
Expected Constant Round Byzantine Broadcast under Dishonest
Majority

Jun Wan ∗ Hanshen Xiao † Elaine Shi ‡ Srinivas Devadas§

May 19, 2020

Abstract

Byzantine Broadcast (BB) is a central question in distributed systems, and an important
challenge is to understand its round complexity. Under the honest majority setting, it is long
known that there exist randomized protocols that can achieve BB in expected constant rounds,
regardless of the number of nodes n. However, whether we can match the expected constant
round complexity in the corrupt majority setting — or more precisely, when f ≥ n/2 + ω(1) —
remains unknown, where f denotes the number of corrupt nodes.

In this paper, we are the first to resolve this long-standing question. We show how to achieve
BB in expected O((n/(n− f))2) rounds. In particular, even when 99% of the nodes are corrupt
we can achieve expected constant rounds. Our results hold under both a static adversary and
a weakly adaptive adversary who cannot perform “after-the-fact removal” of messages already
sent by a node before it becomes corrupt.

∗junwan@mit.edu, Massachusetts Institute of Technology
†hsxiao@mit.edu, Massachusetts Institute of Technology
‡runting@gmail.com, Cornell University
§devadas@mit.edu, Massachusetts Institute of Technology

1 Introduction
Byzantine Agreement (BA) is one of the most fundamental problems in fault tolerant distributed
computing [1, 2, 3] and of increasing interest given recent advances in cryptocurrencies [4, 5, 6].
In this paper, we consider the “broadcast” formulation of Byzantine Agreement, henceforth also
called Byzantine Broadcast (BB): imagine that there are n nodes among which there is a designated
sender. The sender is given an input bit b ∈ {0, 1} and wants to send this bit to every other node.
Although up to f < n − 1 nodes can be corrupted and deviate arbitrarily from the prescribed
protocol, we would like to nonetheless ensure two key properties: 1) consistency requires that all
honest nodes must output the same bit (even when the sender is corrupt); and 2) validity requires
that all honest nodes output the sender’s input bit if the sender is honest 1.

An important question to understand is the round complexity of Byzantine Broadcast. Dolev
and Strong [7] showed that assuming (idealized) digital signatures, there is a deterministic protocol
achieving f+1 rounds; and moreover, f+1 rounds is the best one can hope for in any deterministic
protocol. It is also widely understood that randomization can help overcome the (f + 1)-round
barrier in the honest majority setting. Specifically, many elegant works have shown expected
constant-round protocols assuming honest majority [8, 9, 10, 11].

For a long while, the community was perplexed about the following natural question: can we
achieve sublinear-round Byzantine Broadcast under dishonest majority? The ingenious work by
Garay et al. [12] was the first to demonstrate a positive result although their construction achieves
sublinear round complexity only under a narrow parameter regime: specifically, they constructed an
expected Θ((f−n/2)2)-round protocol, and the subsequent work of Fitzi and Nielsen [13] improved
it to Θ(f − n/2) rounds. In other words, these constructions achieve sublinear number of rounds
only if f ≤ n/2+ o(n). This is somewhat unsatisfying since even for f = 0.51n, their results would
be inapplicable.

Very recently, the frontier of our understanding was again pushed forward due to Chan, Pass,
and Shi [14]. Assuming trusted setup and standard cryptographic assumptions, their protocol
achieves Byzantine Broadcast with probability 1− δ for any f ≤ (1− ϵ) ·n in poly log(1/ϵ, δ) rounds
(both in expectation and worst-case), where ϵ, δ ∈ (0, 1) are two parameters that the protocol
takes as input. Although their work represents exciting progress on a long stagnant front, it fails
to match the asymptotic (expected) round complexity of known honest majority protocols — for
honest majority, it is long known how to achieve expected constant round complexity [8, 11]. We
thus ask the following question:

Can we achieve Byzantine Broadcast in expected constant rounds in the corrupt majority
setting?

1.1 Our Contributions
We present a Byzantine Broadcast protocol that achieves expected O((n

n−f)
2) rounds. This means

that for f = (1 − ϵ)n where ϵ ∈ (0, 1) may be an arbitrarily small constant, our protocol achieves
expected constant rounds. We present two instantiations of our protocol, resilient against either
a static adversary or an adaptive adversary, respectively. A static adversary must declare upfront
which nodes to corrupt whereas an adaptive adversary can corrupt nodes in the middle of the
protocol execution. In this paper, we assume that when the adaptive adversary corrupts a node v

1An alternative formulation is the “agreement” version where every node receives an input bit b, and validity
requires that if all honest nodes receive the same input bit b, then honest nodes must output b. However, this
agreement notion is known to be impossible under corrupt majority.

1

in some round r, it cannot erase the message v has already sent in round r but it can make the
now-corrupt v inject additional messages into round r — such a model is also referred to as weakly
adaptive in earlier works.

To achieve this result in the static corruption model, we need to assume the existence of a
common random string and one-way functions. To achieve our result in the adaptive corruption
setting, we rely on a trusted setup and standard cryptographic assumptions in an algebraic structure
called bilinear groups.

To the best of our knowledge, our work is the first to achieve an expected constant-round BB
protocol for any f ≥ n/2 + ω(1). Previously, no result was known even for the static corruption
setting, and even under any setup assumptions. We compare our results with the state-of-art results
in Table 1.

Garay et al.[12] Fitz et al.[13] Chan et al.[14] This paper

Expected round

complexity
Θ((2f − n)2) Θ(2f − n) Same as worst-case Θ((n

n−f)
2)

Worst-case round

complexity with 1− δ

failure probability

Θ(log(1δ) + (2f − n)2) Θ(log(1δ) + (2f − n)) Θ(log(1δ) ·
n

n−f) Θ(log(1/δ)
log(n/f) ·

n
n−f)

Table 1: A comparison between our results and previous work under dishonest majority.

We summarize our results in the following two theorems:

Theorem 1.1 (Expected constant round BB under static corruption). Assume the existence of a
common random string, a public-key infrastructure, and one-way functions. Then, there exists a BB
protocol with expected O((n

n−f)
2) round complexity for any non-uniform probabilistic-polynomial-

time (p.p.t .) adversary that can statically corrupt f < n− 1 nodes.

Theorem 1.2 (Expected constant round BB under adaptive corruption). Assume trusted setup
and standard cryptographic assumptions in suitable bilinear groups [15]. Then, there exists a BB
protocol with expected O((n

n−f)
2) round complexity for any non-uniform p.p.t . adversary that can

adaptively corrupt f < n− 1 nodes.

In both theorems and throughout the paper, we assume a synchronous network, i.e., honest
nodes can deliver messages to each other within a single round. This assumption is necessary
since without it, Byzantine Broadcast is long known to be impossible under more than n/3 corrup-
tions [16].

It is also helpful to view our results in light of an elegant lower bound proven by Garay et al. [12]:
they showed that even randomized protocols cannot achieve BB in less than Θ(n/(n− f)) number
of rounds, even assuming static corruption and allowing standard setup assumptions. Therefore,
for the (narrow) regime n− f = o(n), there is still an asymptotical gap between our upper bound
and their lower bound.

1.2 Technical Highlight and Roadmap
We stress that even the static corruption result is challenging partly because the standard random
committee election technique fails to work. More concretely, in the honest majority setting and

2

assuming static corruption, a well-known random committee election technique can allow us to
compile any polynomial-round BB to a poly-logarithmic round BB protocol. However, as already
pointed out by Chan et al. [14], this technique is inapplicable to the corrupt majority setting even
under a static adversary. 2 Similarly, we also know of no way to extend the recent techniques of
Chan et al. [14] to obtain our result.

Instead, we devise novel techniques that redesign the consensus protocol from the ground up.
Trust graph maintenance (Section 3). First, we devise a new method for nodes to maintain a
trust graph over time. The vertices in the trust graph represent nodes in the BB protocol; and an
edge between u and v indicates that u and v mutually trust each other. Initially, every node’s trust
graph is the complete graph; however, during the protocol, if some nodes misbehave, they may get
removed completely or get disconnected from other nodes in honest nodes’ trust graphs. On the
other hand, honest nodes will forever remain direct neighbors to each other in their respective trust
graphs.

There are a few challenges we need to cope with in designing the trust graph mechanism. First,
if a node v misbehaves in a way that leaves a cryptographic evidence implicating itself (e.g., double-
signing equivocating votes), then honest nodes can propagate this evidence and remove v from their
trust graphs. Sometimes, however, v may misbehave in a way that does not leave cryptographic
evidence: for example, v can fail to send a message it is supposed to send to u, and in this case u
cannot produce an evidence to implicate v. In our trust graph mechanism, we allow u to complain
about v without providing an evidence, and a receiver of this complaint can be convinced that at
least one node among u and v is corrupt (but it may not be able to tell which one is corrupt). In
any case, the receiver of this complaint may remove the edge (u, v) from its trust graph. We do
not allow a node u to express distrust about an edge (v, w) that does not involve itself — in this
way a corrupt node cannot cause honest nodes to get disconnected in their trust graphs.

A second challenge we are faced with is that honest nodes may not have agreement for their
respective trust graphs at any point of time — in fact, reaching agreement on their trust graphs
may be as hard as the BB problem we are trying to solve in the first place. However, if honest nodes
always promptly propagate their knowledge to others, we can devise a mechanism that satisfies the
following monotonicity condition: any honest node’s trust graph in round t > r is a subgraph of
any honest node’s trust graph in round r. In our protocol we will have to work with this slightly
imperfect condition rather than complete agreement.

Finally, although an honest node is convinced that besides their direct neighbors in its own
trust graph, no one else can be honest, it still must wait to hear what nodes multiple hops away
say during the protocol — this is because their direct neighbors may still trust their own neighbors,
and the neighbors’ neighbors may care about their own neighbors, etc. For information to flow
from a node v that is r hops away from u in u’s trust graph may take up to r rounds, and this
explains why the diameter of the trust graph is critical to the round complexity of our protocol.
We will devise algorithms for ensuring that honest nodes’ trust graphs have small diameter. At
a very high level, to maintain small diameter, we devise a mechanism for nodes to post-process
their trust graphs: for example, although a node u may not have direct evidence against v, if many
nodes complain about v, u can be indirectly convinced that v is indeed corrupt and remove v.
The TrustCast building block (Section 4). A common technique in the consensus literature is to
bootstrap full consensus from weaker primitives, often called “reliable broadcast” or “gradecast”
depending on the concrete definitions [8, 9, 17]. Typically, these weaker primitives aim to achieve

2As Chan et al. [14] point out, the random committee election approach fails to work for corrupt majority (even
for static corruption), because members outside the committee cannot rely on a majority voting mechanism to learn
the outcome.

3

consistency whether the sender is honest or not; but they may not achieve liveness if the sender is
corrupt [8, 9, 17]. Based on a weaker primitive such as “reliable broadcast” or “gradecast”, existing
works would additionally rely on random leader election to bootstrap full consensus. Roughly
speaking, every epoch a random leader is chosen, and somehow if the leader is honest, liveness will
ensue. Additionally, relying on the consistency property of this weaker primitive, with enough care
we can devise mechanisms for ensuring consistency within the same epoch and across epochs — in
other words, honest nodes must make the same decision no matter whether they make decisions in
the same epoch or different epochs.

In our work we devise a TrustCast building block which is also a weakening of full consensus
and we would like to bootstrap consensus from this weaker primitive. Our definition of TrustCast,
however, is tied to the trust graph and departs significantly from prior works. Specifically, TrustCast
allows a sender s ∈ [n] to send a message to everyone: if s wants to continue to remain in an honest
node u’s trust graph, u must receive some valid message from s at the end of the protocol, although
different honest nodes may receive inconsistent messages from s if s is corrupt.

At a high level, the sender s has three choices:

1. it can either send the same valid message to all honest nodes;

2. (*technical challenge) or it can fail to send a valid message to some honest node, say u, — in
this case u will remove s from its trust graph immediately and in the next round all honest
nodes will remove s from their trust graphs too;

3. or u can send equivocating messages to different honest nodes, but in the next round honest
nodes will have compared notes and discovered the equivocation, and thus they remove s
from their trust graphs.

The first case will directly lead to progress in our BB protocol; in the second and third cases, s will
cause itself to be removed from honest nodes’ trust graphs and we also make progress in the sense
that s can no longer hamper liveness in the future.

An important technical challenge for designing the TrustCast protocol lies in the second case
above: in this case, u may not have a cryptographic evidence to implicate s and thus u cannot
directly convince others to remove s. However, in this case, it turns out that u can be convinced
that some of its direct neighbors must be corrupt, and it will instead convince others to remove
the edge (u, v) for every direct neighbor v that it believes to be corrupt. Once these edges are
removed, s will land in a “remote” part of the graph such that honest nodes can be convinced that
it is corrupt and remove it altogether.
Byzantine Broadcast protocol and instantiating leader election (Sections 5, 5.6, 6). In Section 5,
we rely on our TrustCast building block and trust graph mechanism to devise a Byzantine Broadcast
protocol, assuming the existence of an idealized leader election oracle. Subsequently, in Sections 5.6
and 6, we show how to instantiate the leader election oracle under static and adaptive corruptions,
respectively.

2 Preliminaries
2.1 Problem Definition
The problem of Byzantine Broadcast has been widely explored. Suppose there are n nodes (some-
times also called parties) in a distributed system, indexed from 1 to n, respectively. The communi-
cation within the system is modeled by a synchronous network, where a message sent by an honest

4

node in some round r is guaranteed to be delivered to an honest recipient at the beginning of the
next round r + 1. Among the n nodes in the system, there is a designated sender whose identity
is common knowledge. Before the protocol begins, the sender receives an input bit b. All nodes
then engage in interactions where the sender aims to send the bit b to everyone. At the end of the
protocol, each node u outputs a bit bu. Henceforth, we assume that the protocol is parameterized
with a security parameter λ. We say that a protocol achieves Byzantine Broadcast if it satisfies
the following guarantees except with negligibly small in λ probability.

• Consistency: for any two honest nodes u and v, bu = bv.

• Validity: if the designated sender is honest, then for any honest node u, bu = b.

2.2 Adversary Model
At any point of time during the protocol’s execution a node can either be honest or corrupt. Honest
nodes correctly follow the protocol, while corrupt nodes are controlled by an adversary and can
deviate from the prescribed protocol arbitrarily. We allow the adversary to be rushing, i.e., it can
observe the messages honest nodes want to send in round r before deciding what messages corrupt
nodes send in the same round r.

The adversary can be either static or adaptive. A static adversary selects and corrupts a set
of f nodes before the start of the protocol. As soon as the protocol begins, no further corruption
is allowed. An adaptive adversary is not constrained by this requirement. In any round r, it can
adaptively corrupt honest nodes after observing the messages they want to send in round r, as
long as the total number of corrupted nodes does not exceed an upper bound f . If a node v ∈ [n]
becomes newly corrupt in round r, the adversary can make it inject new messages of its choice in
the present round r; however, the adversary cannot perform “after-the-fact removal”, i.e., erase the
messages v originally wanted to send in round r before it became corrupt. We will devise protocols
for both the static and adaptive adversary models.

2.3 Modeling Setup
We will allow setup assumptions as well as standard cryptography. For example, our statically
secure protocol assumes the existence of a common random string and a public-key infrastructure,
and our adaptively secure protocol assumes a trusted setup.

Our protocol makes use of a public-key infrastructure and digital signatues, and for simplicity
in this paper we may assume that the signature scheme is ideal. We adopt a standard idealized
signature model, i.e., imagine that there is a trusted functionality that keeps track of all messages
nodes have signed and answers verification queries by looking up this trusted table. Under such an
idealized signature model, no signature forgery is possible. When we replace the ideal signature with
a real-world instantiation that satisfies the standard notion of “unforgeability under chosen-message
attack”, all of our theorems and lemmas will follow accounting for an additive, negligibly small
failure probability due to the failure of the signature scheme — this approach has been commonly
adopted in prior works too and is well-known to be cryptographically sound (even against adaptive
adversaries).

For other cryptographic primitives we adopt, e.g., verifiable random functions, we do not assume
idealized primitives since the computationally sound reasoning for these primitives are known to
have subtleties.

5

3 Trust Graph Maintenance
3.1 Overview of Trust Graph Maintenance and Invariants
At a very high level, the novelty of our approach lies in the way parties maintain and make use of
an undirected trust graph over time. In a trust graph, the vertices correspond to all or a subset
of the parties participating in the consensus protocol. An edge (u, v) in the trust graph intuitively
means that the nodes u ∈ [n] and v ∈ [n] mutually trust each other. Since a node in the graph
corresponds to a party in the system, to avoid switching between the words “node” and “party”,
we will just use the word “node”.

Initially, every honest node’s trust graph is the complete graph over the set [n], i.e., everyone
mutually trusts everyone else. However, over the course of the protocol, a node may discover
misbehavior of other nodes and remove nodes or edges from its own trust graph accordingly. We
will assume that at any point of time, an honest node u’s trust graph must be a single connected
component containing u — effectively u would always discard any node disconnected from itself
from its own trust graph.
Notations. Throughout the paper, we will use Gr

u to denote the node u’s updated trust graph in
round r (after processing the graph-messages received in round r and updating the trust graph).
More precisely, Gr

u is the trust graph exported by u’s trust graph module to u’s consensus module.
Sometimes, if the round we refer to is clear, we may also write Gu omitting the round r. We also
use N(v,G) to denote the set of neighbors of v in the graph G. In cases where the graph G we
refer to is clear, we just abbreviate it to N(v).

Finally, we follow the notations in Section 2 where n is the number of nodes in the system, f is
the upper bound for the number of corrupt nodes and h = n− f is the lower bound for the number
of honest nodes.
Important invariants of the trust graph. A very natural requirement is that corrupt nodes can
never cause honest nodes to suspect each other; in fact, we want the following invariant:

Honest clique invariant: at any time, in any honest node’s trust graph, all honest nodes form a
clique. This implies that all honest nodes must forever remain direct neighbors to each other
in their trust graphs.

The round complexity of our protocol is directly related to the diameter of honest nodes’ trust
graphs and thus we want to make sure that honest nodes’ trust graphs have small diameter. To
understand this more intuitively, we can consider an example in which three nodes, u, v, and s
execute Byzantine Broadcast with s being the sender. All three nodes behave honestly except that
s drops all messages to u. In this case, although u is convinced that s is corrupt and thus removes
the edge (u, s) from its trust graph, it cannot prove s’s misbehavior to v. Since v still has reasons
to believe that s might be honest, v will seek to reach agreement with s. Now, if u tries to reach
agreement with v, it has to care about what s says. But since s drops all messages to u, any
information propagation from s to u must incur 2 rounds with v acting as the relay.

This example can generalize over multiple hops: although an honest node u ∈ [n] knows that
except for its direct neighbors in its trust graph, everyone else must be corrupt; it must nonetheless
wait for information to propagate from nodes multiple hops away in its trust graph. For a node
w that is r hops away from u in u’s trust graph, information from w may take r rounds to reach
u. Summarizing, for our protocol to be round efficient, we would like to maintain the following
invariant:

6

Small diameter invariant: at any point of time, every honest node u’s trust graph must have
small diameter.

Finally, we stress that a difficult challenge we are faced with, is the fact that honest nodes may
never be in full agreement w.r.t. their trust graphs at any snapshot of time — in fact, attempting
to make honest nodes agree on their trust graph could be as difficult as solving the Byzantine
Broadcast problem itself. However, from a technical perspective, what will turn out to be very
helpful to us, is the following monotonicity invariant:

Monotonicity invariant: an honest node u’s trust graph in round t > r must be a subset of an
honest node v’s trust graph in round r. Here, we say that an undirected graph G = (V,E) is a
subset of another undirected graph G′ = (V ′, E′) iff V ⊆ V ′ and E ⊆ E′.

The above trust graph monotonicity invariant can be maintained because of the following in-
tuition: whatever messages an honest node v ∈ [n] sees in round r, v can relay them such that all
other honest nodes must have seen them by round r + 1 — in this way the honest node u would
perform the same edge/node removal in round r + 1 as what v performed in round r.

3.2 Conventions and Common Assumptions
Throughout our paper, we assume that message echoing among honest nodes is implicit (and our
protocol will not repeatedly state the echoing):

Implicit echoing assumption: All honest nodes echo every fresh message they have heard from
the network, i.e., as soon as an honest node u receives a message m at the beginning of some
round r, if this message is well-formed and has not been received before, u relays it to everyone.

Each node has a consensus module (see Sections 4 and 5) and a trust graph module which will
be described in this section. Messages generated by the trust graph module and the consensus
module will have different formats. Henceforth, we may call messages generated by the trust graph
module graph messages; and we may call all other messages consensus messages.

Below, we state some assumptions about the modules and their interfaces. We assume that all
messages generated by the consensus module are of the following format:

Message format of the consensus module: All protocol messages generated by the consensus
module are of the form (T, e, payload) along with a signature from the sender, where T is a string
that denotes the type of the message, e ∈ N denotes the epoch number (the meaning of this will
be clear later in Section 5), and payload is a string denoting an arbitrary payload. Each type
of message may additionally require its payload to satisfy some wellformedness requirements.

For example, (vote, e, b) and (comm, e, E) represent vote messages and commit messages, respectively
in our Byzantine Broadcast protocol (see Section 5), where vote and comm denote the type of the
message, e denotes the epoch number, and the remainder of the message is some payload.

In our consensus module, nodes can misbehave in different ways, and some types of misbehaviors
can generate cryptographic evidence to implicate the offending node. We define equivocation
evidence below.

Equivocation evidence. In our consensus module, honest nodes are not supposed to double-sign
two different messages with the same type and epoch number — if any node does so, it is said
to have equivocated. Any node that has equivocated must be malicious. The collection of two
messages signed by the same node u ∈ [n], with the same type and epoch but different payloads,
is called an equivocation evidence for u.

7

3.3 Warmup: Inefficient Trust Graph Maintenance Mechanism
As a warmup, we first describe an inefficient mechanism for nodes to maintain a trust graph
over time such that the aforementioned three invariants are respected. In this warmup mechanism,
nodes would need an exponential amount of computation for updating their trust graphs. However,
inspired by this inefficient warmup scheme, we can later construct a better approach that achieves
polynomial time (see Section 3.4).

Note that if the trust graph always remains the complete graph, obviously it would satisfy the
aforementioned three invariants. However, keep in mind that the goal for trust graph maintenance
is to make sure that corrupt nodes do not hamper liveness. In our protocol, once a node starts to
misbehave in certain ways, each honest node would remove them from its trust graph such that
they would no longer care about reaching agreement with them.

In our warmup scheme, every node maintains its trust graph in the following manner:

Warmup: an inefficient trust graph maintenance mechanism

• Node removal upon equivocation evidence. First, upon receiving an equivocation evidence
implicating some node v ∈ [n], a node removes v from its trust graph as well as all v’s
incident edges. After the removal, call the post-processing mechanism described below
to update the trust graph.

• Pairwise distrust messages and edge removal. Sometimes, the consensus module of node
u can observe that a direct neighbor v in its trust graph has not followed the honest
protocol (e.g., u is expecting some message from v but v did not send it); however, u
may not have a cryptographic evidence to prove v’s misbehavior to others. In this case,
u’s consensus module calls the Distrust(v) operation

– When u’s trust graph module receives a Distrust(v) call, it signs and echoes a distrust
message (distrust, (u, v)).

– When a node w ∈ [n] receives a message of the form (distrust, (u, v)) signed by
u (w and u might be the same user), w removes the edge (u, v) from its own trust
grapha and calls the post-processing procedure.

• Post-processing for maintaining O(n/h) diameter. The diameter of the trust graph can
grow as nodes and edges are being removed. To maintain the property that honest nodes’
trust graphs have small diameter, each node performs the following post-processing every
time it removes a node or an edge from its trust graph (recall that h denotes the number
of honest nodes):

– Repeat: find in its trust graph a node or an edge that is not contained in a clique of
size h (henceforth, such a clique is called an h-clique), and remove this node or edge;
Until no such node or edge exists.

– u then removes any node that is disconnected from u in u’s trust graph

Note that the post-processing may be inefficient since it is NP-hard to decide whether
there exists an h-clique in a graph.

aSince each node will receive its own messages at the beginning of the next round, when a node u calls
Distrust(v), the edge (u, v) will be removed from its own trust graph at the beginning of the next round.

8

Remark 1. Note that a (distrust, (u, v)) message is only valid if it is signed by u, i.e., the first
node in the pair of nodes — this makes sure that corrupt nodes cannot misuse distrust messages
to cause an edge between two honest nodes to be removed (in any honest node’s trust graph).

Suppose that an honest node never declares Distrust on another honest node — note that this
is a condition that our protocol must respect and it will be proved in Theorem 4.2 of Section 4.
It is not too hard to check that the monotonicity invariant is maintained due to the implicit
echoing assumption. We can also check that honest nodes indeed form a clique in all honest nodes’
trust graphs. However, proving that all honest nodes’ trust graphs have O(n/h) diameter is more
technical: it relies on the following graph theoretical observation:

Claim 3.1 (Small diameter of h-clique graphs). Any h-clique graph must have diameter at most
d = ⌈n/h⌉ + ⌊n/h⌋ − 1 where an h-clique graph is one such that every node or edge is contained
within an h-clique.

Proof. We will prove by contradiction. Assume an h-clique-graph G = (V,E) has diameter d′ > d.
This means that there exists a path u0, u1, · · · , ud′ on G which is the shortest path between two
nodes u0 and ud′ . By definition, there exists an h-clique Ci containing both ui and ui+1 for any
0 ≤ i ≤ d′ − 1. Further, any Ci and Cj must be disjoint if i− j ≥ 2. Otherwise, there would exist
a path between uj and ui+1 of length 2, contradicting our assumption that the path is the shortest
path. We now discuss different scenarios based on whether n is perfectly divided by h.

• If n mod h ̸= 0, suppose n = k · h+ l where k is the quotient of n divided by h and l ∈ (0, h)
is the remainder. By definition, d = ⌈n/h⌉+ ⌊n/h⌋ − 1 = 2k is even and d′ > 2k. Thus,∣∣∣C0 ∪ C1 ∪ · · · ∪ Cd′−1

∣∣∣ ≥ ∣∣∣C0 ∪ C2 ∪ · · · ∪ C2k

∣∣∣ = ∣∣∣C0

∣∣∣+ ∣∣∣C2

∣∣∣+ · · ·+ ∣∣∣C2k

∣∣∣
≥ h · (k + 1) > k · h+ l = n.

(1)

The equation in the first line holds because C0, C2, · · · , C2k are disjoint. We reach a contra-
diction here since we only have n nodes.

• If n is perfectly divided by h, i.e., n = k · h for some integer k, then d = 2k − 1 is an odd
number. We then have d′ ≥ 2k and,∣∣∣C0 ∪ C1 ∪ · · · ∪ Cd′−2

∣∣∣ ≥ ∣∣∣C0 ∪ C2 ∪ · · · ∪ C2k−2

∣∣∣ = ∣∣∣C0

∣∣∣+ ∣∣∣C2

∣∣∣+ · · ·+ ∣∣∣C2k−2

∣∣∣ ≥ h · k = n.

(2)
This means that C0 ∪C1 ∪ · · · ∪Cd′−2 already covers all nodes in the graph. So the diameter
of the graph should be d′ − 1, contradicting our assumption that the diameter is d′.

This concludes our proof that the diameter of any h-clique-graph is upper-bounded by d = ⌈n/h⌉+
⌊n/h⌋ − 1.

This upper bound is tight and can be reached when the graph is a multi-layer graph (see Figure
1), where the layer sizes alternate between 1 and h − 1. In Figure 1, a node is connected with all
other nodes in its own layer and the two neighboring layers. Formally, let us denote Si as the set
of nodes in the ith layer (0 ≤ i ≤ d). The graph G = (V,E) satisfies

|Si| =

{
1 if i is even
h− 1 if i is odd

, V =

d∪
i=0

Si, E =
(d∪

i=0

(Si × Si)
)
∪
(d∪

i=1

(Si−1 × Si)
)
.

We state the following theorem about the warmup scheme.

9

…
h-1 clique

…
…

…
h-1 clique

…

…
h-1 clique

…

Figure 1: A multi-layer graph with the layer size alternating between 1 and h − 1. Each layer is
completely connected within itself.

Theorem 3.2 (Inefficient trust graph mechanism). Suppose that an honest node never declares
Distrust on another honest node (which is proven to be true in Section 4). Then, the above trust
graph maintenance mechanism satisfies the honest clique invariant, the monotonicity invariant,
and moreover, at any point of time, any honest node’s trust graph has diameter at most d =
⌈n/h⌉+ ⌊n/h⌋ − 1.

Proof. To see the honest clique invariant, first observe that no honest node will ever see an equivo-
cation evidence implicating an honest node assuming that the signature scheme is ideal. Therefore,
an honest node can never remove another honest node from its trust graph due to having observed
an equivocation evidence. Furthermore, since an honest node never declares Distrust on another
honest node, no honest node will ever remove an edge between two honest nodes in its trust graph.

The monotonicity invariant follows from the implicit echoing of honest nodes and the fact that
if (1) Gu is a subset of Gv and (2) an edge e is not in any h-clique in Gv, then e is also not in any
h-clique in Gu. We can prove the monotonicity invariant using induction. In the base case where
the round number r = 0, the trust graph is a complete graph. Thus, for any two honest nodes
u and v, G1

v ⊆ G0
u always holds. We will show that for any round number r, Gr+1

v ⊆ Gr
u implies

Gr+2
v ⊆ Gr+1

u . Suppose in round r, u receives distrust messages and equivocation proofs on edges
e1, · · · , em. u’s trust graph in round r + 1 would then be

Gr+1
u ← for i = 1 to m,

(
apply (remove ei) and post-processing on Gr

u

)
.

The post-processing removes any edge not in any h-clique. Therefore, this is equivalent to

Gr+1
u ← apply post-processing on Gr

u/{e1, · · · , em}.3

Since each honest node echoes all fresh messages it receives, v would receive the distrust messages
and equivocation proofs on edges e1, · · · , em in round r + 1. Therefore,

Gr+2
v ⊆ apply post-processing on Gr+1

v /{e1, · · · , em}.4

If Gr+1
v ⊆ Gr

u, then Gr+1
v /{e1, · · · , em} ⊆ Gr

u/{e1, · · · , em}. Thus, if an edge is not in any h-clique
in Gr

u/{e1, · · · , em}, it is also not in any h-clique in Gr+1
v /{e1, · · · , em}. This means that the post-

processing does not change this subset relationship and Gr+2
v ⊆ Gr+1

u holds. This completes our
induction proof on the monotonicity invariant.

Finally, to show the statement about the diameter, observe that the post-processing procedure
ensures that the resulting trust graph is an h-clique graph. Now the statement follows due to
Claim 3.1.

3The reason we apply post processing after each edge removal is to guarantee that the diameter of the trust graph
is upper bounded by d at any point of the protocol.

4v might have received additional distrust messages or equivocation proofs.

10

3.4 An Efficient Trust Graph Maintenance Mechanism
Although the warmup mechanism in Section 3.3 is inefficient, we can draw some inspiration from
it and design an efficient polynomial-time algorithm. In our efficient mechanism, we will maintain
every node’s trust graph to have diameter at most d, rather than insisting on the more stringent
requirement that the graph must be an h-clique graph.

Our idea is to modify the post-processing procedure in the earlier inefficient mechanism to the
following efficient approach. Recall that we use N(v,G) to represent the set of v’s neighbors in G.
If the graph G we are referring to is clear, we just abbreviate it as N(v).

Post-processing for a user u: Iteratively find an edge (v, w) in the trust graph such that
|N(v)∩N(w)| < h, and remove the edge; until no such edge can be found. Afterwards, remove
all nodes disconnected from u in u’s trust graph.

We first show that the new post-processing does not remove edges between honest nodes. Upon
termination, it also guarantees that the diameter of the trust graph is upper bounded by O(n/h).

Lemma 3.3. The post-processing (1) only removes edges not in any h-clique and (2) guarantees
that the diameter of the trust graph is upper bounded by d = ⌈n/h⌉+ ⌊n/h⌋ − 1.

Proof. Let us consider post-processing on a node u’s trust graph Gu. For each edge (v, w) removed
during post-processing, |N(v,Gu) ∩ N(w,Gu)| < h holds (we only discuss the graph Gu here, so
we will abbreviate the neighbor sets as N(v) and N(w)). Any clique containing (v, w) can only
contain nodes that are in N(v) ∩ N(w). So there does not exist an h-clique in Gu that contains
(v, w).

We also need to prove that the diameter of the trust graph becomes no larger than d after the
post processing. From this point, we will use Gu just to refer to the trust graph of u when the
the post-processing terminates. Suppose on the contrary, the diameter of Gu is larger than d. The
post processing guarantees that for any (v, w) ∈ Gu, |N(v) ∩N(w)| ≥ h. Since the diameter of Gu

is larger than d, there must exist two nodes v, w ∈ Gu such that d(v, w,Gu) = d+1. We define the
following notations:

• Suppose the shortest path between v and w is v0, · · · , vd+1, where v0 is node v and vd+1 is
node w.

• We use Si to denote the set of nodes distance i away from v, i.e., Si = {v′ | d(v, v′, Gu) = i}.

By definition, for any i ̸= j, Si and Sj should be disjoint. Further, any vi should belong to the set
Si. Therefore, any N(vi) should be a subset of Si−1 ∪ Si ∪ Si+1. Since |N(vi)∩N(vi+1)| ≥ h holds
for any 0 ≤ i ≤ d, we have

h ≤ |N(vi) ∩N(vi+1)| ≤ |(Si−1 ∪ Si ∪ Si+1) ∩ (Si ∪ Si+1 ∪ Si+2)| = |Si ∪ Si+1| = |Si|+ |Si+1|.

We construct a graph G′ = (V ′, E′) by connecting all nodes between any Si and Si+1, i.e.,

V ′ =
d+1∪
i=0

Si, E′ =
(d+1∪

i=0

(Si × Si)
)
∪
(d∪

i=0

(Si × Si+1)
)
.

For every 0 ≤ i ≤ d, the set Si∪Si+1 forms a clique in G′. And since |Si|+ |Si+1| ≥ h holds for any
0 ≤ i ≤ d, G′ is an h-clique graph. However, G′ has diameter d+1. This violates Claim 3.1, which
proves that the diameter of any h-clique graph is upper bounded by d. We reach a contradiction
here. Therefore, after the post-processing terminates, the diameter of the trust graph is no larger
than d. This completes our proof.

11

In the efficient trust graph maintenance mechanism, the monotonicity invariant is not as ap-
parent. We need to show that if an honest node u removes an edge during post-processing, another
honest node v would remove this edge as well in the next round. This can be achieved with the
help of the following claim.

Lemma 3.4. If G is a subgraph of H and we use the post-processing algorithm on both G and H
to get G′ and H ′, then G′ would still be a subgraph of H ′.

Proof. Let us suppose that post-processing removes edges e1 = (u1, v1), · · · , em = (um, vm) from
H in order and we denote Hi = H/{e1, · · · , ei}. By definition of the post-processing algorithm, it
must be that for any 1 ≤ i ≤ m,

|N(ui,Hi−1) ∩N(vi,Hi−1)| < h.

We will prove using induction that e1, · · · , em would be removed from G when we run the post-
processing algorithm on G. Firstly, since G ⊆ H, we have

|N(u1, G) ∩N(v1, G)| ≤ |N(u1,H) ∩N(v1,H)| < h.

Therefore, if e1 ∈ G, it would be removed during post-processing. Let us suppose that post-
processing has already removed e1, · · · , ei from G, and we denote the graph at this point as Gi. By
our assumption,

Gi ⊆ G/{e1, · · · , ei} ⊆ H/{e1, · · · , ei} = Hi.

Since |N(ui+1,Hi) ∩N(vi+1,Hi)| < h, we have |N(ui+1, Gi) ∩N(vi+1, Gi)| < h. This implies that
post-processing would remove ei+1 as well. This completes our induction proof.

Using Lemma 3.3 and Lemma 3.4, we can prove Theorem 3.5 as follows.

Theorem 3.5 (Efficient trust graph mechanism). Suppose that an honest node never declares Distrust
on another honest node (which is proven to be true in Section 4). Then, the efficient trust graph
maintenance mechanism satisfies the honest clique invariant, the monotonicity invariant, and more-
over, at any point of time, any honest node’s trust graph has diameter at most d = ⌈n/h⌉+⌊n/h⌋−1.

Proof. The honest clique invariant is not affected by the changes to the post-processing. As argued
in the proof of Theorem 3.2, it holds as long as an honest node never declares Distrust on another
honest node. By Lemma 3.3, the diameter of the trust graph is at most d after calling the post-
processing. Since we always call the post-processing algorithm whenever we remove an edge, the
diameter of the trust graph is always upper bounded by d.

It remains to show that the monotonicity invariant holds in the efficient trust graph mechanism.
The proof idea is the same as in the proof of Theorem 3.5. But we state it again for completeness.
We will show by induction that for any honest user u, v and any round number r, Gr+1

v ⊆ Gr
u. In

the base case where r = 0, G1
v ⊆ G0

u always holds since G0
u is a complete graph. We still need to

show that for any round number r, Gr+1
v ⊆ Gr

u implies Gr+2
v ⊆ Gr+1

u .
Suppose that in round r, u has received distrust messages and equivocation proofs on edges

e1, · · · , em. u would then remove e1, · · · , em from Gr
u and call the post-processing algorithm after

each removal. The resultant trust graph would be Gr+1
u . It can be shown using Lemma 3.4 that

this is equivalent to first removing e1, · · · , em and then calling the post-processing algorithm only
once. In other words,

Gr+1
u = apply post-processing on Gr

u/{e1, · · · , em}.

12

In round r + 1, u would echo the distrust messages and equivocation proofs to v. v would remove
the edge e1, · · · , em from Gr+1

v and call the post-processing algorithm after each removal. Again,
we have

Gr+2
v ⊆ apply post-processing on Gr+1

v /{e1, · · · , em}.

Since Gr+1
v ⊆ Gr

u, Gr
u/{e1, · · · , em} should also be a subset of Gr+1

v /{e1, · · · , em}. So by Lemma
3.4, Gr+1

u should be a subgraph of Gr+2
v . This completes our induction proof. Therefore, the

monotonicity invariant holds in the efficient trust graph mechanism.

Finally, observe that the trust graph module’s communication (including implicit echoing of
graph messages) is upper bounded by Õ(n4) (the Õ hides the log n terms needed to encode a
node’s identifier). This is because there are at most O(n2) number of effective distrust messages
and everyone will echo each such message seen to all nodes.

4 New Building Block: the TrustCast Protocol
Starting from this section, we will be describing the consensus module. In this section, we first
describe an important building block called TrustCast which will play a critical role in our BB
protocol. Before describing the consensus module, we first clarify the order in which the trust
module and consensus module are invoked within a single round:

1. At the beginning of the round, a node u receives all incoming messages.

2. Next, u’s trust graph module processes all the graph-messages and updates its local trust
graph:

• Process all the freshly seen Distrust messages and remove the corresponding edges from
its trust graph.

• Check for new equivocation evidence: if any equivocation evidence is seen implicating
any v ∈ [n], remove v and all edges incident to v from the node’s own trust graph.

Recall also that every time an edge or node is removed from a node’s trust graph, a post-
processing procedure is called to make sure that the trust graph still has O(n/h) diameter
(see Section 3.4).

3. Now, u’s consensus module processes the incoming consensus messages, and computes a set of
messages denotedM to send in this round. The rules for computing the next messagesM are
specified by our Byzantine Broadcast protocol (Section 5) which calls the TrustCast protocol
(this section) as a building block. The protocol is allowed to query the node’s current trust
graph (i.e., the state after the update in the previous step).

4. Finally, u sends M to everyone; additionally, for every fresh message first received in this
round, u relays it to everyone (recall the “implicit echoing” assumption).

Henceforth, in our consensus module description, whenever we say “at the beginning of round
r”, we actually mean in round r after Step (2), i.e., after the trust graph module makes updates
and yields control to the consensus module.

13

4.1 The TrustCast Protocol

Motivation and intuition. We introduce a TrustCast protocol that will be used as a building block
in our Byzantine Broadcast protocol. In the TrustCast protocol, a sender s ∈ [n] has a message m
and wants to share m with other parties. At the end of the TrustCast protocol, any honest node
either receives a message from s or removes s from its trust graph. The TrustCast protocol does
not guarantee consistency: if the sender is corrupt, different honest parties may output different
messages from the sender. However, if the sender is indeed honest, then all honest parties will output
the message that the sender sends. Very remotely, the TrustCast protocol resembles the notion of
a “reliable broadcast” [17] or a “gradecast” [8, 9] which is a weakening of Byzantine Broadcast —
many existing works in the consensus literature bootstrap full consensus (or broadcast) from either
reliable broadcast or gradecast. Similarly, we will bootstrap Byzantine Broadcast from TrustCast;
however, we stress that our definition of the TrustCast abstraction is novel, especially in the way
the abstraction is tied to the trust graph.
Abstraction and notations. A TrustCast protocol instance must specify a sender denoted s ∈ [n];
furthermore, it must also specify a verification function Vf for receiving nodes to check the validity
of the received message. Therefore, we will use the notation TrustCastVf,s to specify the verification
function and the sender of a TrustCast instance. Given a node u ∈ [n] and a message m, we also
use the following convention

u.Vf(m) = true in round r

to mean that the message m passes the verification check Vf w.r.t. the node u in round r.
In our Byzantine Broadcast protocol, whenever a sender s calls TrustCastVf,s to multicast a

messagem, the verification function Vf and the messagemmust respect the following two conditions
— only if these conditions are satisfied can we guarantee that honest nodes never distrust each other
(see Theorem 4.2).

• Validity at origin. Assuming that the leader s is honest, it must be that s.Vf(m) = true in
round 0, i.e., at the beginning of the TrustCastVf,s protocol.

• Monotonicity condition. We say that Vf satisfies the monotonicity condition if and only if the
following holds. Let r < t and suppose that u, v ∈ [n] are honest. Then, if u.Vf(m) = true in
round r, it must hold that v.Vf(m) = true in round t as well. Note that in the above, u and
v could be the same or different parties.

The first condition guarantees that an honest sender always verifies the message it sends. The
second condition, i.e., the Monotonicity condition, guarantees that if an honest node successfully
verifies a message, then that message would pass verification of all other honest nodes in future
rounds. Together, the two conditions imply that the honest sender’s message would pass verification
of all honest nodes.
TrustCast protocol. We describe the TrustCastVf,s(m) protocol below where a sender s ∈ [n] wants
to propagate a message of the form m = (T, e, payload) whose validity can be ascertained by the
verification function Vf. Recall that by our common assumptions (see Section 3.2), honest nodes
echo every fresh message seen. Moreover, if an honest node u ∈ [n] sees the sender’s signatures
on two messages with the same (T, e) but different payloads, then u removes the sender s from its
trust graph. For brevity, these implicit assumptions will not be repeated in the protocol description
below.

14

Protocol TrustCastVf,s(m)
Input: The sender s receives an input message m and wants to propagate the message m to
everyone.
Protocol: In round 0, the sender s sends the message m along with a signature on m to
everyone.
Let d = ⌈n/h⌉+ ⌊n/h⌋ − 1, for each round 1 ≤ r ≤ d, every node u ∈ [n] does the following:

(⋆) If no message m signed by s has been received such that u.Vf(m) = true in round r, then
for any v that is a direct neighbor of u in u’s trust graph: if v is at distance less than r
from the sender s, call Distrust(v).

Outputs: At the beginning of round d+1, if (1) the sender s is still in u’s trust graph and (2)
u has received a message m such that u.Vf(m) = true, then u outputs m.

To better understand the protocol, consider the example where the sender s is a direct neighbor
of an honest node u in u’s trust graph. This means that u “trusts” s, i.e., u thinks that s is an
honest user. Therefore, u expects to receive s’s message in the first round of the TrustCast protocol.
If u has not received from s in the first round, it knows that s must be corrupted. It would thus
remove the edge (u, s) from u’s trust graph.

Similarly, if s is at distance r from u in u’s trust graph, then u should expect to receive a valid
message signed by s in at most r rounds. In case it does not, then u can be convinced that all of its
direct neighbors that are at distance r−1 or smaller from s in its trust graph must be malicious —
therefore u calls Distrust to declare distrust in all such neighbors. Note that the distrust messages
generated in round r will be processed at the beginning of round r + 1. We now utilize the above
intuition to prove that the TrustCast protocol satisfies the following properties:

• At the end of the TrustCast protocol, any honest node either receives a message from s or
removes s from its trust graph (Theorem 4.1).

• In the TrustCast protocol, we never remove edges between two honest nodes in any honest
node’s trust graph (Theorem 4.2).

In the rest of the paper, we always use the variable d to represent ⌈n/h⌉+ ⌊n/h⌋ − 1.

Theorem 4.1. Let u ∈ [n] be an honest node. At the beginning of round d + 1, either the sender
s is removed from u’s trust graph or u must have received a message m signed by s such that
u.Vf(m) = true in round r.

Proof. By the definition of the TrustCastVf,s protocol, if in round r, the node u has not received a
message m signed by s such that u.Vf(m) = true in round r, then u will call Distrust(v) for each of
its neighbors v that is within distance r− 1 from s. The Distrust(v) operation generates a distrust
message that will be processed at the beginning of round r+1, causing u to remove the edge (u, v)
from its trust graph. After removing the edge (u, v), the trust graph module will also perform
some post-processing which may further remove additional edges and nodes. After this procedure,
s must be at distance at least r + 1 from u or removed from u’s trust graph.

By setting the round number r to d, we can conclude that at the beginning of round d+1, if u
has not received a message m signed such that u.Vf(m) = true, then s must be either at distance
at least d + 1 from u or removed from u’s trust graph. Yet, u’s trust graph must contain a single
connected component containing u, with diameter at most d. So s must be removed from u’s trust
graph.

15

Theorem 4.2. If the validity at origin and the monotonicity conditions are respected, then an honest
node u ∈ [n] will never call Distrust(v) where v ∈ [n] is also honest.

Proof. We can prove by contradiction: suppose that in round r ∈ [1, d], an honest user u calls
Distrust(v) where v ∈ [n] is also honest. This means that in round r, u has not received a messagem
signed by s such that u.Vf(m) = true in round r. Due to the implicit echoing and the monotonicity
condition of Vf, it means that in round r−1, v has not received a message m signed by s such that
v.Vf(m) = true in round r − 1. We may now consider two cases:

• Case 1: suppose r − 1 = 0. If the validity at origin condition holds, then v cannot be the
sender s. In this case u cannot call Distrust(v) in round 0 because v is at distance at least 1
from the sender s.

• Case 2: suppose r−1 > 0. By definition of the TrustCastVf,s protocol, in round r−1, v would
send Distrust(w) for any w within distance r − 2 from s in Gr−1

v . Suppose v sends distrust
messages on w1, · · · , wl and we denote the graph G′ ← Gr−1

v /{(v, w1), · · · , (v, wl)}. Then, in
G′, the distance between v and s should be at least r. Let us now consider node u and u’s
trust graph. By trust graph monotonicity, u’s trust graph at the beginning of round r, i.e.,
Gr

u, should be a subset of Gr−1
v . Further, u would receive v’s distrust messages on w1, · · · , wl

in round r. Thus,
Gr

u ⊆ Gr−1
v /{(v, w1), · · · , (v, wl)}.

This implies that the distance between v and s in Gr
u should be at least r, contradicting our

assumption that the distance between v and s is r − 1.

In either case, we have reached a contradiction.

In this section, we provided a TrustCast protocol with nice properties (Theorem 4.1 and 4.2)
related to the trust graph. In the next section, we will show how to bootstrap full consensus from
the TrustCast protocol.

Remark 2. Later, when TrustCast is invoked by a parent protocol, it could be invoked in an arbitrary
round rinit of the parent protocol; moreover, at invocation, honest nodes’ trust graphs need not be
complete graphs. In this section, our presentation assumed that the initial round is renamed to
round 0 (and all the subsequent rounds are renamed correspondingly).

5 Byzantine Broadcast under Static Corruptions
We first present a Byzantine Broadcast (BB) protocol assuming an ideal leader election oracle and
assuming static corruptions. In subsequent sections, we will remove this idealized leader election
oracle through cryptography.

5.1 Definitions and Notations

Leader election oracle. We use Fleader to denote an ideal leader election oracle. The protocol
proceeds in epochs denoted e = 1, 2, . . ., where each epoch consists of O(d) number of rounds. We
assume that

• The leader of epoch 1, denoted L1, is the designated sender of the Byzantine Broadcast.

16

• At the beginning of each epoch e > 1, Fleader chooses a fresh random Le from [n] and
announces Le to every node. Le is now deemed the leader of epoch e.

Commit evidence. In our Byzantine Broadcast protocol, each node uses the TrustCast protocol
to send messages until it becomes confident as to which bit to commit on. Afterwards, it needs to
convince other nodes to also commit on this bit using what we call a commit evidence. In other
words, once a node generates a valid commit evidence, all other nodes that receive it will commit
on the corresponding bit. At a high level, we want the commit evidence to satisfy the following
properties.

• It is impossible for two nodes to generate valid commit evidences on different bits.

• If the leader in this epoch is honest, at least one honest node should be able to generate a
commit evidence on the leader’s proposed bit.

The first property guarantees consistency while the second property guarantees liveness. We first
show what we define to be a commit evidence in our protocol. After we describe our protocol in
Section 5.2, we will prove that this definition satisfies the two properties above.

Fix an epoch e and a bit b ∈ {0, 1}. We say that a collection E containing signed messages of
the form (vote, e, b) is an epoch-e commit evidence for b w.r.t. Gr

u iff for every v ∈ Gr
u, E contains

a signed message (vote, e, b) from v. Recall that Gr
u is u’s trust graph at the beginning of round

r (after processing graph-messages). We also call an epoch-e commit evidence for b w.r.t. Gr
u “a

commit evidence for (e, b) w.r.t. Gr
u”.

Fix u ∈ [n] and the round r. We say that a commit evidence for (e, b) w.r.t. Gr
u is fresher than

a commit evidence for (e′, b′) w.r.t. Gr
u iff e′ > e. Henceforth, we will assume that ⊥ is a valid

epoch-0 commit evidence for either bit.

Remark 3. In our protocol description, if we say that “node u ∈ [n] sees a commit evidence for
(e, b) in round r”, this means that at the beginning of the round r, after having processed graph-
messages, node u has in its view a commit evidence for (e, b) w.r.t. Gr

u. If we say “node u ∈ [n]
sees a commit evidence for (e, b)” without declaring the round r explicitly, then implicitly r is taken
to be the present round.

Lemma 5.1 (Commit evidence monotonicity lemma). Let u, v ∈ [n] be honest nodes. A commit
evidence for (e, b) w.r.t. Gr

u must be a commit evidence for (e, b) w.r.t. Gt
v for any t > r. Note

that in the above, u and v can be the same or different node(s).

Proof. Due to the trust graph monotonicity lemma, we have Gt
u ⊆ Gr

v since t > r. The fact then
follows directly.

5.2 Protocol
Our protocol proceeds in incrementing epochs where each epoch consists of three phases, called
Propose, Vote, and Commit, respectively. Each phase has O(d) (d = ⌈n/h⌉ + ⌊n/h⌋ − 1) rounds.
Intuitively, each phase aims to achieve the following objectives:

• Propose: the leader uses the TrustCast protocol to share the freshest commit evidence it has
seen.

• Vote: each node uses the TrustCast protocol to relay the leader’s proposal it receives in the
propose phase. At the end of the vote phase, each node checks whether it can construct a
commit evidence.

17

• Commit: nodes use the TrustCast protocol to share their commit evidence (if any exists).

Besides the three phases, there is also a termination procedure (with the entry point Terminate)
that runs in the background and constantly checks whether the node should terminate. To apply
the TrustCast protocol in each phase, we need to define the corresponding verification functions
such that the monotonicity condition and the validity at origin condition (defined in Section 4.1)
are satisfied. Finally, we need to show that the commit evidence satisfies the properties mentioned
in Section 5.1.

Throughout the paper, we use the notation _ to denote a wildcard field that we do not care
about.

For each epoch e = 1, 2, . . .:

1. Propose (O(d) rounds): The leader of this epoch Le performs the following:

• Choose a proposal as follows:
– If e = 1, the sender L1 chooses P := (b,⊥) where b is its input bit.
– Else if a non-⊥ commit evidence (for some bit) has been seen, let E(e, b) denote
the freshest such commit evidence and let P := (b, E(e, b)).

– Else, the leader Le chooses a random bit b and let P := (b,⊥).
• Call an instance of the TrustCastVfprop,Le protocol to share the proposal (prop, e, P)

where the verification function Vfprop is defined as follows: v.Vfprop(prop, e, (b, E)) =
true in round r iff the following holds:
(a) E is a valid commit evidence vouching for the bit b proposed; and
(b) for every u ∈ Gr

v, E is at least as fresh as any commit evidence multicast by u in
the Commit phase of all previous epochs — recall that ⊥ is treated as a commit
evidence for epoch 0.

Notation: at the end of TrustCastVfprop,Le , for a node u ∈ [n], if Le is still in u’s trust
graph, we say that the unique message (prop, e, (b,_)) output by TrustCastVfprop,Le in
u’s view is Le’s proposal, and the corresponding bit b is Le’s proposed bit (in u’s view).

2. Vote (O(d) rounds): Every node u ∈ [n] performs the following:

• If Le is still in u’s trust graph, then set b′ := b where b ∈ {0, 1} is Le’s proposed bit;
else set b′ := ⊥.

• Use TrustCastVfvote,u to share a vote of the form (vote, e, b′) where the verification
function Vfvote is defined as follows: v.Vfvote(vote, e, b′) = true in round r iff either Le

has been removed from Gr
v, or b′ agrees with Le’s proposed bit (in v’s view).

3. Commit (O(d) rounds): Every node u ∈ [n] performs the following:

• If everyone still in u’s trust graph voted for the same bit b ∈ {0, 1} (as defined by the
outputs of the TrustCastVfvote,u protocols during the Vote phase), then output the bit b,
and moreover, use TrustCastVfcomm,u to multicast (comm, e, E) where E contains a signed
vote message of the form (vote, e,_) from everyone in u’s trust graph.

• Else, use TrustCastVfcomm,u to multicast the message (comm, e,⊥).

18

We define the verification function Vfcomm below. v.Vfcomm(comm, e, E) = true in round r
iff the following holds: if Le ∈ Gr

v, E must be a valid commit evidence for (e, b) where b
is Le’s proposed bit.

Terminate: In every round r, every node u checks whether there exists (e, b) such that u has
seen, from everyone in Gr

u, a signed message of the form (comm, e, E) where E a valid commit
evidence for (e, b). If so, u terminates (recall that by our implicit assumptions, the node u will
echo these messages to everyone before terminating).

Intuition for the verification functions: Recall that in Theorem 4.1, we show that at the end of
a TrustCastVf,s protocol, if the sender s remains in an honest node u’s trust graph, then u must
have received a message m signed by s such that u.Vf(m) = true. While the three verifications
Vfprop,Vfvote,Vfcomm seem complicated, they are more intuitive to understand when we look at
what Theorem 4.1 implies for each of them.

• TrustCastVfprop,Le guarantees: at the end of the propose phase in epoch e, if the leader Le

remains in an honest node u’s trust graph, then u has received a proposal from Le containing
the freshest commit evidence u has seen.

• For any node v, TrustCastVfvote,v guarantees: at the end of the vote phase in epoch e, if v
remains in an honest node u’s trust graph, then either (1) the leader Le is no longer in u’s
trust graph or (2) u has received v’s vote on a bit b which matches Le’s proposed bit (in u’s
view). In other word, if the leader Le remains in u’s trust graph at the end of the vote phase,
then u must have received votes on Le’s proposed bit from v from every node in u’s trust
graph.

• For any node v, TrustCastVfcomm,v guarantees: at the end of the commit phase in epoch e, if
v remains in an honest node u’s trust graph, then either (1) the leader Le is no longer in
u’s trust graph or (2) u has received a valid commit evidence on Le’s proposed bit from v.
Similarly, this is equivalent to saying that if the leader Le remains in u’s trust graph at the
end of the commit phase, then u must have received a commit evidence on Le’s proposed bit
from v.

Further, in Theorem 4.2, we show that if the verification functions respect the monotonicity condi-
tion and validity at origin, then honest nodes always remain connected in any honest node’s trust
graph. Assume the three verification functions satisfy those properties, then if the leader Le is
honest, for any honest node u:

• In the propose phase, u receives a proposal from Le containing the freshest commit evidence.

• In the vote phase, u receives consistent votes on Le’s proposed bit from every node in u’s
trust graph. This allows u to construct a commit evidence on Le’s proposed bit.

• In the commit phase, u receives a commit evidence on Le’s proposed bit from every node in
u’s trust graph. This allows u to terminate.

In the rest of the section, we will generalize the above intuitions into a formal proof of correctness
for our Byzantine Broadcast protocol.

19

5.3 Proof of Correctness for the Verification Functions
To apply the properties of the TrustCast protocol, we must show that our verification functions
respect the monotonicity condition and validity at origin. The proof is straightforward. The mono-
tonicity condition follows from the trust graph’s monotonicity invariant and our implicit echoing
assumption. The validity at origin property can be verified by taking the sender’s messages into
the verification functions and checking if the verification functions output true. For completeness,
we list the proof for each verification function and property as follows.
Remark 4. In Section 4, we proved two theorems (Theorem 4.1 and 4.2) regarding the TrustCast
protocol. Theorem 4.2 requires the verification function to respect the monotonicity condition
and validity at origin. However, Theorem 4.1 does not. It holds for arbitrary verification func-
tions. Therefore, we can apply Theorem 4.1 to prove that the verification functions respect the
monotonicity condition and validity at origin.
Lemma 5.2. Vfprop satisfies the monotonicity condition.
Proof. Recall that a propose message (prop, e, (b, E)) passes the verification check Vfprop w.r.t.
node u in round r iff:
(a) E is a valid commit evidence vouching for the bit b proposed; and

(b) for every v ∈ Gr
u, E is at least as fresh as any commit evidence multicast by v in the Commit

phase of all previous epochs.
Let u, v be two honest nodes and let r < t. Suppose that in round r, u verifies the message

(prop, e, (b, E)). In round t, v would check the same condition and we want to show that the check
will succeed.

If condition (a) holds for u in round r, then it must hold for v in round t by the commit evidence
monotonicity lemma. We now focus on condition (b) and assume e > 1 without loss of generality.
By the trust graph monotonicity lemma, Gt

v ⊆ Gr
u. By Theorem 4.1, for any node w ∈ Gt

v, v
must have received a commit message (comm, e′, E ′) from w in the Commit phase of every epoch
e′ < e. Moreover, E ′ must agree with what u has heard. Otherwise, u would have forwarded the
equivocating commit message to v (by the implicit echoing assumption) and v would have removed
the node w from its trust graph. By the commit evidence monotonicity lemma, if condition (b)
passes for u in round r it must pass for v in round t > r. We therefore conclude that the verification
must succeed w.r.t. v in round t.

Lemma 5.3. Vfvote satisfies the monotonicity condition.
Proof. Recall that a vote message (vote, e, b′) passes the verification check Vfvote w.r.t. node u in
round r iff: either Le has been removed from Gr

u, or b′ agrees with Le’s proposed bit.
Let u, v be two honest nodes, and let r < t. If in round r, the message (vote, e, b′) passes the

verification check Vfvote w.r.t. node u, then it must be that in round r, either Le /∈ Gr
u; or Le ∈ Gr

u

and u heard Le propose the same bit b′ ∈ {0, 1}.
If the former happens, then in round t, Le /∈ Gt

v by the trust graph monotonicity lemma and
thus in round t, (vote, e, b′) must pass the verification function Vfvote w.r.t. the node v.

If the latter happens, then if in round t, Le /∈ Gt
v then obviously the verification check Vfvote

would pass w.r.t. v in round t. Henceforth, we focus on the case when Le ∈ Gt
v. In this case, by

Theorem 4.1, v must have received a proposal from Le on some bit b′′. Further, by the implicit
echoing assumption, u would relay Le’s proposal on b′ to v. This implies that b′ = b′′, since otherwise
v would have detected equivocation from Le and removed Le from its trust graph. Therefore, in
round t, (vote, e, b′) must pass the verification function Vfvote w.r.t. the node v.

20

Lemma 5.4. Vfcomm satisfies the monotonicity condition.

Proof. Let u, v be honest nodes, and let r < t. If (comm, e, E) passes the verification Vfcomm w.r.t.
Gr

u, then either Le /∈ Gr
u or E is a commit evidence w.r.t. Gr

u. If the former case, by the trust graph
monotonicity lemma, Le /∈ Gt

v. If the latter case, then E is a commit evidence w.r.t. Gt
v due to the

commit evidence monotonicity lemma.

We now prove the validity at origin condition for all invocations of TrustCast.

Fact 5.5. If an honest node u uses TrustCast to send a (prop, e, P) message or a (vote, e, b) message
in some round r, the message satisfies the corresponding verification function, Vfprop or Vfvote,
respectively, w.r.t. the node u in round r.

Proof. For Vfprop, the proof is straightforward by construction. For Vfvote, the proof is also straight-
forward by construction, and additionally observing that if Le remains in an honest node u’s trust
graph, it cannot have signed equivocating proposals.

Fact 5.6. Suppose that in some epoch e by the end of the Vote phase, Le remains in an honest
node u’s trust graph. Then, by the end of the Vote phase of epoch e, u must have received a vote
message of the form (vote, e, b) (where b denotes the bit proposed by Le) from every node in u’s
trust graph.

Proof. By Theorem 4.1, if Le remains in u’s trust graph by the end of the Vote phase, u must have
received a proposal (prop, e,_) from Le in the propose phase. Moreover, for any v that remains in
u’s trust graph by the end of the Vote phase, u must have received a vote (vote, e, b) from v.

Now, the fact follows because u would check Vfvote on every vote it receives, and Vfvote makes
sure that the vote is only accepted if the vote agrees with Le’s proposal.

Fact 5.7. If an honest node umulticasts a (comm, e, E)message in some round r, the message satisfies
the verification function Vfcomm w.r.t. the node u in round r.

Proof. Follows directly from Fact 5.6.

We have shown that the three verification functions all respect the monotonicity condition and
validity at origin. Therefore, by Theorem 4.2, the TrustCast protocol never remove edges between
honest nodes in any honest node’s trust graph.

Lemma 5.8. For any two honest nodes u and v, throughout the entire Byzantine Broadcast protocol,
v remains one of u’s neighbors in u’s trust graph.

5.4 Consistency and Validity Proof
We first prove that our Byzantine Broadcast protocol achieves consistency, i.e., honest nodes always
output the same bit. We divide the proof into two parts. First, we show that within the same
epoch, two honest nodes cannot commit on different bits. Secondly, we show that even across
different epochs, consistency is still guaranteed.

Lemma 5.9 (Consistency within the same epoch). If an honest node u ∈ [n] sees an epoch-e commit
evidence for the bit b ∈ {0, 1} in some round r, and an honest node v ∈ [n] sees an epoch-e commit
evidence for the bit b′ ∈ {0, 1} in some round t, it must be that b = b′.

21

Proof. Let E be the epoch-e commit evidence seen by u in round r and let E ′ be the epoch-e commit
evidence seen by v in round t. Due to the honest clique invariant of the trust graph, E must contain
signatures on (vote, e, b) from every honest node, and E ′ must contain signatures on (vote, e, b̃)
from every honest node. However, each honest node will only vote for a single bit in any given
epoch e. It holds that b = b′.

Lemma 5.10 (Consistency across epochs). If an honest node u ∈ [n] outputs the bit b in some epoch
e, then in every epoch e′ > e, no honest node v ∈ [n] can ever see a commit evidence for (e′, 1− b).

Proof. By the protocol definition, for u to output b in epoch e, it must have seen a commit evidence
for (e, b) at the beginning of the Commit phase in epoch e. Now, during the Commit phase of epoch
e, u will use TrustCastVfcomm,u to share this commit evidence for (e, b), and all honest nodes will
receive it by the end of epoch e.

Now, during epoch e+1, every honest node will reject Le+1’s proposal (where reject means not
passing the Vfprop function) unless it is for the same bit b; and if they do reject Le+1’s proposal,
they will vote on ⊥. Therefore, in epoch e + 1, no honest node will vote for 1 − b, and no honest
node will ever see a commit evidence for (e+1, 1−b). Now, during epoch e+2, the freshest commit
evidence every honest node has seen will still be for the bit b; and thus all the reasoning for epoch
e + 1 holds and we can conclude that no honest node will vote for 1 − b in epoch e + 2; and thus
we can prove the statement by an inductive argument.

Theorem 5.11 (Consistency). If honest nodes u and v output b and b′, respectively, it must be that
b = b′.

Proof. For an honest node to output b in epoch e, it must observe a commit evidence for (e, b)
in epoch e. Consider the earliest epoch e in which an honest node, say, u′, outputs a bit b. By
definition, every other honest node will output in epoch e or greater. By Lemma 5.9, no honest
node will output 1 − b in epoch e. By Lemma 5.10, no honest node will output 1 − b in epoch
e′ > e.

Next, we show that our protocol achieves validity.

Theorem 5.12 (Validity). If the designated sender L1 is honest, then everyone will output the
sender’s input bit.

Proof. By Fact 5.6 and the honest clique invariant, for any honest node u, any node that remains
in its trust graph by the end of the Vote phase of epoch 1 must have multicast to u a vote of the
form (vote, e = 1, b) where b must agree with L1’s proposed bit. Thus, u will output b in epoch
1.

Theorem 5.11 and 5.12 together imply that our protocol achieves Byzantine Broadcast. It
remains to show that our protocol terminates and has expected constant round complexity.

Remark 5. Throughout the proof, we assumed that the signature scheme is ideal and there are
no signature forgeries. When we replace the ideal signature with a real-world instantiation, it will
introduce only negligible failure probability.

22

5.5 Round Complexity Analysis
Finally, we show that our protocol achieves liveness, i.e., all honest nodes eventually terminate.
Moreover, we analyze the round complexity and communication complexity of the protocol, show-
ing that the protocol terminates in expected O((n/h)2) rounds and has Õ(n4) communication
complexity.

Fact 5.13. If some honest node terminates in round r, then all honest nodes will have terminated
by the end of round r + 1.

Proof. If an honest node terminates in round r, it must have received consistent commit evidence
from every node in its trust graph. By the implicit echoing assumption, it would forward those
commit evidences to all other honest nodes before round r + 1. By the trust graph monotonicity
invariant and the commit evidence monotonicity lemma (Lemma 5.1), all other honest nodes would
gather enough commit evidence in round r + 1 and terminate as well.

The following theorem says that liveness will ensue as soon as there is an honest leader in some
epoch (if not earlier). Now if the leader election is random, this will happen in expected O(n/h)
number of epochs. Since each epoch is O(d) = O(n/h) rounds, every honest node outputs some bit
in expected O((n/h)2) rounds.

Theorem 5.14 (Liveness). If in some epoch e, the leader Le is honest, then one round after this
epoch, every honest node would have terminated.

Proof. Without loss of generality, we may assume that no node has terminated yet by the end
of epoch e, since otherwise by Fact 5.13, the theorem immediately holds. If no honest node has
terminated by the end of epoch e, then we may assume that everyone honest will participate in all
the TrustCast protocols till the end of epoch e and thus we can rely on the properties of TrustCast
in our reasoning.

Let u be an honest node. By Fact 5.6 and the honest clique invariant, at the end of the Vote
phase of epoch e, u must have received a vote message on Le’s proposed bit from every node in u’s
trust graph. Further, by applying Theorem 4.1 to TrustCastVfcomm,_, we know that by the end of
the Commit phase, u must have received a commit evidence on Le’s proposed bit from every node
in u’s trust graph. Thus, all honest nodes will have terminated by the end of epoch e.

In Theorem 5.14, we proved that as soon as some epoch has an honest leader, all honest nodes
will terminate at most 1 round after the epoch’s end. Each epoch has O(d) = O(n/h) number of
rounds, and with random leader election, in expectation we need O(n/h) number of rounds till we
encounter an honest leader. Thus, the expected round complexity is O((n/h)2). We can also show
that with probability 1− δ, the round complexity is bounded by log(1δ) ·

n
h/ log(

1
1−h/n).

The total number of consensus messages generated by honest nodes in each epoch (not counting
implicit echoing) is at most O(n). Each message is at most Õ(n) in size (the Õ hides the log n
terms needed to encode a node’s identifier). Each such consensus message will be delivered to
O(n) nodes and each node will echo every fresh message to everyone. Therefore, the total amount
of communication pertaining to the consensus module (including implicit echoing of consensus
messages) is Õ(n4) if everyone behaved honestly. On top of this, honest nodes also need to echo
messages sent by corrupt nodes and there can be (unbounded) polynomially many such messages.
However, we can easily make the following optimization: for consensus messages with the same type
and same epoch, every honest node echoes at most two messages originating from the same node
(note that this is sufficient to form an equivocation evidence to implicate the sender). With this

23

optimization, the per-epoch total communication for sending consensus messages is upper bounded
by Õ(n4). As mentioned earlier in Section 3, the total amount of communication for the trust
graph module is also upper bounded by Õ(n4). Thus, the total communication is upper bounded
by Õ(n4 · E) where E denotes the number of epochs till termination. Note that in expectation
E = n/h; moreover, with probability 1− δ, E is upper bounded by log(1δ)/ log(

1
1−h/n).

Theorem 5.15. The protocol described in this section (with an idealized leader election oracle)
achieves Byzantine Broadcast in expected O((n/h)2) number of rounds.

Proof. Follows directly from Theorems 5.11, 5.12 and 5.14.

5.6 Instantiating Leader Election under a Static Adversary
So far we assumed an ideal leader election oracle. We can instantiate this leader election oracle
using known cryptographic tools and obtain a protocol secure under the static corruption model.

We first explain a simple approach for instantiating the leader election oracle assuming that
corruption decisions are made statically, i.e., before the protocol starts.

The approach is the following. First, the adversary decides who to corrupt. Next, a common
random string crs ∈ {0, 1}λ is chosen where λ denotes a security parameter. Then, the protocol
execution begins. In each epoch e > 1, the leader Le is computed as follows where PRF denotes a
pseudo-random function:

For e > 1 : Le := (PRFcrs(e) mod n) + 1.

Note that in the above, it may seem counter-intuitive that the PRF’s secret key crs is publicly
known. This is because a static adversary selects the corrupted set before crs is generated. There-
fore, the adversary cannot adaptively corrupt the elected leader even if crs is publicly known. The
random variable we care about bounding is the number of rounds till we encounter an honest leader.
We want to show that the random variables in the ideal and real protocols are computationally
indistinguishable.

Henceforth, we use Πideal to denote the protocol in Section 5, and we use Πreal to denote the
same protocol, but instantiating the leader election as above. Let Rideal be the random variable
denoting the number of rounds till we have an honest leader in an execution of Πideal, and let Rreal

be the random variable denoting the number of rounds till we have an honest leader in an execution
of Πreal.

Lemma 5.16. Rideal and Rreal are computationally indistinguishable.

Proof. Πideal is essentially the same as Πreal but where the PRF is replaced with a random function
— notice also that under the static corruption model, publicly announcing the leader schedule after
the adversary determines which nodes to corrupt does not affect the random variable Rideal.

Suppose that Rideal and Rreal are computationally distinguishable. This means that there is
an efficient distinguisher D which, knowing the identities of the corrupt nodes and the sequence
of leaders chosen, can tell whether Πideal or Πreal is executing. Now, we can construct an efficient
reduction R that can distinguish with non-negligible probability whether the oracle it is interacting
with is a PRF or a random function. To do so, the reduction can interact with the adversary to
learn which nodes it wants to corrupt. Then, it queries the oracle to obtain the sequence of leaders.
It gives the identities of corrupt nodes and the sequence of leaders to D and outputs the same bit
as D. This contradicts PRF’s definition that a PRF is indistinguishable from a random function.
Therefore, Rideal and Rreal are computationally indistinguishable.

24

Therefore, we have the following theorem for the above real-world protocol Πreal.

Theorem 5.17. Assume the static corruption model and that the PRF adopted is secure. Then,
the aforementioned Πreal protocol achieves Byzantine Broadcast in expected O((n/h)2) number of
rounds.

Proof. Follows directly from Theorem 5.15 and Lemma 5.16.

6 Achieving Security under an Adaptive Adversary
In this section, we show how to change the protocol in Section 5 such that it achieves security even
under an adaptive adversary. The adaptive adversary can corrupt arbitrary node during any round
of the protocol, as long as the total number of nodes it corrupts does not exceed a given upper
bound f . However, when the adaptive adversary corrupts a node u in round r, it cannot erase
the message u has already sent in round r. Such a model is also referred to as weakly adaptive in
earlier works.

One of the cryptographic primitives that we use is the verifiable random functions (VRF). VRF
allows nodes to generate randomness that can be verified by other users. We provide the definition
of VRF in Section 6.1.

6.1 Preliminary: Verifiable Random Functions
A verifiable random function (VRF) [18] includes the following (possibly randomized) algorithms:

• (pp, {pku, sku}u∈[n])← Gen(1λ): takes in a security parameter λ and generates public parameters
pp, and a public and secret key pair (pku, sku) for each node u ∈ [n]; each sku is of the form
sku := (su, ρu) where su is said to be the evaluation key and ρu is said to be the proof key for u.

• (y, π) ← Eval(pp, sku, x): we shall assume that Eval := (E,P) has two sub-routines E and P
where Eval.E is deterministic and Eval.P is possibly randomized. Given the public parameters
pp, the secret key sku = (su, ρu), and input x ∈ {0, 1}|x|, compute y := Eval.E(pp, su, x) and
π := Eval.P (pp, su, ρu, x), and output (y, π).

• {0, 1} ← Ver(pp, pku, x, y, π): receives the public parameters pp, a public key pku, an input
x, a purported outcome y, and a proof π, outputs either 0 indicating rejection or 1 indicating
acceptance.

For the VRF scheme to satisfy correctness, we require that for any v ∈ [n], for any input
x, the following holds with probability 1: let (pp, {pku, sku}u∈[n]) ← Gen(1λ), and let (y, π) ←
Eval(pp, skv, x), then it must be that Ver(pp, pkv, x, y, π) = 1.

6.1.1 Pseudorandomness under Selective Opening

To define pseudorandomness under selective opening, we shall consider two games. The first game
is intended to capture that the evaluation outcome, i.e., the y term output by Eval, is pseudorandom
even when A can selectively corrupt nodes and open the first component of the corrupted nodes’
secret keys. The second game captures the notion that the proof π does not reveal anything
additional even under an adaptive adversary.
First game: pseudorandomness of the evaluation outcome. We consider a selective opening
adversary A that interacts with a challenger denoted C in the following experiment ExptAb (1

λ)
indexed by the bit b ∈ {0, 1}.

25

ExptAb (1
λ):

• First, the challenger C runs the Gen(1λ) algorithm and remembers the secret key components
(s1, . . . , sn) for later use. Note that C need not give public parameters to A.

• Next, the adversary A can adaptively make queries of the following forms:

– Evaluate: A submits a query (u, x), now C computes y ← Eval.E(pp, su, x) and gives
y to A.

– Corrupt: A specifies an index u ∈ [n] to corrupt, and C parses sku := (su, ρu) and
reveals su to A.

– Challenge: A specifies an index u∗ ∈ [n] and an input x. If b = 0, the challenger returns
a completely random string of appropriate length. If b = 1, the challenger computes
y ← Eval.E(pp, su∗ , x) and returns y to the adversary.

We say that A is compliant iff with probability 1, every challenge tuple (u∗, x) it submits satisfies
the following: 1) A does not make a corruption query on u∗ throughout the game; and 2) A does
not make any evaluation query on the tuple (u∗, x).

If no efficient and compliant adversary can effectively distinguish ExptA0 (1
λ) and ExptA1 (1

λ), then
we can be sure that the evaluation outcome of the VRF is pseudorandom even with an adaptive
adversary.
Second game: zero-knowledge of the proofs. We also need to make sure that the proof part is
zero-knowledge even w.r.t. an adaptive adversary. Therefore, we define another game below where
the adversary A tries to distinguish whether it is playing in the real-world experiment or in the
ideal-world experiment:

• Real-world experiment Real: In the real-world experiment, the challenger runs the Gen(1λ)
algorithm and gives the public parameters pp and all public keys pk1, . . . , pkn to A, but keeps
sk1, . . . , skn to itself. Next, A can adaptively make the following queries:

– Evaluate: A submits a query (u, x), C computes (y, π) ← Eval(pp, sku, x) and gives (y, π)
to A.

– Corrupt: A specifies an index u ∈ [n] to corrupt. C reveals not only sku to A, but also all
the randomness used in the Eval algorithm for any earlier Evaluate query pertaining to u.

• Ideal-world experiment IdealS0,S1,S2,S3 : First, the challenger C runs a simulated setup algo-
rithm

(s1, . . . , sn)← S0(1λ);
(pp, pk1, . . . , pkn, τ)← S1(1λ);

it gives the public parameters pp and all public keys pk1, . . . , pkn to A, but keeps the trapdoor
τ to itself.
Next, A can adaptively make the following queries:

– Evaluate: A submits a query (u, x), and now the simulator computes y := Eval.E(pp, su, x),
and π ← S2(τ, pku, x, y) and gives y, π to A.

26

– Corrupt: A specifies an index u ∈ [n] to corrupt. Let I denote the indices of the earlier
Evaluate queries that correspond to the node u ∈ [n]; and moreover, for i ∈ I, let the i-th
query be of the form (u, xi) and the result be of the form (yi, πi).
The challenger C calls (ρu, {ψi}i∈I)← S3(τ, pku, su, {xi, πi}i∈I), and returns the secret key
sku := (su, ρu) as well as the randomness used in earlier queries {ψi}i∈I to A.

Definition 6.1 (Pseudorandomness under selective opening). We say that a VRF scheme satisfies
pseudorandomness under selective opening iff

• for any compliant non-uniform p.p.t . adversary A, its views in ExptA0 (1
λ) and ExptA1 (1

λ) are
computationally indistinguishable.

• there exists p.p.t . simulators (S0,S1,S2,S3) such that the outcome of S0 is identically dis-
tributed as the (s0, . . . , sn) components generated by the real-world Gen(1λ) algorithm, and
moreover, A’s view in the above Real and IdealS0,S1,S2,S3 are computationally indistinguish-
able.

6.1.2 Unforgeability

We say that a VRF scheme satisfies unforgeability, if there exists a negligible function negl(·)
such that no non-uniform p.p.t . adversary A can win the following game with more than negl(λ)
probability:

• First, the challenger C runs the Gen(1λ) algorithm and gives the public parameters pp and
all public keys pk1, . . . , pkn to A, but keeps sk1, . . . , skn to itself.

• The adversary A can adaptively make the following queries:

– Evaluate: A submits a query (u, x), now C computes (y, π)← Eval(pp, sku, x) and gives
(y, π) to A.

– Corrupt: A specifies an index u ∈ [n] and C reveals sku to A as well as random coins
used in earlier Evaluate queries pertaining to u.

• Finally, A outputs a tuple (u, x, y, π). It is said to win the game if either Ver(pp, pku, x, y, π) =
1, but y ̸= y′ where (y′,_) := Eval(pp, sku, x); or if u has not been corrupted before and A
has not made any Evaluate query of the form (u, x).

In other words, we want that except with negligible probability, A cannot forge the VRF
outcome and proof on behalf of any honest node on a point that has not been queried; furthermore,
even for corrupted nodes, A cannot forge an VRF outcome and proof such that the evaluation
outcome is different from the honest evaluation outcome.

Abraham et al. [19] proved the following theorem where the bilinear group assumptions needed
are the same as those adopted by Groth et al. [15].

Theorem 6.2 (Existence of adaptively secure VRFs [19]). Assuming standard bilinear group as-
sumptions and a trusted setup, we can construct a VRF scheme satisfying pseudorandomness
under selective opening and unforgeability.

27

6.1.3 VRF Technical Lemma

Abraham et al. [19] showed the following useful theorem regarding VRFs that satisfy pseudoran-
domness under selective opening attacks. To describe the theorem, we need to first describe the
following experiments:

• Ideal experiment. In the ideal experiment, an adversary A interacts with an idealized oracle
F . The execution continues in epochs. At the beginning of each epoch e, F picks a random
answer for every query of the form (u, e) for u ∈ [n], and returns all n answers to A. When
A calls F .Corrupt(u), F records that u has been corrupted.

• Real experiment. In the real experiment, an adversary A interacts with an oracle F ′. First,
F ′ calls VRF.Gen(1λ) and gives the resulting pp, pk1, . . . , pkn to A, but keeps sk1, . . . , skn to
itself.
At the beginning of every epoch e, F ′ computes for every u ∈ [n] a tuple (yu, πu) :=
VRF.Eval(pp, sku, e) and returns (yu, πu) to A. Whenever A calls F ′.Corrupt(u), F ′ records
that u has been corrupted but also discloses sku to A as well as all the randomness used by
Eval earlier pertaining to u.

Now, let bad be any polynomial-time computable function defined over the following variables:

1. the sequence of answers (not including the proof part for the real experiment) to all (u, e)
queries sorted by lexicographical ordering of the queries, and

2. the nodes corrupted by A and the epoch in which they become corrupt.

Lemma 6.3 (Technical lemma regarding VRF [19]). Suppose that the VRF satisfies pseudoran-
domness under selective opening. Then, if there exists a non-uniform p.p.t . adversary A that can
cause the bad event bad to take place in the real experiment with probability p, there must exist
a non-uniform p.p.t . adversary A′ that can cause bad to happen in the ideal experiment with
probability at least p− negl(λ).

6.2 New Building Block: TrustAckCast Protocol
We describe an additional helpful building block called TrustAckCast that is a simple extension of
the previous TrustCast. In TrustAckCast, a sender s ∈ [n] multicast a message to everyone and then
everyone ACKs the message. At the end of the protocol, we guarantee that either s is no longer
in an honest node u’s trust graph, or the following holds: u has heard a unique and valid message
multicast by s and moreover u has heard an ACK for the same message from everyone that remains
in its trust graph.

TrustAckCastVf,s :

1. First, the sender s ∈ [n] uses TrustCastVf,s to multicast the message m;

2. Then, every one u ∈ [n] does the following: if the previous TrustCastVf,s has output a
message m signed by s such that u.Vf(m) = true at the end of TrustCastVf,s, then uses
TrustCastVf

′,u to multicast the message (ack, s,m). Else, uses TrustCastVf′,u to multicast
the message (ack, s,⊥). The verification Vf ′ is defined as below: v.Vf ′(ack, s,m) = true
in round r, iff
(a) either s is no longer in Gr

v or m must agree with what s has multicast; and

28

(b) either m = ⊥ or v.Vf(m) = true in round r.

Fact 6.4. Suppose that Vf satisfies the monotonicity condition, then Vf ′ also satisfies the moni-
tonicity condition.

Proof. Condition (b) holds because of the monotonicity of Vf. We now focus on condition (a). Let
u, v be honest nodes, and let r < t. If u.Vf ′(ack, s,m) = true in round r, then it must be that in
round r, either s /∈ Gr

u, or s ∈ Gr
u and (ack, s,m) is what u heard s multicast. If the former holds,

then in round t, s /∈ Gt
v by the trust graph’s monotonicity invariant, and thus Vf ′ holds for v in

round t. If the latter holds, then if in round t, s /∈ Gt
v, Vf ′ would hold for v in round t. We thus

focus on the case when s ∈ Gt
v. In this case, it must be that v heard s multicast the same message

since otherwise u would have sent to v the equivocating message multicast from s, and v would
have removed s from its trust graph. In either case, we conclude that in round t, (ack, s,m) must
pass the verification check of Vf ′ w.r.t. the node v.

Fact 6.5. When every honest node u invokes TrustCastVf′,u protocol to multicast (ack, s,m) in some
round r in the above TrustAckCastVf,s, it must be that u.Vf ′(ack, s,m) = true in round r.

Proof. By construction and by property of the first TrustCastVf,s.

Lemma 6.6. Assume that Vf satisfies the monotonicity condition and that the message m input
to s satisfies the validity at origin condition. Then, at the end of the TrustAckCast protocol, the
following must hold:

1. for any honest node u, either 1) s is no longer in u’s trust graph; or 2) u has heard s multicast
a unique message m such that u.Vf(m) = true at the end of the protocol; and not only so, it
must have heard everyone in its trust graph multicast an ACK of the form (ack, s,m);

2. if an honest node u has heard v ∈ [n] multicast an ACK of the form (ack, s,m), then either
m = ⊥ or u.Vf(m) = true at the end of the protocol.

Proof. The second claim follows directly from the property of the second TrustCast and the defini-
tion of Vf ′.

We now focus on proving the first claim. By the property of the TrustCastVf′ protocol, and also
noting Fact 6.4 and Fact 6.5, by the end of the TrustAckCast protocol, it must be that an honest
node u heard a valid ACK that passes Vf ′ from everyone still in its trust graph. Furthermore, if
s is still in u’s trust graph by the end, again by the property of TrustCastVf , u must have received
a valid message from s that passes Vf; and moreover, by the definition of Vf ′, each ACK message
received by u must agree with what s has multicast.

6.3 Protocol

Strawman attempt. A strawman attempt is to use a Verifiable Random Function (VRF) that
achieves security against an adaptive adversary. In every epoch, every node u computes (yu, πu) :=
VRF(pp, sku, e). Now yu is said to be u’s charisma and we can define the leader to be the node with
the maximum charisma. The issue with this approach is that the adversary, upon observing that
u has the maximum charisma and is the leader, can immediately corrupt u, and make u send an
equivocating proposal. Such an attack will not affect consistency, however, it will hamper liveness
due to the following: every honest node, upon seeing u’s equivocating proposal, removes u from its
trust graph; and now they would vote for ⊥ in the Vote phase. An adversary with a corruption

29

budget of f can continue this attack for f epochs in which an honest node becomes the leader, and
thus liveness can take as long as Ω(f) epochs to ensue.
Intuition behind our approach. To defeat the aforementioned attack, we are inspired by techniques
from the standard Byzantine Broadcast literature [11, 8] but it is not so trivial to adapt these
techniques to our setting. At a very high level, during the Propose phase of each epoch, everyone
multicasts a proposal using TrustAckCast pretending that it might be the elected leader — because
TrustAckCast rather than TrustCast is used, effectively everyone would also multicast an ACK for
everyone’s multicast proposal. Note that at this time, the VRF outcomes have not been revealed
and the adversary cannot effectively single out and target the leader.

Now, a key idea is to require that a valid proposal must have acquired everyone’s ACKs. In this
way, when nodes reveal their VRF outcomes (i.e., their charisma), the adversary may immediately
corrupt the leader, but it is already too late for the now-corrupt leader to insert a new equivocating
proposal because there is no time for this new equivocating proposal to acquire ACKs from everyone.

To integrate this idea into our protocol would involve further technicalities and subtleties, but
with this intuition in mind, we can now present our protocol formally.
Commit evidence. Commit evidence is defined in the same way as in Section 5 except that
our new vote message has a few more terms (which will become clear shortly) — but we simply
ignore these additional terms in defining a commit evidence. Concretely, fix an epoch e and a bit
b ∈ {0, 1}. We say that a collection E containing signed messages of the form (vote, e, b,_,_,_)
is an epoch-e commit evidence for b w.r.t. Gr

u iff for every v ∈ Gr
u, E contains a signed message

(vote, e, b,_,_,_) from v. We also call an epoch-e commit evidence for b w.r.t. Gr
u “a commit

evidence for (e, b) w.r.t. Gr
u”.

Protocol. Our protocol is described below.

Setup. Run (pp, {pku, sku}u∈[n]) ← VRF.Gen(1λ). Publish (pp, pk1, . . . , pkn) and give sku to
each u ∈ [n].
Assumption. For the sender s ∈ [n], we redefine the outcome of VRF.Eval(pp, sks, 1) to be
(∞,⊥), and we assume that VRF.Ver(pp, pks, 1,∞,⊥) = 1. This makes sure that the sender
s has the maximum charisma in epoch e = 1. We shall also assume that by construction, the
function VRF will append to the outcome y the unique identifier of the node u. In this way,
we can be sure that the evaluation outcomes for two different nodes must be distinct.

Main Protocol. For each epoch e = 1, 2, . . .:

1. Propose: Every node u ∈ [n] performs the following:

• Choose a bit to propose and an evidence as follows:
– If a non-⊥ commit evidence (for some bit) has been seen, let E(e, b) denote the

freshest such commit evidence and let P := (b, E(e, b)).
– Else if e = 1 and u is the sender, then choose P := (b,⊥) where b is u’s input bit;
else choose a random bit b and let P := (b,⊥).

• Call an instance of the TrustAckCastVfprop,u protocol to multicast the proposal (prop, e, P)
where

v.Vfprop(prop, e, (b, E)) = true

in round r iff the following holds:

30

(a) either E = ⊥, or E is a valid commit evidence vouching for the bit b proposed; and
(b) either e = 1, or for every w ∈ Gr

v, E is at least as fresh as any commit evidence
multicast by w in the Commit phase of all previous epochs e′ < e — recall that ⊥
may be treated as a commit evidence for epoch 0.

2. Elect: Every node u ∈ [n] performs the following: compute (y, π) := VRF.Eval(pp, sku, e),
and multicast the signed tuple (elect, e, y, π) to everyone.

3. Prepare: Every node u ∈ [n] does the following:

• Let S ⊆ [n] be the set of nodes v satisfying the following:
(a) u has received from v a signed tuple of the form (elect, e, yv, πv) where VRF.Ver(pp,

pkv, e, yv, πv) = 1 — henceforth, yv is said to be v’s charisma;
(b) u has received from v a signed proposal of the form (prop, e, (b,_)) and more-

over everyone that remains in u’s trust graph has ACKed this proposal in the
TrustAckCastVfprop,v protocol earlier.

• Find the node L ∈ S whose charisma yL is maximized based on lexicographical ordering.
• Invoke an instance of TrustCastVfprep,u to multicast the tuple (prep, e, b, L, yL, πL) where

v.Vfprep(prep, e, b, L, y, π) = true

in round r iff
(a) Everyone in Gr

v has ACKed a proposal of the form (prop, e, (b,_)) by the end of
the TrustAckCastVfprop,L instance; and

(b) VRF.Ver(pp, pkL, e, y, π) = 1.

Henceforth, given a prepare message of the form (prep, e, b, L, y, π), y is said to be the
charisma of the prepare message.

4. Vote: Every node u ∈ [n] performs the following:

• Compare the (prep, e,_,_,_,_) messages that have been multicast by all nodes v that
still remain in u’s trust graph, and pick the one (prep, e, b∗, L∗, y∗, π∗) whose charisma
value y∗ is the maximum.

• Use TrustCastVfvote,u to multicast a vote of the form (vote, e, (b∗, L∗, y∗, π∗)) where
v.Vfvote(vote, e, (b, L, y, π)) = true in round r iff
(a) Everyone in Gr

v has ACKed a proposal for b signed by L by the end of the
TrustAckCastVfprop,L;

(b) VRF.Ver(pp, pkL, e, y, π) = 1;
(c) For everyone w ∈ Gr

v, y must be at least as large as the charisma of the prepare
message multicast to v by w.

5. Commit: Every node u ∈ [n] performs the following:

31

• If everyone still in u’s trust graph voted for the same bit b ∈ {0, 1} (as defined by the
outputs of the TrustCastVfvote,u protocols during the Vote phase), then output the bit b,
and moreover, use TrustCastVfcomm,u to multicast (comm, e, E) where E contains a signed
vote message of the form (vote, e, (b,_)) from everyone in u’s trust graph.

• Else, use TrustCastVfcomm,u to multicast the message (comm, e,⊥).

We define the verification function Vfcomm below. v.Vfcomm(comm, e, E) = true in round r
iff the following holds:

(a) either v has seen a tuple (elect, e, y, π) signed by some w /∈ Gr
v where VRF.Ver(pp,

pkw, e, y, π) = 1, and moreover, for everyone w′ ∈ Gr
v, y is greater than the charisma

of the prepare message multicast by w′.
(b) or E must be a valid epoch-e commit evidence.

Terminate: Same as in Section 5.

6.4 Monotonicity Conditions of the Verification Functions
Lemma 5.2 still holds in our new protocol and the proof is the same as before. We now check that
the other verification functions satisfy the monotonicity condition.

Lemma 6.7. Vfprep satisfies the monotonicity condition.

Proof. Condition (b) clearly satisfies the monotonicity condition. We now focus on condition (a).
Let u, v be honest and let t > r. Recall that Gt

v ⊆ Gr
u by trust graph monotonicity. Suppose that

condition (a) is satisfied for some message w.r.t. Gr
u, it suffices to show that v has heard every

w ∈ Gt
v ACK the same proposal in the TrustAckCastVfprop,L instance as what u heard from w. If

this is not true, then u would have relayed the equivocating message to v and v would have already
removed w from its trust graph by the beginning of round t.

Lemma 6.8. Vfvote satisfies the monotonicity condition.

Proof. It is straightforward to check that by construction, condition (b) of the Vfvote function
satisfies monotonicity. Condition (a) satisfies monotonicity due to the same proof as condition (a)
of the Vfprep function (see Lemma 6.7).

We now focus on condition (c). Suppose that u and v are honest and t > r. Recall that Gt
v ⊆ Gr

u

by trust graph monotonicity. Suppose that condition (c) is satisfied for some message w.r.t. Gr
u, it

suffices to show that the same y contained in the message is at least as large as the charisma of the
prepare message multicast to v by any w ∈ Gt

v. This follows since v must have heard any w ∈ Gt
v

multicast the same prepare message has what u heard w multicast; otherwise u would have relayed
the equivocating message to v and v would have removed w from its trust graph by the beginning
of round t.

Lemma 6.9. Vfcomm satisfies the monotonicity condition.

Proof. The monotonicity of condition (a) follows from trust graph monotonicity as well as the
implicit echoing assumption. The monotonicity of condition (a) follows from the monotonicity of
commit evidences.

32

6.5 Validity at Origin
Fact 6.10. If an honest node u multicasts a (prop, e, P), (prep, e, P), or a (vote, e, b) message in
some round r, the multicast message satisfies the corresponding verification function, Vfprop, Vfprep,
Vfvote, respectively, w.r.t. the node u in round r.

Proof. First, it is easy to check the validity at orgin condition for a (prop, e, P)message multicast by
an honest node. Given this, we can apply Lemma 6.6 for TrustAckCastVfprop,u instances. Now, it is
also straightforward to verify that by construction, and by the property of the TrustAckCastVfprop,u

protocol (Lemma 6.6), the validity at origin conditions hold for the (prep, e, P) and (vote, e, b)
messages sent by honest nodes too.

Lemma 6.11. Suppose at the beginning of the Commit phase of some epoch e, an honest node u
has not seen a tuple (elect, e, y, π) signed by some w not in u’s trust graph, where VRF.Ver(pp,
pkw, e, y, π) = 1, and moreover, for every w′ in u’s trust graph, y is larger than the charisma of
the prepare message multicast by w′. Then, every w′ who still remains u’s trust graph must have
multicast a vote for the same bit b that u has voted for in this epoch.

Proof. We can prove by contradiction. Suppose that the premise holds but some v in u’s trust
graph has successfully multicast a vote of the form (vote, e, (1 − b, L, y′, π′)) to u, then by the
definition of Vfvote, VRF.Ver(pp, pkL, e, y′, π′) = 1, and moreover for every w in u’s trust graph, y′
must be at least as large as the charisma of the prepare message multicast to u by w. Since the
premise holds, y′ must be the largest charisma u has seen for any node, and thus u must have voted
for the bit 1− b too. Thus, we have reached a contradiction.

Fact 6.12. If an honest node u multicasts a (comm, e, E) message in some round r, the multicast
message satisfies the verification function, Vfcomm w.r.t. the node u in round r.

Proof. Follows from Lemma 6.11.

6.6 Consistency Proof
Theorem 6.13 (Consistency). The protocol described in Section 6.3 satisfies consistency.

Proof. Due to the same proof as Theorem 5.11, it suffices to prove that Lemma 5.9 and Lemma 5.10
still hold for the protocol described in Section 6.3. The proof of Lemma 5.9 remains unchanged.

The proof of Lemma 5.10 is similar to before: by the protocol definition, for u to output b in
epoch e, it must have seen a commit evidence for (e, b) at the beginning of the Commit phase in
epoch e. Now, during the Commit phase of epoch e, u will use TrustCastVfcomm,u to multicast this
commit evidence for (e, b), and all honest nodes will receive it by the end of epoch e.

Now, during epoch e+ 1, due to Lemma 6.6 and the definition of Vfprop and Vfprep, no honest
node will ever vote for a bit corresponding to a proposal whose commit evidence is not as fresh as
e. Due to Lemma 5.9, no honest node can ever see a commit evidence for (e, 1− b). Therefore, in
epoch e+1, no honest node will vote for 1− b, and no honest node will ever see a commit evidence
for (e + 1, 1 − b). Now, during epoch e + 2, the freshest commit evidence every honest node has
seen will still be for the bit b; and thus all the reasoning for epoch e+1 holds and we can conclude
that no honest node will vote for 1− b in epoch e+ 2; and thus we can prove the statement by an
inductive argument.

33

6.7 Liveness Proof
First, observe that Fact 5.13 of Section 5.5 still holds due to the same argument as before.

During the execution, even before nodes reveal their charisma for some epoch e, we can already
define a node u’s epoch-e charisma as the honestly computed VRF outcome VRF.Eval(pp, sku, e).
This definition is well-formed no matter whether the node is honest or corrupt.

Definition 6.14 (Lucky epoch). Henceforth, we say that epoch e is lucky iff the node with the
maximum epoch-e charisma has not been corrupted until it has sent a signed (elect, e,_,_)
message.

Lemma 6.15. Suppose that the VRF satisfies unforgeability. Except with negligible probability,
the following holds: if e is a lucky epoch, then one round after the end of epoch e, all honest nodes
will terminate.

Proof. By Fact 5.13, it suffices to prove the lemma assuming that no honest node has terminated
by the end of epoch e, i.e., we may assume that all honest nodes will participate in all the TrustCast
protocols till the end of epoch e and thus we can safely use the properties of TrustCast.

Suppose that the node L with the maximum epoch-e charisma has not been corrupted un-
til it has sent a signed (elect, e, y, π) message. In this case, every honest node will multicast
(prep, e, b, L, y, π) where b is L’s proposed bit in the Propose phase of epoch e — note that even
if L becomes corrupt immediately after sending a signed (elect, e, y, π) message, it can no longer
multicast a new proposal that will be ACKed by honest nodes.

Due to condition (c) of the Vfvote check, every w ∈ [n] who remains in an honest node u’s trust
graph after the Vote phase must have multicast a vote to u voting for the same bit b.

It suffices to show that every node in an honest node u’s trust graph after the Commit phase of
epoch e must have multicast to u a message of the form (comm, e, E) where E is a commit evidence
for (e, b) in u’s view. This follows from the definition of Vfcomm — since every honest node multicast
(prep, e, b, L, y, π) where b is L’s proposed bit in the Propose phase of epoch e, condition (a) of
Vfcomm cannot hold unless the adversary can successfully forge a VRF result which happens with
negligible probability.

Lemma 6.16. Suppose that the VRF satisfies pseudorandomness under selective opening. Then, let
Rlucky be a random variable denoting the first lucky epoch. It must be that there is a negligible
function negl(·) such that for every R,

Pr[Rlucky ≥ R] ≤ Pr[Geom(h/n) ≥ R] + negl(λ)

where Geom(h/n) denotes a geometric random variable with probability h/n.

Proof. We can consider an ideal-world protocol which is defined just like the real-world protocol
except the following: whenever a node needs to compute VRF.Eval(pp, pku, e) it will instead call
an ideal functionality F .Eval(u, e). Upon receiving this call, F picks y, at random if this is the
first time Eval(u, e) is queried, and records the tuple (u, e, y). Now F returns the answer y that
has been recorded for the query (u, e), and the tuple (y,⊥) will be used in place of the outcome of
the VRF evaluation. Similarly, whenever a node needs to call VRF.Ver(pp, pku, e, y, π), the call is
replaced with a call to F .Ver(u, e, y) which simply checks if the tuple (u, e, y) has been recorded —
if so, return 1; else return 0.

In this ideal world protocol, it is not hard to see that Pr[Rlucky ≥ R] ≤ Pr[Geom(h/n) ≥ R]
even if the adversary is unbounded.

34

Now, due to our VRF technical lemma (Lemma 6.3), it follows that the in the real-world
protocol, Pr[Rlucky ≥ R] ≤ Pr[Geom(h/n) ≥ R] + negl(λ) as long as the adversary is polynomially
bounded.

Theorem 6.17 (Liveness). Assume that the VRF adopted satisfies pseudorandomness under selec-
tive opening and unforgeability. Then, the protocol described in Section 6.3 achieves liveness in
O((n/h)2) number of rounds.

Proof. Follows directly from Lemma 6.15 and Lemma 6.16.

6.8 Validity Proof
Theorem 6.18 (Validity). Assume that the VRF adopted satisfies unforgeability. For the protocol
described in Section 6.3, the following holds except with negligible probability: if the designated
sender s is (forever) honest, then everyone will output the sender’s input bit.

Proof. Recall that by our construction, s is guaranteed to have the maximum charisma in epoch 1.
The proof of Lemma 6.15 in fact implies that if s is (forever) honest, at most one round after epoch
e = 1, all honest nodes will have terminated with an output that agrees with s’s proposal.

7 Conclusion and future work
Our paper presents a Byzantine Broadcast protocol with amortized O(1) round complexity that
works even under dishonest majority. The round complexity is constant under both static and
adaptive adversaries and the communication complexity is Õ(n4) (in the entire system). We believe
this is the first protocol that gives constant round complexity for Byzantine Broadcast under
dishonest majority.

It has been shown by Garay et al. [12] that no randomized protocols can achieve BB in less
than O(n/(n−f)) number of rounds, even assuming static corruption and allowing standard setup
assumptions. Therefore, for the (narrow) regime n − f = o(n), there is still an asymptotical gap
between our upper bound and their lower bound. Bridging this gap is an exciting direction for
future work.

References
[1] Atul Adya, William J Bolosky, Miguel Castro, Gerald Cermak, Ronnie Chaiken, John R

Douceur, Jon Howell, Jacob R Lorch, Marvin Theimer, and Roger P Wattenhofer. Farsite:
Federated, available, and reliable storage for an incompletely trusted environment. ACM
SIGOPS Operating Systems Review, 36(SI):1–14, 2002.

[2] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In OSDI, volume 99,
pages 173–186, 1999.

[3] Leslie Lamport. The part-time parliament. ACM Transactions on Computer Systems (TOCS),
16(2):133–169, 1998.

[4] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Lingxue Ren, and Alexander Spiegelman.
Solidus: An incentive-compatible cryptocurrency based on permissionless byzantine consensus.
CoRR, abs/1612.02916, 2016.

35

[5] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand:
Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th Symposium on
Operating Systems Principles, pages 51–68. ACM, 2017.

[6] Ryan Farell. An analysis of the cryptocurrency industry. 2015.

[7] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement.
SIAM Journal on Computing, 12(4):656–666, 1983.

[8] Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzantine
agreement. In Annual International Cryptology Conference, pages 445–462. Springer, 2006.

[9] Pesech Feldman and Silvio Micali. An optimal probabilistic protocol for synchronous byzantine
agreement. In SIAM Journal of Computing, 1997.

[10] Paul Feldman and Silvio Micali. Byzantine agreement in constant expected time. 26th Annual
Symposium on Foundations of Computer Science (sfcs 1985), pages 267–276, 1985.

[11] Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren. Synchronous
byzantine agreement with optimal resilience, expected o(n2) communication, and expected
o(1) rounds. In Financial Cryptography and Data Security (FC), 2019.

[12] Juan A Garay, Jonathan Katz, Chiu-Yuen Koo, and Rafail Ostrovsky. Round complexity
of authenticated broadcast with a dishonest majority. In 48th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’07), pages 658–668. IEEE, 2007.

[13] Matthias Fitzi and Jesper Buus Nielsen. On the number of synchronous rounds sufficient for
authenticated byzantine agreement. In International Symposium on Distributed Computing,
pages 449–463. Springer, 2009.

[14] T-H. Hubert Chan, Rafael Pass, and Elaine Shi. Sublinear-round byzantine agreement under
corrupt majority. In PKC, 2020.

[15] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for noninteractive zero-
knowledge. J. ACM, 59(3):11:1–11:35, June 2012.

[16] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM, 1988.

[17] Gabriel Bracha. Asynchronous byzantine agreement protocols. Inf. Comput., 75(2), 1987.

[18] Silvio Micali, Salil Vadhan, and Michael Rabin. Verifiable random functions. In FOCS, 1999.

[19] Ittai Abraham, T-H. Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling Ren, and
Elaine Shi. Communication complexity of byzantine agreement, revisited. In PODC, 2019.

36

