
MoniPoly�An Expressive q-SDH-Based
Anonymous Attribute-Based Credential System

[Extended Version]

Syh-Yuan Tan and Thomas Groÿ

School of Computing, Newcastle University, UK
{syh-yuan.tan, thomas.gross}@newcastle.ac.uk

Abstract. Modern attribute-based anonymous credential (ABC) sys-
tems bene�t from special encodings that yield expressive and highly ef-
�cient show proofs on logical statements. The technique was �rst pro-
posed by Camenisch and Groÿ, who constructed an SRSA-based ABC
system with prime-encoded attributes that o�ers e�cient AND, OR and
NOT proofs. While other ABC frameworks have adopted constructions
in the same vein, the Camenisch-Groÿ ABC has been the most expres-
sive and asymptotically most e�cient proof system to date, even if it
was constrained by the requirement of a trusted message-space setup
and an inherent restriction to �nite-set attributes encoded as primes. In
this paper, combining a new set commitment scheme and a SDH-based
signature scheme, we present a provably secure ABC system that sup-
ports show proofs for complex statements. This construction is not only
more expressive than existing approaches, it is also highly e�cient under
unrestricted attribute space due to its ECC protocols only requiring a
constant number of bilinear pairings by the veri�er; none by the prover.
Furthermore, we introduce strong security models for impersonation and
unlinkability under adaptive active and concurrent attacks to allow for
the expressiveness of our ABC as well as for a systematic comparison to
existing schemes. Given this foundation, we are the �rst to comprehen-
sively formally prove the security of an ABC with expressive show proofs.
Speci�cally, we prove the security against impersonation under the q-(co-
)SDH assumption with a tight reduction. Besides the set commitment
scheme, which may be of independent interest, our security models can
serve as a foundation for the design of future ABC systems.

1 Introduction

An anonymous attribute-based credential (ABC) system allows a user to obtain
credentials, that is, certi�ed attribute set A from issuers and to anonymously

This work was supported in part by the European Research Council Starting
Grant �Con�dentiality-Preserving Security Assurance (CASCAde)� under Grant GA
n◦716980.

prove the possession of these credentials as well as properties of A. Anonymous
credentials were �rst proposed by Chaum [33] but it does draw much atten-
tion until Brands [17] constructed a pragmatic single-show ABC system and
Camenisch and Lysyanskaya (CL) [26] presented a practical multi-show ABC
system. CL-ABC system uses the signer's signature on a committed, and there-
fore blinded, attribute as the user credential. The proof of possession of a valid
credential is a zero-knowledge proof of knowledge on the validity of the signature
and the well-formedness of the commitment. This commit-and-sign technique
has been employed by ABC systems from RSA-based signature scheme [27] and
pairing-based signature schemes [28, 4, 24, 31, 25, 6, 56, 20, 8, 12] on blocks of
messages in which the i-th attribute is �xed as the exponent to the i-th base.
Therefore, the show proofs has a computational complexity linear to the num-
ber of attributes in the credential, in terms of the modular exponentiations and
scalar multiplications, respectively.

In contrast to the technique above which is termed as traditional encoding by
Camenisch and Groÿ [22, 23], they suggested a prime encoding for the SRSA-CL
signature scheme [27] to o�er show proofs on AND, OR and NOT statements
with constant complexity for the prime-encoded attributes. Speci�cally, the
Camenisch-Groÿ (CG) construction separates the unrestricted attribute space S
into string attributes space and �nite-set attributes space such that S = SS∪SF .
The CG encoding uses a product of prime numbers to represent a �nite-set at-
tribute set AF ∈ SF in a single exponent, a technique subsequently applied to
graphs as complex data structures [43]. Prime encoding results in highly e�cient
show proofs: each execution only requires a constant number of modular expo-
nentiations. However, the construction constrains SF to a set of pre-certi�ed
prime numbers and increases the public key size1. Furthermore, the security of
the CG ABC system was only established on the properties of its show proofs
and not formally on the overall properties of the ABC system. Despite these
disadvantages, to the best of our knowledge, CG ABC system [22, 23] is the
only ABC system in the standard model that has show proof for AND, OR, and
NOT statements with constant complexity.

Related Works. The SDH-CL signature scheme [28, 24, 58] is a popular candi-
date for the ABC system based on the traditional encoding. It is also referred
as the BBS+ signature scheme [14, 4, 60, 62, 1, 6] or the Okamoto signature
scheme [52, 2]. Au et al. [4] and Akagi et al. [2] constructed provably secure ABC
systems on this foundation while Camenisch et al. [24] integrated a pairing-based
accumulator to yield an ABC system that supports revocation. Later, Sudarsono
et al. [60] applied the accumulator on SF as in prime encoding and showed that
the resulting ABC system can support show proofs for AND and OR statements
with constant complexity. Yet, the accumulator requires a large public key size:
|SF | �nite-set attributes plus the corresponding |SF | signatures. Inspired by the
concept of attribute-based signature, Zhang and Feng [62] solved the large pub-

1 If the prime numbers are not pre-certi�ed by a signature each, the show proofs have
to include expensive interval proofs.

2

lic key problem, while additionally supporting threshold statements (ANY) in
show proofs, at the cost of having the credential size linear to |AF |. Compar-
ing the traditional encoding-based ABC systems to the accumulator-based ABC
systems, the latter require more bilinear pairing operations in the show proofs,
while having either large public key or credential sizes.

There were some attempts to apply Camenisch et al.'s accumulator [24] and
its variants on P-signatures [45], LRSW-CL signature [44] and structure pre-
serving signatures [7, 57, 53] to support complex non-interactive zero-knowledge
(NIZK) show proofs. Among all, Sadiah et al.'s ABC system [57] o�ers the most
expressive show proofs. Considering only S = SF , their ABC system allows
constant-size and constant-complexity NIZK show proofs for monotone formu-
las at the cost of issuing |P(AF)| credentials to every user where P(AF) is
the power set of the user attribute set AF . Instead of performing this expen-
sive process during the issuing protocol, Okishima and Nakanishi's ABC sys-
tem [53] generates P(SF) during key generation and in�ates the public key
size with |P(SF)| signatures to enable constant-size non-interactive witness-
indistinguishable (NIWI) show proofs for conjunctive composite formulas. There
are also ABC systems [8, 12] that were built on Pointcheval and Sanders' sig-
nature [55]. The ABC system proposed by Bemmann et al. [8] combines both
traditional encoding and accumulator [51] to support monotone formulas under
the non-interactive proof of partial knowledge protocol [3]. Although it has sig-
ni�cantly shorter credential and supports unrestricted attribute space compared
to that of Sadiah et al.'s, its show proofs complexity is linear to the number of
literals in the monotone formula.

The �ndings on the use of accumulator in constructing ABC system cor-
respond to the observations in the ABC transformation framework proposed
by Camenisch et al. [21]. They discovered that the CL signatures are not able
to achieve constant-size NIZK show proofs without random oracle. The frame-
work takes in a structure-preserving signature scheme and a vector commit-
ment scheme to produce a UC-secure ABC system. Their instantiation supports
constant-size NIZK show proofs on subset statement and provably secure under
the common reference string model. Using the similar ingredients, Fuschbauer
et al. [42] constructed an ABC system that o�ers constant-size non-interactive
witness-hiding2 (NIWH) show proofs on subset statement. The security models
in the two works, however, are not designed to cover expressive show proofs.
Other frameworks [25, 12] that formalized the commit-and-sign technique and
even those [57, 8, 53] support show proofs on complex statements also fall short
in this aspect.

Research Gap. Existing constructions yield considerable restrictions when ex-
pressive show proof is concerned: The SRSA-based CG scheme [22] and accumulator-
based schemes [60, 45, 7, 44, 57, 53] constrain the attribute space to �nite-set
attributes (AF ∈ SF) and require a trusted setup that in�ates either the public-

2 Fuchsbauer et al.'s show proof includes sending a randomized credential but not a
committed credential [42]. The protocol is witness-hiding as it is not simulatable.

3

key size or the credential size. Their expressiveness and the computational com-
plexity are no better than the pairing-based constructions [4, 2, 62, 42, 8] and
the general ABC frameworks [21, 25, 12] alike, when only string attributes
(AS ∈ SS) are considered. Expressive proofs for large attribute set are de-
sirable in privacy-preserving applications such as direct anonymous attesta-
tion [36, 34, 18, 19, 38, 35]. In addition, we observe a need for a systematic
canonicalization of security models for all mentioned schemes. In short, an ideal
ABC system should have:

1. strong security assurance, and

2. approriate public key size, and

3. expressive show proofs with low complexity regardless of the attribute space.

Our Contribution. We present a perfectly hiding and computationally binding
set commitment scheme, called MoniPoly, which supports set membership proofs
and disjointness proofs on the committed messages. Following the commit-and-
sign methodology, we combine the MoniPoly commitment scheme tracing back
to Kate et. al.'s work [46] with SDH-based Camenisch-Lysyanskaya signature
scheme [28, 58] to present an e�cient ABC system that support expressive show
proofs for AND, OR and k-out-of-n threshold (ANY) clauses as well as their
respective complements (NAND, NOR and NANY). Our ABC system is the most
e�cient construction under the unrestricted attribute space to-date, yet at least
as expressive as the constructions specially crafted for the restricted attribute
space.

To the best of our knowledge, neither the constructions nor security models
of existing ABC systems allow for complex interactive show proofs. As an im-
mediate contribution, we rigorously de�ne the necessary and stronger security
notions for ABC systems. Our notions for security of impersonation resilience
and unlinkability under adaptive active and concurrent attacks are stronger than
those of the state-of-the-art ABC systems [25, 21, 42, 53]. We prove the security
of our construction with respect to security against impersonation and linkabil-
ity in the standard model, especially o�ering a tight reduction for impersonation
resilience under the q-(co-)SDH assumption.

Organization. We organize the paper as follows. In Section 2, we brie�y introduce
the related mathematical background and we present the MoniPoly commitment
scheme in Section 3. We present our ABC system which is a combination of
the MoniPoly commitment scheme with SDH-based CL signatures [28, 58] in
Section 4. Section 5 o�ers an evaluation of the MoniPoly ABC in terms of security
properties, expressivity as well as computational complexity in comparison to
other schemes in the �eld.

4

2 Preliminaries

2.1 Mathematical Tools

Bilinear Pairing. Let G1,G2,GT be groups of prime order p. Let g1 ∈ G1, g2 ∈
G2 and x, y ∈ Zp where g1, g2 are the generators, the bilinear pairing function is
e : G1 ×G2 → GT with the following properties:

1. Bilinearity: e(gx1 , g
y
2) = e(gy1 , g

x
2) = e(g1, g2)xy

2. Non-degeneracy: e(g1, g2) 6= 1
3. E�ciency: e is e�ciently computable.

Throughout this work, we will assume Type-3 pairing which has G1 6= G2.

De�nition 1. Discrete Logarithm Assumption (DLOG). An algorithm C is said
to (tdlog, εdlog)-break the DLOG assumption if C runs in time at most tdlog and
furthermore:

Pr[x ∈ Zp : C(g, gx) = x] ≥ εdlog

for a negligible probability εdlog. We say that the DLOG assumption is (tdlog, εdlog)-
secure if no algorithm (tdlog, εdlog)-solves the DLOG problem.

De�nition 2. Discrete Logarithm with Auxiliary Input (DLOGwAI) [37, 32].
An algorithm C is said to (tdlogwai, εdlogwai)-break the DLOGwAI assumption if C
runs in time at most tdlogwai and furthermore:

Pr[x ∈ Zp : C(g, gx, . . . , gx
q

) = x] ≥ εdlogwai

for a negligible probability εdlogwai. We say that the DLOGwAI assumption is
(tdlogwai, εdlogwai)-secure if no algorithm (tdlogwai, εdlogwai)-solves the DLOGwAI prob-
lem.

De�nition 3. q−Strong Di�e-Hellman Assumption (SDH) [58]. An algorithm
C is said to (tsdh, εsdh)-break the SDH assumption if C runs in time at most tsdh
and furthermore:

Pr[x ∈ Zp, c ∈ Zp \ {−x}] : C(g, gx, . . . , gx
q

) = (g
1

x+c , c)] ≥ εsdh

for a negligible probability εsdh. We say that the SDH assumption is (tsdh, εsdh)-
secure if no algorithm (tsdh, εsdh)-solves the SDH problem.

De�nition 4. q−co-Strong Di�e-Hellman Assumption (co-SDH) [32]. An al-
gorithm C is said to (tcosdh, εcosdh)-break the co-SDH assumption if C runs in time
at most tcosdh and furthermore:

Pr[x ∈ Zp, c ∈ Zp \ {−x}] : C(g1, g
x
1 , . . . , g

xq

1 , g2, g
x
2 , . . . , g

xq

2) = (g
1

x+c , c)] ≥ εcosdh

for a negligible probability εcosdh. We say that the co-SDH assumption is (tcosdh, εcosdh)-
secure if no algorithm (tcosdh, εcosdh)-solves the co-SDH problem.

5

De�nition 5. q−Bilinear Strong Di�e-Hellman Assumption (BSDH) [32]. An
algorithm C is said to (tbsdh, εbsdh)-break the BSDH assumption if C runs in time
at most tbsdh and furthermore:

Pr[x ∈ Zp, c ∈ Zp \ {−x}] :

C(g1, g
x
1 , . . . , g

xq

1 , g2, g
x
2 , . . . , g

xq

2) = (e(g1, g2)
1

x+c , c)] ≥ εbsdh

for a negligible probability εbsdh. We say that the BSDH assumption is (tbsdh, εbsdh)-
secure if no algorithm (tbsdh, εbsdh)-solves the BSDH problem.

De�nition 6. Relation (R) [40]. Let R be a relation {(x,w)} testable in poly-
nomial time where |x| = |w|. For any statement x, its witness set w(x) =
{w1, . . . , |w(x)|} is the set of w such that (x,w) ∈ R.

De�nition 7. Proof of Knowledge System [40]. An interactive proof of kowledge
system over R is a pair of algorithms (P, V) satisfying:

1. Completeness: The veri�er V (x) always accepts a true statement produced by
the prover protocol P (x,wi ∈ w(x)) for ∀(x,w) ∈ R, except with a negligible
probability ε.

2. Soundness: The veri�er V (x) always rejects a false statement produced by
any prover protocol P ∗(x,w∗), and any knowledge extractor M(x,w∗;P ∗)
that uses P ∗ as subroutine, except with a negligible probability.

De�nition 8. Witness Hiding [40]. Let Gen be a generator for R and a state-
ment x, (P, V) is witness hiding on (R, Gen) if a new witnesses w ∈ w(x) cannot
be computed by any veri�er protocol V ∗(x) and witness extractor M(x;V ∗, Gen)
after interacting with P (x,wi ∈ w(x)), except with a negligible probability.

2.2 Digital Signature Scheme

A digital signature scheme is de�ned by three algorithm as DS = (KeyGen,Sign,Verify)
as follows:

1. KeyGen(1k)→ (pk, sk): A pair of public and secret keys are generated based
on the security parameter input 1k. The public key pk can be made known
to the public while the secret key sk is kept secret by the signer.

2. Sign(m, pk, sk)→ σ: The signer uses the secret key sk to sign on a message
m, generating a signature σ.

3. Verify(m,σ, pk) → 1/0: The veri�er takes the signer's public key pk and σ
as the input to ensure that the signature is genuinely signed by the signer.
If the signature is veri�ed, the algorithm returns 1 and 0 otherwise.

2.2.1 Unforgeability We refer to the security notion of strong existential
unforgeability under chosen message attacks (seuf-cma) [13]. The security model
is de�ned as the following game between a forger F and a challenger C:

6

Game 1 (seuf − cma(F , C))

1. Setup: C runs KeyGen and sends pk to F .
2. Phase 1: F is allowed to issue queries to the Sign oracle.
3. Challenge: F outputs a challenge message m∗ which may have been queried

to Sign oracle previously.
4. Phase 2: F can continue to query the Sign oracle as in Phase 1.
5. Forgery. F outputs a message and signature pair (m∗, σ∗) which is di�er-

ent from all the previous replies from the Sign oracle. F wins the game if
Verify(m∗, σ∗, pk) outputs 1.

De�nition 9. A forger F is said to (tsig, εsig)-break the seuf-cma security of a
signature scheme if F runs in time at most tsig and wins in Game 1 such that:

Pr[Verify(m∗, σ∗, pk) = 1] ≥ εsig

for a negligible probability εsig. We say that a signature scheme is seuf-cma-secure
if no forger (tsig, εsig)-wins Game 1.

We adapt the notation of random self-reducibility for identi�cation scheme [47]
to that of witness hiding proof system [40].

De�nition 10. Random Self-Reducibility. A witness hiding proof system (Gen, P, V)
is said to be random self-reducible if there are three algorithms Rerand, Derand
and Tran such that, for all key pair (pk, sk) generated by Gen:

1. Rerand(pk) outputs (pk′, ρ) where pk′ has the same distribution to the pk′′

of a newly generated key pair (pk′′, sk′′) by Gen.
2. Derand(pk, pk′, sk′, ρ) outputs a valid sk with respect to pk for any valid key

pair (pk′, sk′).
3. Tran(pk, pk′, ρ, π′(P,V) = (P (pk′, w′i ∈ w(pk′)), V (pk′))) transforms a valid

transcript π′(P,V) into π(P,V) = (P (pk,wi ∈ w(pk)), V (pk)) which is valid
with respect to pk.

2.3 The SDH-based CL Signature Scheme

Camenisch and Lysyankaya introduced a technique [28] to construct secure
pairing-based signature schemes which supports signing on committed messages.
They also showed that their technique can extract an e�cient SDH-based sig-
nature scheme from Boneh et al.'s group signature [14] scheme but no security
proof was provided. This scheme was later proven to be seuf-cma-secure with a
tight reduction [58] to the SDH assumption in the standard model. We describe
the SDH-CL signature scheme [28, 24, 58] as follows:

KeyGen(1k): Construct three cyclic groups G1,G2,GT of order p based on an
elliptic curve whose bilinear pairing is e : G1 × G2 → GT . Select random gen-
erators a, b, c ∈ G1, g2 ∈ G2 and a secret value x ∈ Z∗p. Output the public key

7

pk = (e,G1,G2,GT , p, a, b, c, g2, X = gx2) and the secret key sk = x.

Sign(m, pk, sk): On input m, choose the random values s, t ∈ Z∗p to compute

v = (ambsc)
1

x+t . In the unlikely case in which x+ t = 0 mod p occurs, reselect
a random t. Output the signature as sig = (t, s, v).

Verify(m, sig, pk): Given sig = (t, s, v), accept the signature if it holds that:

e(v,Xgt2) = e((ambsc)
1

x+t , gx+t
2)

= e(ambsc, g2).

Theorem 1. [58] SDH-based CL signature scheme is seuf-cma-secure in the
standard model if the Strong Di�e-Hellman problem is (tsdh, εsdh)-hard.

3 MoniPoly Set Commitment Scheme

Algorithm 1 MPEncode(): Encode attribute set into coe�cients {mi}0≤i≤n
Input: Attribute set A = {m0, . . . ,mn−1} and prime order p.
Output: L = {m0, . . . ,mn}.
Post-conditions:

∑n
i=0 mix

′i = (x′ +m0) · · · (x′ +mn−1)

1: L[|A|+ 1]← 1
2: if |A| = 1 then

3: L[0]← A[0]
4: return L
5: end if

6: L[0]← A[0]×A[1] mod p
7: L[1]← A[0] +A[1] mod p
8: for i← 2 to |A| do
9: for j ← i to 0 do

10: if j = i then
11: L[i]← L[i− 1] +A[i]
12: else if j = 1 then

13: L[j]← L[j]×A[i] + L[j − 1]
14: L[0]← L[0]×A[i]
15: else

16: L[j]← L[j]×A[i] + L[j − 1]
17: end if

18: end for

19: end for

20: return L

The key idea of set commitment scheme traces back to the polynomial com-
mitment scheme [46] which can commit to a polynomial and support opening at

8

indexes of the polynomial. Inheriting this nature, our MoniPoly set commitment
scheme and similar ones [21, 42] transform a message m ∈ Zp into (x′ + m)
where x′ ∈ Zp is not known to the user and multiple messages form a monic
polynomial f(x′) =

∏n
i=1(x′ + mi). This monic polynomial, in turn, can be

rewritten as f(x′) =
∑n
i=0 mix

′i. Its coe�cients mi ∈ Z∗p can be e�ciently com-
puted, for instance, using the encoding algorithm MPEncode() : Znp → Zn+1

p of
complexity O(n2) as depicted in Algorithm 1 or a more e�cient yet restrictive3

algorithm [54] of complexity O(n log n).
Our commitment scheme's unique property is that it treats the opening value

as one of the roots in the monic polynomial. Hence, the name MoniPoly. Fold-
ing the opening value into the monic polynomial yields compelling advantages,
especially, enabling a greater design space for presentation proofs.

While related schemes [46, 21, 42] realize subset opening, our scheme supports
opening of intersection sets and di�erence sets, in addition. Thus, MoniPoly is
more expressive. Furthermore, the presentation proofs created on MoniPoly are
more e�cient than other commitment-based frameworks. Finally, treating the
opening value as a root of the monic polynomial yields a scheme that is closely
aligned with well-established commitment scheme paradigms, which, in turn,
�ts into a range of popular signature schemes and enables signing committed
messages.

3.1 Interface

We de�ne MoniPoly as the following seven algorithms

MoniPoly = (Setup,Commit,Open,OpenIntersection,

VerifyIntersection,OpenDifference,VerifyDifference)

1. Setup(1k, n)→ (pk, sk). A pair of public and secret keys (pk, sk) are gener-
ated by a trusted authority based on the security parameter input 1k. The
message domain D is de�ned and n − 1 is the maximum messages allowed.
If n is �xed, sk is not required in the rest of the scheme.

2. Commit(pk,A, o)→ (C). On the input of pk, a message setA = {m1, . . . ,mn−1} ∈
Dn−1 and a random opening value o ∈ D, output the commitment C.

3. Open(pk,C,A, o)→ 1/0. Return 1 if C is a valid commitment to A with the
opening value o under pk, and return 0 otherwise.

4. OpenIntersection(pk,C,A, o, (A′, l))→ (I,W)/ ⊥. If |A′∩A| ≥ l holds, return
an intersection set I = A′ ∩A of length l with the corresponding witness W ,
and return an error ⊥ otherwise.

5. VerifyIntersection(pk, C, (I,W), (A′, l))→ 1/0. Return 1 if W is a witness for
S being the intersection set of length l for A′ and the set committed to in
C, and return 0 otherwise.

3 This algorithm requires n|pm−1 for some integerm and may not be ful�lled by some
primes order p secure against Cheon's attack [37] on SDH assumption, the basis of
our set commitment scheme. A secure p has divisors n < (log p)2 for p− 1 and p+ 1
where n can be as small as 6 and 4 [59].

9

6. OpenDi�erence(pk,C,A, o, (A′, l̄))→ (D,W). If |A′−A| = |A′∩Ā| ≥ l̄ holds,
return the di�erence set D = A′ − A of length l̄ with the corresponding
witness W , and return ⊥ otherwise.

7. VerifyDi�erence(pk,C, (D,W), (A′, l̄)) → 1/0. Return 1 if W is the witness
for D being the di�erence set of length l̄ for A′ and the set committed to in
C, and return 0 otherwise.

3.2 Security Requirements

De�nition 11. A set commitment scheme is perfectly hiding if every commit-
ment C = Commit(pk,A, o) is uniformly distributed such that there exists an
o′ 6= o for all A′ 6= A where Open(pk,C,A′, o′) = 1.

De�nition 12. An adversary A is said to (tbind, εbind)-break the binding security
of a set commitment scheme if A runs in time at most tbind and furthermore:

Pr[Open(pk, C,A1, o1) = Open(pk,C,A2, o2) = 1] ≥ εbind.

for a negligible probability εbind and any two pair (A1, o1), (A2, o2) output by A.
We say that a set commitment scheme is (tbind, εbind)-secure wrt. binding if no
adversary (tbind, εbind)-breaks the binding security of the set commitment scheme.

3.3 Construction

We describe the MoniPoly commitment scheme as follows:

Setup(1k). Construct three cyclic groups G1,G2,GT of order p based on an
elliptic curve whose bilinear pairing is e : G1 × G2 → GT . Select random gen-
erators a ∈ G1, g2 ∈ G2 and a secret values x′ ∈ Z∗p. Compute the values

a0 = a, a1 = ax
′
, . . . , an = ax

′n
, X0 = g2, X1 = gx

′

2 , . . . , Xn = gx
′n

2 to output the
public key pk = (e,G1,G2,GT , p, {ai, Xi}0≤i≤n) and the secret key sk = (x′).
Note that sk can be discarded by the authority if the parameter n is �xed.

Commit(pk,A, o). Taking in a message set A = {m1, . . . ,mn−1} ∈ Z∗p and the
random opening value o ∈ Z∗p, output the commitment as

C = a
(x′+o)

∏n−1
j=1 (x′+mj)

0 =

n∏
j=0

a
mj

j

where {mj} = MPEncode(A ∪ {o}).

Open(pk,C,A, o). Return 1 if C =
∏n
j=0 a

mj

j holds where {mj} = MPEncode(A∪
{o}) and return 0 otherwise.

10

OpenIntersection(pk, C,A, o, (A′, l)). If |A′ ∩ A| ≥ l holds, return an intersection
set I = A′ ∩A of length l and a witness W such that:

C = a
(x′+o)

∏
mj∈A

(x′+mj)

0

=

(
a

(x′+o)
∏

mj∈(A−I)(x
′+mj)

0

)∏
mj∈I

(x′+mj)

=

n−l∏
j=0

a
wj

j

∏

mj∈I
(x′+mj)

= W
∏

mj∈I
(x′+mj)

and return ⊥ otherwise, where {wj} = MPEncode(A− I).

VerifyIntersection(pk,C, I,W, (A′, l)). Return 1 if

e

C |A′|∏
j=0

a
m1,j

j , X0

 = e

W |A′|−l∏
j=0

a
m2,j

j ,

l∏
j=0

X
ij
j

holds and return 0 otherwise, where {ij} = MPEncode(I), {m1,j} = MPEncode(A′)
and {m2,j} = MPEncode(A′ − I). The correctness is as follows:

e

C |A′|∏
j=0

a
m1,j

j , X0

= e (C,X0) e

|A′|∏
j=0

a
m1,j

j , X0

= e

(
a

(x′+o)
∏

mj∈A
(x′+mj)

0 , X0

)
e

(
a

∏
mj∈A′

(x′+mj)

0 , X0

)
= e

(
a

(x′+o)
∏

mj∈(A−I)(x
′+mj)

0 , X

∏
mj∈I

(x′+mj)

0

)
e

(
a

∏
mj∈(A′−I)(x

′+mj)

0 , X

∏
mj∈I

(x′+mj)

0

)

= e

W, l∏
j=0

X
ij
j

 e

|A′|−l∏
j=0

a
m2,j

j ,

l∏
j=0

X
ij
j

= e

W |A′|−l∏
j=0

a
m2,j

j ,

l∏
j=0

X
ij
j

11

OpenDi�erence(pk, C,A, o, (A′, l̄)). If |A′ ∩ A| ≥ l̄ holds, return a di�erence set

D = A′ −A of length l̄ and the witness (W, {rj}l̄−1
j=0) such that:

C = a
(x′+o)

∏
mj∈A

(x′+mj)

0

= a
q(x′)

∏
mj∈D

(x′+mj)

0 a
r(x′)
0

=

n−l̄∏
j=0

a
wj

j

d(x′)

a

∏
mj∈D

(x′+mj)

0

= W d(x′)
l̄−1∏
j=0

a
rj
j

and return⊥ otherwise. The exponents ({wj}, {rj}) = MPEncode(A)/MPEncode(D)
are computed using expanded synthetic division such that {wj} are the coe�-
cients of quotient q(x′) and {rj} are the coe�cients of remainder r(x′). Speci�-

cally, let the polynomial divisor be d(x′) =
∑l̄
j djx

′j where {dj} = MPEncode(D),

the monic polynomial f(x′) in the commitment C = a
f(x′)
0 can be rewritten as

f(x′) = d(x′)q(x′) + r(x′). Note that
∏l̄−1
j=0 a

rj
j 6= 1G1

whenever d(x′) cannot
divide f(x′), i.e., the sets A and D are disjoint.

VerifyDi�erence(pk,C,D, (W, {rj}l̄−1
j=0), (A′, l̄)). Return 1, if

e

C l̄−1∏
j=0

a
−rj
j

|A′|∏
j=0

a
m1,j

j , X0

 = e

W |A′|−l̄∏
j=0

a
m2,j

j ,

l̄∏
j=0

X
dj
j

 ,

W 6= 1G1
as well as

∏l̄−1
j=0 a

rj
j 6= 1G1

hold and return 0 otherwise, where {dj} =
MPEncode(D), {m1,j} = MPEncode(A′) and {m2,j} = MPEncode(A′ −D). The

12

correctness is as follows:

e

C l̄−1∏
j=0

a
−rj
j

|A′|∏
j=0

a
m1,j

j , X0

= e

C l̄−1∏
j=0

a
−rj
j , X0

 e

|A′|∏
j=0

a
m1,j

j , X0

= e

(
a
d(x′)q(x′)+r(x′)
0 a

−r(x′)
0 , X0

)
e

(
a

∏
mj∈A′

(x′+mj)

0 , X0

)
= e

(
a
d(x′)q(x′)
0 , X0

)
e

(
a

∏
mj∈(A′−D)(x

′+mj)

0 , X

∏
mj∈D

(x′+mj)

0

)

= e

(
a
∑n−l̄

j=0 w1,jx
′j

0 , X
d(x′)
0

)
e

|A′|−l̄∏
j=0

a
m2,j

j , X
d(x′)
0

= e

W |A′|−l̄∏
j=0

a
m2,j

j ,

l̄∏
j=0

X
dj
j

Remark 1. In the security analysis of MoniPoly, we will take a di�erent approach
compared to the previous constructions [46, 21, 42]. We consider the perfectly
hiding property and the conventional computational binding property [39] that
only requires an adversary cannot present two pair (A1, o1) and (A2, o2) such that
Commit(pk,A1, o1) = Commit(pk,A2, o2). We will show in Section 3.4 that this
conventional binding property is a superset of formers' subset binding properties.

3.4 Security Analysis

Theorem 2. The MoniPoly commitment scheme is perfectly hiding.

Proof. Given a commitment C = a
(x′+o)

∏n−1
j=1 (x′+mj)

0 , there are |Z∗p| − 1 possible
pairs of ((m′1, . . . ,m

′
n−1), o′) 6= ((m1, . . . ,mn−1), o) which can result in the same

C. Furthermore, for each committed message set, there is a unique o such that:

dloga0
(C) = (x′ + o)

n−1∏
j=1

(x′ +mj) mod p

o =
dloga0

(C)∏n−1
j=1 (x′ +mj)

− x′ mod p

Since o is chosen independently of the committed messages {m1, . . . ,mn−1}, the
latter are perfectly hidden. ut

The following theorem considers an adversary which breaks the binding prop-
erty by �nding two di�erent message sets A and A∗ which can be of di�erent
lengths such that |A| ≥ |A∗|.

13

Theorem 3. The MoniPoly commitment scheme is (tbind, εbind)-secure wrt. the
binding security if the co-SDH problem is (tcosdh, εcosdh)-hard such that:

εbind = εcosdh, tbind = tcosdh + T (n)

where T (n) is the time for dominant group operations in G1 to extract a co-SDH
solution where n is the total of committed messages plus the opening value.

Proof. We show that if there exists an adversary Abind which can �nd two pair
(A, o) and (A∗, o∗) such that Open(pk,C,A, o) = Open(pk, C,A∗, o∗) = 1, there
exists a challenger C which can break the co-SDH assumption with the help
of Abind. C sets the co-SDH challenge as the public key pk = (a0 = g1, a1 =
gx
′

1 , . . . , an = gx
′n

1 , X0 = g2, X1 = gx
′

2 , . . . , Xn = gx
′n

2) and sends to Abind.

WhenAbind outputs such two pair (A, o) and (A∗, o∗), we have a
(x′+o)

∏k
i=1(x′+mi)

0 =

a
(x′+o∗)

∏k∗
i=1(x′+m∗i)

0 . In order to ease the explanation, we viewA = {m1, . . . ,mk, o}
and A∗ = {m∗1, . . . ,m∗k∗ , o∗} where 1 ≤ k∗ ≤ k ≤ n − 1. We �rst consider
the case of k∗ = k which implies |A∗ ∩ A| = l for 0 ≤ l ≤ |A| − 2. By
the setting of A and A∗, there are at least two unique elements that exist
in A but not in A∗. Assume o ∈ A is one of the unique elements such that

a
(x′+o)

∏k
i=1(x′+mi)

0 = a
c(x′)(x′+o)+d
0 = a

∑k∗
i zix

′i(x′+o)+d
0 . Let ({z∗i }0≤i≤k∗ , d) =

MPEncode(A∗)/MPEncode({o}) and {zi}0≤i≤k = MPEncode(A − {o}), C can

extract a solution (o, g
1

x′+o) for the co-SDH problem as follow:

a
(x′+o)

∏k
i=1(x′+mi)

0 = a
(x′+o∗)

∏k∗
i=1(x′+m∗i)

0

⇔a(x′+o)
∏k

i=1(x′+mi)
0 = a

c(x′)(x′+o)+d
0

⇔a
c(x′)+ d

x′+o

0 = a
∏k

i=1(x′+mi)
0

⇔a
1

x′+o

0 =

(
k∏
i=0

azii

k∗∏
i=0

a
−z∗i
i

)d−1

= g
1

x′+o .

Since Open(pk, C,A − {o}, o) = Open(pk, C,A∗ − {o∗}, o∗) = 1 implies C =
Commit(pk,A, o) = Commit(pk,A∗, o∗),Abind also can help C in extracting a SDH
solution by breaking the binding property of the witness W in OpenIntersection
algorithm and that of the witness (W1,W2) in OpenDifference algorithm under
the same setting. This is because Abind can �nd A∗ 6= A yet Commit(pk,A −
{o}, o) = Commit(pk,A∗ − {o∗}, o∗) such that: (1) |A∗ ∩ A| = l and ful�lls
|A′ ∩A∗| = |A′ ∩A| = l for the witness in set intersections, (2) |A∗−A| = l̄ and
ful�lls |A′−A∗| = |A′−A| = l̄ for the witness in set di�erences. In precise, from
the sets in (1), we have

OpenIntersection(pk,Commit(pk,A− {o}, o), A− {o}, o, (A′, l))
= OpenIntersection(pk,Commit(pk,A∗ − {o∗}, o∗), A∗ − {o∗}, o∗, (A′, l))

14

where 0 ≤ l ≤ |A′| ≤ |A| − 2, and from the sets in (2), we have

OpenDifference(pk,Commit(pk,A− {o}, o), A− {o}, o, (A′, l̄))
= OpenDifference(pk,Commit(pk,A∗ − {o∗}, o∗), A∗ − {o∗}, o∗, (A′, l̄))

where 2 ≤ l̄ ≤ |A′| ≤ |A|. In either case, it must be Commit(pk,A − {o}, o) =
Commit(pk,A∗ − {o∗}, o∗) and C can extract a SDH solution.

In the case of k∗ < k, the calculations above work in the similar way except
the value l must be within 0 ≤ l ≤ |A′| ≤ |A∗| − 1 and the value l̄ must be
within 2 ≤ l̄ ≤ |A′| ≤ |A∗| − 1. Therefore, in any case of k∗ ≤ k, Abind can
break the binding property and C can �nd a SDH solution. Since C simulates
the experiment perfectly, we have εbind = εcosdh. Next, compared to the time
tbind taken by Abind, C used only tcosdh plus O(n) group operations in G1 to
�nd the co-SDH solution. Denoting the extra time taken by C as T (n) gives
tbind − T (n) = tcosdh as required. ut

As the security analysis covers the set di�erence and set intersection operations,
the binding property holds in AND, OR, ANY, NOR, NANY and NAND proofs
as well. The polynomial binding, evaluation binding and batch binding proper-
ties in Kate et al.'s polynomial commitment and its variants [46, 21, 42] can
be viewed as a subset of our binding property, since they support only subset
operations. Moreover, our proof does not rely on the stronger bilinear variant of
SDH assumption and this shows that bilinear pairing operation does not help in
breaking the binding property.

4 Attribute-Based Anonymous Credential System

Table 1: Syntax and semantics for an access policy φ.
(a) BNF grammar

BNF

attr ::= <attribute>=<value>
set ::= attr,set | attr
con ::= AND | NAND | OR | NOR
cont ::= ANY | NANY
clause ::= con(set) | cont(l,set)
stmt ::= clause ∧ stmt | clause
policy ::= stmt(set) | ⊥

(b) Truth table with respect to input A

Clause Truth Condition

OR(A′) |A′ ∩A| > 0
ANY(1 < l < |A′|, A′) |A′ ∩A| ≥ l
AND(A′) |A′ ∩A| = |A′|
NOR(A′) |A′ ∩ Ā| > 0
NANY(1 < l < |A′|, A′) |A′ ∩ Ā| ≥ l
NAND(A′) |A′ ∩ Ā| = |A′|

Note: con = connective, cont = connective with threshold

Before presenting the formal de�nition of ABC system, we brie�y de�ne the
attribute set A and the access policy φ in our proposed ABC system which are

15

closely related to MoniPoly's opening algorithms. Informally, we view a relation
between two attribute sets as a clause. Clauses can be accumulated using the
logical ∧ operator in building the composite statement for an access policy.

Attribute We view a descriptive attribute set A = {m1, . . . ,mn} as a user's
identity. To be precise, an attribute m is an attribute-value pair in the format
attribute=value and A is a set of attributes. For instance, the identity of a user can
be described as: A = {“gender = male”, “name = bob”, “ID = 123456”, “role =
manager”, “branch = Y”}.

Access Policy An access policy φ as de�ned by the BNF grammar in Table
1 expresses the relationship between two attribute sets A and A′. An access
policy φ is formed by an attribute set A as well as a statement stmt that spec-
i�es the relation between A and A′. We have some additional rules for the φ
where we require |A| = n > 1 and |A′| ≤ n. Besides, in the special case of
|A′| = 1, the connective must be either AND or NAND. An access policy φ
outputs 1 if the underlying statement is evaluated to true and outputs 0 oth-
erwise. Taking the attribute set A above as an example, we have φstmt(A) =
φAND(A′1)∧OR(A′2)(A) = 1 for the attribute sets A′1 = {“role = manager”} and
A′2 = {“branch = X”, “branch = Y”, “branch = Z”}. Note that the attribute set
A′ has been implicitly de�ned by stmt and we simply write φstmt in the subse-
quent sections when the reference to the attribute set A is clear.

4.1 Interface

We de�ne an attribute-based anonymous credential system by �ve algorithms
ABC = {KeyGen,Obtain, Issue,Prove,Verify} as follows:

1. KeyGen(1k, 1n) → (pk, sk): This algorithm is executed by the issuer. On
the input of the security parameter k and the attributes upper bound n, it
generates a key pair (pk, sk).

2. (Obtain(pk,A), Issue(pk, sk)) → (cred/ ⊥): These two algorithms form the
credential issuing protocol. The �rst algorithm is executed by the user with
the input of issuer's public key pk and an attribute set A. The second al-
gorithm is executed by the issuer and takes as input the issuer's public key
pk and secret key sk. At the end of the protocol, Obtain outputs a valid
credential cred produced by Issue or ⊥ otherwise.

3. (Prove(pk, cred, φstmt),Verify(pk, φstmt))→ (1/0): These two algorithms form
the credential presentation protocol. The second algorithm is executed by
the credential veri�er which takes as input the issuer's public key pk and has
the right to decide the access policy φstmt. The �rst algorithm is executed
by the credential prover which takes as input the issuer's public key pk,
user's credential cred and an access policy φstmt such that φstmt(A) = 1. If
φstmt(A) = 0, the credential holder aborts and Verify outputs 0. If φ = ⊥,
prover and veri�er completes a proof of possession which proves the validity

16

of credential only instead of a show proof which additionally proves the
relation between A and A′. At the end of the protocol, Verify outputs 1 if it
accepts prover and outputs 0 otherwise.

In the following, we de�ne the key security requirements for an anonymous
credential system in the form of impersonation, anonymity and unlinkability.

4.2 Security Requirements

Table 2: Types of adversary by attack abilities.

Protocol
Attack

Passive Active

Issuing 1 2
Presentation 3 4

4.2.1 Impersonation. The security goal of an ABC system requires that it
is infeasible for an adversary to get accepted by the veri�er in the show proof.
Before de�ning the impersonation security model for graph signature scheme,
we de�ne the types of adversary according to their abilities in Table 2:

1. Type 1: Adversary has access to the signing protocol transcript. This ability
is represented by having access to an IssueTranscript oracle.

2. Type 2: In addition to Type 1 ability, the adversary can corrupt the users.
This additional ability is represented by having access to the Obtain oracle
of issuing protocol.

3. Type 3: Adversary has access to the presentation protocol transcript. This
ability is represented by having access to a PresentTranscript oracle.

4. Type 4: In addition to Type 3 ability, the adversary can corrupt the veri�er.
This additional ability is represented by having access to the Verify oracle in
presentation protocol.

We denote the adversary according to their ability as A1,A2,A3 and A4 re-
spectively. These four adversaries can be combined to give another four types
of stronger adversaries: A1,3 = {A1,A3},A1,4 = {A1,A4},A2,3 = {A2,A3} and
A2,4 = {A2,A4}. Note that having the ability of corrupting a user implies the
ability of acting as a prover in the presentation protocol, which is represented
by having access to the Prove oracle. However, Obtain and Prove oracles do not
cover the functionality of IssueTranscript which produces issuing transcripts of
the uncorrupted user.

In this work, we consider only the strongest adversary A2,4 and we allow
it to adaptively issue concurrent queries. We de�ne our security model as the
security against impersonation under active and concurrent attacks (imp-aca) in
the game between an adversary A and a challenger C as follows.

17

Game 2 (imp− aca(A, C))

1. Setup: C runs KeyGen(1k, 1n) and sends pk to A.
2. Phase 1: A is able to issue concurrent queries to the Obtain, Prove and

Verify oracles where he plays the role of user, prover and veri�er, respectively,
on any attribute set Ai of his choice in the i-th query. A can also issue queries
to the IssueTranscript oracle which takes in Ai and returns the corresponding
transcripts of issuing protocol.

3. Challenge: A outputs the challenge attribute set A∗ and its corresponding
access policy φ∗stmt such that φ∗stmt(Ai) = 0 and φ∗stmt(A

∗) = 1 for every Ai
queried to the Obtain oracle during Phase 1.

4. Phase 2: A can continue to query the oracles as in Phase 1 with the restric-
tion that it cannot query an attribute set Ai to Obtain such that φ

∗
stmt(Ai) = 1.

5. Impersonate: A completes a show proof as the prover with C as the veri�er
for the access policy φ∗stmt(A

∗) = 1. A wins the game if C outputs 1.

De�nition 13. An adversary A is said to (timp, εimp)-break the imp-aca security
of an ABC system if A runs in time at most timp and wins in Game 2 such that:

Pr[(A,Verify(pk, φ∗stmt)) = 1] ≥ εimp

for a negligible probability εimp. We say that an ABC system is imp-aca-secure if
no adversary (timp, εimp)-wins Game 2.

Note that we reserve the term unforgeability for seuf-cma of the signature
scheme as de�ned in Game 1, in contrast to some contributions in the liter-
ature [2, 21, 25, 56, 42, 12]. One can view our impersonation notion as the
stronger version of the misauthentication resistance from the ABC systems with
expressive show proofs [7, 57, 53] which does not cover the active and concurrent
adversary besides disallowing adaptive queries. We also introduce a new oracle,
namely, IssueTranscript that covers the passive adversary for the issuing proto-
col. This makes our security de�nition more comprehensive than that by related
works [25, 21, 42, 12].

Similar to the ABC systems [21, 42] which supports subset show proofs, we
consider only show proofs in the security game above but not the proof of posses-
sion which proves only the validity of credential and nothing on the relationships
between attribute sets, i.e., φstmt∗ =⊥. This is because A can trivially cheat by
using any corrupted credential to generate a proof of possession, if the ABC
system o�ers anonymity and unlinkability. Anyway, we note that the show proof
for φAND(A∗)(A

∗) in the security game can subsume a proof of possession where
we have A that �honestly� impersonates using the challenge attribute set A∗ as
it claims it would. Therefore, when we mention show proof, we mean both proof
of possession and show proof unless otherwise speci�ed.

4.2.2 Anonymity. Anonymity requires that an adversary cannot recover the
identity of a user from the issuing protocol and the show proofs. The security

18

model for full anonymity under active and concurrent attacks (anon-aca) is de-
�ned as a game between an adversary A and a challenger C:

Game 3 (anon− aca(A, C))

1. Setup: C runs KeyGen and sends pk, sk to A.
2. Phase 1: A is able to issue concurrent queries to the Obtain, Issue, Prove

and Verify oracles where he plays the role of user, issuer, prover and veri�er,
respectively, on any attribute set Ai of his choice in the i-th query. A can
also issue queries to a Corrupt oracle that takes in a transcript of issuing
protocol or presentation protocol whose user or prover, respectively, is C and
returns the entire internal state, including the random seed used by C in the
transcript.

3. Challenge: A decides the two equal-length, non-empty attribute sets A0, A1

and the access policy φ∗stmt which he wishes to challenge such that φ
∗
stmt(A0) =

φ∗stmt(A1) = 1. A is allowed to select A0, A1 from the existing queries to
Obtain in Phase 1. C responds by randomly choosing the challenge bit b ∈
{0, 1} and interacts as the user with A as the issuer to complete the protocol

(Obtain(pk,Ab), Issue(pk, sk))→ credb.

Subsequently, C interacts as the prover with A as the veri�er for polynomially
many times as requested by A to complete the protocol

(Prove(pk, credb, φ
∗
stmt),Verify(pk, φ∗stmt))→ 1.

4. Phase 2: A can continue to query the oracles as in Phase 1 except querying
the transcripts of the challenged issuing and show proofs to Corrupt.

5. Guess: A outputs a guess b′ and wins the game if b′ = b.

De�nition 14. An adversary A is said to (tano, εano)-break the anon-aca-security
of an ABC system if A runs in time at most tano and wins in Game 3 such that:

|Pr[b = b′]− 1

2
| ≥ εano

for a negligible probability εano. We say that an ABC system is anon-aca-secure
if no adversary (tano, εano)-wins Game 3.

Di�erent from the anonymity notion in the ABC systems [2, 62, 7, 31, 6,
57, 42, 20, 53] which consider the anonymity in the show proofs only, the full
anonymity notion considers both issuing protocol and show proofs as in Blömer
et al.'s notion [56], yet with an extra Corrupt oracle. It is also stronger than the
anonymity notion [42, 2] which assumes an adversary can collude with issuer but
does not know sk.

Following the de�nition of our full anonymity security, the ABC systems
which use non-blind issuing protocol are obviously not fully anonymous because
the adversary can always obtain Ab in plain by acting as the issuer of the chal-
lenge issuing protocol. Note that this is true even when we consider the weaker

19

adversary A1 from Table 2 that only knows the transcript of the challenge is-
suing protocol from the IssueTranscript oracle. As a side note, we discover an
ABC system [42] that cannot meet the requirement of such weak anonymity,
though the user attributes are committed before sending to the issuer. We dis-
cuss the vulnerability and the corresponding security patch for the ABC system
in Appendix 5.2.4.

4.2.3 Unlinkability. Unlinkability requires that an adversary cannot link
the attributes or instances among the issuing protocols and the presentation
protocols. We consider two types of unlinkability notions, namely, full attribute
unlinkability and full protocol unlinkability. We require an adversary after in-
volving in the generation of a list of credentials, cannot di�erentiate the sequence
of two attribute sets in the full attribute unlinkability. The security model for full
attribute unlinkability under active and concurrent attacks (aunl-aca) is de�ned
as a game between an adversary A and a challenger C.

Game 4 (aunl− aca(A, C))

1. Setup: C runs KeyGen and sends pk, sk to A.
2. Phase 1: A is able to issue concurrent queries to the Obtain, Issue, Prove

and Verify oracles where he plays the role of user, issuer, prover and veri�er,
respectively, on any attribute set Ai of his choice in the i-th query. A can
also issue queries to an additional oracle, namely, Corrupt which takes in a
transcript of issuing protocol or show proofs whose user or prover, respec-
tively, is C and returns the entire internal state, including the random seed
used by C in the transcript.

3. Challenge: A decides the two equal-length, non-empty attribute sets A0, A1

and the access policy φ∗stmt which he wishes to challenge such that φ
∗
stmt(A0) =

φ∗stmt(A1) = 1. A is allowed to select A0, A1 from the existing queries to
Obtain in Phase 1. C responds by randomly choosing a challenge bit b ∈ {0, 1}
and interacts as the user with A as the issuer to complete the protocols:

(Obtain(pk,Ab), Issue(pk, sk))→ credb,

(Obtain(pk,A1−b), Issue(pk, sk))→ cred1−b.

Subsequently, C interacts as the prover with A as the veri�er for polynomially
many times as requested by A to complete the protocols in the same order:

(Prove(pk, credb, φ
∗
stmt),Verify(pk, φ∗stmt))→ 1,

(Prove(pk, cred1−b, φ
∗
stmt),Verify(

pk, φ∗stmt))→ 1.

4. Phase 2: A can continue to query the oracles as in Phase 1 except querying
the transcripts of the challenged issuing and show proofs to Corrupt.

5. Guess: A outputs a guess b′ and wins the game if b′ = b.

20

De�nition 15. An adversary A is said to (taunl, εaunl)-break the aunl-aca-security
of an ABC system if A runs in time at most taunl and wins in Game 4 such that:

|Pr[b = b′]− 1

2
| ≥ εaunl

for a negligible probability εaunl. We say that an ABC system is aunl-aca-secure
if no adversary (taunl, εaunl)-wins Game 4.

Our full attribute unlinkability is more generic than that in Camenisch et al.'s
ABC transformation frameworks [21] where we assume the challenged attribute
sets A0, A1 are not equivalent such that A0 6= A1. Besides, unlike Ringers et
al.'s unlinkability notion [56], ours covers both issuing and show proofs as in
Camenisch et al.'s privacy notions [25], though the latter does not have a Corrupt
oracle while the former does.

On the other hand, as far as we know, the full protocol unlinkability has not
been considered before. This notion requires an adversary after involving in the
generation of a list of credentials, cannot relate an instance of issuing protocol
and an instance of a show proof that are under the same credential. The full
protocol unlinkability under active and concurrent attacks (punl-aca) is de�ned
as a game between an adversary A and a challenger C:

Game 5 (punl− aca(A, C))

1. Setup: C runs KeyGen and sends pk, sk to A.
2. Phase 1: A is able to issue concurrent queries to the Obtain, Issue, Prove

and Verify oracles where he plays the role of users, issuer, provers and ver-
i�er, respectively, on any attribute set Ai of his choice in the i-th query. A
can also issue queries to an additional oracle, namely, Corrupt which takes
in a transcript of issuing protocol or show proofs whose user or prover, re-
spectively, is C and returns the entire internal state, including the random
seed used by C in the transcript.

3. Challenge: A decides the two equal-length, non-empty attribute sets A0, A1

and the access policy φ∗stmt which he wishes to challenge such that φ
∗
stmt(A0) =

φ∗stmt(A1) = 1. A is allowed to select A0, A1 from the existing queries to
Obtain in Phase 1. C responds by randomly choosing two challenge bits
b1, b2 ∈ {0, 1} and interacts as the user with A as the issuer to complete
the protocols in the order

(Obtain(pk,Ab1), Issue(pk, sk))→ credb1 ,

(Obtain(pk,A1−b1), Issue(pk, sk))→ cred1−b1 .

Subsequently, C interacts as the prover with A as the veri�er for polynomially
many times as requested by A to complete the protocols in the order

(Prove(pk, credb2 , φ
∗
stmt),Verify(pk, φ∗stmt))→ 1, (Prove(pk, cred1−b2 , φ

∗
stmt),Verify(pk, φ∗stmt))→ 1.

4. Phase 2: A can continue to query the oracles as in Phase 1 except querying
the transcripts of the challenged issuing and show proofs to Corrupt.

21

5. Guess: A outputs a guessed pair of issuing protocol transcript π(O,I) and
show proof transcript π(P,V) and wins the game if the pair is under the same
credential such that credπ(O,I)

= credπ(P,V)
.

De�nition 16. An adversary A is said to (tpunl, εpunl)-break the punl-aca-security
of an ABC system if A runs in time at most tpunl and wins in Game 5 such that:

|Pr[credπ(O,I)
= credπ(P,V)

]− 1

2
| ≥ εpunl

for a negligible probability εpunl. We say that an ABC system is punl-aca-secure
if no adversary (tpunl, εpunl)-wins Game 5.

It is clear that a full anonymity adversary is a weaker form of a full attribute
unlinkability adversary and we prove that full attribute unlinkability implies full
anonymity (Appendix B) in an ABC system but the opposite does not hold.
We also show that there is no reduction between full attribute unlinkability and
full protocol unlinkability (Appendix C). Therefore, we only prove the security
against the full attribute unlinkability and the full protocol unlinkability for our
proposed ABC system.

4.3 Construction

In a nutshell, a user credential cred is a SDH-CL signature sig on the MoniPoly
commitment C for his attribute set A. Next, the show proofs of our ABC system
can be seen as proving the validity of sig and C such that:

PK{({αj}) :1 = SDH-CL.Verify(C, sig, pk) ∧
1 = MoniPoly.VerifyPred(pk,C, {αj},W, (A′, l))}

where Pred = {Intersection,Difference}. The commitment veri�cation algorithms
are the main ingredient that form the access policy for our ABC system. We de-
scribe the proposed ABC system as follows:

KeyGen(1k): Construct three cyclic groups G1,G2,GT of order p based on an
elliptic curve whose bilinear pairing is e : G1 ×G2 → GT . Select random gener-
ators a, b, c ∈ G1, g2 ∈ G2 and two secret values x, x′ ∈ Z∗p. Compute the values

a0 = a, a1 = ax
′
, . . . , an = ax

′n
, X = gx2 , X0 = g2, X1 = gx

′

2 , . . . , Xn = gx
′n

2

to output the public key pk = (e,G1,G2,GT , p, b, c, {ai, Xi}0≤i≤n, X) and the
secret key sk = (x, x′).

(Obtain(pk,A), Issue(pk, sk)): User interacts with veri�er as follows to generate
a user credential cred on an attribute set A = {m1, . . . ,mn−1}.

1. User chooses a random opening value o ∈ Z∗p to compute C =
∏n
j=0 a

mj

j =
Commit(pk,A, o). Subsequently, user selects random s1 ∈ Z∗p to initialize the

22

issuing protocol by completing the protocol with the issuer:

PK

{
(α0, . . . , αn, σ) : M =

n∏
j=0

a
αj

j b
σ

}

where σ = s1 and {α0, . . . , αn} = {m0, . . . ,mn}.
2. Issuer proceeds to the next step if the protocol is veri�ed. Else, issuer outputs
⊥ and stops.

3. Issuer generates the SDH-CL signature forM as sig = (t, s2, v = (Mbs2c)1/(x+t)).
4. If sig is not a valid signature on A ∪ {o}, user outputs ⊥ and stops. Else,

user outputs the credential as cred = (t, s, v, A = A ∪ {o}) where:

s = s1 + s2, v =
(
a
∏n

j=1(x′+mj)

0 bsc
)1/(x+t)

.

4.3.1 Proof of Possession. This protocol proves the ownership of a valid
credential cred and the well-formedness of the committed attribute set A =
{m1, . . . ,mn} without disclosing any attribute. The Prove and Verify algorithms
interact as follows.
(Prove(pk, cred,⊥),Verify(pk,⊥)):

1. Veri�er requests for a proof of possessions protocol by sending an empty
access policy φ = ⊥.

2. Prover chooses random r, y ∈ Z∗p to randomize the credential as cred′ = (t′ =

ty, s′ = sr2, v′ = vr
2y−1

).

3. Setting v′,W =
∏n−1
j=0 a

w′j
j as the public input where {w′j}0≤j≤n−1 = r ×

MPEncode(A− {o}), prover runs the zero-knowledge protocol with issuer:

PK

{
(ρ, τ, γ, α0, α1, σ) :e(Cρbσcρv′−τ , X0) = e(v′γ , X) ∧

e(Cρ, X0) = e(W,Xα1
1 Xα0

0)

}
where ρ = r2, τ = t′, γ = y, {αj} = r×MPEncode({o}), σ = s′. The protocol
above can be compressed as:

PK

{
(ρ, τ, γ, α0, α1, σ) : e(W,Xα1

1 Xα0
0)e

(
bσcρv′−τ , X0

)
= e(v′γ , X)

}
to realize a more e�cient proof.

4. Veri�er outputs 1 if the protocol is veri�ed and 0 otherwise.

4.3.2 Show Proofs. A show proof proves the relation between the attribute
set A in cred and the queried set A′ chosen by the veri�er. Using the same com-
pression technique in the proof of possession, we describe the single clause show

23

proofs by the following presentation protocols.

AND proof. This protocol allows prover to disclose an attribute set A′ =
{m1, . . . ,mk} ⊆ A upon the request from veri�er, and proves that his credential
cred contains A′. The showing protocol for AND proof is as follows.

(Prove(pk, cred, φAND(A′)),Verify(pk, φAND(A′))):

1. Veri�er requests an AND proof for the attribute set A′ = {m1, . . . ,mk}.
2. If A′ 6⊆ A, prover aborts and veri�er outputs 0.
3. Else, prover chooses random r, y ∈ Z∗p to randomize the credential as cred′ =

(t′ = ty, s′ = sr, v′ = vry
−1

, {w′j}0≤j≤n−k = r ×MPEncode(A−A′)).

4. Setting v′,W =
∏n−k
j=0 a

w′j
j as the public input, prover runs the zero-knowledge

protocol below with issuer:

PK

{
(ρ, τ, γ, σ) : e

W, k∏
j=0

X
mj

j

 e(bσcρv′−τ , X0) = e(v′γ , X)

}

where
∏k
j=0X

mj

j and {mj} = MPEncode(A′) are computed by the veri�er
and ρ = r, τ = t′, γ = y, σ = s′.

5. Veri�er outputs 1 if the protocol is veri�ed and 0 otherwise.

ANY and OR proofs. This is the show proof for the threshold statement and it
is an OR proof when the threshold is equal to one. Consider the scenario where
the prover is given an attribute set A′ = {m1, . . . ,mk} and he needs to prove that
he has l attributes {mj}1≤j≤l ∈ (A′ ∩A) without the veri�er knowing which at-
tributes he is proving. The showing protocol for the ANY statement is as follows.

(Prove(pk, cred, φANY(l,A′)),Verify(pk, φANY(l,A′))):

1. Veri�er requests an ANY(l, A′) proof for the attribute set A′ = {m1, . . . ,mk}.
2. Prover randomly selects l-attribute intersection set I ⊆ (A′ ∩A). If no such
I can be formed, prover aborts and veri�er outputs 0.

3. Else, prover chooses random r, y ∈ Z∗p to randomize the credential as cred′ =

(t′ = ty, s′ = sr2, v′ = vr
2y−1

, {w′j}0≤j≤n−l = r ×MPEncode(A− I)).

4. Setting v′,W =
∏n−l
j=0 a

w′j
j ,W

′ =
(∏k−l

j=0 a
m2,j

j

)r−1

as the public input where

{m2,j}0≤j≤k−l = MPEncode(A′−I), prover runs the zero-knowledge protocol
below with issuer:

PK

{
(ρ, τ, γ, ι0, . . . , ιl, σ) :

e

W ′W, l∏
j=0

X
ιj
j

 e

 k∏
j=0

a
−m1,j

j bσcρv′−τ , X0

 = e(v′γ , X)

}

24

where
∏k
j=0 a

−m1,j

j and {m1,j}0≤j≤k = MPEncode(A′) are computed by the

veri�er and ρ = r2, τ = t′, γ = y, {ιj}0≤j≤l = r ×MPEncode(I), σ = s′.

5. Veri�er outputs 1 if the protocol is veri�ed and 0 otherwise.

NAND and NOT proofs. This is the showing protocol for the NAND statement
which allows a prover to show that an attribute set A′ = {m1, . . . ,mk} is disjoint
with the set A in his credential. Note that is a NOT proof when |A′| = 1. The
showing protocol on the NAND statement is as below.

(Prove(pk, cred, φNAND(A′)),Verify(pk, φNAND(A′))):

1. Veri�er request a NAND proof for the attribute set A′ = {m1, . . . ,mk}.
2. If |A′ −A| < k, prover aborts and veri�er outputs 0.

3. Else, prover chooses random r, y ∈ Z∗p to randomize the credential as cred′ =

(t′ = ty, s′ = sr, v′ = vry
−1

, {w′j = rwj}0≤j≤n−k, {r′j = rrj}0≤j≤k−1) where
({wj}0≤j≤n−k, {rj}0≤j≤k−1) = MPEncode(A)/MPEncode(A′).

4. Setting v′,W =
∏n−k
j=0 a

w′j
j as the public input, prover runs the zero-knowledge

protocol with issuer:

PK

{
(ρ, τ, γ, µ0, . . . , µk−1, σ) : W1 6= G1 ∧

k−1∏
j=0

a
µj

j 6= G1∧

e

W, k∏
j=0

X
mj

j

 e

k−1∏
j=0

a
µj

j b
σcρv′−τ , X0

 = e(v′γ , X)

}

where
∏k
j=0X

mj

j and {mj} = MPEncode(A′) are computed by the veri�er
and {µj} = {r′j}, ρ = r, τ = t′, γ = y, σ = s′.

5. Veri�er outputs 1 if the protocol is veri�ed and 0 otherwise.

NANY proof. This is the showing protocol for the negated threshold state-
ment. Consider the scenario where the prover is given an attribute set A′ =
{m1, . . . ,mk} and he needs to prove that a l-attribute set D ⊆ (A′ − A) are
not in the credential without the veri�er knowing which attributes he is proving.
The showing protocol on the NANY statement is as below.

(Prove(pk, cred, φNANY(l̄,A′)),Verify(pk, φNANY(l̄,A′))):

1. Veri�er request a NANY proof for the attributes A′ = {m1, . . . ,mk}.
2. Prover randomly selects l-attribute di�erence set D ∈ (A′ − A). If no such
D can be formed, prover aborts and veri�er outputs 0.

3. Else, prover chooses random r, y ∈ Z∗p to randomize the credential as cred′ =

(t′ = ty, s′ = sr2, v′ = vr
2y−1

, {w′j = rwj}0≤j≤n−l̄, {r′j = r2wj}0≤j≤l̄−1)
where ({wj}0≤j≤n−l̄, {rj}0≤j≤l̄−1) = MPEncode(A)/MPEncode(D).

25

4. Setting v′,W =
∏n−l̄
j=0 a

w′j
j ,W

′ =
(∏k−l̄

j=0 a
m2,j

j

)r−1

as the public input where

{m2,j}0≤j≤k−l = MPEncode(A′−D), prover runs the zero-knowledge proto-
col with issuer:

PK

{
(ρ, τ, γ, δ0, . . . , δl̄, µ0, . . . , µl̄−1, σ) : W1 6= G1 ∧

l̄−1∏
j=0

a
µj

j 6= G1∧

e

W ′W, l̄∏
j=0

X
δj
j

 e

 k∏
j=0

a
−m1,j

j

l̄−1∏
j=0

a
µj

j b
σcρv′−τ , X0

 = e(v′γ , X)

}
where

∏k
j=0 a

−m1,j

j and {m1,j}0≤j≤k = MPEncode(A′) are computed by the

veri�er and {µj} = {r′j}, ρ = r2, τ = t′, γ = y, {δj}0≤j≤l̄ = r×MPEncode(D), σ =
s′.

5. Veri�er outputs 1 if the protocol is veri�ed and 0 otherwise.

4.4 Security Analysis

4.4.1 Impersonation Resilience. We establish the security of theMoniPoly
ABC system by constructing a reduction to the (co-)SDH problem. In order to
achieve tight security reduction, we make use of Multi-Instance Reset Lemma [47]
as the knowledge extractor which requires the adversary A to run N parallel in-
stances of impersonation under active and concurrent attacks. The challenger
C can ful�ll this requirement by simulating the N − 1 instances from its given
SDH instance which is random self-reducible [13]. Since this is obvious, we de-
scribe only the simulation for a single instance of impersonation under active
and concurrent attacks in the security proofs.

Theorem 4. If an adversary A (timp, εimp)-breaks the imp-aca-security of the
proposed anonymous credential system, then there exists an algorithm C which
(tcosdh, εcosdh)-breaks the co-SDH problem such that:

εcosdh
tcosdh

=
εimp

timp
,

or an algorithm C which (tsdh, εsdh)-breaks the SDH problem such that:

εimp ≤ N

√√
εsdh − 1 +

1 + (q − 1)!/pq−2

p
+ 1,

timp ≤ tsdh/2N − T (q2).

where N is the total adversary instance, q = Q(O,I) + Q(P,V) is the total query
made to the Obtain and Verify oracles, while T (q2) is the time parameterized by
q to setup the simulation environment and to extract the SDH solution. Consid-
ering only the dominant time elements timp and tsdh, we have:(

1−
(

1− εimp +
1 + (q − 1)!/pq−2

p

)N)2

≤ εsdh, 2Ntimp ≈ tsdh.

26

Let N = (εimp− 1+(q−1)!/pq−2

p)−1, we get εsdh ≥ (1−e−1)2 ≥ 1/3 and the success
ratio is:

εsdh
tsdh
≥ 1

3 · 2Ntimp

6εsdh
tsdh

≥ εimp

timp
− 1 + (q − 1)!/pq−2

timpp

which gives a reduction loss of three bits only.

To modularize the proof for Theorem 4, we categorize the way an adversary
impersonates in Table 3. This is similar to the approach in the tight reduction
proof for the SDH-CL signature scheme proposed by Schäge [58]. Subsequently,
we di�erentiate A into A = {Abind,A1,A2,A3} corresponding to four di�er-
ent simulation strategies by C. We omit the proof for the binding property of
MoniPoly commitment scheme Abind which has been described in Theorem 3
and can be trivially applied here.

Table 3: Types of impersonation and the corresponding assumptions.

Type A MPEncode(A) s t v Adversary Assumption Lemmas

0 0 1 * * * Abind co-SDH Theorem 3
1 0 0 0 0 0 A1 SDH 1
2 0 0 0 0 1 A1 DLOG 1
3 0 0 0 1 0 A2 SDH 2
4 0 0 0 1 1 A2 DLOG 2
5 0 0 1 0 0 A1 SDH 1
6 0 0 1 0 1 A1 DLOG 1
7 0 0 1 1 0 A3 SDH 3
8 0 0 1 1 1 A3 DLOG 3
9 1 1 0 0 0 A1 SDH 1
10 1 1 0 0 1 A1 DLOG 1
11 1 1 0 1 0 A2 SDH 2
12 1 1 0 1 1 A2 DLOG 2
13 1 1 1 0 0 A1 SDH 1
14 1 1 1 0 1 A1 N/A 1
15 1 1 1 1 0 A3 SDH 3
16 1 1 1 1 1 A3 N/A 3

Note: * = 1 or 0, 1 = equal, 0 = unequal, N/A = not available

In each of the simulation strategy, we consider only the success probability
of breaking the SDH problem which is weaker than the DLOG problem such
that εsdh ≥ εdlog. Let M

∗ =
∏n
j=1(x′ + m∗j) and Mi =

∏n
j=1(x′ + mi,j) where

A∗ = {m∗j} and Ai = {mj}, respectively, the DLOG problem can be solved
whenever the forgery v∗ produced by A equals to a vi which has been generated

27

by C such that:

∵ v∗ ≡ vi

(aM
∗

0 bs
∗
c)

1
x+t∗ ≡ (aMi

0 bsic)
1

x+ti

(aM
∗+s∗β+γ

0)
1

x+t∗ ≡ (aMi+siβ+γ
0)

1
x+ti

∴
M∗ + s∗β + γ

x+ t∗
≡ Mi + siβ + γ

x+ ti
mod p

which leads to:

x ≡ t∗Mi − tiM∗ + β(t∗si − tis∗) + γ(t∗ − ti)
M∗ −Mi + β(s∗ − si)

mod p

where C can solve the SDH problem using x. Following the equation, the Type 14
impersonation (A∗, v∗, s∗) = (Ai, vi, si) will not happen as it causes a division
by zero. On the other hand, Type 16 represents the impersonation using the
uncorrupted cred generated by C when it answers A's IssueTranscript queries
or Verify queries. If A's view is independent of C's choice of (ti, si), we have
(t∗, s∗) 6= (ti, si) with probability 1−1/p. This causes Type 16 impersonation to
happen with a negligible probability of 1/p at which point our simulation fails.

We present Lemma 1, 2 and 3 corresponding to the adversaries A1,A2 and
A3 as follows.

Lemma 1. If an adversary A1 (timp, εimp)-breaks the imp-aca-security of the
proposed anonymous credential system, then there exists an algorithm C which
(tsdh, εsdh)-solves the SDH problem such that:

εimp ≤ N

√√
εsdh − 1 +

1 + (q − 1)!/pq−2

p
+ 1,

timp ≤ tsdh/2N − T (q2).

where N is the total of adversary instances, q = Q(O,I) + Q(P,V) is the number
of queries made to the Obtain and Verify oracles, while T (q2) is the time pa-
rameterized by q to setup the simulation environment and to extract the SDH
solution.

Proof. Given a q-SDH instance (g1, g
x
1 , g

x2

1 , . . . , gx
q

1 , g2, g
x
2) where q = Q(O,I) +

Q(P,V) is the maximum number of queries A1 can issue to the Obtain and Verify
oracles, we show that if A1 exists, there exists an algorithm C which can output

(g
1

x+t

1 , t) by acting as the simulator for the ABC system as follows:

Game0. This is the attack by A on the real N instances of anonymous credential
system. Let S be the event of a successful impersonation, by assumption, we have:

Pr[S0] = εimp. (1)

28

Game1. In order to simulate the environment of the ABC system, C uniformly
and randomly selects distinct t0, t

′
0, t
′′
0 , x
′, t1, . . . , tq ∈ Z∗p. Next, let f(x) denotes

the polynomial f(x) =
∏q
k=1(x+ tk) =

∑q
k=0 ρkx

k and fi(x) denotes the poly-

nomial fi(x) =
∏q
k=1,k 6=i(x + tk) =

∑q−1
k=0 λkx

k. Let g
f(x)
1 =

∏q
k=0(gx

k

1)ρk , C
sends (e,G1,G2,GT , p, a0 = g

f(x)t0
1 , a1 = ax

′

0 , . . . , an = ax
′n

0 , b = g
f(x)t′0
1 , c =

g
f(x)t′′0
1 , X = gx2 , X0 = g2, X1 = Xx′

0 , . . . , Xn = Xx′n

0) as the public key to A1. C
also creates two empty lists L(O,I) and L(P,V) where the former stores the cor-
rupted credentials simulated during the issuing protocol while the latter stores
the non-corrupted credentials simulated during the presentation protocol. Since
t0, t

′
0, t
′′
0 , x
′ are uniformly random, the distribution of the simulated public key

(and the corresponding random self-reducible [13] N − 1 instances) is the same
as that of the original scheme. So, we have:

Pr[S1] = Pr[S0]. (2)

Game2. In this game, A1 plays the role of multiple users to concurrently in-
teract with the issuer simulated by C. Without loss of generality, we assume
every user i uses di�erent attribute set Ai. If the i-th session of an issuing
protocol ends successfully, C produces a credential credi for A1's chosen Ai =
{m1,i, . . . ,mn−1,i, oi}. Their interaction is as follows:

1. A1 concurrently initializes the issuing protocol with C by running the zero-
knowledge protocol:

PK

{
(α0,i, . . . , αn,i, σi) : Mi =

n∏
j=0

a
αj,i

j bσi

}
Without loss of generality, we assume A1 always execute this protocol hon-
estly. Therefore, C always reset successfully and can extract the secret expo-
nents {αj,i} = MPEncode(Ai), σi = s1,i used by A1 in the protocol.

2. C chooses a random value s2,i ∈ Z∗p and sets:

vi = (a
∏n

j=1(x′+mj,i)

0 bsic)
1

x+ti

= a

∏n
j=1(x′+mj,i)

x+ti
0 bsii ci

=

n∏
j=0

a
mj,i

j,i b
s1,i+s2,i
i ci

where aj,i = g
fi(x)t0x

′j

1 , bi = g
fi(x)t′0
1 , ci = g

fi(x)t′′0
1 . If (m0,i, . . . ,mn,i, ti, si, vi) ∈

L(P,V), C removes it from L(P,V) and adds to L(O,I). C returns sigi =
(ti, s2,i, vi) as the SDL-CL signature on Mi to A1.

Since C's choices of ti, si,2 are independent of A's view, a collision vi = vj for
some i, j ≤ q in A's concurrent queries happens with a negligible probability

29

of Pr[Col] = 1/p in which A1 can compute the discrete logarithm x. Else, C
simulates the Issue oracle perfectly for every concurrent query and A1 can for-
mulate its credential credi = (ti, si = s1,i + s2,i, vi, Ai) as in the original issuing
protocol. This gives:

Pr[S2] = Pr[S1] + Pr[Col]

≤ Pr[S1] +

q−1∏
i=1

i/p

≤ Pr[S1] + (q − 1)!/pq−1. (3)

Game3. In this game, A1 plays the role of multiple provers to concurrently inter-
act with the veri�er simulated by C. Without loss of generality, we assume every
prover i uses a valid credi to run its show proof on φstmti such that φstmti(Ai) = 1.
C always simulates the Verify oracle correctly and this gives:

Pr[S3] = Pr[S2]. (4)

Game4. In this game, A1 plays the role of veri�er to concurrently interact with
multiple provers simulated by C. When A1 asks for a show proof on φstmti , C
interacts with A1 using a credi such that φstmti(Ai) = 1. We assume C already
has the appropriate credentials on his hand for these queries. Else, C simulates
(m0,i, . . . ,mn,i, ti, si, vi) as in Game2 and adds it to L(P,V) before interacting
with A1. This gives:

Pr[S4] = Pr[S3]. (5)

Game5. In this game, A1 wants to impersonate the prover whose attribute
set is A∗ = {m∗1, . . . ,m∗n} 6= Ai ∈ L(O,I) using the access policy φ∗stmt such
that φ∗stmt(A

∗) = 1 and φ∗stmt(Ai) = 0. A1 is still allowed to query the oracles
as in Game2, Game3 and Game4 but with the restriction φ∗stmt(Ai) 6= 1 for
Ai to the Obtain oracle. Finally, if A1 completes a show proof for A∗ such that
(AProve

1 (pk, ·, φ∗stmt(A
∗)), CVerify(pk, φ∗stmt(A

∗))) = 1, C resets A1 to the time where
it has just sent the witnesses. If the show proof veri�ed again, C can obtain
two valid transcripts and recover the secret exponents to extract the credential
elements (t∗, s∗, v∗).

SinceA1 must output t
∗ /∈ {t1, . . . , tq}, if v∗ /∈ L(O,I)∪L(P,V), C can construct

a polynomial c(x) of degree n− 1 such that f(x) = c(x)(x+ t∗) + d to compute:

v∗1/(t0
∑n

j=0 m∗jx
′j+t′0s

∗+t′′0)dg
− c(x)

d
1 = g

(t0
∑n

j=0 m∗j x′j+t′0s∗+t′′0)f(x)

(t0
∑n

i=0
m∗
j
x′j+t′0s∗+t′′0)(x+t∗)d

− c(x)
d

1

= g
c(x)(x+t∗)+d

d(x+t∗) − c(x)
d

1

= g
1

x+t∗
1

and output (g
1

x+t∗ , t∗) as the solution for the SDH instance. On the other hand,
if we have v∗ ∈ L(O,I) ∪ L(P,V), C can extract the discrete logarithm x to break
the SDH assumption.

30

Let Pr[Acc] be the probability of C outputs 1 in the presentation protocol with
A1, and Pr[Res] be the probability of C resets successfully, by Multi-Instance
Reset Lemma [47], we have:

Pr[S5] ≤ Pr[S4] + Pr[Acc]

≤ Pr[S4] + N
√

Pr[Res]− 1 + 1/p+ 1

≤ Pr[S4] + N

√√
εsdh − 1 + 1/p+ 1 (6)

and summing up the probability from (1) to (6), we have εimp ≤ N
√√

εsdh − 1 +
1/p+ 1 + (q − 1)!/pq−1 as required. The time taken by C is at least 2Ntimp due
to reset and interacting with N parallel impersonation instances, besides the
environment setup and the �nal SDH solution extraction that cost T (q2). ut

Lemma 2. If an adversary A2 (timp, εimp)-breaks the imp-aca-security of the
proposed anonymous credential system, then there exists an algorithm C which
(tsdh, εsdh)-solves the SDH problem such that:

εimp ≤ N

√√
εsdh − 1 +

1 + (q − 1)!/pq−2

p
+ 1,

timp ≤ tsdh/2N − T (q2).

where N is the total of adversary instances, q = Q(O,I) + Q(P,V) is the number
of queries made to the Obtain and Verify oracles, while T (q2) is the time pa-
rameterized by q to setup the simulation environment and to extract the SDH
solution.

Proof. Given a q-SDH instance (g1, g
x
1 , g

x2

1 , . . . , gx
q

1 , g2, g
x
2) where q = Q(O,I) +

Q(P,V) is the maximum number of queries A2 can issue to the Obtain and Verify

oracles, there exists an algorithm C which can output (g
1

x+t

1 , t) by acting as the
simulator for the ABC system as follows:

Game0. This is the same as the Game0 in Lemma 1 where we have:

Pr[S0] = εimp. (7)

Game1. This is the same as the Game1 in Lemma 1 except that C additionally
checks whether X = gti2 for i ∈ {1, . . . , q}. If such ti is found, C outputs the so-
lution of the SDH instance using the discrete logarithm x = ti. C also computes
fi,j(x) =

∏q
k=1,k 6=i,j(x + tk) =

∑q−2
k=0 γkx

k and uniformly selects random dis-

tinct s1, . . . , sq ∈ Z∗p. C sends (e,G1,G2,GT , p, a0 = g
f(x)t0
1 , a1 = ax

′

0 , . . . , an =

ax
′n
, b = g

f(x)t′0−
∑q

j=1 fj(x)

1 , c = g
f(x)t′′0 +

∑q
j=1 sjfj(x)

1 , X = gx2 , X0 = g2, X1 =

Xx′

0 , . . . , Xn = Xx′n

0) as the public key to A2. This gives:

Pr[S1] ≤ Pr[S0]. (8)

31

Game2. This is the same as the Game2 in Lemma 1 except that, after resetting

A2, C simulates the SDH-CL signature sigi = (ti, si, vi) onMi = a
(x′+oi)

∏n−1
j=1 (x′+mj,i)

0 bs1,i

for Ai = {m1,i, . . . ,mn−1,i, oi} such that:

vi = (a
∏n

j=1(x′+mj,i)

0 bs1,i+(si−s1,i)c)1/(x+ti)

=

(
g
f(x)t0

∏n
j=1(x′+mj,i)

1 g
si(f(x)t′0−

∑q
j=1 fj(x))

1 g
f(x)t′′0 +

∑q
j=1 sjfj(x)

1

)1/(x+ti)

=

(
g
f(x)(t0

∏n
j=1(x′+mj,i)+sit

′
0+t′′0)

1 g
∑q

j=1,j 6=i(sj−si)fj(x)+(si−si)fi(x)

1

)1/(x+ti)

= g
fi(x)(t0

∏n
j=1(x′+mj,i)+sit

′
0+t′′0)+

∑q
j=1,j 6=i(sj−si)fj,i(x)

1

and s2,i = si − s1,i. When the protocol ends, A2 can compile the credential as
credi = (ti, si = s1,i + s2,i, vi, Ai). As C simulates the Issue oracle perfectly, we
have:

Pr[S2] ≤ Pr[S1] + (q − 1!)/pq−1. (9)

Game3. This is the same as the Game3 in Lemma 1 and we have:

Pr[S3] = Pr[S2]. (10)

Game4. This is the same as the Game4 in Lemma 1 and we have:

Pr[S4] = Pr[S3]. (11)

Game5. Similar to the Game5 in Lemma 1, C can reset A2 to extract the
elements (t∗, s∗, v∗) of cred∗ where v∗ has the form:

v∗ =

(
g
f(x)(t0

∏n
j=1(x′+mj,i)+s

∗t′0+t′′0)+
∑q

j=1,j 6=i(sj−s
∗)fj(x)+(si−s∗)fi(x)

1

)1/(x+ti)

.

Since A2 must output t∗ = ti ∈ {t1, . . . , tq} but s∗ 6= si ∈ {s1, . . . , sq} for
an i ∈ {1, . . . , q}, C proceeds to compute c(x) of degree q − 2 and d ∈ Z∗p from
the knowledge of {t1, . . . , tq} such that fi(x) = c(x)(x + ti) + d. Moreover, it
will be the case v /∈ L(O,I) ∪ L(P,V) or C already found x = ti during Game1.
Subsequently, C calculates:(

v∗/g
fi(x)(t0

∑n
j=0 m∗jx

′j+s∗t′0+t′′0)+
∑q

j=1,j 6=i(sj−s
∗)fj,i(x)+c(x)(si−s∗)

1

) 1
d(si−s∗)

= g
(fi(x)−c(x)(x+ti))(si−s∗)

d(si−s∗)(x+ti)

1

= g
1

x+ti
1

and outputs (g
1

x+ti
1 , ti) as the solution for the SDH instance. Therefore, we have:

Pr[S5] ≤ Pr[S4] + N

√√
εsdh − 1 + 1/p+ 1 (12)

32

and summing up the probability from (8) to (12), we have εimp ≤ N
√√

εsdh − 1+
1/p+ 1 + (q − 1)!/pq−1 as required. The time taken by C is at least 2Ntimp due
to reset and interacting with N parallel impersonation instances, besides the
environment setup and the �nal SDH solution extraction that cost T (q2).

ut

Lemma 3. If an adversary A3 (timp, εimp)-breaks the imp-aca-security of the
proposed anonymous credential system, then there exists an algorithm C which
(tsdh, εsdh)-solves the SDH problem such that:

εimp ≤ N

√√
εsdh − 1 +

(q − 1)!/pq−2

p
+ 1,

timp ≤ tsdh/2N − T (q2).

where N is the total of adversary instances, q = Q(O,I) + Q(P,V) is the number
of queries made to the Obtain and Verify oracles, while T (q2) is the time pa-
rameterized by q to setup the simulation environment and to extract the SDH
solution.

Proof. Given a q-SDH instance (g1, g
x
1 , g

x2

1 , . . . , gx
q

1 , g2, g
x
2) where q = Q(O,I) +

Q(P,V) is the maximum number of queries A3 can make to the Obtain and Verify

oracles, there exists an algorithm C which can output (g
1

x+t

1 , t) by acting as the
simulator for the ABC system as follows:

Game0. This is the same as the Game0 in Lemma 1 and we have:

Pr[S0] = εimp. (13)

Game1. The precomputations and checking are the same as the Game1 in

Lemma 2 but (e,G1,G2,GT , p, a0 = g
f(x)t0−

∑q
j=1 fj(x)

1 , a1 = ax
′

0 , . . . , an = ax
′n

0 , b =

g
f(x)t′0−

∑q
j=1 fj(x)

1 , c = g
f(x)t′′0 +

∑q
j=1 zjfj(x)

1 , X = gx2 , X0 = g2, X1 = Xx′

0 , . . . , Xn =

Xx′n

0) as the public key to A3 where the random z1, . . . , zq ∈ Z∗p are uniformly
distributed. This gives:

Pr[S1] ≤ Pr[S0]. (14)

Game2. This is the same as the Game2 in Lemma 1 except that, after resetting

A3, C simulates the SDH-CL signature sigi = (ti, si, vi) onMi = a
(x′+oi)

∏n−1
j=1 (x′+mj,i)

0 bs1,i

33

for Ai = {m1,i, . . . ,mn−1,i, oi} by letting si = zi −
∑n
j=0 mj,ix

′j where:

vi = (a
∏n

j=1(x′+mj,i)

0 bs1,i+(si−s1,i)c)1/(x+ti)

=

(
g

(f(x)t0−
∑q

j=1 fj(x))(
∑n

j=0 mj,ix
′j)

1 g
(f(x)t′0−

∑q
j=1 fj(x))si

1 g
f(x)t′′0 +

∑q
j=1 zjfj(x)

1

)1/(x+ti)

=

(
g
f(x)(t0

∑n
j=0 mj,ix

′j+sit
′
0+t′′0)−zi

∑q
j=1 fj(x)+

∑q
j=1 zjfj(x)

1

)1/(x+ti)

=

(
g
f(x)(t0

∑n
j=0 mj,ix

′j+sit
′
0+t′′0)

1 g
∑q

j=1,j 6=i(zj−zi)fj(x)+(zi−zi)fi(x)

1

)1/(x+ti)

= g
fi(x)(t0

∑n
j=0 mj,ix

′j+sit
′
0+t′′0)+

∑q
j=1,j 6=i(zj−zi)fj,i(x)

1

and s2,i = si − s1,i. When the protocol ends, A3 compiles the credential as
credi = (ti, si = s1,i + s2,i, vi, Ai). As C simulates the Issue oracle perfectly, we
have:

Pr[S2] ≤ Pr[S1] + (q − 1)!/pq−1. (15)

Game3. This is the same as the Game3 in Lemma 1 and we have:

Pr[S3] = Pr[S2]. (16)

Game4. This is the same as the Game4 in Lemma 1 and we have:

Pr[S4] = Pr[S3]. (17)

Game5. By de�nition, A3 must output t∗ = ti ∈ {t1, . . . , tq} and s∗ = si ∈
{s1, . . . , sq} for a i ∈ {1, . . . , q}. Note that it must be the case v∗ /∈ L(O,I)∪L(P,V)

or x = ti has been found during Game1. In the unlikely case of Type 16 forgery
(A∗, s∗, t∗, v∗) ∈ L(P,V) which happens with probability 1/p, C aborts. Similar
to the Game5 in Lemma 1, C can reset A3 to extract the elements (t∗, s∗, v∗) of
cred∗. C proceeds to compute c(x) of degree q−2 and d ∈ Z∗p from the knowledge
of {t1, . . . , tq} such that fi(x) = c(x)(x+ ti) + d. Subsequently, C calculates:(

v∗/g
fi(x)(t0

∑n
j=0 m∗jx

′j+s∗t′0+t′′0)+
∑q

j=1,j 6=i(zj−z
∗)fj,i(x)+(zi−z∗)c(x)

1

)d(zi−z∗)

= g
(fi(x)−c(x)(x+ti))(zi−z∗)

(x+ti)d(zi−z∗)
1

= g
1

x+ti
1

and outputs (g
1

x+tj

1 , tj) as the solution for the SDH instance. Therefore, we have:

Pr[S5] ≤ Pr[S4] + N

√√
εsdh − 1 + 1 (18)

34

and summing up the probability from (13) to (18), we have εimp ≤ N
√√

εsdh − 1+
1 + (q−1)!/pq−1 as required. The time taken by C is at least 2Ntimp due to reset
and interacting with N parallel impersonation instances, besides the environ-
ment setup and the �nal SDH solution extraction which cost T (q2). ut

Combining Theorem 3, Lemmas 1, 2 and 3 gives Theorem 4 as required.

4.4.2 Unlinkability. Next, we prove the unlinkability of the proposed ABC
system. It is su�cient to show that the witnesses, the committed attributes
and the randomized credential in the issuing protocol and presentation protocol,
respectively, are perfectly hiding. Then, we demonstrate that every instance
of the protocols is uniformly distributed due to the random self-reducibility
property. This implies that even when A is given access to the Obtain, Issue,
Prove, Verify and Corrupt oracles, it does not has advantage in guessing the
challenged attribute sets.

Lemma 4. The committed attributes and the corresponding witness in the issu-
ing protocol of the ABC system are perfectly hiding.

Proof. By Theorem 2, the MoniPoly commitment C =
∏n
j=0 a

mj

j in the issuing
protocol is perfectly hiding. Subsequently, the value M = Cbs1 is a Pedersen
commitment which is also perfectly hiding. The same reasoning applies on the

witness R =
∏n
j=0 a

m̃j

j bs̃1 which has the same structure as that of M . ut

Lemma 5. The initialization of the issuing protocol in the ABC system has
random self-reducibility.

Proof. Let Gen = KeyGen, P = user, V = issuer, pk = M and sk = ({mj}, s1),
we de�ne the algorithms Rerand, Derand and Tran as follows:

� Rerand(M) randomly selects ρ ∈ Z∗p and outputs M ′ = Mρ where M =∏n
j=0 a

mj

j bs1 is the commitment on attributes generated by user. For all
(M, {mj}, s1), (M ′, {m′j}, s′1) has the same uniform distribution as another
(M ′′, {m′′j }, s′′1) which would have been generated by user.

� Derand(M,M ′, ({m′j}, s′1), ρ) outputs ({mj}, s1) = ({m′j/ρ}, s′1/ρ) for all (M ′, ρ) ∈
Rerand(M).

� Tran(M,M ′, ρ, (R′, e′, {m̂′j}, ŝ′1)) outputs (R = R′1/ρ, {m̂j} = {m̂′j/ρ}, ŝ1 =
ŝ′1/ρ for all (M ′, ρ) ∈ Rerand(M). The transcript (R, e′, {m̂j}, ŝ1) is valid
wrt. M if (R′, e′, {m̂′j}, ŝ′1) is valid wrt. M ′.

ut

Lemma 6. The randomized credential in the presentation protocol of the ABC
system are perfectly hiding.

Proof. Given a user's randomized credential v′ = vry
−1

in the show proof, there
are |Z∗p| − 1 possible pairs of (r′, y′) 6= (r, y) which can result in the same v′.

35

Besides, for each r, there is a unique y such that:

dloga0
(v′) = dloga0

(v)ry−1

y =
dloga0

(v)

dloga0
(v′)
· r

Since r, y are chosen independently from each other and of the credential element
v, the latter is perfectly hidden. The same reasoning applies on the randomized
credential v′ = vr

2y−1

. ut

Lemma 7. The presentation protocol in the ABC system has random self-reducibility.

Proof. Let Gen = KeyGen, P = prover, V = verifier, pk = (v′,W) and sk =
(t, s, v, o, r, y), we de�ne the algorithms Rerand, Derand and Tran for the proof
of possession as follows:

� Rerand(v′,W) randomly selects ρ1, ρ2 ∈ Z∗p and outputs (v′′ = v′ρ1/ρ2 ,W ′ =

W ρ1) where (v′ = vr
2y−1

,W =
∏n−1
j a

wj

j) are the randomized public inputs
generated by prover. For all ((v′,W), (t, s, v, o, r, y)),

((v′′,W ′), (t′ = tρ2, s
′ = sρ2

1, v
′, o′ = oρ1, r

′ = rρ1, y
′ = yρ2))

has the same uniform distribution as another ((v′′′,W ′′), (t′′, s′′, v′′, o′′, r′′, y′′))
which would have been generated by prover.

� Derand((v′,W), (v′′,W ′), (t′, s′, v′, o′, r′, y′), (ρ1, ρ2)) outputs

(t, s, v, o, r, y) = (
t′

ρ2
,
s′

ρ2
1

, v′ρ
−2
1 ρ2 ,

o′

ρ1
,
r′

ρ1
,
y′

ρ2
)

for all ((v′′,W ′), (ρ1, ρ2)) ∈ Rerand(v′).
� Tran((v′,W), (v′′,W ′), (ρ1, ρ2), (W ′, V ′, Y ′, e′, {m̂′j}, ŝ′, r̂′, ŷ′, t̂′)) outputs(

V = V ′ρ
−2
1 ρ2 , Y = Y ′ρ

−2
1 , e′, {m̂j} =

{ m̂′j
ρ1

}
, ŝ =

ŝ′

ρ2
1

, r̂ =
r̂′

ρ2
1

, ŷ =
ŷ′

ρ2
, t̂ =

t̂′

ρ2

)
for all ((v′′,W ′), (ρ1, ρ2)) ∈ Rerand(v′,W). The transcript (V, Y, e′, {m̂j}, ŝ, r̂, ŷ, t̂)
is valid wrt. (v′,W) if (V ′, Y ′, e′, {m̂′j}, ŝ′, r̂′, ŷ′, t̂′) is wrt.to (v′′,W ′).

The show proofs can be shown to have random self-reducibility in the similar
way. ut

Theorem 5. If the initialization of the issuing protocol and the presentation
protocol have random self-reducibility, and their witnesses, committed attributes
as well as the randomized credential are perfectly hiding, the ABC system is
aunl-aca-secure.

Proof. We show that an adversary A can win the aunl-aca-security game only
with a negligible advantage εaunl, with respect to the ABC system simulator C.

36

Game0. This is an attack on the original ABC system. Let S0 denotes a suc-
cessful distinguishing attempt, by de�nition we have:

Pr[S0] ≤ εaunl +
1

2
. (19)

Game1. C generates (pk, sk) as in the original algorithm and forwards to A so
that the latter can play the role of user and issuer. In addition, C maintains
two list L(O,I), L(P,V) for corrupted issuing protocol and presentation protocol,
respectively. Since C does not alter the key generation algorithm, this gives:

Pr[S1] = Pr[S0]. (20)

Game2.When A acts as the issuer to concurrently interact with multiple users,
C simulates Obtain oracle to produce a credential credi for the user in the i-th
session. Without lost of generality, we assume every user uses di�erent attribute
set Ai = {m1,i, . . . ,mn−1,i, oi}. Their interaction is as follows:

1. C initiates the issuing protocol for user in the i-th session of the concurrent
interactions by running the zero-knowledge protocol:

PK

{
(α0,i, . . . , αn,i, σi) : Mi =

n∏
j=0

a
αj,i

j bσi

}
.

2. A returns sigi = (ti, si,2, vi) to C as the SDH-CL signature on Mi.
3. C generates its credential credi = (ti, si, vi, Ai) as in the original algorithm

and adds (credi, s1,i, s̃1, m̃0,i, . . . , m̃n,i) to L(O,I).

This interaction is the same as in the original issuing protocol from the view
of A. Furthermore, from Lemma 4, it is clear that every Mi and its witness
corresponding to Ai have perfect hiding and each protocol session is uniformly
distributed by Lemma 5. The arguments also apply on the case where A con-
currently runs the issuing protocol on the same attribute set. We ignore the
case where A acts as a user in the issuing protocol as it does not gain more
information than acting as an issuer. This gives:

Pr[S2] = Pr[S1]. (21)

Game3. Compared to the previous games, A additionally queries the issuing
protocol transcript of the i-th session to the Corrupt oracle. C searches in L(O,I)

to return the internal state and the random exponents used in completing the
protocol. By Lemma 5, for any two witness sets:

(s̃1,i,1, m̃0,i,1, . . . , m̃n,i,1), (s̃1,i,2, m̃0,i,2, . . . , m̃n,i,2)

in the issuing protocol returned by Corrupt, the distribution of their transcripts
are identical to each other from the view of A. Following Lemma 4, this is true

37

even for the non-uniformly distributed attributes m0,i, . . . ,mn−1,i which have
been hidden by oi and s1,i. Since A does not gain any advantage, we have:

Pr[S3] = Pr[S2]. (22)

Game4. Now A also acts as the veri�er to concurrently interact with C as
the provers for multiple credentials. C runs the i-th session of show proof for
credi = (ti, si, vi, Ai = {m1,i, . . . ,mn−1,i, oi}). Without loss of generality, we
assume A always requests for successful show proofs where φstmt(Ai) = 1. The
interaction is the same as in the original show proof from the view ofA. Moreover,
from Lemma 6, it is clear that every v′i and its witnesses corresponding to v

′
i have

perfect hiding and each protocol session is uniformly distributed by Lemma 7.
The arguments also hold for the case where A concurrently runs the presentation
protocol on the same credential. This gives:

Pr[S4] = Pr[S3]. (23)

Game5. In contrast to the previous games, A also queries the presentation pro-
tocol transcript of the i-th session to the Corrupt oracle. C searches in L(P,V) to
return the internal state and the random exponents used in completing the pro-
tocol. The presentation protocol is an extension to the initialization in the issuing
protocol where C additionally proves the knowledge of the blinding factors used
to randomize the credential. Speci�cally, C proves the validity of the random-
ized credential element v′i in a witness-hiding protocol, such that it consists of
the corresponding randomized attributes (m′0,i, . . . ,m

′
n,i), the blinded credential

elements (t′i, s
′
i) and the blinding factors (ri, yi). Therefore, following Lemma 7,

for any two witness sets in a presentation protocol returned by Corrupt, the dis-
tribution of their transcripts are identical from the view of A. Following Lemma
6, this is true even if A knows (ti, s2,i, vi) that have been exposed during the
issuing protocol, which now have been perfectly hidden by (ri, yi). A can also
act as a prover in which it does not gain useful information. The same argument
applies on show proofs with access policy of composite clauses and we have:

Pr[S5] = Pr[S4] (24)

where A does not gain any advantage from the query.

Game6. When A decides two attribute sets A0 and A1 as well as the access
policy φ∗stmt which he wishes to challenge such that φ∗stmt(A0) = φ∗stmt(A1) = 1,
C randomly decides a bit b ∈ {0, 1} and play the user role to run the challenge
issuing protocol with A for Ab and A1−b, respectively. When the issuing protocol
is completed, C obtains two credentials credb and cred1−b. In the same order,
C uses credb and cred1−b to complete the challenge show proof with A as the
veri�er. A can request polynomially many times of show proofs. From time to
time, A still can query the oracles as before with the restriction of querying the
challenge transcripts to Corrupt. Finally, if A makes a correct guess b′ = b, it

38

breaks the full attribute unlinkability of the ABC system with the probability:

Pr[S6] = Pr[S5]

= Pr[b′ = b]

=
1

2
+ εaunl. (25)

Combining the probability from equation (19) to (25), we have negligible εaunl
as required and A runs in time taunl. ut

Using the similar approach, we show that the security of full protocol unlink-
ability also holds for the proposed ABC system.

Theorem 6. If the initialization of the issuing protocol and the presentation
protocol have random self-reducibility, and their witnesses, committed attributes
as well as randomized credential are perfectly hiding, the ABC system is punl-

aca-secure.

Proof. The proof is the same as that of Theorem 5 except Game6:

Game6. When A decides two attribute sets A0 and A1 as well as the access
policy φ∗stmt which he wishes to challenge such that φ∗stmt(A0) = φ∗stmt(A1) = 1, C
randomly decides a bit b1 ∈ {0, 1} and play the user role to run the challenge is-
suing protocol with A for Ab1 and A1−b1 , respectively. When the issuing protocol
is completed, C obtains two credentials credb1 and cred1−b1 . C randomly decides
another bit b2 ∈ {0, 1} and uses credb2 and cred1−b2 to complete the challenge
presentation protocol with A as the veri�er. A can request polynomially many
times of show proofs. From time to time, A still can query the oracles as before
with the restriction of querying the challenge transcripts to Corrupt. Finally, if A
makes a correct guess (π(O,I), π(P,V)) such that credπ(O,I)

= credπ(P,V)
, it breaks

the full protocol unlinkability of the ABC system with the probability:

Pr[S6] = Pr[S5]

= Pr[credπ(O,I)
= credπ(P,V)

]

=
1

2
+ εpunl. (26)

Therefore, we have negligible εpunl as required and A runs in time tpunl. ut

5 Evaluation

We compare our proposed ABC system to the related ABC systems in the liter-
ature. We consider security properties as well as asymptotic complexity vis-à-vis
of the expressiveness of their show proofs.

5.1 Security

We o�er a general overview of security properties in comparison with other
schemes here before we show the tightness of our own scheme.

39

5.1.1 Security Properties in Comparison. We summarize the security
properties of ABC systems in either SDH or alternative paradigms in Table 4.
The table shows that the relevant schemes vary signi�cantly in their ful�lled
security requirements. MoniPoly is the only ABC system that achieves the full
range of security requirements. At the same time, it is proven secure in the
standard model with a tight security reduction.

Table 4: Security properties of related ABC systems.

ABC System Impersonation
Anonymity Unlinkability Security Tight

Issuing Possession Issuing Possession I↔P Model Reduction

ASM [4] # # # RO #

TAKS [61] # # # # RO #

AMO [2] # # # Standard #

CKS [24] # # # # # Standard #

SNF [60] # # # # # Standard #

ZF [62] # # # Standard #

BNF [7] G# # G# # # # Standard #

CKLMNP [25] # # # Standard #

BBDT [6] # # # # Standard #

RVH [56] # # # # Standard #

SNBF [57] # # # # Standard #

ON [53] G# # G# # # # Standard #

CDDH [20] # # # # Standard #

BB [11] # # # # Generic #

BBBB+ [8] G# G# # # # RO #

BBDE [12] # # # Standard #

CG [22, 23] # # # # # Standard #

CDHK [21] # # # CRS #

FHS [42] # G# # Generic #

This Work Standard

Note: : proof provided, G#: claim provided, #: no claim, I: Issue, P: Possession
in Issuing: only weak anonymity or unlinkability / trusted issuer / no blind issuing

5.1.2 Tight Security Reduction. The MoniPoly ABC system features a
tight reduction to the q-(co-)SDH assumption. If a prime order p secure [59]
against Cheon's attack [37] on SDH assumption is used, the MoniPoly ABC
system can be realized using the standard key length for EC-DLOG [5, 48]4

without any changes. However, if the order p is not constructed as such, a larger

4 These works o�er more precise estimates compared to previous work by Menezes et
al. [50] and they have been adopted by ISO 15946-5 for the update of parameters of
pairing-based curves.

40

key length is required. Let SR denote the success ratio. Furthermore, assume the
probability of breaking the q-(co-)SDH assumption over groups of p is

√
q/p [37].

We get:

εimp

timp
=
εcosdh
tcosdh

SR(A) = SR(C)

2−κ =

√
n

p

2−κ = 2
log n−log p

2 .

Next, we approximate T (q2) ≈ q2 and gain:

6εsdh
tsdh

≥ εimp

timp
− 1 + (q − 1)!/pq−2

timpp

SR(A) ≤ 6SR(C) +
1 + (q − 1)!/pq−2

timpp

2−κ ≤ 23

√
q

p
+

1 + (q − 1)!/pq−2

p

2−κ ≤ 2
7+log q−log p

2 +
1

p
+
q

p

2−κ ≤ 2
7+log q−log p

2 + 21−log p + 21+log q−log p,

where we obtain 2−κ ≥ 2
7+log q−log p

2 ≥ 2
log n−log p

2 when log p ≥ 2κ + 7 + log q.
Let the total number of attributes supported by the ABC system be n ≤ q.
Setting the bit length for the order p as log p = 2κ+ 8 + log q, we gain a security
level of at least 2−κ. In Table 5, we illustrate the relation between log p and the
respective security level κ as well as the total allowed queries q.

Table 5: Bit length for the group order p at di�erent security levels.

log q κ = 80 κ = 112 κ = 128 κ = 256

30 198 262 294 550
40 208 272 304 560
50 218 282 314 570

5.1.3 Curve Recommendations. The setting proposed in Section 5.1.2 ful-
�lls the requirement of EC-DLOG assumption in groups G1 and G2 which re-
quires that log p ≥ 2κ, it remains to examine whether this setting can satisfy the
requirement of DLOG assumption in GT . The latter requires that the �nite �eld

41

modulus in GT is large enough to resist the special extended tower number �eld
sieve (SexTNFS) attack [5, 48]. We examine the popular curves recommended by
Barbulescu and Duquesne [5] and found that some curves parameters guarantee
the κ-bit security in GT but not G1 (and G2) for our proposed ABC system.
For instance, the most e�cient curve in the work, namely, KSS-16 needs a curve
parameter u of length log u = 34 to ensure the 128-bit security in GT . Such u
results in log p = log (u8+48u4+625)

61250 ≈ 256, which is only su�cient to guarantee
the 112-bit security at log q = 24 according to Table 5. Considering the overall
security in G1,G2 and GT , we suggest the bit length for u at di�erent security
levels in Table 5.

Table 6: Bit length for u and p at di�erent security levels.

log q
κ = 128 κ = 256

BN BLS-12 KSS-16 KSS-18 KSS-32 KSS-36 BLS-42 BLS-48 BLS-54

30 114(462) 77(308) 39(209) 51(297) 49(737) 56(644) 46(552) 35(560) 30(555)
40 114(462) 77(308) 40(304) 53(309) 49(737) 56(644) 47(564) 35(560) 31(573)
50 114(462) 79(316) 42(320) 54(416) 49(737) 56(644) 48(576) 36(576) 31(573)

Note: Cell value is in the format of log u(log p)

The log u = 114 for BN curve results in a group order of length log p =
log 36u4 + 36u3 + 18u2 + 6u + 1 ≈ 462 which covers log q ≤ 198 that are more
than su�cient. On the other hand, the log u = 77 for BLS-12 curve results
in log p = log u4 − u2 + 1 ≈ 308 which is just nice to cover log q ≤ 44. If
using BN curve is a must and one is willing to accept κ = 118, the parameter
with log u = 95 proposed by Luo and Chen [49] can be considered which has
log p ≈ 384 that can cover log q ≤ 120. Using the similar calculation, we list the
appropriate log u and log p for the popular curves at 128-bit and 256-bit in Table
6.

5.2 Expressivity and Computational Complexity

In Table 7, we compare the MoniPoly ABC system to relevant popular ABC
systems with respect to their realized show proofs and asymptotic computa-
tional complexity. Table 7 is normalized in that it considers only the asymptotic
complexity for the most expensive operations (e.g., the scalar multiplication,
modular exponentiation or pairing). Table 8 expands on this view by displaying
the concrete complexity for individual operations. The details of calculating the
complexities can be found in Appendix E.

5.2.1 Expressivity over Unrestricted Attribute Space. The MoniPoly
ABC system is the �rst scheme which can e�ciently support all logical state-
ments in the show proofs regardless of the types of attribute space (cf. Table 7).

42

Table 7: Asymptotic complexity for show proofs in related ABC systems.
Property ABC System

Attribute Space SF SS + SF S

Technique Accumulator Trad. Encd. Accumulator Prime Encd. Trad. Encd. Comm. MoniPoly

Setup O(nF) O(2nF) O(n) O(n) O(n) O(n) O(n) O(n)

Issuing Protocol
Prover O(1) O(1) O(1) O(nS) O(n) O(n) O(n) O(n)

Veri�er O(2
√
nF) O(nF) O(n) O(nS) O(n) O(n) O(n) O(n)

S
h
ow

P
ro
o
fs

Possession
Prover O(nF) O(L) O(nS) +O(N) O(nS) +O(1) O(n) +O(1) O(n) O(n) O(n)
Veri�er O(nF) O(L) O(nS) +O(N) O(nS) +O(1) O(n) +O(1) O(n) O(n) O(1)

AND(A′)
Prover O(kF) O(L) O(nS − kS) +O(N) O(nS − kS) +O(1) O(nS − kS) +O(1) O(n− k) O(n− k) O(n− k)
Veri�er O(kF) O(L) O(nS) +O(N) O(nS) +O(1) O(nS) +O(1) O(n) O(k) O(k)

OR(A′)
Prover O(kF) O(L) O(nSkS) +O(N) O(nSkS) +O(1) O(nSkS) +O(1) 7 7 O(n+ k)
Veri�er O(kF) O(L) O(nSkS) +O(N) O(nSkS) +O(1) O(nSkS) +O(1) 7 7 O(k)

ANY(l, A′)
Prover O(kF) O(L) O(nS !) +O(N) 7 7 7 7 O(n− l + k)
Veri�er O(kF) O(L) O(nS !) +O(N) 7 7 7 7 O(k + l)

NAND(A′)
Prover 7 O(L) 7 7 O(nS − kS) +O(1) 7 7 O(n)
Veri�er 7 O(L) 7 7 O(nS) +O(1) 7 7 O(2k)

NOR(A′)
Prover 7 O(L) 7 7 7 7 7 O(n+ k)
Veri�er 7 O(L) 7 7 7 7 7 O(k)

NANY(l̄, A′)
Prover 7 O(L) 7 7 7 7 7 O(n+ k)
Veri�er 7 O(L) 7 7 7 7 7 O(k + 2l̄)

Constant Size Proofs 3 3 7 3 3 7 3 3

Flexible Attribute Indexing 7 7 7 7 7 7 3 3

Schemes [57] [53] [62] [60] [23] [4, 24, 11, 8, 12] [21, 42] This Work

Note: S: attribute space, k = |A′| ≤ n = |A| = nS + nF , S: string attributes, F : �nite-attributes, L: maximum allowed ∧ in CNF,
N : maximum attributes allowed in a statement, 3: realized, 7: not realized

Table 8: Computational complexity for relevant ABC systems on proof of pos-
session and AND proof.

S ABC Proof of Possession Complexity AND Proof Complexity

SF
SNBF [57]2 (54 + 3nF)M1 + 66M2 + 3MT + 40P (50 + 3kF)M1 + 66M2 + 3MT + 40P
ON [53]1,2 (1338 + 6L)M1 + 5MT + 105P (1334 + 6L)M1 + 5MT + 105P

SS + SF
SNF [60]1 (67 + 2nS)M1 +MT + 10P (67 + 2nS − kS)M1 +MT + 10P
ZF [62]1 (49 + 2(nS + nF +N))M1 + 11P (49 + 2(nS + kF +N)− kS)M1 + 11P
CG [22, 23] (7 + 2nS + 2)E (9 + 2nS − kS)E

S

ASM [4, 24] (20 + 2n)M1 + 2P (20 + 2n− k)M1 + 2P
CDHK [21]2 (20 + 4n)M1 + 70M2 + 2MT + 28P (20 + 2n− k)M1 + (70 + k)M2 + 2MT + 28P
FHS [42] (12 + 2n)M1 + 8P (11 + n− k)M1(1) + (k + 1)M2 + 8P
BB [11, 8, 12] 2nM2 + 2P (2n− k)M2 + 2P
This Work (9 + n)M1 + 4M2 + 3P (9 + n− k)M1 + (k + 1)M2 + 3P

Note:
1Type-1 pairing scheme, 2assume batch GS-proof [10] is used, p: group order, n: total attributes,

S: string attributes, F : �nite-attributes, L: maximum allowed ∧ in CNF, | · |: element size,
N : maximum attributes allowed in a statement, Mx(·): exponentiation in Gx, P : pairing,
E(·): modular exponentiation in QRN

That is, MoniPoly operates on arbitrary attributes while o�ering a wide range
of statements in its expressiveness.

We note that the traditional encoding can achieve the same expressiveness,
in principle, in an unrestricted attribute space S as well as string attribute space
SS . However, traditional encoding will yield ine�cient proofs.

43

5.2.2 Expressivity over Finite-Set Attribute Space. Let us consider now
consider the comparison with schemes with only �nite-set attribute space SF .
Most of the accumulator-based ABC systems [60, 57] are restricted to �nite-
set attributes only. While MoniPoly supports negation statements in terms of
expressivity, their show proofs do not. The restriction to �nite-set attributes
and monotone (non-negative) formula a�ords them a low asymptotic complexity
in show proofs. However, their setup and issuing protocols are prohibitively
expensive with exponential computational and space complexity (O(2nF) [53]
and O(2

√
nF) [57]), in turn, restricting the number of attributes that can be

feasibly encoded.
The latest ABC system in this line of work [53] proposes a workaround on

negations encoding negated forms of attributes separately. In this scheme, each
of its show proof has O(L) complexity where L is the maximum number of ∧ op-
erators permitted in a composite conjunctive formulae. Moreover, the additional
negated �nite-set attributes double the credential size and the already massive
public key size.

5.2.3 Comparison to Commitment-Based Schemes. MoniPoly bears
similarities in terms of computational and communication complexity to other
commitment-based ABC systems [21, 42]. Although MoniPoly does not have
constant asymptotic complexity, the veri�er is required to compute only three
pairings for a single-clause show proof. This makes our scheme the most e�cient
construction of its kind in this comparison.

At the same time, apart from having constant size AND proof similarly to
the relevant commitment-based schemes [21, 42], MoniPoly has constant size
possession proof as well as NAND proof.

5.2.4 Parametric Complexity Analysis. To illustrate the impact of a
range of parameters on ABC system performance, we estimate the asymptotic
computational complexity of the schemes listed in Table 8. We depicted in Fig-
ure 1 the complexity for each ABC system at 128-bit and 256-bit security level.

While schemes especially crafted for a restricted �nite-set attribute space are
the fastest schemes in the �eld, Monipoly is the most e�cient ABC system based
on commitment schemes and outperforms most schemes in the �eld, overall.
If strength in terms of security properties is a prerequisite, our ABC system
outperforms all listed in Table 8 while having e�cient constant size show proofs.

As a foundation for this estimation, we have established the relative compu-
tational costs on BLS-12 curves at 128-bit security as well as on BLS-48 curves at
256-bit security in the experimental environment elaborated on in Section 5.3.
We obtained the following relative computation costs in equivalents of scalar
multiplications in G1:
BLS-12 curve at 128-bit security: for a scalar multiplication in G2, an ex-

ponentiation in GT and a pairing, respectively, is about the same as comput-
ing 2, 6 and 9 scalar multiplications (M1) in G1. The modular exponentiation
of RSA-3072 on the other hand is equivalent to 5M1.

44

(a) Proof of possession (128-bit).

0

2500

5000

7500

10000

0 250 500 750 1000

#Attributes n

#M
od

E
xp

(b) AND proof (128-bit).

0

1000

2000

3000

0 250 500 750 1000

#Attributes n

#M
od

E
xp

(c) Proof of possession (256-bit).

0

30000

60000

90000

0 250 500 750 1000

#Attributes n

#M
od

E
xp

(d) AND proof (256-bit).

0

10000

20000

0 250 500 750 1000

#Attributes n

#M
od

E
xp

(e) Scheme

0

2500

5000

7500

10000

0 250 500 750 1000

#Attributes n

#M
od

E
xp

Scheme
ASM

SNF

ZF

SNBF

ON

CG

CDHK

FHS

BBBB

This Work

Fig. 1: Asymptotic complexity of ABC systems (scalar multiplications in G1)

BLS-48 curve at 256-bit security: the relative costs are elevated to 16M1,
48M1, 49M1 and 56M1, respectively.

We also assume the computational cost in Type-1 pairing friendly curve is equiv-
alent to that of Type-3 and furthermore L = 1 and N = 1.

5.3 Actual Performance

As a proof of concept, we implemented our ABC system using the Apache Mi-
lagro Cryptography Library [41] (AMCL, Java-based, version 3, 64-bit) on i7-

45

(a) 128-bit Security Level

200 400 600 800 1,000

0

5,000

10,000

15,000

20,000

Number of Attributes

M
ea
n
E
x
ec
u
ti
on

T
im

e
(m

s)

(b) 256-bit Security Level

200 400 600 800 1,000

0

10,000

20,000

30,000

40,000

50,000

Number of Attributes

M
ea
n
E
x
ec
u
ti
on

T
im

e
(m

s)

Issue
Possession
OR

ANY(9)
AND
NOR

NANY(9)
NAND

Fig. 2: Benchmark of MoniPoly ABC system in 1000 rounds.

4790S 3.2GHz and 16GB RAM with Windows 10 Enterprise x64. Our benchmark
is performed with a conservative setting:

1. non-SDH secure prime order p is used, and
2. every attribute is 512-bit in length, and
3. Algorithm 1 is used to convert A into {mj}.

We choose BLS-12 and BLS-48 curves for the benchmark at 128-bit and 256-bit
security level, respectively, as they are in the same curve family and have rather
short log p among all.

AMCL has a default BLS-12 curve that suits our security requirement, namely,
BLS461 which uses 77-bit u. However, the default BLS-48 curve in AMCL uses
31-bit u and does not meet our security requirement. Thus, we customize the
library to use a 35-bit u = 23 + 26 + 225 + 235 which results in log p = 561, just
nice to cover log q ≤ 41. The BLS-48 curve is then set to y2 = x3 − 7 with the
full group generator as (2, 1). We �x |A| = {250, 500, 750, 1000} and |A′| = 10.

The ABC system was run for 1100 rounds with the �rst 100 rounds as warm-
up. Figure 2 displays the average computation times of the 101-th to 1100-th
rounds. At 128-bit security level, our show proofs can be completed within one
second at an attributes size of |A| ≤ 650. At 256-bit security level, show proofs
are completed within three seconds at an attributes size of |A| ≤ 250.

6 Discussion

6.1 E�ciently Enabling Composite Statements

Composite statements, such as, composed of multiple high-level conjunctions,
can be realized with MoniPoly e�ciently. For that, we propose an e�cient strat-
egy instead of naively repeating the show proofs multiple times for an access
policy with a composite statement.

46

The prover runs a proof of possession protocol followed by a proof to show
that the committed attributes from every clause in the composite statement is
part of the committed attributes in the credential. For instance, given the com-
posite statement stmt = AND(A′1) ∧ ANY(l, A′2) where k1 = |A′1|, k2 = |A′2|, a

prover can run the showing protocol as follows. LetWA′1
=
∏n−k1

j=0 a
w′

A′1,j

j ,WA′2
=∏n−l

j=0 a
w′

A′2,j

j ,W ′A′2
=
∏k2−l
j=0 a

m′
A′2,2,j

j where {w′A′1,j}0≤j≤n−k1
= r2×MPEncode(A−

A′1), {w′A′2,j}0≤j≤n−l = r × MPEncode(A − I), {m′A′2,2,j}0≤j≤k2−1 = r−1 ×
MPEncode(A′2 − I) for a randomly selected r ∈ Z∗p. Setting v′,M1,M2, W̄ as
public inputs, the prover runs the showing protocol on φstmt as follows:

PK

{
(ρ, τ, γ, ι0, . . . , ιl, σ) :

e

WA′1
,

k∏
j=0

X
mA′1,j

j

 e

W ′A′2WA′2
,

l∏
j=0

X
ιj
j

 e

 k2∏
j=0

a
−mA′2,1,j

j (bσcρv′−τ)2, X0

= e(v′2γ , X)

}

where
∏k1

j=0X
mA′1,j

j ,
∏k2

j=0 a
mA′2,2,j

j , {mA′1,1,j
}0≤j≤k1

= MPEncode(A′1), {mA′2,1,j
}0≤j≤k2

=

MPEncode(A′2) are computed by the veri�er and ρ = r2, τ = t′, γ = y, {ιj}0≤j≤l =
r×MPEncode(I), σ = s′. It is thus obvious that for any composite statement of
k clauses, we can run the protocol above in a similarly way using k+ 2 pairings.
In precise, the k+1 pairings on the left hand side correspond to the k clauses and
a credential. Lastly, the corresponding credential elements in the pairings at the
left hand side and right hand side are brought up to the power of k, respectively.
Note that the complexity of k + 2 parings does not change even when negation
clauses are involved.

6.1.1 Monotone Formulas. Our ABC system can well support access policy
with arbitrary monotone formulas in the form of proofs of partial knowledge but
at the cost of simulating additional |A′−A| proofs in each presentation protocol.
As an example, let A = {Y,Z} and the monotone formula as stmt = X∨ (Y∧Z).
Proof of partial knowledge requires two show proofs, a simulated proof for X and
a real proof for (Y∧Z), with a total of 6 pairings. If we view them as a composite
statement stmt = (X ∨ Y) ∧ (X ∨ Z), our show proof can be completed using 4
pairings.

Another alternative is to extend MoniPoly commitment scheme to adapt
the extractable collision-resistant hash (ECRH) function [9]. ECRH is used in
authenticated data structure (ADS) scheme [29] to support hierarchical set op-
erations. However, this may not be trivial as the ECRH secret key is generated
by the user in an ADS scheme, while it should be generated by the issuer in an
ABC system.

47

6.2 Interval Proof

Interval proofs can be realized in MoniPoly especially for moderately-sized in-
tervals. The range proof for general cases is equivalently costly as in the prime
encoding [22, 23], requiring a sub-logarithmic communication complexity [16,
4, 30, 15]. At the same time, our ABC system can support e�cient interval
proof in a range of common application scenarios. We give an example of age
interval proof with constant proof size where a prover wants to prove that he
is at least 18 year-old. Assuming the current date is 2 January 2020 and the
prover's birthday is on 1 January 2002, we can have two redundant attributes
“byear = 2002”, “bmth = Jan2002” for “bday = 01Jan2002” in prover's credential
so that the veri�er can ask for a show proof on the statement:

NAND(“byear = 2020”, . . . , “byear = 2003”,

“bmth = Feb2002”, . . . , “bmth = Dec2002”,

“bday = 02Jan2002”, . . . , “bday = 31Jan2002”),

which costs only three pairings when the credential contains |A| ≥ 17+11+30 =
58 attributes. In the case where |A| < 58, the prover breaks5 the NAND statement
into a composite statement of d58/|A|e NAND clauses and prove them with
d58/|A|e+ 2 pairings.

6.3 NIZK Proof

Using Fiat-Shamir Heuristic, our proposed ABC system can execute non-interactive
show proofs in the random oracle model. Another feasible solution is to extend
the SDH-CL signature into a structure preserving signature, which may be very
similar to the automorphic signature proposed by Abe et al. [1], to utilize GS
proof [10] in the common reference string model.

7 Conclusion

We introduced a new set commitment scheme which results in an e�cient multi-
show ABC systems that supports show proofs on AND, OR, ANY and the corre-
sponding negation statements. Due to its expressive power, we devised stronger
security models for ABC system and subsequently proved its security against
impersonation and linkability in the standard model. The proposed ABC sys-
tem enjoys tight security reduction besides being the most expressive and secure
ABC system to-date under the unrestricted attribute space.

5 There maybe times a prover has to prove in this way because our show proof tech-
nique is bound by the condition |A′| ≤ |A|.

48

Bibliography

[1] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev,
and Miyako Ohkubo. Structure-preserving signatures and commitments
to group elements. In Advances in Cryptology � CRYPTO 2010, pages
209�236. Springer Verlag, 2010.

[2] Norio Akagi, Yoshifumi Manabe, and Tatsuaki Okamoto. An e�cient anony-
mous credential system. In Financial Cryptography and Data Security,
pages 272�286. Springer Verlag, 2008.

[3] Hiroaki Anada, Seiko Arita, and Kouichi Sakurai. Attribute-based two-
tier signatures: De�nition and construction. In Information Security and
Cryptology - ICISC 2015, pages 36�49. Springer Verlag, 2016.

[4] Man Ho Au, Willy Susilo, and Yi Mu. Constant-size dynamic k-taa. In
Security and Cryptography for Networks, pages 111�125. Springer Verlag,
2006.

[5] Razvan Barbulescu and Sylvain Duquesne. Updating key size estimations
for pairings. Journal of Cryptology, Jan 2018.

[6] Amira Barki, Solenn Brunet, Nicolas Desmoulins, and Jacques Traoré.
Improved algebraic macs and practical keyed-veri�cation anonymous cre-
dentials. In Selected Areas in Cryptography � SAC 2016, pages 360�380.
Springer Verlag, 2017.

[7] Nasima Begum, Toru Nakanishi, and Nobuo Funabiki. E�cient proofs for
cnf formulas on attributes in pairing-based anonymous credential system. In
Information Security and Cryptology � ICISC 2012, pages 495�509. Springer
Verlag, 2013.

[8] Kai Bemmann, Johannes Blömer, Jan Bobolz, Henrik Bröcher, et al. Fully-
featured anonymous credentials with reputation system. In Proc. of the 13th
International Conference on Availability, Reliability and Security, ARES
2018, pages 42:1�42:10. ACM, 2018.

[9] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From
extractable collision resistance to succinct non-interactive arguments of
knowledge, and back again. In Proc. of the 3rd Innovations in Theoret-
ical Computer Science Conference, ITCS '12, pages 326�349. Association
for Computing Machinery, 2012.

[10] Olivier Blazy, Georg Fuchsbauer, Malika Izabachène, Amandine Jambert,
Hervé Sibert, and Damien Vergnaud. Batch groth�sahai. In Applied Cryp-
tography and Network Security, pages 218�235. Springer Verlag, 2010.

[11] Johannes Blömer and Jan Bobolz. Delegatable attribute-based anonymous
credentials from dynamically malleable signatures. In Applied Cryptography
and Network Security, pages 221�239. Springer Verlag, 2018.

[12] Johannes Blömer, Jan Bobolz, Denis Diemert, and Fabian Eidens. Updat-
able anonymous credentials and applications to incentive systems. In Proc.
of the 2019 ACM SIGSAC Conference on Computer and Communications

Security, CCS '19, pages 1671�1685. Association for Computing Machinery,
2019.

[13] Dan Boneh and Xavier Boyen. Short signatures without random oracles and
the sdh assumption in bilinear groups. Journal of Cryptology, 21(2):149�
177, Apr 2008.

[14] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures.
In Advances in Cryptology � CRYPTO 2004, pages 41�55. Springer Verlag,
2004.

[15] Jonathan Bootle and Jens Groth. E�cient batch zero-knowledge arguments
for low degree polynomials. In Public-Key Cryptography � PKC 2018, pages
561�588. Springer Verlag, 2018.

[16] Fabrice Boudot. E�cient proofs that a committed number lies in an interval.
In Advances in Cryptology � EUROCRYPT 2000, pages 431�444. Springer
Verlag, 2000.

[17] Stefan A. Brands. Rethinking Public Key Infrastructures and Digital Cer-
ti�cates: Building in Privacy. MIT Press, 2000.

[18] E. Brickell and J. Li. Enhanced privacy id from bilinear pairing for hard-
ware authentication and attestation. In 2010 IEEE Second International
Conference on Social Computing, pages 768�775, Aug 2010.

[19] Ernie Brickell and Jiangtao Li. A pairing-based daa scheme further reduc-
ing tpm resources. In Trust and Trustworthy Computing, pages 181�195.
Springer Verlag, 2010.

[20] Jan Camenisch, Manu Drijvers, Petr Dzurenda, and Jan Hajny. Fast keyed-
veri�cation anonymous credentials on standard smart cards. In ICT Systems
Security and Privacy Protection, pages 286�298. Springer Verlag, 2019.

[21] Jan Camenisch, Maria Dubovitskaya, Kristiyan Haralambiev, and Markulf
Kohlweiss. Composable and modular anonymous credentials: De�nitions
and practical constructions. In Advances in Cryptology � ASIACRYPT
2015, pages 262�288. Springer Verlag, 2015.

[22] Jan Camenisch and Thomas Groÿ. E�cient attributes for anonymous cre-
dentials. In Proc. of the 15th ACM conference on Computer and communi-
cations security, pages 345�356. ACM, 2008.

[23] Jan Camenisch and Thomas Groÿ. E�cient attributes for anonymous cre-
dentials. ACM Trans. Inf. Syst. Secur., 15(1):4:1�4:30, March 2012.

[24] Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. An accumulator
based on bilinear maps and e�cient revocation for anonymous credentials.
In Public Key Cryptography � PKC 2009, pages 481�500. Springer Verlag,
2009.

[25] Jan Camenisch, Stephan Krenn, Anja Lehmann, Gert Læssøe Mikkelsen,
Gregory Neven, and Michael Østergaard Pedersen. Formal treatment of
privacy-enhancing credential systems. In Selected Areas in Cryptography �
SAC 2015, pages 3�24. Springer Verlag, 2016.

[26] Jan Camenisch and Anna Lysyanskaya. An e�cient system for non-
transferable anonymous credentials with optional anonymity revocation.
In Advances in Cryptology � EUROCRYPT 2001, pages 93�118. Springer
Verlag, 2001.

50

[27] Jan Camenisch and Anna Lysyanskaya. A signature scheme with e�cient
protocols. In Security in Communication Networks, pages 268�289. Springer
Verlag, 2003.

[28] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous
credentials from bilinear maps. In Advances in Cryptology � CRYPTO 2004,
pages 56�72. Springer Verlag, 2004.

[29] Ran Canetti, Omer Paneth, Dimitrios Papadopoulos, and Nikos Trian-
dopoulos. Veri�able set operations over outsourced databases. In Public-Key
Cryptography � PKC 2014, pages 113�130. Springer Verlag, 2014.

[30] Ra�k Chaabouni, Helger Lipmaa, and Abhi Shelat. Additive combinatorics
and discrete logarithm based range protocols. In Information Security and
Privacy, pages 336�351. Springer Verlag, 2010.

[31] Melissa Chase, Sarah Meiklejohn, and Greg Zaverucha. Algebraic macs
and keyed-veri�cation anonymous credentials. In Proc. of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, CCS '14,
pages 1205�1216. ACM, 2014.

[32] Sanjit Chatterjee and Alfred Menezes. On cryptographic protocols em-
ploying asymmetric pairings - the role of ψ revisited. Discrete Applied
Mathematics, 159(13):1311 � 1322, 2011.

[33] David Chaum. Security without identi�cation: Transaction systems to make
big brother obsolete. Commun. ACM, 28(10):1030�1044, October 1985.

[34] Liqun Chen. A DAA scheme requiring less TPM resources. In Information
Security and Cryptology, pages 350�365. Springer Verlag, 2010.

[35] Liqun Chen and Jiangtao Li. Flexible and scalable digital signatures in tpm
2.0. In Proc. of the Conference on Computer & Communications Security
(CCS), CCS '13, pages 37�48. ACM, 2013.

[36] Xiaofeng Chen and Dengguo Feng. Direct anonymous attestation for next
generation tpm, 2008.

[37] Jung Hee Cheon. Security analysis of the strong di�e-hellman problem. In
Advances in Cryptology - EUROCRYPT 2006, pages 1�11. Springer Verlag,
2006.

[38] X. Chu and Q. Yu. A new e�cient property-based attestation protocol based
on elliptic curves. In 2012 IEEE 11th International Conference on Trust,
Security and Privacy in Computing and Communications, pages 730�736,
June 2012.

[39] Ivan Bjerre Damgård. Commitment Schemes and Zero-Knowledge Proto-
cols, pages 63�86. Springer Verlag, 1999.

[40] U. Feige and A. Shamir. Witness indistinguishable and witness hiding pro-
tocols. In Proc. of the 22nd Annual ACM Symposium on Theory of Com-
puting, STOC '90, pages 416�426. ACM, 1990.

[41] The Apache Software Foundation. The apache milagro cryptographic li-
brary, 2019. https://github.com/miracl/amcl/tree/master/version3.

[42] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Structure-
preserving signatures on equivalence classes and constant-size anonymous
credentials. Journal of Cryptology, 32(2):498�546, Apr 2019.

51

[43] Thomas Groÿ. Signatures and e�cient proofs on committed graphs and np-
statements. In Financial Cryptography and Data Security, pages 293�314.
Springer Verlag, 2015.

[44] Nan Guo, Tianhan Gao, and Jia Wang. Privacy-preserving and e�cient
attributes proof based on selective aggregate cl-signature scheme. Interna-
tional Journal of Computer Mathematics, 93(2):273�288, 2016.

[45] Malika Izabachène, Benoît Libert, and Damien Vergnaud. Block-wise p-
signatures and non-interactive anonymous credentials with e�cient at-
tributes. In Cryptography and Coding, pages 431�450. Springer Verlag, 2011.

[46] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size com-
mitments to polynomials and their applications. In Advances in Cryptology
- ASIACRYPT 2010, pages 177�194. Springer Verlag, 2010.

[47] Eike Kiltz, Daniel Masny, and Jiaxin Pan. Optimal security proofs for sig-
natures from identi�cation schemes. In Advances in Cryptology � CRYPTO
2016, pages 33�61. Springer Verlag, 2016.

[48] Yutaro Kiyomura, Akiko Inoue, Yuto Kawahara, Masaya Yasuda, Tsuyoshi
Takagi, and Tetsutaro Kobayashi. Secure and e�cient pairing at 256-bit
security level. In Applied Cryptography and Network Security, pages 59�79.
Springer Verlag, 2017.

[49] Guiwen Luo and Xiao Chen. Searching bn curves for sm9. In Information
Security and Cryptology, pages 554�567. Springer Verlag, 2019.

[50] Alfred Menezes, Palash Sarkar, and Shashank Singh. Challenges with assess-
ing the impact of nfs advances on the security of pairing-based cryptogra-
phy. In Paradigms in Cryptology � Mycrypt 2016. Malicious and Exploratory
Cryptology, pages 83�108. Springer Verlag, 2017.

[51] Lan Nguyen. Accumulators from bilinear pairings and applications. In
Topics in Cryptology � CT-RSA 2005, pages 275�292. Springer Verlag, 2005.

[52] Tatsuaki Okamoto. E�cient blind and partially blind signatures without
random oracles. In Theory of Cryptography, pages 80�99. Springer Verlag,
2006.

[53] Ryo Okishima and Toru Nakanishi. An anonymous credential system with
constant-size attribute proofs for cnf formulas with negations. In Advances
in Information and Computer Security, pages 89�106. Springer Verlag, 2019.

[54] Charalampos Papamanthou, Roberto Tamassia, and Nikos Triandopoulos.
Optimal veri�cation of operations on dynamic sets. In Advances in Cryp-
tology � CRYPTO 2011, pages 91�110. Springer Verlag, 2011.

[55] David Pointcheval and Olivier Sanders. Short randomizable signatures. In
Topics in Cryptology - CT-RSA 2016, pages 111�126. Springer Verlag, 2016.

[56] Sietse Ringers, Eric Verheul, and Jaap-Henk Hoepman. An e�cient self-
blindable attribute-based credential scheme. In Financial Cryptography and
Data Security, pages 3�20. Springer Verlag, 2017.

[57] Shahidatul Sadiah, Toru Nakanishi, Nasima Begum, and Nobuo Funabiki.
Accumulator for monotone formulas and its application to anonymous cre-
dential system. Journal of Information Processing, 25:949�961, 2017.

[58] Sven Schäge. Tight proofs for signature schemes without random oracles.
In Advances in Cryptology � EUROCRYPT 2011, pages 189�206. Springer
Verlag, 2011.

52

[59] SeongHan SHIN, Kazukuni KOBARA, and Hideki IMAI. On �nding secure
domain parameters resistant to cheon's algorithm. IEICE Transactions
on Fundamentals of Electronics, Communications and Computer Sciences,
E98.A(12):2456�2470, 2015.

[60] Amang Sudarsono, Toru Nakanishi, and Nobuo Funabiki. E�cient proofs
of attributes in pairing-based anonymous credential system. In Privacy
Enhancing Technologies, pages 246�263. Springer Verlag, 2011.

[61] Patrick P. Tsang, Man Ho Au, Apu Kapadia, and Sean W. Smith. Black-
listable anonymous credentials: Blocking misbehaving users without ttps.
In Proc. of the 14th ACM Conference on Computer and Communications
Security, CCS '07, pages 72�81. ACM, 2007.

[62] Yan Zhang and Dengguo Feng. E�cient attribute proofs in anonymous
credential using attribute-based cryptography. In Information and Com-
munications Security, pages 408�415. Springer Verlag, 2012.

A Finite-Attribute Attack

We brie�y de�ne a weak anonymity notion before presenting the �nite-
attribute attack which can break the weak anonymity of Fuchsbauer et al.'s
ABC system [42]. In the weak anonymity security game, the adversary does not
has access to the issuer's sk as well as cannot query to the Obtain, Issue,Prove
and Corrupt oracles. The adversary is also prohibited from playing the role of
issuer in the challenged issuing protocol for C's selected attribute set during
the Challenge phase. Instead, the adversary can only query to a IssueTranscript
oracle which returns the transcript of an issuing protocol.
De�nition 17. An adversary A is said to (twano, εwano)-break the security against
weak anonymity of an ABC system if A runs in time at most twano and further-
more:

|Pr[b = b′]− 1

2
| ≥ εwano.

for a negligible probability εwano. We say that an ABC system is weakly-anonymous
if no adversary (twano, εwano)-wins the weak anonymity game.

Fuchsbauer et al.'s anonymity model [42] does not allow the adversary to use
the attribute sets from corrupted credentials as the challenge. The IssueTranscript
oracle does not break this rule as the adversary does not corrupts the challenged
attribute sets but learn the corresponding issuing protocol transcript. However,
the weak anonymity de�ned above is incomparable to that by Fuchsbauer et
al. because the latter allows an adversary to collude with issuer but does not
allow the adversary to obtain the issuing protocol transcript of the (uncorrupted)
challenged attribute sets. We argue that allowing this ability is a necessity unless
we assume the existence of secure channel as in KVABC system [31, 6, 20].
Following the original notation [42], we denote S as the unrestricted attribute
universe of the ABC system in the practice, which may contain known-format

53

string attributes and a �xed amount of �nite-attributes [60, 62]. For instance,
an attribute set A contained in a credential cred may include name, age, gender,
social number, driving license and so on. These attributes are �nitely many and
can be generated in polynomial time. We explain how does an adversary A break
the weak anonymity of Fuchsbauer et al.'s ABC system (Section 5.4, [42]) using
a single transcript of issuing protocol as follows.

1. A knows the public parameters of set commitment scheme ppsc = (BG, (aiP, aiP̂)i∈[t])
from the organization public key opk. A also knows user public key upk =
usk · P = ρ · P .

2. A announces the challenge attribute sets A0 and A1 as well as the disclosure
attribute set D.

3. A observes the issuing protocol for the attribute set Ab selected by challenger
and obtains (C,R = r · C, σ) through the observation.

4. A assumes b = 0 and checks whether e(C, P̂) = e(upk,
∑t
i=0 fia

iP̂) where

A0 = {s0,1, . . . , s0,t} and fA0
(a) =

∏t
i=1(a− s0,i) =

∑t
i=0 fia

i.
5. If the equation hold, A outputs his guess as b′ = 0 and b′ = 1 otherwise.

We can see that A is always successful in making a correct guess b = b′. During
every check, the issuer needs to perform only 1

2 (t2 + 3t− 4) + 1 multiplications
and additions, respectively, in Zp to �nd6 {f0, . . . , ft}, t− 1 point scalar multi-
plications, t+1 point additions and two pairing operations. In order to guarantee
a result, the issuer can repeat the process for

(|S|
t

)
rounds and this resulted in a

total complexity of:

tS +

(
|S|
t

)((
1

2
(t2 + 3t− 4) + 1

)
(tm + ta) + t(tM + tA) + tP

)
+ tP

where tS is the time to compile the attribute set S, ta and tm are the time taken
for an addition and a multiplication in Zp, tM is the time taken for a scalar
multiplication in G2, tA is the time taken for a point addition and tP is the
time taken for a bilinear pairing operation. The complexity is in polynomial
time and it can be further reduced if proper classi�cation is done prior to the
brute force searching. For instance, the issuer can choose not to combine the
attributes bday : 01Jan2002, . . . , bday : 31Dec2002 at the same time inside A. A
workaround for this issue is to employ a secure channel for the issuing protocol,
or send C,R in encrypted form using issuer's public key.

B Full Attribute Unlinkability Implies Full Anonymity

We show that full attribute unlinkability implies full attribute anonymity in an
ABC system but the reverse is not true.

Theorem 7. If an adversary Aaunl (taunl, εaunl)-breaks the aunl-aca-security of an
ABC system, it also (tano, εano)-breaks the anon-aca-security of the ABC system.

6 We assume Algorithm 1 is used.

54

Proof. Assume full anonymity adversary Aano exists, we can construct a full
unlinkability adversary Aaunl to break the full unlinkability of the ABC system
with the help from Aano.

When Aaunl receives (pk, sk) from its oracle, it passes that to Aano. Since
Aaunl knows sk, it can answer all the queries from Aano. When Aano decides
the challenge attribute sets A∗, A0, A1, Aaunl uses them as its challenge. When
Aano makes a query for the challenge issuing protocol, Aaunl acts as a man-in-
the-middle to pass the messages in between Aano and its challenge oracles. In
precise, when Aaunl obtains two sets of answer, i.e., runs two issuing protocols
with its challenge oracles, it always acts as the man-in-the-middle for the b-th
set of answer to complete the challenge issuing protocol with Aano. Similarly,
Aaunl answers the query on the challenge proof of possession protocol for Aano

by using the b-th set answer. When Aano outputs the guess b′, Aaunl outputs b
′

as its guess. It is clear that if b = b′, Aaunl wins the full attribute unlinkability
game.

Now we explain why the opposite reduction does not hold. Consider the same
security game as above but with the position of Aaunl and Aano interchanged.
When Aaunl queries on its challenge attribute sets, it expects to receive replies
from the challenge oracle for both attribute sets. However, Aano can obtain only
a reply for the challenge attribute set Ab from its challenge oracle, and have
to simulate another attribute set A1−b itself. Subsequently, Aano has to guess
with probability 1/2 which attribute set is A1−b and Aaunl's guess of b

′ is valid7

only when Aano guessed the correct attribute set A1−b. Therefore, it is clear that
Aaunl does not increase the advantage of Aano in breaking the full anonymity of
an ABC system. This con�rms that Aano is a subset of Aaunl.

C Full Attribute Unlinkability vs. Full Protocol

Unlinkability

We show that there is no reduction between full attribute unlinkability and full
protocol unlinkability.

Consider the security game in Appendix B but Aano is replaced with Apunl.
Since Aaunl and Apunl both select two attribute sets A0, A1 as the challenge
and receive two sets of issuing and presentation transcripts during the challenge
phase, Aaunl can simulate the environment for Apunl perfectly. However, when
Apunl outputs a guess which is a pair of issuing and show proof transcripts,
Aaunl cannot extract useful information to assist in making the correct guess
b. Therefore, it is clear that Apunl does not increase the advantage of Aaunl in
breaking the full attribute unlinkability of an ABC system. When the position of
Aaunl and Apunl are interchanged such that Apunl simulates the environment for
Aaunl, the same problem occurs during the guessing phase. This con�rms that
Aaunl and Apunl are independent of each other.

7 We assume Aaunl makes a random guess on b′ instead of aborting the game, if it
notices the two challenge protocols are under the same attribute set.

55

D Protocol Details

The constructions for the zero knowledge protocols in the proposed ABC system
are as follows.

D.1 Issuing Protocol Initialization

1. User randomly selects s̃1, m̃0, . . . , m̃n ∈ Z∗p and sends M,R =
∏n
j=0 a

m̃j

j bs̃1

to the issuer.

2. Issuer replies with a challenge e ∈ Z∗p.

3. User sends the response ŝ1 = s̃1 + es1, m̂0 = m̃0 + em0, . . . , m̂n = m̃n + emn

to the issuer.

4. Issuer proceeds to the next step if:

n∏
j=0

a
m̂j

j bŝ1 =

n∏
j=0

a
m̃j+emj

j bs̃1+es1

=

n∏
j=0

a
m̃j

j bs̃1
n∏
j=0

a
emj

j bes1

= RMe

holds. Else, issuer outputs ⊥ and stops.

D.2 Proof of Possession Protocol

1. Prover chooses r, y, r̃, ỹ, t̃y, õ0, õ1, s̃ ∈ Z∗p and sends v′ = vr
2y−1

,W =
∏n−1
j=0 a

w′i
j , V =

v′ỹ, Y1 = bs̃cr̃v′t̃y , Y2 =
∏1
j=0X

õj
j to veri�er where {w′j} = r×MPEncode(A−

{o}).
2. Veri�er replies with a random challenge e ∈ Z∗p.

3. Prover responds with r̂ = r̃+er2, ŷ = ỹ+ey, t̂y = t̃y−ety, ô0 = õ0+eo0r, ô1 =
õ1 + eo1r, ŝ = s̃+ esr2 where {o0, o1} = MPEncode({o}).

56

4. Veri�er outputs 1 if the equation e(W,Y −1
2

∏1
j=0X

ôj
j)e(Y −1bŝcr̂v′t̂y , X0) =

e(v′ŷV −1, X) holds such that:

e

W,Y −1
2

1∏
j=0

X
ôj
j

 e(Y −1bŝcr̂v′t̂y , X0)

= e

W, 1∏
j=0

X
−õj
j

1∏
j=0

X
õj+eojr
j

 e

(
b−s̃c−r̃v′−t̃ybs̃+esr

2

cr̃+er
2

v′t̃y−ety, X0

)

= e

 n∏
j=0

a
mj

j , X0

er2

e

(
besr

2

cer
2

v′ety, X0

)

= e

 n∏
j=0

a
mj

j bsc

er2

v−er
2t, X0

= e

 n∏
j=0

a
mj

j bscv−t, X0

er2

= e(vr
2

, X)e = e
(
v′ŷV −1, X

)
and 0 otherwise, where {mj} = MPEncode(A).

D.3 AND Proof

The detailed show proof for φAND(A′) is as follows:

1. Veri�er requests an AND proof for the attribute set A′ = {m1, . . . ,mk}.
2. If A′ 6⊆ A, prover aborts and veri�er outputs 0.

3. Else, prover chooses r, y, r̃, ỹ, t̃y, s̃ ∈ Z∗p and sends v′ = vry
−1

, V = v′ỹ,W =∏n−k
j=0 a

w′j
j , Y = bs̃cr̃v′t̃y to veri�er where {w′j}0≤j≤n−k = r×MPEncode(A−

A′).

4. Veri�er replies with a random challenge e ∈ Z∗p.
5. Prover responds with r̂ = r̃ + er, ŷ = ỹ + ey, t̂y = t̃y − ety, ŝ = s̃+ esr.

6. Veri�er outputs 1 if the equation

e

W e,

k∏
j=0

X
mj

j

 e(Y −1bŝcr̂v′t̂y , X0) = e(v′ŷV −1, X)

57

holds such that:

e

W e,

k∏
j=0

X
mj

j

 e
(
Y −1bŝcr̂v′t̂y , X0

)

= e

n−k∏
j=0

a
ewjr
j ,

k∏
j=0

X
mj

j

 e
(
b−s̃c−r̃v′−t̃ybs̃+esrcr̃+erv′t̃y−ety, X0

)
= e(vx+tv−t, X0)er

= e(vr, X)e = e
(
v′ŷV −1, X

)
and 0 otherwise, where {mj} = MPEncode(A′) are computed by the veri�er.

D.4 ANY Proof

The detailed show proof for φANY(l,A′) is as follows:

1. Veri�er requests a show proof φANY(l,A′) on the attribute setA
′ = {m1, . . . ,mk}.

2. Prover randomly selects l-attribute intersection set I ⊆ (A′ ∩A). If no such
I can be formed, prover aborts and veri�er outputs 0.

3. Else, prover chooses r, y, r̃, r̃r, ỹ, t̃y, ĩ0, . . . , ĩl, s̃ ∈ Z∗p and sends v′ = vr
2y−1

, V =

v′ỹ,W =
∏n−l
j=0 a

w′j
j ,W

′ =
(∏k−l

j=0 a
m2,j

j

)r−1

, Y1 = bs̃cr̃v′t̃y , Y2 =
∏l
j=0X

ĩj
j to

veri�er where {w′j}0≤j≤n−l = r × MPEncode(A − I) and {m2,j}0≤j≤k−l =
MPEncode(A′ − I).

4. Veri�er replies with a random challenge e ∈ Z∗p.

5. Prover calculates {ij} = MPEncode(I) and responds with r̂ = r̃ + er2, ŷ =

ỹ + ey, t̂y = t̃y − ety, î0 = ĩ0 + ei0r, . . . , îl = ĩl + eilr, ŝ = s̃+ esr2.

6. Veri�er outputs 1 if the equation holds:

e

W ′W,Y −1
2

l∏
j=0

X
îj
j

 e

 k∏
j=0

a
m1,j

j

−e Y −1
1 bŝcr̂v′t̂y , X0

 = e
(
v′ŷV −1, X

)

58

such that:

e

W ′W,Y −1
2

l∏
j=0

X
îj
j

 e

 k∏
j=0

a
m1,j

j

−e Y −1
1 bŝcr̂v′t̂y , X0

= e

k−l∏
j=0

a
m2,jr

−1

j

n−l∏
j=0

a
wjr
j ,

l∏
j=0

X
−̃ij
j

l∏
j=0

X
ĩj+eijr
j

 ·
e

 k∏
j=0

a
−em1,j

j b−s̃c−r̃v′−t̃ybs̃+esr
2

cr̃+er
2

v′t̃y−ety, X0

= e

 k∏
j=0

a
em1,j

j

k∏
j=0

a
−em1,j

j , X0

 e
(
a
∏n

j=1(x′+mj)

0 , X0

)er2

e
(
bscv−t, X0

)er2

= e(vx+tv−t, X0)er
2

= e(vr
2

, X)e = e
(
v′ŷV −1, X

)
and veri�er outputs 0 otherwise, where {m1,j} = MPEncode(A′) are com-
puted by the veri�er.

D.5 NAND Proof

The detailed show proof for φNAND(A′) is as follows:

1. Veri�er request a NAND proof for the attributes A′ = {m1, . . . ,mk}.
2. If |A′ ∩A| < k, prover aborts and veri�er outputs 0.

3. Else, prover chooses r, y, r̃, ỹ, t̃y, s̃ ∈ Z∗p and sends v′ = vry
−1

, V = v′ỹ,W =(∏n−k
j=0 a

wj

j

)r
, Y1 =

∏k−1
j=0 a

r̃j
j , Y2 = bs̃cr̃v′t̃y to veri�er where

({wj}0≤j≤n−k, {rj}0≤j≤k−1) = MPEncode(A)/MPEncode(A′).

4. Veri�er replies with a random challenge e ∈ Z∗p.
5. Prover responds with r̂ = r̃ + er, ŷ = ỹ + ey, t̂y = t̃y − ety, ŝ = s̃+ esr, r̂0 =

r̃0 + er0r, . . . , r̂k−1 = r̃k−1 + erk−1r.

6. Veri�er outputs 1 if the two equations hold:

(a) W 6= G1

(b)
∏k−1
j=0 a

r̂j
j Y
−1
1 6= 1G1

(c) e(W e,
∏k
j=0X

mj

j)e
(
Y −1

1

∏k−1
j=0 a

r̂j
j Y
−1
2 bŝcr̂v′t̂y , X0

)
= e

(
v′ŷV −1, X

)
59

and 0 otherwise, where {mj} = MPEncode(A′) are computed by the veri�er.
The correctness for the equations is as shown below:

e

W e,

k∏
j=0

X
mj

j

 e

Y −1
1

k−1∏
j=0

a
r̂j
j Y
−1
2 bŝcr̂v′t̂y , X0

= e

n−k∏
j=0

a
ewjr
j ,

k∏
j=0

X
mj

j

 ·
e

k−1∏
j=0

a−r̃j

k−1∏
j=0

a
r̃+erjr
j b−s̃c−r̃v′−t̃ybs̃+esrcr̃+erv′t̃y−ety, X0

= e

(
a
∏n

j=1(x′+mj)−
∑k−1

j=0 rjx
′j

0 , X0

)er
e

k−1∏
j=0

a
rj
j b

scv−t, X0

er

= e(vx+tv−t, X0)er

= e(vr, X)e = e(v′ŷV −1, X).

D.6 NANY Proof

The detailed show proof for φNANY(l,A′) is as follows:

1. Veri�er requests an NANY(l, A′) proof for the attribute setA′ = {m1, . . . ,mk}.
2. Prover randomly selects l̄-attribute di�erence set D ∈ (A′ − A). If no such
D can be formed, prover aborts and veri�er outputs 0.

3. Else, prover chooses r, y, r̃, ỹ, t̃y, d̃0, . . . , d̃l̄, s̃ ∈ Z∗p and sends v′ = vr
2y−1

, V =

v′ỹ,W =
(∏n−l̄

j=0 a
wj

j

)r
, Y1 =

∏l̄−1
j=0 a

r̃j
j ,W

′ =
(∏k−l̄

j=0 a
m2,j

j

)r−1

, Y2 = bs̃cr̃v′t̃y , Y3 =∏l̄
j=0X

d̃1,j

j to veri�er where ({wj}0≤j≤n−k, {rj}0≤j≤k−1) = MPEncode(A)/MPEncode(A′).

4. Veri�er replies with a random challenge e ∈ Z∗p.
5. Prover calculates {dj} = MPEncode(D) and responds with r̂ = r̃ + er2, ŷ =

ỹ+ey, t̂y = t̃y−ety, d̂0 = d̃0+ed0r, . . . , d̂l̄ = d̃l̄+edl̄r, r̂0 = r̃0+er0r
2, . . . , r̂l̄−1 =

r̃l̄−1 + erl̄−1r
2, ŝ = s̃+ esr2.

6. Veri�er outputs 1 if the two equations hold:

(a) W1 6= G1

(b)
∏l̄−1
j=0 a

r̂j
j Y
−1
1 6= 1

(c) e
(
W ′W,Y −1

3

∏l̄
j=0X

d̂j
j

)
e

((∏k
j=0 a

m1,j

j

)−e
Y −1

1

∏l̄−1
j=0 a

r̂j
j Y
−1
2 bŝcr̂v′t̂y , X0

)
= e

(
v′ŷV −1, X

)
60

and outputs 0 otherwise, where {m1,j} = MPEncode(A′). The correctness
for the equations are as shown below:

e

W ′W,Y −1
3

l̄∏
j=0

X
d̂j
j

 e

 k∏
j=0

a
m1,j

j

−e Y −1
1

l̄−1∏
j=0

a
r̂j
j Y
−1
2 bŝcr̂v′t̂y , X0

= e

k−l̄∏
j=0

a
m2,jr

−1

j

n−l̄∏
j=0

a
ewjr
j ,

l̄∏
j=0

X
−d̃j
j

l̄∏
j=0

X
d̃j+edr
j

 ·
e

 k∏
j=0

a
m1,j

j

−e l̄−1∏
j=0

a
−r̃j
j

l̄−1∏
j=0

a
r̃j+erjr

2

j b−s̃c−r̃v′−t̃ybs̃+esr
2

cr̃+er
2

v′t̃y−ety, X0

=

(
a
∏n

j=1(x′+mj)−
∑l̄−1

j=0 rjx
′j

0 , X0

)er2

e

 l̄−1∏
j=0

a
rj
j b

scv−t, X0

er2

= e(vx+tv−t, X0)er
2

= e(vr
2

, X)e = e
(
v′ŷV −1, X

)
.

E Complexity Comparison

Table 9: Comparison of credential size, and complexity for proof of possession
and AND proof on related ABC systems.

S ABC Credential Size Proof of Possession Complexity AND Proof Complexity

SF
SNBF [57]2 nF I+2

∑nF /2
i=1

(
nF /2
i

)
(2|G1|+5|G2|)

2M1(1) + 26M1(2) + 3M1(nF) + 25M2(2) + 4M2(4) +
3MT (1) + 40P

2M1(1) + 24M1(2) + 3M1(kF) + 25M2(2) + 4M2(4) +
3MT (1) + 40P

ON [53]1,2 nF I + 7|G1|
74M1(1) + (3L+ 2)M1(2) + 45M1(3) + 75M1(15) +
5MT (1) + 105P

74M1(1) + 3LM1(2) + 45M1(3) + 75M1(15) + 5MT (1) +
105P

SS + SF
SNF [60]1 nF I+5|G1|+ (nS + 3)|Zp| 23M1(1)+8M1(2)+6M1(3)+2M1(nS+5)+MT (1)+10P

23M1(1) + 8M1(2) + 6M1(3) + 2M1(nS − kS + 5) +
M1(kS) +MT (1) + 10P

ZF [62]1 nF I+(nF + 6)|G1|+ (nS + 2)|Zp|
18M1(1) + 2M1(nS + 5) + 10M1(2) + 2M1(3) +
M1(nF − 1) +M1(Ñ − 2) +M1(Ñ + nF − 2) + 11P

18M1(1) + 2M1(nS − kS + 5) +M1(kS) + 10M1(2) +
2M1(3)+M1(kF−1)+M1(Ñ−2)+M1(Ñ+kF−2)+11P

CG [22, 23]
1|ZN |+ 1|ZNMκ|+ 1|ZM+2|+
nF |ZM/n|+ nS |ZM |

E(1) + 2E(3 + nS) + E(2) 3E(1) + 2E(3 + nS − kS) + E(kS)

S

ASM [4, 24] 1|G1|+ (n+ 2)|Zp| 2M1(1) + 3M1(2) + 2M1(3) + 2M1(3 + n) + 2P 2M1(1)+3M1(2)+2M1(3)+2M1(3+n−k)+M1(k)+2P

CDHK [21]2 (n+ 5)|G1|+ 2|G2|
2M1(2) + 2M1(8) + 2M1(2n) + 2M2(1) + 34M2(2) +
2MT (1) + 28P

2M1(2) + 2M1(8) +M1(k) +M1(2n− 2k) + 2M2(1) +
M2(k) + 34M2(2) + 2MT (1) + 28P

FHS [42] (n+ 3)|G1|+ 1|G2|+ 2|Zp| 10M1(1) + 2M1(n+ 1) + 8P 10M1(1) +M1(n− k + 1) +M2(k + 1) + 8P
BBBB+ [8, 12] 2|G1|+ n|Zp| 2M2(n) + 2P 2M2(n− k) +M2(k) + 2P
This Work 1|G1|+ (3n+ 3)|Zp| 3M1(1) + 2M1(3) +M1(n− 1) + 2M2(2) + 3P 3M1(1) + 2M1(3) +M1(n− k) +M2(k + 1) + 3P

Note:
1Type-1 pairing scheme, 2assume batch GS-proof [10] is used, p: group order, n: total attributes,S: string attributes, F : �nite-attributes, L: maximum allowed ∧ in CNF,

Ñ : maximum attributes allowed in a statement, | · |: element size,Mx(·): multi-exponentiation in Gx, P : pairing, N : RSA modulus, M : attribute space, κ: security parameter,
E(·): multi-exponentiation, I: attribute index.

We consider only proof of possession and AND proof in Table 9 because
not every scheme from Table 7 can support OR proof and above. Also, due to
the di�erent natures of the ABC systems, the numbers in Table 9 is a con-
servative estimation and we argue that the result is adequately generated. For
instance, we include attributes in the credential for every ABC system where the

61

credential size may be higher than what it was in the original works. Besides,
we exclude computations for proprietary properties such as encoding [22, 23],
pseudonymization [24, 8] and revocation [12] which are not covered by our de�-
nition. We also perform trivial optimization on the protocols, such as compress-
ing the pairings [4, 24, 60, 62] and using batch GS-proof [21, 57, 53]. Notice
that we denote our credential size as 1|G1| + (3n + 3)|Zp| but not 1|G1| +
(n + 2)|Zp| as in Section 4.3. The extra (2n + 1)|Zp| elements are from the
pre-processing for MPEncode(A) and MPEncode(A−{o}). Since some ABC sys-
tems [60, 62, 21, 42, 8, 12] have not speci�ed their proof of possession protocol,
we assume the Schnorr-like proof of knowledge protocol is used. For the ABC
systems work with SF , we assume their accumulator values are also committed
during the proof of possession protocol. Finally, viewing Mx(y) = y×Mx(1), we
have the the numbers displayed in Table 8.

62

