SWIFT: Super-fast and Robust Privacy-Preserving Machine Learning

Nishat Koti*, Mahak Pancholi*, Arpita Patra*, Ajith Suresh*
*Department of Computer Science and Automation, Indian Institute of Science, Bangalore, India
{kotis, mahakp, arpita, ajith} @iisc.ac.in

Abstract

Performing ML computation on private data while main-
taining data privacy, aka Privacy-preserving Machine Learn-
ing (PPML), is an emergent field of research. Recently, PPML
has seen a visible shift towards the adoption of the Secure
Outsourced Computation (SOC) paradigm due to the heavy
computation that it entails. In the SOC paradigm, computa-
tion is outsourced to a set of powerful and specially equipped
servers that provide service on a pay-per-use basis. In this
work, we propose SWIFT, a robust PPML framework for
a range of ML algorithms in SOC setting, that guarantees
output delivery to the users irrespective of any adversarial
behaviour. Robustness, a highly desirable feature, evokes user
participation without the fear of denial of service.

At the heart of our framework lies a highly-efficient,
maliciously-secure, three-party computation (3PC) over rings
that provides guaranteed output delivery (GOD) in the honest-
majority setting. To the best of our knowledge, SWIFT is the
first robust and efficient PPML framework in the 3PC set-
ting. SWIFT is as fast as (and is strictly better in some cases
than) the best-known 3PC framework BLAZE (Patra et al.
NDSS’20), which only achieves fairness. We extend our 3PC
framework for four parties (4PC). In this regime, SWIFT is as
fast as the best known fair 4PC framework Trident (Chaudhari
et al. NDSS’20) and twice faster than the best-known robust
4PC framework FLASH (Byali et al. PETS’20).

We demonstrate our framework’s practical relevance by
benchmarking popular ML algorithms such as Logistic Re-
gression and deep Neural Networks such as VGG16 and
LeNet, both over a 64-bit ring in a WAN setting. For deep
NN, our results testify to our claims that we provide improved
security guarantee while incurring no additional overhead for
3PC and obtaining 2x improvement for 4PC.

1 Introduction

Privacy Preserving Machine Learning (PPML), a booming
field of research, allows Machine Learning (ML) computa-
tions over private data of users while ensuring the privacy of

the data. PPML finds applications in sectors that deal with sen-
sitive/confidential data, e.g. healthcare, finance, and in cases
where organisations are prohibited from sharing client infor-
mation due to privacy laws such as CCPA and GDPR. How-
ever, PPML solutions make the already computationally heavy
ML algorithms more compute-intensive. An average end-user
who lacks the infrastructure required to run these tasks prefers
to outsource the computation to a powerful set of specialized
cloud servers and leverage their services on a pay-per-use
basis. This is addressed by the Secure Outsourced Computa-
tion (SOC) paradigm, and thus is an apt fit for the need of the
moment. Many recent works [10, 13,14, 38,39,41,44,46,52]
exploit Secure Multiparty Computation (MPC) techniques
to realize PPML in the SOC setting where the servers enact
the role of the parties. Informally, MPC enables n mutually
distrusting parties to compute a function over their private
inputs, while ensuring the privacy of the same against an
adversary controlling up to ¢ parties. Both the training and
prediction phases of PPML can be realized in the SOC set-
ting. The common approach of outsourcing followed in the
PPML literature, as well as by our work, requires the users to
secret-share' their inputs between the set of hired (untrusted)
servers, who jointly interact and compute the secret-shared
output, and reconstruct it towards the users.

In a bid to improve practical efficiency, many recent
works [5, 10, 13, 14, 18,22-24,31-33,44] cast their protocols
into the preprocessing model wherein the input-independent
(yet function-dependent) phase computationally heavy tasks
are computed in advance, resulting in a fast online phase. This
paradigm suits scenario analogous to PPML setting, where
functions (ML algorithms) typically need to be evaluated a
large number of times, and the function description is known
beforehand. To further enhance practical efficiency by lever-
aging CPU optimizations, recent works [6, 19, 21, 23, 25]
propose MPC protocols that work over 32 or 64 bit rings.
Lastly, solutions for a small number of parties have re-
ceived a huge momentum due to the many cost-effective

The threshold of the secret-sharing is decided based on the number of
corrupt servers so that privacy is preserved.

customizations that they permit, for instance, a cheaper reali-
sation of multiplication through custom-made secret sharing
schemes [2,3, 10, 13, 14,44].

We now motivate the need for robustness aka guaranteed
output delivery (GOD) over fairness’, or even abort security’,
in the domain of PPML. Robustness provides the guarantee of
output delivery to all protocol participants, no matter how the
adversary misbehaves. Robustness is crucial for real-world
deployment and usage of PPML techniques. Consider the
following scenario wherein an ML model owner wishes to
provide inference service. The model owner shares the model
parameters between the servers, while the end-users share
their queries. A protocol that provides security with abort or
fairness will not suffice as in both the cases a malicious adver-
sary can lead to the protocol aborting, resulting in the user not
obtaining the desired output. This leads to denial of service
and heavy economic losses for the service provider. For data
providers, as more training data leads to more accurate mod-
els, collaboratively building a model enables them to provide
better ML services, and consequently, attract more clients. A
robust framework encourages active involvement from multi-
ple data providers. Hence, for the seamless adoption of PPML
solutions in the real world, the robustness of the protocol is
of utmost importance. The hall-mark result of [16] suggests
that an honest-majority amongst the servers is necessary to
achieve robustness. Consequent to the discussion above, we
focus on the honest-majority setting with a small set of par-
ties, especially 3 and 4 parties, both of which have drawn
enormous attention recently [2,3,7,8,10,12-14,28,40,42,44].
Our protocols work over rings, are cast in the preprocessing
paradigm, and achieve GOD.

Related Work We restrict the relevant work to a small num-
ber of parties and honest-majority, focusing first on MPC,
followed by PPML. MPC protocols for a small population
can be cast into orthogonal domains of low latency proto-
cols [11,12,43], and high throughput protocols [1-3,6,8, 13,
15,27,28,42,44]. In the 3PC setting, [3, 13] provide effi-
cient semi-honest protocols wherein ASTRA [13] improved
upon [3] by casting the protocols in the preprocessing model
and provided a fast online phase. ASTRA further provided se-
curity with fairness in the malicious setting with an improved
online phase compared to [2]. Later, a maliciously-secure 3PC
protocol based on distributed zero-knowledge techniques was
proposed by Boneh et al. [7] providing abort security. Further,
building on [7] and enhancing the security to GOD, Boyle
et al. [8] proposed a concretely efficient 3PC protocol with
an amortized communication cost of 3 field elements (can be
extended to work over rings) per multiplication gate. Concur-
rently, BLAZE [44] provided a fair protocol in the preprocess-
ing model, which required communicating 3 ring elements in
each phase. However, BLAZE eliminated the reliance on the

2This ensures either all parties or none learn the output.
3This may allow the corrupt parties alone to learn the output.

computationally intensive distributed zero-knowledge system
(whose efficiency kicks in for large circuit or many multi-
plication gates) from the online phase and pushed it to the
preprocessing phase. This resulted in a faster online phase
compared to [8].

In the regime of 4PC, Gordon et al. [29] presented proto-
cols achieving abort security and GOD. However, [29] relied
on expensive public-key primitives and broadcast channels
to achieve GOD. Trident [14] improved over the abort proto-
col of [29], providing a fast online phase achieving security
with fairness, and presented a framework for mixed world
computations [25]. A robust 4PC protocol was provided in
FLASH [10], which requires communicating 6 ring elements,
each, in the preprocessing and online phases.

In the PPML domain, MPC has been used for various
ML algorithms such as Decision Trees [37], Linear Regres-
sion [26, 47], k-means clustering [9, 30], SVM Classifica-
tion [51,54], Logistic Regression [49]. In the 3PC SOC set-
ting, the works of ABY3 [39] and SecureNN [52], provide
security with abort. This was followed by ASTRA [13], which
improves upon ABY3 and achieves security with fairness. AS-
TRA presents primitives to build protocols for Linear Regres-
sion and Logistic Regression inference. Recently, BLAZE
improves over the efficiency of ASTRA and additionally tack-
les training for the above ML tasks, which requires building
additional PPML building blocks, such as truncation and bit
to arithmetic conversions. In the 4PC setting, the first robust
framework for PPML was provided by FLASH [10] which
proposed efficient building blocks for ML such as dot product,
truncation, MSB extraction, and bit conversion. The works
of [10,13,14,39,41,44,52] work over rings to garner practical
efficiency. In terms of efficiency, BLAZE and respectively
FLASH and Trident are the closest competitors of this work
in 3PC and 4PC settings. We now present our contributions
and compare them with these works.

1.1 Our Contributions

We propose, SWIFT, a robust maliciously-secure framework
for PPML in the SOC setting, with a set of 3 and 4 servers
having an honest-majority. At the heart of our framework lies
highly-efficient, maliciously-secure, 3PC and 4PC over rings
(both Z,; and Z,1) that provide GOD in the honest-majority
setting. We cast our protocols in the preprocessing model,
which helps obtain a fast online phase. As mentioned earlier,
the input-independent (yet function-dependent) computations
will be performed in the preprocessing phase.

To the best of our knowledge, SWIFT is the first robust and
efficient PPML framework in the 3PC setting and is as fast as
(and is strictly better in some cases than) the best known fair
3PC framework BLAZE [44]. We extend our 3PC framework
for 4 servers. In this regime, SWIFT is as fast as the best
known fair 4PC framework Trident [14] and twice faster than
best known robust 4PC framework FLASH [10]. We detail
our contributions next.

3PC I 4PC
Buildi

El;ll Lng H ‘ Pre. ‘ Online ‘ H ‘ Pre. ‘ Online ‘
OCKs Ref. Security Ref. Security

H ‘ Comm. ({) ‘ Rounds ‘ Comm. ({) ‘ H ‘ Comm. ({) ‘ Rounds ‘ Comm. ({) ‘

(7] 1 1 2| Abort

Multiolication [8] 3 3 GOD Trident 3 1 3 Fair
P BLAZE 3 1 3 Fair || FLASH 6 1 6 GOD
SWIFT 3 1 3 GOD || SWIFT 3 1 3 GOD
Trident 3 1 3 Fair
Dot Product || BLAZE 3n 1 3 Fair || FLASH 6 1 6 GOD
SWIFT 3 1 3 GOD || SWIFT 3 1 3 GOD
Dot Product Trident 6 1 3 Fair
ey nc‘;t.ocn BLAZE 3n+2 1 3 Fair || FLASH 8 1 6 GOD
with Lruncatt SWIFT 15 1 3 GOD || SWIFT 4 1 3 GOD
Bit Trident ~8 | logl+1 ~7 Fair
Extraction || BLAZE 9 | 1+logl 9 Fair || FLASH 14 log? 14 GOD
SWIFT 9 | 1+1logt 9 GOD || SWIFT ~7 log? ~7 GOD
Bit t Trident ~3 1 3 Fair
Arithm‘ ﬁ" BLAZE 9 1 4 Fair || FLASH 6 1 8 GOD
el SWIFT 9 1 4| GOD || SWIFT ~3 1 3 GOD
Bit Trident ~6 1 3 Fair
et "\l BLAZE 12 2 7 Fair || FLASH 8 2 10 GOD
mection | gwirr 12 2 7 GOD || SWIFT ~6 1 3 GOD

— Notations: ¢ - size of ring in bits, n - size of vectors for dot product.

Table 1: 3PC and 4PC: Comparison of SWIFT with its closest competitors in terms of Communication and Round Complexity

Robust 3/4PC frameworks The framework consists of a
range of primitives realized in a privacy-preserving way which
is ensured via running computation in a secret-shared fash-
ion. We use secret-sharing over both Z,, and its special in-
stantiation Z,: and refer them as arithmetic and respectively
boolean sharing. Our framework consists of realizations for
all primitives needed for general MPC and PPML such as
multiplication, dot-product, truncation, bit extraction (given
arithmetic sharing of a value v, this is used to generate boolean
sharing of the most significant bit (msb) of the value), bit to
arithmetic sharing conversion (converts the boolean sharing
of a single bit value to its arithmetic sharing), bit injection
(computes the arithmetic sharing of b - v, given the boolean
sharing of a bit b and the arithmetic sharing of a ring element
v) and above all, input sharing and output reconstruction in
the SOC setting. A highlight of our 3PC framework, which,
to the best of our knowledge is achieved for the first time, is a
robust dot-product protocol whose (amortized) communica-
tion cost is independent of the vector size, which we obtain by
extending the techniques of [7, 8]. The performance compari-
son in terms of concrete cost for communication and rounds,
for PPML primitives in both 3PC and 4PC setting, appear in
Table 1. As claimed, SWIFT is on par with BLAZE for most
of the primitives (while improving security from fair to GOD)
and is strictly better than BLAZE in case of dot product and
dot product with truncation. For 4PC, SWIFT is on par with
Trident in most cases (and is slightly better for dot product
with truncation and bit injection), while it is doubly faster
than FLASH.

Applications and Benchmarking We demonstrate the prac-
ticality of our protocols by benchmarking PPML, particu-
larly, Logistic Regression (training and inference) and popular
Neural Networks (inference) such as [41], LeNet [35] and
VGG16 [48] having millions of parameters. The NN training
requires mixed-world conversions [14,25,39], which we leave
as future work. Our PPML blocks can be used to perform
training and inference of Linear Regression, Support Vector
Machines, and Binarized Neural Networks (as demonstrated
in [10, 13, 14,44]).

Comparisons and Differences with Prior Works To begin
with, we introduce a new primitive called Joint Message Pass-
ing (jmp) that allows two servers to relay a common message
to the third server such that either the relay is successful or
an honest server is identified. jmp is extremely efficient as for
a message of £ elements it only incurs the minimal commu-
nication cost of £ elements (in an amortized sense). Without
any extra cost, it allows us to replace several pivotal private
communications, that may lead to abort, either because the
malicious sender does not send anything or sends a wrong
message. All our primitives, either for a general 3PC or a
PPML task, achieve GOD relying on jmp.

Second, instead of using the multiplication of [8] (which
has the same overall communication cost as that of our on-
line phase), we build a new protocol. This is because the
former involves distributed zero-knowledge protocols. The
cost of this heavy machinery gets amortized only for large
circuits having millions of gates, which is very unlikely for

inference and moderately heavy training tasks in PPML. As
in BLAZE [44], we follow a similar structure for our multi-
plication protocol but differ considerably in techniques as our
goal is to obtain GOD. Our approach is to manipulate and
transform some of the protocol steps so that two other servers
can locally compute the information required by a server in a
round. However, this transformation is not straight forward
since BLAZE was constructed with a focus towards providing
only fairness (details appear in §3). The multiplication proto-
col forms a technical basis for our dot product protocol and
other PPML building blocks. We emphasise again that the
(amortized) cost of our dot product protocol is independent
of the vector size.

Third, extending to 4PC brings several performance im-
provements over 3PC. Most prominent of all is a conceptually
simple jmp instantiation, which forgoes the broadcast chan-
nel while retaining the same communication cost; and a dot
product with cost independent of vector size sans the 3PC
amortization technique.

Fourth, we provide robust protocols for input sharing and
output reconstruction phase in the SOC setting, wherein a
user shares its input with the servers, and the output is recon-
structed towards a user. The need for robustness and commu-
nication efficiency together makes these tasks slightly non-
trivial. As a highlight, we introduce a super-fast online phase
for the reconstruction protocol, which gives 4 x improvement
in terms of rounds (apart from improvement in the communi-
cation) compared to BLAZE. Although we aim for GOD, we
ensure that an end-user is never part of a broadcast which is
relatively expensive than atomic point-to-point communica-
tion.

1.2 Organisation of the paper

The rest of the paper is organized as follows. In §2 we describe
the system model, preliminaries and notations used. §3 and §4
detail our constructs in the 3PC and respectively 4PC setting.
These are followed by the applications and benchmarking in
§5. The appendix §A elaborates on additional preliminaries.
The protocols to complete the PPML framework and detailed
cost analysis for all the 3PC and 4PC protocols are provided
in appendix §B and §C respectively. The security proofs for
our constructions follow in appendix §D.

2 Preliminaries

We consider a set of three servers P = {Py, P, P>} that are
connected by pair-wise private and authentic channels in a
synchronous network, and a static, malicious adversary that
can corrupt at most one server. We use a broadcast channel
for 3PC alone, which is inevitable [17]. For ML training, sev-
eral data-owners who wish to jointly train a model, secret
share (using the sharing semantics that will appear later) their
data among the servers. For ML inference, a model-owner

and client secret share the model and the query, respectively,
among the servers. Once the inputs are available in the shared
format, the servers perform computations and obtain the out-
put in the shared form. In the case of training, the output
model is reconstructed towards the data-owners, whereas for
inference, the prediction result is reconstructed towards the
client. We assume that an arbitrary number of data-owners
may collude with a corrupt server for training, whereas for
the case of prediction, we assume that either the model-owner
or the client can collude with a corrupt server. We prove the
security of our protocols using a standard real-world / ideal-
world paradigm. We also explore the above model for the four
server setting with P = {Py, Py, P>, P3}. The aforementioned
setting has been explored extensively [10, 13,14,39,41,44].

Our constructions achieve the strongest security guarantee
of GOD. A protocol is said to be robust or achieve GOD if
all parties obtain the output of the protocol regardless of how
the adversary behaves. In our model, this translates to all the
data owners obtaining the trained model for the case of ML
training, while the client obtaining the query output for ML
inference. All our protocols are cast into: input-independent
preprocessing phase and input-dependent online phase.

For 3/4PC, the function to be computed is expressed as a
circuit ckt, whose topology is public, and is evaluated over
an arithmetic ring Z,¢ or boolean ring Z,:. For PPML, we
consider computation over the same algebraic structure. To
deal with floating-point values, we use Fixed-Point Arith-
metic (FPA) [10, 13,14,39,41, 44] representation in which a
decimal value is represented as an ¢-bit integer in signed 2’s
complement representation. The most significant bit (MSB)
represents the sign bit, and x least significant bits are reserved
for the fractional part. The ¢-bit integer is then treated as an
element of Z,, and operations are performed modulo 20 We
set { = 64,x = 13, leaving ¢ — x — 1 bits for the integer part.

The servers use a one-time key setup, modelled as a func-
tionality Feerup (Fig. 6), to establish pre-shared random keys
for pseudo-random functions (PRF) between them. A similar
setup is used in [2, 8, 13,28,39,44,46] for three server case
and in [10, 14] for four server setting. The key-setup can be
instantiated using any standard MPC protocol in the respec-
tive setting. Further, our protocols make use of a collision-
resistant hash function, denoted by H(), and a commitment
scheme, denoted by Com(). The formal details of key setup,
hash function, and commitment scheme are deferred to §A.

Notation 2.1. The i/ element of a vector X is denoted as x;.
The dot product of two n length vectors, X and Y, is computed
as XOY = Y1, xyy;. For two matrices X,Y, the operation
X oY denotes the matrix multiplication. The bit in the i
position of an £-bit value v is denoted by v[i].

Notation 2.2. For a bit b € {0,1}, we use bR to denote the
equivalent value of b over the ring Z,.. bR will have its least
significant bit set to b, while all other bits will be set to zero.

3 Robust 3PC and PPML

In this section, we first introduce the sharing semantics for
three servers. Then, we introduce our new Joint Message Pass-
ing (jmp) primitive, which plays a crucial role in obtaining
the strongest security guarantee of GOD, followed by our
protocols in the three server setting.

Secret Sharing Semantics We use the following secret-

sharing semantics.

o []-sharing: A value v € Zy is [-]-shared among P, P», if
P, for s € {1,2} holds [v], € Z, such that v = [v]; +[v],.

o (-)-sharing: A value v € Z, is (-)-shared among P, if

— there exists vo,Vvi,Vv2 € Zye such that v = vy + vy +va.
— Py holds (vs,V(s41)%3) for s € {0,1,2}.
o [-]-sharing: A value v € Zy is [-]-shared among P, if
— there exists o, € Zy that is [-]-shared among P;, P».
— there exists By, % € Zy such that B, = v+ a, and Py
holds ([ow]; , [0]5, By + V) while P for s € {1,2} holds
([av}s J BV7’YV)'

Arithmetic and Boolean Sharing Arithmetic sharing refers
to sharing over Z,; while boolean sharing, denoted as [H]B,
refers to sharing over Z,;.

Linearity of the Secret Sharing Scheme Given [-]-shares of
V1, V2, and public constants c, ¢, servers can locally compute
[-]-share of cjvy + cavo as ¢ [vi] + ¢z [va]. Tt is trivial to see
that linearity property is satisfied by (-) and [-] sharings.

3.1 Joint Message Passing primitive

The jmp primitive allows two servers to relay a common mes-
sage to the third server such that either the relay is successful
or an honest server (or a conflicting pair) is identified. The
striking feature of jmp is that it offers a rate-1 communication
i.e. for a message of ¢ elements, it only incurs a communica-
tion of ¢ elements (in an amortized sense). The task of jmp is
captured in an ideal functionality (Fig. 8) and the protocol for
the same appears in Fig. 1. Next, we give an overview.

Given two servers P;, P; possessing a common value v €
Zye, protocol IT;m, proceeds as follows. First, P; sends v to
P, while P; sends a hash of v to P;. The communication of
the hash is done once and for all from P; to P. In the sim-
plest case, P, receives a consistent (value, hash) pair, and the
protocol terminates. In all other cases, a TTP is identified as
follows without having to communicate v again. Importantly,
the following part can be run once and for all instances of
IT;mp with P;, P;, Py in the same roles, invoked in the final 3PC
protocol. Consequently, the cost relevant to this part vanishes
in an amortized sense, making the construction rate-1.

Each P, for s € {i, j,k} maintains a bit by initialized to
0, as an indicator for inconsistency. When P, receives an
inconsistent (value, hash) pair, it sets by = 1 and sends the bit
to both P;, P, who cross-check with each other by exchanging

the bit and turn on their inconsistency bit if the bit received
from either P, or its fellow sender is turned on. A server
broadcasts a hash of its value when its inconsistency bit is
on;* P;’s value is the one it receives from P;. At this stage,
there are a bunch of possible cases and a detailed analysis
determines an eligible TTP in each case.

—[Protocol Hjmp(f’,,Pj,Pk7v)]
— Each server P for s € {i, j,k} initializes bit by = 0.
— P; sends v to Py, while P; sends H(v) to Py.

— Py broadcasts " (accuse, P;) ", if P; is silent and TTP = P;.
Analogously for P;. If P, accuses both P;, P, then TTP = P;.
Otherwise, Py receives some ¥ and either sets by = 0 when the
value and the hash are consistent or sets by = 1. P then sends
by to P;, P; and terminates if by = 0.

— If P; does not receive a bit from Py, it broadcasts
" (accuse, P) " and TTP = P;. Analogously for P;. If both
P;, P; accuse Py, then TTP = P;. Otherwise, P; for s € {i, j} sets

s = bg.

— P;, Pj exchange their bits to each other. If P; does not receive
b; from P}, it broadcasts " (accuse, Pj) " and TTP = Py. Anal-
ogously for P;. Otherwise, P; resets its bit to b; V b; and likewise
Pj resets its bit to b; V b;.

— Py fors e {i,j,k} broadcasts Hy = H(v*) if by = 1, where v* =
v for s € {i, j} and v* = ¥ otherwise. If P; does not broadcast,
terminate. If either P; or P; does not broadcast, then TTP = P,.
Otherwise,

o IfH;ZH;: TTP =P,.
e Elseif H; ZH: TTP = P;.
e Elseif H;=H;=Hi: TTP =P,

Figure 1: 3PC: Joint Message Passing Protocol

When P is silent, the protocol is understood to be complete.
This is fine irrespective of the status of Py— an honest Py never
skips this broadcast with inconsistency bit on, and a corrupt
Py implies honest senders. If either P; or P; is silent, then
Py is picked as TTP which is surely honest. A corrupt Py
could not make one of {P;, P;} speak, as the senders (honest
in this case) are in agreement on their inconsistency bit (due
to their mutual exchange of inconsistency bit). When all of
them speak and (i) the senders’ hashes do not match, Py is
picked as TTP; (ii) one of the senders conflicts with Py, the
other sender is picked as TTP; and lastly (iii) if there is no
conflict, P; is picked as TTP. The first two cases are self-
explanatory. In the last case, either P; or Py is corrupt. If not,
a corrupt P; can have honest P, speak (and hence turn on its
inconsistency bit), by sending a v/ whose hash is not same as
that of v and so inevitably, the hashes of honest P; and P, will
conflict, contradicting (iii). As a final touch, we ensure that,
in each step, a server raises a public alarm (via broadcast)
accusing a server which is silent when it is not supposed to
be, and the protocol terminates immediately by labelling the
server as T TP who is neither the complainer nor the accused.

“4hash can be computed on a combined message across many calls of jmp.

Notation 3.1. We say that P;, P; jmp-send v to P, when they
invoke Ijmp (Pi, Pj, Pk, V).

Using jmp in protocols. As mentioned in the introduction,
the jmp protocol needs to be viewed as consisting of two
phases (send, verify), where send phase consists of P; sending
v to P, and the rest goes to verify phase. Looking ahead,
most of our protocols use jmp, and consequently, our final
construction, either of general MPC or any PPML task, will
have several calls to jmp. To leverage amortization, the send
phase will be executed in all protocols invoking jmp on the
flow, while the verify for a fixed ordered pair of senders will
be executed once and for all in the end. The verify phase
will determine if all the sends were correct. If not, a TTP is
identified, as explained, and the computation completes with
the help of TTP, just as in the ideal-world.

3.2 3PC Protocols

‘We now describe the protocols for 3 parties/servers and de-
fer the communication analysis of our protocols to §B and
security proofs to §D.1.

Sharing Protocol Protocol Iy, (Fig. 9) allows a server P; to
generate [-]-shares of a value v € Zy. In the preprocessing
phase, Py, P; for j € {1,2} along with P; sample a random
[ow] ;€ Zy¢, while Py, P, P; sample random 7, € Z,¢. This
allows P; to know both @, and v, in clear. During the online
phase, if P, = Py, then Py sends B, = v+ a, to P;. Py, P| then
jmp-send P, to P, to complete the secret sharing. If P, = P,
Py sends B, = v+, to P,. Then Py, P, jmp-send B, +17, to
Py. The case for P; = P, proceeds similar to that of P;. The
correctness of the shares held by each server is assured by the
guarantees of IT;m,. We defer the details of I, to §B.2.

Joint Sharing Protocol Protocol ITjs, (Fig. 10) allows two
servers P;,P; to jointly generate a [-]-sharing of a value
v € Zy that is known to both. Towards this, servers execute
the preprocessing of Iy, (Fig. 9) to generate [a,] and 7, .
If (P, P;) = (P1,P), then Py, Py jmp-send B, =v+a0, to P,.
The case when (P;, P;) = (P>, Py) proceeds similarly. The case
for (P;,P;) = (P, P») is optimized further as follows: servers
locally set [a]; = [o], = 0. Py, P, together sample random
Yo € Zye, set By = v and jmp-send B, + 7, to Py. We defer the
formal details of ITj, to §B.3.

Addition Protocol Given [-]-shares on input wires x,y,
servers can use linearity property of the sharing scheme to
locally compute [-]-shares of the output of addition gate,
z=x+yas [z] = [x] +[y].

Multiplication Protocol Protocol I (2, [x], [y]) (Fig. 2)
enables the servers in P to compute [-]-sharing of z = xy,
given the [-]-sharing of x and y. We build on the protocol of
BLAZE [44] and discuss along the way the differences and
resemblances. We begin with a protocol for the semi-honest
setting, which is also the starting point of BLAZE. During

the preprocessing phase, Py, P; for j € {1,2} sample random
[o] j € Zy, while Py, P, sample random Y, € Zy. In addition,
Py locally computes I'y, = o0, and generates [-]-sharing of
the same between P;, P,. Since,
Br=z+0, =xy+0, = (Bx—0)(By —ty) + 0,
= BxBy_ﬁxay_Byax+rxy+az (1)
servers Py, P, locally compute [B,]; = (j — 1)BxBy —
Bxloy]; — Bylow]; + [Tw]; + [0]; during the online phase
and mutually exchange their shares to reconstruct 3,. Py then
sends B, +7; to Py, completing the semi-honest protocol. The
correctness that asserts z = xy or in other words 3, — o, = xy
holds due to Eq. 1.
The following issues arise in the above protocol when a
malicious adversary is considered:
1) When Py is corrupt, the [-]-sharing of I, performed by Py
might not be correct, i.e. 'y, 7# 00y
2) When P; (or P,) is corrupt, [-]-share of B, handed over to
the fellow honest evaluator during the online phase might
not be correct, causing reconstruction of an incorrect ;.

3) When P is corrupt, the value B, + 7, that is sent to Py
during the online phase may not be correct.

All the three issues are common with BLAZE (copied
verbatim), but we differ from BLAZE in handling them. We
begin with solving the last issue first. We simply make Py, P>
jmp-send B, + 7V, to Py (after B, is computed). This either
leads to success or a TTP selection. Due to jmp’s rate-1
communication, P; alone sending the value to Py remains as
costly as using jmp in amortized sense. Whereas in BLAZE,
the malicious version simply makes P> to send a hash of
B+, to Py (in addition to P;’s communication of B, + 7, to
Py), who aborts if the received values are inconsistent.

For the remaining two issues, similar to BLAZE, we reduce
both to a multiplication (on values unrelated to inputs) in the
preprocessing phase. However, our method leads to either
success or T TP selection, with no additional cost.

We start with the second issue. To solve it, where a corrupt
P (or P») sends an incorrect [-]-share of 3,, BLAZE makes
use of server P to compute a version of B, for verification,
based on By and B, as follows. Using By + Yx, By + ¥y, O, Oy,
o and I',y, Py computes:

B; = —(Bx +YX)OCy - (By +Yy)0°x +2Iy + oy
= (B2 — BxBy) — (aty + vy 0 — Txy) [by Eq. 1]
=(B.— ﬁXBy) —% [wherex = YOy + Yy Oy — ny]

Now if ¢ can be made available to P, it can send B} + %
to P; and P, who using the knowledge of B, By, can verify
the correctness of B, by computing 3, — B«Py, and checking
against the value B} + ¥ received from Py. However, disclos-
ing y on clear to Py will cause a privacy issue when P is
corrupt, because one degree of freedom on the pair (Yx,Yy)
is lost and the same impact percolates down to (By,y) and
further to the actual values (vx,vy) on the wires x,y. This is
resolved through a random value y € Z,, sampled together

by P and P». Now,) and B} are set to Y, 0ty + Y, 0l —
(B, — B«By +) — . respectively and the check by Py, P> in-
volves computing B, — B«By + y. The rest of the logic in
BLAZE goes on to discuss how to enforce Py— (a) to compute
a correct) (when honest), and (b) to share correct I',, (when
corrupt). Tying the ends together, they identify the precise
shared multiplication triple and map its components to ¥, and
I',y so that these values are correct by virtue of the correctness
of the product relation. This reduces ensuring the correctness
of these values to doing a single multiplication of two values
in the preprocessing phase.

— Protocol (7. 1. Iy1)}

Preprocessing:

Iy +v,

— Py, Pjfor j € {1,2} together sample random [0(;]; € Zy:, while
Py, P, sample random Y, € Zy:.

— Servers in P locally compute (-)-sharing of d = v + 0 and
e =Yy + 0y by setting the shares as follows (ref. Table 2):

(d0= [(XX]Z) di= [O{’Xh 7d2=YX)7 (e(): [0(‘)’]2 ,€1= [ay]l 762=Yy)

— Servers in P execute [T,y 1pre (P, d, €) to generate (f) = (de).

— Py, Py locally set [x];, = fi, while Py, P, locally set [x], = fo.
P1, P> locally compute y = f) — Yy

Online:

— Py, Pj.for j € {1,2}, compute [B7]; = — (Bx+ %) [ay] ; — (By +
Yy) (0] + 0] ; 4 [X] ;-

— Py, Py jmp-send [B}], to P and Py, P, jmp-send [B}], to P;.

B3]y + Bz, and set B, = B + BxBy + .
— Py, P jmp-send B, + Y, to Py.

— Py, P, compute 5 =

Figure 2: 3PC: Multiplication Protocol (z = x-y)

We differ from BLAZE in several ways. First, we do not
simply rely on P, for the verification information 3 4%, as
this may inevitably lead to abort when P, is corrupt. Instead,
we find (a slightly different) B} that, instead of entirely avail-
able to Py, will be available in [-]-shared form between the two
teams { Py, P, }, {Po, P>}, with both servers in {Py, P;} holding
ith share [37].. With this edit, the ith team can jmp-send the ith
share of B to the third server which computes ;. Due to the
presence of one honest server in each team, this B} is correct
and Py, P, directly use it to compute [3,, with the knowledge
of y, By, By. The outcome of our approach is a win-win situ-
ation i.e. either success or TTP selection. Our approach of
computing B, from B} is a departure from BLAZE, where
the latter suggests computing B, from the exchange Py, P»’s
respective share of B, (as in the semi-honest construction)
and use [3; for verification. Our new B} and ¥ are:

X = VxOy + Y0y +T% —y and
B = —(Bx+1r)oy — (By +¥y)0 + 0t + %
= (—PBxoty —PByorc + Iy +0) =y = B, — BBy —
Clearly, both Py and P; can compute [B;]. = —(Bx +

o) [oy]; = (By + %) [ond; + [0]; + [x]; given [x];. The rest of

our discussion explains how (a) ith share of [] can be made
available to {Py, P;} and (b) Wy can be derived by Py, P, from
a multiplication triple. Similar to BLAZE, yet for a different
triple, we observe that (d, e, f) is a multiplication triple, where
d=(%+oy),e=(y+ay),f =%y +v)+y if and only if
% and I'y, are correct. Indeed,
de = (1 + OLX)(Yy + ay) =YYy +Yx Oy + Yy Ok + Ty
= (%W + V) + (%o + %0+ Dy — W)
=y +w)+x ="~

Based on this observation, we compute the above multiplica-
tion triple using a multiplication protocol and extract out the
values for y and % from the shares of f which are bound to
be correct. This can be executed entirely in the preprocessing
phase. Specifically, the servers (a) locally obtain (-)-shares
of d,e as in Table 2, (b) compute (-)-shares of f(= de), say
denoted by fy, f;,f,, using an efficient, robust 3-party multi-
plication protocol, say I1,,pre (abstracted in a functionality
Fig. 11) and finally (c) extract out the required preprocessing
data locally as in Eq. 2. We switch to (-)-sharing in this part
to be able to use the best robust multiplication protocol of [8]
that supports this form of secret sharing and requires commu-
nication of just 3 elements. Fortunately, the switch does not
cost anything, as both the step (a) and (c) (as above) involve
local computation and the cost simply reduces to a single run
of a multiplication protocol

(vo,v1) (vi,v2) (v2,vo)

“
(d) | ([od, [ody) | (lo]y %) | (Vs [od)
(e) ‘ (o], [oy])) ‘ o)y, Yy) ‘ (Y. [ow],)

Table 2: The (-)-sharing of values d and e

X]p < fo. (X < f1, %Wy +y<fo.)

According to (-)-sharing, both Py and P obtain f; and hence
obtain [y],. Similarly, Py, P> obtain fo and hence [],. Finally,
Py, P> obtain f, from which they compute y = f, —,y,. This
completes the informal discussion.

We note that to facilitate a fast online phase for multiplica-
tion, our preprocessing phase leverages a robust multiplication
protocol [8] in a black-box manner to derive the necessary
preprocessing information. A similar black-box approach is
also taken for the dot product protocol in the preprocessing
phase. This leaves room for further improvements in the com-
munication cost, which can be obtained by instantiating the
black-box with an efficient, robust protocol coupled with the
fast online phase.

Reconstruction Protocol Protocol IT... (Fig. 12) allows
servers to robustly reconstruct value v € Zy from its [-]-
shares. Note that each server misses one share of v which is
held by the other two servers. Consider the case of Py who re-
quires 7, to compute v. During the preprocessing, Py, P, com-
pute a commitment of ,, denoted by Com(Y,) and jmp-send

the same to Py. Similar steps are performed for the values
[ow], and [on], that are required by servers P, and P, respec-
tively. During the online phase, servers open their commit-
ments to the intended server who accepts the opening that is
consistent with the agreed upon commitment. We defer the
details to §B.5.

The Complete 3PC For the sake of completeness and to
demonstrate how GOD is achieved, we show how to compile
the above primitives for a general 3PC. A similar approach
will be taken for 4PC and each PPML task, and we will avoid
repetition. In order to compute an arithmetic circuit over
Zye, we first invoke the key-setup functionality Feerup (Fig.
6) for key distribution and preprocessing of Ilg,, I, and
I1,ec, as per the given circuit. During the online phase, P; € P
shares its input x; by executing online steps of Iy, (Fig. 9).
This is followed by the circuit evaluation phase, where severs
evaluate the gates in the circuit in the topological order, with
addition gates (and multiplication-by-a-constant gates) being
computed locally, and multiplication gates being computed
via online of Il (Fig. 2). Finally, servers run the online
steps of [T (Fig. 12) on the output wires to reconstruct the
function output. To leverage amortization, only send phases
of all the jmp are run on the flow. At the end of preprocessing,
the verify phase for all possible ordered pair of senders are run.
We carry on computation in the online phase only when the
verify phases in the preprocessing are successful. Otherwise,
the servers simply send their inputs to the elected TTP, who
computes the function and returns the result to all the servers.
Similarly, depending on the output of the verify at the end of
the online phase, either the reconstruction is carried out or a
TTP is identified. In the latter case, computation completes
as mentioned before.

3.3 Building Blocks for PPML using 3PC

This section provides details on robust realizations of the fol-
lowing building blocks for PPML in 3-server setting— i) Dot
Product, ii) Truncation, iii) Dot Product with Truncation, iv)
Secure Comparison, and v) Non-linear Activation functions—
Sigmoid and ReLU. We provide the communication analysis
of our protocols in §B and security proofs in §D.1. We begin
by providing details of input sharing and reconstruction in the
SOC setting.

Input Sharing and Output Reconstruction in the SOC
Setting Protocol H?P?C (Fig. 3) extends input sharing to the
SOC setting and allows a user U to generate the [-]-shares of
its input v among the three servers. Note that the necessary
commitments to facilitate the sharing are generated in the pre-
processing phase by the servers which are then communicated
to U, along with the opening, in the online phase. U selects
the commitment forming the majority (for each share) ow-
ing to the presence of an honest majority among the servers,
and accepts the corresponding shares. Analogously, proto-

col TT39€ (Fig. 3) allows the servers to reconstruct a value v

towards user U. In either of the protocols, if at any point, a
TTP is identified, then servers signal the TTP’s identity to U.
U selects the TTP as the one forming a majority and sends
its input in the clear to the TTP, who computes the function
output and sends it back to U.

—[Protocol HEP?C(U,V) and TI2C(U, [v])

——/

Input Sharing:

- Py, P, for s € {1,2}, together sample random [o]; € Zy,
while Py, P, together sample random 7y, € Zy:.

— Py,P1 jmp-send Com([a];) to P, while Py,P, jmp-send
Com([ow],) to Py, and Pj, P, jmp-send Com(y,) to Py.

— Each server sends (Com([ay];), Com([aty],), Com(y)) to U
who accepts the values that form majority. Also, Py, Py, for s €
{1,2}, open [o\,], towards U while Py, P> open 7, towards U.

— U accepts the consistent opening, recovers [0l]}, [0]5 Vs
computes By = v+ [o]; + [0],, and sends By, + 7 to all three
servers.

— Servers broadcast the received value and accept the majority
value if it exists, and a default value, otherwise. Py, P> locally
compute By from By + 7, using Yy, to complete the sharing of v.

Output Reconstruction:

— Servers execute the preprocessing of ITec (P, [v]) to agree
upon commitments of [0], [0], and Y.

— Each server sends By +7, and commitments on [0] , [0],
and Yy, to U, who accepts the values forming majority.

— Py, P; forie {1,2} open [a]; to U, while P, P; open ¥, to U.

— U accepts the consistent opening and computes v = (B, +7,) —
[on]} = fow], —w-

Figure 3: 3PC: Input Sharing and Output Reconstruction

MSB Extraction, Bit to Arithmetic Conversion and Bit
Injection Protocols We provide a high-level overview of
three protocols that involve working over arithmetic and
boolean rings in a mixed fashion and are used in PPML prim-
itives. The bit extraction protocol, Ipitext (§B.6.1) allows
servers to compute boolean sharing of the most significant
bit (msb) of a value v from its arithmetic sharing ([v]). The
Bit2A protocol, ITyioa (§B.6.2), given the boolean sharing of
a bit b, denoted as [[b]]B, allows the servers to compute the
arithmetic sharing [bR]. Here bR denotes the equivalent value
of b over ring Z,: (see Notation 2.2). Lastly, Bit Injection
protocol, Ig;inj (§8.6.3), allows servers to compute the arith-
metic sharing [bv] from boolean sharing of a bit b ([b]®) and
arithmetic sharing of v ([v]).

The core techniques used in these protocols follow from
BLAZE [44], where multiplication calls are replaced with our
new I, and several private communications are replaced
with jmp-send to ensure a successful run or T TP selection.
These PPML building-blocks can be understood without de-
tails of the constructs and hence they are moved to §B.6.

Dot Product Given the [-]-sharing of vectors X and ¥, proto-
col ITgorp (Fig. 14) allows servers to generate [-]-sharing of

z =X Q@Y robustly. [-]-sharing of a vector X of size n, means
that each element x; € Z, of X, for i € [n], is [-]-shared. We
borrow ideas from BLAZE for obtaining an online communi-
cation cost independent of n and use jmp primitive to ensure
either success or TTP selection. Analogous to our multipli-
cation protocol, our dot product offloads one call to a robust
dot product protocol to the preprocessing. By extending tech-
niques of [7, 8], we give an instantiation for the dot product
protocol used in our preprocessing whose (amortized) commu-
nication cost is constant, thereby making our preprocessing
cost also independent of n.

To begin with, z =X ©¥ can be viewed as n parallel multi-
plication instances of the form z; = x;y; for i € [n], followed
by adding up the results. Let f; = Y., .. Then,

B, = Z&ng% wawm%+%+x<a
where X= Zl I(YXI (x}’l + ’YYl axl + Fxlyl Wl)

Apart from the aforementioned modification, the online
phase for dot product proceeds similar to that of multipli-
cation protocol. Py, Py locally compute [B}], as per Eq. 3
and jmp-send [B}], to P,. P; obtains [B}], in a similar
fashion. Py, P, reconstruct B = [B%], + [B;], and compute
B, =B;+ XN, Bx By, + V. Here, the value y has to be cor-
rectly generated in the preprocessing phase satisfying Eq. 3.
Finally, Py, P> jmp-send B, + 7, to Py.

We now provide the details for preprocessing phase that
enable servers to obtain the required values (¥,) with the
invocation of a dot product protocol in a black-box way. To-
wards this, let d = [di,...,dy] and € = [ey,...,e,], where
di =¥, + 0 and e; = v, + @y, for i € [n], as in the case
of multiplication. Then for f = dog,

(YX[+ axt) (’YYI + aYt)

_h
I
ol
O]
ol
I
™=
9—
||
3 M:

I

[
™

(Y Vy: + Vi) + (VY + Vi) +
i=1

Il
—_
-

=

I
™=

(Yo Yy +Wi) + [x] + Xl = f2+f1 +fo.

Il
=

where fa = YL, (v¥y, +Wi), fi = [x]; and fo = [x],.

Using the above relation, the preprocessing phase proceeds
as follows: Py, P; for j € {1,2} sample a random [o,]; €
Zye, while Py, P, sample random 7,. Servers locally prepare
(d), (&) similar to that of multiplication protocol. Servers
then execute a robust 3PC dot product protocol, denoted by
Myotppre that takes (d), (€) as input and compute (f) with
f = d €. Given (f), the \ and [x] values are extracted as
follows (ref. Eq. 4):

v=F—=Y %YW X =f, [ly="fo, O]
i=1

It is easy to see from the semantics of (-)-sharing that both
Py, P, obtain f, and hence y. Similarly, both Py, P, obtain f;
and hence [y],, while Py, P, obtain [],.

A trivial way to instantiate Igotppre is to treat a dot product
operation as n multiplications. However, this results in a com-
munication cost that is linearly dependent on the feature size.
Instead, we instantiate IIjotppre by a semi-honest dot product
protocol followed by a verification phase to check the cor-
rectness. For the verification phase, we extend the techniques
of [7, 8] to provide support for verification of dot product
tuples. Setting the verification phase parameters appropriately
gives a Igotppre Whose (amortized) communication cost is
independent of the feature size. Details appear in §B.7.

Truncation Working over fixed-point values, repeated mul-
tiplications using FPA arithmetic can lead to an overflow
resulting in loss of significant bits of information. This put
forth the need for truncation [10, 13,39,41,44] that re-adjusts
the shares after multiplication so that FPA semantics are main-
tained. As shown in SecureML [41], the method of truncation
would result in loss of information on the least significant bits
and affect the accuracy by a very minimal amount.

For truncation, servers execute Iligen (Fig. 16) to generate
([r], [r])-pair, where r is a random ring element, and r¢ is
the truncated value of r, i.e the value r right-shifted by d bit
positions. Recall that d denotes the number of bits allocated
for the fractional part in the FPA representation. Given (r,r?),
the truncated value of v, denoted as v9, is computed as vl =
(v— r)d +r¢. The correctness and accuracy of this method
was shown in ABY3 [39].

Protocol Iirgen, is inspired from [14,39] and proceeds as
follows to generate ([r],[r’]). Analogous to the approach
of ABY3 [39], servers generate a boolean sharing of an /-
bit value r = r| @ ry, non-interactively. Each server truncates
its share of r locally to obtain a boolean sharing of r¢ by
removing the lower d bits. To obtain the arithmetic shares of
(r, rd) from their boolean sharing, we do not, however, rely
on the approach of ABY3 as it requires more rounds. Instead,
we implicitly perform a boolean to arithmetic conversion, as
was proposed in Trident [14], to obtain the arithmetic shares
of (r, rd). This entails performing two dot product operations
and constitutes the cost for IT;rgen. We defer details to §B.8.

Dot Product with Truncation Given the [-]-sharing of vec-
tors X and ¥, protocol Iyetp: (Fig. 17) allows servers to gener-
ate [z/], where z¢ denotes the truncated value of z=X©¥. A
naive way is to compute the dot product using Igetp, followed
by performing truncation using the (r,r?) pair. Instead, we
follow the optimization of BLAZE where the online phase of
Igotp is modified to integrate the truncation using (r, rd) at
no additional cost.

The preprocessing phase now consists of the execution
of one instance of Iligen (Fig. 16) and the preprocess-
ing corresponding to Ilye, (Fig. 14). In the online phase,
servers enable Pj, P, to obtain z* — r instead of B}, where
z* = B} — a,. Using z* —r, both Py, P, then compute (z—r)

locally, truncate it to obtain (z—r)¢ and execute I, to gen-
erate [(z—r)]. Finally, servers locally compute the result as
[29] = [(z—r)*] + [r*]. We defer the details to §B.9.

Secure Comparison Secure comparison allows servers to
check whether x <y, given their [-]-shares. In FPA rep-
resentation, checking x <y is equivalent to checking the
msb of v = x —y. Towards this, servers locally compute
[v] = [x] — [y] and extract the msb of v using [pjtext (§B.6.1).
In case an arithmetic sharing is desired, servers can apply
Ipioa (Fig. 13) protocol on the outcome of Ipjext protocol.

Activation Functions We now elaborate on two of the most
prominently used activation functions: i) Rectified Linear
Unit (ReLU) and (ii) Sigmoid (Sig).

— ReLU: The ReLU function, relu(v) = max(0,v), can be
viewed as relu(v) = b -v, where bit b = 1 if v < 0 and 0 other-
wise. Here b denotes the complement of b. Given [v], servers
execute Ipitex: on [v] to generate [b]B. [-]B-sharing of b is
locally computed by setting By = 1 & By. Servers execute
Igitnj protocol on [b]® and [v] to obtain the desired result.

— Sig: In this work, we use the MPC-friendly variant of the
Sigmoid function [13,39,41] (ref. §B.10). Note that sig(v) =
biby(v+1/2)+by, where by = 1ifv41/2 <0and by = 1 if
v—1/2 < 0. To compute [sig(v)], servers proceed in a similar
fashion as in ReLU, and hence, we skip the details.

Maxpool, Convolution and Matrix Multiplication The
goal of maxpool is to find the maximum value in a vector
X of m values. Maximum between two elements x;, x; can be
computed by applying secure comparison, which returns a
binary sharing of a bit b such that b = 0 if x; > x;, or 1, other-
wise, followed by computing (b)B(x; —x;) 4+ x;, which can be
performed using bit injection (§B.6.3). To find the maximum
value in vector X, the servers first group the values in X into
pairs and securely compare each pair to obtain the maximum
of the two. This results in a vector of size m/2. This process
is repeated for O (logm) rounds to obtain the maximum value
in the entire vector.

Convolutions, which form another important building block
in PPML tasks, can be cast into matrix multiplication. Our
protocol to compute a matrix of dimension p X r after multi-
plication requires only p x r multiplications, and is explained
in§B.11.

4 Robust 4PC and PPML

In this section, we extend our 3PC results to the 4-party case
and observe substantial efficiency gain. First, the use of broad-
cast is eliminated. Second, the preprocessing of multiplication
becomes substantially computationally light, eliminating the
multiplication protocol (used in the preprocessing) altogether.
Third, we achieve a dot product protocol with communication
cost independent of the size of the vector, completely elim-
inating the complex machinery required as in the 3PC case.
At the heart of our 4PC constructions lies an efficient 4-party

10

jmp primitive, denoted as jmp4, that allows two servers to
send a common value to a third server robustly. We start with
the secret-sharing semantics for 4 servers. We only use an
extended version of [-]-sharing defined below.

Secret Sharing Semantics For a value v, the shares for
Py, P, and P, remain the same as that for 3PC case. That
is, Py holds ([ow];,[0t]5,By + V) while P; for i € {1,2}
holds ([ow];,Bv,Yv). The shares for the fourth server P is
defined as (o], [0W], V). Clearly, the secret is defined as
v=B—[on]; —[on],-

4PC Joint Message Passing Primitive The jmp4 primitive
enables two servers P;, P; to send a common value v € Z, to a
third server Py, or identify a TTP in case of any inconsistency.
This primitive is analogous to jmp (Fig. 1) in spirit but is sig-
nificantly optimized and free from broadcast calls. Similar to
the 3PC counterpart, each server maintains a bit and P; sends
the value, and P; the hash of it to Py. Py sets its inconsistency
bit to 1 when the (value, hash) pair is inconsistent. This is
followed by relaying the bit to all the servers, who exchange it
among themselves and agree on the bit that forms majority (1
indicates the presence of inconsistency, and 0 indicates con-
sistency). The presence of an honest majority among F;, Pj, P,
guarantees agreement on the presence/absence of an inconsis-
tency as conveyed by P;. Observe that inconsistency can only
be caused either due to a corrupt sender sending an incorrect
value (or hash), or a corrupt receiver falsely announcing the
presence of inconsistency. Hence, the fourth server, P;, can
safely be employed as TTP. The protocol appears in Fig. 4.

—[Protocol [Tjp4 (P, Pj, P, Vf/)}

— P € P initializes an inconsistency bit by = 0. If Py remains
silent instead of sending by in any of the following rounds, the
recipient sets b to 1.

— P;sends v to P, and P; sends H(v) to Py. P sets by = 1 if the
received values are inconsistent or if the value is not received.

— Py sends by to all servers. Ps for s € {i, j,I} sets by = by.

— P for s € {i, j,I} mutually exchange their bits. P; resets by =
b’ where b’ denotes the bit which appears in majority among
bi,bj,b;.

— All servers set TTP = P, if b’ = 1, terminate otherwise.

Figure 4: 4PC: Joint Message Passing Primitive

Notation 4.1. We say that P;, P; jmp4-send v to P, when they
invoke Hjmp4(P,',Pj,Pk,V,P[).

We note that the end goal of jmp4 primitive relates closely
to the bi-convey primitive of FLASH [10]. Bi-convey allows
two servers S1, 5> to convey a value to a server R, and in case
of an inconsistency, a pair of honest servers mutually identify
each other, followed by exchanging their internal randomness
to recover the clear inputs, computing the circuit, and send-
ing the output to all. Note, however, that jmp4 primitive is
more efficient and differs significantly in techniques from
the bi-convey primitive. Unlike in bi-convey, in case of an

inconsistency, jmp4 enables servers to learn the TTP’s iden-
tity unanimously. Moreover, bi-convey demands that honest
servers, identified during an inconsistency, exchange their
internal randomness (which comprises of the shared keys
established during the key-setup phase) to proceed with the
computation. This enforces the need for a fresh key-setup
every time inconsistency is detected. On the efficiency front,
jmp4 simply halves the communication cost of bi-convey,
giving a 2 improvement.

4.1 4PC Protocols

In this section, we revisit the protocols from 3PC (§3) and
suggest optimizations leveraging the presence of an additional
honest party in the system. While we provide details for the
protocols that vary significantly from their 3PC counterpart in
this section, the details for other protocols along with the com-
munication analysis are deferred to §C. We provide security
proofs in §D.2.

Sharing Protocol To enable P; to share a value v, protocol
Ilg4 (Fig. 19) proceeds similar to that of 3PC case with the
addition that P; also samples the values [0,], [OW],, Vv US-
ing the shared randomness with the respective servers. On
a high level, P; computes B, = v+ [0], + [0], and sends
B, (or B, +vv) to another server and they together jmp4-send
this information to the intended servers. We defer the formal
details of Ilsy4 to §C.2.

—[Protocol IT,,yit4 (P, [X], [Y])}

Preprocessing:

~ Py, P, Pj, for j € {1,2}, sample random [0]; € Zy, and
Py, Py, P; sample random [I'yy]; € Zy:.

— Py, P>, Pz sample random Yy, . r € Zy and set [y]; =r,[y], =
y—r.

- Py, P3 set [Ixy], = I'y — [[xy];» where I'yy = oixaty. Po,Ps
jmpé-send [[yy], to Ps.

= P3,Pj, for j € {1,2}, set [x]; = %e[oy]; + vy [0c]j + [Dy]; —
[W];. P1,P3 jmp4-send [x] to Py, while P,, P; jmp4-send [x],
to Py.

Online:

= Py, Pj.for j € {1,2}, compute [B7]; = — (Bx +%) [oy]; — (By +
Yy) (0] + 0] ; 4 [X] ;-

— P1,Py jmp4-send [B3], to P, and P», Py jmp4-send [B}], to
P

- Pj, for j € {1,2}, computes B; =
Bz + BxBy + .

— Py, P; jmp4-send B, +7, to Py.

[Bz]; + B3], and sets B, =

Figure 5: 4PC: Multiplication Protocol (z = x-y)

Multiplication Protocol Given the [-]-shares of x and y, pro-
tocol Iuwa (Fig. 5) allows servers to compute [z] with
z = xy. When compared with the state-of-the-art 4PC GOD
protocol of FLASH [10], our solution improves communica-

11

tion in both, the preprocessing and online phase, from 6 to 3
ring elements. Moreover, our communication cost matches
with the state-of-the-art 4PC protocol of Trident [14] that only
provides security with fairness.

Recall that the goal of preprocessing in 3PC multiplication
was to enable P, P; obtain y, and Py, P; for i € {1,2} obtain
[x]; where x = 10, + V0 + I'yy — y. Here v is a random
value known to both Py, P,. With the help of P;, we let the
servers obtain the respective preprocessing data as follows:
Py, P3, Py together samples random [I'y], € Z,¢. Py, P3 locally
compute Iy, = 0,01, set [I'yy], = I'yy — [[y], and jmp4-send
[[yy], to P. Py, Py, P; locally sample ,r and generate [-]-
shares of y by setting [y]; = r and [y], =y —r. Then P;, P;
for j € {1,2} compute [X]j =W [ay]j +% [(x‘x]j + []j -
[y]; and jmp4-send [x]; to Py. The online phase is similar
to that of 3PC, apart from ITjmps being used instead of ITjmp
for communication. Since P; is not involved in the online
computation phase, we can safely assume Ps to serve as the
TTP for the ITjmp4 executions in the online phase.

Reconstruction Protocol Given [v], protocol ITec4 (Fig. 22
enables servers to robustly reconstruct the value v among the
servers. Note that every server lacks one share for reconstruc-
tion and the same is available with three other servers. Hence,
they communicate the missing share among themselves, and
the majority value is accepted. As an optimization, two among
the three servers can send the missing share while the third
one can send a hash of the same for verification. We defer the
formal details of I .4 to §C.6. Notice that, as opposed to the
3PC case, this protocol does not require commitments.

Input Sharing and Output Reconstruction in SOC Set-
ting We extend input sharing and reconstruction in the SOC
setting as follows. To generate [-]-shares for its input v, U
receives each of the shares [a]; , [0],, and y, from three out
of the four servers as well as a random value r € Z,, sampled
together by Py, Pi, P> and accepts the values that form the
majority. U locally computes u = v+ [0,], + [ow], + T + 1
and sends u to all the servers. Servers then execute a two
round byzantine agreement (BA) [45] to agree on u (or L).
We refer the readers to [45] for the formal details of the agree-
ment protocol. On successful completion of BA, Py computes
By + v from u while Py, P, compute B, from u locally. For
the reconstruction of a value v, servers send their [[-]-shares
of v to U, who selects the majority value for each share and
reconstructs the output. At any point, if a TTP is identified,
the servers proceed as follows. All servers send their [-]-share
of the input to the TTP. TTP picks the majority value for
each share and computes the function output. It then sends
this output to U. U also receives the identity of the TTP from
all servers and accepts the output received from the TTP
forming majority.

Dot Product Given [-]-shares of two n-sized vectors X,Y,
protocol Igotpa (Fig. 25) enables servers to compute [z] with
z =X@©Y. The protocol is essentially similar to n instances of

multiplications of the form z; = x;y; for i € [n]. But instead
of communicating values corresponding to each of the n in-
stances, servers locally sum up the shares and communicate
a single value. This helps to obtain a communication cost
independent of the size of the vectors. Details appear in §C.8.

5 Applications and Benchmarking

In this section, we empirically show the practicality of our
protocols for PPML. We consider training and inference for
Logistic Regression, and inference for 3 different Neural Net-
works (NN). NN training requires additional tools to allow
mixed world computations, which we leave as future work.
We refer readers to SecureML [41], ABY3 [39], BLAZE [44],
FALCON [53] for a detailed description of the training and in-
ference steps for the aforementioned ML algorithms. All our
benchmarking is done over the publicly available MNIST [36]
and CIFAR-10 [34] dataset. For training, we use a batch size
of B =128 and define 1 KB = 8192 bits.

In 3PC, we compare our results against the best-known
framework BLAZE that provides fairness in the same setting.
We observe that the technique of making the dot product cost
independent of feature size can also be applied to BLAZE to
obtain better costs. Hence, for a fair comparison, we addition-
ally report these improved values for BLAZE. Further, we
only consider the PPA circuit based variant of bit extraction
for BLAZE since we aim for high throughput; the GC based
variant results in huge communication and is not efficient for
deep NNs. Our results imply that we get GOD at no additional
cost compared to BLAZE. For 4PC, we compare our results
with two best-known works FLASH [10] (which is robust)
and Trident [14] (which is fair). Our results halve the cost of
FLASH and are on par with Trident.

Benchmarking Environment We use a 64-bit ring (Z,s4).
The benchmarking is performed over a WAN that was in-
stantiated using nl-standard-8 instances of Google Cloud”,
with machines located in East Australia (Py), South Asia (P)),
South East Asia (P), and West Europe (P3). The machines
are equipped with 2.3 GHz Intel Xeon E5 v3 (Haswell) pro-
cessors supporting hyper-threading, with 8 vCPUs, and 30
GB of RAM Memory and with a bandwidth of 40 Mbps. The
average round-trip time (rtt) was taken as the time for com-
municating 1 KB of data between a pair of parties, and the rtt
values were as follows.

Po-P
151.40ms

Po-P»
59.95ms

Po-P3
275.02ms

Pi-P,
92.94ms

Pi-Ps
173.93ms

Pr-P3
219.37ms

Software Details We implement our protocols® using the
publicly available ENCRYPTO library [20] in C++17. We

Shttps://cloud.google.com/

The link to our code is not provided respecting the double-blinded
submission policy. The code will be made publicly available once the work
sees formal acceptance.

12

obtained the code of BLAZE and FLASH from the respective
authors and executed them in our environment. The collision-
resistant hash function was instantiated using SHA-256. We
have used multi-threading, and our machines were capable of
handling a total of 32 threads. Each experiment is run for 20
times, and the average values are reported.

Datasets We use the following datasets:

- MNIST [36] is a collection of 28 x 28 pixel, handwritten
digit images along with a label between 0 and 9 for each
image. It has 60,000 and respectively, 10,000 images in the
training and test set. We evaluate logistic regression, and
NN-1, NN-2 (cf. §5.2) on this dataset.

- CIFAR-10 [34] consists of 32 x 32 pixel images of 10 dif-
ferent classes such as dogs, horses, etc. There are 50,000
images for training and 10, 000 for testing, with 6000 images
in each class. We evaluate NN-3 (cf. §5.2) on this dataset.

Benchmarking Parameters We use throughput (TP) as the
benchmarking parameter following BLAZE and ABY3 [39]
as it would help to analyse the effect of improved commu-
nication and round complexity in a single shot. Here, TP
denotes the number of operations (“iterations" for the case
of training and “queries" for the case of inference) that can
be performed in unit time. We consider minute as the unit
time since most of our protocols over WAN requires more
than a second to complete. An iferation in ML training con-
sists of a forward propagation phase followed by a backward
propagation phase. In the former phase, servers compute the
output from the inputs. At the same time, in the latter, the
model parameters are adjusted according to the difference
in the computed output and the actual output. The inference
can be viewed as one forward propagation of the algorithm
alone. In addition to TP, we provide the online and over-
all communication and latency for all the benchmarked ML
algorithms.

We observe that due to our protocols’ asymmetric nature,
the communication load is unevenly distributed among all the
servers, which leaves several communication channels under-
utilized. Thus, to improve the performance, we perform load
balancing, where we run several parallel execution threads,
each with roles of the servers changed. This helps in utilizing
all channels and improving the performance.

5.1 Logistic Regression

In Logistic Regression, one iteration comprises updating the
weight vector w using the gradient descent algorithm (GD).
It is updated according to the function given below: W =
W — %XT o (sig(X;oW) — Y;). where o and X; denote the
learning rate, and a subset, of batch size B, randomly selected
from the entire dataset in the ith iteration, respectively. The
forward propagation comprises of computing the value X, o
w followed by an application of a sigmoid function on it.
The weight vector is updated in the backward propagation,

which internally requires the computation of a series of matrix
multiplications, and can be achieved using a dot product. The
update function can be computed using [-] shares as: [W] =
[w] — %[[XJT]] o (sig([X;] o [W]) — [Y,]). We summarize our
results in Table 3.

Online (TP in x10°) | Total

Setting ‘ Ref. ‘

| | Latency (s) | Com [KB] | TP | Latency (s) | Com [KB]

3PC | BLAZE 0.74 50.26 | 4872.38 0.93 203.35
Training | SWIFT 1.05 50.32 | 4872.38 1.54 203.47
3PC | BLAZE 0.66 0.28 | 7852.05 0.84 0.74
Inference | SWIFT 0.97 0.34 | 6076.46 1.46 0.86
4PC | FLASH 0.83 88.93 5194.18 1.11 166.75
Training | SWIFT 0.83 41.32 | 11969.48 1.11 92.91
4PC | FLASH 0.76 0.50 | 7678.40 1.04 0.96
Inference | SWIFT 0.75 0.27 | 15586.96 1.03 0.57

Table 3: Logistic Regression training and inference. TP is given in
(#it/min) for training and (#queries/min) for inference.

We observe that the online TP for the case of 3PC infer-
ence is slightly lower compared to that of BLAZE. This is
because the total number of rounds for the inference phase
is slightly higher in our case due to the additional rounds
introduced by the verification mechanism (aka verify phase
which also needs broadcast). This gap becomes less evident
for protocols with more number of rounds, as is demonstrated
in the case of NN (presented next), where verification for
several iterations is clubbed together, making the overhead
for verification insignificant.

For the case of 4PC, our solution outperforms FLASH in
terms of communication as well as throughput. Concretely,
we observe a 2 x improvement in TP for inference and a 2.3 x
improvement for training. For Trident [14], we observe a drop
of 15.86% in TP for inference due to the extra rounds re-
quired for verification to achieve GOD. This loss is, however,
traded-off with the stronger security guarantee. For training,
we are on par with Trident as the effect of extra rounds be-
comes less significant for more number of rounds, as will also
be evident from the comparisons for NN inference.

As a final remark, note that our 4PC sees roughly 2.5 x
improvement compared to our 3PC for logistic regression.

5.2 NN Inference

We consider the following popular neural networks for bench-
marking. These are chosen based on the different range of
model parameters and types of layers used in the network. We
refer readers to [53] for a detailed architecture of the neural
networks.

NN-1: This is a 3-layered fully connected network with ReLU
activation after each layer. This network has around 118K
parameters and is chosen from [39,44].

NN-2: This network, called LeNet [35], contains 2 convolu-
tional layers and 2 fully connected layers with ReLU activa-
tion after each layer, additionally followed by maxpool for
convolutional layers. This network has approximately 431K
parameters.

13

NN-3: This network, called VGG16 [48], was the runner-up
of ILSVRC-2014 competition. This network has 16 layers in
total and comprises of fully-connected, convolutional, ReLU
activation and maxpool layers. This network has about 138
million parameters.

| \ Online | Total
Network Ref.

‘ ‘ Latency (s) ‘ Com [MB] ‘ TP ‘ Latency (s) ‘ Com [MB]
NN-1 BLAZE 1.92 0.04 | 49275.19 2.35 0.11
SWIFT 222 0.04 | 49275.19 2.97 0.11
NN-2 BLAZE 4.711 3.54 536.52 5.61 9.59
" | SWIFT 5.08 3.54 536.52 6.22 9.59
NN-3 BLAZE 15.58 52.58 36.03 18.81 148.02
| SWIFT 15.89 52.58 36.03 19.29 148.02

Table 4: 3PC NN Inference. TP is given in (#queries/min).

Table 4 summarise our benchmarking results for 3PC NN
inference. As illustrated, the performance of our 3PC frame-
work is on par with BLAZE while providing better security
guarantee.

| \ Online | Total
Network Ref.

| | Latency (s) | Com [MB] | TP | Latency (s) | Com [MB]
NN.f | FLASH 1.70 0.06 | 59130.23 217 0.12
SWIFT 1.70 0.03 | 147825.56 2.17 0.06
NN | FLASH 3.93 5.51 653.67 4.71 10.50
7| SWIFT 3.93 2.33 1672.55 4.71 5.40
NN.3 | FLASH 12.65 82.54 43.61 15.31 157.11
| SWIFT 12.50 35.21 110.47 15.14 81.46

Table 5: 4PC NN Inference. TP is given in (#queries/min).

Table 5 summarises NN inference for 4PC setting. Here,
we outperform FLASH in every aspect, with the improvement
in TP being at least 2.5x for each NN architecture. Further,
we are on par with Trident [14] because the extra rounds
required for verification get amortized with an increase in the
number of rounds required for computing NN inference. This
establishes the practical relevance of our work.

As a final remark, note that our 4PC sees roughly 3x im-
provement compared to our 3PC for NN inference. This re-
flects the improvements brought in by the additional honest
server in the system.

6 Conclusion

In this work, we presented an efficient framework for PPML
that achieves the strongest security of GOD or robustness. Our
3PC protocol builds upon the recent work of BLAZE [44]
and achieves almost similar (in some cases, better) perfor-
mance albeit improving the security guarantee. For the case
of 4PC, we outperform the best-known— (a) robust protocol
of FLASH [10] by 2 x performance-wise and (b) fair protocol
of Trident [14] by uplifting its security.

We leave the problem of extending our framework to sup-
port mixed-world conversions as well as to design protocols
to support algorithms like Decision Trees, k-means Clustering
etc. as open problem.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

M. Abspoel, A. P. K. Dalskov, D. Escudero, and
A. Nof. An efficient passive-to-active compiler for
honest-majority MPC over rings. Cryptology ePrint

Archive, Report 2019/1298, 2019. https://eprint.

iacr.org/2019/1298.

T. Araki, A. Barak, J. Furukawa, T. Lichter, Y. Lindell,
A. Nof, K. Ohara, A. Watzman, and O. Weinstein. Opti-
mized honest-majority MPC for malicious adversaries -
breaking the 1 billion-gate per second barrier. In /IEEE
S&P, pages 843-862, 2017.

T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara.
High-throughput semi-honest secure three-party com-
putation with an honest majority. In ACM CCS, pages
805-817, 2016.

G. Asharov and Y. Lindell. A full proof of the BGW
protocol for perfectly secure multiparty computation. J.
Cryptology, pages 58—151, 2017.

C. Baum, I. Damgérd, T. Toft, and R. W. Zakarias. Better
preprocessing for secure multiparty computation. In
ACNS, pages 327-345, 2016.

D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A
framework for fast privacy-preserving computations. In
ESORICS, pages 192-206, 2008.

D. Boneh, E. Boyle, H. Corrigan-Gibbs, N. Gilboa, and
Y. Ishai. Zero-knowledge proofs on secret-shared data
via fully linear pcps. In CRYPTO, pages 67-97, 2019.

E. Boyle, N. Gilboa, Y. Ishai, and A. Nof. Practical fully
secure three-party computation via sublinear distributed
zero-knowledge proofs. In ACM CCS, pages 869-886,
2019.

P. Bunn and R. Ostrovsky. Secure two-party k-means
clustering. In ACM CCS, pages 486—497, 2007.

M. Byali, H. Chaudhari, A. Patra, and A. Suresh.
FLASH: fast and robust framework for privacy-
preserving machine learning. PETS, 2020. https:
//eprint.iacr.org/2019/1365.

M. Byali, C. Hazay, A. Patra, and S. Singla. Fast ac-
tively secure five-party computation with security be-
yond abort. In ACM CCS, pages 1573-1590, 2019.

M. Byali, A. Joseph, A. Patra, and D. Ravi. Fast secure
computation for small population over the internet. In
ACM CCS, pages 677-694, 2018.

H. Chaudhari, A. Choudhury, A. Patra, and A. Suresh.
ASTRA: High Throughput 3PC over Rings with Ap-
plication to Secure Prediction. In ACM CCSW@CCS,
2019.

14

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

H. Chaudhari, R. Rachuri, and A. Suresh. Trident: Effi-
cient 4PC Framework for Privacy Preserving Machine
Learning. NDSS, 2020.

K. Chida, D. Genkin, K. Hamada, D. Ikarashi,
R. Kikuchi, Y. Lindell, and A. Nof. Fast large-scale
honest-majority MPC for malicious adversaries. In
CRYPTO, pages 34-64, 2018.

R. Cleve. Limits on the security of coin flips when half
the processors are faulty (extended abstract). In ACM
STOC, pages 364-369, 1986.

R. Cohen, I. Haitner, E. Omri, and L. Rotem. Char-
acterization of secure multiparty computation without
broadcast. J. Cryptology, pages 587-609, 2018.

R. Cramer, I. Damgard, D. Escudero, P. Scholl, and
C. Xing. Spdf Zk: Efficient MPC mod 2X for dishonest
majority. In CRYPTO, pages 769-798, 2018.

R. Cramer, S. Fehr, Y. Ishai, and E. Kushilevitz. Efficient
multi-party computation over rings. In EUROCRYPT,
pages 596-613, 2003.

Cryptography and P. E. G. at TU Darmstadt.
ENCRYPTO Utils. https://github.com/
encryptogroup/ENCRYPTO_utils.

I. Damgard, D. Escudero, T. K. Frederiksen, M. Keller,
P. Scholl, and N. Volgushev. New primitives for actively-
secure MPC over rings with applications to private ma-
chine learning. IEEE S&P, 2019.

I. Damgard, M. Keller, E. Larraia, V. Pastro, P. Scholl,
and N. P. Smart. Practical covertly secure MPC for
dishonest majority - or: Breaking the SPDZ limits. In
ESORICS, pages 1-18, 2013.

I. Damgéard, C. Orlandi, and M. Simkin. Yet another
compiler for active security or: Efficient MPC over arbi-
trary rings. In CRYPTO, pages 799-829, 2018.

I. Damgéard, V. Pastro, N. P. Smart, and S. Zakarias.
Multiparty computation from somewhat homomorphic
encryption. In CRYPTO, pages 643-662, 2012.

D. Demmler, T. Schneider, and M. Zohner. ABY - A
framework for efficient mixed-protocol secure two-party
computation. In NDSS, 2015.

W. Du and M. J. Atallah. Privacy-preserving cooperative
scientific computations. In IEEE CSFW-14, pages 273—
294, 2001.

H. Eerikson, M. Keller, C. Orlandi, P. Pullonen, J. Puura,
and M. Simkin. Use your brain! arithmetic 3pc
for any modulus with active security. In /st Con-
ference on Information-Theoretic Cryptography (ITC

https://eprint.iacr.org/2019/1298
https://eprint.iacr.org/2019/1298
https://eprint.iacr.org/2019/1365
https://eprint.iacr.org/2019/1365
https://github.com/encryptogroup/ENCRYPTO_utils
https://github.com/encryptogroup/ENCRYPTO_utils

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

2020). Schloss Dagstuhl-Leibniz-Zentrum fiir Infor-
matik, 2020.

J. Furukawa, Y. Lindell, A. Nof, and O. Weinstein. High-
throughput secure three-party computation for malicious
adversaries and an honest majority. In EUROCRYPT,
pages 225-255, 2017.

S. D. Gordon, S. Ranellucci, and X. Wang. Secure com-
putation with low communication from cross-checking.
In ASIACRYPT, pages 59-85, 2018.

G. Jagannathan and R. N. Wright. Privacy-preserving
distributed k-means clustering over arbitrarily parti-
tioned data. In ACM SIGKDD, pages 593-599, 2005.

M. Keller, E. Orsini, and P. Scholl. MASCOT: faster
malicious arithmetic secure computation with oblivious
transfer. In ACM CCS, pages 830-842, 2016.

M. Keller, V. Pastro, and D. Rotaru. Overdrive: Making
SPDZ great again. In EUROCRYPT, pages 158—189,
2018.

M. Keller, P. Scholl, and N. P. Smart. An architecture for
practical actively secure MPC with dishonest majority.
In ACM CCS, pages 549-560, 2013.

A. Krizhevsky, V. Nair, and G. Hinton. The CIFAR-
10 dataset. 2014. https://www.cs.toronto.edu/
~kriz/cifar.html.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, pages 2278-2324, 1998.

Y. LeCun and C. Cortes. MNIST handwritten digit
database. 2010. http://yann.lecun.com/exdb/
mnist/.

Y. Lindell and B. Pinkas. Privacy preserving data mining.
J. Cryptology, pages 177-206, 2002.

E. Makri, D. Rotaru, N. P. Smart, and F. Vercauteren.
EPIC: efficient private image classification (or: Learning
from the masters). In CT-RSA, pages 473492, 2019.

P. Mohassel and P. Rindal. ABY>: A mixed protocol
framework for machine learning. In ACM CCS, pages
35-52,2018.

P. Mohassel, M. Rosulek, and Y. Zhang. Fast and secure
three-party computation: The garbled circuit approach.
In ACM CCS, pages 591-602, 2015.

P. Mohassel and Y. Zhang. Secureml: A system for
scalable privacy-preserving machine learning. In IEEE
S&P, pages 19-38, 2017.

15

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

(51]

(52]

(53]

[54]

P. S. Nordholt and M. Veeningen. Minimising commu-
nication in honest-majority MPC by batchwise multipli-
cation verification. In ACNS, pages 321-339, 2018.

A. Patra and D. Ravi. On the exact round complexity
of secure three-party computation. In CRYPTO, pages
425-458, 2018.

A. Patra and A. Suresh. BLAZE: Blazing Fast Privacy-
Preserving Machine Learning. NDSS, 2020. https:
//eprint.iacr.org/2020/042.

M. C. Pease, R. E. Shostak, and L. Lamport. Reaching
agreement in the presence of faults. J. ACM, pages
228-234, 1980.

M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori,
T. Schneider, and F. Koushanfar. Chameleon: A hybrid
secure computation framework for machine learning
applications. In AsiaCCS, pages 707-721, 2018.

A. P. Sanil, A. F. Karr, X. Lin, and J. P. Reiter. Privacy
preserving regression modelling via distributed compu-
tation. In ACM SIGKDD, pages 677-682, 2004.

K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

A. B. Slavkovic, Y. Nardi, and M. M. Tibbits. Secure
logistic regression of horizontally and vertically parti-
tioned distributed databases. In ICDM, pages 723-728,
2007.

Stanford. CS231n: Convolutional Neural Networks for
Visual Recognition.

J. Vaidya, H. Yu, and X. Jiang. Privacy-preserving SVM
classification. Knowl. Inf. Syst., pages 161-178, 2008.

S. Wagh, D. Gupta, and N. Chandran. Securenn: 3-party
secure computation for neural network training. PoPETs,
pages 26—49, 2019.

S. Wagh, S. Tople, F. Benhamouda, E. Kushilevitz,
P. Mittal, and T. Rabin. Falcon: Honest-majority ma-
liciously secure framework for private deep learning.
arXiv preprint,2020. https://arxiv.org/abs/2004.
02229v1.

H. Yu, J. Vaidya, and X. Jiang. Privacy-preserving SVM
classification on vertically partitioned data. In PAKDD,
pages 647-656, 2006.

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://eprint.iacr.org/2020/042
https://eprint.iacr.org/2020/042
https://arxiv.org/abs/2004.02229v1
https://arxiv.org/abs/2004.02229v1

A Preliminaries

A.1 Shared Key Setup

Let F : {0,1}* x {0,1}* — X be a secure pseudo-random
function (PRF), with co-domain X being Z,.. The set of keys
established between the servers for 3PC is as follows:

— One key shared between every pair— ko1, ko2,k12 for the
servers (Py, Py), (Po, Py)and(P;, P,), respectively.
— One shared key known to all the servers— kp.

Suppose Py, P; wish to sample a random value r € Z,, non-
interactively. To do so they invoke Fj, (ido;) and obtain r.
Here, idy; denotes a counter maintained by the servers, and
is updated after every PRF invocation. The appropriate keys
used to sample is implicit from the context, from the identities
of the pair that sample or from the fact that it is sampled by
all, and, hence, is omitted.

The key setup is modelled via a functionality Fsetup (Fig.
6) that can be realised using any secure MPC protocol. Anal-
ogously, key setup functionality for 4PC is given in Fig. 7.

,—[Functionality %etup})

Fsetup interacts with the servers in © and the adversary S. Fsetup
picks random keys k;; for i, j € {0,1,2} and kp. Let y; denote the
keys corresponding to server Ps. Then

— ys = (ko1,ko2 and kp) when P; = Py.
— ys = (ko1,k12 and kp) when P; = Pj.
— ys = (kop, k12 and kp) when P; = P;.

Output: Send (Output,yy) to every Ps € P.
.

Figure 6: 3PC: Ideal functionality for shared-key setup
,—[Functionality Tsetup4] N

Fsetups interacts with the servers in P and the adversary S.
Fsetups picks random keys k;; and k; jx for i, j,k € {0,1,2} and
kp. Let ys denote the keys corresponding to server Ps. Then

— ys = (ko1,ko2,k03, k012, k013, ko23 and kp) when Py = Fy.
— ys = (ko1,k12,k13,ko12, k013, k123 and kp) when Py = Py.
— ys = (ko2, k12, k23, ko12, k023, k123 and kp) when Py = Ps.
— ys = (ko3, k13, k23, k013, k023, k123 and kp) when Py = Pj.

Output: Send (Output,ys) to every Ps € P.
\

Figure 7: 4PC: 1deal functionality for shared-key setup
To generate a 3-out-of-3 additive sharing of 0 i.e. {; for
s € {0,1,2} such that P; holds s, and {o + &1 +{p = 0, servers
proceed as follows. Every pair of servers, Ps, P(s)43, non-
interactively generate rs, as described earlier, and each P; sets

Cs=rs— M(s—1)%3-

A.2 Collision Resistant Hash Function

Consider a hash function family H = K x £ — 9. The hash
function H is said to be collision resistant if, for all proba-
bilistic polynomial-time adversaries A4, given the description

16

of Hy where k €g X, there exists a negligible function negl()
such that Pr[(xl,)Q) —A(k): (x1 £x2) /\Hk(xl) = Hk()Cz)] <
negl(x), where m = poly(x) and xj,x, €g {0,1}".

A.3 Commitment Scheme

Let Com(x) denote the commitment of a value x. The com-
mitment scheme Com(x) possesses two properties; hiding
and binding. The former ensures privacy of the value v
given just its commitment Com(v), while the latter prevents
a corrupt server from opening the commitment to a differ-
ent value x’ # x. The practical realization of a commitment
scheme is via a hash function # () given below, whose secu-
rity can be proved in the random-oracle model (ROM)- for

(c,0) = (H(x||r),x||r) = Com(x;7).

B 3PC Protocols

In this section, we provide a detailed communication cost
analysis for our protocols in the 3PC setting. Also detailed
information regarding some of the protocols are provided.

B.1 Joint Message Passing

The ideal functionality for jmp appears in Fig. 8.
,—[Functionality fjmp} N

Fimp interacts with the servers in 2 and the adversary §.

Step 1: Fjmp receives (Input,vy) from Py for s € {i, j}, while it
receives (Select, ttp) from §. Here ttp denotes the server that
S wants to choose as the TTP. Let P* € P denote the server
corrupted by S.

Step 2: If v; = v; and ttp = L, then set msg; = msg; =
1, msg; = v; and go to Step 5.

Step 3: If ttp € P\ {P*}, then set msg; = msg; = msg; = ttp.

Step 4: Else, TTP is set to be the honest server with smallest
index. Set msg; = msg; = msg; = TTP
Step 5: Send (Output, msg,) to P for s € {0,1,2}.

.

Figure 8: 3PC: Ideal functionality for jmp primitive

Lemma B.1 (Communication). Protocol Iljm, (Fig. 1) re-
quires 1 round and an amortized communication of ¢ bits
overall.

Proof. Server P; sends value v to P, while P; sends hash of the
same to P;. This accounts for one round and communication
of £ bits. P then sends back its inconsistency bit to P, P;,
who then exchange it; this takes another two rounds. This is
followed by servers broadcasting hashes on their values and
selecting a TTP based on it, which takes one more round. All
except the first round can be combined for several instances
of ITjy,p protocol and hence the cost gets amortized. O

B.2 Sharing Protocol

Lemma B.2 (Communication). Protocol Iy, (Fig. 9) is non-
interactive in the preprocessing phase and requires 2 rounds
and an amortized communication of 2{ bits in the online
phase.

Proof. During the preprocessing phase, servers non-
interactively sample the [-]-shares of o, and Yy, values using
the shared key setup. In the online phase, when P; = Py, it
computes B, and sends it to P;, resulting in one round and
¢ bits communicated. They then jmp-send B, to P, which
requires additional one round in an amortized sense, and ¢
bits to be communicated. For the case when P; = Py, it sends
B, to P», resulting in one round and a communication of ¢
bits. Then, Py, P, jmp-send B, + 7Y, to Py. This again requires
an additional one round and ¢ bits. The analysis is similar in
the case of P, = P». O

—[Protocol I, (P, V)J

Preprocessing:

- If P, =Py : Py,Pj, for j € {1,2}, together sample random
[0w]; € Zye, while P together sample random Yy € Zy:.

— If ;= P, : Py, P together sample random [at,]; € Zy, while
P together sample a random [0,], € Zor. Also, Py, P> together
sample random Y, € Zy.

— If P, = P,: Symmetric to the case when P, = P;.

Online:

— If P, =Py : Py computes B, = v+a, and sends P to Py. P, Py
jmp-send By to P;.

— If ;= P}, for j € {1,2} : P; computes B, = v+ ai, sends By,
to P3_j. P1, P, jmp-send By + 7, to Py.

Figure 9: 3PC: Generating [v]-shares by server P;

B.3 Joint Sharing Protocol

—[Protocol ITjs, (P;, P}, V)}

Preprocessing:

- If (P;,Pj) = (P1,Py): Servers execute the preprocessing of
I, (P, v) and then locally set v, = 0.

— If (P;,P;) = (P»,Py): Similar to the case above.

— If (P;,P;) = (P1,P2): P, P together sample random ¥, € Zy..
Servers locally set [ow]; = [oty], = 0.

Online:

- If (P;,Pj) = (P1,Ry): Po, P compute By = v+ [on]; + [ow],.
Py, Py jmp-send By to P,.

— If (P, Pj) = (P»,Py): Similar to the case above.

— If (P;,Pj) = (P1,P,): Py, P, locally set By =v. P, P> jmp-send
By 4+ to Py.

Figure 10: 3PC: [-]-sharing of a value v € Zy jointly by P;, P;

17

When the value v is available to both P;, P; in the prepro-
cessing phase, protocol Ijs;, can be made non-interactive in
the following way: P sample a random r € Z,¢ and locally
set their share according to Table 6.

| (P1,Py) | (P1,Py) | (P2, Py)
[on]; =0, [on]; =0 | [o]y =—v, [ou], =0 | [o]; =0, [on], =—v
Bv=v,"v=r—v By=0,vw=r By=0,%v=r
Py 0,0,r) (=v, 0, 1) 0, —v, r)
P 0, v, r—v) (=v, 0, 1) 0, 0,r)
P 0, v, r—v) (0,0,1) 0, —v, r)

Table 6: The columns depict the three distinct possibility of input
contributing pairs. The first row shows the assignment to various
components of the sharing. The last row, along with three sub-rows,
specify the shares held by the three servers.

Lemma B.3 (Communication). Protocol Ilis, (Fig. 10) is
non-interactive in the preprocessing phase and requires 1
round and an amortized communication of { bits in the online
phase.

Proof. In this protocol, servers execute I, protocol once.
Hence the overall cost follows from that of an instance of the
ITjmp protocol (Lemma B.1). O

B.4 Multiplication Protocol
The ideal functionality for 1, pre appears in Fig. 11.
/—[Functionality :FMulPre} N

FMulpre interacts with the servers in 2 and the adversary S.
Fmulpre receives (-)-shares of d, e from the servers where Py, for
s €{0,1,2}, holds (d)s = (ds,d(s11)%3) and (e)s = (es,€(s11)%3)
such that d =dy+d; +d, and e = ey + e + e>. Let P; denotes
the server corrupted by S. Fmuipre receives (f); = (i, f(iy1)%3)
from § where f = de. F\uipre proceeds as follows:

— Reconstructs d, e using the shares received from honest servers

and compute f = de.

— Compute f(;, 29,3 = f —f; — ;1 1)93 and set the output shares
as (f)o = (fo,f1), (F)1 = (f1,f2), (F2 = (f2, o).

— Send (Output, (f);) to server Ps € P.

|

Figure 11: 3PC: Ideal functionality for I, pre protocol

Lemma B.4 (Communication). Protocol Il (Fig. 2) re-
quires an amortized cost of 3¢ bits in the preprocessing phase,
and 1 round and amortized cost of 3¢ bits in the online phase.

Proof. In the preprocessing phase, generation of o, and 'y, are
non-interactive. This is followed by one execution of ITy,yipre,
which requires an amortized communication cost of 3/ bits.
During the online phase, Py, Py jmp-send [B}], to P>, while
Py, P> jmp-send [B}], to P;. This requires one round and a
communication of 2¢ bits. Following this, P, P> jmp-send
B, + 7, to Py, which requires one round and a communication

of ¢ bits. However, jmp-send of B, +7, can be delayed till the
end of the protocol, and will require only one round for the
entire circuit and can be amortized. U

B.5 Reconstruction Protocol

Protocol I, appears in Fig. 12.
—[Protocol TTyec(?, [V])}

Preprocessing:

- Py, Pj, for j € {1,2}, compute Com([aw];), while Py, P, com-
pute Com(yy).

— P;,P, jmp-send Com(y,) to Py, while Py,P; jmp-send
Com([ow];) to P2, and Py, P> jmp-send Com([ow],) to Py,

Online:

— Py, P open Com([ow];) to P. Py, P> open Com([ow],) to P;.
Py, P> open Com(yy) to Py.

— Each server accepts the opening that is consistent with the
agreed upon commitment. Py,P, compute v = B, — [o]; —
[0y]5, while Py computes v = (By +W) —[o]; — [0]5 — -

Figure 12: 3PC: Reconstruction of v among the servers

Lemma B.5 (Communication). Protocol .. (Fig. 12) re-
quires 1 round and a communication of 6¢ bits in the online
phase.

Proof. The preprocessing phase consists of communication
of commitment values using the IT;,, protocol. The hash-
based commitment scheme allows generation of a single com-
mitment for several values and hence the cost gets amortised
away for multiple instances. During the online phase, each
server receives an opening for the commitment from other
two servers, which requires one round and an overall commu-
nication of 6 bits. O

B.6 Special protocols

Here we provide details regarding the special protocols - i)
Bit Extraction, ii) Bit2A, and iii) Bit Injection.

B.6.1 Bit Extraction protocol

Protocol Ipjiext allows servers to compute the boolean shar-
ing of the most significant bit (msb) of a value v given its
arithmetic sharing [v]. To compute the msb, we use the op-
timized 2-input Parallel Prefix Adder (PPA) boolean circuit
proposed by ABY3 [39]. The PPA circuit consists of 2¢ —2
AND gates and has a multiplicative depth of log¢.

Let vo = By,vi = —[o]; and vo = — [0y],. Then v = vy +
vi + va. Servers first locally compute the boolean shares cor-
responding to each bit of the values vg, v and v, according to
Table 7. It has been shown in ABY?3 that v = v+ v +v; can
also be expressed as v = 2¢ + s where FA(vo[i],v1[i],va[i]) —
(c[i],s[i]) fori € {0,...,¢£—1}. Here FA denotes a Full Adder

18

I R B B
[vold]® | (0,0,0) | (0,voli],vo[d]) | (0,vo[i],voli])
[[Vl [i]]]B (Vl m:ovo) (Vl [i],0,0) (0,0,0)
[[V2 M]]B (07\/2 [l]vo) (0a070) (Oav2 [l],O)
Table 7: The [-]B-sharing corresponding to i bit of vo = By,v| =
—[ow]; and v = —[ow],. Here i € {0,...,0—1}.

circuit while s and ¢ denote the sum and carry bits respectively.
To summarize, servers execute ¢ instances of FA in parallel to
compute [c]® and [s]®. The FA’s are executed independently
and require one round of communication. The final result
is then computed as msb(2[c]® + [s]®) using the optimized
PPA circuit.

Lemma B.6 (Communication). Protocol et requires a
communication cost of 9¢ — 6 bits in the preprocessing phase
and require log ¢+ 1 rounds and an amortized communication
of 9¢ — 6 bits in the online phase.

Proof. In Ipjey, first round comprises of ¢ Full Adder (FA)
circuits executing in parallel, each comprising of single AND
gate. This is followed by the execution of the optimized PPA
circuit of ABY3 [39], which comprises of 2¢ —2 AND gates
and has a multiplicative depth of log¢. Hence the communi-
cation cost follows from the multiplication for 3¢ —2 AND
gates. [

B.6.2 Bit2A Conversion protocol

Given the boolean sharing of a bit b, denoted as [[b]]B, pro-
tocol ITyiroa (Fig. 13) allows servers to compute the arith-
metic sharing [bR]. Here bR denotes the equivalent value
of b over ring Z,, (see Notation 2.2). As pointed out in
BLAZE, bR = (Bp @ ap)R = B + aff — 2BRaf. Also af =
([otw]; @ o)) = o]y + [ot6]3 — 2 [0t [0t]5. During the
preprocessing phase, Py, P; for j € {1,2} execute ITjs, on
[oc;,}? to generate [[[och]?]]. Servers then execute [Ty on

[[ow]X] and [[or)] to generate [[oy)F [05)5] followed by
locally computing [af]. During the online phase, Py, P, ex-
ecute I, on PR to jointly generate [BR]. Servers then ex-
ecute [Ty protocol on [BR] and [of] to compute [BRofY]
followed by locally computing [bR]. The formal details for
ITpitoa protocol appears in Fig. 13.

Lemma B.7 (Communication). Protocol Iyiop (Fig. 13) re-
quires an amortized communication cost of 9 bits in the
preprocessing phase and requires 1 round and an amortized
communication of 4¢ bits in the online phase.

Proof. In the preprocessing phase, servers run two instances
of ITjs,, which can be done non-interactively (ref. § B.3). This
is followed by an execution of entire multiplication protocol,
which requires 6/ bits to be communicated (Lemma B.4).
Parallelly, the servers execute the preprocessing phase of

I, resulting in an additional 3¢ bits of communication
(Lemma B.4). During the online phase, Py, P> execute I
once, which requires one round and ¢ bits to be communi-
cated. In I, the communication towards Py can be deferred
till the end, thereby requiring a single round for multiple in-
stances. This is followed by an execution of the online phase
of ITy,y1t, which requires one round and a communication of
3¢ bits. O

—[Protocol ITiion (P, [[b]]B)}

Preprocessing:

— Py, Pjfor j € {1,2} execute ITjs, on [ocb]? to generate [[[ocb]?]].
— Servers execute It (2, [ocb}?) [ocb}zR) to generate [u] where
u= [ocb]lf [ch]zR , followed by locally computing [[OCE]] =
R R
[low 7]+ [[ow]z] —2[u].-
— Servers execute the preprocessing phase of It (2, BE,O(E)

R&R

forv = boy -

Online:
- Py, P, execute ITjg, (P17P2,[5bR) to generate [[BE]].
— Servers execute online phase of Iy, (P, BbR7 OLE) to generate

[v] where v = BEOLE, followed by locally computing [bR] =
[BS] + [o5] —2[v]-

Figure 13: 3PC: Bit2A Protocol

B.6.3 Bit Injection protocol

Given the binary sharing of a bit b, denoted as [b]®, and the
arithmetic sharing of v € Z,¢, protocol ITgjynj computes [-]-
sharing of bv. Towards this, servers first execute IIyipa On
[b]® to generate [b]. This is followed by servers computing
[bv] by executing [T, protocol on [b] and [v].

Lemma B.8 (Communication). Protocol Ilgiynj requires an
amortized communication cost of 124 bits in the preprocessing
phase and requires 2 rounds and an amortized communication
of ¢ bits in the online phase.

Proof. Protocol Ilgjyn; is essentially an execution of
ITpitoa (Lemma B.7) followed by one invocation of Il
(Lemma B.4) and the costs follow. O

B.7 Dot Product Protocol
The formal details for ITyo, protocol appears in Fig. 14.

Protocol Tgoep(?, { [xi], [yi] },-e[np}

Preprocessing:

~ P, Pj, for j € {1,2}, together sample random [0;]; € Zy,
while Py, P, sample random Y, € Zy..

— Servers locally compute (-)-sharing of d, & with d; = Y, + 0,

19

and e; = 7y, +ay, for i € [n] as follows:

((di)o=([ow]5 » [0]1), (di) =[O0)1 s %) (di) 2= (¥ [0,]2)
((ei)o=([ow,]5 s [ow,]}), (e 1=([0ty,]| s Vyi)s (i) 2= (Wy; [0y]5)

— Servers execute Igotppre (P, (d), () to generate (f) = (d©¢).

— Py, Py locally set [x]; = f1, while Py, P; locally set [x], = fo.
Py, P> locally compute Y = f — Y| V. Yy

Online:

- Py, Pj, for j € {1,2}, compute [B}];
Yo) [0y,]+ By, +%,) [0] ;) + [0z] ; =+ [x] ;-

— Py, Py jmp-send [B], to P, and Py, P, jmp-send [B3], to P;.

— Py, P, locally compute B = [B;]; + [B:], and set B, = B} +
Y1 (BxiBy:) + .

— P;,P, jmp-send B, + 7Y, to Py.

—Xli (B +

Figure 14: 3PC: Dot Product Protocol (z=X0Y)

The ideal world functionality for realizing Ilyotppre is pre-
sented in Fig. 15.

/—[Functionality .‘}—DotPPre} N\

TFDotPPre interacts with the servers in P and the adversary .
TbotPPre Teceives (-)-shares of vectors d= (dq,...,dn),é =
(e1,...,en) from the servers. Let v;, for j € [n],s € {0,1,2}
denote the share of v; such that vj = v;o+v;1+v;2. Server
Py, for s € {0,1,2}, holds (d;)s = (djs,d; (s+1)%3) and (ej)s =
(ej,s+€j,(s-+1)%3) Where j € [n]. Let P; denotes the server corrupted
by S. Fmulpre receives (f); = (f;, f<,-+l>%3) from S where f =d ®8.
TFDotPPre proceeds as follows:

— Reconstructs dj,e;, for j € [n], using the shares received from
honest servers and compute f = 2’}:1 dje;.

— Compute f(;)3 = f —fi — f(;;.1)%3 and set the output shares
as (f)o = (fo.f1), (F)1 = (f1.f2), (F2 = (f2, o).

— Send (Output, (f);) to server Ps € P.

|

Figure 15: 3PC: Ideal functionality for ITgetppre protocol

B.7.1 Instantiating Fpoippre

To realize Fpotppre, the approach is to run a semi-honest dot
product protocol followed by a verification phase to check
the correctness of the output. For verification, the work of [7]
provides techniques to verify the correctness of m multipli-
cation triples (and degree-two relations) at a cost of O(y/m)
extended ring elements, albeit with abort security. While [8]
improves their techniques to provide robust verification for
multiplication, we show how to extend the techniques in [§]
to robustly verify the correctness of m dot product tuples (dot
product being a degree two relation), with vectors of dimen-
sion n, at a cost of O(y/nm) extended ring elements. Thus, the
cost to realize one instance of Fpotppre can be brought down
to only the cost of a semi-honest dot product computation
(which is 3 ring elements and independent of the vector di-
mension), where the cost due to verification can be amortized
away by setting n, m appropriately.

Given vectors d = (di,...,dn), 6= (ey,...,e,), let server
P;, fori € {0,1,2}, hold <d/‘>,' = (dj7,',dj_’(,'+1)%3> and (ej>,- =
(ej.i,€j,(i+1)%3) Where j € [n] (henceforth, we omit the use of
%3 in the subscript as it is understood from the context). The
semi-honest dot product protocol proceeds as follows. The
servers, using the shared key setup, non-interactively generate
3-out-of-3 additive shares of zero (as described in A.1), i.e
P; has {;, such that £y + {; + &, = 0. Then, each P; locally
computes 3-out-of -3 additive share of f = doéas:

™

fi=G+) (dji-eji+dji-eipi+djipi-e) (5

Jj=1

Now, to complete the (-)-sharing of f, P; sends f; to P,_;. To
check the correctness of the computation (f) = (d © @), each
P, € P needs to prove that the f; it sent in the semi-honest
protocol satisfies 5, i.e.

G+ Z (dji-eji+dji-ejir1+djip1-e;;)—fi=0 (6)
=

This difference in the expected message that should be sent
(computed using P;’s correct input shares) and actual message
that is sent by P; is captured by a circuit ¢, defined below.

¢ ({djidjivi,ejinejint Y1, G i)

n
(M
=G+ Y (dji-ejitdjiejivi+djii-e)—Ff
=

Here, ¢ takes as input u = 4n +2 values: (-)-shares of d,é
held by P, i.e. {dj,,-,djﬁ,-H,ej,,-,ej,,-H};:l, the additive share

of zero, {;, that P; holds, and the additive share f; sent by P,.

For correct computation with respect to P;, we require the
difference in the expected message and the actual message to
be 0, i.e.,
¢ ({dji,djiv1,ejiejirt }i=r, G fi) =0 (®)
We now explain how to verify the correctness for m dot
product tuples assuming that the operations are carried out
over a prime-order field. The verification can be extended
to support operations over rings following the techniques
of [7, 8]. To verify the correctness for m dot product tuples,
{ak,é'k, fi}i, where f; = d;, ©& , the output of ¢ (which is
the difference in the expected and actual message sent) for
each of the corresponding dot product tuple must be 0. To
check correctness of all dot products at once, it suffices to
check if a random linear combination of the output of each
¢ (for each dot product) is 0. This is because the random
linear combination of the differences will be 0 with high
probability if f, = d; ©& foreach k € {1,...,m}. We remark
that the definition of ¢(-) in [8] enables the verification of
only multiplication triples. With the re-definition of ¢ as in 7,
we can now verify the correctness of dot products while the

20

rest of the verification steps remain similar to that in [8]. We
elaborate on the details, next.

A verification circuit, constructed as follows, enables P; to
prove the correctness of the additive share of f that it sent,
for m instances of dot product at once. Note that the proof
system is designed for the distributed-verifier setting where
the proof generated by P; will be shared among P;_1, P11,
who can together verify its correctness. First, a sub-circuit
g is defined as: group L small ¢ circuits and take a random
linear combination of the values on their output wires. Since
each c circuit takes u = 4n + 2 inputs as described earlier, g
takes in uL inputs. Precisely, g is defined as follows:

L
g(xla“' aqu) = Z ek 'C(x(kfl)uqtla' .. 7x(kfl)u+u)
k=1

Since there are total m dot products to be verified, there
will be M = m/L sub-circuits g. Looking ahead, this grouping
technique enables obtaining a sub-linear communication cost
for verification because the communication cost turns out to
be O(uL+ M) and setting uL = M gives the desired result.
The sub-circuits g make up the circuit G which outputs a
random linear combination of the values on the output wires
of each g, i.e:

M
G(X1,s-- s Xum) = an'g(x(kfl)uL+17---ax(kfl)uL+uL>
k=1

Here, 0 and 1, are randomly sampled (non-interactively) by
all parties. To prove correctness, P; needs to prove that G
outputs 0. For this, P; defines fi ..., f, random polynomials
of degree M, one for each input wire of g. For £ € {1,...,M}
and j € {1,...,uL}, f;(0) is chosen randomly and f;(¢) =
X(¢—1)uy j (1. the jth input of the (th g gate). P; further defines
a 2M degree polynomial p(-) on the output wires of g, i.e
p(-) = g(f1,-.., fur) where p(£) for £ € {1,...,M} is the
output of the ¢th g gate. The additional M + 1 points required
to interpolate the 2M degree polynomial p, are obtained by
evaluating f,..., f,r on M + 1 additional points, followed
by an application of g circuit. The proof generated by P;
consists of f1(0),..., fu.(0) and the coefficients of p. Recall
that since we are in the distributed-verifier setting, the prover
P; additively shares the proof with P;_1, P;+1. Note here, that
shares of f(0),..., f,.(0) can be generated non-interactively.

To verify the proof, verifiers P,_;,P;+ need to check if
the output of G is 0. This can be verified by computing the
output of G as b= Y2 m,- p(¢) and checking if b = 0, where
MN¢’s are non-interactively sampled by all after the proof is
sent. If p is defined correctly, then this is indeed a random
linear combination of the outputs of all the g-circuits. This
necessitates the second check to verify the correctness of
p as per its definition i.e p(-) = g(fi(-),..., fur(+)). This is
performed by checking if p(r) = g(f1(r),..., fur(r)) for a
random r ¢ {1,...,M} (for privacy to hold) sampled non-
interactively by all after the proof is sent. For the first check,

verifiers can locally compute additive shares of b (using the
additive shares of coefficients of p obtained as part of the
proof) and reconstruct b to check for equality with 0. For the
second, verifiers locally compute additive shares of p(r) using
the shares of coefficients of p, and shares of fi(r),..., fur(r)
by interpolating fi, ..., f,r using (P;’s) inputs to the c-circuits
which are implicitly additively shared between them (owing
to the replicated sharing property). Verifiers exchange these
values among themselves, reconstruct it and check if p(r) =
g(fi(r),..., fu(r)). Note that, the messages computed and
exchanged by the verifiers, depend only on the proof sent
by P; and the random values (r,m) sampled by all. These
messages can also be independently computed by P;. Thus,
in order to prevent a verifier from falsely rejecting a correct
proof, we use jmp to exchange these messages. To optimize
the communication cost further, it suffices if a single verifier
computes the output of verification.

Setting the parameters: The proof sent by P; consists of
the constant terms f;(0) for j € {1,...,uL} and 2M + 1 co-
efficients of p. The former can be can be generated non-
interactively. Hence, P; needs to communicate 2M + 1 ele-
ments to the verifiers (one of which can be performed non-
interactively). The message sent by the verifier consists of
the additive share of Y2, 1, - p(¢) (for the first check) and
S1(r),..., fur(r), p(r) (for the second check). Thus, the veri-
fier communicates uL + 2 elements. As the proof is executed
three times, each time with one party acting as the prover
and the other two acting as the verifiers, overall, each party
communicates uL +2M + 3 elements. Setting uL = 2M and
M = 7 results in the total communication required for veri-
fying m dot products to be O(y/nm). Thus, verifying a single
dot product has an amortized cost of O (\/g) which can be
made very small by appropriately setting the values of n,m.
Thus, the (amortized) cost of a maliciously secure dot prod-
uct protocol can be made equal to that of a semi-honest dot
product protocol, which is 3 ring elements.

To support verification over rings [8], verification opera-
tions are carried out on the extended ring Z,¢ / f (x), which is
the ring of all polynomials with coefficients in Z,; modulo a
polynomial f, of degree d, irreducible over Z,. Each element
in Z,: is lifted to a d-degree polynomial in Z,[x] / f (x) (which
results in blowing up the communication by a factor d). Thus,
the per party communication amounts to (uL +2M + 3)d el-
ements of Z,, for verifying m dot products of vector size n

where u = 4n + 2. Further, the probability of a cheating prover
is bounded by 27 2M+1 (cf. Theorem 4.7 of [8]). Thus, if

v is such that 2¥ > 2M, then the cheating probability is

2U0=Dd apr 41

(—1)d Y
20d _ pp -

2 _pp T

We note that both, [8] and our technique require a commu-
nication cost of O(y/mn) ring elements for verifying m dot
products of vector size n. This is because multiplication is a

21

special case of dot product with n = 1. However, since our
verification is for dot products, we can get away with perform-
ing only m semi-honest dot products whose cost is equiva-
lent to computing m semi-honest multiplications, whereas [8§]
requires to execute mn multiplications (as their technique
can only verify correctness of multiplications), resulting in a
dot product cost dependent on the vector size. Concretely, to
get 40 bits of statistical security and for a vector size of 2'°
(CIFAR-10 [34] dataset), the aforementioned parameters can
be set as given in Table 8.

m | M| y| d| Cost(perdot product)

220 216 | 17 | 57 | 7.125
230 22 | 22| 62 | 0.242
240] 226 | 27 | 67 | 0.008
250123 | 32] 72 | 0.0002

Table 8: Cost of verification in terms of the number of ring elements
communicated per dot product, and parameters for vector size n =
210 and 40 bits of statistical security. Here, m - #dot products to be
verified, M- #g sub-circuits, d-degree of extension.

It is possible to further bring down the communication cost
required for verifying m dot product tuples to O(log(nm)) at
the expense of requiring more rounds by further extending
the technique of [7], which we leave as an exercise. We refer
readers to [8] for formal details.

Lemma B.9 (Communication). Protocol Ilye, (Fig. 14) re-
quires an amortized communication of 3¢ bits in the pre-
processing phase and requires 1 round and an amortized
communication of 3¢ bits in the online phase.

Proof. During the preprocessing phase, servers execute
Igotppre as described in §B.7.1. This requires communicat-
ing 3/ bits for a single semi-honest dot product protocol and
O(%) extended ring elements for its verification. By appro-
priately setting the values of n,m, the cost of communicating
O(%) elements can be amortized away, thereby resulting
in an amortized communication cost of 3¢ bits in the prepro-
cessing phase. The online phase follows similarly to that of
IT,u1t, the only difference being that servers combine their
shares corresponding to all the n multiplications into one and
then exchange. This requires one round and an amortized
communication of 3/ bits. O

B.8 Truncation

We now give details of how to generate ([r],[r]). For this,
servers proceed as follows: Py, P; for j € {1,2} sample ran-
dom r; € Z,:. Recall that the bit at ith position in r is denoted
as r[i]. Define r[i] = r([{] @ rp[i] for i € {0,...,£—1}. For
r defined as above, we have r¢[i] = ry[i +d] @ r;[i +d] for
i€{0,...,0 —d—1}. Further,

-1 -1
r= ;)Z‘r[i} = ;}2‘01[1’] Drali])

(-1

(DR +(lDR) = X (2 (1 DR) - (rali)DR

i=0 i=0

©

Similarly, for r¢ we have the following,
(-1 -1

¢ = Y2 (DR + (l)R) = X (27 (DR) - ()R (0)
i=d i=d

The servers non-interactively generate [-]-shares (arith-
metic shares) for each bit of r| and rp as in Table 6. Given
their [-]-shares, the servers execute Igotp twice to com-
pute [-]-share of A = Y=} 27441 (1 [i])R) - (ra[i])R, and B =
Yoo 2 (1 [i)R) - (r2[i])R. Using these values, the servers
can locally compute the [-]-shares for (r,r?) pair following
Equation 9 and 10, respectively. Note that servers need []-
shares of r and not [-]-shares. The [-]-shares can be computed
from the [-]-shares locally as follows. Let (o, B,,7,) be the
values corresponding to the [-]-shares of r. Since Py knows
the entire value r in clear, and it knows @, it can locally com-
pute B,. Now, the servers set [-]-shares as: [r]; = — [0], and
[rl, = Br — [0t],. The protocol appears in Fig. 16.

—[Protocol Iiygen (P)}

— To generate each bit r[i] of r for i € {0,...,£—1}, Py, P; for
Jj € {1,2} sample random r;[i] € Z, and define r[i] = r [i{] @ ra[i].

— Servers generate [-]-shares of (r;[i])R fori € {0,....0—1},j €
{1,2} non-interactively following Table 6.

— Define % and ¥ such that x = 2/=4*1(r [[])R and y; = (rp [i]))R,
respectively, fori € {d,...,{—1}. Define p and q such that p; =
271 (v [i])R and q; = (r2[i])R, respectively, fori € {0,...,6—1}.
Servers execute Igotp to compute [-]-shares of A=X©¥ and
B=paoq.

— Servers locally compute [r¢] =):f;{} 274 ([(r)R] +
[(r2)R]) — [AL and [r] = X= 2'(1(r1 (DR] + [(r2[iDRT) —
[B].

— Py locally computes By = r+a. Py, Py set [r]; = —[o], and
Po, Py set [r], = Br — [ou],.

Figure 16: 3PC: Generating Random Truncated Pair (r,r?)

Lemma B.10 (Communication). Protocol Iigen (Fig. 16)
requires an amortized communication of 120 bits.

Proof. All the operations in Il e, are non-interactive except
for the two dot product calls required to compute A, B. The
cost thus follows from Lemma B.9. O

B.9 Dot Product with Truncation

Lemma B.11 (Communication). Protocol getpt (Fig. 17)
requires an amortized communication of 15/ bits in the pre-
processing phase and requires 1 round and an amortized
communication of 3¢ bits in the online phase.

22

Proof. During the preprocessing phase, servers execute the
preprocessing phase of Ilqetp, resulting in an amortized com-
munication of 3¢ bits (Lemma B.9). In parallel, servers exe-
cute one instance of Il gen protocol resulting in an additional
communication of 12¢ bits (Lemma B.10).

The online phase follows from that of Ilge, protocol ex-
cept that, now, Py, P, compute additive shares of z—r, where
z=XQ@Y, which is achieved using two executions of ITjy, in
parallel. This requires one round and an amortized communi-
cation cost of 2/ bits. Py, P; then jointly share the truncated
value of z—r with Py, which requires one round and ¢ bits.
However, this step can be deferred till the end for multiple
dot product with truncation instances, which amortizes the
cost. O

The formal details for I1yq,: protocol appear in Fig. 17.
—{ Protocol Maceye (7. ([l [yl o) |

Preprocessing:

— Servers execute the of

Maotp (P, { [xills [yil Yiepn))-
— In parallel, servers execute Il gen () to generate the trunca-
tion pair ([r], [r¢]).

preprocessing

Online:

- Py, Pj, for j € {1,2}, compute
¥o) 0], + (By, + %) o],) —
[¥]; +[x];-

- P|,Py jmp-send [(z — r)*] , to P, and Py,Py jmp-send
[(z—r)"], 0 Pr.

— Py, Py locally compute (z—r)* = [(z—r)*], +[(z—r)"], and
set (z—1) = (z=1)"+ L1 (BxBy) + V.

— Py, P; locally truncate (z—r) to obtain (z—r)? and execute
jen (P, P2, (z— 1)) to generate [(z—r)"].

— Servers locally compute [z] = [(z—r)?] + [] .

[¥]; = — XL (B +
[r}j and set [(zfr)*]j —

Figure 17: 3PC: Dot Product Protocol with Truncation

B.10 Activation Functions

Lemma B.12 (Communication). Protocol relu requires an
amortized communication of 21¢ — 6 bits in the preprocess-
ing phase and requires log{¢ + 3 rounds and an amortized
communication of 16{ — 6 bits in the online phase.

Proof. One instance of relu protocol comprises of execution
of one instance of Ilpjtex:, followed by Ig;tin;. The cost, there-
fore, follows from Lemma B.6, and Lemma B .8. O

The formal details of the MPC-friendly variant of the Sig-
moid function [13,39,41] is given below:

\Y
V+§ -

AVALSTL AN
STEVAN
< V=
IN
NI—

Lemma B.13 (Communication). Protocol sig requires an
amortized communication of 39¢ — 9 bits in the preprocess-
ing phase and requires logl + 4 rounds and an amortized
communication of 29¢ — 9 bits in the online phase.

Proof. An instance of sig protocol involves the execution of
the following protocols in order— i) two parallel instances
of Ipitext protocol, ii) once instance of I, protocol over
boolean value, and iii) one instance of Ilgjtin; and ITioa in
parallel. The cost follows from Lemma B.6, Lemma B.7 and
Lemma B.8. O

B.11 Matrix Operations and Convolutions

Matrix Operations Linear matrix operations, such as addi-
tion of two matrices A, B to generate matrix C = A + B, can
be computed by extending the scalar operations (addition, in
this case) with respect to each element of the matrix. Matrix
multiplication, on the other hand, can be expressed as a collec-
tion of dot products, where the element in the i row and jth
column of C = A x B, where A, B are matrices of dimension
p X q, g X r, respectively, can be computed as a dot product
of the i row of A and the j™ column of B. Thus, computing
C of dimension p X r requires pr dot products whose com-
munication cost (amortized) is equal to that of computing pr
multiplications in our case. This improves the cost of matrix
multiplication over the naive approach which requires pqr
multiplications.

Convolutions These form an important building block in
several neural network architectures and can be represented
as matrix multiplications, as explained in the example below.
Consider a 2-dimensional convolution (CV) of a 3 x 3 input
matrix X with a kernel K of size 2 x 2. This can be represented
as a matrix multiplication as follows.

X1 X2 X4 Xj k 1
X X X
cv X; Xi X3 ki k|| |x x3 x5 x| |ko
. X‘ X6 ’ k3 ky4 X4 X5 X7 X8 k3
7 8 o X5 X6 Xg Xo k4

Generally, convolving a f X f kernel over a w X & input
with p X p padding using s X s stride having i input channels
and o output channels, is equivalent to performing a matrix
multiplication on matrices of dimension (w'- k') x (i- f - f)

. / w—f+2p ’
and (i- f-f) X (o) where w' = ———— + 1 and i/ =

h— 2
ﬂ + 1. We refer readers to [52] (cf. “Linear and

s
Convolutional Layer”) and [50] for more details.

C 4PC Protocols

In this section, we give the formal details for the 4PC proto-
cols along with communication cost analysis.

23

C.1 4PC Joint Message Passing Primitive

Lemma C.1 (Communication). Protocol Ijmpa (Fig. 4) re-
quires 1 round and an amortized communication of ¢ bits in
the online phase.

Proof. Server P; sends the value v to P, while P; sends hash of
the same to P;. This accounts for one round of communication.
Values sent by P; for several instances can be concatenated
and hashed to obtain a single value. Hence the cost of sending
the hash gets amortized over multiple instances. Similarly, the
two round exchange of inconsistency bits to establisha TTP
can be combined for multiple instances, thereby amortizing
this cost. Thus, the amortized cost of this protocol is £ bits.

O

The ideal functionality for jmp4 primitive appears in Fig.
18.

,—[Functionality :ijp4} N

fjmp4 interacts with the servers in 2 and the adversary §.

Step 1: Fjmp receives (Input,vy) from senders P for s € {i, j},
(Input, L) from receiver P, and fourth server P;, while it re-
ceives (Select, ttp) from S. Here ttp is a boolean value, with a
1 indicating that TTP = P; should be established.

Step 2: Ifv;=v; and ttp =0, orif S has corrupted P}, set msg; =
msg; = msg; = L, msg; = v; and go to Step 4.

Step 3: Else : Set msg; = msg; = msg; = msg; = F,.

Step 4: Send (Output, msgy) to P for s € {0,1,2,3}.

.

Figure 18: 4PC: 1deal functionality for jmp4 primitive

C.2 Sharing Protocol
The protocol for sharing a value v by P, is given in Fig. 19

—[Protocol I1g4(P;, V)}

Preprocessing:

- If P, =Py : Py,P3,Pj, for j € {1,2}, together sample random
[ow]; € Zye, while P sample random Yy € Zy:.

- If P, =P, : Py, P3, Py together sample random [0t], € Zy,
while P sample a random [0,], € Zye. Also, Py, P, P; sample
random Yy € Zy:.

— If P, = P»: Analogous to the case when P; = P;.

— If ;= P3: Py, P3, P}, for j € {1,2}, sample random
[ow] j € Ly Py, Py, P3 together sample random y, € Zy:.

Online:

— If P, =Py : Py computes By = v+, and sends By to Py. Py, Py
jmp4-send By to P,.

— If ;= P}, for j € {1,2} : P; computes B, = v+ 0, sends By
to P3_;. P, P, jmpé4-send B, + 7 to Pp.

- If P, =P Py sends By+yWw =v+a,+W to Py. P3,P
jmp4-send By + Yy to both P; and P;.

Figure 19: 4PC: Generating [v]-shares by server P;

Lemma C.2 (Communication). In the online phase, Ilghs
(Fig. 19) requires 2 rounds and an amortized communication
of 24 bits when Py, Py, Py share a value, whereas it requires an
amortized communication of 3¢ bits when P3 shares a value.

Proof. The proof for Py, P;, P, sharing a value follows from
B.2. For the case when P; wants to share a value v, it first
sends By + 7, to Py which requires one round and ¢ bits of
communication. This is followed by 2 parallel calls to ITjmp4
which together require one round and an amortized communi-
cation of 2/ bits. U

C.3 Joint Sharing Protocol

Protocol ITjsp4 enables a pair of (unordered) servers (P,-,Pj)
to jointly generate a [-]-sharing of value v € Z,¢ known to
both of them. In case of an inconsistency, the server outside
the computation serves as a T TP. The protocol is described
in Fig. 20.

—[Protocol Hjsh4(P,~7Pj,v)]

Preprocessing:

- If (P;,Pj) = (P1,P2) : P, Py, P3 sample 7, € Zy. Servers
locally set [o,]; = [a], = 0.

— If (P, P;) = (Py,Pp), for s € {1,2} : Servers execute the
preprocessing of Igpg (Ps, V). Servers locally set y, = 0.

— If (P;,Pj) = (P, P3), for s € {0,1,2} : Servers execute the
preprocessing of Ighg (P, V).

Online:

- If (P;,Pj) = (P1,P2) : P, P> set By =v and jmp4-send B, +7
to Py.

- If (P, Pj) = (P, Py), fors € {1,2,3} : Py, Py compute B, = v+
[ow] + [0], and jmp4-send By to Py, where (k € {1,2}) A (k #
s).

— If (P;,Pj) = (Ps,P3), for s € {1,2}: P3, Py compute B, and B, +
Y- Ps, P3 jmp4-send By to Py, where (k € {1,2}) A (k #s). In
parallel, Py, P3 jmp4-send By, + Yy to Py.

Figure 20: 4PC: [-]-sharing of a value v € Zy jointly by P;, P;

When P3, Py want to jointly share a value v which is avail-
able in the preprocessing phase, protocol ITjsh4 can be per-
formed with a single element of communication (as opposed
to 2 elements in Fig. 20). Py, P; can jointly share v as follows.
Py, P3, P sample a random r € Z,¢ and set [o,]; =r. Py, P3 set
[ow], = —(r+v) and jmp4-send [a], to P». This is followed
by servers locally setting v, = By = 0.

We further observe that servers can generate a [-]-sharing
of v non-interactively when v is available with Py, Py, P». To
do this, servers set [a,]; = [0,], =Y, =0 and B, = v. We
abuse notation and use ITjsha (Po, P, P, V) to denote this shar-
ing.

Lemma C.3 (Communication). In the online phase, Iljsha
(Fig. 20) requires 1 round and an amortized communication

24

of 2 bits when (P3,Fs) for s € {0,1,2} share a value, and
requires an amortized communication of £ bits, otherwise.

Proof. When (P3,P;) for s € {0,1,2} want to share a value v,
there are two parallel calls to ITjmps Which requires an amor-
tized communication of 2¢ bits and one round. In the other
cases, Ijmps is invoked only once, resulting in an amortized
communication of ¢ bits. O

C.4 (-)-sharing Protocol

In some protocols, P; is required to generate (-)-sharing of
a value v in the preprocessing phase, where (-)-sharing of v
is same as that defined in 3PC (where v = v + v + v3, and
Py possesses (vo,vi), P| possesses (vi,v2), and P, possess
(v2,Vvp)) with the addition that P now possesses (vo,Vi,Vv2).
We call the resultant protocol Il ¢h4 and it appears in Fig. 21.

—[Protocol IT g4 (P53, V)}

Preprocessing :

— Servers Py, P3, P; sample a random v € Z,., while servers
Py, P3, P> sample a random v € Zy:.

— P3 computes v = v — vy — vy and sends v, to P». P3, P>
jmp4-send v; to Py.

Figure 21: 4PC: (-)-sharing of value v by P3

Note that servers can locally convert (v) to [v] by setting
their shares as shown in Table 9.

\ Po \ P | P, | P

IV | (—vi,—v0,0) | (=vi,va,—v2) | (=vo,v2,—v2) | (—vo,—vi,—Vv2)

Table 9: Local conversion of shares from (-)-sharing to [-]-sharing
for a value v. Here, [oty]; = —v1, [0], = —Vo,Bv = V2, = —Va.

Lemma C.4 (Communication). Protocol Ilasng (Fig. 21) re-
quires 2 rounds and an amortized communication of 24 bits.

Proof. Communicating v; to P, requires ¢ bits and 1 round.
This is followed by one invocation of ITjmps which requires ¢
bits and 1 round. Thus, the amortized communication cost is
2/ bits and two rounds. O

C.5 Multiplication Protocol

Lemma C.5 (Communication). I (Fig. 5) requires an
amortized communication of 3{ bits in the preprocessing
phase, and 1 round with an amortized communication of 3¢
bits in the online phase.

Proof. In the preprocessing phase, the servers execute ITjmps
to jmpé4-send [I',], to P, resulting in amortized communica-
tion of ¢ bits. This is followed by 2 parallel invocations of
ITjmps to jmp4-send [x], , [x], to Py which require an amor-
tized communication of 2¢ bits. Thus, the amortized com-
munication cost in preprocessing is 3¢ bits. In the online

phase, there are 2 parallel invocations of Iljmps to jmp4-send
B3] ,[Bz], to P, Py, respectively, which requires amortized
communication of 2¢ bits and one round. This is followed
by another call to ITjmps to jmp4-send B, + 7Yz to Py which
requires one more round and amortized communication of ¢
bits. However, jmp4-send of B, +7, can be delayed till the
end of the protocol, and will require only one round for multi-
ple multiplication gates and hence, can be amortized. Thus,
the total number of rounds required for multiplication in the
online phase is one with an amortized communication of 3/
bits. O

C.6 Reconstruction Protocol

The formal protocol for reconstruction is given in Fig. 22.

—[Protocol IT,cc4 (P, [[V]])}

Online

— Py receives Yy, from Py, P> and H(y,) from Ps.

— P receives [0], from P5, P3 and H([ow],) from Py.

— P, receives [oy]; from Py, P3 and H([ow ;) from P;.

— P3 receives By + 7 from Py, Py and H(By, +7y) from P».

— P; € P selects the missing share forming the majority among
the values received and reconstructs the output.

Figure 22: 4PC: Reconstruction of v among the servers

Lemma C.6 (Communication). ITecq (Fig. 22) requires an
amortized communication of 8¢ bits and 1 round in the online
phase.

Proof. Each P; for s € {0,1,2,3} receives the missing share
in clear from two other servers, while the hash of it from the
third. As before, the missing share sent by the third server can
be concatenated over multiple instances and hashed to obtain
a single value. Thus, the amortized communication cost is 2¢
bits per server, resulting in a total cost of 8/ bits. O

C.7 Special protocols

Here we provide details regarding the special protocols - i)
Bit Extraction, ii) Bit2A, and iii) Bit Injection.

C.7.1 Bit Extraction Protocol

This protocol enables the servers to compute a boolean shar-
ing of the most significant bit (MSB) of a value v € Zy
given the arithmetic sharing [v]. To compute the MSB, we
use the optimized Parallel Prefix Adder (PPA) circuit from
ABY3 [39], which takes as input two boolean values and out-
puts the MSB of the sum of the inputs. The circuit requires
2(¢—1) AND gates and has a multiplicative depth of log¢.
The protocol for bit extraction (Ilpjtexts) involves computing
the boolean PPA circuit using the protocols described in §4.
The two inputs to this boolean circuit are generated as follows.

25

The value v whose MSB needs to be extracted can be repre-
sented as the sum of two values as v = B, 4+ (—o.,) where the
first input to the circuit will be B, and the second input will be
—ay,. Since By is held by Py, P», servers execute ITjs4 to gen-
erate [[B,]B. Similarly, Py, P; possess O.,, and servers execute
Ijsns to generate [—o,,]B. Servers in 2 use the [-]B-shares
of these two inputs (B,, —0.,) to compute the optimized PPA
circuit which outputs the [msb(v)]®.

Lemma C.7 (Communication). The protocol Tlpiiexa Te-
quires an amortized communication of 7¢ — 6 bits in the
preprocessing phase, and log/{ rounds with amortized com-
munication of 7¢ — 6 bits in the online phase.

Proof. Generation of boolean sharing of o, requires ¢ bits
in the preprocessing phase (since Iljsps with Py, P3 can be
achieved with ¢ bits of communication in the preprocessing
phase), and generation of boolean sharing of B, requires ¢ bits
and one round (which can be deferred towards the end of the
protocol thereby requiring one round for several instances)
in the online phase. Further, the boolean PPA circuit to be
computed requires 2(¢ — 1) AND gates. Since each AND
gate requires I 14 to be executed, it requires an amortized
communication of 6/ — 6 bits in both the preprocessing phase
and the online phase. Thus, the overall communication is
7¢ — 6 bits, in both, the preprocessing and online phase. The
circuit has a multiplicative depth of log ¢ which results in log ¢
rounds in the online phase. O

C.7.2 Bit2A Protocol

This protocol enables servers to compute the arithmetic shar-
ing of a bit b given its boolean sharing. Let bR denote the
value of b in the ring Z,,. We observe that bR can be written
as follows. bR = (o, @ Bp)R = af + PR — 2afBR. Thus, to
obtain an arithmetic sharing of bR, the servers can compute an
arithmetic sharing of B, aff and BRaR. This can be done as
follows. Py, P3 execute ITjshs on chR in the preprocessing phase
to generate [o}]. Similarly, Py, P> execute Ijshs on BR in the
online phase to generate [BR]. This is followed by ITyyia on
IBR], [ol], followed by local computation to obtain [bR].
While the above approach serves the purpose, we now
provide an improved version, which further helps in reducing
the online cost. We observe that bR can be written as follows.
bR = (0t ®Bb) R = (0t BYb) B (Bo Do) = ()R =R+
cR —2eRcR where e = oy, By, and ¢ = B, © Vb Thus, to obtain
an arithmetic sharing of bR, Py generates (-)-sharing of eR.
To ensure the correctness of the shares, the servers Py, Py, P>
check whether the following equation holds: (e ®r,)R = eR +
rk —2eRrR.If the verification fails, a TTP is identified. Else,
this is followed by servers locally converting (eR)-shares to
[eR] according to Table 9, followed by multiplying [eR], [cR]
and locally computing [bR] = [eR] + [cR] — 2[eRcR]. Note
that during Iisna(Po, P1, P52, c®) since or and yr are set to 0,
the preprocessing of multiplication can be performed locally.

—{ Protocol Tycons (7. 1]

Preprocessing :

— Servers execute I gn4 (P3,eR) (Fig. 21) where e = o & Yp.
Let the shares be (eR)g = (e, e1), (eR)| = (e1,e2), (eR)y =
(e2,€0),(€%)3 = (eo,e1,€2).

— Verification of <eR)—sharing is performed as follows:

— Py, P>, P; sample a random r € Zy¢ and a bit ry, € Zy1.

— P, P, compute x| =Y, @ rp, and jmp4-send x; to Py.

— P, P3 compute y; = (e] +e)(1— ZrE) + rE +r, and
jmp4-send y; to Py.

— P»,P3 compute y, = eq(1 erE) —r, and jmp4-send H(y;)
to Py.

— Py computes x = e® rp, = [0ip]; @ [0p], @ x1 and checks if
HOR —y1) =H(y2).

— If verification fails, Py sets flag = 1, else it sets flag = 0. Py
sends flag to P;. Next, P;, Py jmp4-send flag to P, and Ps.
Servers set TTP = Py if flag = 1.

— If verification succeeds, servers locally convert (eR) to [eR]
by setting their shares according to Table 9.

Online :
— Servers execute Hj5h4(P0,P17P2,cR) where ¢ = Bp ®Yp.

— Servers execute nyiea(P, [eR], [cR]) to generate [eRcR].

— Servers compute [bR] = [eR] + [cR] — 2[eRcR].

Figure 23: 4PC: Bit2A Protocol

Lemma C.8 (Communication). [pioas (Fig. 23) requires an
amortized communication of 3¢ + 4 bits in the preprocessing
phase, and 1 round with amortized communication of 3¢ bits
in the online phase.

Proof. During preprocessing, one instance of Il,¢h4 requires
2/ bits of communication. Further, sending x; requires 1 bit,
while sending y; requires ¢ bits. Sending of H(y;) can be
amortized over several instances. Finally, communicating flag
requires 3 bits. Thus, the overall amortized communication
cost in preprocessing phase is 3¢ + 4 bits. In the online phase,
joint sharing of c® can be performed non-interactively. The
only cost is due to the online phase of multiplication which
requires 3¢ bits and one round. Thus, the amortized commu-
nication cost in the online phase is 3¢ bits with one round of
communication. O

C.7.3 Bit Injection Protocol

Given the boolean sharing of a bit b, denoted as [b]®, and
the arithmetic sharing of v € Z,, protocol Igjtinj4 computes
[-]-sharing of bv. This can be naively computed by servers
first executing Ipitoas on [b]® to generate [b], followed by
servers computing [bv] by executing IT4 protocol on [b]
and [[v]. Instead, we provide an optimized variant which helps
in reducing the communication cost of the naive approach in,
both, the preprocessing and online phase. We give the details
next.

26

Let z = bRv, where bR denotes the value of b in Z,. Then,
during the computation of [z], we observe the following:

z=bRv = (0, &PBp)R (B, — 1)
= (0 ®) & (Bo © 1)) ((By +%) — (o + %))
= (coep)(cv —ey) = (cf +ef —2cfe)(cv —e)

= R, —cRe, + (¢, —2cfc,)eR + (2cR — 1)eRe,

where ¢, = B, ® Vb, € = 0 BV, ¢ =Py + Y and e, =
o, + Y. The protocol proceeds with P; generating (-)-shares
of ef and e, = efle,, followed by verification of the same
by Py, Py, P,. If verification succeeds, then to enable P, to
compute B, = z+ o, Pi, Py jmp4-send the missing share of
B, to P;. Similarly for P;. Next, P, P, reconstruct 3,, and
jmp4-send B, + v, to Py completing the protocol.

—[Protocol Myitina (P, [b]®, [V])}

Let cp = Pb S Vb, € = O BYb, v = Pv +W, ey = 0 + 7Yy and
eZ:eEeV.

Preprocessing :
— Py, Ps,P; for j € {1,2} sample [;]; € Zy while P;,P;,P;
sample Y, € Zy:.
— Servers execute Hash4(P3,eE) and Iygh4(P3,€z). Shares of
(ev) are set locally as ey, = [aw], ey, = [oW]; ,ev; =W
— Servers verify correctness of (eE) using steps similar to
Mpiroas (Fig. 23). Correctness of (e,) is verified as follows.
— Py, P5,P; for j € {1,2} sample a random r; € Z,¢ while
Py, P>, Pz sample a random rg € Zye. Py, P3 setag =r| —ra,
Pi,Pyseta; =rg—ryand Py, P3 setay =ry —rg.

Py, Py compute x| = ey, €p, + €y, ep, +ey,ep, +aj.

P, Py compute xp = ey, €p, + €y, €p, 1 €v,ep, +a2.

— Py computes xg = ey, €p, + ey, ep, + €y,ep, +a0.

— Pi,P; jmp4d-send y; = X| —e; to Py, while P,
jmpé-send H(—y,) to Py, where y, =xp —e,.

— Py computes yg = Xg — €z, and checks if H(yp +y;) =
H(-y2).

— If verification fails, Py sets flag = 1, else it sets flag = 0. P
sends flag to P;. Next, P;,Py jmp4-send flag to P, and P3.
Servers set TTP = Py if flag=1.

Online :

~ Py,P; compute u; = —cRey, + (c, — 2(:bRc\,)eEI + (2cf -
1)ez, + [0z]}, and jmp4-send u; to Ps.

— Py,P, compute uy = —cEeVO + (ev — 2c§c\,)eﬁo + (ZCE -
1)ez, + [0z]5, and jmp4-send us to P;.

— Py,P, compute B, = uj +uy — c{?e\,2 + (ev — ZCEC\,)eE2 —+
(2cR — 1)e,, +Rey.

— Py, P, jmp4-send B, + Y, to Py.

Figure 24: 4PC: Bit Injection Protocol

Lemma C.9 (Communication). Protocol Iisinja requires an
amortized communication cost of 6¢ + 4 bits in the prepro-
cessing phase, and requires 1 round with an amortized com-
munication of 3¢ bits in the online phase.

Proof. The preprocessing phase requires two instances of
I1,sh4 Which require 44 bits of communication. Verifying cor-
rectness of (ef) requires £+ 1 bits, whereas for (e,) we re-
quire ¢ bits. Finally, communicating the flag requires 3 bits.
This results in the amortized communication of 6¢ + 4 bits in
the preprocessing phase. The online phase consists of three
calls to ITjmps which requires 3¢ bits of amortized commu-
nication. Note that the last call can be deferred towards the
end of the computation, thereby requiring a single round for
multiple instances. Thus, the number of rounds required in
the online phase is one. O

C.8 Dot Product Protocol

The dot product protocol proceeds as follows. During the
preprocessing phase, similar to the multiplication protocol
Py, P1,P; sample a random [Fg@y] I Py, P3 compute [0y =
Y| 00, and jmpa-send [Txey), = Ty — [Txey), to P
Py, P>, P; sample a random W, and generate its [|-shares
locally. Servers P3,P; for j € {1,2} then compute [x]; =
Y1 (% o]+, [ong] ;) + [r?(@?]j — [y];, and jmp4-send
[x]; to Py. The formal protocol is given in Fig. 25.

_[Protocol Iyotps (P, { [xi]; [yi] }iepn))}

Preprocessing :

— P, Ps,Pj, for j € {1,2}, sample random [a;]; € Z,, while
Py, Py, P3 sample random [Tgey], € Zor.

— Py, P, P3 together sample random Yz, ¥, r € Zo and set [y]; =
nh=y-r

- Py, P compute [Fie)y}z = r‘i‘@y — [F,;@—y»] 1’ where l—‘i@y =
Y| O 0y,. Py, P3 jmp4-send [F;(@y] , 0P,

= P3,Pj, for j € {1,2}, set bdj =X (% [ay,’]j +Y; [axf]j) +
[FXGSI]j - [‘l’]j-

— P1,P3 jmp4-send [x], to Py, and P>, P; jmp4-send [x], to Pp.

Online :

- Py,Pj, for j € {1,2}, compute [B;}J = —
Vo) [0y]+ By + %) [06] ;) + [0]; + (]

— Py, Py jmp4-send [B}], to P>, while P», Py jmp4-send [B}], to
Pr.

— Pj for j € {1,2} computes B} =
B: + X (BxiBy,) + .

— P, P, jmp4-send B, + 17, to Py.

im1 (Bx +

[B2]1 + [Bz], and sets B,

Figure 25: 4PC: Dot Product Protocol (z=X©Y)

Lemma C.10 (Communication). Ilyotps (Fig. 25) requires
an amortized communication of 3¢ bits in the preprocessing
phase, and 1 round and an amortized communication of 3¢
bits in the online phase.

Proof. The preprocessing phase requires three calls to ITjmpa,
one to jmp4-send [[go5], to P», and two to jmp4-send
[x]; [x], to Po. Each invocation of ITjmps requires ¢ bits re-
sulting in the amortized communication cost of preprocessing

27

phase to be 3/ bits. In the online phase, there are 2 parallel
invocations of ITjmpa to jmp4-send [B;],,[B:], to P, Py, re-
spectively, which require amortized communication of 2/ bits
and one round. This is followed by another call to ITjmp4 to
jmp4-send B, + v, to Py which requires one more round and
amortized communication of ¢ bits. As in the multiplication
protocol, this step can be delayed till the end of the protocol
and clubbed for multiple instances. Thus, the online phase
requires one round and an amortized communication of 3/
bits. O

C.9 Truncation

Given the [[-]-sharing of a value v, this protocol enables the
servers to compute the [-]-sharing of the truncated value v¢
(right shifted value by, say, d positions). Given [v] and a
random truncation pair ([r], [r?]), the value (v —r) is opened,
truncated and added to [r?] to obtain [v¢]. The protocol for
generating the truncation pair ([r], [r¢]) is described in Fig.
26.

Protocol Htrgen4(£l’)]
— Py, P;,Pj, for j € {1,2} sample random R; € Zy:. Py, P3 sets
r = Ry + R, while P; sets [r]j =R;.

— Py,P3; locally truncate r to obtain r
Mjsha (Po, Ps, r?) to generate [r?].

4 and execute

Figure 26: 4PC: Generating Random Truncated Pair (r, r?)

Lemma C.11 (Communication). Iligens (Fig. 26) requires 1
round and an amortized communication of { bits in the online
phase.

Proof. The cost follows
IT;mps (Lemma C.1 and §C.3).

of
O

directly from that

C.10 Dot Product with Truncation

Protocol Ilgotpta (Fig. 27) enables servers to generate [-]-
sharing of the truncated value of z =X ®Y, denoted as z¢,

given the [-]-sharing of n-sized vectors X and y.

Lemma C.12 (Communication). Ilgyotpta (Fig. 27) requires
an amortized communication of 4¢ bits in the preprocessing
phase, and 1 round with amortized communication of 3¢ bits
in the online phase.

Proof. The preprocessing phase comprises of the preprocess-
ing phase of Ilgotps and Iirgens Which results in an amortized
communication of 3¢ + ¢ = 4/ bits. The online phase follows
from that of I1yop4 protocol except that, now, Py, P, compute
[-]-shares of z— r. This requires one round and an amortized
communication cost of 2¢ bits. Py, P, then jointly share the
truncated value of z— r with Py, which requires 1 round and ¢
bits. However, this step can be deferred till the end for multi-
ple instances, which results in amortizing this round. The total
amortized communication is thus 3¢ bits in online phase. [J

_[Protocol Motpta (P, { [xi, [yil }icpn])}

Preprocessing :

— Servers execute the preprocessing phase of Ilgotps(P,
{Ixils Iyl Yiegn))-

— Servers execute Htrgen4(fl’) to generate the truncation pair
([], [r%]). Py obtains the value r in clear.

Online :

- Py,Pj, for j € {1,2}, compute
i) [a)’i]j + By, + W) [O‘xi}j) -
[¥];+ [l

— Py,Py jmp4-send [(z - r)*} | to P> and P,Py jmp4-send
[(Z — r)*]z to Py.

— Py, P, locally compute (z—r)* = [(z—r)"] 1t [(z— r)*]2 and
set (z—r) = (z—=1)"+ XL, (BxBy) + V-

— Py, P, locally truncate (z—r) to obtain (z—r)? and execute
Misha (P1, Ps, (z— 1<) to generate [(z—r)?].

— Servers locally compute [24] = [(z—r)?] + [r/] .

[¥]; = —XLi((Bx +

[r]; and sets [(z—r)*]j =

Figure 27: 4PC: Dot Product Protocol with Truncation

C.11

Lemma C.13 (Communication). Protocol for relu requires
an amortized communication of 13¢ — 2 bits in the prepro-
cessing phase and requires log { + 1 rounds and an amortized
communication of 10¢ — 6 bits in the online phase.

Activation Functions

Proof. One instance of relu protocol comprises of execution
of one instance of Ilpitexts, followed by Ilpitinja. The cost,
therefore, follows from Lemma C.7, and Lemma C.9. O

Lemma C.14 (Communication). Protocol for sig requires
an amortized communication of 23¢ — 1 bits in the prepro-
cessing phase and requires log £ + 2 rounds and an amortized
communication of 200 — 9 bits in the online phase.

Proof. An instance of sig protocol involves the execution of
the following protocols in order— i) two parallel instances
of Tpitexta protocol, ii) one instance of I, 14 protocol over
boolean value, and iii) one instance of Iptinj4 and Ipioa4 in
parallel. The cost follows from Lemma C.7, Lemma C.8 and
Lemma C.9. O

D Security Analysis of Our Protocols

In this section, we provide detailed security proofs for our
constructions in both the 3PC and 4PC domains. We prove
security using the real-world/ ideal-word simulation based
technique. We provide proofs in the Feetyp-hybrid model for
the case of 3PC, where Feeryp (Fig. 6) denotes the ideal func-
tionality for the three server shared-key setup. Similarly, the
4PC proofs are provided in the Feetupa-hybrid model (Fig. 7).

Let A4 denote the real-world adversary corrupting at most
one server in P, and S denote the corresponding ideal world

28

adversary. The strategy for simulating the computation of
function f (represented by a circuit ckt) is as follows: The
simulation begins with the simulator emulating the shared-key
setup (Fsetup/ Fsetupa) functionality and giving the respective
keys to the adversary. This is followed by the input sharing
phase in which § extracts the input of A4, using the known
keys, and sets the inputs of the honest parties to be 0. § now
knows all the inputs and can compute all the intermediate
values for each of the building blocks in clear. Also, S can
obtain the output of the ckt in clear. § now proceeds simulat-
ing each of the building block in topological order using the
aforementioned values (inputs of 4, intermediate values and
circuit output).

In some of our sub protocols, adversary is able to decide
on which among the honest parties should be chosen as the
Trusted Third Party (TTP) in that execution of the proto-
col. To capture this, we consider corruption-aware function-
alities [4] for the sub-protocols, where the functionality is
provided the identity of the corrupt server as an auxiliary
information.

For modularity, we provide the simulation steps for each
of the sub-protocols separately. These steps, when carried
out in the respective order, result in the simulation steps for
the entire 3/4PC protocol. If a TTP is identified during the
simulation of any of the sub-protocols, simulator will stop
the simulation at that step. In the next round, the simulator
receives the input of the corrupt party in clear on behalf of the
TTP for the 3PC case, whereas it receives the input shares
from adversary for 4PC.

D.1 Security Proofs for 3PC protocols

The ideal functionality #3pc for evaluating ckt in the 3PC
setting appears in Fig. 28.

/—[Functionality f]‘—3pc} N

F3pc interacts with the servers in P and the adversary S. Let
f denote the functionality to be computed. Let x; be the input
corresponding to the server P, and y be the corresponding output,
ie (yo,y1,y2) = f(x0.x1,%2).
Step 1: F3pc receives (Input,x) from P € P, and computes
(Yo,¥1,¥2) = f(x0,%1,%2)-
Step 2: 73pc sends (Output,yy) to Ps € P.
.

J

Figure 28: 3PC: Ideal functionality for evaluating a function f

D.1.1 Joint Message Passing (jmp) Protocol

This section provides the security proof for the jmp primitive,
which forms the crux for achieving GOD in our constructions.
Let Fimp (Fig. 8) denote the ideal functionality and let .gf;p
denote the corresponding simulator for the case of corrupt
P; € P. We begin with the case for a corrupt sender, P;. The
case for a corrupt P; is similar and hence we omit details for

the same.

—‘ Simulator SJmp

- \Sjmp initializes ttp = L and receives v; from A4 on behalf of
P,.

— In case, 4 fails to send a value 5-1:;'1 broadcasts
" (accuse, ;) ", sets ttp = Pj, v; =

- Else it checks if v; = v, where v is the value computed by
Sjm based on the interaction with A4, and using the knowledge

of the shared keys. If the values are equal, S-m sets by =0,
else, sets b, = 1, and sends the same to A4 on the behalf of P;.
— If 4 broadcasts " (accuse, P;) ", Sjﬁp setsv; = L, ttp=P;,
and skips to the last step.
- SJ-I:;'IP computes and sends b; to A4 on behalf of P; and receives
b g from 4 on behalf of honest P;.

- If %ﬁiqp does not receive a b g on behalf of Pj, it broadcasts
" (accuse, P;) ", sets v; = L, ttp = Py. If 4 broadcasts
"(accuse, Pj)" Sf:np sets v; = L, ttp = Py. If ttp is set, skip
to the last step.

- If(vi=v)andbg =1, _SJI:;]
of Pj.

— Elseifv;#v;:S§ p broadcasts H; = H(v) and H = H(v;)

on behalf of P; and Py, respectively. If 4 does not broadcast,

_ijnp sets ttp = Py. Else if, 4 broadcasts a value H 5:

o IfHa#H;: S0

e Elseif Hg # H : S

, broadcasts H; = H(v) on behalf

sets ttp = P.

Jmp sets ttp = Pj.

- Sjmp invokes Fjmp on (Input,v;) and (Select, ttp) on behalf
of 4.

L, and skip to the last step.

Figure 29: Simulator %mp

The case for a corrupt receiver, Py is provided in Fig. 30.

for corrupt sender P;

—i Simulator SJmP

- %f;p initializes ttp = L, computes v honestly and sends v and
H(v) to 4 on behalf of P; and P;, respectively.

— If A broadcasts " (accuse, P;) ", set ttp = P}, else if 4
broadcasts " (accuse, Pj) ", set ttp = P;. If both messages are
broadcast, set ttp = P;. If ttp is set skip to the last step.

— On behalf of P;, Pj, %ﬁp receives b g from A4. Let b; (resp. b))
denote the bit received by P; (resp. P;) from 4.

— If A failed to send bit b4 to P;, S-I:Tﬁ broadcasts
" (accuse, Py) ", set ttp = P;. Similarly, for P;. If both P;, P;
broadcast " (accuse, Py) ", set ttp = P;. If ttp is set, skip to the
last step.

- Ifbivbj=1 :5-':5'] broadcasts H;,H; where H; = H; = H(v)
on behalf of P;, P;, respectively.

— If 4 does not broadcast .S‘jiﬂp sets ttp = L. If 4 broadcasts a

value Hg:
e IfHg#H;: Sjn’;psetsttp P;.
e Elseif Hg =H; =H; . P sets ttp = P,

Jmp

- _ijnp invokes Fjmp on (Input, L) and (Select, ttp) on behalf
of 4.

Figure 30: Simulator 5

imp fO corrupt receiver Py

29

D.1.2 Sharing Protocol

The case for a corrupt Py is provided in Fig. 36.

—‘ Simulator 55?

. P
Preprocessing: S_

emulates Feetup and gives the keys

(ko1,k02,kp) to A. The values that are commonly held along with
A are sampled using appropriate shared key. Otherwise, values
are sampled randomly.

Online:
— If the dealer P; = Py:
° 5_5? receives By on behalf of P; and sets msg = v accordingly.

e Steps for IIjy,, protocol are simulated according to .S‘Jmp
(Fig. 29), where Py plays the role of one of the senders.
— If the dealer P; = Py:
. 5:;? sets v = 0 by assigning B, = d.
e Steps for Iljy,, protocol are simulated
(Fig. 30), with Py acting as the receiver.
— If the dealer if P, : Similar to the case when P; = Pj.

similar to Sjmp

Figure 31: Simulator 551;? for corrupt Py

The case for a corrupt P; is provided in Fig. 32. The case
for a corrupt P, is similar.

—i Simulator 5;‘

inge cbi
Preprocessing: SJ sh

emulates Feetup and gives the keys

(ko1,k12,kp) to 4. The values that are commonly held along with
A are sampled using appropriate shared key. Otherwise, values
are sampled randomly.

Online:
— If dealer P, =P, : sh < Teceives By from 4 on behalf of P,.

- IfPh="P: Ssh] sets v = 0 by assigning B, = a, and sends By
to 4 on behalf of Fs.

- If PS = P2 .

— Steps of ITjm,, in all the steps above, are simulated similar to

f:np (Fig. 29), ie. the case of corrupt sender.

Similar to the case where Py = P.

Figure 32: Simulator 551‘ for corrupt Py

D.1.3 Multiplication Protocol

The case for a corrupt Py is provided in Fig. 33.

Simulator 5mu|t

Preprocessing:
- 5mu|t samples [0;]; ,[0;], and 7y, on behalf of Py, P, and gen-
erates the (-)-shares of d, e honestly.

n[::ult emulates Fyjyipre, and extracts ¥, [x] , [x], on behalf of
Py, P,.

Online:

- 5n1:u|t computes [B3];,[B3], and steps of ITjy,, are simulated

according to %ﬁp with 4 as one of the sender for both B3],
and [B7],.
- SrI;Oult computes B, + 7Y, on behalf of Py, P, and steps of ITjmp

are simulated according to %}Z]p with 4 as the receiver for B, +
Yz

Figure 33: Simulator 5

mult for corrupt Py

The case for a corrupt P; is provided in Fig. 34. The case
for a corrupt P; is similar.

—i Simulator Sri‘ult

Preprocessing:

- Srilult samples [0;];,V, and [0,;], on behalf of Py, P,. ‘Srilult
generates the (-)-shares of d, e honestly.
:;‘ult emulates Fyyipre. and extracts W, [x]; , [x], on behalf of
Py, P>.

Online:

- Srlr:lult computes [B}];,[B5], on behalf of Py, P>, and steps of
Ijm are simulated according to _S'jf;]p with 4 as one of the
sender for [B3],, and as the receiver for [B}],.

- 5:;‘““ computes B, +7, on behalf of P, and steps of ITjm,

are simulated according to %ﬁp with 4 one of the senders for
Bz + 7z

Figure 34: Simulator 5!

mule for corrupt Py

D.1.4 Reconstruction Protocol

The case for a corrupt Py is provided in Fig. 51. The case for
a corrupt Pp, P, is similar.

—‘ Simulator Sec

Preprocessing:

— Srec computes commitments on [dl,]; , [0], and Y, on behalf
of Py, P,, using the respective shared keys.

— The steps of Ijy,, are simulated similar to %f;p with A4 acting
as the receiver for Com(7y), and _%f;]p with A4 acting as one of
the senders for Com([o,];) and Com([ai],).

Online:

— Srec receives openings for Com([ow];), Com([a,],) on behalf
of P, and Py, respectively.

— Srec opens Com(7y) to 4 on behalf of Py, P,.

Figure 35: Simulator Syec for corrupt P

D.1.5 Joint Sharing Protocol

The case for a corrupt P is provided in Fig. 36. The case for
a corrupt Py, P» is similar.

30

—i Simulator S,

Preprocessing: .5_5? emulates Feetyp and gives the keys

(ko1,ko2,kp) to 4. The values that are commonly held along with

A are sampled using appropriate shared key. Otherwise, values
are sampled randomly.

Online:

- If (P, P;) = (P1,Py) : Sjsh computes By = v+ 0, on behalf of
Py. The steps of I, are simulated similar to SJ-I:Y"]F), where the
A acts as one of the senders.

— If (P;,Pj) = (P,,Pp) : Similar to the case when (P;,P;) =
(P1,Po).

— If (P;,P;) = (P1,P>) : Sish sets v = 0 by setting B, = a,. The

steps of l'IJ-.mp are simulated similar to %ﬁ‘qp, where the 4 acts
as the receiver.

Figure 36: Simulator Sjp, for corrupt Py

D.1.6 Dot Product Protocol

The case for a corrupt Py is provided in Fig. 37.

Simulator 5§8tp

Preprocessing: Sqor, emulates Fpotppre and derives W and re-

spective [-|-shares of % honestly on behalf of Py, P;.
Online:

- S(i)’tp computes [-]-shares of B3 on behalf of Py, P». The steps
of ITjmp, required to provide Py with [B7],, and P, with B3],
are simulated similar to %ﬁp, where Py acts as one of the sender
in both cases.

- S(i‘;tp computes 5 and 3, on behalf of P, P,. The steps of the
ITjmp, required to provide Py with B, -+, are simulated similar

to 5;:;,)’ where P acts as the receiver.

Figure 37: Simulator Sqetp for corrupt Py

The case for a corrupt P is provided in Fig. 38. The case
for a corrupt P; is similar.

Simulator Si‘)tp

Preprocessing: Si‘)tp emulates Tpotppre and derives [-]-shares
of y, % honestly on behalf of Py, P».
Online:

_ 55 otp computes [B7]; on behalf of Py, and [], on behalf of
Py and P». The steps of ITjm,,, required to provide Py with [B],,
and P with [B}],, are simulated similar to %ﬁ]p, where 4 acts
as one of the sender in the former case, and as a receiver in the
latter case.

_ S(ftl)tp computes 35 and 3, on behalf of P,. The steps of ITjmp,

required to provide Py with B, + V., are simulated similar to
SE where 4 acts as one of the sender.

jmp’

Figure 38: Simulator Sqqtp for corrupt Py

D.1.7 Truncation Protocol

The case for a corrupt P is provided in Fig. 39.

—‘ Simulator SS‘é;en

— Forie {0,...,4—1}, for j € {1,2}, Sf:[’gen samples r;[i] on
behalf of P; along with 4 using respective keys.

- 55(’gen acting on behalf of Py, P, generates [-]-shares of (r;[i])R
fori€{0,...,0—1},j € {1,2} non-interactively.

- 55%5,1 defines X, ¥, P and q as per Fig. 16. The steps for ITgotp
are simulated similar to SS(;W for generating A, B.

Figure 39: Simulator 55%% for corrupt Py

The case for a corrupt P; is provided in Fig. 40. The case
for a corrupt P; is similar.

—i Simulator 55‘gen

— Forie{0,...,4—1}, Sglgen samples ry [i] on behalf of Py along
with 4, using respective keys, and it samples r;[i] randomly on
behalf of Py, P>.

- SSIgen acting on behalf of Py, P, generates [-]-shares of (r;[i])R
fori € {0,...,4—1},j € {1,2} non-interactively.

- StI:'gen defines X, ¥, p and q as per Fig. 16. The steps for ITyq,
are simulated similar to Sgldotp for generating A, B.

Figure 40: Simulator Sg‘gen for corrupt P

D.2 Security Proofs for 4PC protocols

The ideal functionality #4pc for evaluating a function f to be
computed by ckt in 4PC appears in Fig. 41.

/—[Functionality :F4PC} N

Fapc interacts with the servers in P and the adversary S. Let f

denote the function to be computed. Let x; be the input corre-

sponding to the server Py, and y, be the corresponding output, i.e

(Yo,¥1,Y2,¥3) = f(x0,X1,%2,%3).

Step 1: F4pc receives (Input,x,) from Ps € P, and computes
(Y0, ¥1,Y3,¥3) = f (X0, X1,%2,X3)-

Step 2: F4pc sends (Output,ys) to Ps € P.

.

J

Figure 41: 4PC: Ideal functionality for computing f in 4PC setting

D.2.1 Joint Message Passing

Let %mps Fig. 18 denote the ideal functionality and let ‘Sjﬁip4
denote the corresponding simulator for the case of corrupt
P cP.

We begin with the case for a corrupt sender, P;, which is
provided in Fig. 42. The case for a corrupt P; is similar and

hence we omit details for the same.

31

l ; P, }
Simulator \Sjmp4

- ji’qul receives v; from 4 on behalf of honest P. If v; = v;
(where v; is the value computed by .S'f;\ 4 based on the interac-
tion with A4, and using the knowledge of the shared keys), then
ijr‘]p“ sets by =0, else it sets by = 1. If A4 fails to send a value,
by is set to be 1. ‘%1:;1134 sends by to A4 on behalf of P;.

- .%P;’W‘ sends b; = by and bj = by to A, and receives b; from 4
on behalf of honest P;, P;, respectively.

- Ifhy =1, %ﬁm sets ttp = 1, else it sets ttp = 0. Sjﬁqp4 invokes
Fimpa With (Input,v;) and (Select, b;) on behalf of 4.

Figure 42: Simulator 5ji1p4 for corrupt sender P;
The case for a corrupt receiver, Py is provided in Fig. 43.

- Pk
Simulator S,

- Sjir)ﬁp4 sends v, H(v) (where v is the value computed by %f;p4

based on the interaction with 4, and using the knowledge of the
shared keys) to A on behalf of honest P;, P;, respectively.

- .S'J-Iz']p“ receives by, by, by from A on behalf of P;, P;, P, re-
spectively. If A4 fails to send a value, it is assumed to be 1.

- .ijrk]p4 sets by to be majority value in by, b, by. If by =1,

%f;M sets ttp = 1, else it sets ttp = 0. Sjﬁﬁm invokes Fjmpa
with (Input, L) and (Select, by) on behalf of 4.

Figure 43: Simulator ‘Sf:f] pa for corrupt receiver Py

The case for a corrupt receiver, P;, which is the server out-
side the computation involved in ITjmps, is provided in Fig.
44,

Simulator S

jmp4

- .ijr’]p4 sends by = 0 followed by b; = 0,b; = 0 to A4 on behalf
of P, and P;, P;, respectively.

- J-I;I]p‘,' invokes Fimps With (Input, L) and (Select,by) on be-

half of 4.

Figure 44: Simulator .S'jfr’]p4 for corrupt fourth server P,

D.2.2 Sharing Protocol

The case for corrupt P is given in Fig. 45.

—‘ Simulator SII;‘:M

Preprocessing: 511;‘;

. emulates Fserups and gives the keys

(k()l,kog,k03,k012,k013,k023 and kT) to 4. The values that are
commonly held with 4 are sampled using the respective keys,
while others are sampled randomly.

Online:

— If dealer is Py, 5§2h4 receives By from 4 on behalf of P;. Steps
corresponding to I, 4 are simulated according to Sg"j - where
Py acts as one of the sender for sending By .

— If dealer is P, or P, SS‘ZM sets v = 0 by assigning By, = o

Steps corresponding to Hjmp4 for sending By + Y to 4 are

simulated according to .SH where Py acts as the receiver.

— If dealer is P3, SH sets v = 0 by assigning By = ol . SH -
sends By + 7 to 4 on behalf of P3 Steps corresponding to
ITjmp4 are simulated according to Snij where Py acts as one

of the sender with Py, P, as the receivers, separately.

Figure 45: Simulator SS‘ZM for corrupt Py

The case for corrupt P; is given in Fig. 46. The case for a
corrupt P, is similar.

—‘ Simulator 5111);4

Preprocessing: 5515,,4

emulates Fsetups and gives the keys

(k(]],k127k13,k012,k013,k123 and kg)) to 4. The values that are
commonly held with A4 are sampled using the respective keys,
while others are sampled randomly.

Online:

— If dealer is Py, Sg‘sm receives By from 4 on behalf of P,. Steps

corresponding to ITjyp4 are simulated according to 511-)[2 .
Py acts as one of the sender for sending By + 7y to Py.
— If dealeris Py or P;, 55‘5

where
p4

. sets v =0 by assigning By =ow.
o If dealer is Py, Slfllsm sends By to 4 on behalf of Py. Steps
corresponding to ITjmps are simulated according to ng

where Pj acts as one of the sender to send By .

e If dealer is P, Sg‘ sends By to 4 on behalf of P,. Steps
corresponding to ITjmps are simulated according to 51%- .
where Pj acts as one of the sender to send By + Y.

— If dealer is Ps, Sglm sets v = 0 by assigning B, = o,. Steps
corresponding to ITjyp4 are simulated according to Sgim

where
p4
Py acts as the receiver for receiving By + Yy .

Figure 46: Simulator ‘SI{JIISM for corrupt Py

The case for corrupt P is given in Fig. 47.

—| Simulator SI%M

Preprocessing: 5§3h4 emulates Fsetups and gives the keys
_— = s

(k03,k13,k23,k013,k023,k123 and kg)) to 4. The values that are
commonly held with 4 are sampled using the respective keys,
while others are sampled randomly.

Online:

— If dealer is Ps, 55;4 receives Py + Yy from 4 on behalf of .

Steps corresponding to ITjmp4 are simulated according to 51}1’2 -
where P3 acts as one of the sender with P;, P> as the receivers,
separately.

— If dealer is Py or Py or P, steps corresponding t0 ITjmps are
simulated according to SII]J’J_ -

. where Pj acts as the server outside
P
the computation.

D.2.3 Multiplication Protocol

The case for corrupt P is given in Fig. 48.

[. P, }
Simulator S

Preprocessing:

- g’mm samples [0z ,[0z], , [['xy], using the respective keys
with 4. Sg‘;um samples Yz, ¥, r randomly on behalf of the re-
spective honest parties, and computes [I'xy], honestly.

— Steps corresponding to

P;
SHJ mp4

[Tjmps are simulated according to
where Py acts as one of the sender for sending [[xy],.

P .
= Sn1, . omputes [x]y, [, honestl};). Steps corresponding to
ITjmp4 are simulated according to Srﬁm

" where Py acts as the
receiver for [x]; , [x],.

Online:

- IPI(|)11u|t4 computes [B5]; , [B3], honestly. Steps corresponding to

. . P;
ITjmp4 are simulated according to SH'rn

J
of the sender for sending [B}]; , [B;],.

- 11-3[” s computes Bz + 7. Steps corresponding to Ijmps are
mul

simulated according to SI);’f
. Jmp!
receiving Bz +Yz.

. where P acts as one

. where P, acts as the receiver for

Figure 48: Simulator Slfl?nulm for corrupt Py

The case for corrupt Pj is given in Fig. 49. The case for a
corrupt P, is similar.

—| Simulator Sg‘mum

Preprocessing:

P . .
~ 811, S@mples (0], ¥z, ¥, 1, [Ty using the respective keys
With A. .Sr];'mm _samples [0;], randomly on behalf of the respec-
tive honest parties.
— Steps corresponding to Iljnps are simulated according to
Sllj)’j ot where P; acts as the server outside the computation while

communicating [[yy],.

Py

= S, Computes [x],. Steps corresponding to ITjmp4 are simu-

lated according to SII;",
Jm|
[l
— Steps corresponding to ITjypg are simulated according to

51}])’, . where Pj acts as the server outside the computation while
jmp:
communicating [X],.

. where P; acts as one of the sender for
P

Online:

P .
- S, computes [B7];, [B7],. Steps corresponding to ITjmps
are simulated according to SP"_ and SP “ . where Pj acts as
Mimpa Mjmps

one of the sender for sending [B];, and P; acts as the receiver

for receiving [B}],, respectively.

- glmm computes B + ;. Steps corresponding to ITjyp4 are

simulated according to 51]‘?-
jm

for sending B, + ;.

o where P; acts as one of the sender

Figure 47: Simulator 5535“ for corrupt P3

32

Figure 49: Simulator ‘SI}T)Imm for corrupt Py

The case for corrupt P; is given in Fig. 50.

—‘ Simulator 5{;’; "

Preprocessing:

P . .
~ i, Samples (0], [0]5 , ¥z, W1, [Ty using the respective

. Py
keys with 4. S e
— Steps corresponding to ITjyp4 are simulated according to

P: .
Sri.,._, where P3 acts as one of the sender for sending [Ixy,.
Jmp!

- gfﬂulm computes [x]; ,[x],. Steps corresponding to ITjmp4 are

computes [['yy], honestly.

simulated according to 511-2 - where Pz acts as one of the sender
for sending [x]; and [X],.
Online:

— Steps corresponding to ITjyp4 are simulated according to
5{}3 - where P3 acts as the server outside the computation in-
volving [B7]; , [B;], and Bz + ..

Figure 50: Simulator .Sglum for corrupt P3

D.2.4 Reconstruction Protocol

The case for corrupt Py is given in Fig. 51. The cases for
corrupt Py, P>, P3 are similar.

Simulator 5{}“

recd

- 511;(;(4 sends Yy to 4 on behalf of Py, P, and H(yy) on behalf
of P, respectively.

- .51{)[(:“4 receives H([ow]), H([ow],), By +W from A on behalf
of Py, Py, P3, respectively.

Figure 51: Simulator Sg‘:w for corrupt Py

D.2.5 Joint Sharing Protocol

The case for corrupt Py is given in Fig. 52.

—i Simulator 5§1h4

Preprocessing:

_ r};?sm has knowledge of o, and 7y, which it obtains while

emulating Fsetups- The common values shared with the A4 are
sampled using the appropriate shared keys, while other values
are sampled at random.

Online:

— If dealers are (P, Py): 5&_’5“ computes By using v. Steps corre-
sponding to ITjm4 are simulated according to ng:mp“ where Py
acts as one of the sender for By .

— If dealers are (P, P,) or (Py, P3): Analogous to the above case.
— If dealers are (P;,P»): Sg?sm sets v =0 and By = [o]; + [0ty],.
Steps corresponding to ITjmp4 are simulated according to SS’Emp

where Py acts as the receiver for By + 7y .
P
— If dealers are (P3,P;): SH?5h4 sets v =0and By = [0]; + [ty],.

33

Steps corresponding to ITjm 4 are simulated according to 51% ot

where Py acts as the server outside the computation for , and

according to SII;‘_' . where Py acts as the receiver for By + 7y .
jmp:

— If dealers are (P3,P»): Analogous to the above case.

Figure 52: Simulator Sg?sm for corrupt Py

The case for corrupt P; is given in Fig. 53. The case for
corrupt P, is similar.

—‘ Simulator SIITDLM

Preprocessing:

- g}m has knowledge of a-values and y corresponding to v

which it obtains while emulating Fsetups4. The common values
shared with the A4 are sampled using the appropriate shared keys,
while other values are sampled at random.

Online:

— If dealers are (P, P): SSLM computes By using v. Steps corre-
sponding to ITjyp4 are simulated according to 51% o where Py
acts as one of the sender for .

— If dealers are (P, P,): Analogous to the previous case, except
that now By + 7y is sent instead of By.

— If dealers are (P3,P;): Sg;sm computes By and By + . Steps
corresponding to ITjnp4 are simulated according to .SII;"J_ o where
Py acts as one of the sender for By, By + Y-

— If dealers are (Py,P;) or (Py,P3) or (Ps,P,): ngsm sets v =
0 and By = [ow]; + [ow],. Steps corresponding to ITjmps are
simulated according to Sg’;mﬂ where Pj acts as the receiver for

Bv.

Figure 53: Simulator 55}5h4 for corrupt Py

The case for corrupt P; is given in Fig. 54.

Simulator .Sg?sm
J

Preprocessing:

P

= St has knowledge of a-values and y corresponding to v

which it obtains while emulating Fsetup4. The common values
shared with the 4 are sampled using the appropriate shared keys,
while other values are sampled at random.

Online:

— If dealers are (P;,P,): Sglm sets v = 0. Steps corresponding
to ITjmp4 are simulated according to SII;IJ_ ot where Pz acts as the
server outside the computation for By + Yy .

— If dealers are (Py, P;) or (Py, P»): Analogous to the above case.

— If dealers are (Py, P3): Sglm computes By using v. Steps corre-
sponding to ITjmp4 are simulated according to SII])"J_ o where P3
acts as one of the sender for sending B .

— If dealers are (P3,P)): Sglm computes By and By + V. Steps
corresponding to Ijmp4 are simulated according to ng o where
P5 acts as one of the sender for sending By, By + v

— If dealers are (P3,P,): Analogous to the above case.

Figure 54: Simulator 51%%4 for corrupt P3

D.2.6 Dot Product Protocol

The case for corrupt Py is given in Fig. 55.

Simulator 5{;

0
dotp4
Preprocessing:

_ g‘;om samples [0t]; , [0z], , [Txoy], using the respective keys

with 4. Sg‘:jom samples Y, y,r randomly on behalf of the re-
spective honest parties, and computes [['zoy|, honestly.

— Steps corresponding to ITjyps are simulated according to
5{1’3 o where Py acts as one of the sender for [I}@y]

5
- g;om computes X,X2 honestly. Steps corresponding to

ITjmps are simulated according to .S'lf)[‘, . where P, acts as the
jmp:
receiver for x| and X».
Online:
- g(; .. computes B3], , [B3], honestly. Steps corresponding to
otp:
. . P;
ITjmp4 are simulated according to 511!»,,,,,4 where Py acts as one

of the sender for [B}]; , [B;],.

P .
_ H(():iotp4 computes B +7;. Steps corresponding to ITjmps are

simulated according to .Sg‘f . where P acts as the receiver for
jmp:
Bz + 2.

Figure 55: Simulator Slqtiiotp/! for corrupt Py

The case for corrupt P; is given in Fig. 56. The case for
corrupt P» is similar.

—i Simulator SSL -
otp:

Preprocessing:

P, . .
_ H‘dm'ﬂ samples [0t]; .7z, Y, T, [F;‘@yh using the respective

keys with 4. SSLOLM samples [0}, randomly on behalf of the
respective honest parties.

— Steps corresponding to ITjyps are simulated according to
SII;IJ_ o where P; acts as the server outside the computation for
[r?c@if] 2

- g‘d oips COMIPULES X1 Steps corresponding to ITjyp4 are simu-
lated according to 51% - where P; acts as one of the sender for
x1-

— Steps corresponding to ITjyps are simulated according to

5{-}{ , Where Py acts as the server outside the computation for
Jmp!

X2-

Online:

_ jgzotp4 computes [3];,[B>],. Steps corresponding to ITjmpa

are simulated according to SI-';"_ o and Sgk_ e where P| acts as
jm) jm,
one of the sender for [B}],, and P; acts as the receiver for [3],.

34

_ SII;LMPA computes B, +7,. Steps corresponding to ITjyp4 are

simulated according to Sg"_ , Where Py acts as one of the sender
jmp
for B, + V.-

Figure 56: Simulator Sgldom for corrupt Py

The case for corrupt P3 is given in Fig. 57.

[. P. }
Simulator Sy’

Preprocessing:

P .
- Hzow samples (0], , [0z]5 , Yz, W, T, [F;@yh using the respec-
tive keys with 4. ngotp‘l computes [Fg@y] honestly.
— Steps corresponding to Ilj,pg are simulated according to

P;
SHij4 where P3 acts as one of the sender for [F;@y] Y

_ 511_2 - computes 1,X2. Steps corresponding to Hjmp4 are
simulated according to 5£§mp4 where P; acts as one of the sender
for x1,%2-

Online:

— Steps corresponding to ITjyp4 are simulated according to

SI]—.}’, , Where P3 acts as the server outside the computation for
mp:

B2]1 (B3] Be + 7.

Figure 57: Simulator .ngom for corrupt P3

D.2.7 Truncation Pair Generation

Here we give the simulation steps for Iligens. The case for

corrupt Py is given in Fig. 58. The case for corrupt P3 is
similar.

Simulator .51{[)‘: \
rgen

Po

= Sygens samples R, R, using the respective keys with 4.

— Steps corresponding to ITjsp4 are simulated according to SII-JI‘LM
(Fig. 52).

Figure 58: Simulator Sg‘:rgw for corrupt Py

The case for corrupt P; is given in Fig. 59. The case for
corrupt P, is similar.

Simulator Sg‘t .
rgen

- glt . samples R using the respective keys with 4, and sam-
rgen

ples R, randomly.

— Steps corresponding to ITjsp4 are simulated according to ‘5&
(Fig. 53).

sh4

Figure 59: Simulator jg't geng fOT COITUDL Py

	Introduction
	Our Contributions
	Organisation of the paper

	Preliminaries
	Robust 3PC and PPML
	Joint Message Passing primitive
	3PC Protocols
	Building Blocks for PPML using 3PC

	Robust 4PC and PPML
	4PC Protocols

	Applications and Benchmarking
	Logistic Regression
	NN Inference

	Conclusion
	Preliminaries
	Shared Key Setup
	Collision Resistant Hash Function
	Commitment Scheme

	3PC Protocols
	Joint Message Passing
	Sharing Protocol
	Joint Sharing Protocol
	Multiplication Protocol
	Reconstruction Protocol
	Special protocols
	Bit Extraction protocol
	Bit2A Conversion protocol
	Bit Injection protocol

	Dot Product Protocol
	Instantiating FDotPPre

	 Truncation
	 Dot Product with Truncation
	 Activation Functions
	Matrix Operations and Convolutions

	4PC Protocols
	4PC Joint Message Passing Primitive
	Sharing Protocol
	Joint Sharing Protocol
	 -sharing Protocol
	Multiplication Protocol
	Reconstruction Protocol
	Special protocols
	Bit Extraction Protocol
	Bit2A Protocol
	Bit Injection Protocol

	Dot Product Protocol
	 Truncation
	 Dot Product with Truncation
	 Activation Functions

	Security Analysis of Our Protocols
	Security Proofs for 3PC protocols
	Joint Message Passing (jmp) Protocol
	Sharing Protocol
	Multiplication Protocol
	Reconstruction Protocol
	Joint Sharing Protocol
	Dot Product Protocol
	 Truncation Protocol

	Security Proofs for 4PC protocols
	Joint Message Passing
	Sharing Protocol
	Multiplication Protocol
	Reconstruction Protocol
	Joint Sharing Protocol
	Dot Product Protocol
	 Truncation Pair Generation

