEE Transactions on Software
Engineering, vol. 42, no. 2, pp. 103–119, 2016.

[11] B. Zhang, E. Hill, and J. Clause, “Towards automatically generating
descriptive names for unit tests,” in Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering. ACM,
2016, pp. 625–636.

[12] R. S. M. J. F. Muneeb Ali, Jude Nelson, “Blockstack: A global naming
and storage system secured by blockchains,” in USENIX Annual Techni-
cal Conference, USENIX ATC 2016, Denver, CO, 2016, pp. 181–194.

[13] T. V. Asaph Azaria, Ariel Ekblaw, “Medrec: Using blockchain for
medical data access and permission management,” in 2nd International
Conference on Open and Big Data, OBD 2016, Vienna, Austria, Aug.
2016, pp. 25–30.

[14] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2009.
[15] N. Szabo, “Formalizing and securing relationships on public networks,”

First Monday, vol. 2, no. 9, 1997.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, XXX 2015 10

[16] W. Gavin, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, vol. 151, 2014.

[17] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2016, pp. 254–269.

[18] “Solidity documentation,” ”https://solidity.readthedocs.io/en/latest/
solidity-in-depth.html”, 2018, [Online].

[19] H. Theiling, “Extracting safe and precise control flow from binaries,” in
Proceedings Seventh International Conference on Real-Time Computing
Systems and Applications. IEEE, 2000, pp. 23–30.

[20] K. Inoue, R. Yokomori, H. Fujiwara, T. Yamamoto, M. Matsushita, and
S. Kusumoto, “Component rank: relative significance rank for software
component search,” in 25th International Conference on Software Engi-
neering, 2003. Proceedings. IEEE, 2003, pp. 14–24.

[21] C. D. Manning, C. D. Manning, and H. Schütze, Foundations of statisti-
cal natural language processing. MIT press, 1999.

[22] C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, and D. M-
cClosky, “The stanford corenlp natural language processing toolkit,” in
Proceedings of 52nd annual meeting of the association for computational
linguistics: system demonstrations, 2014, pp. 55–60.

[23] B. Zhang, E. Hill, and J. Clause, “Towards automatically generating
descriptive names for unit tests,” in 2016 31st IEEE/ACM International
Conference on Automated Software Engineering (ASE), Sept 2016, pp.
625–636.

[24] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis of
ethereum smart contracts,” 2018.

[25] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, “Natural language processing (almost) from scratch,” Journal
of Machine Learning Research, vol. 12, no. Aug, pp. 2493–2537, 2011.

[26] E. Reiter and R. Dale, Building natural language generation systems.
Cambridge university press, 2000.

[27] D. Steidl, B. Hummel, and E. Juergens, “Quality analysis of source
code comments,” in Program Comprehension (ICPC), 2013 IEEE 21st
International Conference on. IEEE, 2013, pp. 83–92.

[28] E. Hill, L. Pollock, and K. Vijay-Shanker, “Automatically capturing
source code context of nl-queries for software maintenance and reuse,”
in Proceedings of the 31st International Conference on Software Engi-
neering. IEEE Computer Society, 2009, pp. 232–242.

[29] I. Grishchenko, M. Maffei, and C. Schneidewind, “A semantic framework
for the security analysis of ethereum smart contracts,” in International
Conference on Principles of Security and Trust. Springer, 2018, pp.
243–269.

[30] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum
smart contracts (sok),” in Principles of Security and Trust. Springer,
2017, pp. 164–186.

[31] Y. Zhang, X. Lin, and C. Xu, “Blockchain-based secure data provenance
for cloud storage,” in International Conference on Information and
Communications Security. Springer, 2018, pp. 3–19.

