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Abstract—Performing ML computation on private data while
maintaining data privacy aka Privacy-preserving Machine Learn-
ing (PPML) is an emergent field of research. Recently, PPML has
seen a visible shift towards the adoption of Secure Outsourced
Computation (SOC) paradigm, due to the heavy computation
that it entails. In the SOC paradigm, computation is outsourced
to a set of powerful and specially equipped servers that provide
service on a pay-per-use basis. In this work, we propose SWIFT,
a robust PPML framework for a range of ML algorithms in SOC
setting, that guarantees output delivery to the users irrespective of
any adversarial behaviour. Robustness, a highly desirable feature,
evokes user participation without the fear of denial of service.

At the heart of our framework lies a highly-efficient,
maliciously-secure, three-party computation (3PC) over rings
that provides guaranteed output delivery (GOD) in the honest-
majority setting. To the best of our knowledge, SWIFT is the first
robust and efficient PPML framework in the 3PC setting. SWIFT
is as fast as the best-known 3PC framework BLAZE (Patra et
al. NDSS’20) which only achieves fairness1. We extend our 3PC
framework for four parties (4PC). In this regime, SWIFT is as
fast as the best known fair 4PC framework Trident (Chaudhari
et al. NDSS’20) and twice faster than the best-known robust 4PC
framework FLASH (Byali et al. PETS’20).

We demonstrate the practical relevance of our framework by
benchmarking two important applications– i) ML algorithms:
Logistic Regression and Neural Network, and ii) Biometric
matching, both over a 64-bit ring in WAN setting. Our readings
reflect our claims as above.

I. INTRODUCTION

Privacy Preserving Machine Learning (PPML), a booming
field of research, allows Machine Learning (ML) computa-
tions over private data of users while ensuring the privacy
of the data. PPML finds applications in sectors that deal
with sensitive/confidential data, e.g. healthcare, finance, and in
cases where organisations are prohibited from sharing client
information due to privacy laws such as CCPA and GDPR.
However, PPML solutions make the already computationally
heavy ML algorithms more compute-intensive. An average
end-user who lacks the infrastructure required to run these
tasks prefers to outsource the computation to a powerful set
of specialized cloud servers and leverage their services on a
pay-per-use basis. The Secure Outsourced Computation (SOC)
paradigm is thus an apt fit for the need of the moment. The
goal is to achieve malicious security against the collusion of
an arbitrary number of users with some of the servers. Many
recent works [1]–[9] exploit Secure Multiparty Computation
(MPC) techniques to realize PPML in the SOC setting where

1Fairness ensures either all or none receive the output, whereas GOD
ensures guaranteed output delivery no matter what.

the servers enact the role of the parties. Informally, MPC
enables n mutually distrusting parties to compute a function
over their private inputs, while ensuring the privacy of the
same against an adversary controlling up to t parties. Both the
training and prediction phases of PPML can be realized in the
SOC setting. The common approach of outsourcing followed in
the PPML literature, as well as by our work, requires the users
to secret-share2 their inputs between the set of hired (untrusted)
servers, who jointly interact and compute the secret-shared
output, and reconstruct it towards the users.

In a bid to improve practical efficiency, many recent
works [6]–[17] cast their protocols into an input-independent
preprocessing phase, and input-dependent online phase. Using
this paradigm, the input-independent (yet function-dependent)
computationally heavy tasks can be computed in the prepro-
cessing phase in advance, resulting in a fast online phase. This
paradigm suits scenario analogous to PPML setting, where
functions (ML algorithms) typically need to be evaluated a
large number of times, and the function description is known
beforehand. To further enhance practical efficiency by leverag-
ing CPU optimizations, recent works [15], [18]–[21] propose
MPC protocols that work over 32 or 64 bit rings. Lastly,
solutions for a small number of parties have received a huge
momentum due to the many cost-effective customizations that
they permit, for instance, a cheaper realisation of multiplication
through custom-made secret sharing schemes [6]–[9], [22],
[23] (that do not scale for a large number of parties).

We now motivate the need for robustness aka guaranteed
output delivery (GOD) over fairness, or even abort security, in
the domain of PPML. Robustness provides the guarantee of
output delivery to all protocol participants, no matter how the
adversary misbehaves. Robustness is extremely crucial for real-
world deployment and usage of PPML techniques. Consider
the following scenario wherein an ML model owner wishes to
provide inference service. The model owner shares the model
parameters between the servers, while the end-users share their
queries. A protocol that provides security with abort or fairness
will not suffice as in both the cases a malicious adversary can
act in a way so that the protocol results in an abort which
means that the user will not get the desired output. This leads
to denial of service and heavy economic losses for the service
provider. For data providers who want to collaboratively build
a model on their data, more training data leads to a better,
more accurate model, which enables them to provide better
ML services and, consequently, attract more clients. A robust
framework encourages active involvement from multiple data

2The threshold of the secret-sharing is decided based on the number of
corrupt servers so that privacy is preserved.



providers. Hence, for the seamless adoption of PPML solutions
in the real-world, the robustness of the protocol is of utmost
importance. The hall-mark result of [24] suggests that an
honest-majority amongst the servers is necessary to achieve
robustness (in fact, to achieve fairness which is a weaker goal
than robustness).

Consequent to the discussion above, we focus on the
honest-majority setting with a small set of parties, especially
3 and 4 parties with one corruption, both of which have
drawn enormous attention recently [6]–[9], [22], [23], [25]–
[30]. Our protocols work over rings, cast in input-independent
and dependent phases, and achieves GOD.

Before we move on to discuss the related work, we state
the challenges for stretching MPC techniques for PPML.

a) Challenges in PPML: MPC protocols, while a poten-
tial solution for SOC, cannot be directly plugged in to achieve
the goal of PPML. This is because, ML algorithms involve
decimal values that need to be embedded into rings, resulting
in doubling of the fractional part after every multiplication.
This was handled in previous works via secure truncation [1],
[4], [6], [8], [9]. Secondly, ML algorithms require techniques
to efficiently alternate between boolean and arithmetic compu-
tations, as some operations like secure comparison are better
realized in boolean representation, while operations like dot
product are better realized in arithmetic representation. These
challenges call for customized MPC protocols for truncation,
comparison, dot product, and many others.

b) Related Work: We restrict the relevant works with
a small number of parties and honest-majority, focusing first
on MPC, followed by PPML. MPC protocols for a small
population can be cast into orthogonal domains of low la-
tency protocols [27], [31], [32], and high throughput protocols
[6], [9], [18], [22], [23], [26], [28], [30], [33]–[35]. In the
3PC setting, [6], [22] provide efficient semi-honest protocols
wherein ASTRA [6] improved upon [22] by casting the
protocols in the preprocessing model and provided a fast online
phase. ASTRA further provided security with fairness in the
malicious setting with an improved online phase compared
to [23]. Later, a maliciously-secure 3PC protocol based on
distributed zero-knowledge techniques was proposed by Boneh
et al. [29] providing abort security. Further, building on [29]
and enhancing the security to GOD, Boyle et al. [30] proposed
a concretely efficient 3PC protocol with an amortized commu-
nication cost of 3 field elements (can be extended to work
over rings) per multiplication gate. Concurrently, BLAZE [9]
provided a fair protocol in the preprocessing model, which
required communicating 3 ring elements in each phase. How-
ever, BLAZE eliminated the reliance on the computationally
intensive distributed zero-knowledge system (whose efficiency
kicks in for large circuit or many multiplication gates) from
the online phase and pushed it to the preprocessing phase. This
resulted in a faster online phase compared to [30].

In the regime of 4PC, Gordon et al. [36] presented proto-
cols achieving abort security and GOD. However, [36] relied
on expensive public-key primitives and broadcast channels to
achieve GOD. Trident [8] improved over the abort protocol
of [36], providing a fast online phase achieving security
with fairness, and presented a framework for mixed world
computations [20]. A robust 4PC protocol was provided in

FLASH [7] which requires communicating 6 ring elements,
each, in the preprocessing and online phases.

In the PPML domain, MPC has been used for various
ML algorithms such as Decision Trees [37], Linear Regression
[38], [39], k-means clustering [40], [41], SVM Classification
[42], [43], Logistic Regression [44]. In the 3PC SOC setting,
the works of ABY3 [4] and SecureNN [5], provide security
with abort. This was followed by ASTRA [6], which improves
upon ABY3 and achieves security with fairness. ASTRA
presents primitives to build protocols for Linear Regression
and Logistic Regression inference. Recently, BLAZE improves
over the efficiency of ASTRA and additionally tackles training
for the above ML tasks, which requires building additional
PPML building blocks, such as truncation and bit to arithmetic
conversions. In the 4PC setting, the first robust framework for
PPML was provided by FLASH [7] which proposed efficient
building blocks for ML such as dot product, truncation, MSB
extraction, and bit conversion. The works of [1], [4]–[9] work
over rings to garner practical efficiency. In terms of efficiency,
BLAZE and respectively FLASH and Trident are the closest
competitors of this work in 3 and 4 party settings. We now
present our contributions and compare them with these works.

A. Our Contributions

We propose a robust maliciously-secure framework for
PPML in the SOC setting, SWIFT, with a set of 3 and 4
servers having an honest-majority. At the heart of our frame-
work lies highly-efficient, maliciously-secure, 3PC and 4PC
over rings (both Z2` and Z21 ) that provide GOD in the honest-
majority setting. We cast our protocols in the preprocessing
model which helps to push the computationally intensive tasks
into the preprocessing phase, resulting in a fast online phase.
Apart from PPML, our framework also supports biometric
matching.

To the best of our knowledge, SWIFT is the first robust and
efficient PPML framework in the 3PC setting and is as fast as
the best known fair 3PC framework BLAZE [9]. We extend
our 3PC framework for 4 parties. In this regime, SWIFT is
as fast as the best known fair 4PC framework Trident [8] and
twice faster than best known robust 4PC framework FLASH
[7]. We next detail our framework, followed by an overview
of technical novelties:

a) Robust 3/4PC frameworks: The framework consists
of a range of primitives realized in a privacy-preserving
way which is ensured via running computation in a secret-
shared fashion. Secret-sharing tolerating up to one malicious
corruption is the basis for all our constructions. We use the
sharing over both Z2` and its special instantiation Z21 and
refer them as arithmetic and respectively boolean sharing. Our
framework consists of realizations for all primitives needed for
general MPC and PPML such as multiplication, dot-product,
truncation, bit extraction (given arithmetic sharing of a value v,
this is used to generate boolean sharing of the most significant
bit (msb) of the value), bit to arithmetic sharing conversion
(converts the boolean sharing of a single bit value to its arith-
metic sharing), bit injection (computes the arithmetic sharing
of b ·v, given the boolean sharing of a bit b and the arithmetic
sharing of a ring element v) and above all input sharing
and output reconstruction. The performance comparison in
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Building
Blocks

3PC 4PC

Ref.
Pre. Online

Security Ref.
Pre. Online

Security
Comm. (`) Rounds Comm. (`) Comm. (`) Rounds Comm. (`)

Multiplication

[29] 1 1 2 Abort
[30] - 3 3 GOD Trident 3 1 3 Fair

BLAZE 3 1 3 Fair FLASH 6 1 6 GOD
SWIFT 3 1 3 GOD SWIFT 3 1 3 GOD

Dot Product
Trident 3 1 3 Fair

BLAZE 3n 1 3 Fair FLASH 6 1 6 GOD
SWIFT 3n 1 3 GOD SWIFT 3 1 3 GOD

Dot Product
with Truncation

Trident 6 1 3 Fair
BLAZE 3n + 2 1 3 Fair FLASH 8 1 6 GOD
SWIFT 3n + 2 1 3 GOD SWIFT 4 1 3 GOD

Bit
Extraction

Trident ≈ 8 log `+ 1 ≈ 7 Fair
BLAZE 9 1 + log ` 9 Fair FLASH 14 log ` 14 GOD
SWIFT 9 1 + log ` 9 GOD SWIFT ≈ 7 log ` ≈ 7 GOD

Bit to
Arithmetic

Trident ≈ 3 1 3 Fair
BLAZE 9 1 4 Fair FLASH 6 1 8 GOD
SWIFT 9 1 4 GOD SWIFT ≈ 3 1 3 GOD

Bit
Injection

Trident ≈ 6 1 3 Fair
BLAZE 12 2 7 Fair FLASH 8 2 10 GOD
SWIFT 12 2 7 GOD SWIFT ≈ 6 1 3 GOD

– Notations: ` - size of ring in bits, n - size of vectors for dot product, κ - computational security parameter.

TABLE I: 3PC and 4PC: Comparison of SWIFT with its closest competitors in terms of Communication and Round Complexity

terms of concrete cost for communication and round, for the
preprocessing and online phase of PPML primitives, for both
3PC and 4PC, appear in Table I. Akin to our earlier claim,
SWIFT is neck to neck with BLAZE for each primitive (while
improving security from fairness to robustness). The same is
true for SWIFT and Trident in the 4-party case. On the other
hand, SWIFT is doubly faster than FLASH.

We now point out a few lucrative features that our frame-
work offers, some of which are shared with the earlier works
on PPML. First, by resorting to the preprocessing model, we
achieve dot product with online cost completely independent of
vector size. This brings a massive gain since dot product is one
of the most invoked primitives in PPML. The other primitives
also show improved performance in the online phase in the
preprocessing paradigm. The multiplication protocol gives a
technical basis for our dot product protocol. Instead of using
the multiplication of [30] (which has the same overall com-
munication cost as that of our online phase), we build a new
protocol that gives rise to a dot product with the above feature.
Also, the multiplication protocol of [30] involves distributed
zero-knowledge protocols. The cost of this heavy machinery
gets amortized over, only for large circuits having millions of
gates, which is very unlikely for inferences, and moderately
heavy training in the PPML domain. Second, extending to
the 4-party setting brings to the table a flurry of performance
improvements over 3PC. Most prominent of all is a dot product
with cost totally independent of vector size, which remains as
a challenging open question in 3PC setting. Third, the only
two tasks, input sharing and output reconstruction, carried
out by the users of our framework are very light-weight, in
spite of offering GOD. As a final remark, we note that the
roles of the servers in our framework are asymmetric and
consequently, we only require active participation from two
of the servers, while the remaining server(s) is(are) brought in

just for the verification towards the end of each phase. In a
cloud setting, this may provide additional benefit in terms of
monetary cost [45].

We demonstrate the practicality of our protocols by bench-
marking Biometric Matching and PPML. For the latter, Logis-
tic Regression (training and inference) and Neural Networks
(inference) are considered. The NN training requires mixed-
world conversions [4], [8], [20], which we leave as future
work. Our PPML blocks can be used to perform training and
inference of Linear Regression, Support Vector Machines, and
Binarized Neural Networks (as demonstrated in [6]–[9]).

b) Overview of Techniques: Robustness is known to
be desirable, yet a costly goal. We work against the pre-
assumption on cost, at least for our concerned setting. Starting
from BLAZE [9], we overcome a series of hurdles to achieve
GOD.

Relay primitive with rate-1 communication. We introduce a
new primitive called Joint Message Passing (jmp) that allows
two servers to relay a common message to the third server
such that either the relay is successful or an honest server (or
a conflicting pair) is identified. The striking feature of jmp
is that it offers a rate-1 communication i.e. for a message
of ` elements, it only incurs a communication of ` elements
(in an amortized sense). Without any extra cost, it allows us
to replace several pivotal private communications, that may
lead to abort, either because the malicious sender does not
send anything or sends a wrong message. Being two-sender
primitive, it has one guaranteed honest sender who (in some
sense) guards the correct send. Using this primitive, we create
a win-win scenario as below. Either the send is successful (and
consequently the computation) or an honest server is identified.
All our primitives invoke jmp and as a result, the final protocol,
either for a general 3PC or a PPML task, requires invocations
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of many jmp primitives. To leverage amortization, the primitive
is designed to have two phases, send and verify, where the send
phase is carried out on the flow of the protocol and the verify
phase takes place once and for all in the end. If the verification
goes through (meaning all sends via jmp are successful) the
computation carried out already achieves GOD. In the latter
case, our computation completes by labelling the honest server
as a trusted third party and allowing it to simply carry out the
computation centrally. To shoot for GOD, our next step is to
conform to all the protocols to be able to use jmp primitive.

Conforming protocols. Among all our protocols, the major
challenge came from the multiplication protocol of BLAZE
(which is our starting point). Our approach is to manipulate and
transform some of the protocol steps so that the information
required by a server in a round can be locally computed by two
other servers. But this transformation is not straight forward
since BLAZE was constructed with a focus towards providing
only fairness. We demonstrate with an example below. We
consider the online phase of multiplication in BLAZE at a
very high level. Let P0, P1, P2 be the three servers. P1, P2

need to locally compute additive shares of value v, denoted
by v1, v2 and mutually exchange the shares to obtain v in
clear. To prevent P1, P2 from cheating, P0 is equipped with
preprocessing data that allows it to compute v? = v+δ locally.
Here δ is a common value possessed by both P1, P2 and is
unknown to P0. P0 then sends v? in clear to both P1, P2 who
abort in the case of any inconsistency. It is only P0 who has
enough information to compute v?, and such an arrangement
makes it difficult to achieve GOD in BLAZE. Hence, we
modify the online phase in such a way that the pairs (P0, P1)
and (P0, P2) can locally compute one of the two additive
shares of v?. Servers then communicate the missing share using
jmp primitive. Upon obtaining v?, P1, P2 locally compute v
using δ which is known to them. This transformation in the
online phase of the multiplication protocol demands a fresh
preprocessing phase from scratch. Thus, it is the combination
of jmp primitive, a new preprocessing phase, along with the
restructuring of the online phase that helps us to obtain higher
security guarantee of GOD without affecting the communica-
tion cost.

Improved jmp primitive for 4PC. In a 4-party setting, we
provide an improved instantiation of the jmp primitive, which
forgoes the broadcast channel, while retaining the rate-1
property. Whereas, our 3-party instantiation uses a broadcast.
We note that, in the 4PC case, our jmp primitive achieves
a goal similar to the “bi-convey primitive” of FLASH [7].
However, jmp is more efficient. Further, it allows identifying
an honest server, as opposed to two honest servers locally
identifying each other in bi-convey, helping to craft a clean
and swift completion after this event. We defer other details to
§IV. Using jmp, we present better/simpler protocols than 3PC
counterparts, specifically the multiplication and dot product.

Robust and Improved Input Sharing and Output Reconstruc-
tion. We provide robust protocols for the input sharing and
output reconstruction phase in the SOC setting, wherein a user
shares its input with the servers and the output is reconstructed
towards a user. The need for robustness and light-weightless
together makes these slightly non-trivial. As a highlight, we
introduce a super-fast online phase for the reconstruction
protocol, which gives 4× improvement in terms of rounds

(apart from improvement in communication as well) compared
to BLAZE. We make sure that a user neither takes part in a
jmp protocol nor in a broadcast, both of which need several
rounds of communication and are relatively expensive than
atomic point-to-point communication.

B. Organisation of the paper

The rest of the paper is organized as follows. In §II we
describe the system model, preliminaries and notations used.
§III and §IV detail our constructs in the 3PC and respectively
4PC setting. These are followed by the applications and
benchmarking in §V. The appendix §A elaborates on the
preliminaries. Protocols to complete the PPML framework and
detailed cost analysis for all the 3PC and 4PC protocols are
provided in appendix §B and §C respectively. The security
proofs for our constructions follow in appendix §D.

II. PRELIMINARIES

We consider a set of three servers P = {P0, P1, P2} that
are connected by pair-wise private and authentic channels in
a synchronous network, and a static, malicious adversary that
can corrupt at most one server. We use a broadcast channel for
3PC alone, which is inevitable [46]. For ML training, several
data-owners who wish to jointly train a model, secret share
(using the sharing semantics which appear in the latter part of
the paper) their data among the servers. For ML inference, a
model-owner and client secret share the model and the query,
respectively, among the servers. Once the inputs are available
in the shared format, the servers perform computations and
obtain the output in the shared form. In the case of training,
the output model is reconstructed towards the data-owners,
whereas for inference, the prediction result is reconstructed
towards the client. We assume that an arbitrary number of data-
owners may collude with a corrupt server for training, whereas
for the case of prediction, we assume that either the model-
owner or the client can collude with a corrupt server. We prove
the security of our protocols using standard real-world / ideal-
world paradigm. We also explore the above model for the four
server setting with P = {P0, P1, P2, P3}. The aforementioned
setting has been explored extensively [1], [4], [6]–[9].

Our constructions achieve the strongest security guarantee
of GOD. A protocol is said to be robust or achieve GOD
if all parties obtain the output of the protocol regardless of
how the adversary behaves. In our model, this translates to all
the data owners obtaining the trained model for the case of
ML training, while the client obtains the query output for ML
inference. All our protocols are cast into: input-independent
preprocessing phase and input-dependent online phase.

For 3/4PC, the function to be computed is expressed as a
circuit ckt, whose topology is public, and is evaluated over
an arithmetic ring Z2` or boolean ring Z21 . For PPML, we
consider computation over the same algebraic structure. To
deal with floating-point values, we use Fixed-Point Arithmetic
(FPA) [1], [4], [6]–[9] representation in which a decimal value
is represented as an `-bit integer in signed 2’s complement
representation. The most significant bit (MSB) represents the
sign bit and x least significant bits are reserved for the
fractional part. The `-bit integer is then treated as an element
of Z2` and operations are performed modulo 2`. We set ` = 64
and x = 13, leaving `− x− 1 bits for the integral part.
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The servers use a one-time key setup, modelled as a
functionality Fsetup (Fig. 14), to establish pre-shared random
keys for pseudo-random functions (PRF) between them. A
similar setup is used in [3], [4], [6], [9], [23], [26], [30] for
3 server case, and in [7], [8] for 4 server setting. The key-
setup can be instantiated using any standard MPC protocol
in the respective setting. Further, our protocols make use of
a collision-resistant hash function, denoted by H(), and a
commitment scheme, denoted by Com(). The formal details
of key setup, hash function, and the commitment scheme are
deferred to §A.

Notation II.1. The ith element of a vector ~x is denoted as xi.
The dot product of two n length vectors, ~x and ~y, is computed
as ~x� ~y =

∑n
i=1 xiyi. For two matrices X,Y, the operation

X◦Y denotes the matrix multiplication. The ith bit of an `-bit
value v is denoted by v[i].

Notation II.2. For a bit b ∈ {0, 1}, we use bR to denote the
equivalent value of b over the ring Z2` . bR will have its least
significant bit set to b, while all other bits will be set to zero.

III. ROBUST 3PC AND PPML

In this section, we first introduce the sharing semantics
for three servers. Then, we introduce our new Joint Message
Passing (jmp) primitive, which plays a crucial role in obtaining
the strongest security guarantee of GOD, followed by our
protocols in the three server setting.

a) Secret Sharing Semantics: We use the following
secret-sharing semantics.
◦ [·]-sharing: A value v ∈ Z2` is [·]-shared among P1, P2, if
Ps for s ∈ {1, 2} holds [v]s ∈ Z2` such that v = [v]1 + [v]2.
◦ 〈·〉-sharing: A value v ∈ Z2` is 〈·〉-shared among P , if
– there exists v0, v1, v2 ∈ Z2` such that v = v0 + v1 + v2.
– Ps holds (vs, v(s+1)%3) for s ∈ {0, 1, 2}.
◦ J·K-sharing: A value v ∈ Z2` is J·K-shared among P , if
– there exists αv ∈ Z2` that is [·]-shared among P1, P2.
– there exists βv, γv ∈ Z2` such that βv = v + αv and P0

holds ([αv]1 , [αv]2 , βv+γv) while Ps for s ∈ {1, 2} holds
([αv]s , βv, γv).

b) Arithmetic and Boolean Sharing: Arithmetic sharing
refers to sharing over Z2` while boolean sharing, denoted as
J·KB, refers to sharing over Z21 .

c) Linearity of the Secret Sharing Scheme: Given the
[·]-shares of v1, v2, and public constants c1, c2, servers can
locally compute the [·]-share of c1v1 +c2v2 as c1 [v1]+c2 [v2].
It is trivial to see that the linearity property is satisfied by 〈·〉
and J·K-sharing as well.

A. Joint Message Passing primitive

The jmp primitive allows two servers to relay a common
message to the third server such that either the relay is success-
ful or an honest server (or a conflicting pair) is identified. The
striking feature of jmp is that it offers a rate-1 communication
i.e. for a message of ` elements, it only incurs a communication
of ` elements (in an amortized sense).

The task of jmp is captured in an ideal function-
ality (Fig. 1) below and the protocol (Fig. 2) realiz-
ing the functionality appears subsequently followed by an
overview.

Fjmp interacts with the servers in P and the adversary S.
Step 1: Fjmp receives (Input, vs) from Ps for s ∈ {i, j}, while

it receives (Select, ttp) from S. Here ttp denotes the server that
S wants to choose as the TTP. Let P ? ∈ P denote the server
corrupted by S.

Step 2: If vi = vj and ttp = ⊥, then set msgi = msgj =
⊥,msgk = vi and go to Step 5.

Step 3: If ttp ∈ P\{P ?}, then set msgi = msgj = msgk = ttp.
Step 4: Else, TTP is set to be the honest party with smallest

index. Set msgi = msgj = msgk = TTP

Step 5: Send (Output,msgs) to Ps for s ∈ {0, 1, 2}.

Functionality Fjmp

Fig. 1: 3PC: Ideal functionality for jmp primitive

– Each server Ps for s ∈ {i, j, k} initializes bit bs = 0.
– Pi sends v to Pk, while Pj sends H(v) to Pk.
– Pk broadcasts "(accuse,Pi)", if Pi is silent and TTP = Pj .

Analogously for Pj . If Pk accuses both Pi, Pj , then TTP = Pi.
Otherwise, Pk receives some ṽ and either sets bk = 0 when the
value and the hash are consistent or sets bk = 1. Pk then sends
bk to Pi, Pj and terminates if bk = 0.

– If Pi does not receive a bit from Pk, it broadcasts
"(accuse,Pk)" and TTP = Pj . Analogously for Pj . If both
Pi, Pj accuse Pk, then TTP = Pi. Otherwise, Ps for s ∈ {i, j}
sets bs = bk.

– Pi, Pj exchange their bits to each other. If Pi does not receive
bj from Pj , it broadcasts "(accuse,Pj)" and TTP = Pk.
Analogously for Pj . Otherwise, Pi resets its bit to bi ∨ bj and
likewise Pj resets its bit to bj ∨ bi.

– Ps for s ∈ {i, j, k} broadcasts Hs = H(v∗) if bs = 1, where
v∗ = v for s ∈ {i, j} and v∗ = ṽ otherwise. If Pk does not
broadcast, terminate. If either Pi or Pj does not broadcast, then
TTP = Pk. Otherwise,
• If Hi 6= Hj : TTP = Pk.
• Else if Hi 6= Hk: TTP = Pj .
• Else if Hi = Hj = Hk: TTP = Pi.

Protocol Πjmp(Pi, Pj , Pk, v)

Fig. 2: 3PC: Joint Message Passing Protocol

Given two servers Pi, Pj possessing a common value
v ∈ Z2` , protocol Πjmp proceeds as follows. First, Pi sends
v to Pk while Pj sends a hash of v to Pk. The communication
of v is done once and for all from Pi to Pk. In the simplest
case, Pk receives consistent (value, hash) pair, and the protocol
terminates. In all other cases, a TTP is identified as follows
without having to communicate v again. Importantly, this
part can be run once and for all instances of Πjmp with
Pi, Pj , Pk in the same roles, invoked in the final 3PC protocol.
Consequently, the cost relevant to this part vanishes in an
amortized sense, making the construction rate-1.

Each Ps for s ∈ {i, j, k} maintains a bit bs initialized
to 0, as an indicator for inconsistency. When Pk receives
inconsistent (value, hash) pair, it sets bk = 1 and sends the bit
to both Pi, Pj , who cross-check with each other by exchanging
the bit and turn on their inconsistency bit if the bit received
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from either Pk or its fellow sender is turned on. A party
broadcasts a hash of its value when its inconsistency bit is
on;3 Pk’s value is the one it receives from Pi. At this stage,
there are a bunch of possible cases and a detailed analysis
determines an eligible TTP in each case.

When Pk is silent, the protocol is understood to be com-
plete. This is fine irrespective of the status of Pk– an honest
Pk never skips this broadcast with inconsistency bit on and a
corrupt Pk implies honest senders. If either Pi or Pj is silent,
then Pk is picked as TTP which is surely honest. A corrupt Pk
could not make one of {Pi, Pj} speak as the senders (honest in
this case) are on agreement on their inconsistency bit (due to
their mutual exchange of inconsistency bit). When all of them
speak and (i) the senders’ hashes do not match, Pk is picked as
TTP; (ii) one of the senders conflicts with Pk, the other sender
is picked as TTP; and lastly (iii) if there is no conflict, Pi is
picked as TTP. The first two cases are self-explanatory. In the
last case, either Pj or Pk is corrupt. Because a corrupt Pi can
have honest Pk speak (and hence turn on its inconsistency bit),
by sending a v′ whose hash is not same as that of v and so
inevitably the hashes of honest Pj and Pk will conflict.

As a final touch, we ensure that, in each step, a party raises
a public alarm (via broadcast) accusing a party who is silent
when it is not supposed to be, and the protocol terminates
immediately by labelling the party as TTP who is neither the
complainer nor the accused.

Notation III.1. We say that Pi, Pj jmp-send v to Pk when
they invoke Πjmp(Pi, Pj , Pk, v).

Using jmp in protocols. As mentioned in the introduction,
the protocol for jmp needs to be viewed consisting of two
phases (send, verify), where send phase consists of Pi sending
v to Pk and the rest goes to verify phase. Looking ahead,
most of our protocols use jmp, and consequently our final
construction, either of general MPC or any PPML task will
have several calls to jmp. To leverage amortization, the send
phase will be executed in all protocols invoking jmp on the
flow, while the verify for a fixed ordered pair of senders will
be executed once and for all in the end. The verify phase
will determine if all the sends were correct. If not, a TTP is
identified, as explained, and the computation completes with
the help of TTP, just as in the ideal-world.

B. 3PC Protocols

We now describe the protocols for 3 parties/servers.

a) Sharing Protocol: Protocol Πsh (Fig. 3) allows a
server Pi to generate J·K-shares of a value v ∈ Z2` . In the
preprocessing phase, P0, Pj for j ∈ {1, 2} along with Pi
sample a random [αv]j ∈ Z2` , while P1, P2, Pi sample random
γv ∈ Z2` . This allows Pi to know both αv and γv in clear.
During the online phase, if Pi = P0, then P0 sends βv = v+αv

to P1. P0, P1 then jmp-send βv to P2 to complete the secret
sharing. If Pi = P1, P1 sends βv = v +αv to P2. Then P1, P2

jmp-send βv+γv to P0. The case for Pi = P2 proceeds similar
to that of P1. The correctness of the shares held by each server
is assured by the guarantees of Πjmp.

3This hash can be computed on a combined message across many calls of
jmp.

Preprocessing:

– If Pi = P0 : P0, Pj , for j ∈ {1, 2}, together sample random
[αv]j ∈ Z2` , while P together sample random γv ∈ Z2` .

– If Pi = P1 : P0, P1 together sample random [αv]1 ∈ Z2` , while
P together sample a random [αv]2 ∈ Z2` . Also, P1, P2 together
sample random γv ∈ Z2` .

– If Pi = P2: Symmetric to the case when Pi = P1.

Online:

– If Pi = P0 : P0 computes βv = v + αv and sends βv to P1.
P1, P0 jmp-send βv to P2.

– If Pi = Pj , for j ∈ {1, 2} : Pj computes βv = v + αv, sends
βv to P3−j . P1, P2 jmp-send βv + γv to P0.

Protocol Πsh(Pi, v)

Fig. 3: 3PC: Generating JvK-shares by server Pi

b) Joint Sharing Protocol: Protocol Πjsh (Fig. 16) al-
lows two servers Pi, Pj to jointly generate a J·K-sharing of a
value v ∈ Z2` that is known to both. Towards this, servers
execute the preprocessing of Πsh (Fig. 3) to generate [αv] and
γv. If (Pi, Pj) = (P1, P0), then P1, P0 jmp-send βv = v+αv to
P2. The case when (Pi, Pj) = (P2, P0) proceeds similarly. The
case for (Pi, Pj) = (P1, P2) is optimized further as follows:
servers locally set [αv]1 = [αv]2 = 0. P1, P2 together sample
random γv ∈ Z2` , set βv = v and jmp-send βv + γv to P0. We
defer the formal details of Πjsh to §B-C.

c) Addition Protocol: Given the J·K-shares on input
wires x, y, servers can use the linearity property of the sharing
scheme to locally compute J·K-shares of the output of addition
gate, z = x + y as JzK = JxK + JyK.

d) Multiplication Protocol: Protocol Πmult(P, JxK, JyK)
(Fig. 4) enables the servers in P to compute J·K-sharing of
z = xy, given the J·K-sharing of x and y. We build on
the protocol of BLAZE [9] and discuss along the way the
differences and resemblances. We begin with a protocol for the
semi-honest setting, which is also the starting point of BLAZE.
During the preprocessing phase, P0, Pj for j ∈ {1, 2} sample
random [αz]j ∈ Z2` , while P1, P2 sample random γz ∈ Z2` .
In addition, P0 locally computes Γxy = αxαy and generates
[·]-sharing of the same between P1, P2. Since

βz = z + αz = xy + αz = (βx − αx)(βy − αy) + αz

= βxβy − βxαy − βyαx + Γxy + αz (1)

holds, servers P1, P2 locally compute [βz]j = (j−1)βxβy−
βx [αy]j − βy [αx]j + [Γxy]j + [αz]j during the online phase
and mutually exchange their shares to reconstruct βz. P1 then
sends βz +γz to P0, completing the semi-honest protocol. The
correctness that asserts z = xy or in other words βz−αz = xy
holds due to Eq. 1.

The following issues arise in the above protocol when a
malicious adversary is considered:

1) When P0 is corrupt, the [·]-sharing of Γxy performed by P0

might not be correct, i.e. Γxy 6= αxαy.
2) When P1 (or P2) is corrupt, the [·]-share of βz handed over

to the fellow honest evaluator during the online phase might
not be correct, causing reconstruction of an incorrect βz.

3) When P1 is corrupt, the value βz + γz that is sent to P0

during the online phase may not be correct.
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All the three issues are common with BLAZE (copied
verbatim), but we differ from BLAZE in handling them. We
begin with solving the last issue first. We simply make P1, P2

jmp-send βz + γz to P0 (after βz is computed). This either
leads to success or a TTP selection. Due to jmp’s rate-1
communication, P1 alone sending the value to P0 remains as
costly as using jmp in amortized sense. Whereas in BLAZE,
the malicious version simply makes P2 to send a hash of βz+γz
to P0 (in addition to P1’s communication of βz + γz to P0),
who aborts if the received values are inconsistent.

For the remaining two issues, similar to BLAZE, we reduce
both to a multiplication (on values unrelated to inputs) in
the preprocessing phase. However, our method leads to either
success or TTP selection, with no additional cost.

We start with the second issue. To solve it, where a corrupt
P1 (or P2) sends an incorrect [·]-share of βz, BLAZE makes
use of server P0 to compute a version of βz for verification,
based on βx and βy, as follows. Using βx + γx and βy + γy,
which are already available to P0 as a part of JxK, JyK, P0

computes:

β?z = −(βx + γx)αy − (βy + γy)αx + 2Γxy + αz

= (βz − βxβy)− (γxαy + γyαx − Γxy + ψ) + ψ [by Eq. 1]

= (βz − βxβy + ψ)− χ [where χ = γxαy + γyαx − Γxy + ψ]

Assuming that (a) ψ ∈ Z2` is a random value sampled
together by P1 and P2 (and unknown to P0) for securing the
β values from P0 and (b) P0 knows the value χ, P0 can send
β?z + χ to P1 and P2 who using the knowledge of βx, βy and
ψ can verify the correctness of βz by computing βz−βxβy +ψ
and checking against the value β?z + χ received from P0. The
rest of the logic in BLAZE goes on to discuss how to enforce
P0– (a) to compute a correct χ (when honest) and (b) to share
correct Γxy (when corrupt) via a single multiplication of two
values in the preprocessing phase. Tying the ends together,
one of their innovations goes in identifying the precise shared
multiplication triple and mapping its components to χ and Γxy

so that these are correct by the virtue of the correctness of the
multiplication relation.

Preprocessing:

– P0, Pj for j ∈ {1, 2} together sample random [αz]j ∈ Z2` ,
while P1, P2 sample random γz ∈ Z2` .

– Servers in P locally compute 〈·〉-sharing of d = γx + αx and
e = γy + αy by setting the shares as follows (ref. Table II):

(d0= [αx]2 , d1= [αx]1 , d2=γx), (e0= [αy]2 , e1= [αy]1 , e2=γy)

– Servers in P execute ΠmulPre(P, d, e) to generate 〈f〉 = 〈de〉.
– P0, P1 locally set [χ]1 = f1, while P0, P2 locally set [χ]2 = f0.
P1, P2 locally compute ψ = f2 − γxγy.

Online:

– P0, Pj , for j ∈ {1, 2}, compute [β?
z ]j = −(βx + γx) [αy]j −

(βy + γy) [αx]j + [αz]j + [χ]j .
– P0, P1 jmp-send [β?

z ]1 to P2 and P0, P2 jmp-send [β?
z ]2 to P1.

– P1, P2 compute β?
z = [β?

z ]1+[β?
z ]2 and set βz = β?

z +βxβy+ψ.
– P1, P2 jmp-send βz + γz to P0.

Protocol Πmult(P, JxK, JyK)

Fig. 4: 3PC: Multiplication Protocol (z = x · y)

We differ from BLAZE in several ways. First, we do not
simply rely on P0 for the verification information β?z + χ,
as this may inevitably lead to abort when P0 is corrupt.
Instead, we find (a slightly different) β?z that, instead of entirely
available to P0, will be available in [·]-shared form between
the two teams {{P0, Pi}}i∈{1,2}, with both servers in {P0, Pi}
holding ith share [β?z ]i. With this edit, the ith team can
jmp-send the ith share of β?z to the third party which computes
β?z . Due to the presence of one honest party in each team,
this β?z is correct and P1, P2 directly use it to compute βz,
with the knowledge of ψ, βx, βy. This means, departing from
BLAZE and the starting semi-honest construction, P1 and P2

compute βz from β?z . Whereas, BLAZE suggests computing βz
from the exchange P1, P2’s respective share of βz and use β?z
for verification. The outcome is a win-win situation i.e. either
success or TTP selection. Our new β?z and χ are:

χ = γxαy + γyαx + Γxy − ψ and
β?z = −(βx + γx)αy − (βy + γy)αx + αz + χ

= (−βxαy − βyαx + Γxy + αz)− ψ = βz − βxβy − ψ

Clearly, both P0 and Pi can compute [β?z ]i = −(βx +
γx) [αy]i− (βy + γy) [αx]i + [αz]i + [χ]i given [χi]. The rest of
our discussion explains how (a) ith share of [χ] can be made
available to {P0, Pi} and (b) ψ can be derived by P1, P2, from
a multiplication triple. Similar to BLAZE, yet for a different
triple, we observe that (d, e, f) is a multiplication triple, where
d = (γx + αx), e = (γy + αy), f = (γxγy + ψ) + χ if and only
if χ and Γxy are correct. Indeed,

de = (γx + αx)(γy + αy) = γxγy + γxαy + γyαx + Γxy

= (γxγy + ψ) + (γxαy + γyαx + Γxy − ψ)

= (γxγy + ψ) + χ = f

Based on this observation, we compute the above multipli-
cation triple using a multiplication protocol and extract out
the values for ψ and χ from the shares of f which are
bound to be correct. This can be executed entirely in the
preprocessing phase. Specifically, the servers (a) locally obtain
〈·〉-shares of d, e as in Table II, (b) compute 〈·〉-shares of
f(= de), say denoted by f0, f1, f2, using an efficient, robust
3-party multiplication protocol, say ΠmulPre (abstracted in a
functionality Fig. 17) and finally (c) extract out the required
preprocessing data locally as in Eq. 2. We switch to 〈·〉-sharing
in this part to be able to use the best robust multiplication
protocol of [30] that supports this form of secret sharing and
requires communication of just 3 elements. Fortunately, the
switch does not cost anything, as both the first and third steps
involve local computation and the cost simply reduces to a
single run of a multiplication protocol.

P0 P1 P2

〈v〉 (v0, v1) (v1, v2) (v2, v0)

〈d〉 ([αx]2 , [αx]1) ([αx]1 , γx) (γx, [αx]2)

〈e〉 ([αy]2 , [αy]1) ([αy]1 , γy) (γy, [αy]2)

TABLE II: The 〈·〉-sharing of values d and e

[χ]2 ← f0, [χ]1 ← f1, γxγy + ψ ← f2. (2)

According to 〈·〉-sharing, both P0 and P1 obtain f1 and hence
obtain [χ]1. Similarly, P0, P2 obtain f0 and hence [χ]2. Finally,
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P1, P2 obtain f2 from which they compute ψ = f2−γxγy. This
completes the informal discussion.

We note that to facilitate a fast online phase for multiplica-
tion, our preprocessing phase leverages a robust multiplication
protocol [30] in a black-box manner to derive the necessary
preprocessing information. A similar black-box approach is
also taken for the dot product protocol in the preprocessing
phase. This leaves room for further improvements in commu-
nication cost, which can be obtained by instantiating the black-
box with an efficient robust dot product protocol, coupled with
the fast online phase.

e) Reconstruction Protocol: Protocol Πrec (Fig. 5) al-
lows servers to robustly reconstruct value v ∈ Z2` from
its J·K-shares. Note that each server misses one share of v
which is held by the other two servers. Consider the case of
P0 who requires γv to compute v. During the preprocessing,
P1, P2 compute a commitment of γv, denoted by Com(γv) and
jmp-send the same to P0. Similar steps are performed for the
values [αv]2 and [αv]1 that are required by servers P1 and P2

respectively. During the online phase, servers open their com-
mitments to the intended server who accepts the opening that is
consistent with the agreed upon commitment.

Preprocessing:

– P0, Pj , for j ∈ {1, 2}, compute Com([αv]j), while P1, P2

compute Com(γv).
– P1, P2 jmp-send Com(γv) to P0, while P0, P1 jmp-send

Com([αv]1) to P2, and P0, P2 jmp-send Com([αv]2) to P1,

Online:

– P0, P1 open Com([αv]1) to P2. P0, P2 open Com([αv]2) to P1.
P1, P2 open Com(γv) to P0.

– Each of the servers accept the opening that is consistent with the
agreed upon commitment. P1, P2 compute v = βv−[αv]1−[αv]2,
while P0 computes v = (βv + γv)− [αv]1 − [αv]2 − γv.

Protocol Πrec(P, JvK)

Fig. 5: 3PC: Reconstruction of v among the servers

f) The Complete 3PC: For the sake of completeness
and to demonstrate how GOD is achieved, we show how to
compile the above primitives for a general 3PC. The main pur-
pose is to explain the usage of jmp in a complete computation.
A similar approach will be taken for 4PC and each PPML task
(both training and inference) and we will avoid repetition. In
order to compute an arithmetic circuit over Z2` , we first invoke
the key-setup functionality Fsetup (Fig. 14) for key distribution
and preprocessing of Πsh, Πmult and Πrec, as per the given
circuit. During the online phase, Pi ∈ P shares its input xi
by executing online steps of Πsh (Fig. 3) protocol. This is
followed by the circuit evaluation phase, where severs evaluate
the gates in the circuit in the topological order, with addition
gates (and multiplication-by-a-constant gates) being computed
locally, and multiplication gates being computed via online
of Πmult (Fig. 4). Finally, servers run the online steps of Πrec

protocol (Fig. 5) on the output wires to reconstruct the function
output. All the building blocks above invoke jmp, except the
online phase of reconstruction. To leverage amortization, only
send phases of all the jumps are run on the flow. At the end
of preprocessing, and right before the reconstruction in the
online phase, the verify phase for all possible ordered pair

of senders are run. We carry on computation in the online
phase only when the verify phases in the preprocessing are
successful. Otherwise, the servers simply send their inputs to
the elected TTP who computes the function and returns the
result to all the servers. Similarly, depending on the output
of the verify phase at the end of the online phase, either the
reconstruction is carried out or a TTP is identified. In the latter
case, computation completes as mentioned before.

C. Building Blocks for PPML using 3PC

This section provides details on robust realizations of the
following building blocks for PPML in 3-server setting– i) Dot
Product, ii) Truncation, iii) Dot Product with Truncation, iv)
Secure Comparison, and v) Non-linear Activation functions–
Sigmoid and ReLU. We begin by providing details of input
sharing and reconstruction in the SOC setting.

a) Input Sharing and Output Reconstruction in the SOC
Setting: Protocol ΠSOC

sh (Fig. 6) extends input sharing to
the SOC setting and allows a user U to generate the J·K-
shares of its input v among the three servers. Note that the
necessary commitments to facilitate the sharing are generated
in the preprocessing phase by the servers which are then
communicated to U, along with the opening, in the online
phase. U selects the commitment forming the majority (for
each share) owing to the presence of an honest majority among
the servers, and accepts the corresponding shares. Analogously,
protocol ΠSOC

rec (Fig. 6) allows the servers to reconstruct a value
v towards user U. In either of the protocols, if at any point, a
TTP is identified, then servers signal the TTP’s identity to U.
U selects the TTP as the one forming a majority and sends its
input in clear to the TTP, who computes the function output
and sends it back to U.

Input Sharing:

– P0, Ps, for s ∈ {1, 2}, together sample random [αv]s ∈ Z2` ,
while P1, P2 together sample random γv ∈ Z2` .

– P0, P1 jmp-send Com([αv]1) to P2, while P0, P2 jmp-send
Com([αv]2) to P1, and P1, P2 jmp-send Com(γv) to P0.

– Each of the servers sends (Com([αv]1),Com([αv]2),Com(γv))
to U who accepts the values that form the majority. Also, P0, Ps,
for s ∈ {1, 2}, open [αv]s towards U while P1, P2 open γv
towards U.

– U accepts the consistent opening, recovers [αv]1 , [αv]2 , γv,
computes βv = v + [αv]1 + [αv]2, and sends βv + γv to all three
servers.

– Servers broadcast the received value and accept the majority
value if it exists, and a default value, otherwise. P1, P2 locally
compute βv from βv + γv using γv to complete the sharing of v.

Output Reconstruction:

– Servers execute the preprocessing of Πrec(P, JvK) to agree upon
commitments of [αv]1 , [αv]2 and γv.

– Each of the servers send βv + γv as well as commitments on
[αv]1 , [αv]2 and γv to U, who accepts the values forming majority.

– Now, P0, P1 open [αv]1 to U, P0, P2 open [αv]2, while P1, P2

open γv to U.
– U accepts the consistent opening and computes v = (βv +γv)−
[αv]1 − [αv]2 − γv.

Protocol ΠSOC
sh (U, v) and ΠSOC

rec (U, JvK)

Fig. 6: 3PC: Input Sharing and Output Reconstruction in SOC Setting
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b) MSB Extraction, Bit to Arithmetic Conversion and
Bit Injection Protocols: Here we provide a high-level overview
of three protocols that involve working over arithmetic and
boolean rings in a mixed fashion and are used for the PPML
primitives. The Bit Extraction Protocol, Πbitext allows servers
to compute the boolean sharing of the most significant bit
(msb) of a value v given its arithmetic sharing JvK. The Bit2A
Protocol, Πbit2A, given the boolean sharing of a bit b, denoted
as JbKB, allows servers to compute the arithmetic sharing JbRK.
Here bR denotes the equivalent value of b over ring Z2` (see
Notation II.2). Lastly, the Bit Injection Protocol, ΠBitInj, allows
the servers to compute the arithmetic sharing JbvK given the
boolean sharing of a bit b, denoted as JbKB and the arithmetic
sharing of v ∈ Z2` .

The core techniques used in these protocols follow from
BLAZE [9], where the multiplication calls are instantiated with
Πmult, and several private communications are replaced with
jmp-send to ensure either successful run or TTP selection. The
PPML building blocks above can be understood without the
details of the constructs and hence they are moved to §B-F.

c) Dot Product: Given the J·K-sharing of vectors ~x and
~y, protocol Πdotp (Fig. 7) allows servers to generate J·K-sharing
of z = ~x� ~y in a robust fashion. By J·K-sharing of a vector ~x
of size n, we mean that each element xi ∈ Z2` in the vector,
for i ∈ [n], is J·K-shared. We borrow ideas from BLAZE for
obtaining an online communication cost independent of n and
use jmp primitive to ensure either success or TTP selection.
Similar to our multiplication protocol that offloads one call to
a robust multiplication protocol in the preprocessing, our dot
product does the same for a robust dot product.

Preprocessing:

– P0, Pj , for j ∈ {1, 2}, together sample random [αz]j ∈ Z2` ,
while P1, P2 sample random γz ∈ Z2` .

– Servers locally compute 〈·〉-sharing of ~d,~e with di = γxi +αxi

and ei = γyi + αyi for i ∈ [n] as follows:

(〈di〉0=([αxi ]2 , [αxi ]1), 〈di〉1=([αxi ]1 , γxi), 〈di〉2=(γxi , [αxi ]2))

(〈ei〉0=([αyi ]2 , [αyi ]1), 〈ei〉1=([αyi ]1 , γyi), 〈ei〉2=(γyi , [αyi ]2))

– Servers execute ΠdotpPre(P, 〈~d〉, 〈~e〉) to generate 〈f〉 = 〈~d�~e〉.
– P0, P1 locally set [χ]1 = f1, while P0, P2 locally set [χ]2 = f0.
P1, P2 locally compute ψ = f2 −

∑n
i=1 γxiγyi .

Online:

– P0, Pj , for j ∈ {1, 2}, compute [β?
z ]j = −

∑n
i=1((βxi +

γxi) [αyi ]j + (βyi + γyi) [αxi ]j) + [αz]j + [χ]j .
– P0, P1 jmp-send [β?

z ]1 to P2 and P0, P2 jmp-send [β?
z ]2 to P1.

– P1, P2 locally compute β?
z = [β?

z ]1 + [β?
z ]2 and set βz = β?

z +∑n
i=1(βxiβyi) + ψ.

– P1, P2 jmp-send βz + γz to P0.

Protocol Πdotp(P, {JxiK, JyiK}i∈[n])

Fig. 7: 3PC: Dot Product Protocol (z = ~x� ~y)

To begin with, z = ~x�~y can be viewed as n parallel mul-
tiplication instances of the form zi = xiyi for i ∈ {1, . . . , n},
followed by adding up the results. Let β?z =

∑n
i=1 β

?
zi . Then,

β?z = −
n∑
i=1

(βxi + γxi)αyi −
n∑
i=1

(βyi + γyi)αxi + αz + χ (3)

where χ =
∑n
i=1(γxiαyi + γyiαxi + Γxiyi − ψi).

Apart from the aforementioned modification, the online
phase for dot product proceeds similar to that of multipli-
cation protocol. P0, P1 locally compute [β?z ]1 as per Eq. 3
and jmp-send [β?z ]1 to P2. P1 obtains [β?z ]2 in a similar
fashion. P1, P2 reconstruct β?z = [β?z ]1 + [β?z ]2 and compute
βz = β?z +

∑n
i=1 βxiβyi + ψ. Here, the value ψ has to be

correctly generated in the preprocessing phase satisfying Eq.
3. Finally, P1, P2 jmp-send βz + γz to P0.

We now provide the details for preprocessing phase that
enable servers to obtain the required values (χ, ψ) with the
invocation of a dot product protocol in a black-box way.
Towards this, let ~d = [d1, . . . , dn] and ~e = [e1, . . . , en], where
di = γxi + αxi and ei = γyi + αyi for i ∈ [n], as in the case
of multiplication. Then for f = ~d� ~e,

f = ~d� ~e =

n∑
i=1

diei =

n∑
i=1

(γxi + αxi)(γyi + αyi)

=

n∑
i=1

(γxiγyi + ψi) +

n∑
i=1

χi =

n∑
i=1

(γxiγyi + ψi) + χ

=

n∑
i=1

(γxiγyi + ψi) + [χ]1 + [χ]2 = f2 + f1 + f0.

where f2 =
∑n
i=1(γxiγyi + ψi), f1 = [χ]1 and f0 = [χ]2.

Using the above relation, the preprocessing phase proceeds
as follows: P0, Pj for j ∈ {1, 2} sample a random [αz]j ∈
Z2` , while P1, P2 sample random γz. Servers locally prepare
〈~d〉, 〈~e〉 similar to that of multiplication protocol. Servers
then execute a robust 3PC dot product protocol, denoted by
ΠdotpPre, that takes 〈~d〉, 〈~e〉 as input and compute 〈f〉 with
f = ~d � ~e. Given 〈f〉, the ψ and [χ] values are extracted as
follows (ref. Eq. 4):

ψ = f2 −
n∑
i=1

γxiγyi , [χ]1 = f1, [χ]2 = f0, (4)

It is easy to see from the semantics of 〈·〉-sharing that both
P1, P2 obtain f2 and hence ψ. Similarly, both P0, P1 obtain f1
and hence [χ]1, while P0, P2 obtain [χ]2.

In this work, we instantiate ΠdotpPre using n black-box
invocations of ΠmulPre. In the ith invocation, servers compute
〈di, ei〉 and obtain the respective ψi and [χi] values. Finally,
servers locally set ψ =

∑n
i=1 ψi and [χ] =

∑n
i=1 [χi].

The aforementioned method results in communication of 3n
elements in the preprocessing phase. A protocol for ΠdotpPre

with better cost, when plugged into our Πdotp, would bring
down the preprocessing cost further while maintaining a fast
online phase. We defer the formal details of Πdotp to §B-G.

d) Truncation: Working over fixed-point values, re-
peated multiplications using FPA arithmetic can lead to an
overflow resulting in loss of significant bits of information.
This put forth the need for truncation [1], [4], [6], [7], [9] that
re-adjusts the shares after multiplication so that FPA semantics
are maintained. As shown in SecureML [1], the method of
truncation would result in loss of information on the least
significant bits and affect the accuracy by a very minimal
amount only.

For truncation, servers execute Πtrgen (Fig. 8) to generate a
random pair of the form ([r] , JrdK). Here, r denotes a random
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ring element, while rd represents the truncated value of r. By
truncated value, we mean that the value is right-shifted by
d bit positions, where d is the number of bits allocated for
the fractional part in the FPA representation. Given (r, rd), the
truncated value of v denoted by vd can be computed from v
as vd = (v − r)d + rd. As shown in ABY3 [4], this method
ensures the same correctness of SecureML and the accuracy
is affected by a very minimal amount.

To generate ([r] , JrdK), servers proceed as follows: P0, Pj
for j ∈ {1, 2} sample random Rj ∈ Z2` . P0 locally computes
r = R1+R2 and truncates r to obtain rd. P0 then executes Πsh

on rd to generate JrdK. As shown in BLAZE, the correctness
of sharing performed by P0 is checked using the relation
r = 2drd + rd, where rd denotes the ring element r with the
higher order ` − d bit positions set to 0. In detail, P0, Pj for
j ∈ {1, 2} locally computes [aj ] for a = (r−2drd+rd). P0, P1

then jmp-send H([a]1) to P2. P2 checks if the received hash
value matches with H(− [a]2). In case of any inconsistency,
P2 accuses P0 and then P1 is identified as the TTP. The
correctness of Πtrgen follows from BLAZE.

– P0, Pj for j ∈ {1, 2} together sample random Rj ∈ Z2` . P0

sets r = R1 + R2 while Pj sets [r]j = Rj . Pj sets [rd]j as the
ring element that has last d bits of rj in the last d positions and
0 elsewhere.

– P0 locally truncates r to obtain rd and executes Πsh(P0, r
d) to

generate JrdK.
– P0, P1 set

[
rd
]
1

= βrd − [αrd ]1, while P0, P2 set
[
rd
]
2

=
− [αrd ]2.

– P0, P1 compute u = [r]1 − 2d
[
rd
]
1
− [rd]1. P0, P1 jmp-send

H(u)) to P2.
– P2 locally computes v = 2d

[
rd
]
2
+[rd]2−[r]2. If H(u) 6= H(v),

P2 broadcast "(accuse,P0)" and P1 is chosen as the TTP.

Protocol Πtrgen(P)

Fig. 8: 3PC: Generating Random Truncated Pair (r, rd)

e) Dot Product with Truncation: Given the J·K-sharing
of vectors ~x and ~y, protocol Πdotpt (Fig. 20) allows servers
to generate JzdK, where zd denotes the truncated value of z =
~x � ~y. One naive way is to compute the dot product using
Πdotp first, followed by performing the truncation using the
(r, rd) pair. Instead, we follow the optimization of BLAZE
where the online phase of Πdotp is modified to integrate the
truncation using (r, rd) at no additional cost.

The preprocessing phase now consists of the execution
of one instance of Πtrgen (Fig. 8) and the preprocessing
corresponding to Πdotp (Fig. 7). At a high level, the on-
line phase proceeds as follows: P0, Pj for j ∈ {1, 2} lo-
cally compute [z? − r]j (instead of [β?z ]j as in Πdotp) where
z? = β?z − αz. P0, P1 jmp-send [z? − r]1 to P2 while P0, P2

jmp-send [z? − r]2 to P1. Both P1, P2 then compute (z − r)

locally, truncate it to obtain (z− r)d and execute Πjsh to
generate J(z− r)dK. Finally, servers locally compute the result
as JzdK = J(z− r)dK+ JrdK. We defer the formal details of the
protocol Πdotpt to §B-I.

f) Secure Comparison: Secure comparison allows
servers to check whether x < y, given their J·K-shares. In
FPA representation, checking x < y is equivalent to checking
the msb of v = x − y. Towards this, servers locally compute

JvK = JxK−JyK and extract the msb of v using Πbitext (§B-F1).
In case an arithmetic sharing is desired, servers can apply
Πbit2A (Fig. 18) protocol on the outcome of Πbitext protocol.

g) Activation Functions: We now elaborate on two of
the most prominently used activation functions: i) Rectified
Linear Unit (ReLU) and (ii) Sigmoid (Sig).

– ReLU: The ReLU function, relu(v) = max(0, v), can be
viewed as relu(v) = b · v, where the bit b = 1 if v < 0 and
0 otherwise. Here b denotes the complement of b. Given JvK,
servers first execute Πbitext on JvK to generate JbKB. The J·KB-
sharing of b is then locally computed by setting βb = 1⊕ βb.
Servers then execute ΠBitInj protocol on JbKB and JvK to obtain
the desired result.

– Sig: In this work, we use the MPC-friendly variant of the
Sigmoid function [1], [4], [6] (ref. §B-J). Note that sig(v) =
b1b2(v+1/2)+b2, where b1 = 1 if v+1/2 < 0 and b2 = 1 if
v−1/2 < 0. To compute Jsig(v)K, servers proceed in a similar
fashion as the ReLU, and hence, we skip the formal details.

IV. ROBUST 4PC AND PPML

In this section, we extend our 3PC results to the 4-
party case and observe substantial efficiency gain. First, the
use of broadcast is eliminated. Second, the preprocessing
of multiplication becomes substantially computationally light,
eliminating the multiplication protocol altogether. Third and
the most striking of all, we achieve a dot product protocol
with communication cost completely independent of the size
of the vector, as opposed to its 3PC counterpart (cf. Πdotp (Fig.
7)). At the heart of our 4PC constructions lies an efficient 4-
party jmp primitive, denoted as jmp4, that allows two servers
to robustly send a common value to a third server. We start
with the secret-sharing semantics for 4 parties. We only use
an extended version of J·K-sharing defined below.

a) Secret Sharing Semantics: For a value v, the shares
for P0, P1 and P2 remain the same as that of 3PC case. That
is, P0 holds ([αv]1 , [αv]2 , βv + γv) while Pi for i ∈ {1, 2}
holds ([αv]i , βv, γv). The shares for the fourth server P3 is
defined as ([αv]1 , [αv]2 , γv). Clearly, the secret is defined as
v = βv − [αv]1 − [αv]2.

b) 4PC Joint Message Passing Primitive: The jmp4
primitive enables two servers Pi, Pj to send a common value
v ∈ Z2` to a third server Pk, or identify a TTP in case of
any inconsistency. This primitive is analogous to jmp (Fig. 2)
in spirit but is significantly optimized and free from broadcast
calls. Similar to the 3PC counterpart, each party maintains
a bit and Pi sends the value, and Pj the hash of it to Pk.
Pk sets its inconsistency bit to 1 when the (value, hash) pair
is inconsistent. This is followed by relaying the bit back to
the senders who exchange it to reach an agreement on the
consistency bit. During this execution, if a party remains silent,
then it triggers the recipient to turn on its bit. In case of any
inconsistency, the fourth server, who was not a part of the
computation, can be employed as the TTP. However, reaching
agreement on whether the TTP is established or the protocol
terminates successfully needs extra care. For this, Pi, Pj , Pk
send their bits to Pl who accepts to be a TTP when at least
two parties’ bits are turned on including Pk’s. Pl relays a
confirmation to all and a server accepts her if its inconsistency
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bit is on and it receives the confirmation from Pl. Notice that
an honest Pl when it relays a confirmation will always be
accepted and a corrupt Pl’s deliberate attempt to become TTP
will always be rejected.

– Ps for s ∈ {i, j, k} initializes an inconsistency bit bs = 0.
– Pi sends v to Pk and Pj sends H(v) to Pk. Pk sets bk = 1 if the

received values are inconsistent, or if either Pi or Pj remained
silent.

– Pk sends bk to Pi, Pj . Pi sets bi to bk and to 1 when nothing
is received from Pk. Similarly, for Pj .

– Pi, Pj mutually exchange their bits. Pi resets bi = bi ∨ bj

where bj is set to 1 when Pj remains silent. Analogously for Pj .
– Ps for s ∈ {i, j, k} sends bs to Pl. If Pl receives 1 from at

least two servers among which one is Pk, Pl sets bl = 1 and to
0 otherwise. It sends bl to all.

– Ps, for s ∈ {i, j, k}, sets TTP = Pl if bs ∧ bl = 1, terminates
otherwise.

Protocol Πjmp4(Pi, Pj , Pk, v, Pl)

Fig. 9: 4PC: Joint Message Passing Primitive

Notation IV.1. We say that Pi, Pj jmp4-send v to Pk when
they invoke Πjmp4(Pi, Pj , Pk, v, Pl).

We note that the end goal of jmp4 primitive relates closely
to the bi-convey primitive of FLASH [7]. Bi-convey allows
two servers S1, S2 to convey a value to a server R, and in
case of an inconsistency, a pair of honest servers mutually
identify each other, followed by exchanging their internal
randomness to recover the clear inputs, computing the circuit,
and sending the output to all. Note, however, that jmp4 prim-
itive is more efficient and differs significantly in techniques
from the bi-convey primitive. Unlike in bi-convey, in case
of an inconsistency, jmp4 enables servers to unanimously
learn the TTP’s identity. Moreover, bi-convey demands that
honest servers, identified during an inconsistency, exchange
their internal randomness (which comprises of the shared keys
established during the key-setup phase) to proceed with the
computation. This enforces the need for a fresh key-setup every
time inconsistency is detected. In the efficiency front, jmp4
simply halves the communication cost of bi-convey, giving a
2× improvement.

A. 4PC Protocols

In this section, we revisit the protocols from 3PC (§III)
and suggest optimizations. While we provide details for the
protocols that vary significantly from their 3PC counterpart in
this section, the details for other protocols are deferred to §C.

a) Sharing Protocol: To enable Pi to share a value
v, protocol Πsh4 (Fig. 10) proceeds similar to that of 3PC
case with the addition that P3 also samples the values
[αv]1 , [αv]2 , γv using the shared randomness with the respec-
tive servers. On a high level, Pi computes βv = v+[αv]1+[αv]2
and sends βv (or βv + γv) to another server and they together
jmp4-send this information to the intended servers.

Preprocessing:

– If Pi = P0 : P0, P3, Pj , for j ∈ {1, 2}, together sample

Protocol Πsh4(Pi, v)

random [αv]j ∈ Z2` , while P sample random γv ∈ Z2` .
– If Pi = P1 : P0, P3, P1 together sample random [αv]1 ∈ Z2` ,

while P sample a random [αv]2 ∈ Z2` . Also, P1, P2, P3 sample
random γv ∈ Z2` .

– If Pi = P2: Analogous to the case when Pi = P1.
– If Pi = P3: P0, P3, Pj , for j ∈ {1, 2}, sample random
[αv]j ∈ Z2` . P1, P2, P3 together sample random γv ∈ Z2` .

Online:

– If Pi = P0 : P0 computes βv = v + αv and sends βv to P1.
P0, P1 jmp4-send βv to P2.

– If Pi = Pj , for j ∈ {1, 2} : Pj computes βv = v + αv, sends
βv to P3−j . P1, P2 jmp4-send βv + γv to P0.

– If Pi = P3: P3 sends βv + γv = v + αv + γv to P0. P3, P0

jmp4-send βv + γv to both P1 and P2.

Fig. 10: 4PC: Generating JvK-shares by server Pi

b) Multiplication Protocol: Given the J·K-shares of x
and y, protocol Πmult4 (Fig. 11) allows servers to compute
JzK with z = xy. When compared with the state-of-the-art
4PC GOD protocol of FLASH [7], our solution improves
communication in both, the preprocessing and online phase,
from 6 to 3 ring elements. Moreover, our communication cost
matches with the state-of-the-art 4PC protocol of Trident [8]
that provides security with fairness only.

Preprocessing:

– P0, P3, Pj , for j ∈ {1, 2}, sample random [αz]j ∈ Z2` , while
P0, P1, P3 sample random [Γxy]1 ∈ Z2` .

– P1, P2, P3 sample random γz, ψ, r ∈ Z2` and set [ψ]1 = r,
[ψ]2 = ψ − r.

– P0, P3 set [Γxy]2 = Γxy − [Γxy]1, where Γxy = αxαy. P0, P3

jmp4-send [Γxy]2 to P2.
– P3, Pj , for j ∈ {1, 2}, set [χ]j = γx [αy]j + γy [αx]j + [Γxy]j −
[ψ]j . P1, P3 jmp4-send [χ]1 to P0, while P2, P3 jmp4-send [χ]2
to P0.

Online:

– P0, Pj , for j ∈ {1, 2}, compute [β?
z ]j = −(βx + γx) [αy]j −

(βy + γy) [αx]j + [αz]j + [χ]j .
– P1, P0 jmp4-send [β?

z ]1 to P2, while P2, P0 jmp4-send [β?
z ]2

to P1.
– Pj , for j ∈ {1, 2}, computes β?

z = [β?
z ]1 + [β?

z ]2 and sets
βz = β?

z + βxβy + ψ.
– P1, P2 jmp4-send βz + γz to P0.

Protocol Πmult4(P, JxK, JyK)

Fig. 11: 4PC: Multiplication Protocol (z = x · y)

Recall that the goal of preprocessing in 3PC multiplication
was to enable P1, P2 obtain ψ, and P0, Pi for i ∈ {1, 2} obtain
[χ]i where χ = γxαy+γyαx+Γxy−ψ. Here ψ is a random value
known to both P1, P2. With the help of P3, we let the servers
obtain the respective preprocessing data as follows: P0, P3, P1

together samples random [Γxy]1 ∈ Z2` . P0, P3 locally compute
Γxy = αxαy, set [Γxy]2 = Γxy − [Γxy]1 and jmp4-send [Γxy]2
to P2. P1, P2, P3 locally sample ψ, r and generate [·]-shares
of ψ by setting [ψ]1 = r and [ψ]2 = ψ − r. Then Pj , P3

for j ∈ {1, 2} compute [χ]j = γx [αy]j + γy [αx]j + [Γxy]j −
[ψ]j and jmp4-send [χ]j to P0. The online phase is similar
to that of 3PC, apart from Πjmp4 being used instead of Πjmp

for communication. Since P3 is not involved in the online
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computation phase, we can safely assume P3 to serve as the
TTP for the Πjmp4 executions in the online phase.

c) Reconstruction Protocol: Given JvK, protocol Πrec4

(Fig. 12) enables servers to robustly reconstruct the value v
among the servers. Note that every server lacks one share
for reconstruction and the same is available with three other
servers. Hence, they communicate the missing share among
themselves, and the majority value is accepted. As an optimiza-
tion, two among the three servers can send the missing share
while the third one can send a hash of the same for verification.
Notice that, as opposed to the 3PC case, this protocol does not
require commitments.

Online

– P0 receives γv from P1, P2 and H(γv) from P3.
– P1 receives [αv]2 from P2, P3 and H([αv]2) from P0.
– P2 receives [αv]1 from P0, P3 and H([αv]1) from P1.
– P3 receives βv + γv from P0, P1 and H(βv + γv) from P2.
– Pi ∈ P selects the missing share forming the majority among

the values received and reconstructs the output.

Protocol Πrec4(P, JvK)

Fig. 12: 4PC: Reconstruction of v among the servers

d) Input Sharing and Output Reconstruction in SOC
Setting: We extend input sharing and reconstruction in the
SOC setting as follows. To generate J·K-shares for its input v, U
receives each of the shares [αv]1 , [αv]2, and γv from three out
of the four servers as well as a random value r ∈ Z2` sampled
together by P0, P1, P2 and accepts the values that form the
majority. U locally computes u = v + [αv]1 + [αv]2 + γv + r
and sends u to all the servers. Servers then execute a two
round byzantine agreement (BA) [47] to agree on u (or ⊥).
On successful completion of BA, P0 computes βv +γv from u
while P1, P2 compute βv from u locally. For the reconstruction
of a value v, servers send their J·K-shares of v to U, who
selects the majority value for each share and reconstructs the
output. At any point, if a TTP is identified, the servers proceed
as follows. All servers send their J·K-share of the input to
the TTP. TTP picks the majority value for each share and
computes the function output. It then sends this output to U.
U also receives the identity of the TTP from all servers and
accepts the output received from the TTP forming majority.

e) Dot Product: Given J·K-shares of two n-sized vectors
~x, ~y, protocol Πdotp4 (Fig. 26) enables servers to compute
JzK with z = ~x � ~y. The protocol is essentially similar to n
instances of multiplications of the form zi = xiyi for i ∈ [n].
But instead of communicating values corresponding to each
of the n instances, servers locally sum up the shares and
communicate a single value. This technique helps to obtain
a communication cost independent of the size of the vectors.

During the preprocessing phase, similar to the multipli-
cation protocol P0, P1, P3 sample a random [Γ~x�~y]

1
. P0, P3

compute Γ~x�~y =
∑n
i=1 αxiαyi and jmp4-send [Γ~x�~y]

2
=

Γ~x�~y−[Γ~x�~y]
1

to P2. P1, P2, P3 sample a random ψ, and gen-
erate its [·]-shares locally. Servers P3, Pj for j ∈ {1, 2} then
compute [χ]j =

∑n
i=1(γxi [αyi ]j+γyi [αxi ]j)+[Γ~x�~y]

j
− [ψ]j ,

and jmp4-send [χ]j to P0.

During the online phase, P0, P1 first compute [β?z ]1

where β?z =
∑n
i=1 β

?
zi directly as [β?z ]1 = −

∑n
i=1((βxi +

γxi) [αyi ]1 + (βyi + γyi) [αxi ]1) + [αz]1 + [χ]1. Following this,
P0, P1 jmp4-send [β?z ]1 to P2. P0, P2 proceed similarly to
enable P1 obtain [β?z ]2. Finally, P1, P2 compute β?z = [β?z ]1 +
[β?z ]2 followed by computing βz = β?z +

∑n
i=1(βxiβyi) + ψ.

P1, P2 then jmp4-send βz + γz to P0.

V. APPLICATIONS AND BENCHMARKING

In this section, we empirically show the practicality of
our protocols for two widely used applications: Biometric
Matching and PPML.

a) Benchmarking Environment: We use a 64-bit ring
(Z264 ). The benchmarking is performed over a WAN that was
instantiated using n1-standard-8 instances of Google Cloud4,
with machines located in East Australia (P0), South Asia (P1),
South East Asia (P2), and West Europe (P3). The machines are
equipped with 2.3 GHz Intel Xeon E5 v3 (Haswell) processors
supporting hyper-threading, with 8 vCPUs, and 30 GB of RAM
Memory and with a bandwidth of 50 Mbps. The average round-
trip time (rtt) was taken as the time for communicating 1 KB
of data between a pair of parties, and the rtt values were

P0-P1 P0-P2 P0-P3 P1-P2 P1-P3 P2-P3

151.40ms 59.95ms 275.02ms 92.94ms 173.93ms 219.37ms

b) Software Details: We implement our protocols5 us-
ing the publicly available ENCRYPTO library [48] in C++17.
We obtained the code of BLAZE and FLASH from the
respective authors and executed them in our environment. The
collision-resistant hash function was instantiated using SHA-
256. We have used multi-threading and our machines were
capable of handling a total of 32 threads. Each experiment is
run for 20 times and the average values are reported.

A. Biometric Matching

Biometric computation is central to many real-world
tasks such as face recognition [49], [50] and fingerprint-
matching [51], [52]. The objective is, given a database D
of m biometric samples stored as vectors (~s1, . . . ,~sm) each
of size n, and a user with its own sample ~u, identify the
“closest” sample to ~u in D. This task can be accomplished
by considering various distance metrics, the most prominent
of which is the Euclidean Distance (ED). In this work, we
consider ED as the metric, and hence the problem boils down
to identifying a sample vector in D which has the least ED for
~u. Note that, in our setting, each entry in the database D is
J·K-shared among the servers. The client with an input query
~u generates J·K- shares of the same along with the servers.

Let xi denote the ith element in the vector ~x. As was
introduced in [1], ED between two n length vectors ~x, ~y
is computed as ED~x~y =

∑i=n
i=1(xi − yi)

2 = ~z � ~z where
~z = ((x1−y1), . . . , (xn−yn)). Hence, the servers first compute
J·K-shares for vector ~z locally, as JziK = JxiK − JyiK for
i ∈ [n], followed by an execution of Πdotp on J~zK, J~zK. For
biometric computation, the servers create a distance vector DV

4https://cloud.google.com/
5The link to our code is not provided respecting the double-blinded

submission policy. The code will be made publicly available once the work
sees formal acceptance.
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Fig. 13: Minimum Value - An example

by computing the ED between ~u and every sample vector ~si
in D, i.e DVi = ED~u~si for i ∈ [m]. The next task now is to
find the minimum among the m values in DV.

Minimum among m values: Consider vector ~x =
(x1,. . . , xm) of size m, where each element is J·K-shared
among the servers. We follow the standard tree based approach
to compute the minimum element. This is as follows. First
the elements of the vector are grouped into pairs, which
are then securely compared to find the pairwise minimum.
For instance, J·K-shares of (x1, x2), (x3, x4), . . ., (xm−1,
xm) are compared to obtain J·K-shares of y1, . . . , ym/2. Let
~y = (y1, y2, . . . , ym/2). This process is recursively applied on
~y, until a single element is obtained. This requires O (log(m))
rounds of recursion to obtain the minimum value in ~x. Note
that the minimum of any two elements, say x1, x2 can be
computed as y1 = b ·(x1−x2)+x2, where b = 0 if x1 > x2, or
1, otherwise. This can be achieved using one invocation of bit
extraction protocol Πbitext on (x1 − x2) to obtain J·KB-shares
of b, followed by one execution of bit injection ΠBitInj on bB

and (x1 − x2).

Setting Ref.

m = 1024 m = 16384

Pre. Online Pre. Online

Com [KB] R Com [KB] C [KB] R Com [KB]

3PC BLAZE 1127.1 102 151.1 18036.0 142 2419.9
SWIFT 1128.3 103 151.9 18037.8 143 2420.7

4PC FLASH 223.9 71 239.8 3583.8 99 3839.8
SWIFT 127.1 71 103.2 2035.9 99 1651.9

TABLE III: Minimum ED distance. The values are reported for
biometric samples of size 40.

Table III presents the benchmarking for biometric matching
over 3PC and 4PC setting. Following SecureML [1], we chose
the size of the biometric sample n to be 40. As is evident from
the Table III, in 3PC, we incur a minimal loss in performance
over BLAZE but guarantee the security of GOD instead of
fairness. For the case of 4PC, we observe ≈ 2× improvement
over the state-of-the-art protocol of FLASH [7] in terms of
communication cost.

B. Privacy-preserving Machine Learning

We consider training and inference for Linear Regression
and Logistic Regression and inference for Neural Networks
(NN). As pointed out in BLAZE, NN training requires ad-
ditional tools to allow mixed world computations, which we
leave as future work. We refer readers to SecureML [1],
ABY3 [4], and BLAZE [9] for a detailed description of
the training and inference steps for the aforementioned ML
algorithms. All our benchmarking is done over the publicly
available MNIST [53] dataset that has n = 784 features. For
training, we used a batch size of B = 128.

In 3PC, we compare our results against the best-known
framework BLAZE in this setting that provides fairness. Our
results imply that we get GOD at no additional cost compared
to BLAZE. For 4PC, we compare our results with two best-
known works FLASH [7] (which is robust) and Trident [8]
(which is fair). Our results halve the cost of FLASH and are
on par with Trident.

1) Benchmarking Parameter: We use throughput (TP) as
the benchmarking parameter following BLAZE and ABY3 [4]
as it would help to analyse the effect of improved communica-
tion and round complexity in a single shot. Here, TP denotes
the number of operations (“iterations” for the case of training
and “queries” for the case of inference) that can be performed
in unit time. We consider minute as the unit time since most
of our protocols over WAN requires more than a second to
complete. An iteration in ML training consists of a forward
propagation phase followed by a backward propagation phase.
In the former phase, servers compute the output from the inputs
while in the latter, the model parameters are adjusted according
to the difference in the computed output and the actual output.
The inference can be viewed as one forward propagation of
the algorithm alone.

2) Logistic Regression: In Logistic Regression, one itera-
tion comprises updating the weight vector ~w using the gradient
descent algorithm (GD). It is updated according to the function
given below: ~w = ~w− α

BXT
i ◦ (sig(Xi ◦ ~w)−Yi) . where α

and Xi denote the learning rate, and a subset of batch size B,
randomly selected from the entire dataset in the ith iteration,
respectively. The forward propagation comprises of computing
the value Xi ◦ ~w followed by an application of a sigmoid
function on it. The weight vector is updated in the backward
propagation, which internally requires the computation of a
series of matrix multiplications, and can be achieved using a
dot product. The update function can be computed using J·K
shares as: J~wK = J~wK− α

B JXT
j K ◦ (sig(JXjK ◦ J~wK)− JYjK).

We summarize our results in Table IV.

Setting Ref.
Pre. Online (TP in ×103)

Com [KB] Latency (s) Com [KB] TP

3PC
Training

BLAZE 4757.11 1.17 50.23 2525.36
SWIFT 4757.29 1.23 50.31 2393.38

3PC
Inference

BLAZE 18.69 1.08 0.25 2728.65
SWIFT 18.71 1.08 0.28 2727.38

4PC
Training

FLASH 99.09 1.22 88.84 1158.65
SWIFT 51.36 1.22 41.23 2407.64

4PC
Inference

FLASH 0.39 1.05 0.41 2044.01
SWIFT 0.21 1.05 0.18 2806.09

TABLE IV: Logistic Regression training and inference. TP is given
in (#it/min) for training and (#queries/min) for inference.

We observe that the online TP, for the case of 3PC,
is slightly lower compared to that of BLAZE, though the
amortized online communication cost is the same for both.
This is because the total number of rounds for both training and
inference phase of Logistic Regression is slightly higher in our
case due to the additional rounds introduced by the verification
mechanism (aka verify phase which also needs broadcast). This
gap becomes less evident for protocols with more number of
rounds, as is demonstrated in the case of NN (presented next),
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where verification for several iterations is clubbed together,
making the overhead for verification insignificant.

For the case of 4PC, our solution outperforms FLASH in
terms of communication as well as throughput. For the case of
logistic regression inference, the improvement over FLASH is
not 2× as claimed theoretically. This stems from the limited
processing power in our benchmarking environment and can be
addressed by increasing the processing capacity of the servers.
Hence, to be fair, we limit the bandwidth to 34 Mbps and
obtain a 2× improvement in TP over FLASH. At 34 Mbps,
the TP of FLASH turns out to be 1389.93×103 #queries/min.
This highlights the efficiency improvements with reduced
communication over lower bandwidths. We now compare with
Trident [8]. Here, we observe a drop of 12.49% in TP for
inference and a drop of 10.91% in TP for training. This is
due to the extra rounds required for verification to achieve
GOD. We point out that this drop becomes less significant for
protocols involving more number of rounds, as will be evident
from the comparisons for NN inference. Note, however, that
the loss in TP is traded off with stronger security and the
gain in saving the runtime of one server by ≈ 73% owing to
the presence of 2 active servers in our case, as opposed to 3
in Trident, thereby resulting in monetary gains in the cloud
setting.

3) NN Inference: In this work, we consider a NN with
two hidden layers, each consisting of 128 nodes each and
an output layer with 10 nodes [4], [9]. Each of the layers is
fully connected. Inference in NN requires several dot product
calls followed by an application of the ReLU function. This
process will be carried out for each layer in a sequential
manner. Table V summarises our benchmarking results for NN
inference.

Setting Ref.
Pre. Online (TP in ×103)

Com [MB] Latency (s) Com [MB] TP

3PC
Inference

BLAZE 351.70 2.81 4.91 26.40
SWIFT 351.70 2.91 4.91 26.40

4PC
Inference

FLASH 7.79 2.71 7.79 14.21
SWIFT 4.39 2.71 3.35 36.96

TABLE V: NN Inference. TP is given in (#queries/min).

As illustrated in Table V, the performance of our 3PC
framework is comparable to BLAZE. In the 4PC setting, when
compared to Trident [8], we observe a minimal loss of 0.36%
in the online throughput. The drop surfaces due to the extra
rounds involved in our verification. However, as pointed out
earlier, the difference in TP closes in due to the large number
of rounds required for computing NN inference, which results
in amortizing the extra rounds required for verification. As
mentioned earlier, this loss is traded-off with the stronger
security guarantee and saving in the runtime of one server by
≈ 85% owing to the presence of 2 active servers. Moreover,
we outperform FLASH in every aspect. This establishes the
practical relevance of our work.

VI. CONCLUSION

In this work, we presented an efficient framework for
PPML that achieves the strongest security of GOD or ro-
bustness. Our 3PC protocol builds upon the recent work of

BLAZE [9] and achieves almost similar performance albeit
improving the security guarantee. For the case of 4PC, we
outperform the best-known– (a) robust protocol of FLASH [7]
by 2× performance-wise and (b) fair protocol of Trident [8]
by uplifting its security.

We leave the problem of extending our framework to
support mixed-world conversions as well as to design protocols
to support algorithms like Decision Trees, k-means Clustering
etc. as open problem. The problem of making the communi-
cation cost of dot product entirely independent of the feature
size is another challenging question.
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APPENDIX A
PRELIMINARIES

A. Shared Key Setup

Let F : {0, 1}κ×{0, 1}κ → X be a secure pseudo-random
function (PRF), with co-domain X being Z2` . The set of keys
established between the servers for 3PC is as follows:

– One key shared between every pair– k01, k02, k12 for the
parties (P0, P1), (P0, P2)and(P1, P2), respectively.

– One shared key known to all the servers– kP .

Suppose P0, P1 wish to sample a random value r ∈ Z2`

non-interactively. To do so they invoke Fk01(id01) and obtain
r. Here, id01 denotes a counter maintained by the servers, and
is updated after every PRF invocation. The appropriate keys
used to sample is implicit from the context, from the identities
of the pair that sample or from the fact that it is sampled by
all, and, hence, is omitted.

Fsetup interacts with the servers in P and the adversary S. Fsetup

picks random keys kij for i, j ∈ {0, 1, 2} and kP . Let ys denote
the keys corresponding to server Ps. Then
– ys = (k01, k02 and kP) when Ps = P0.
– ys = (k01, k12 and kP) when Ps = P1.
– ys = (k02, k12 and kP) when Ps = P2.

Output: Send (Output, ys) to every Ps ∈ P .

Functionality Fsetup

Fig. 14: 3PC: Ideal functionality for shared-key setup

The key setup is modelled via a functionality Fsetup (Fig.
14) that can be realised using any secure MPC protocol.
Analogously, the key setup functionality for 4PC is given in
Fig. 15.
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Fsetup4 interacts with the servers in P and the adversary S. Fsetup4

picks random keys kij and kijk for i, j, k ∈ {0, 1, 2} and kP . Let
ys denote the keys corresponding to server Ps. Then
– ys = (k01, k02, k03, k012, k013, k023 and kP) when Ps = P0.
– ys = (k01, k12, k13, k012, k013, k123 and kP) when Ps = P1.
– ys = (k02, k12, k23, k012, k023, k123 and kP) when Ps = P2.
– ys = (k03, k13, k23, k013, k023, k123 and kP) when Ps = P3.

Output: Send (Output, ys) to every Ps ∈ P .

Functionality Fsetup4

Fig. 15: 4PC: Ideal functionality for shared-key setup

B. Collision Resistant Hash Function

Consider a hash function family H = K×L → Y . The hash
function H is said to be collision resistant if, for all probabilis-
tic polynomial-time adversaries A, given the description of Hk
where k ∈R K, there exists a negligible function negl() such
that Pr[(x1, x2) ← A(k) : (x1 6= x2) ∧ Hk(x1) = Hk(x2)] ≤
negl(κ), where m = poly(κ) and x1, x2 ∈R {0, 1}m.

C. Commitment Scheme

Let Com(x) denote the commitment of a value x. The com-
mitment scheme Com(x) possesses two properties; hiding and
binding. The former ensures privacy of the value v given just its
commitment Com(v), while the latter prevents a corrupt party
from opening the commitment to a different value x′ 6= x.
The practical realization of a commitment scheme is via a
hash function H() given below, whose security can be proved
in the random-oracle model (ROM)– for (c, o) = (H(x||r),
x||r) = Com(x; r).

APPENDIX B
3PC PROTOCOLS

In this section, we provide a detailed communication cost
analysis for our protocols in the 3PC setting. Also detailed
information regarding some of the protocols are provided.

A. Joint Message Passing

Lemma B.1 (Communication). Protocol Πjmp (Fig. 2) requires
1 round and an amortized communication of ` bits overall.

Proof: Server Pi sends value v to Pk while Pj sends
hash of the same to Pk. This accounts for one round and
communication of ` bits. Pk then sends back its inconsistency
bit to Pi, Pj , who then exchange it; this takes another two
rounds. This is followed by servers broadcasting hashes on
their values and selecting a TTP based on it, which takes
one more round. All except the first round can be combined
for several instances of Πjmp protocol and hence the cost gets
amortized.

B. Sharing Protocol

Lemma B.2 (Communication). Protocol Πsh (Fig. 3) is non-
interactive in the preprocessing phase and requires 2 rounds
and an amortized communication of 2` bits in the online phase.

Proof: During the preprocessing phase, servers non-
interactively sample the [·]-shares of αv and γv values using

the shared key setup. In the online phase, when Pi = P0, it
computes βv and sends it to P1, resulting in one round and
` bits communicated. They then jmp-send βv to P2, which
requires additional one round in an amortized sense, and `
bits to be communicated. For the case when Pi = P1, it sends
βv to P2, resulting in one round and a communication of `
bits. Then, P1, P2 jmp-send βv +γv to P0. This again requires
an additional one round and ` bits. The analysis is similar in
the case of Pi = P2.

C. Joint Sharing Protocol

The formal details for Πjsh protocol appears in Fig.
16.

Preprocessing:

– If (Pi, Pj) = (P1, P0): Servers execute the preprocessing of
Πsh(P1, v) and then locally set γv = 0.

– If (Pi, Pj) = (P2, P0): Similar to the case above.
– If (Pi, Pj) = (P1, P2): P1, P2 together sample random γv ∈
Z2` . Servers locally set [αv]1 = [αv]2 = 0.

Online:

– If (Pi, Pj) = (P1, P0): P0, P1 compute βv = v +[αv]1 +[αv]2.
P0, P1 jmp-send βv to P2.

– If (Pi, Pj) = (P2, P0): Similar to the case above.
– If (Pi, Pj) = (P1, P2): P1, P2 locally set βv = v. P1, P2

jmp-send βv + γv to P0.

Protocol Πjsh(Pi, Pj , v)

Fig. 16: 3PC: J·K-sharing of a value v ∈ Z2` jointly by Pi, Pj

When the value v is available to both Pi, Pj in the
preprocessing phase, protocol Πjsh can be made non-interactive
in the following way: P sample a random r ∈ Z2` and locally
set their share according to Table VI.

(P1, P2) (P1, P0) (P2, P0)

[αv]1 = 0, [αv]2 = 0

βv = v, γv = r − v

[αv]1 = −v, [αv]2 = 0

βv = 0, γv = r

[αv]1 = 0, [αv]2 = −v

βv = 0, γv = r

P0

P1

P2

(0, 0, r )

(0, v, r − v)

(0, v, r − v)

(−v, 0, r)

(−v, 0, r)

( 0, 0, r)

(0, − v, r)

(0, 0, r)

(0, − v, r)

TABLE VI: The columns depict the three distinct possibility of
input contributing pairs. The first row shows the assignment to various
components of the sharing. The last row, along with three sub-rows,
specify the shares held by the three servers.

Lemma B.3 (Communication). Protocol Πjsh (Fig. 16) is non-
interactive in the preprocessing phase and requires 1 round
and an amortized communication of ` bits in the online phase.

Proof: In this protocol, servers execute Πjmp protocol
once. Hence the overall cost follows from that of an instance
of the Πjmp protocol (Lemma B.1).

D. Multiplication Protocol

Lemma B.4 (Communication). Protocol Πmult (Fig. 4) re-
quires an amortized cost of 3` bits in the preprocessing phase,
and 1 round and amortized cost of 3` bits in the online phase.
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Proof: In the preprocessing phase, generation of αz and
γz are non-interactive. This is followed by one execution of
ΠmulPre, which requires an amortized communication cost of
3` bits. During the online phase, P0, P1 jmp-send [β?z ]1 to
P2, while P0, P2 jmp-send [β?z ]2 to P1. This requires one
round and a communication of 2` bits. Following this, P1, P2

jmp-send βz + γz to P0, which requires one round and a
communication of ` bits. However, jmp-send of βz + γz can
be delayed till the end of the protocol, and will require only
one round for the entire circuit and can be amortized.

The ideal functionality for ΠmulPre appears in Fig.
17.

FMulPre interacts with the servers in P and the adversary S. FMulPre

receives 〈·〉-shares of d, e from the servers where Ps, for s ∈
{0, 1, 2}, holds 〈d〉s = (ds, d(s+1)%3) and 〈e〉s = (es, e(s+1)%3)
such that d = d0 + d1 + d2 and e = e0 + e1 + e2. Let Pi denotes
the server corrupted by S. FMulPre receives 〈f〉i = (fi, f(i+1)%3)
from S where f = de. FMulPre proceeds as follows:
– Reconstructs d, e using the shares received from honest servers

and compute f = de.
– Compute f(i+2)%3 = f− fi− f(i+1)%3 and set the output shares

as 〈f〉0 = (f0, f1), 〈f〉1 = (f1, f2), 〈f〉2 = (f2, f0).
– Send (Output, 〈f〉s) to server Ps ∈ P .

Functionality FMulPre

Fig. 17: 3PC: Ideal functionality for ΠmulPre protocol

E. Reconstruction Protocol

Lemma B.5 (Communication). Protocol Πrec (Fig. 5) requires
1 round and a communication of 6` bits in the online phase.

Proof: The preprocessing phase consists of communi-
cation of commitment values using the Πjmp protocol. The
hash-based commitment scheme allows generation of a single
commitment for several values and hence the cost gets amor-
tised away for multiple instances. During the online phase,
each server receives an opening for the commitment from
other two servers, which requires one round and an overall
communication of 6` bits.

F. Special protocols

Here we provide details regarding the special protocols -
i) Bit Extraction, ii) Bit2A, and iii) Bit Injection.

1) Bit Extraction protocol: Protocol Πbitext allows servers
to compute the boolean sharing of the most significant bit
(msb) of a value v given its arithmetic sharing JvK. To compute
the msb, we use the optimized 2-input Parallel Prefix Adder
(PPA) boolean circuit proposed by ABY3 [4]. The PPA circuit
consists of 2` − 2 AND gates and has a multiplicative depth
of log `. Let v0 = βv, v1 = − [αv]1 and v2 = − [αv]2.

P0 P1 P2

Jv0[i]KB (0, 0, 0) (0, v0[i], v0[i]) (0, v0[i], v0[i])
Jv1[i]KB (v1[i], 0, 0) (v1[i], 0, 0) (0, 0, 0)
Jv2[i]KB (0, v2[i], 0) (0, 0, 0) (0, v2[i], 0)

TABLE VII: The J·KB-sharing corresponding to ith bit of v0 =
βv, v1 = − [αv]1 and v2 = − [αv]2. Here i ∈ {0, . . . , `− 1}.

Then v = v0 + v1 + v2. Servers first locally compute the

boolean shares corresponding to each bit of the values v0, v1
and v2 according to Table VII. It has been shown in ABY3
that v = v0+v1+v2 can also be expressed as v = 2c+s where
FA(v0[i], v1[i], v2[i]) → (c[i], s[i]) for i ∈ {0, . . . , ` − 1}.
Here FA denotes a Full Adder circuit while s and c denote
the sum and carry bits respectively. To summarize, servers
execute ` instances of FA in parallel to compute JcKB and
JsKB. The FA’s are executed independently and require one
round of communication. The final result is then computed as
msb(2JcKB + JsKB) using the optimized PPA circuit.

Lemma B.6 (Communication). Protocol Πbitext requires a
communication cost of 9`− 6 bits in the preprocessing phase
and require log `+1 rounds and an amortized communication
of 9`− 6 bits in the online phase.

Proof: In Πbitext, first round comprises of ` Full
Adder (FA) circuits executing in parallel, each comprising of
single AND gate. This is followed by the execution of the
optimized PPA circuit of ABY3 [4], which comprises of 2`−2
AND gates and has a multiplicative depth of log `. Hence the
communication cost follows from the multiplication for 3`−2
AND gates.

2) Bit2A Conversion protocol: Given the boolean sharing
of a bit b, denoted as JbKB, protocol Πbit2A (Fig. 18) al-
lows servers to compute the arithmetic sharing JbRK. Here
bR denotes the equivalent value of b over ring Z2` (see
Notation II.2). As pointed out in BLAZE, bR = (βb ⊕
αb)

R = βR
b + αR

b − 2βR
b α

R
b . Also αR

b = ([αb]1 ⊕ [αb]2)R =

[αb]
R
1 + [αb]

R
2 − 2 [αb]

R
1 [αb]

R
2 . During the preprocessing phase,

P0, Pj for j ∈ {1, 2} execute Πjsh on [αb]
R
j to generate

J[αb]
R
j K. Servers then execute Πmult on J[αb]

R
1 K and J[αb]

R
2 K

to generate J[αb]
R
1 [αb]

R
2 K followed by locally computing JαR

b K.
During the online phase, P1, P2 execute Πjsh on βR

b to jointly
generate JβR

b K. Servers then execute Πmult protocol on JβR
b K

and JαR
b K to compute JβR

b α
R
b K followed by locally computing

bR. The formal details for Πbit2A protocol appears in Fig.
18.

Preprocessing:

– P0, Pj for j ∈ {1, 2} execute Πjsh on [αb]
R
j to generate J[αb]

R
j K.

– Servers execute Πmult(P, [αb]
R
1 , [αb]

R
2) to generate JuK where

u = [αb]
R
1 [αb]

R
2 , followed by locally computing JαR

b K =
J[αb]

R
1K + J[αb]

R
2K− 2JuK.

– Servers in P execute the preprocessing phase of
Πmult(P, βR

b , α
R
b ) where v = βR

b α
R
b .

Online:

– P1, P2 execute Πjsh(P1, P2, β
R
b ) to generate JβR

b K.
– Servers execute online phase of Πmult(P, βR

b , α
R
b ) to generate

JvK where v = βR
b α

R
b , followed by locally computing JbRK =

JβR
b K + JαR

b K− 2JvK.

Protocol Πbit2A(P, JbKB)

Fig. 18: 3PC: Bit2A Protocol

Lemma B.7 (Communication). Protocol Πbit2A (Fig. 18)
requires an amortized communication cost of 9` bits in the
preprocessing phase and requires 1 round and an amortized
communication of 4` bits in the online phase.
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Proof: In the preprocessing phase, servers run two in-
stances of Πjsh, which can be done non-interactively (ref.
§ B-C). This is followed by an execution of entire multipli-
cation protocol, which requires 6` bits to be communicated
(Lemma B.4). Parallelly, the servers execute the preprocessing
phase of Πmult, resulting in an additional 3` bits of com-
munication (Lemma B.4). During the online phase, P1, P2

execute Πjsh once, which requires one round and ` bits to
be communicated. In Πjsh, the communication towards P0

can be deferred till the end, thereby requiring a single round
for multiple instances. This is followed by an execution of
the online phase of Πmult, which requires one round and a
communication of 3` bits.

3) Bit Injection protocol: Given the binary sharing of a bit
b, denoted as JbKB, and the arithmetic sharing of v ∈ Z2` ,
protocol ΠBitInj computes J·K-sharing of bv. Towards this,
servers first execute Πbit2A on JbKB to generate JbK. This
is followed by servers computing JbvK by executing Πmult

protocol on JbK and JvK.

Lemma B.8 (Communication). Protocol ΠBitInj requires an
amortized communication cost of 12` bits in the preprocessing
phase and requires 2 rounds and an amortized communication
of 7` bits in the online phase.

Proof: Protocol ΠBitInj is essentially an execution of
Πbit2A (Lemma B.6) followed by one invocation of Πmult

(Lemma B.4) and the costs follow.

G. Dot Product Protocol

The ideal world functionality for realizing ΠdotpPre is
presented in Fig. 19.

FDotPPre interacts with the servers in P and the adversary S.
FDotPPre receives 〈·〉-shares of vectors ~d = (d1, . . . , dn),~e =
(e1, . . . , en) from the servers. Server Ps, for s ∈ {0, 1, 2}, holds
〈dj〉s = ((dj)s, (dj)(s+1)%3) and 〈ej〉s = ((ej)s, (ej)(s+1)%3)
such that dj = (dj)0+(dj)1+(dj)2 and ej = (ej)0+(ej)1+(ej)2

where j ∈ [n]. Let Pi denotes the server corrupted by S. FMulPre

receives 〈f〉i = (fi, f(i+1)%3) from S where f = ~d � ~e. FDotPPre

proceeds as follows:
– Reconstructs dj , ej , for j ∈ [n], using the shares received from

honest servers and compute f =
∑n

j=1 djej .
– Compute f(i+2)%3 = f− fi− f(i+1)%3 and set the output shares

as 〈f〉0 = (f0, f1), 〈f〉1 = (f1, f2), 〈f〉2 = (f2, f0).
– Send (Output, 〈f〉s) to server Ps ∈ P .

Functionality FDotPPre

Fig. 19: 3PC: Ideal functionality for ΠdotpPre protocol

Lemma B.9 (Communication). Protocol Πdotp (Fig. 7) re-
quires an amortized communication of 3n` bits in the pre-
processing phase and requires 1 round and an amortized
communication of 3` bits in the online phase, where n denotes
the size of the underlying vectors.

Proof: During the preprocessing phase, servers execute
the preprocessing phase of Πmult corresponding to each of the
n multiplications in parallel, resulting in a communication of
3n` bits (Lemma B.4). The online phase follows similarly to
that of Πmult, the only difference being that servers combine
their shares corresponding to all the n multiplications into one

and then exchange. This requires one round and an amortized
communication of 3` bits.

H. Truncation

Lemma B.10 (Communication). Protocol Πtrgen (Fig. 8) re-
quires 2 rounds and an amortized communication of 2` bits.

Proof: In Πtrgen, the additive shares of r are sam-
pled non-interactively. P0 then executes Πsh protocol on rd,
which requires two rounds and a communication of 2` bits
(Lemma B.2). P0, P1 then jmp-send the hash of u, followed by
a broadcast from P2. Note that the cost of broadcast, and Πjmp

(as it involves sending a hash), gets amortized over multiple
instances.

I. Dot Product with Truncation

The formal details for Πdotpt protocol appears in Fig.
20.

Preprocessing:

– Servers execute the preprocessing of Πdotp(P, {JxiK, JyiK}i∈[n]).
– In parallel, servers execute Πtrgen(P) to generate the truncation

pair ([r] , JrdK). Also, P0 obtains both the values [r]1 and [r]2.

Online:

– P0, Pj , for j ∈ {1, 2}, compute [Ψ]j = −
∑n

i=1((βxi +
γxi) [αyi ]j + (βyi + γyi) [αxi ]j) − [r]j and set [(z− r)?]j =
[Ψ]j + [χ]j .

– P1, P0 jmp-send [(z− r)?]1 to P2 and P2, P0 jmp-send
[(z− r)?]2 to P1.

– P1, P2 locally compute (z− r)? = [(z− r)?]1 + [(z− r)?]2 and
set (z− r) = (z− r)? +

∑n
i=1(βxiβyi) + ψ.

– P1, P2 locally truncate (z − r) to obtain (z− r)d and execute
Πjsh(P1, P2, (z− r)d) to generate J(z− r)dK.

– Servers locally compute JzK = J(z− r)dK + JrdK .

Protocol Πdotpt(P, {JxiK, JyiK}i∈[n])

Fig. 20: 3PC: Dot Product Protocol with Truncation

Lemma B.11 (Communication). Protocol Πdotpt (Fig. 20)
requires an amortized communication of 3n` + 2` bits in the
preprocessing phase and requires 1 round and an amortized
communication of 3` bits in the online phase.

Proof: During the preprocessing phase, servers execute
the preprocessing phase of Πdotp, resulting in a communication
of 3n` bits (Lemma B.9). In parallel, servers execute one
instance of Πtrgen protocol resulting in an additional commu-
nication of 2` bits (Lemma B.10).

The online phase follows from that of Πdotp protocol
except that, now, P1, P2 compute additive shares of z − r,
where z = ~x � ~y, which is achieved using two executions
of Πjmp in parallel. This requires one round and an amortized
communication cost of 2` bits. P1, P2 then jointly share the
truncated value of z−r with P0, which requires one round and `
bits. However, this step can be deferred till the end for multiple
dot product with truncation instances, which amortizes the
cost.
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J. Activation Functions

Lemma B.12 (Communication). Protocol relu requires an
amortized communication of 21` − 6 bits in the preprocess-
ing phase and requires log ` + 4 rounds and an amortized
communication of 16`− 6 bits in the online phase.

Proof: One instance of relu protocol comprises of execu-
tion of one instance of Πbitext, followed by ΠBitInj. The cost,
therefore, follows from Lemma B.6, and Lemma B-F3.

The formal details of the MPC-friendly variant of the
Sigmoid function [1], [4], [6] is given below:

sig(v) =

 0 v < − 1
2

v + 1
2 − 1

2 ≤ v ≤ 1
2

1 v > 1
2

Lemma B.13 (Communication). Protocol sig requires an
amortized communication of 39` − 9 bits in the preprocess-
ing phase and requires log ` + 4 rounds and an amortized
communication of 29`− 9 bits in the online phase.

Proof: An instance of sig protocol involves the execution
of the following protocols in order– i) two parallel instances
of Πbitext protocol, ii) once instance of Πmult protocol over
boolean value, and iii) one instance of ΠBitInj and Πbit2A in
parallel. The cost follows from Lemma B.6, Lemma B.7 and
Lemma B.8.

APPENDIX C
4PC PROTOCOLS

In this section, we give the formal details for the 4PC
protocols along with communication cost analysis.

A. 4PC Joint Message Passing Primitive

The ideal functionality for jmp4 primitive appears in Fig.
21.

Fjmp4 interacts with the servers in P and the adversary S.
Step 1: Fjmp receives (Input, vs) from senders Ps for s ∈ {i, j},
(Input,⊥) from receiver Pk and fourth server Pl, while it
receives (Select, ttp) from S. Here ttp is a boolean value, with
a 1 indicating that TTP = Pl should be established.

Step 2: If vi = vj and ttp = 0, or if S has corrupted Pl, set
msgi = msgj = msgl = ⊥,msgk = vi and go to Step 4.

Step 3: Else : Set msgi = msgj = msgk = msgl = Pl.
Step 4: Send (Output,msgs) to Ps for s ∈ {0, 1, 2, 3}.

Functionality Fjmp4

Fig. 21: 4PC: Ideal functionality for jmp4 primitive

Lemma C.1 (Communication). Protocol Πjmp4 (Fig. 9) re-
quires 1 round and an amortized communication of ` bits in
the online phase.

Proof: Server Pi sends the value v to Pk while Pj sends
hash of the same to Pk. This accounts for one round of
communication. Values sent by Pj for several instances can be
concatenated and hashed to obtain a single value. Hence the
cost of sending the hash gets amortized over multiple instances.
Similarly, the two round exchange of inconsistency bits, along
with the two round signalling to the TTP can be combined

for multiple instances, thereby amortizing this cost. Thus, the
amortized cost of this protocol is ` bits.

B. Sharing Protocol

Lemma C.2 (Communication). In the online phase, Πsh4 (Fig.
10) requires 2 rounds and an amortized communication of 2`
bits when P0, P1, P2 share a value, whereas it requires an
amortized communication of 3` bits when P3 shares a value.

Proof: The proof for P0, P1, P2 sharing a value follows
from B.2. For the case when P3 wants to share a value v,
it first sends βv + γv to P0 which requires one round and `
bits of communication. This is followed by 2 parallel calls
to Πjmp4 which together require one round and an amortized
communication of 2` bits.

C. Joint Sharing Protocol

Protocol Πjsh4 enables a pair of (unordered) servers
(Pi, Pj) to jointly generate a J·K-sharing of value v ∈ Z2`

known to both of them. In case of an inconsistency, the server
outside the computation serves as a TTP. The protocol is
described in Fig. 22.

Preprocessing:

– If (Pi, Pj) = (P1, P2) : P1, P2, P3 sample γv ∈ Z2` . Servers
locally set [αv]1 = [αv]2 = 0.

– If (Pi, Pj) = (Ps, P0), for s ∈ {1, 2} : Servers execute the
preprocessing of Πsh4(Ps, v). Servers locally set γv = 0.

– If (Pi, Pj) = (Ps, P3), for s ∈ {0, 1, 2} : Servers execute the
preprocessing of Πsh4(Ps, v).

Online:

– If (Pi, Pj) = (P1, P2) : P1, P2 set βv = v and jmp4-send
βv + γv to P0.

– If (Pi, Pj) = (Ps, P0), for s ∈ {1, 2, 3} : Ps, P0 compute
βv = v + [αv]1 + [αv]2 and jmp4-send βv to Pk, where (k ∈
{1, 2}) ∧ (k 6= s).

– If (Pi, Pj) = (Ps, P3), for s ∈ {1, 2}: P3, Ps compute βv and
βv + γv. Ps, P3 jmp4-send βv to Pk, where (k ∈ {1, 2})∧ (k 6=
s). In parallel, Ps, P3 jmp4-send βv + γv to P0.

Protocol Πjsh4(Pi, Pj , v)

Fig. 22: 4PC: J·K-sharing of a value v ∈ Z2` jointly by Pi, Pj

When P3, P0 want to jointly share a value v which is
available in the preprocessing phase, protocol Πjsh4 can be
performed with a single element of communication (as op-
posed to 2 elements in Fig. 22). P0, P3 can jointly share v as
follows. P0, P3, P1 sample a random r ∈ Z2` and set [αv]1 = r.
P0, P3 set [αv]2 = −(r + v) and jmp4-send [αv]2 to P2. This
is followed by servers locally setting γv = βv = 0.

We further observe that servers can generate a J·K-sharing
of v non-interactively when v is available with P0, P1, P2. To
do this, servers set [αv]1 = [αv]2 = γv = 0 and βv = v.
We abuse notation and use Πjsh4(P0, P1, P2, v) to denote this
sharing.

Lemma C.3 (Communication). In the online phase, Πjsh4 (Fig.
22) requires 1 round and an amortized communication of 2`
bits when (P3, Ps) for s ∈ {0, 1, 2} share a value, and requires
an amortized communication of ` bits, otherwise.
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Proof: When (P3, Ps) for s ∈ {0, 1, 2} want to share a
value v, there are two parallel calls to Πjmp4 which requires an
amortized communication of 2` bits and one round. In the other
cases, Πjmp4 is invoked only once, resulting in an amortized
communication of ` bits.

D. 〈·〉-sharing Protocol

In some protocols, scenarios arise where P3 is required to
generate 〈·〉-sharing of a value v in the preprocessing phase,
where 〈·〉-sharing of v is same as that defined in 3PC (where
v = v0 + v1 + v2, and P0 possesses (v0, v1), P1 possesses
(v1, v2), and P2 possess (v2, v0)) with the addition that P3 now
possesses (v0, v1, v2). We call the resultant protocol Πash4 and
it appears in Fig. 23.

Preprocessing :

– Servers P0, P3, P1 sample a random v1 ∈ Z2` , while servers
P0, P3, P2 sample a random v0 ∈ Z2` .

– P3 computes v2 = v − v0 − v1 and sends v2 to P2. P3, P2

jmp4-send v2 to P1.

Protocol Πash4(P3, v)

Fig. 23: 4PC: 〈·〉-sharing of value v by P3

Note that servers can locally convert 〈v〉 to JvK by setting
their shares as shown in Table VIII.

P0 P1 P2 P3

JvK (−v1,−v0, 0) (−v1, v2,−v2) (−v0, v2,−v2) (−v0,−v1,−v2)

TABLE VIII: Local conversion of shares from 〈·〉-sharing to J·K-
sharing for a value v. Here, [αv]1 = −v1, [αv]2 = −v0, βv = v2, γv =
−v2.

Lemma C.4 (Communication). Protocol Πash4 (Fig. 23) re-
quires 2 rounds and an amortized communication of 2` bits.

Proof: Communicating v2 to P2 requires ` bits and 1
round. This is followed by one invocation of Πjmp4 which re-
quires ` bits and 1 round. Thus, the amortized communication
cost is 2` bits and two rounds.

E. Multiplication Protocol

Lemma C.5 (Communication). Πmult4 (Fig. 11) requires an
amortized communication of 3` bits in the preprocessing phase,
and 1 round with an amortized communication of 3` bits in
the online phase.

Proof: In the preprocessing phase, the servers execute
Πjmp4 to jmp4-send [Γxy]2 to P2 resulting in amortized com-
munication of ` bits. This is followed by 2 parallel invocations
of Πjmp4 to jmp4-send [χ]1 , [χ]2 to P0 which require an
amortized communication of 2` bits. Thus, the amortized
communication cost in preprocessing is 3` bits. In the online
phase, there are 2 parallel invocations of Πjmp4 to jmp4-send
[β?z ]1 , [β

?
z ]2 to P2, P1, respectively, which requires amortized

communication of 2` bits and one round. This is followed
by another call to Πjmp4 to jmp4-send βz + γz to P0 which
requires one more round and amortized communication of `
bits. However, jmp4-send of βz+γz can be delayed till the end

of the protocol, and will require only one round for multiple
multiplication gates and hence, can be amortized. Thus, the
total number of rounds required for multiplication in the online
phase is one with an amortized communication of 3` bits.

F. Reconstruction Protocol

Lemma C.6 (Communication). Πrec4 (Fig. 12) requires an
amortized communication of 8` bits and 1 round in the online
phase.

Proof: Each Ps for s ∈ {0, 1, 2, 3} receives the missing
share in clear from two other servers, while the hash of it
from the third. As before, the missing share sent by the third
server can be concatenated over multiple instances and hashed
to obtain a single value. Thus, the amortized communication
cost is 2` bits per server, resulting in a total cost of 8` bits.

G. Special protocols

Here we provide details regarding the special protocols -
i) Bit Extraction, ii) Bit2A, and iii) Bit Injection.

1) Bit Extraction Protocol: This protocol enables the
servers to compute a boolean sharing of the most significant
bit (MSB) of a value v ∈ Z2` given the arithmetic sharing JvK.
To compute the MSB, we use the optimized Parallel Prefix
Adder (PPA) circuit from ABY3 [4], which takes as input
two boolean values and outputs the MSB of the sum of the
inputs. The circuit requires 2(` − 1) AND gates and has a
multiplicative depth of log `. The protocol for bit extraction
(Πbitext4) involves computing the boolean PPA circuit using
the protocols described in §IV. The two inputs to this boolean
circuit are generated as follows. The value v whose MSB needs
to be extracted can be represented as the sum of two values
as v = βv + (−αv) where the first input to the circuit will
be βv and the second input will be −αv. Since βv is held
by P1, P2, servers execute Πjsh4 to generate JβvKB. Similarly,
P0, P3 possess αv, and servers execute Πjsh4 to generate
J−αvKB. Servers in P use the J·KB-shares of these two inputs
(βv,−αv) to compute the optimized PPA circuit which outputs
the Jmsb(v)KB.

Lemma C.7 (Communication). The protocol Πbitext4 requires
an amortized communication of 7`−6 bits in the preprocessing
phase, and log ` rounds with amortized communication of 7`−
6 bits in the online phase.

Proof: Generation of boolean sharing of αv requires `
bits in the preprocessing phase (since Πjsh4 with P0, P3 can
be achieved with ` bits of communication in the preprocessing
phase), and generation of boolean sharing of βv requires `
bits and one round (which can be deferred towards the end of
the protocol thereby requiring one round for several instances)
in the online phase. Further, the boolean PPA circuit to be
computed requires 2(` − 1) AND gates. Since each AND
gate requires Πmult4 to be executed, it requires an amortized
communication of 6`− 6 bits in both the preprocessing phase
and the online phase. Thus, the overall communication is 7`−6
bits, in both, the preprocessing and online phase. The circuit
has a multiplicative depth of log ` which results in log ` rounds
in the online phase.
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2) Bit2A Protocol: This protocol enables servers to com-
pute the arithmetic sharing of a bit b given its boolean sharing.
Let bR denote the value of b in the ring Z2` . We observe that bR

can be written as follows. bR = (αb⊕βb)R = αR
b +βR

b−2αR
bβ

R
b .

Thus, to obtain an arithmetic sharing of bR, the servers can
compute an arithmetic sharing of βR

b , αR
b and βR

b α
R
b . This

can be done as follows. P0, P3 execute Πjsh4 on αR
b in

the preprocessing phase to generate JαR
b K. Similarly, P1, P2

execute Πjsh4 on βR
b in the online phase to generate JβR

b K.
This is followed by Πmult4 on JβR

b K, JαR
b K, followed by local

computation to obtain JbRK.

Preprocessing :

– Servers execute Πash4(P3, e
R) (Fig. 23) where e = αb ⊕ γb.

Let the shares be 〈eR〉0 = (e0, e1), 〈eR〉1 = (e1, e2), 〈eR〉2 =
(e2, e0), 〈eR〉3 = (e0, e1, e2).

– Verification of 〈eR〉-sharing is performed as follows:
– P1, P2, P3 sample a random r ∈ Z2` and a bit rb ∈ Z21 .
– P1, P2 compute x1 = γb ⊕ rb, and jmp4-send x1 to P0.
– P1, P3 compute y1 = (e1 + e2)(1− 2rRb ) + rRb + r, and

jmp4-send y1 to P0.
– P2, P3 compute y2 = e0(1− 2rRb )− r, and jmp4-send H(y2)

to P0.
– P0 computes x = e⊕ rb = [αb]1 ⊕ [αb]2 ⊕ x1 and checks if

H(xR − y1) = H(y2).
– If verification fails, P0 sets flag = 1, else it sets flag = 0.
P0 sends flag to P1. Next, P1, P0 jmp4-send flag to P2 and
P3. Servers set TTP = P1 if flag = 1.

– If verification succeeds, servers locally convert 〈eR〉 to JeRK by
setting their shares according to Table VIII.

Online :

– Servers execute Πjsh4(P0, P1, P2, c
R) where c = βb ⊕ γb.

– Servers execute Πmult4(P, JeRK, JcRK) to generate JeRcRK.
– Servers compute JbRK = JeRK + JcRK− 2JeRcRK.

Protocol Πbit2A4(P, JbKB)

Fig. 24: 4PC: Bit2A Protocol

While the above approach serves the purpose, we now
provide an improved version, which further helps in reducing
the online cost. We observe that bR can be written as follows.
bR = (αb⊕βb)R = ((αb⊕γb)⊕(βb⊕γb))R = (e⊕c)R = eR+
cR−2eRcR where e = αb⊕γb and c = βb⊕γb. Thus, to obtain
an arithmetic sharing of bR, P3 generates 〈·〉-sharing of eR. To
ensure the correctness of the shares, the servers P0, P1, P2

check whether the following equation holds: (e ⊕ rb)
R =

eR + rRb − 2eRrRb . If the verification fails, a TTP is identified.
Else, this is followed by servers locally converting 〈eR〉-shares
to JeRK according to Table VIII, followed by multiplying
JeRK, JcRK and locally computing JbRK = JeRK+JcRK−2JeRcRK.
Note that during Πjsh4(P0, P1, P2, c

R) since αcR and γcR are
set to 0, the preprocessing of multiplication can be performed
locally.

Lemma C.8 (Communication). Πbit2A4 (Fig. 24) requires an
amortized communication of 3` + 4 bits in the preprocessing
phase, and 1 round with amortized communication of 3` bits
in the online phase.

Proof: During preprocessing, one instance of Πash4 re-
quires 2` bits of communication. Further, sending x1 requires

1 bit, while sending y1 requires ` bits. Sending of H(y2) can be
amortized over several instances. Finally, communicating flag
requires 3 bits. Thus, the overall amortized communication
cost in preprocessing phase is 3` + 4 bits. In the online
phase, joint sharing of cR can be performed non-interactively.
The only cost is due to the online phase of multiplication
which requires 3` bits and one round. Thus, the amortized
communication cost in the online phase is 3` bits with one
round of communication.

3) Bit Injection Protocol: Given the boolean sharing of a
bit b, denoted as JbKB, and the arithmetic sharing of v ∈ Z2` ,
protocol Πbitinj4 computes J·K-sharing of bv. This can be
naively computed by servers first executing Πbit2A4 on JbKB to
generate JbK, followed by servers computing JbvK by executing
Πmult4 protocol on JbK and JvK. Instead, we provide an opti-
mized variant which helps in reducing the communication cost
of the naive approach in, both, the preprocessing and online
phase. We give the details next.

Let z = bRv, where bR denotes the value of b in Z2` . Then,
during the computation of JzK, we observe the following:

z = bRv = (αb ⊕ βb)R(βv − αv)

= ((αb ⊕ γb)⊕ (βb ⊕ γb))R((βv + γv)− (αv + γv))

= (cb ⊕ eb)
R(cv − ev) = (cRb + eRb − 2cRb eRb )(cv − ev)

= cRb cv − cRb ev + (cv − 2cRb cv)eRb + (2cRb − 1)eRb ev

where cb = βb ⊕ γb, eb = αb ⊕ γb, cv = βv + γv and ev =
αv + γv. The protocol proceeds with P3 generating 〈·〉-shares
of eRb and ez = eRb ev, followed by verification of the same
by P0, P1, P2. If verification succeeds, then to enable P2 to
compute βz = z + αz, P1, P0 jmp4-send the missing share of
βz to P2. Similarly for P1. Next, P1, P2 reconstruct βz, and
jmp4-send βz + γz to P0 completing the protocol.

Lemma C.9 (Communication). Protocol Πbitinj4 requires an
amortized communication cost of 6` + 4 bits in the pre-
processing phase, and requires 1 round with an amortized
communication of 3` bits in the online phase.

Proof: The preprocessing phase requires two instances
of Πash4 which require 4` bits of communication. Verifying
correctness of 〈eRb 〉 requires ` + 1 bits, whereas for 〈ez〉 we
require ` bits. Finally, communicating the flag requires 3
bits. This results in the amortized communication of 6` + 4
bits in the preprocessing phase. The online phase consists
of three calls to Πjmp4 which requires 3` bits of amortized
communication. Note that the last call can be deferred towards
the end of the computation, thereby requiring a single round
for multiple instances. Thus, the number of rounds required in
the online phase is one.

Let cb = βb ⊕ γb, eb = αb ⊕ γb, cv = βv + γv, ev = αv + γv
and ez = eRb ev.

Preprocessing :

– P0, P3, Pj for j ∈ {1, 2} sample [αz]1 ∈ Z2` while P1, P2, P3

sample γz ∈ Z2` .
– Servers execute Πash4(P3, e

R
b ) and Πash4(P3, ez). Shares of 〈ev〉

are set locally as ev0 = [αv]2 , ev1 = [αv]1 , ev3 = γv.

Protocol Πbitinj4(P, JbKB, JvK)
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– Servers verify correctness of 〈eRb 〉 using steps similar to Πbit2A4

(Fig. 24). Correctness of 〈ez〉 is verified as follows.
– P0, P3, Pj for j ∈ {1, 2} sample a random rj ∈ Z2` while
P1, P2, P3 sample a random r0 ∈ Z2` . P0, P3 set a0 = r1−r2,
P1, P3 set a1 = r0 − r1 and P2, P3 set a2 = r2 − r0.

– P1, P3 compute x1 = ev2eb2 + ev1eb2 + ev2eb1 + a1.
– P2, P3 compute x2 = ev0eb0 + ev0eb2 + ev2eb0 + a2.
– P0 computes x0 = ev1eb1 + ev1eb0 + ev0eb1 + a0.
– P1, P3 jmp4-send y1 = x1 − ez1 to P0, while P2, P3

jmp4-send H(−y2) to P0, where y2 = x2 − ez2 .
– P0 computes y0 = x0 − ez0 , and checks if H(y0 + y1) =

H(−y2).
– If verification fails, P0 sets flag = 1, else it sets flag = 0. P0

sends flag to P1. Next, P1, P0 jmp4-send flag to P2 and P3.
Servers set TTP = P1 if flag = 1.

Online :

– P0, P1 compute u1 = −cRb ev1 +(cv−2cRb cv)eRb1 +(2cRb−1)ez1 +
[αz]1, and jmp4-send u1 to P2.

– P0, P2 compute u2 = −cRb ev0 +(cv−2cRb cv)eRb0 +(2cRb−1)ez0 +
[αz]2, and jmp4-send u2 to P1.

– P1, P2 compute βz = u1 + u2 − cRb ev2 + (cv − 2cRb cv)eRb2 +
(2cRb − 1)ez2 + cRb cv.

– P1, P2 jmp4-send βz + γz to P0.

Fig. 25: 4PC: Bit Injection Protocol

H. Dot Product Protocol

The formal protocol for dot product is given in Fig. 26.

Preprocessing :

– P0, P3, Pj , for j ∈ {1, 2}, sample random [αz]j ∈ Z2` , while
P0, P1, P3 sample random [Γ~x�~y]1 ∈ Z2` .

– P1, P2, P3 together sample random γz, ψ, r ∈ Z2` and set
[ψ]1 = r, [ψ]2 = ψ − r.

– P0, P3 compute [Γ~x�~y]2 = Γ~x�~y − [Γ~x�~y]1, where Γ~x�~y =∑n
i=1 αxiαyi . P0, P3 jmp4-send [Γ~x�~y]2 to P2.

– P3, Pj , for j ∈ {1, 2}, set [χ]j =
∑n

i=1(γxi [αyi ]j +γyi [αxi ]j)
+ [Γ~x�~y]j − [ψ]j .

– P1, P3 jmp4-send [χ]1 to P0, and P2, P3 jmp4-send [χ]2 to P0.

Online :

– P0, Pj , for j ∈ {1, 2}, compute [β?
z ]j = −

∑n
i=1((βxi +

γxi) [αyi ]j + (βyi + γyi) [αxi ]j) + [αz]j + [χ]j .
– P1, P0 jmp4-send [β?

z ]1 to P2, while P2, P0 jmp4-send [β?
z ]2

to P1.
– Pj for j ∈ {1, 2} computes β?

z = [β?
z ]1 + [β?

z ]2 and sets βz =
β?
z +

∑n
i=1(βxiβyi) + ψ.

– P1, P2 jmp4-send βz + γz to P0.

Protocol Πdotp4(P, {JxiK, JyiK}i∈[n])

Fig. 26: 4PC: Dot Product Protocol (z = ~x� ~y)

Lemma C.10 (Communication). Πdotp4 (Fig. 26) requires an
amortized communication of 3` bits in the preprocessing phase,
and 1 round and an amortized communication of 3` bits in the
online phase.

Proof: The preprocessing phase requires three calls to
Πjmp4, one to jmp4-send [Γ~x�~y]

2
to P2, and two to jmp4-send

[χ]1 , [χ]2 to P0. Each invocation of Πjmp4 requires ` bits re-
sulting in the amortized communication cost of preprocessing

phase to be 3` bits. In the online phase, there are 2 parallel
invocations of Πjmp4 to jmp4-send [β?z ]1 , [β

?
z ]2 to P2, P1,

respectively, which require amortized communication of 2` bits
and one round. This is followed by another call to Πjmp4 to
jmp4-send βz + γz to P0 which requires one more round and
amortized communication of ` bits. As in the multiplication
protocol, this step can be delayed till the end of the protocol
and clubbed for multiple instances. Thus, the online phase
requires one round and an amortized communication of 3`
bits.

I. Truncation

Given the J·K-sharing of a value v, this protocol enables
the servers to compute the J·K-sharing of the truncated value
vd (right shifted value by, say, d positions). Given JvK and a
random truncation pair ([r] , JrdK), the value (v− r) is opened,
truncated and added to JrdK to obtain JvdK. The protocol for
generating the truncation pair ([r] , JrdK) is described in Fig.
27.

– P0, P3, Pj , for j ∈ {1, 2} sample random Rj ∈ Z2` . P0, P3

sets r = R1 +R2 while Pj sets [r]j = Rj .

– P0, P3 locally truncate r to obtain rd and execute
Πjsh4(P0, P3, r

d) to generate JrdK.

Protocol Πtrgen4(P)

Fig. 27: 4PC: Generating Random Truncated Pair (r, rd)

Lemma C.11 (Communication). Πtrgen4 (Fig. 27) requires 1
round and an amortized communication of ` bits in the online
phase.

Proof: The cost follows directly from that of
Πjsh4 (Lemma C.1).

J. Dot Product with Truncation

Protocol Πdotpt4 (Fig. 28) enables servers to generate J·K-
sharing of the truncated value of z = ~x � ~y, denoted as zd,
given the J·K-sharing of n-sized vectors ~x and ~y.

Preprocessing :

– Servers execute the preprocessing phase of Πdotp4(P,
{JxiK, JyiK}i∈[n]).

– Servers execute Πtrgen4(P) to generate the truncation pair
([r] , JrdK). P0 obtains the value r in clear.

Online :

– P0, Pj , for j ∈ {1, 2}, compute [Ψ]j = −
∑n

i=1((βxi +
γxi) [αyi ]j + (βyi + γyi) [αxi ]j) − [r]j and sets [(z− r)?]j =
[Ψ]j + [χ]j .

– P1, P0 jmp4-send [(z− r)?]1 to P2 and P2, P0 jmp4-send
[(z− r)?]2 to P1.

– P1, P2 locally compute (z− r)? = [(z− r)?]1 + [(z− r)?]2 and
set (z− r) = (z− r)? +

∑n
i=1(βxiβyi) + ψ.

– P1, P2 locally truncate (z − r) to obtain (z− r)d and execute
Πjsh4(P1, P2, (z− r)d) to generate J(z− r)dK.

– Servers locally compute JzdK = J(z− r)dK + JrdK .

Protocol Πdotpt4(P, {JxiK, JyiK}i∈[n])

Fig. 28: 4PC: Dot Product Protocol with Truncation
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Lemma C.12 (Communication). Πdotpt4 (Fig. 28) requires an
amortized communication of 4` bits in the preprocessing phase,
and 1 round with amortized communication of 3` bits in the
online phase.

Proof: The preprocessing phase comprises of the pre-
processing phase of Πdotp4 and Πtrgen4 which results in an
amortized communication of 3`+` = 4` bits. The online phase
follows from that of Πdotp4 protocol except that, now, P1, P2

compute [·]-shares of z − r. This requires one round and an
amortized communication cost of 2` bits. P1, P2 then jointly
share the truncated value of z − r with P0, which requires 1
round and ` bits. However, this step can be deferred till the end
for multiple instances, which results in amortizing this round.
The total amortized communication is thus 3` bits in online
phase.

K. Activation Functions

Lemma C.13 (Communication). Protocol for relu requires an
amortized communication of 13`− 2 bits in the preprocessing
phase and requires log ` + 1 rounds and an amortized com-
munication of 10`− 6 bits in the online phase.

Proof: One instance of relu protocol comprises of execu-
tion of one instance of Πbitext4, followed by Πbitinj4. The cost,
therefore, follows from Lemma C.7, and Lemma C.9.

Lemma C.14 (Communication). Protocol for sig requires an
amortized communication of 23`− 1 bits in the preprocessing
phase and requires log ` + 2 rounds and an amortized com-
munication of 20`− 9 bits in the online phase.

Proof: An instance of sig protocol involves the execution
of the following protocols in order– i) two parallel instances
of Πbitext4 protocol, ii) one instance of Πmult4 protocol over
boolean value, and iii) one instance of Πbitinj4 and Πbit2A4 in
parallel. The cost follows from Lemma C.7, Lemma C.8 and
Lemma C.9.

APPENDIX D
SECURITY ANALYSIS OF OUR PROTOCOLS

In this section, we provide detailed security proofs for our
constructions in both the 3PC and 4PC domains. We prove
security using the real-world/ ideal-word simulation based
technique. We provide proofs in the Fsetup-hybrid model for
the case of 3PC, where Fsetup (Fig. 14) denotes the ideal func-
tionality for the three server shared-key setup. Similarly, the
proofs for 4PC are provided in the Fsetup4-hybrid model (Fig.
15).

Let A denote the real-world adversary corrupting at most
one server in P , and S denote the corresponding ideal world
adversary. The strategy for simulating the computation of
function f (represented by a circuit ckt) is as follows: The
simulation begins with the simulator emulating the shared-key
setup (Fsetup/Fsetup4) functionality and giving the respective
keys to the adversary. This is followed by the input sharing
phase in which S extracts the input of A, using the known
keys, and sets the inputs of the honest parties to be 0. S
now knows all the inputs and can compute all the intermediate
values for each of the building blocks in clear. Also, S can

obtain the output of the ckt in clear. S now proceeds simulating
each of the building block in topological order using the
aforementioned values (inputs of A, intermediate values and
circuit output).

In some of our sub protocols, adversary is able to decide
on which among the honest parties should be chosen as the
Trusted Third Party (TTP) in that execution of the protocol. To
capture this, we consider corruption-aware functionalities [54]
for the sub-protocols, where the functionality is provided the
identity of the corrupt server as an auxiliary information.

For modularity, we provide the simulation steps for each of
the sub-protocols separately. These steps, when carried out in
the respective order, result in the simulation steps for the entire
3/4PC protocol. If a TTP is identified during the simulation
of any of the sub-protocols, simulator will stop the simulation
at that step. In the next round, the simulator receives the input
of the corrupt party in clear on behalf of the TTP for the 3PC
case, whereas it receives the input shares from adversary for
4PC.

A. Security Proofs for 3PC protocols

The ideal functionality F3PC for evaluating ckt in the 3PC
setting appears in Fig. 29.

F3PC interacts with the servers in P and the adversary S. Let
f denote the functionality to be computed. Let xs be the input
corresponding to the server Ps, and ys be the corresponding output,
i.e (y0, y1, y2) = f(x0, x1, x2).

Step 1: F3PC receives (Input, xs) from Ps ∈ P , and computes
(y0, y1, y2) = f(x0, x1, x2).

Step 2: F3PC sends (Output, ys) to Ps ∈ P .

Functionality F3PC

Fig. 29: 3PC: Ideal functionality for evaluating a function f

Now we provide the simulation for each of the sub-
protocols.

1) Joint Message Passing (jmp) Protocol: This section
provides the security proof for the jmp primitive, which forms
the crux for achieving GOD guarantee in our constructions. Let
Fjmp (Fig. 1) denote the ideal functionality and let SPs

jmp denote
the corresponding simulator for the case of corrupt Ps ∈ P .

We begin with the case for a corrupt sender, Pi. The case
for a corrupt Pj is similar and hence we omit details for the
same.

– SPi
jmp initializes ttp = ⊥ and receives vi from A on behalf of

Pk.
– In case, A fails to send a value SPi

jmp broadcasts
"(accuse,Pi)", sets ttp = Pj , vi = ⊥, and skip to the last
step.

– Else, it checks if vi = v, where v is the value computed by
SPi
jmp based on the interaction with A, and using the knowledge

of the shared keys. If the values are equal, SPi
jmp sets bk = 0,

else, sets bk = 1, and sends the same to A on the behalf of Pk.
– If A broadcasts "(accuse,Pk)", SPi

jmp sets vi = ⊥,
ttp = Pj , and skips to the last step.

– SPi
jmp computes and sends bj to A on behalf of Pj and receives

Simulator SPi
jmp
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bA from A on behalf of honest Pj .
– If SPi

jmp does not receive a bA on behalf of Pj , it broadcasts
"(accuse,Pi)", sets vi = ⊥, ttp = Pk. If A broadcasts
"(accuse,Pj)", SPi

jmp sets vi = ⊥, ttp = Pk. If ttp is set,
skip to the last step.

– If (vi = v) and bA = 1, SPi
jmp broadcasts Hj = H(v) on behalf

of Pj .
– Else if vi 6= vj : SPi

jmp broadcasts Hj = H(v) and Hk = H(vi)
on behalf of Pj and Pk, respectively. If A does not broadcast,
SPi
jmp sets ttp = Pk. Else if, A broadcasts a value HA:

• If HA 6= Hj : SPi
jmp sets ttp = Pk.

• Else if HA 6= Hk : SPi
jmp sets ttp = Pj .

– SPi
jmp invokes Fjmp on (Input, vi) and (Select, ttp) on behalf of

A.

Fig. 30: Simulator SPi
jmp4 for corrupt sender Pi

The case for a corrupt receiver, Pk is provided in Fig.
31.

– SPk
jmp initializes ttp = ⊥, computes v honestly and sends v and

H(v) to A on behalf of Pi and Pj , respectively.
– If A broadcasts "(accuse,Pi)", set ttp = Pj , else if A

broadcasts "(accuse,Pj)", set ttp = Pi. If both messages
are broadcast, set ttp = Pi. If ttp is set skip to the last step.

– On behalf of Pi, Pj , SPk
jmp receives bA from A. Let bi (resp.

bj) denote the bit received by Pi (resp. Pj) from A.
– If A failed to send bit bA to Pi, SPk

jmp broadcasts
"(accuse,Pk)", set ttp = Pj . Similarly, for Pj . If both
Pi, Pj broadcast "(accuse,Pk)", set ttp = Pi. If ttp is set,
skip to the last step.

– If bi ∨ bj = 1 : SPk
jmp broadcasts Hi,Hj where

Hi = Hj = H(v) on behalf of Pi, Pj , respectively.
– If A does not broadcast SPk

jmp sets ttp = ⊥. If A broadcasts a
value HA:
• If HA 6= Hi : SPk

jmp sets ttp = Pj .

• Else if HA = Hi = Hj : SPk
jmp sets ttp = Pi.

– SPk
jmp invokes Fjmp on (Input,⊥) and (Select, ttp) on behalf of

A.

Simulator SPk
jmp

Fig. 31: Simulator SPk
jmp for corrupt receiver Pk

2) Sharing Protocol: Here we give he simulation steps
for Πsh. The case for a corrupt P0 is provided in Fig.
37.

Preprocessing: SP0
sh emulates Fsetup and gives the keys

(k01, k02, kP) to A. The values that are commonly held along with
A are sampled using appropriate shared key. Otherwise, values are
sampled randomly.

Online:

– If the dealer Ps = P0:
• SP0

sh receives βv on behalf of P1 and sets msg = v accordingly.
• Steps for Πjmp protocol are simulated according to SPi

jmp
(Fig. 30), where P0 plays the role of one of the senders.

– If the dealer Ps = P1:
• SP0

sh sets v = 0 by assigning βv = αv.
• Steps for Πjmp protocol are simulated similar to SPk

jmp (Fig. 31),

Simulator SP0
sh

with P0 acting as the receiver.
– If the dealer if P2 : Similar to the case when Ps = P1.

Fig. 32: Simulator SP0
sh for corrupt P0

The case for a corrupt P1 is provided in Fig. 33. The case
for a corrupt P2 is similar.

Preprocessing: SP1
jsh emulates Fsetup and gives the keys

(k01, k12, kP) to A. The values that are commonly held along with
A are sampled using appropriate shared key. Otherwise, values are
sampled randomly.

Online:

– If dealer Ps = P1 : SP1
sh receives βv from A on behalf of P2.

– If Ps = P0 : SP1
sh sets v = 0 by assigning βv = αv and sends

βv to A on behalf of Ps.
– If Ps = P2 : Similar to the case where Ps = P0.
– Steps of Πjmp, in all the steps above, are simulated similar to
SPi
jmp (Fig. 30), ie. the case of corrupt sender.

Simulator SP1
sh

Fig. 33: Simulator SP1
sh for corrupt P1

3) Multiplication Protocol: Here we give he simulation
steps for Πmult. The case for a corrupt P0 is provided in Fig.
34.

Preprocessing:

– SP0
mult samples [αz]1 , [αz]2 and γz on behalf of P1, P2 and

generates the 〈·〉-shares of d, e honestly.
– SP0

mult emulates FMulPre, and extracts ψ, [χ]1 , [χ]2 on behalf of
P1, P2.

Online:

– SP0
mult computes [β?

z ]1 , [β
?
z ]2 and steps of Πjmp are simulated

according to SPi
jmp with A as one of the sender for both [β?

z ]1,
and [β?

z ]2.
– SP0

mult computes βz+γz on behalf of P1, P2 and steps of Πjmp are
simulated according to SPk

jmp with A as the receiver for βz + γz.

Simulator SP0
mult

Fig. 34: Simulator SP0
mult for corrupt P0

The case for a corrupt P1 is provided in Fig. 35. The case
for a corrupt P2 is similar.

Preprocessing:

– SP1
mult samples [αz]1 , γz and [αz]2 on behalf of P0, P2. SP1

mult
generates the 〈·〉-shares of d, e honestly.

– SP1
mult emulates FMulPre, and extracts ψ, [χ]1 , [χ]2 on behalf of

P0, P2.

Online:

– SP1
mult computes [β?

z ]1 , [β
?
z ]2 on behalf of P0, P2, and steps of

Πjmp are simulated according to SPi
jmp with A as one of the sender

for [β?
z ]1, and as the receiver for [β?

z ]2.
– SP1

mult computes βz + γz on behalf of P2 and steps of Πjmp are
simulated according to SPi

jmp with A one of the senders for βz+γz.

Simulator SP1
mult

Fig. 35: Simulator SP1
mult for corrupt P1
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4) Reconstruction Protocol: Here we give he simulation
steps for Πrec. The case for a corrupt P0 is provided in Fig.
52. The case for a corrupt P1, P2 is similar.

Preprocessing:

– Srec computes commitments on [αv]1 , [αv]2 and γv on behalf of
P1, P2, using the respective shared keys.

– The steps of Πjmp are simulated similar to SPk
jmp with A acting

as the receiver for Com(γv), and SPi
jmp with A acting as one of

the senders for Com([αv]1) and Com([αv]2).

Online:

– Srec receives openings for Com([αv]1),Com([αv]2) on behalf
of P2 and P1, respectively.

– Srec opens Com(γv) to A on behalf of P1, P2.

Simulator Srec

Fig. 36: Simulator Srec for corrupt P0

5) Joint Sharing Protocol: Here we give he simulation
steps for Πjsh. The case for a corrupt P0 is provided in Fig. 37.
The case for a corrupt P1, P2 is similar.

Preprocessing: SP0
sh emulates Fsetup and gives the keys

(k01, k02, kP) to A. The values that are commonly held along with
A are sampled using appropriate shared key. Otherwise, values are
sampled randomly.

Online:

– If (Pi, Pj) = (P1, P0) : Sjsh computes βv = v + αv on behalf
of P1. The steps of Πjmp are simulated similar to SPi

jmp, where the
A acts as one of the senders.

– If (Pi, Pj) = (P2, P0) : Similar to the case when (Pi, Pj) =
(P1, P0).

– If (Pi, Pj) = (P1, P2) : Sjsh sets v = 0 by setting βv = αv. The
steps of Πjmp are simulated similar to SPk

jmp, where the A acts as
the receiver.

Simulator Sjsh

Fig. 37: Simulator Sjsh for corrupt P0

6) Dot Product Protocol: Here we give he simulation steps
for Πdotp. The case for a corrupt P0 is provided in Fig.
38.

Preprocessing: Sdotp emulates FDotPPre and derives ψ and respec-
tive [·]-shares of χ honestly on behalf of P1, P2.

Online:

– SP0
dotp computes [·]-shares of β?

z on behalf of P1, P2. The steps
of Πjmp, required to provide P1 with [β?

z ]2, and P2 with [β?
z ]1,

are simulated similar to SPi
jmp, where P0 acts as one of the sender

in both cases.
– SP0

dotp computes β?
z and βz on behalf of P1, P2. The steps of the

Πjmp, required to provide P0 with βz + γz, are simulated similar
to SPk

jmp, where P0 acts as the receiver.

Simulator SP0
dotp

Fig. 38: Simulator Sdotp for corrupt P0

The case for a corrupt P1 is provided in Fig. 39. The case
for a corrupt P2 is similar.

Preprocessing: SP1
dotp emulates FDotPPre and derives [·]-shares of

ψ, χ honestly on behalf of P0, P2.

Online:

– SP1
dotp computes [β?

z ]1 on behalf of P0, and [β?
z ]2 on behalf of

P0 and P2. The steps of Πjmp, required to provide P1 with [β?
z ]2,

and P2 with [β?
z ]1, are simulated similar to SPi

jmp, where A acts
as one of the sender in the former case, and as a receiver in the
latter case.

– SP1
dotp computes β?

z and βz on behalf of P2. The steps of Πjmp,
required to provide P0 with βz+γz, are simulated similar to SPi

jmp,
where A acts as one of the sender.

Simulator SP1
dotp

Fig. 39: Simulator Sdotp for corrupt P1

7) Truncation Protocol: Here we give he simulation steps
for Πtrgen. The case for a corrupt P0 is provided in Fig.
40.

– SP0
trgen samples R1, R2 using the respective keys with A.

– Steps corresponding to Πsh are simulated similar to the steps
SP0

Πsh
for corrupt P0.

– SP0
trgen computes u, and steps corresponding to Πjmp are simulated

similar to SPi
Πjmp

.

– SP0
trgen computes v. If H(u) 6= H(v), SP0

trgen broadcasts
"(accuse,P0)", and sets ttp = P1.

Simulator SP0
trgen

Fig. 40: Simulator SP0
trgen for corrupt P0

The case for a corrupt P1 is provided in Fig. 41. The case
for a corrupt P2 is similar.

– SP1
trgen samples R1 using the key k01 with A, and samples

random R2. SP1
trgen sets r = R1 + R2, and truncates it to obtain

rd.
– Steps corresponding to Πjsh are simulated similar to the steps

in SΠjsh . SP1
trgen computes u, and steps corresponding to Πjmp are

simulated similar to the steps in SPi
Πjmp

.

Simulator SP1
trgen

Fig. 41: Simulator SP1
trgen for corrupt P1

Observe from the simulation steps, that the view of A in
the real world and the ideal world is indistinguishable.

B. Security Proofs for 4PC protocols

The ideal functionality F4PC for evaluating a function f
to be computed by ckt in the 4PC setting appears in Fig.
42.

F4PC interacts with the servers in P and the adversary S. Let
f denote the function to be computed. Let xs be the input
corresponding to the server Ps, and ys be the corresponding output,
i.e (y0, y1, y2, y3) = f(x0, x1, x2, x3).

Step 1: F4PC receives (Input, xs) from Ps ∈ P , and computes
(y0, y1, y3, y3) = f(x0, x1, x2, x3).

Step 2: F4PC sends (Output, ys) to Ps ∈ P .

Functionality F4PC

Fig. 42: 4PC: Ideal functionality for computing f in 4PC setting
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Now we provide the simulation for each of the sub-
protocols.

1) Joint Message Passing: This section provides the secu-
rity proof for the jmp4 primitive, which forms the crux for
achieving GOD in our constructions. Let Fjmp4 Fig. 21 denote
the ideal functionality and let SPs

jmp4 denote the corresponding
simulator for the case of corrupt Ps ∈ P .

We begin with the case for a corrupt sender, Pi, which is
provided in Fig. 43. The case for a corrupt Pj is similar and
hence we omit details for the same.

– SPi
jmp4 receives vi from A on behalf of honest Pk. If vi = vj

(where vj is the value computed by SPi
jmp4 based on the interaction

with A, and using the knowledge of the shared keys), then SPi
jmp4

sets bk = 0, else it sets bk = 1. If A fails to send a value, bk is
set to be 1. SPi

jmp4 sends bk to A on behalf of Pk.

– SPi
jmp4 sends bj = bk to A, and receives bi from A on behalf of

honest Pj . If A fails to send a value, it is assumed to be 1.
– SPi

jmp4 receives bi from A on behalf of honest Pl. If bk = 1,
SPi
jmp4 sets bl = 1 and ttp = Pl, else it sets bl = 0 and ttp = ⊥.
SPi
jmp4 sends bl to A on behalf of Pl. SPi

jmp4 invokes Fjmp4 with
(Input, vi) and (Select, bl) on behalf of A.

Simulator SPi
jmp4

Fig. 43: Simulator SPi
jmp4 for corrupt sender Pi

The case for a corrupt receiver, Pk is provided in Fig.
44.

– SPk
jmp4 sends v, H(v) (where v is the value computed by SPk

jmp4
based on the interaction with A, and using the knowledge of the
shared keys) to A on behalf of honest Pi, Pj , respectively.

– SPk
jmp4 receives bki, bkj from A on behalf of Pi, Pj , respectively.

If A fails to send a value, it is assumed to be 1.
– SPk

jmp4 receives bk from A on behalf of honest Pl. If A fails to
send a value, bk is assumed to be 0. If bk = 1 and bki∨ bkj = 1,
SPk
jmp4 sets bl = 1 and ttp = Pl, else it sets bl = 0 and ttp = ⊥.
SPk
jmp4 sends bl to A on behalf of Pl. SPk

jmp4 invokes Fjmp4 with
(Input,⊥) and (Select, bl) on behalf of A.

Simulator SPk
jmp4

Fig. 44: Simulator SPk
jmp4 for corrupt receiver Pk

The case for a corrupt receiver, Pl, which is the server
outside the computation involved in Πjmp4, is provided in Fig.
45.

– SPl
jmp4 sends bi = bj = bk = 0 to A on behalf of Pi, Pj , Pk,

respectively.
– SPl

jmp4 receives bl from A on behalf of Pi, Pj , Pk, and sets ttp =
⊥.

– SPl
jmp4 invokes Fjmp4 with (Input,⊥) and (Select, bl) on behalf

of A.

Simulator SPl
jmp4

Fig. 45: Simulator SPl
jmp4 for corrupt fourth server Pl

2) Sharing Protocol: Here we give the simulation steps
for Πsh4. The case for corrupt P0 is given in Fig.
46.

Preprocessing: SP0
Πsh4

emulates Fsetup4 and gives the keys
(k01, k02, k03, k012, k013, k023 and kP) to A. The values that are
commonly held with A are sampled using the respective keys,
while others are sampled randomly.

Online:

– If dealer is P0, SP0
Πsh4

receives βv from A on behalf of P1. Steps
corresponding to Πjmp4 are simulated according to SPi

Πjmp4
where

P0 acts as one of the sender for sending βv.
– If dealer is P1 or P2, SP0

Πsh4
sets v = 0 by assigning βv =

αv. Steps corresponding to Πjmp4 for sending βv + γv to A are
simulated according to SPk

Πjmp4
where P0 acts as the receiver.

– If dealer is P3, SP0
Πsh4

sets v = 0 by assigning βv = αv. SP0
Πsh4

sends βv +γv to A on behalf of P3. Steps corresponding to Πjmp4

are simulated according to SPj

Πjmp4
where P0 acts as one of the

sender with P1, P2 as the receivers, separately.

Simulator SP0
Πsh4

Fig. 46: Simulator SP0
Πsh4

for corrupt P0

The case for corrupt P1 is given in Fig. 47. The case for
a corrupt P2 is similar.

Preprocessing: SP1
Πsh4

emulates Fsetup4 and gives the keys
(k01, k12, k13, k012, k013, k123 and kP) to A. The values that are
commonly held with A are sampled using the respective keys,
while others are sampled randomly.

Online:

– If dealer is P1, SP1
Πsh4

receives βv from A on behalf of P2. Steps
corresponding to Πjmp4 are simulated according to SPi

Πjmp4
where

P1 acts as one of the sender for sending βv + γv to P0.
– If dealer is P0 or P2, SP1

Πsh4
sets v = 0 by assigning βv = αv.

• If dealer is P0, SP1
Πsh4

sends βv to A on behalf of P0. Steps
corresponding to Πjmp4 are simulated according to SPj

Πjmp4

where P1 acts as one of the sender to send βv.
• If dealer is P2, SP1

Πsh4
sends βv to A on behalf of P2. Steps

corresponding to Πjmp4 are simulated according to SPi
Πjmp4

where P1 acts as one of the sender to send βv + γv.
– If dealer is P3, SP1

Πsh4
sets v = 0 by assigning βv = αv. Steps

corresponding to Πjmp4 are simulated according to SPk
Πjmp4

where
P1 acts as the receiver for receiving βv + γv.

Simulator SP1
Πsh4

Fig. 47: Simulator SP1
Πsh4

for corrupt P1

The case for corrupt P3 is given in Fig. 48.

Preprocessing: SP3
Πsh4

emulates Fsetup4 and gives the keys
(k03, k13, k23, k013, k023, k123 and kP) to A. The values that are
commonly held with A are sampled using the respective keys,
while others are sampled randomly.

Online:

– If dealer is P3, SP3
Πsh4

receives βv + γv from A on behalf of P0.
Steps corresponding to Πjmp4 are simulated according to SPi

Πjmp4

where P3 acts as one of the sender with P1, P2 as the receivers,
separately.

– If dealer is P0 or P1 or P2, steps corresponding to Πjmp4 are

Simulator SP3
Πsh4
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simulated according to SPl
Πjmp4

where P3 acts as the server outside
the computation.

Fig. 48: Simulator SP3
Πsh4

for corrupt P3

3) Multiplication Protocol: Here we give the simulation
steps for Πmult4. The case for corrupt P0 is given in Fig.
49.

Preprocessing:

– SP0
Πmult4

samples [αz]1 , [αz]2 , [Γxy]1 using the respective keys
with A. SP0

Πmult4
samples γz, ψ, r randomly on behalf of the

respective honest parties, and computes [Γxy]2 honestly.
– Steps corresponding to Πjmp4 are simulated according to SPi

Πjmp4

where P0 acts as one of the sender for sending [Γxy]2.
– SP0

Πmult4
computes [χ]1 , [χ]2 honestly. Steps corresponding to

Πjmp4 are simulated according to SPk
Πjmp4

where P0 acts as the
receiver for [χ]1 , [χ]2.

Online:

– SP0
Πmult4

computes [β?
z ]1 , [β

?
z ]2 honestly. Steps corresponding to

Πjmp4 are simulated according to SPj

Πjmp4
where P0 acts as one of

the sender for sending [β?
z ]1 , [β

?
z ]2.

– SP0
Πmult4

computes βz + γz. Steps corresponding to Πjmp4 are
simulated according to SPk

Πjmp4
where P0 acts as the receiver for

receiving βz + γz.

Simulator SP0
Πmult4

Fig. 49: Simulator SP0
Πmult4

for corrupt P0

The case for corrupt P1 is given in Fig. 50. The case for
a corrupt P2 is similar.

Preprocessing:

– SP1
Πmult4

samples [αz]1 , γz, ψ, r, [Γxy]1 using the respective keys
with A. SP1

Πmult4
samples [αz]2 randomly on behalf of the respec-

tive honest parties.
– Steps corresponding to Πjmp4 are simulated according to SPl

Πjmp4

where P1 acts as the server outside the computation while
communicating [Γxy]2.

– SP1
Πmult4

computes [χ]1. Steps corresponding to Πjmp4 are simu-
lated according to SPi

Πjmp4
where P1 acts as one of the sender for

[χ]1.
– Steps corresponding to Πjmp4 are simulated according to SPl

Πjmp4

where P1 acts as the server outside the computation while
communicating [χ]2.

Online:

– SP1
Πmult4

computes [β?
z ]1 , [β

?
z ]2. Steps corresponding to Πjmp4 are

simulated according to SPi
Πjmp4

and SPk
Πjmp4

, where P1 acts as one
of the sender for sending [β?

z ]1, and P1 acts as the receiver for
receiving [β?

z ]2, respectively.
– SP1

Πmult4
computes βz + γz. Steps corresponding to Πjmp4 are

simulated according to SPi
Πjmp4

where P1 acts as one of the sender
for sending βz + γz.

Simulator SP1
Πmult4

Fig. 50: Simulator SP1
Πmult4

for corrupt P1

The case for corrupt P3 is given in Fig. 51.

Preprocessing:

– SP3
Πmult4

samples [αz]1 , [αz]2 , γz, ψ, r, [Γxy]1 using the respective
keys with A. SP3

Πmult4
computes [Γxy]2 honestly.

– Steps corresponding to Πjmp4 are simulated according to SPj

Πjmp4

where P3 acts as one of the sender for sending [Γxy]2.
– SP3

Πmult4
computes [χ]1 , [χ]2. Steps corresponding to Πjmp4 are

simulated according to SPj

Πjmp4
where P3 acts as one of the sender

for sending [χ]1 and [χ]2.

Online:

– Steps corresponding to Πjmp4 are simulated according to SPl
Πjmp4

where P3 acts as the server outside the computation involving
[β?

z ]1 , [β
?
z ]2 and βz + γz.

Simulator SP3
Πmult4

Fig. 51: Simulator SP3
Πmult4

for corrupt P3

4) Reconstruction Protocol: Here we give the simulation
steps for Πrec4. The case for corrupt P0 is given in Fig. 52.
The cases for corrupt P1, P2, P3 are similar.

– SP0
Πrec4

sends γv to A on behalf of P1, P2, and H(γv) on behalf
of P3, respectively.

– SP0
Πrec4

receives H([αv]1),H([αv]2), βv +γv from A on behalf of
P2, P1, P3, respectively.

Simulator SP0
Πrec4

Fig. 52: Simulator SP0
Πrec4

for corrupt P0

5) Joint Sharing Protocol: Here we give the simulation
steps for Πjsh4. The case for corrupt P0 is given in Fig.
53.

Preprocessing:

– SP0
Πjsh4

has knowledge of αv and γv, which it obtains while
emulating Fsetup4. The common values shared with the A are
sampled using the appropriate shared keys, while other values
are sampled at random.

Online:

– If dealers are (P0, P1): SP0
Πjsh4

computes βv using v. Steps

corresponding to Πjmp4 are simulated according to SPj

Πjmp4
where

P0 acts as one of the sender for βv.
– If dealers are (P0, P2) or (P0, P3): Analogous to the above case.
– If dealers are (P1, P2): SP0

Πjsh4
sets v = 0 and βv = [αv]1+[αv]2.

Steps corresponding to Πjmp4 are simulated according to SPk
Πjmp4

where P0 acts as the receiver for βv + γv.
– If dealers are (P3, P1): SP0

Πjsh4
sets v = 0 and βv = [αv]1+[αv]2.

Steps corresponding to Πjmp4 are simulated according to SPl
Πjmp4

where P0 acts as the server outside the computation for βv, and
according to SPk

Πjmp4
where P0 acts as the receiver for βv + γv.

– If dealers are (P3, P2): Analogous to the above case.

Simulator SP0
Πjsh4

Fig. 53: Simulator SP0
Πjsh4

for corrupt P0

The case for corrupt P1 is given in Fig. 54. The case for
corrupt P2 is similar.
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Preprocessing:

– SP1
Πjsh4

has knowledge of α-values and γ corresponding to v
which it obtains while emulating Fsetup4. The common values
shared with the A are sampled using the appropriate shared keys,
while other values are sampled at random.

Online:

– If dealers are (P0, P1): SP1
Πjsh4

computes βv using v. Steps
corresponding to Πjmp4 are simulated according to SPi

Πjmp4
where

P1 acts as one of the sender for βv.
– If dealers are (P1, P2): Analogous to the previous case, except

that now βv + γv is sent instead of βv.
– If dealers are (P3, P1): SP1

Πjsh4
computes βv and βv + γv. Steps

corresponding to Πjmp4 are simulated according to SPi
Πjmp4

where
P1 acts as one of the sender for βv, βv + γv.

– If dealers are (P0, P2) or (P0, P3) or (P3, P2): SP1
Πjsh4

sets v =

0 and βv = [αv]1 + [αv]2. Steps corresponding to Πjmp4 are
simulated according to SPk

Πjmp4
where P1 acts as the receiver for

βv.

Simulator SP1
Πjsh4

Fig. 54: Simulator SP1
Πjsh4

for corrupt P1

The case for corrupt P3 is given in Fig. 55.

Preprocessing:

– SP3
Πjsh4

has knowledge of α-values and γ corresponding to v
which it obtains while emulating Fsetup4. The common values
shared with the A are sampled using the appropriate shared keys,
while other values are sampled at random.

Online:

– If dealers are (P1, P2): SP3
Πjsh4

sets v = 0. Steps corresponding
to Πjmp4 are simulated according to SPl

Πjmp4
where P3 acts as the

server outside the computation for βv + γv.
– If dealers are (P0, P1) or (P0, P2): Analogous to the above case.
– If dealers are (P0, P3): SP3

Πjsh4
computes βv using v. Steps

corresponding to Πjmp4 are simulated according to SPi
Πjmp4

where
P3 acts as one of the sender for sending βv.

– If dealers are (P3, P1): SP3
Πjsh4

computes βv and βv + γv. Steps

corresponding to Πjmp4 are simulated according to SPj

Πjmp4
where

P3 acts as one of the sender for sending βv, βv + γv.
– If dealers are (P3, P2): Analogous to the above case.

Simulator SP3
Πjsh4

Fig. 55: Simulator SP3
Πjsh4

for corrupt P3

6) Dot Product Protocol: Here we give the simulation
steps for Πdotp4. The case for corrupt P0 is given in Fig.
56.

Preprocessing:

– SP0
Πdotp4

samples [αz]1 , [αz]2 , [Γ~x�~y]1 using the respective keys
with A. SP0

Πdotp4
samples γz, ψ, r randomly on behalf of the

respective honest parties, and computes [Γ~x�~y]2 honestly.
– Steps corresponding to Πjmp4 are simulated according to SPi

Πjmp4

where P0 acts as one of the sender for [Γ~x�~y]2.

Simulator SP0
Πdotp4

– SP0
Πdotp4

computes χ1, χ2 honestly. Steps corresponding to Πjmp4

are simulated according to SPk
Πjmp4

where P0 acts as the receiver
for χ1 and χ2.

Online:

– SP0
Πdotp4

computes [β?
z ]1 , [β

?
z ]2 honestly. Steps corresponding to

Πjmp4 are simulated according to SPj

Πjmp4
where P0 acts as one of

the sender for [β?
z ]1 , [β

?
z ]2.

– SP0
Πdotp4

computes βz + γz. Steps corresponding to Πjmp4 are
simulated according to SPk

Πjmp4
where P0 acts as the receiver for

βz + γz.

Fig. 56: Simulator SP0
Πdotp4

for corrupt P0

The case for corrupt P1 is given in Fig. 57. The case for
corrupt P2 is similar.

Preprocessing:

– SP1
Πdotp4

samples [αz]1 , γz, ψ, r, [Γ~x�~y]1 using the respective
keys with A. SP1

Πdotp4
samples [αz]2 randomly on behalf of the

respective honest parties.
– Steps corresponding to Πjmp4 are simulated according to SPl

Πjmp4

where P1 acts as the server outside the computation for [Γ~x�~y]2.
– SP1

Πdotp4
computes χ1. Steps corresponding to Πjmp4 are simulated

according to SPi
Πjmp4

where P1 acts as one of the sender for χ1.

– Steps corresponding to Πjmp4 are simulated according to SPl
Πjmp4

where P1 acts as the server outside the computation for χ2.

Online:

– SP1
Πdotp4

computes [β?
z ]1 , [β

?
z ]2. Steps corresponding to Πjmp4 are

simulated according to SPi
Πjmp4

and SPk
Πjmp4

, where P1 acts as one
of the sender for [β?

z ]1, and P1 acts as the receiver for [β?
z ]2.

– SP1
Πdotp4

computes βz + γz. Steps corresponding to Πjmp4 are
simulated according to SPi

Πjmp4
where P1 acts as one of the sender

for βz + γz.

Simulator SP1
Πdotp4

Fig. 57: Simulator SP1
Πdotp4

for corrupt P1

The case for corrupt P3 is given in Fig. 58.

Preprocessing:

– SP3
Πdotp4

samples [αz]1 , [αz]2 , γz, ψ, r, [Γ~x�~y]1 using the respec-
tive keys with A. SP3

Πdotp4
computes [Γ~x�~y] honestly.

– Steps corresponding to Πjmp4 are simulated according to SPj

Πjmp4

where P3 acts as one of the sender for [Γ~x�~y]2.
– SP3

Πdotp4
computes χ1, χ2. Steps corresponding to Πjmp4 are

simulated according to SPj

Πjmp4
where P3 acts as one of the sender

for χ1, χ2.

Online:

– Steps corresponding to Πjmp4 are simulated according to SPl
Πjmp4

where P3 acts as the server outside the computation for
[β?

z ]1 , [β
?
z ]2, βz + γz.

Simulator SP3
Πdotp4

Fig. 58: Simulator SP3
Πdotp4

for corrupt P3

28



7) Truncation Pair Generation: Here we give the simula-
tion steps for Πtrgen4. The case for corrupt P0 is given in Fig.
59. The case for corrupt P3 is similar.

– SP0
Πtrgen4

samples R1, R2 using the respective keys with A.

– Steps corresponding to Πjsh4 are simulated according to SP0
Πjsh4

(Fig. 53).

Simulator SP0
Πtrgen4

Fig. 59: Simulator SP0
Πtrgen4

for corrupt P0

The case for corrupt P1 is given in Fig. 60. The case for
corrupt P2 is similar.

– SP1
Πtrgen4

samples R1 using the respective keys with A, and
samples R2 randomly.

– Steps corresponding to Πjsh4 are simulated according to SP1
Πjsh4

(Fig. 54).

Simulator SP1
Πtrgen4

Fig. 60: Simulator SP1
Πtrgen4

for corrupt P1

Observe from the simulation steps, that the view of A in
the real world and the ideal world is indistinguishable.
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