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Abstract
Performing ML computation on private data while main-
taining data privacy, aka Privacy-preserving Machine Learn-
ing (PPML), is an emergent field of research. Recently, PPML
has seen a visible shift towards the adoption of the Secure
Outsourced Computation (SOC) paradigm due to the heavy
computation that it entails. In the SOC paradigm, computa-
tion is outsourced to a set of powerful and specially equipped
servers that provide service on a pay-per-use basis. In this
work, we propose SWIFT, a robust PPML framework for
a range of ML algorithms in SOC setting, that guarantees
output delivery to the users irrespective of any adversarial
behaviour. Robustness, a highly desirable feature, evokes user
participation without the fear of denial of service.

At the heart of our framework lies a highly-efficient,
maliciously-secure, three-party computation (3PC) over rings
that provides guaranteed output delivery (GOD) in the honest-
majority setting. To the best of our knowledge, SWIFT is the
first robust and efficient PPML framework in the 3PC set-
ting. SWIFT is as fast as (and is strictly better in some cases
than) the best-known 3PC framework BLAZE (Patra et al.
NDSS’20), which only achieves fairness. We extend our 3PC
framework for four parties (4PC). In this regime, SWIFT is as
fast as the best known fair 4PC framework Trident (Chaudhari
et al. NDSS’20) and twice faster than the best-known robust
4PC framework FLASH (Byali et al. PETS’20).

We demonstrate our framework’s practical relevance by
benchmarking popular ML algorithms such as Logistic Re-
gression and deep Neural Networks such as VGG16 and
LeNet, both over a 64-bit ring in a WAN setting. For deep
NN, our results testify to our claims that we provide improved
security guarantee while incurring no additional overhead for
3PC and obtaining 2× improvement for 4PC.

Changelog1: For 3PC, we propose methods to make the
communication cost for dot product independent of the vector

1changes with respect to to first version of the paper: https://eprint.
iacr.org/2020/592/20200522:151003

sizes. For 4PC, we present a better Joint Message Passing
primitive which uses less number of rounds than the earlier
instantiation.

1 Introduction

Privacy Preserving Machine Learning (PPML), a booming
field of research, allows Machine Learning (ML) computa-
tions over private data of users while ensuring the privacy of
the data. PPML finds applications in sectors that deal with sen-
sitive/confidential data, e.g. healthcare, finance, and in cases
where organisations are prohibited from sharing client infor-
mation due to privacy laws such as CCPA and GDPR. How-
ever, PPML solutions make the already computationally heavy
ML algorithms more compute-intensive. An average end-user
who lacks the infrastructure required to run these tasks prefers
to outsource the computation to a powerful set of specialized
cloud servers and leverage their services on a pay-per-use
basis. This is addressed by the Secure Outsourced Computa-
tion (SOC) paradigm, and thus is an apt fit for the need of the
moment. Many recent works [11, 14, 15, 40, 41, 43, 46, 48, 54]
exploit Secure Multiparty Computation (MPC) techniques
to realize PPML in the SOC setting where the servers enact
the role of the parties. Informally, MPC enables n mutually
distrusting parties to compute a function over their private
inputs, while ensuring the privacy of the same against an
adversary controlling up to t parties. Both the training and
prediction phases of PPML can be realized in the SOC set-
ting. The common approach of outsourcing followed in the
PPML literature, as well as by our work, requires the users to
secret-share2 their inputs between the set of hired (untrusted)
servers, who jointly interact and compute the secret-shared
output, and reconstruct it towards the users.

In a bid to improve practical efficiency, many recent
works [6, 11, 14, 15, 19, 24–26, 33–35, 46] cast their protocols
into the preprocessing model wherein the input-independent

2The threshold of the secret-sharing is decided based on the number of
corrupt servers so that privacy is preserved.
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(yet function-dependent) phase computationally heavy tasks
are computed in advance, resulting in a fast online phase. This
paradigm suits scenario analogous to PPML setting, where
functions (ML algorithms) typically need to be evaluated a
large number of times, and the function description is known
beforehand. To further enhance practical efficiency by lever-
aging CPU optimizations, recent works [7, 20, 23, 25, 27]
propose MPC protocols that work over 32 or 64 bit rings.
Lastly, solutions for a small number of parties have re-
ceived a huge momentum due to the many cost-effective
customizations that they permit, for instance, a cheaper reali-
sation of multiplication through custom-made secret sharing
schemes [3, 4, 11, 14, 15, 46].

We now motivate the need for robustness aka guaranteed
output delivery (GOD) over fairness3, or even abort security4,
in the domain of PPML. Robustness provides the guarantee of
output delivery to all protocol participants, no matter how the
adversary misbehaves. Robustness is crucial for real-world
deployment and usage of PPML techniques. Consider the
following scenario wherein an ML model owner wishes to
provide inference service. The model owner shares the model
parameters between the servers, while the end-users share
their queries. A protocol that provides security with abort or
fairness will not suffice as in both the cases a malicious adver-
sary can lead to the protocol aborting, resulting in the user not
obtaining the desired output. This leads to denial of service
and heavy economic losses for the service provider. For data
providers, as more training data leads to more accurate mod-
els, collaboratively building a model enables them to provide
better ML services, and consequently, attract more clients. A
robust framework encourages active involvement from multi-
ple data providers. Hence, for the seamless adoption of PPML
solutions in the real world, the robustness of the protocol is
of utmost importance. The hall-mark result of [17] suggests
that an honest-majority amongst the servers is necessary to
achieve robustness. Consequent to the discussion above, we
focus on the honest-majority setting with a small set of par-
ties, especially 3 and 4 parties, both of which have drawn
enormous attention recently [3,4,8,9,11,13–15,30,42,44,46].
Our protocols work over rings, are cast in the preprocessing
paradigm, and achieve GOD.

Related Work We restrict the relevant work to a small num-
ber of parties and honest-majority, focusing first on MPC,
followed by PPML. MPC protocols for a small population
can be cast into orthogonal domains of low latency proto-
cols [12, 13, 45], and high throughput protocols [1, 3, 4, 7, 9,
14, 16, 29, 30, 44, 46]. In the 3PC setting, [4, 14] provide effi-
cient semi-honest protocols wherein ASTRA [14] improved
upon [4] by casting the protocols in the preprocessing model
and provided a fast online phase. ASTRA further provided se-
curity with fairness in the malicious setting with an improved

3This ensures either all parties or none learn the output.
4This may allow the corrupt parties alone to learn the output.

online phase compared to [3]. Later, a maliciously-secure 3PC
protocol based on distributed zero-knowledge techniques was
proposed by Boneh et al. [8] providing abort security. Further,
building on [8] and enhancing the security to GOD, Boyle
et al. [9] proposed a concretely efficient 3PC protocol with
an amortized communication cost of 3 field elements (can be
extended to work over rings) per multiplication gate. Concur-
rently, BLAZE [46] provided a fair protocol in the preprocess-
ing model, which required communicating 3 ring elements in
each phase. However, BLAZE eliminated the reliance on the
computationally intensive distributed zero-knowledge system
(whose efficiency kicks in for large circuit or many multi-
plication gates) from the online phase and pushed it to the
preprocessing phase. This resulted in a faster online phase
compared to [9].

In the regime of 4PC, Gordon et al. [31] presented proto-
cols achieving abort security and GOD. However, [31] relied
on expensive public-key primitives and broadcast channels
to achieve GOD. Trident [15] improved over the abort proto-
col of [31], providing a fast online phase achieving security
with fairness, and presented a framework for mixed world
computations [27]. A robust 4PC protocol was provided in
FLASH [11], which requires communicating 6 ring elements,
each, in the preprocessing and online phases.

In the PPML domain, MPC has been used for various
ML algorithms such as Decision Trees [39], Linear Regres-
sion [28, 49], k-means clustering [10, 32], SVM Classifica-
tion [53, 56], Logistic Regression [51]. In the 3PC SOC set-
ting, the works of ABY3 [41] and SecureNN [54], provide
security with abort. This was followed by ASTRA [14], which
improves upon ABY3 and achieves security with fairness. AS-
TRA presents primitives to build protocols for Linear Regres-
sion and Logistic Regression inference. Recently, BLAZE
improves over the efficiency of ASTRA and additionally tack-
les training for the above ML tasks, which requires building
additional PPML building blocks, such as truncation and bit
to arithmetic conversions. In the 4PC setting, the first robust
framework for PPML was provided by FLASH [11] which
proposed efficient building blocks for ML such as dot product,
truncation, MSB extraction, and bit conversion. The works
of [11,14,15,41,43,46,54] work over rings to garner practical
efficiency. In terms of efficiency, BLAZE and respectively
FLASH and Trident are the closest competitors of this work
in 3PC and 4PC settings. We now present our contributions
and compare them with these works.

1.1 Our Contributions
We propose, SWIFT, a robust maliciously-secure framework
for PPML in the SOC setting, with a set of 3 and 4 servers
having an honest-majority. At the heart of our framework lies
highly-efficient, maliciously-secure, 3PC and 4PC over rings
(both Z2` and Z21) that provide GOD in the honest-majority
setting. We cast our protocols in the preprocessing model,
which helps obtain a fast online phase. As mentioned earlier,
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the input-independent (yet function-dependent) computations
will be performed in the preprocessing phase.

To the best of our knowledge, SWIFT is the first robust and
efficient PPML framework in the 3PC setting and is as fast as
(and is strictly better in some cases than) the best known fair
3PC framework BLAZE [46]. We extend our 3PC framework
for 4 servers. In this regime, SWIFT is as fast as the best
known fair 4PC framework Trident [15] and twice faster than
best known robust 4PC framework FLASH [11]. We detail
our contributions next.

Robust 3/4PC frameworks The framework consists of a
range of primitives realized in a privacy-preserving way which
is ensured via running computation in a secret-shared fash-
ion. We use secret-sharing over both Z2` and its special in-
stantiation Z21 and refer them as arithmetic and respectively
boolean sharing. Our framework consists of realizations for
all primitives needed for general MPC and PPML such as
multiplication, dot-product, truncation, bit extraction (given
arithmetic sharing of a value v, this is used to generate boolean
sharing of the most significant bit (msb) of the value), bit to
arithmetic sharing conversion (converts the boolean sharing
of a single bit value to its arithmetic sharing), bit injection
(computes the arithmetic sharing of b · v, given the boolean
sharing of a bit b and the arithmetic sharing of a ring element
v) and above all, input sharing and output reconstruction in
the SOC setting. A highlight of our 3PC framework, which,
to the best of our knowledge is achieved for the first time, is a
robust dot-product protocol whose (amortized) communica-
tion cost is independent of the vector size, which we obtain by
extending the techniques of [8, 9]. The performance compari-
son in terms of concrete cost for communication and rounds,
for PPML primitives in both 3PC and 4PC setting, appear in
Table 1. As claimed, SWIFT is on par with BLAZE for most
of the primitives (while improving security from fair to GOD)
and is strictly better than BLAZE in case of dot product and
dot product with truncation. For 4PC, SWIFT is on par with
Trident in most cases (and is slightly better for dot product
with truncation and bit injection), while it is doubly faster
than FLASH.

Applications and Benchmarking We demonstrate the
practicality of our protocols by benchmarking PPML, par-
ticularly, Logistic Regression (training and inference) and
popular Neural Networks (inference) such as [43], LeNet [37]
and VGG16 [50] having millions of parameters. The NN
training requires mixed-world conversions [15, 27, 41], which
we leave as future work. Our PPML blocks can be used to
perform training and inference of Linear Regression, Sup-
port Vector Machines, and Binarized Neural Networks (as
demonstrated in [11, 14, 15, 46]).

New techniques and Comparisons with Prior Works To
begin with, we introduce a new primitive called Joint Mes-
sage Passing (jmp) that allows two servers to relay a common
message to the third server such that either the relay is suc-
cessful or an honest server is identified. The identified honest
party enacts the role of a TTP to take the computation to
completion. jmp is extremely efficient as for a message of `
elements it only incurs the minimal communication cost of `
elements (in an amortized sense). Without any extra cost, it
allows us to replace several pivotal private communications,
that may lead to abort, either because the malicious sender
does not send anything or sends a wrong message. All our
primitives, either for a general 3PC or a PPML task, achieve
GOD relying on jmp.

Second, instead of using the multiplication of [9] (which
has the same overall communication cost as that of our on-
line phase), we build a new protocol. This is because the
former involves distributed zero-knowledge protocols. The
cost of this heavy machinery gets amortized only for large
circuits having millions of gates, which is very unlikely for
inference and moderately heavy training tasks in PPML. As
in BLAZE [46], we follow a similar structure for our multi-
plication protocol but differ considerably in techniques as our
goal is to obtain GOD. Our approach is to manipulate and
transform some of the protocol steps so that two other servers
can locally compute the information required by a server in a
round. However, this transformation is not straight forward
since BLAZE was constructed with a focus towards providing
only fairness (details appear in §3). The multiplication proto-
col forms a technical basis for our dot product protocol and
other PPML building blocks. We emphasise again that the
(amortized) cost of our dot product protocol is independent
of the vector size.

Third, extending to 4PC brings several performance im-
provements over 3PC. Most prominent of all is a conceptually
simple jmp instantiation, which forgoes the broadcast chan-
nel while retaining the same communication cost; and a dot
product with cost independent of vector size sans the 3PC
amortization technique.

Fourth, we provide robust protocols for input sharing and
output reconstruction phase in the SOC setting, wherein a
user shares its input with the servers, and the output is recon-
structed towards a user. The need for robustness and commu-
nication efficiency together makes these tasks slightly non-
trivial. As a highlight, we introduce a super-fast online phase
for the reconstruction protocol, which gives 4× improvement
in terms of rounds (apart from improvement in the communi-
cation) compared to BLAZE. Although we aim for GOD, we
ensure that an end-user is never part of broadcast which is rel-
atively expensive than atomic point-to-point communication.

As a final remark, we note that the recent work of [22] pro-
poses a variant of GOD in the 4PC setting, which is termed
as private robustness. The authors of [22] state that private
robustness is a variant of GOD which guarantees that the cor-

3



Building
Blocks

3PC 4PC

Ref.
Pre. Online

Security Ref.
Pre. Online

Security
Comm. (`) Rounds Comm. (`) Comm. (`) Rounds Comm. (`)

Multiplication

[8] 1 1 2 Abort
[9] - 3 3 GOD Trident 3 1 3 Fair

BLAZE 3 1 3 Fair FLASH 6 1 6 GOD
SWIFT 3 1 3 GOD SWIFT 3 1 3 GOD

Dot Product
Trident 3 1 3 Fair

BLAZE 3n 1 3 Fair FLASH 6 1 6 GOD
SWIFT 3 1 3 GOD SWIFT 3 1 3 GOD

Dot Product
with Truncation

Trident 6 1 3 Fair
BLAZE 3n+2 1 3 Fair FLASH 8 1 6 GOD
SWIFT 15 1 3 GOD SWIFT 4 1 3 GOD

Bit
Extraction

Trident ≈ 8 log`+1 ≈ 7 Fair
BLAZE 9 1+ log` 9 Fair FLASH 14 log` 14 GOD
SWIFT 9 1+ log` 9 GOD SWIFT ≈ 7 log` ≈ 7 GOD

Bit to
Arithmetic

Trident ≈ 3 1 3 Fair
BLAZE 9 1 4 Fair FLASH 6 1 8 GOD
SWIFT 9 1 4 GOD SWIFT ≈ 3 1 3 GOD

Bit
Injection

Trident ≈ 6 1 3 Fair
BLAZE 12 2 7 Fair FLASH 8 2 10 GOD
SWIFT 12 2 7 GOD SWIFT ≈ 6 1 3 GOD

– Notations: ` - size of ring in bits, n - size of vectors for dot product.

Table 1: 3PC and 4PC: Comparison of SWIFT with its closest competitors in terms of Communication and Round Complexity

rect output is produced in the end, but without relying on an
honest party learning the user’s private inputs. Thus, departing
from the approach of employing a TTP to complete the com-
putation when malicious behaviour is detected, [22] attains
GOD by eliminating a potentially corrupt party, and repeating
the secure computation with fewer number of parties which
are deemed to be honest. We point out a few concerns on this
work. Firstly, as mentioned earlier, the goal of private robust-
ness is to prevent an honest party learning the user’s input,
thereby preventing it from misusing this private information
(user’s input) in the future if it goes rogue. We note, however,
that in the private robustness setting, although an honest party
does not learn a user’s input as a part of the protocol, nothing
prevents an adversary from revealing its view to an honest
party. In such a scenario, if the honest party goes rogue in the
future, it can use its view together with the view received from
the adversary to obtain a user’s input. Hence, we believe that
the attacks that can be launched in our variant for achieving
GOD, can also be launched in the private robustness variant,
making the two equivalent. Secondly and importantly, a for-
mal treatment of private robustness is missing in [22] which
makes it unclear what additional security is achieved on top of
traditional GOD security. Here, we additionally note that the
notion of private robustness does not comply with the recently
introduced notion of FaF security [2]5. Lastly, we emphasize

5Althought [22] states that the issue of private robustness was identified
and treated formally in [2], it is not clear whether [22] achieves the FaF
security of [2]. For a corruption threshold t and an honest threshold h∗, FaF
security demands that the view of any t corrupt parties and separately the

that the approach of eliminating a potentially corrupt party,
and re-running the computation results in doubling or tripling
the communication cost, thereby undermining the efficiency
gains.

1.2 Organisation of the paper
The rest of the paper is organized as follows. In §2 we describe
the system model, preliminaries and notations used. §3 and §4
detail our constructs in the 3PC and 4PC setting respectively.
These are followed by the applications and benchmarking
in §5. §A elaborates on additional preliminaries while the
security proofs for our constructions are provided in §C.

2 Preliminaries

We consider a set of three servers P = {P0,P1,P2} that are
connected by pair-wise private and authentic channels in a
synchronous network, and a static, malicious adversary that
can corrupt at most one server. We use a broadcast channel

view of any h∗ honest parties must be simulatable. The latter part which is a
new addition compared to traditional security definition requires the presence
of a (semi-honest) simulator that can simulate the view of any subset of h∗

honest parties, given the input and output of those honest parties. This notion
is shown to be achievable if and only if 2t + h∗ < n, where n is the total
number of parties. With n = 4, t = 1 and h∗ = 1, the results of [22] does not
satisfy FaF security since an honest party’s view may include the inputs of
the other honest parties when a corrupt party, deviating from the protocol
steps, sends its view to it. A formal analysis of protocols in [22] satisfying
the FaF security notion of [2] is missing.

4



for 3PC alone, which is inevitable [18]. For ML training, sev-
eral data-owners who wish to jointly train a model, secret
share (using the sharing semantics that will appear later) their
data among the servers. For ML inference, a model-owner
and client secret share the model and the query, respectively,
among the servers. Once the inputs are available in the shared
format, the servers perform computations and obtain the out-
put in the shared form. In the case of training, the output
model is reconstructed towards the data-owners, whereas for
inference, the prediction result is reconstructed towards the
client. We assume that an arbitrary number of data-owners
may collude with a corrupt server for training, whereas for
the case of prediction, we assume that either the model-owner
or the client can collude with a corrupt server. We prove the
security of our protocols using a standard real-world / ideal-
world paradigm. We also explore the above model for the four
server setting with P = {P0,P1,P2,P3}. The aforementioned
setting has been explored extensively [11, 14, 15, 41, 43, 46].

Our constructions achieve the strongest security guarantee
of GOD. A protocol is said to be robust or achieve GOD if
all parties obtain the output of the protocol regardless of how
the adversary behaves. In our model, this translates to all the
data owners obtaining the trained model for the case of ML
training, while the client obtaining the query output for ML
inference. All our protocols are cast into: input-independent
preprocessing phase and input-dependent online phase.

For 3/4PC, the function to be computed is expressed as a
circuit ckt, whose topology is public, and is evaluated over
an arithmetic ring Z2` or boolean ring Z21 . For PPML, we
consider computation over the same algebraic structure. To
deal with floating-point values, we use Fixed-Point Arith-
metic (FPA) [11, 14, 15, 41, 43, 46] representation in which a
decimal value is represented as an `-bit integer in signed 2’s
complement representation. The most significant bit (MSB)
represents the sign bit, and x least significant bits are reserved
for the fractional part. The `-bit integer is then treated as an
element of Z2` , and operations are performed modulo 2`. We
set `= 64,x = 13, leaving `− x−1 bits for the integer part.

The servers use a one-time key setup, modelled as a func-
tionality Fsetup (Fig. 26), to establish pre-shared random keys
for pseudo-random functions (PRF) between them. A similar
setup is used in [3, 9, 14, 30, 41, 46, 48] for three server case
and in [11, 15] for four server setting. The key-setup can be
instantiated using any standard MPC protocol in the respec-
tive setting. Further, our protocols make use of a collision-
resistant hash function, denoted by H(), and a commitment
scheme, denoted by Com(). The formal details of key setup,
hash function, and commitment scheme are deferred to §A.

Notation 2.1. The ith element of a vector~x is denoted as xi.
The dot product of two n length vectors,~x and~y, is computed
as ~x�~y = ∑

n
i=1 xiyi. For two matrices X,Y, the operation

X ◦Y denotes the matrix multiplication. The bit in the ith

position of an `-bit value v is denoted by v[i].

Notation 2.2. For a bit b ∈ {0,1}, we use bR to denote the
equivalent value of b over the ring Z2` . bR will have its least
significant bit set to b, while all other bits will be set to zero.

3 Robust 3PC and PPML

In this section, we first introduce the sharing semantics for
three servers. Then, we introduce our new Joint Message Pass-
ing (jmp) primitive, which plays a crucial role in obtaining
the strongest security guarantee of GOD, followed by our
protocols in the three server setting.

Secret Sharing Semantics We use the following secret-
sharing semantics.
◦ [·]-sharing: A value v ∈ Z2` is [·]-shared among P1,P2, if

Ps for s ∈ {1,2} holds [v]s ∈ Z2` such that v = [v]1 +[v]2.

◦ 〈·〉-sharing: A value v ∈ Z2` is 〈·〉-shared among P , if
– there exists v0,v1,v2 ∈ Z2` such that v = v0 +v1 +v2.
– Ps holds (vs,v(s+1)%3) for s ∈ {0,1,2}.
◦ J·K-sharing: A value v ∈ Z2` is J·K-shared among P , if

– there exists αv ∈ Z2` that is [·]-shared among P1,P2.
– there exists βv,γv ∈ Z2` such that βv = v +αv and P0

holds ([αv]1 , [αv]2 ,βv+ γv) while Ps for s ∈ {1,2} holds
([αv]s ,βv,γv).

Arithmetic and Boolean Sharing Arithmetic sharing
refers to sharing over Z2` while boolean sharing, denoted
as J·KB, refers to sharing over Z21 .

Linearity of the Secret Sharing Scheme Given [·]-shares
of v1,v2, and public constants c1,c2, servers can locally com-
pute [·]-share of c1v1 + c2v2 as c1 [v1]+ c2 [v2]. It is trivial to
see that linearity property is satisfied by 〈·〉 and J·K sharings.

3.1 Joint Message Passing primitive
The jmp primitive allows two servers to relay a common mes-
sage to the third server such that either the relay is successful
or an honest server (or a conflicting pair) is identified. The
striking feature of jmp is that it offers a rate-1 communication
i.e. for a message of ` elements, it only incurs a communica-
tion of ` elements (in an amortized sense). The task of jmp is
captured in an ideal functionality (Fig. 1) and the protocol for
the same appears in Fig. 2. Next, we give an overview.

Given two servers Pi,Pj possessing a common value v ∈
Z2` , protocol Πjmp proceeds as follows. First, Pi sends v to
Pk while Pj sends a hash of v to Pk. The communication of
the hash is done once and for all from Pj to Pk. In the sim-
plest case, Pk receives a consistent (value, hash) pair, and the
protocol terminates. In all other cases, a TTP is identified as
follows without having to communicate v again. Importantly,
the following part can be run once and for all instances of
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Πjmp with Pi,Pj,Pk in the same roles, invoked in the final 3PC
protocol. Consequently, the cost relevant to this part vanishes
in an amortized sense, making the construction rate-1.

Fjmp interacts with the servers in P and the adversary S .
Step 1: Fjmp receives (Input,vs) from Ps for s ∈ {i, j}, while it

receives (Select,ttp) from S . Here ttp denotes the server that
S wants to choose as the TTP. Let P? ∈ P denote the server
corrupted by S .

Step 2: If vi = v j and ttp = ⊥, then set msgi = msg j =
⊥,msgk = vi and go to Step 5.

Step 3: If ttp ∈ P \{P?}, then set msgi = msg j = msgk = ttp.
Step 4: Else, TTP is set to be the honest server with smallest

index. Set msgi = msg j = msgk = TTP

Step 5: Send (Output,msgs) to Ps for s ∈ {0,1,2}.

Functionality Fjmp

Figure 1: 3PC: Ideal functionality for jmp primitive

Each Ps for s ∈ {i, j,k} maintains a bit bs initialized to
0, as an indicator for inconsistency. When Pk receives an
inconsistent (value, hash) pair, it sets bk = 1 and sends the bit
to both Pi,Pj, who cross-check with each other by exchanging
the bit and turn on their inconsistency bit if the bit received
from either Pk or its fellow sender is turned on. A server
broadcasts a hash of its value when its inconsistency bit is
on;6 Pk’s value is the one it receives from Pi. At this stage,
there are a bunch of possible cases and a detailed analysis
determines an eligible TTP in each case.

– Each server Ps for s ∈ {i, j,k} initializes bit bs = 0.
– Pi sends v to Pk, while Pj sends H(v) to Pk.
– Pk broadcasts "(accuse,Pi)", if Pi is silent and TTP = Pj.

Analogously for Pj. If Pk accuses both Pi,Pj, then TTP = Pi.
Otherwise, Pk receives some ṽ and either sets bk = 0 when the
value and the hash are consistent or sets bk = 1. Pk then sends
bk to Pi,Pj and terminates if bk = 0.

– If Pi does not receive a bit from Pk, it broadcasts
"(accuse,Pk)" and TTP = Pj. Analogously for Pj. If both
Pi,Pj accuse Pk, then TTP = Pi. Otherwise, Ps for s ∈ {i, j} sets
bs = bk.

– Pi,Pj exchange their bits to each other. If Pi does not receive
b j from Pj , it broadcasts "(accuse,Pj)" and TTP = Pk. Anal-
ogously for Pj . Otherwise, Pi resets its bit to bi∨b j and likewise
Pj resets its bit to b j ∨bi.

– Ps for s∈ {i, j,k} broadcasts Hs = H(v∗) if bs = 1, where v∗ =
v for s ∈ {i, j} and v∗ = ṽ otherwise. If Pk does not broadcast,
terminate. If either Pi or Pj does not broadcast, then TTP = Pk.
Otherwise,
• If Hi 6= H j: TTP = Pk.
• Else if Hi 6= Hk: TTP = Pj.
• Else if Hi = H j = Hk: TTP = Pi.

Protocol Πjmp(Pi,Pj,Pk,v)

Figure 2: 3PC: Joint Message Passing Protocol

6hash can be computed on a combined message across many calls of jmp.

When Pk is silent, the protocol is understood to be complete.
This is fine irrespective of the status of Pk– an honest Pk never
skips this broadcast with inconsistency bit on, and a corrupt
Pk implies honest senders. If either Pi or Pj is silent, then
Pk is picked as TTP which is surely honest. A corrupt Pk
could not make one of {Pi,Pj} speak, as the senders (honest
in this case) are in agreement on their inconsistency bit (due
to their mutual exchange of inconsistency bit). When all of
them speak and (i) the senders’ hashes do not match, Pk is
picked as TTP; (ii) one of the senders conflicts with Pk, the
other sender is picked as TTP; and lastly (iii) if there is no
conflict, Pi is picked as TTP. The first two cases are self-
explanatory. In the last case, either Pj or Pk is corrupt. If not,
a corrupt Pi can have honest Pk speak (and hence turn on its
inconsistency bit), by sending a v′ whose hash is not same as
that of v and so inevitably, the hashes of honest Pj and Pk will
conflict, contradicting (iii). As a final touch, we ensure that,
in each step, a server raises a public alarm (via broadcast)
accusing a server which is silent when it is not supposed to
be, and the protocol terminates immediately by labelling the
server as TTP who is neither the complainer nor the accused.

Notation 3.1. We say that Pi,Pj jmp-send v to Pk when they
invoke Πjmp(Pi,Pj,Pk,v).

Using jmp in protocols. As mentioned in the introduction,
the jmp protocol needs to be viewed as consisting of two
phases (send, verify), where send phase consists of Pi sending
v to Pk and the rest goes to verify phase. Looking ahead,
most of our protocols use jmp, and consequently, our final
construction, either of general MPC or any PPML task, will
have several calls to jmp. To leverage amortization, the send
phase will be executed in all protocols invoking jmp on the
flow, while the verify for a fixed ordered pair of senders will
be executed once and for all in the end. The verify phase
will determine if all the sends were correct. If not, a TTP is
identified, as explained, and the computation completes with
the help of TTP, just as in the ideal-world.

Lemma 3.2 (Communication). Protocol Πjmp (Fig. 2) re-
quires 1 round and an amortized communication of ` bits
overall.

Proof. Server Pi sends value v to Pk while Pj sends hash of the
same to Pk. This accounts for one round and communication
of ` bits. Pk then sends back its inconsistency bit to Pi,Pj,
who then exchange it; this takes another two rounds. This is
followed by servers broadcasting hashes on their values and
selecting a TTP based on it, which takes one more round. All
except the first round can be combined for several instances
of Πjmp protocol and hence the cost gets amortized.

3.2 3PC Protocols
We now describe the protocols for 3 parties/servers and defer
the security proofs to §C.1.
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Sharing Protocol Protocol Πsh (Fig. 3) allows a server Pi
to generate J·K-shares of a value v ∈ Z2` . In the preprocessing
phase, P0,Pj for j ∈ {1,2} along with Pi sample a random
[αv] j ∈ Z2` , while P1,P2,Pi sample random γv ∈ Z2` . This
allows Pi to know both αv and γv in clear. During the online
phase, if Pi = P0, then P0 sends βv = v+αv to P1. P0,P1 then
jmp-send βv to P2 to complete the secret sharing. If Pi = P1,
P1 sends βv = v+αv to P2. Then P1,P2 jmp-send βv+ γv to
P0. The case for Pi = P2 proceeds similar to that of P1. The
correctness of the shares held by each server is assured by the
guarantees of Πjmp.

Preprocessing:

– If Pi = P0 : P0,Pj, for j ∈ {1,2}, together sample random
[αv] j ∈ Z2` , while P together sample random γv ∈ Z2` .

– If Pi = P1 : P0,P1 together sample random [αv]1 ∈ Z2` , while
P together sample a random [αv]2 ∈ Z2` . Also, P1,P2 together
sample random γv ∈ Z2` .

– If Pi = P2: Symmetric to the case when Pi = P1.

Online:

– If Pi = P0 : P0 computes βv = v+αv and sends βv to P1. P1,P0
jmp-send βv to P2.

– If Pi = Pj, for j ∈ {1,2} : Pj computes βv = v+αv, sends βv

to P3− j. P1,P2 jmp-send βv+ γv to P0.

Protocol Πsh(Pi,v)

Figure 3: 3PC: Generating JvK-shares by server Pi

Lemma 3.3 (Communication). Protocol Πsh (Fig. 3) is non-
interactive in the preprocessing phase and requires 2 rounds
and an amortized communication of 2` bits in the online
phase.

Proof. During the preprocessing phase, servers non-
interactively sample the [·]-shares of αv and γv values using
the shared key setup. In the online phase, when Pi = P0, it
computes βv and sends it to P1, resulting in one round and
` bits communicated. They then jmp-send βv to P2, which
requires additional one round in an amortized sense, and `
bits to be communicated. For the case when Pi = P1, it sends
βv to P2, resulting in one round and a communication of `
bits. Then, P1,P2 jmp-send βv+ γv to P0. This again requires
an additional one round and ` bits. The analysis is similar in
the case of Pi = P2.

Joint Sharing Protocol Protocol Πjsh (Fig. 4) allows two
servers Pi,Pj to jointly generate a J·K-sharing of a value
v ∈ Z2` that is known to both. Towards this, servers execute
the preprocessing of Πsh (Fig. 3) to generate [αv] and γv.
If (Pi,Pj) = (P1,P0), then P1,P0 jmp-send βv = v+αv to P2.
The case when (Pi,Pj) = (P2,P0) proceeds similarly. The case
for (Pi,Pj) = (P1,P2) is optimized further as follows: servers
locally set [αv]1 = [αv]2 = 0. P1,P2 together sample random
γv ∈ Z2` , set βv = v and jmp-send βv+ γv to P0.

Preprocessing:

– If (Pi,Pj) = (P1,P0): Servers execute the preprocessing of
Πsh(P1,v) and then locally set γv = 0.

– If (Pi,Pj) = (P2,P0): Similar to the case above.
– If (Pi,Pj) = (P1,P2): P1,P2 together sample random γv ∈ Z2` .

Servers locally set [αv]1 = [αv]2 = 0.

Online:

– If (Pi,Pj) = (P1,P0): P0,P1 compute βv = v+ [αv]1 + [αv]2.
P0,P1 jmp-send βv to P2.

– If (Pi,Pj) = (P2,P0): Similar to the case above.
– If (Pi,Pj) = (P1,P2): P1,P2 locally set βv = v. P1,P2 jmp-send

βv+ γv to P0.

Protocol Πjsh(Pi,Pj,v)

Figure 4: 3PC: J·K-sharing of a value v ∈ Z2` jointly by Pi,Pj

When the value v is available to both Pi,Pj in the prepro-
cessing phase, protocol Πjsh can be made non-interactive in
the following way: P sample a random r ∈ Z2` and locally
set their share according to Table 2.

(P1,P2) (P1,P0) (P2,P0)

[αv]1 = 0, [αv]2 = 0
βv = v, γv = r−v

[αv]1 =−v, [αv]2 = 0
βv = 0, γv = r

[αv]1 = 0, [αv]2 =−v

βv = 0, γv = r

P0

P1

P2

(0, 0, r )

(0, v, r−v)

(0, v, r−v)

(−v, 0, r)

(−v, 0, r)

( 0, 0, r)

(0, −v, r)

(0, 0, r)

(0, −v, r)

Table 2: The columns depict the three distinct possibility of input
contributing pairs. The first row shows the assignment to various
components of the sharing. The last row, along with three sub-rows,
specify the shares held by the three servers.

Lemma 3.4 (Communication). Protocol Πjsh (Fig. 4) is non-
interactive in the preprocessing phase and requires 1 round
and an amortized communication of ` bits in the online phase.

Proof. In this protocol, servers execute Πjmp protocol once.
Hence the overall cost follows from that of an instance of the
Πjmp protocol (Lemma 3.2).

Addition Protocol Given J·K-shares on input wires x,y,
servers can use linearity property of the sharing scheme to
locally compute J·K-shares of the output of addition gate,
z = x+y as JzK = JxK+ JyK.

Multiplication Protocol Protocol Πmult(P ,JxK,JyK) (Fig.
5) enables the servers in P to compute J·K-sharing of z = xy,
given the J·K-sharing of x and y. We build on the protocol of
BLAZE [46] and discuss along the way the differences and
resemblances. We begin with a protocol for the semi-honest
setting, which is also the starting point of BLAZE. During
the preprocessing phase, P0,Pj for j ∈ {1,2} sample random
[αz] j ∈ Z2` , while P1,P2 sample random γz ∈ Z2` . In addition,
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P0 locally computes Γxy = αxαy and generates [·]-sharing of
the same between P1,P2. Since,

βz = z+αz = xy+αz = (βx−αx)(βy−αy)+αz

= βxβy−βxαy−βyαx+Γxy+αz (1)

servers P1,P2 locally compute [βz] j = ( j − 1)βxβy −
βx [αy] j − βy [αx] j + [Γxy] j + [αz] j during the online phase
and mutually exchange their shares to reconstruct βz. P1 then
sends βz+ γz to P0, completing the semi-honest protocol. The
correctness that asserts z = xy or in other words βz−αz = xy
holds due to Eq. 1.

The following issues arise in the above protocol when a
malicious adversary is considered:
1) When P0 is corrupt, the [·]-sharing of Γxy performed by P0

might not be correct, i.e. Γxy 6= αxαy.
2) When P1 (or P2) is corrupt, [·]-share of βz handed over to

the fellow honest evaluator during the online phase might
not be correct, causing reconstruction of an incorrect βz.

3) When P1 is corrupt, the value βz + γz that is sent to P0
during the online phase may not be correct.

All the three issues are common with BLAZE (copied
verbatim), but we differ from BLAZE in handling them. We
begin with solving the last issue first. We simply make P1,P2
jmp-send βz + γz to P0 (after βz is computed). This either
leads to success or a TTP selection. Due to jmp’s rate-1
communication, P1 alone sending the value to P0 remains as
costly as using jmp in amortized sense. Whereas in BLAZE,
the malicious version simply makes P2 to send a hash of
βz+ γz to P0 (in addition to P1’s communication of βz+ γz to
P0), who aborts if the received values are inconsistent.

For the remaining two issues, similar to BLAZE, we reduce
both to a multiplication (on values unrelated to inputs) in the
preprocessing phase. However, our method leads to either
success or TTP selection, with no additional cost.

We start with the second issue. To solve it, where a corrupt
P1 (or P2) sends an incorrect [·]-share of βz, BLAZE makes
use of server P0 to compute a version of βz for verification,
based on βx and βy, as follows. Using βx+ γx, βy+ γy, αx, αy,
αz and Γxy, P0 computes:

β
?
z =−(βx+ γx)αy− (βy+ γy)αx+2Γxy+αz

= (−βxαy−βyαx+Γxy+αz)− (γxαy+ γyαx−Γxy)

= (βz−βxβy)− (γxαy+ γyαx−Γxy) [by Eq. 1]
= (βz−βxβy)−χ [where χ = γxαy+ γyαx−Γxy]

Now if χ can be made available to P0, it can send β?
z +χ

to P1 and P2 who using the knowledge of βx,βy, can verify
the correctness of βz by computing βz−βxβy and checking
against the value β?

z +χ received from P0. However, disclos-
ing χ on clear to P0 will cause a privacy issue when P0 is
corrupt, because one degree of freedom on the pair (γx,γy)
is lost and the same impact percolates down to (βx,βy) and
further to the actual values (vx,vy) on the wires x,y. This is
resolved through a random value ψ ∈ Z2` , sampled together

by P1 and P2. Now, χ and β?
z are set to γxαy+ γyαx−Γxy+ψ,

(βz−βxβy+ψ)−χ, respectively and the check by P1,P2 in-
volves computing βz − βxβy + ψ. The rest of the logic in
BLAZE goes on to discuss how to enforce P0– (a) to compute
a correct χ (when honest), and (b) to share correct Γxy (when
corrupt). Tying the ends together, they identify the precise
shared multiplication triple and map its components to χ and
Γxy so that these values are correct by virtue of the correctness
of the product relation. This reduces ensuring the correctness
of these values to doing a single multiplication of two values
in the preprocessing phase.

Preprocessing:

– P0,Pj for j ∈ {1,2} together sample random [αz] j ∈Z2` , while
P1,P2 sample random γz ∈ Z2` .

– Servers in P locally compute 〈·〉-sharing of d = γx+αx and
e = γy+αy by setting the shares as follows (ref. Table 3):

(d0= [αx]2 ,d1= [αx]1 ,d2=γx), (e0= [αy]2 ,e1= [αy]1 ,e2=γy)

– Servers in P execute ΠmulPre(P ,d,e) to generate 〈f〉= 〈de〉.
– P0,P1 locally set [χ]1 = f1, while P0,P2 locally set [χ]2 = f0.

P1,P2 locally compute ψ = f2− γxγy.

Online:

– P0,Pj , for j ∈ {1,2}, compute [β?
z ] j =−(βx+γx) [αy] j−(βy+

γy) [αx] j +[αz] j +[χ] j.
– P0,P1 jmp-send [β?

z ]1 to P2 and P0,P2 jmp-send [β?
z ]2 to P1.

– P1,P2 compute β?
z = [β?

z ]1 +[β?
z ]2 and set βz = β?

z+βxβy+ψ.
– P1,P2 jmp-send βz+ γz to P0.

Protocol Πmult(P ,JxK,JyK)

Figure 5: 3PC: Multiplication Protocol (z = x ·y)

We differ from BLAZE in several ways. First, we do not
simply rely on P0 for the verification information β?

z +χ, as
this may inevitably lead to abort when P0 is corrupt. Instead,
we find (a slightly different) β?

z that, instead of entirely avail-
able to P0, will be available in [·]-shared form between the two
teams {P0,P1},{P0,P2}, with both servers in {P0,Pi} holding
ith share [β?

z ]i. With this edit, the ith team can jmp-send the ith
share of β?

z to the third server which computes β?
z . Due to the

presence of one honest server in each team, this β?
z is correct

and P1,P2 directly use it to compute βz, with the knowledge
of ψ,βx,βy. The outcome of our approach is a win-win situ-
ation i.e. either success or TTP selection. Our approach of
computing βz from β?

z is a departure from BLAZE, where
the latter suggests computing βz from the exchange P1,P2’s
respective share of βz (as in the semi-honest construction)
and use β?

z for verification. Our new β?
z and χ are:

χ = γxαy+ γyαx+Γxy−ψ and
β
?
z =−(βx+ γx)αy− (βy+ γy)αx+αz+χ

= (−βxαy−βyαx+Γxy+αz)−ψ = βz−βxβy−ψ

Clearly, both P0 and Pi can compute [β?
z ]i = −(βx +

γx) [αy]i− (βy+ γy) [αx]i +[αz]i +[χ]i given [χ]i. The rest of

8



our discussion explains how (a) ith share of [χ] can be made
available to {P0,Pi} and (b) ψ can be derived by P1,P2, from
a multiplication triple. Similar to BLAZE, yet for a different
triple, we observe that (d,e, f) is a multiplication triple, where
d = (γx+αx),e = (γy+αy), f = (γxγy+ψ)+χ if and only if
χ and Γxy are correct. Indeed,

de = (γx+αx)(γy+αy) = γxγy+ γxαy+ γyαx+Γxy

= (γxγy+ψ)+(γxαy+ γyαx+Γxy−ψ)

= (γxγy+ψ)+χ = f

Based on this observation, we compute the above multiplica-
tion triple using a multiplication protocol and extract out the
values for ψ and χ from the shares of f which are bound to
be correct. This can be executed entirely in the preprocessing
phase. Specifically, the servers (a) locally obtain 〈·〉-shares
of d,e as in Table 3, (b) compute 〈·〉-shares of f(= de), say
denoted by f0, f1, f2, using an efficient, robust 3-party multi-
plication protocol, say ΠmulPre (abstracted in a functionality
Fig. 6) and finally (c) extract out the required preprocessing
data locally as in Eq. 2. We switch to 〈·〉-sharing in this part
to be able to use the best robust multiplication protocol of [9]
that supports this form of secret sharing and requires commu-
nication of just 3 elements. Fortunately, the switch does not
cost anything, as both the step (a) and (c) (as above) involve
local computation and the cost simply reduces to a single run
of a multiplication protocol.

P0 P1 P2
〈v〉 (v0,v1) (v1,v2) (v2,v0)

〈d〉 ([αx]2 , [αx]1) ([αx]1 ,γx) (γx, [αx]2)

〈e〉 ([αy]2 , [αy]1) ([αy]1 ,γy) (γy, [αy]2)

Table 3: The 〈·〉-sharing of values d and e

[χ]2← f0, [χ]1← f1, γxγy+ψ← f2. (2)

According to 〈·〉-sharing, both P0 and P1 obtain f1 and
hence obtain [χ]1. Similarly, P0,P2 obtain f0 and hence [χ]2.
Finally, P1,P2 obtain f2 from which they compute ψ = f2−
γxγy. This completes the informal discussion.

We note that to facilitate a fast online phase for multiplica-
tion, our preprocessing phase leverages a robust multiplication
protocol [9] in a black-box manner to derive the necessary
preprocessing information. A similar black-box approach is
also taken for the dot product protocol in the preprocessing
phase. This leaves room for further improvements in the com-
munication cost, which can be obtained by instantiating the
black-box with an efficient, robust protocol coupled with the
fast online phase.

FMulPre interacts with the servers in P and the adversary S .
FMulPre receives 〈·〉-shares of d,e from the servers where Ps, for
s∈ {0,1,2}, holds 〈d〉s = (ds,d(s+1)%3) and 〈e〉s = (es,e(s+1)%3)
such that d = d0 +d1 +d2 and e = e0 + e1 + e2. Let Pi denotes
the server corrupted by S . FMulPre receives 〈f〉i = (fi, f(i+1)%3)
from S where f = de. FMulPre proceeds as follows:
– Reconstructs d,e using the shares received from honest servers

and compute f = de.
– Compute f(i+2)%3 = f− fi− f(i+1)%3 and set the output shares

as 〈f〉0 = (f0, f1),〈f〉1 = (f1, f2),〈f〉2 = (f2, f0).
– Send (Output,〈f〉s) to server Ps ∈ P .

Functionality FMulPre

Figure 6: 3PC: Ideal functionality for ΠmulPre protocol

Lemma 3.5 (Communication). Protocol Πmult (Fig. 5) re-
quires an amortized cost of 3` bits in the preprocessing phase,
and 1 round and amortized cost of 3` bits in the online phase.

Proof. In the preprocessing phase, generation of αz and γz are
non-interactive. This is followed by one execution of ΠmulPre,
which requires an amortized communication cost of 3` bits.
During the online phase, P0,P1 jmp-send [β?

z ]1 to P2, while
P0,P2 jmp-send [β?

z ]2 to P1. This requires one round and a
communication of 2` bits. Following this, P1,P2 jmp-send
βz+ γz to P0, which requires one round and a communication
of ` bits. However, jmp-send of βz+γz can be delayed till the
end of the protocol, and will require only one round for the
entire circuit and can be amortized.

Preprocessing:

– P0,Pj, for j ∈ {1,2}, compute Com([αv] j), while P1,P2 com-
pute Com(γv).

– P1,P2 jmp-send Com(γv) to P0, while P0,P1 jmp-send
Com([αv]1) to P2, and P0,P2 jmp-send Com([αv]2) to P1,

Online:

– P0,P1 open Com([αv]1) to P2. P0,P2 open Com([αv]2) to P1.
P1,P2 open Com(γv) to P0.

– Each server accepts the opening that is consistent with the
agreed upon commitment. P1,P2 compute v = βv − [αv]1 −
[αv]2, while P0 computes v = (βv+ γv)− [αv]1− [αv]2− γv.

Protocol Πrec(P ,JvK)

Figure 7: 3PC: Reconstruction of v among the servers

Reconstruction Protocol Protocol Πrec (Fig. 7) allows
servers to robustly reconstruct value v ∈ Z2` from its J·K-
shares. Note that each server misses one share of v which is
held by the other two servers. Consider the case of P0 who re-
quires γv to compute v. During the preprocessing, P1,P2 com-
pute a commitment of γv, denoted by Com(γv) and jmp-send
the same to P0. Similar steps are performed for the values
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[αv]2 and [αv]1 that are required by servers P1 and P2 respec-
tively. During the online phase, servers open their commit-
ments to the intended server who accepts the opening that is
consistent with the agreed upon commitment.

Lemma 3.6 (Communication). Protocol Πrec (Fig. 7) re-
quires 1 round and a communication of 6` bits in the online
phase.

Proof. The preprocessing phase consists of communication
of commitment values using the Πjmp protocol. The hash-
based commitment scheme allows generation of a single com-
mitment for several values and hence the cost gets amortised
away for multiple instances. During the online phase, each
server receives an opening for the commitment from other
two servers, which requires one round and an overall commu-
nication of 6` bits.

The Complete 3PC For the sake of completeness and to
demonstrate how GOD is achieved, we show how to compile
the above primitives for a general 3PC. A similar approach
will be taken for 4PC and each PPML task, and we will avoid
repetition. In order to compute an arithmetic circuit over
Z2` , we first invoke the key-setup functionality Fsetup (Fig.
26) for key distribution and preprocessing of Πsh, Πmult and
Πrec, as per the given circuit. During the online phase, Pi ∈ P
shares its input xi by executing online steps of Πsh (Fig. 3).
This is followed by the circuit evaluation phase, where severs
evaluate the gates in the circuit in the topological order, with
addition gates (and multiplication-by-a-constant gates) being
computed locally, and multiplication gates being computed
via online of Πmult (Fig. 5). Finally, servers run the online
steps of Πrec (Fig. 7) on the output wires to reconstruct the
function output. To leverage amortization, only send phases
of all the jmp are run on the flow. At the end of preprocessing,
the verify phase for all possible ordered pair of senders are run.
We carry on computation in the online phase only when the
verify phases in the preprocessing are successful. Otherwise,
the servers simply send their inputs to the elected TTP, who
computes the function and returns the result to all the servers.
Similarly, depending on the output of the verify at the end of
the online phase, either the reconstruction is carried out or a
TTP is identified. In the latter case, computation completes
as mentioned before.

3.3 Building Blocks for PPML using 3PC
This section provides details on robust realizations of the fol-
lowing building blocks for PPML in 3-server setting– i) Dot
Product, ii) Truncation, iii) Dot Product with Truncation, iv)
Secure Comparison, and v) Non-linear Activation functions–
Sigmoid and ReLU. We provide the security proofs in §C.1.
We begin by providing details of input sharing and reconstruc-
tion in the SOC setting.

Input Sharing:

– P0,Ps, for s ∈ {1,2}, together sample random [αv]s ∈ Z2` ,
while P1,P2 together sample random γv ∈ Z2` .

– P0,P1 jmp-send Com([αv]1) to P2, while P0,P2 jmp-send
Com([αv]2) to P1, and P1,P2 jmp-send Com(γv) to P0.

– Each server sends (Com([αv]1),Com([αv]2),Com(γv)) to U
who accepts the values that form majority. Also, P0,Ps, for s ∈
{1,2}, open [αv]s towards U while P1,P2 open γv towards U.

– U accepts the consistent opening, recovers [αv]1 , [αv]2 ,γv,
computes βv = v+[αv]1 +[αv]2, and sends βv+ γv to all three
servers.

– Servers broadcast the received value and accept the majority
value if it exists, and a default value, otherwise. P1,P2 locally
compute βv from βv+ γv using γv to complete the sharing of v.

Output Reconstruction:

– Servers execute the preprocessing of Πrec(P ,JvK) to agree
upon commitments of [αv]1 , [αv]2 and γv.

– Each server sends βv + γv and commitments on [αv]1 , [αv]2
and γv to U, who accepts the values forming majority.

– P0,Pi for i ∈ {1,2} open [αv]i to U, while P1,P2 open γv to U.
– U accepts the consistent opening and computes v = (βv+γv)−
[αv]1− [αv]2− γv.

Protocol ΠSOC
sh (U,v) and ΠSOC

rec (U,JvK)

Figure 8: 3PC: Input Sharing and Output Reconstruction

Input Sharing and Output Reconstruction in the SOC
Setting Protocol ΠSOC

sh (Fig. 8) extends input sharing to
the SOC setting and allows a user U to generate the J·K-shares
of its input v among the three servers. Note that the necessary
commitments to facilitate the sharing are generated in the pre-
processing phase by the servers which are then communicated
to U, along with the opening, in the online phase. U selects
the commitment forming the majority (for each share) ow-
ing to the presence of an honest majority among the servers,
and accepts the corresponding shares. Analogously, proto-
col ΠSOC

rec (Fig. 8) allows the servers to reconstruct a value v
towards user U. In either of the protocols, if at any point, a
TTP is identified, then servers signal the TTP’s identity to U.
U selects the TTP as the one forming a majority and sends
its input in the clear to the TTP, who computes the function
output and sends it back to U.

MSB Extraction Protocol Πbitext allows servers to com-
pute the boolean sharing of the most significant bit (msb) of a
value v given its arithmetic sharing JvK. To compute the msb,
we use the optimized 2-input Parallel Prefix Adder (PPA)
boolean circuit proposed by ABY3 [41]. The PPA circuit con-
sists of 2`−2 AND gates and has a multiplicative depth of
log`.

Let v0 = βv,v1 =− [αv]1 and v2 =− [αv]2. Then v = v0 +
v1 +v2. Servers first locally compute the boolean shares cor-
responding to each bit of the values v0,v1 and v2 according to
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P0 P1 P2

Jv0[i]KB (0,0,0) (0,v0[i],v0[i]) (0,v0[i],v0[i])
Jv1[i]KB (v1[i],0,0) (v1[i],0,0) (0,0,0)
Jv2[i]KB (0,v2[i],0) (0,0,0) (0,v2[i],0)

Table 4: The J·KB-sharing corresponding to ith bit of v0 = βv,v1 =
− [αv]1 and v2 =− [αv]2. Here i ∈ {0, . . . , `−1}.

Table 4. It has been shown in ABY3 that v = v0 +v1 +v2 can
also be expressed as v = 2c+ s where FA(v0[i],v1[i],v2[i])→
(c[i],s[i]) for i ∈ {0, . . . , `−1}. Here FA denotes a Full Adder
circuit while s and c denote the sum and carry bits respectively.
To summarize, servers execute ` instances of FA in parallel to
compute JcKB and JsKB. The FA’s are executed independently
and require one round of communication. The final result
is then computed as msb(2JcKB + JsKB) using the optimized
PPA circuit.

Lemma 3.7 (Communication). Protocol Πbitext requires a
communication cost of 9`−6 bits in the preprocessing phase
and require log`+1 rounds and an amortized communication
of 9`−6 bits in the online phase.

Proof. In Πbitext, first round comprises of ` Full Adder (FA)
circuits executing in parallel, each comprising of single AND
gate. This is followed by the execution of the optimized PPA
circuit of ABY3 [41], which comprises of 2`−2 AND gates
and has a multiplicative depth of log`. Hence the communi-
cation cost follows from the multiplication for 3`−2 AND
gates.

Bit to Arithmetic Conversion Given the boolean sharing
of a bit b, denoted as JbKB, protocol Πbit2A (Fig. 9) allows
servers to compute the arithmetic sharing JbRK. Here bR

denotes the equivalent value of b over ring Z2` (see Nota-
tion 2.2). As pointed out in BLAZE, bR = (βb ⊕ αb)

R =

βR
b + αR

b − 2βR
bαR

b . Also αR
b = ([αb]1 ⊕ [αb]2)

R = [αb]
R
1 +

[αb]
R
2 −2 [αb]

R
1 [αb]

R
2 . During the preprocessing phase, P0,Pj

for j ∈ {1,2} execute Πjsh on [αb]
R
j to generate J[αb]

R
j K.

Servers then execute Πmult on J[αb]
R
1 K and J[αb]

R
2 K to gener-

ate J[αb]
R
1 [αb]

R
2 K followed by locally computing JαR

b K. During
the online phase, P1,P2 execute Πjsh on βR

b to jointly generate
JβR

b K. Servers then execute Πmult protocol on JβR
b K and JαR

b K
to compute JβR

bαR
b K followed by locally computing JbRK.

Lemma 3.8 (Communication). Protocol Πbit2A (Fig. 9) re-
quires an amortized communication cost of 9` bits in the
preprocessing phase and requires 1 round and an amortized
communication of 4` bits in the online phase.

Proof. In the preprocessing phase, servers run two instances
of Πjsh, which can be done non-interactively (ref. Table 2).
This is followed by an execution of entire multiplication proto-
col, which requires 6` bits to be communicated (Lemma 3.5).

Parallelly, the servers execute the preprocessing phase of
Πmult, resulting in an additional 3` bits of communication
(Lemma 3.5). During the online phase, P1,P2 execute Πjsh

once, which requires one round and ` bits to be communi-
cated. In Πjsh, the communication towards P0 can be deferred
till the end, thereby requiring a single round for multiple in-
stances. This is followed by an execution of the online phase
of Πmult, which requires one round and a communication of
3` bits.

Preprocessing:

– P0,Pj for j ∈ {1,2} execute Πjsh on [αb]
R
j to generate J[αb]

R
j K.

– Servers execute Πmult(P , [αb]
R
1 , [αb]

R
2 ) to generate JuK where

u = [αb]
R
1 [αb]

R
2 , followed by locally computing JαR

b K =

J[αb]
R
1 K+ J[αb]

R
2 K−2JuK.

– Servers execute the preprocessing phase of Πmult(P ,βR
b ,α

R
b )

for v = βR
b αR

b .

Online:

– P1,P2 execute Πjsh(P1,P2,β
R
b ) to generate JβR

b K.

– Servers execute online phase of Πmult(P ,βR
b ,α

R
b ) to generate

JvK where v = βR
b αR

b , followed by locally computing JbRK =
JβR

b K+ JαR
b K−2JvK.

Protocol Πbit2A(P ,JbKB)

Figure 9: 3PC: Bit2A Protocol

Bit Injection Given the binary sharing of a bit b, denoted
as JbKB, and the arithmetic sharing of v ∈Z2` , protocol ΠBitInj

computes J·K-sharing of bv. Towards this, servers first execute
Πbit2A on JbKB to generate JbK. This is followed by servers
computing JbvK by executing Πmult protocol on JbK and JvK.

Lemma 3.9 (Communication). Protocol ΠBitInj requires an
amortized communication cost of 12` bits in the preprocessing
phase and requires 2 rounds and an amortized communication
of 7` bits in the online phase.

Proof. Protocol ΠBitInj is essentially an execution of
Πbit2A (Lemma 3.8) followed by one invocation of Πmult

(Lemma 3.5) and the costs follow.

Dot Product Given the J·K-sharing of vectors~x and~y, pro-
tocol Πdotp (Fig. 10) allows servers to generate J·K-sharing of
z =~x�~y robustly. J·K-sharing of a vector~x of size n, means
that each element xi ∈ Z2` of~x, for i ∈ [n], is J·K-shared. We
borrow ideas from BLAZE for obtaining an online communi-
cation cost independent of n and use jmp primitive to ensure
either success or TTP selection. Analogous to our multipli-
cation protocol, our dot product offloads one call to a robust
dot product protocol to the preprocessing. By extending tech-
niques of [8, 9], we give an instantiation for the dot product
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protocol used in our preprocessing whose (amortized) commu-
nication cost is constant, thereby making our preprocessing
cost also independent of n.

To begin with, z =~x�~y can be viewed as n parallel multi-
plication instances of the form zi = xiyi for i ∈ [n], followed
by adding up the results. Let β?

z = ∑
n
i=1 β?

zi
. Then,

β
?
z =−

n

∑
i=1

(βxi + γxi)αyi −
n

∑
i=1

(βyi + γyi)αxi +αz+χ (3)

where χ = ∑
n
i=1(γxiαyi + γyiαxi +Γxiyi −ψi).

Apart from the aforementioned modification, the online
phase for dot product proceeds similar to that of multipli-
cation protocol. P0,P1 locally compute [β?

z ]1 as per Eq. 3
and jmp-send [β?

z ]1 to P2. P1 obtains [β?
z ]2 in a similar

fashion. P1,P2 reconstruct β?
z = [β?

z ]1 + [β?
z ]2 and compute

βz = β?
z +∑

n
i=1 βxiβyi +ψ. Here, the value ψ has to be cor-

rectly generated in the preprocessing phase satisfying Eq. 3.
Finally, P1,P2 jmp-send βz+ γz to P0.

We now provide the details for preprocessing phase that
enable servers to obtain the required values (χ,ψ) with the
invocation of a dot product protocol in a black-box way. To-
wards this, let ~d = [d1, . . . ,dn] and ~e = [e1, . . . ,en], where
di = γxi +αxi and ei = γyi +αyi for i ∈ [n], as in the case
of multiplication. Then for f =~d�~e,

f =~d�~e =
n

∑
i=1

diei =
n

∑
i=1

(γxi +αxi)(γyi +αyi)

=
n

∑
i=1

(γxiγyi +ψi)+
n

∑
i=1

χi =
n

∑
i=1

(γxiγyi +ψi)+χ

=
n

∑
i=1

(γxiγyi +ψi)+ [χ]1 +[χ]2 = f2 + f1 + f0.

where f2 = ∑
n
i=1(γxiγyi +ψi), f1 = [χ]1 and f0 = [χ]2.

Using the above relation, the preprocessing phase pro-
ceeds as follows: P0,Pj for j ∈ {1,2} sample a random
[αz] j ∈ Z2` , while P1,P2 sample random γz. Servers locally
prepare 〈~d〉,〈~e〉 similar to that of multiplication protocol.
Servers then execute a robust 3PC dot product protocol, de-
noted by ΠdotpPre (the task is abstracted away in the func-
tionality Fig. 11), that takes 〈~d〉,〈~e〉 as input and compute 〈f〉
with f =~d�~e. Given 〈f〉, the ψ and [χ] values are extracted
as follows (ref. Eq. 4):

ψ = f2−
n

∑
i=1

γxiγyi , [χ]1 = f1, [χ]2 = f0, (4)

It is easy to see from the semantics of 〈·〉-sharing that both
P1,P2 obtain f2 and hence ψ. Similarly, both P0,P1 obtain f1
and hence [χ]1, while P0,P2 obtain [χ]2.

Preprocessing:

– P0,Pj, for j ∈ {1,2}, together sample random [αz] j ∈ Z2` ,
while P1,P2 sample random γz ∈ Z2` .

– Servers locally compute 〈·〉-sharing of~d,~e with di = γxi +αxi

and ei = γyi +αyi for i ∈ [n] as follows:

(〈di〉0=([αxi ]2 , [αxi ]1),〈di〉1=([αxi ]1 ,γxi),〈di〉2=(γxi , [αxi ]2))

(〈ei〉0=([αyi ]2 , [αyi ]1),〈ei〉1=([αyi ]1 ,γyi),〈ei〉2=(γyi , [αyi ]2))

– Servers execute ΠdotpPre(P ,〈~d〉,〈~e〉) to generate 〈f〉= 〈~d�~e〉.
– P0,P1 locally set [χ]1 = f1, while P0,P2 locally set [χ]2 = f0.

P1,P2 locally compute ψ = f2−∑
n
i=1 γxi γyi .

Online:

– P0,Pj, for j ∈ {1,2}, compute [β?
z ] j = −∑

n
i=1((βxi +

γxi) [αyi ] j +(βyi + γyi) [αxi ] j)+ [αz] j +[χ] j.

– P0,P1 jmp-send [β?
z ]1 to P2 and P0,P2 jmp-send [β?

z ]2 to P1.
– P1,P2 locally compute β?

z = [β?
z ]1 + [β?

z ]2 and set βz = β?
z +

∑
n
i=1(βxi βyi)+ψ.

– P1,P2 jmp-send βz+ γz to P0.

Protocol Πdotp(P ,{JxiK,JyiK}i∈[n])

Figure 10: 3PC: Dot Product Protocol (z =~x�~y)

The ideal world functionality for realizing ΠdotpPre is pre-
sented in Fig. 11. A trivial way to instantiate ΠdotpPre is to
treat a dot product operation as n multiplications. However,
this results in a communication cost that is linearly dependent
on the feature size. Instead, we instantiate ΠdotpPre by a semi-
honest dot product protocol followed by a verification phase
to check the correctness. For the verification phase, we extend
the techniques of [8, 9] to provide support for verification of
dot product tuples. Setting the verification phase parameters
appropriately gives a ΠdotpPre whose (amortized) communi-
cation cost is independent of the feature size. Details appear
in §B.

FDotPPre interacts with the servers in P and the adversary S .
FDotPPre receives 〈·〉-shares of vectors ~d = (d1, . . . ,dn),~e =
(e1, . . . ,en) from the servers. Let v j,s for j ∈ [n],s ∈ {0,1,2}
denote the share of v j such that v j = v j,0 + v j,1 + v j,2. Server
Ps, for s ∈ {0,1,2}, holds 〈d j〉s = (d j,s,d j,(s+1)%3) and 〈e j〉s =
(e j,s,e j,(s+1)%3) where j ∈ [n]. Let Pi denotes the server corrupted
by S . FMulPre receives 〈f〉i =(fi, f(i+1)%3) from S where f =~d�~e.
FDotPPre proceeds as follows:
– Reconstructs d j,e j , for j ∈ [n], using the shares received from

honest servers and compute f = ∑
n
j=1 d je j.

– Compute f(i+2)%3 = f− fi− f(i+1)%3 and set the output shares
as 〈f〉0 = (f0, f1),〈f〉1 = (f1, f2),〈f〉2 = (f2, f0).

– Send (Output,〈f〉s) to server Ps ∈ P .

Functionality FDotPPre

Figure 11: 3PC: Ideal functionality for ΠdotpPre protocol

Lemma 3.10 (Communication). Protocol Πdotp (Fig. 10)
requires an amortized communication of 3` bits in the pre-
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processing phase and requires 1 round and an amortized
communication of 3` bits in the online phase.

Proof. During the preprocessing phase, servers execute
ΠdotpPre. This requires communicating 3` bits for a single
semi-honest dot product protocol and O(

√
n√
m ) extended ring

elements for its verification. By appropriately setting the val-
ues of n,m, the cost of communicating O(

√
n√
m ) elements can

be amortized away, thereby resulting in an amortized com-
munication cost of 3` bits in the preprocessing phase. The
online phase follows similarly to that of Πmult, the only differ-
ence being that servers combine their shares corresponding
to all the n multiplications into one and then exchange. This
requires one round and an amortized communication of 3`
bits.

Truncation Working over fixed-point values, repeated mul-
tiplications using FPA arithmetic can lead to an overflow
resulting in loss of significant bits of information. This put
forth the need for truncation [11, 14, 41, 43, 46] that re-adjusts
the shares after multiplication so that FPA semantics are main-
tained. As shown in SecureML [43], the method of truncation
would result in loss of information on the least significant bits
and affect the accuracy by a very minimal amount.

For truncation, servers execute Πtrgen (Fig. 12) to generate
([r] ,JrdK)-pair, where r is a random ring element, and rd is
the truncated value of r, i.e the value r right-shifted by d bit
positions. Recall that d denotes the number of bits allocated
for the fractional part in the FPA representation. Given (r, rd),
the truncated value of v, denoted as vd , is computed as vd =
(v− r)d + rd . The correctness and accuracy of this method
was shown in ABY3 [41].

– To generate each bit r[i] of r for i ∈ {0, . . . , `− 1}, P0,Pj for
j ∈ {1,2} sample random r j[i]∈Z2 and define r[i] = r1[i]⊕r2[i].

– Servers generate J·K-shares of (r j[i])R for i∈ {0, . . . , `−1}, j ∈
{1,2} non-interactively following Table 2.

– Define~x and~y such that x = 2i−d+1(r1[i])R and yi = (r2[i])R,
respectively, for i∈ {d, . . . , `−1}. Define~p and~q such that pi =
2i+1(r1[i])R and qi = (r2[i])R, respectively, for i∈ {0, . . . , `−1}.
Servers execute Πdotp to compute J·K-shares of A =~x�~y and
B =~p�~q.

– Servers locally compute JrdK = ∑
`−1
i=d 2i−d(J(r1[i])RK +

J(r2[i])RK)− JAK, and JrK = ∑
`−1
i=0 2i(J(r1[i])RK+ J(r2[i])RK)−

JBK.
– P0 locally computes βr = r+αr. P0,P1 set [r]1 =− [αr]1 and

P0,P2 set [r]2 = βr− [αr]2.

Protocol Πtrgen(P )

Figure 12: 3PC: Generating Random Truncated Pair (r, rd)

Protocol Πtrgen is inspired from [15, 41] and proceeds as
follows to generate ([r] ,JrdK). Analogous to the approach
of ABY3 [41], servers generate a boolean sharing of an `-
bit value r = r1⊕ r2, non-interactively. Each server truncates

its share of r locally to obtain a boolean sharing of rd by
removing the lower d bits. To obtain the arithmetic shares of
(r, rd) from their boolean sharing, we do not, however, rely
on the approach of ABY3 as it requires more rounds. Instead,
we implicitly perform a boolean to arithmetic conversion, as
was proposed in Trident [15], to obtain the arithmetic shares
of (r, rd). This entails performing two dot product operations
and constitutes the cost for Πtrgen.

We now give details for generating ([r] ,JrdK). For this,
servers proceed as follows: P0,Pj for j ∈ {1,2} sample ran-
dom r j ∈ Z2` . Recall that the bit at ith position in r is denoted
as r[i]. Define r[i] = r1[i]⊕ r2[i] for i ∈ {0, . . . , `− 1}. For
r defined as above, we have rd [i] = r1[i+ d]⊕ r2[i+ d] for
i ∈ {0, . . . , `−d−1}. Further,

r =
`−1

∑
i=0

2ir[i] =
`−1

∑
i=0

2i(r1[i]⊕ r2[i])

=
`−1

∑
i=0

2i
(
(r1[i])R+(r2[i])R−2(r1[i])R · (r2[i])R

)
=

`−1

∑
i=0

2i
(
(r1[i])R+(r2[i])R

)
−

`−1

∑
i=0

(
2i+1(r1[i])R

)
· (r2[i])R (5)

Similarly, for rd we have the following,

rd =
`−1

∑
i=d

2i−d
(
(r1[i])R+(r2[i])R

)
−

`−1

∑
i=d

(
2i−d+1(r1[i])R

)
· (r2[i])R (6)

The servers non-interactively generate J·K-shares (arith-
metic shares) for each bit of r1 and r2 as in Table 2. Given
their J·K-shares, the servers execute Πdotp twice to com-
pute J·K-share of A = ∑

`−1
i=d (2

i−d+1(r1[i])R) · (r2[i])R, and B =

∑
`−1
i=0 (2

i+1(r1[i])R) · (r2[i])R. Using these values, the servers
can locally compute the J·K-shares for (r, rd) pair following
Equation 5 and 6, respectively. Note that servers need [·]-
shares of r and not J·K-shares. The [·]-shares can be computed
from the J·K-shares locally as follows. Let (αr,βr,γr) be the
values corresponding to the J·K-shares of r. Since P0 knows
the entire value r in clear, and it knows αr, it can locally com-
pute βr. Now, the servers set [·]-shares as: [r]1 =− [αr]1 and
[r]2 = βr− [αr]2. The protocol appears in Fig. 12.

Lemma 3.11 (Communication). Protocol Πtrgen (Fig. 12)
requires an amortized communication of 12` bits.

Proof. All the operations in Πtrgen are non-interactive except
for the two dot product calls required to compute A,B. The
cost thus follows from Lemma 3.10.

Dot Product with Truncation Given the J·K-sharing of
vectors~x and~y, protocol Πdotpt (Fig. 13) allows servers to gen-
erate JzdK, where zd denotes the truncated value of z =~x�~y.
A naive way is to compute the dot product using Πdotp, fol-
lowed by performing truncation using the (r, rd) pair. Instead,
we follow the optimization of BLAZE where the online phase
of Πdotp is modified to integrate the truncation using (r, rd) at
no additional cost.
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The preprocessing phase now consists of the execution
of one instance of Πtrgen (Fig. 12) and the preprocess-
ing corresponding to Πdotp (Fig. 10). In the online phase,
servers enable P1,P2 to obtain z?− r instead of β?

z , where
z? = β?

z −αz. Using z?− r, both P1,P2 then compute (z− r)

locally, truncate it to obtain (z− r)d and execute Πjsh to gen-
erate J(z− r)dK. Finally, servers locally compute the result as
JzdK = J(z− r)dK+ JrdK. The formal details for Πdotpt proto-
col appear in Fig. 13.

Preprocessing:

– Servers execute the preprocessing of
Πdotp(P ,{JxiK,JyiK}i∈[n]).

– In parallel, servers execute Πtrgen(P ) to generate the trunca-
tion pair ([r] ,JrdK).

Online:

– P0,Pj, for j ∈ {1,2}, compute [Ψ] j = −∑
n
i=1((βxi +

γxi) [αyi ] j + (βyi + γyi) [αxi ] j) − [r] j and set [(z− r)?] j =

[Ψ] j +[χ] j.

– P1,P0 jmp-send
[
(z− r)?

]
1 to P2 and P2,P0 jmp-send[

(z− r)?
]

2 to P1.

– P1,P2 locally compute (z− r)? =
[
(z− r)?

]
1+
[
(z− r)?

]
2 and

set (z− r) = (z− r)?+∑
n
i=1(βxi βyi)+ψ.

– P1,P2 locally truncate (z− r) to obtain (z− r)d and execute
Πjsh(P1,P2,(z− r)d) to generate J(z− r)dK.

– Servers locally compute JzK = J(z− r)dK+ JrdK .

Protocol Πdotpt(P ,{JxiK,JyiK}i∈[n])

Figure 13: 3PC: Dot Product Protocol with Truncation

Lemma 3.12 (Communication). Protocol Πdotpt (Fig. 13)
requires an amortized communication of 15` bits in the pre-
processing phase and requires 1 round and an amortized
communication of 3` bits in the online phase.

Proof. During the preprocessing phase, servers execute the
preprocessing phase of Πdotp, resulting in an amortized com-
munication of 3` bits (Lemma 3.10). In parallel, servers exe-
cute one instance of Πtrgen protocol resulting in an additional
communication of 12` bits (Lemma 3.11).

The online phase follows from that of Πdotp protocol ex-
cept that, now, P1,P2 compute additive shares of z− r, where
z =~x�~y, which is achieved using two executions of Πjmp in
parallel. This requires one round and an amortized communi-
cation cost of 2` bits. P1,P2 then jointly share the truncated
value of z− r with P0, which requires one round and ` bits.
However, this step can be deferred till the end for multiple
dot product with truncation instances, which amortizes the
cost.

Secure Comparison Secure comparison allows servers to
check whether x < y, given their J·K-shares. In FPA rep-
resentation, checking x < y is equivalent to checking the

msb of v = x− y. Towards this, servers locally compute
JvK = JxK− JyK and extract the msb of v using Πbitext. In
case an arithmetic sharing is desired, servers can apply Πbit2A

(Fig. 9) protocol on the outcome of Πbitext protocol.

Activation Functions We now elaborate on two of the most
prominently used activation functions: i) Rectified Linear Unit
(ReLU) and (ii) Sigmoid (Sig).

(i) ReLU: The ReLU function, relu(v) = max(0,v), can
be viewed as relu(v) = b · v, where bit b = 1 if v < 0 and 0
otherwise. Here b denotes the complement of b. Given JvK,
servers execute Πbitext on JvK to generate JbKB. J·KB-sharing
of b is locally computed by setting βb = 1⊕βb. Servers ex-
ecute ΠBitInj protocol on JbKB and JvK to obtain the desired
result.

Lemma 3.13 (Communication). Protocol relu requires an
amortized communication of 21`−6 bits in the preprocess-
ing phase and requires log`+ 3 rounds and an amortized
communication of 16`−6 bits in the online phase.

Proof. One instance of relu protocol comprises of execution
of one instance of Πbitext, followed by ΠBitInj. The cost, there-
fore, follows from Lemma 3.7, and Lemma 3.9.

(ii) Sig: In this work, we use the MPC-friendly variant of
the Sigmoid function [14,41,43]. Note that sig(v) = b1b2(v+
1/2)+b2, where b1 = 1 if v+1/2< 0 and b2 = 1 if v−1/2<
0. To compute Jsig(v)K, servers proceed in a similar fashion
as in ReLU, and hence, we skip the details.

The formal details of the MPC-friendly variant of the Sig-
moid function [14, 41, 43] is given below:

sig(v) =


0 v <− 1

2
v+ 1

2 − 1
2 ≤ v ≤ 1

2
1 v > 1

2

Lemma 3.14 (Communication). Protocol sig requires an
amortized communication of 39`−9 bits in the preprocess-
ing phase and requires log`+ 4 rounds and an amortized
communication of 29`−9 bits in the online phase.

Proof. An instance of sig protocol involves the execution of
the following protocols in order– i) two parallel instances
of Πbitext protocol, ii) once instance of Πmult protocol over
boolean value, and iii) one instance of ΠBitInj and Πbit2A in
parallel. The cost follows from Lemma 3.7, Lemma 3.8 and
Lemma 3.9.

Maxpool, Matrix Operations and Convolutions The
goal of maxpool is to find the maximum value in a vector
~x of m values. Maximum between two elements xi, x j can be
computed by applying secure comparison, which returns a
binary sharing of a bit b such that b = 0 if xi > x j, or 1, oth-
erwise, followed by computing (b)B(x j− xi)+ xi, which can
be performed using bit injection (3.3). To find the maximum
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value in vector~x, the servers first group the values in~x into
pairs and securely compare each pair to obtain the maximum
of the two. This results in a vector of size m/2. This process
is repeated for O(logm) rounds to obtain the maximum value
in the entire vector.

Linear matrix operations, such as addition of two matri-
ces A,B to generate matrix C = A+B, can be computed by
extending the scalar operations (addition, in this case) with
respect to each element of the matrix. Matrix multiplication,
on the other hand, can be expressed as a collection of dot
products, where the element in the ith row and jth column of
C = A×B, where A,B are matrices of dimension p×q, q× r,
respectively, can be computed as a dot product of the ith row
of A and the jth column of B. Thus, computing C of dimen-
sion p× r requires pr dot products whose communication cost
(amortized) is equal to that of computing pr multiplications
in our case. This improves the cost of matrix multiplication
over the naive approach which requires pqr multiplications.

Convolutions form an important building block in several
neural network architectures and can be represented as matrix
multiplications, as explained in the example below. Consider
a 2-dimensional convolution (CV) of a 3×3 input matrix X
with a kernel K of size 2× 2. This can be represented as a
matrix multiplication as follows.

CV

x1 x2 x3
x4 x5 x6
x7 x8 x9

 ,[k1 k2
k3 k4

]=


x1 x2 x4 x5
x2 x3 x5 x6
x4 x5 x7 x8
x5 x6 x8 x9




k1
k2
k3
k4


Generally, convolving a f × f kernel over a w× h input

with p× p padding using s× s stride having i input channels
and o output channels, is equivalent to performing a matrix
multiplication on matrices of dimension (w′ · h′)× (i · f · f )

and (i · f · f )× (o) where w′ =
w− f +2p

s
+ 1 and h′ =

h− f +2p
s

+ 1. We refer readers to [54] (cf. “Linear and
Convolutional Layer”) and [52] for more details.

4 Robust 4PC and PPML

In this section, we extend our 3PC results to the 4-party case
and observe substantial efficiency gain. First, the use of broad-
cast is eliminated. Second, the preprocessing of multiplication
becomes substantially computationally light, eliminating the
multiplication protocol (used in the preprocessing) altogether.
Third, we achieve a dot product protocol with communication
cost independent of the size of the vector, completely elim-
inating the complex machinery required as in the 3PC case.
At the heart of our 4PC constructions lies an efficient 4-party
jmp primitive, denoted as jmp4, that allows two servers to
send a common value to a third server robustly.

This section is organized as follows. We begin with the
secret-sharing semantics for 4 servers, for which we only

use an extended version of J·K-sharing. We then explain the
joint message passing primitive for four servers, followed by
our 4PC protocols. We conclude this section with a detailed
analysis about achieving private robustness.

Secret Sharing Semantics For a value v, the shares for
P0,P1 and P2 remain the same as that for 3PC case. That is,
P0 holds ([αv]1 , [αv]2 ,βv + γv) while Pi for i ∈ {1,2} holds
([αv]i ,βv,γv). The shares for the fourth server P3 is defined
as ([αv]1 , [αv]2 ,γv). Clearly, the secret is defined as v = βv−
[αv]1− [αv]2.

4.1 4PC Joint Message Passing Primitive
The jmp4 primitive enables two servers Pi, Pj to send a com-
mon value v ∈ Z2` to a third server Pk, or identify a TTP
in case of any inconsistency. This primitive is analogous to
jmp (Fig. 2) in spirit but is significantly optimized and free
from broadcast calls. Similar to the 3PC counterpart, each
server maintains a bit and Pi sends the value, and Pj the hash
of it to Pk. Pk sets its inconsistency bit to 1 when the (value,
hash) pair is inconsistent. This is followed by relaying the
bit to all the servers, who exchange it among themselves and
agree on the bit that forms majority (1 indicates the presence
of inconsistency, and 0 indicates consistency). The presence
of an honest majority among Pi,Pj,Pl , guarantees agreement
on the presence/absence of an inconsistency as conveyed by
Pk. Observe that inconsistency can only be caused either due
to a corrupt sender sending an incorrect value (or hash), or
a corrupt receiver falsely announcing the presence of incon-
sistency. Hence, the fourth server, Pl , can safely be employed
as TTP. The ideal functionality appears in Fig. 14, and the
protocol appears in Fig. 15.

Fjmp4 interacts with the servers in P and the adversary S .
Step 1: Fjmp receives (Input,vs) from senders Ps for s ∈ {i, j},
(Input,⊥) from receiver Pk and fourth server Pl , while it re-
ceives (Select,ttp) from S . Here ttp is a boolean value, with a
1 indicating that TTP = Pl should be established.

Step 2: If vi = v j and ttp= 0, or if S has corrupted Pl , set msgi =
msg j = msgl =⊥,msgk = vi and go to Step 4.

Step 3: Else : Set msgi = msg j = msgk = msgl = Pl .
Step 4: Send (Output,msgs) to Ps for s ∈ {0,1,2,3}.

Functionality Fjmp4

Figure 14: 4PC: Ideal functionality for jmp4 primitive

Notation 4.1. We say that Pi,Pj jmp4-send v to Pk when they
invoke Πjmp4(Pi,Pj,Pk,v,Pl).

We note that the end goal of jmp4 primitive relates closely
to the bi-convey primitive of FLASH [11]. Bi-convey allows
two servers S1,S2 to convey a value to a server R, and in case
of an inconsistency, a pair of honest servers mutually identify
each other, followed by exchanging their internal randomness

15



to recover the clear inputs, computing the circuit, and send-
ing the output to all. Note, however, that jmp4 primitive is
more efficient and differs significantly in techniques from
the bi-convey primitive. Unlike in bi-convey, in case of an
inconsistency, jmp4 enables servers to learn the TTP’s iden-
tity unanimously. Moreover, bi-convey demands that honest
servers, identified during an inconsistency, exchange their
internal randomness (which comprises of the shared keys
established during the key-setup phase) to proceed with the
computation. This enforces the need for a fresh key-setup
every time inconsistency is detected. On the efficiency front,
jmp4 simply halves the communication cost of bi-convey,
giving a 2× improvement.

– Ps ∈ P initializes an inconsistency bit bs = 0. If Ps remains
silent instead of sending bs in any of the following rounds, the
recipient sets bs to 1.

– Pi sends v to Pk and Pj sends H(v) to Pk. Pk sets bk = 1 if the
received values are inconsistent or if the value is not received.

– Pk sends bk to all servers. Ps for s ∈ {i, j, l} sets bs = bk.
– Ps for s ∈ {i, j, l} mutually exchange their bits. Ps resets bs =

b′ where b′ denotes the bit which appears in majority among
bi,b j,bl .

– All servers set TTP = Pl if b′ = 1, terminate otherwise.

Protocol Πjmp4(Pi,Pj,Pk,v,Pl)

Figure 15: 4PC: Joint Message Passing Primitive

Lemma 4.2 (Communication). Protocol Πjmp4 (Fig. 15) re-
quires 1 round and an amortized communication of ` bits in
the online phase.

Proof. Server Pi sends the value v to Pk while Pj sends hash of
the same to Pk. This accounts for one round of communication.
Values sent by Pj for several instances can be concatenated
and hashed to obtain a single value. Hence the cost of sending
the hash gets amortized over multiple instances. Similarly, the
two round exchange of inconsistency bits to establish a TTP
can be combined for multiple instances, thereby amortizing
this cost. Thus, the amortized cost of this protocol is ` bits.

4.2 4PC Protocols
In this section, we revisit the protocols from 3PC (§3) and
suggest optimizations leveraging the presence of an additional
honest party in the system. We provide security proofs in
§C.2.

Sharing Protocol To enable Pi to share a value v, protocol
Πsh4 (Fig. 16) proceeds similar to that of 3PC case with the
addition that P3 also samples the values [αv]1 , [αv]2 ,γv using
the shared randomness with the respective servers. On a high
level, Pi computes βv = v + [αv]1 + [αv]2 and sends βv (or
βv + γv) to another server and they together jmp4-send this

information to the intended servers. The formal protocol for
sharing a value v by Pi is given in Fig. 16

Preprocessing:

– If Pi = P0 : P0,P3,Pj, for j ∈ {1,2}, together sample random
[αv] j ∈ Z2` , while P sample random γv ∈ Z2` .

– If Pi = P1 : P0,P3,P1 together sample random [αv]1 ∈ Z2` ,
while P sample a random [αv]2 ∈ Z2` . Also, P1,P2,P3 sample
random γv ∈ Z2` .

– If Pi = P2: Analogous to the case when Pi = P1.
– If Pi = P3: P0,P3,Pj, for j ∈ {1,2}, sample random
[αv] j ∈ Z2` . P1,P2,P3 together sample random γv ∈ Z2` .

Online:

– If Pi = P0 : P0 computes βv = v+αv and sends βv to P1. P0,P1
jmp4-send βv to P2.

– If Pi = Pj, for j ∈ {1,2} : Pj computes βv = v+αv, sends βv

to P3− j. P1,P2 jmp4-send βv+ γv to P0.
– If Pi = P3: P3 sends βv + γv = v + αv + γv to P0. P3,P0

jmp4-send βv+ γv to both P1 and P2.

Protocol Πsh4(Pi,v)

Figure 16: 4PC: Generating JvK-shares by server Pi

Lemma 4.3 (Communication). In the online phase, Πsh4 (Fig.
16) requires 2 rounds and an amortized communication of
2` bits when P0,P1,P2 share a value, whereas it requires an
amortized communication of 3` bits when P3 shares a value.

Proof. The proof for P0,P1,P2 sharing a value follows from
3.3. For the case when P3 wants to share a value v, it first sends
βv+ γv to P0 which requires one round and ` bits of commu-
nication. This is followed by 2 parallel calls to Πjmp4 which
together require one round and an amortized communication
of 2` bits.

Joint Sharing Protocol Protocol Πjsh4 enables a pair of
(unordered) servers (Pi,Pj) to jointly generate a J·K-sharing
of value v ∈ Z2` known to both of them. In case of an incon-
sistency, the server outside the computation serves as a TTP.
The protocol is described in Fig. 17.

When P3,P0 want to jointly share a value v which is avail-
able in the preprocessing phase, protocol Πjsh4 can be per-
formed with a single element of communication (as opposed
to 2 elements in Fig. 17). P0,P3 can jointly share v as follows.
P0,P3,P1 sample a random r ∈Z2` and set [αv]1 = r. P0,P3 set
[αv]2 =−(r+v) and jmp4-send [αv]2 to P2. This is followed
by servers locally setting γv = βv = 0.

We further observe that servers can generate a J·K-sharing
of v non-interactively when v is available with P0,P1,P2. For
this, servers set [αv]1 = [αv]2 = γv = 0 and βv = v. We abuse
notation and use Πjsh4(P0,P1,P2,v) to denote this sharing.

Lemma 4.4 (Communication). In the online phase, Πjsh4

(Fig. 17) requires 1 round and an amortized communication

16



of 2` bits when (P3,Ps) for s ∈ {0,1,2} share a value, and
requires an amortized communication of ` bits, otherwise.

Proof. When (P3,Ps) for s ∈ {0,1,2} want to share a value v,
there are two parallel calls to Πjmp4 which requires an amor-
tized communication of 2` bits and one round. In the other
cases, Πjmp4 is invoked only once, resulting in an amortized
communication of ` bits.

Preprocessing:

– If (Pi,Pj) = (P1,P2) : P1,P2,P3 sample γv ∈ Z2` . Servers
locally set [αv]1 = [αv]2 = 0.

– If (Pi,Pj) = (Ps,P0), for s ∈ {1,2} : Servers execute the
preprocessing of Πsh4(Ps,v). Servers locally set γv = 0.

– If (Pi,Pj) = (Ps,P3), for s ∈ {0,1,2} : Servers execute the
preprocessing of Πsh4(Ps,v).

Online:

– If (Pi,Pj) = (P1,P2) : P1,P2 set βv = v and jmp4-send βv+γv

to P0.
– If (Pi,Pj) = (Ps,P0), for s ∈ {1,2,3} : Ps,P0 compute βv = v+
[αv]1+[αv]2 and jmp4-send βv to Pk, where (k ∈ {1,2})∧(k 6=
s).

– If (Pi,Pj) = (Ps,P3), for s∈ {1,2}: P3,Ps compute βv and βv+
γv. Ps,P3 jmp4-send βv to Pk, where (k ∈ {1,2})∧ (k 6= s). In
parallel, Ps,P3 jmp4-send βv+ γv to P0.

Protocol Πjsh4(Pi,Pj,v)

Figure 17: 4PC: J·K-sharing of a value v ∈ Z2` jointly by Pi,Pj

〈·〉-sharing Protocol In some protocols, P3 is required to
generate 〈·〉-sharing of a value v in the preprocessing phase,
where 〈·〉-sharing of v is same as that defined in 3PC (where
v = v0 + v1 + v2, and P0 possesses (v0,v1), P1 possesses
(v1,v2), and P2 possess (v2,v0)) with the addition that P3 now
possesses (v0,v1,v2). We call the resultant protocol Πash4 and
it appears in Fig. 18.

Preprocessing :

– Servers P0,P3,P1 sample a random v1 ∈ Z2` , while servers
P0,P3,P2 sample a random v0 ∈ Z2` .

– P3 computes v2 = v−v0−v1 and sends v2 to P2. P3,P2
jmp4-send v2 to P1.

Protocol Πash4(P3,v)

Figure 18: 4PC: 〈·〉-sharing of value v by P3

Note that servers can locally convert 〈v〉 to JvK by setting
their shares as shown in Table 5.

P0 P1 P2 P3

JvK (−v1,−v0,0) (−v1,v2,−v2) (−v0,v2,−v2) (−v0,−v1,−v2)

Table 5: Local conversion of shares from 〈·〉-sharing to J·K-sharing
for a value v. Here, [αv]1 =−v1, [αv]2 =−v0,βv = v2,γv =−v2.

Lemma 4.5 (Communication). Protocol Πash4 (Fig. 18) re-
quires 2 rounds and an amortized communication of 2` bits.

Proof. Communicating v2 to P2 requires ` bits and 1 round.
This is followed by one invocation of Πjmp4 which requires `
bits and 1 round. Thus, the amortized communication cost is
2` bits and two rounds.

Multiplication Protocol Given the J·K-shares of x and y,
protocol Πmult4 (Fig. 19) allows servers to compute JzK with
z = xy. When compared with the state-of-the-art 4PC GOD
protocol of FLASH [11], our solution improves communica-
tion in both, the preprocessing and online phase, from 6 to 3
ring elements. Moreover, our communication cost matches
with the state-of-the-art 4PC protocol of Trident [15] that only
provides security with fairness.

Preprocessing:

– P0,P3,Pj, for j ∈ {1,2}, sample random [αz] j ∈ Z2` , and
P0,P1,P3 sample random [Γxy]1 ∈ Z2` .

– P1,P2,P3 sample random γz,ψ, r ∈Z2` and set [ψ]1 = r, [ψ]2 =
ψ− r.

– P0,P3 set [Γxy]2 = Γxy − [Γxy]1, where Γxy = αxαy. P0,P3
jmp4-send [Γxy]2 to P2.

– P3,Pj, for j ∈ {1,2}, set [χ] j = γx [αy] j + γy [αx] j + [Γxy] j −
[ψ] j. P1,P3 jmp4-send [χ]1 to P0, while P2,P3 jmp4-send [χ]2
to P0.

Online:

– P0,Pj , for j ∈ {1,2}, compute [β?
z ] j =−(βx+γx) [αy] j−(βy+

γy) [αx] j +[αz] j +[χ] j.
– P1,P0 jmp4-send [β?

z ]1 to P2, and P2,P0 jmp4-send [β?
z ]2 to

P1.
– Pj, for j ∈ {1,2}, computes β?

z = [β?
z ]1 +[β?

z ]2 and sets βz =
β?
z +βxβy+ψ.

– P1,P2 jmp4-send βz+ γz to P0.

Protocol Πmult4(P ,JxK,JyK)

Figure 19: 4PC: Multiplication Protocol (z = x ·y)

Recall that the goal of preprocessing in 3PC multiplication
was to enable P1,P2 obtain ψ, and P0,Pi for i ∈ {1,2} obtain
[χ]i where χ = γxαy + γyαx +Γxy−ψ. Here ψ is a random
value known to both P1,P2. With the help of P3, we let the
servers obtain the respective preprocessing data as follows:
P0,P3,P1 together samples random [Γxy]1 ∈Z2` . P0,P3 locally
compute Γxy =αxαy, set [Γxy]2 = Γxy− [Γxy]1 and jmp4-send
[Γxy]2 to P2. P1,P2,P3 locally sample ψ, r and generate [·]-
shares of ψ by setting [ψ]1 = r and [ψ]2 = ψ− r. Then Pj,P3
for j ∈ {1,2} compute [χ] j = γx [αy] j + γy [αx] j + [Γxy] j −
[ψ] j and jmp4-send [χ] j to P0. The online phase is similar
to that of 3PC, apart from Πjmp4 being used instead of Πjmp

for communication. Since P3 is not involved in the online
computation phase, we can safely assume P3 to serve as the
TTP for the Πjmp4 executions in the online phase.
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Lemma 4.6 (Communication). Πmult4 (Fig. 19) requires an
amortized communication of 3` bits in the preprocessing
phase, and 1 round with an amortized communication of 3`
bits in the online phase.

Proof. In the preprocessing phase, the servers execute Πjmp4

to jmp4-send [Γxy]2 to P2 resulting in amortized communica-
tion of ` bits. This is followed by 2 parallel invocations of
Πjmp4 to jmp4-send [χ]1 , [χ]2 to P0 which require an amor-
tized communication of 2` bits. Thus, the amortized com-
munication cost in preprocessing is 3` bits. In the online
phase, there are 2 parallel invocations of Πjmp4 to jmp4-send
[β?

z ]1 , [β
?
z ]2 to P2,P1, respectively, which requires amortized

communication of 2` bits and one round. This is followed
by another call to Πjmp4 to jmp4-send βz + γz to P0 which
requires one more round and amortized communication of `
bits. However, jmp4-send of βz+ γz can be delayed till the
end of the protocol, and will require only one round for multi-
ple multiplication gates and hence, can be amortized. Thus,
the total number of rounds required for multiplication in the
online phase is one with an amortized communication of 3`
bits.

Reconstruction Protocol Given JvK, protocol Πrec4 (Fig.
20) enables servers to robustly reconstruct the value v among
the servers. Note that every server lacks one share for recon-
struction and the same is available with three other servers.
Hence, they communicate the missing share among them-
selves, and the majority value is accepted. As an optimization,
two among the three servers can send the missing share while
the third one can send a hash of the same for verification.
Notice that, as opposed to the 3PC case, this protocol does not
require commitments. The formal protocol for reconstruction
is given in Fig. 20.

Online

– P0 receives γv from P1,P2 and H(γv) from P3.
– P1 receives [αv]2 from P2,P3 and H([αv]2) from P0.
– P2 receives [αv]1 from P0,P3 and H([αv]1) from P1.
– P3 receives βv+ γv from P0,P1 and H(βv+ γv) from P2.
– Pi ∈ P selects the missing share forming the majority among

the values received and reconstructs the output.

Protocol Πrec4(P ,JvK)

Figure 20: 4PC: Reconstruction of v among the servers

Lemma 4.7 (Communication). Πrec4 (Fig. 20) requires an
amortized communication of 8` bits and 1 round in the online
phase.

Proof. Each Ps for s ∈ {0,1,2,3} receives the missing share
in clear from two other servers, while the hash of it from the
third. As before, the missing share sent by the third server can
be concatenated over multiple instances and hashed to obtain

a single value. Thus, the amortized communication cost is 2`
bits per server, resulting in a total cost of 8` bits.

4.3 Building Blocks for PPML using 4PC
This section provides details on robust realizations of the
PPML building blocks in 4-server setting (for the same blocks
as in §3.3). We provide the security proofs in §C.2.

Input Sharing and Output Reconstruction in SOC Set-
ting We extend input sharing and reconstruction in the SOC
setting as follows. To generate J·K-shares for its input v, U
receives each of the shares [αv]1 , [αv]2, and γv from three out
of the four servers as well as a random value r ∈ Z2` sampled
together by P0,P1,P2 and accepts the values that form the
majority. U locally computes u = v+ [αv]1 + [αv]2 + γv + r
and sends u to all the servers. Servers then execute a two
round byzantine agreement (BA) [47] to agree on u (or ⊥).
At a high-level, the BA protocol proceeds as follows. Let us
denote the value received by Pi from U as ui. To agree on
u received from U, the servers first arrive on an agreement
regarding each ui received by Pi. This is followed by select-
ing the majority value among u1,u2,u3,u4. For servers to
agree on ui, Pi first sends ui to all servers. This is followed
by Pj ∈ P\Pi exchanging ui among themselves. Thus, each
Pj ∈ P\Pi receives three versions of ui and sets the majority
value among the three values received as ui. Since there can
be at most one corruption among the servers, the majority rule
ensures that all honest servers are on the same page. Once
each of the values are agreed on, every server takes the ma-
jority among u1,u2,u3,u4 as the value sent by U. If no value
appears in majority, a default value is chosen. We refer the
readers to [47] for the formal details of the agreement pro-
tocol. On successful completion of BA, P0 computes βv+ γv

from u while P1,P2 compute βv from u locally. For the recon-
struction of a value v, servers send their J·K-shares of v to U,
who selects the majority value for each share and reconstructs
the output. At any point, if a TTP is identified, the servers pro-
ceed as follows. All servers send their J·K-share of the input
to the TTP. TTP picks the majority value for each share and
computes the function output. It then sends this output to U.
U also receives the identity of the TTP from all servers and
accepts the output received from the TTP forming majority.

Bit Extraction Protocol This protocol enables the servers
to compute a boolean sharing of the most significant bit
(MSB) of a value v ∈ Z2` given the arithmetic sharing JvK.
To compute the MSB, we use the optimized Parallel Prefix
Adder (PPA) circuit from ABY3 [41], which takes as input
two boolean values and outputs the MSB of the sum of the
inputs. The circuit requires 2(`− 1) AND gates and has a
multiplicative depth of log`. The protocol for bit extraction
(Πbitext4) involves computing the boolean PPA circuit using
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the protocols described in §4. The two inputs to this boolean
circuit are generated as follows. The value v whose MSB
needs to be extracted can be represented as the sum of two
values as v = βv+(−αv) where the first input to the circuit
will be βv and the second input will be −αv. Since βv is
held by P1,P2, servers execute Πjsh4 to generate JβvKB. Simi-
larly, P0,P3 possess αv, and servers execute Πjsh4 to generate
J−αvKB. Servers in P use the J·KB-shares of these two inputs
(βv,−αv) to compute the optimized PPA circuit which outputs
the Jmsb(v)KB.

Lemma 4.8 (Communication). The protocol Πbitext4 requires
an amortized communication of 7`−6 bits in the preprocess-
ing phase, and log` rounds with amortized communication of
7`−6 bits in the online phase.

Proof. Generation of boolean sharing of αv requires ` bits
in the preprocessing phase (since Πjsh4 with P0,P3 can be
achieved with ` bits of communication in the preprocessing
phase), and generation of boolean sharing of βv requires ` bits
and one round (which can be deferred towards the end of the
protocol thereby requiring one round for several instances)
in the online phase. Further, the boolean PPA circuit to be
computed requires 2(`− 1) AND gates. Since each AND
gate requires Πmult4 to be executed, it requires an amortized
communication of 6`−6 bits in both the preprocessing phase
and the online phase. Thus, the overall communication is
7`−6 bits, in both, the preprocessing and online phase. The
circuit has a multiplicative depth of log` which results in log`
rounds in the online phase.

Bit2A Protocol This protocol enables servers to compute
the arithmetic sharing of a bit b given its boolean sharing.
Let bR denote the value of b in the ring Z2` . We observe
that bR can be written as follows. bR = (αb⊕βb)

R = αR
b +

βR
b −2αR

bβR
b . Thus, to obtain an arithmetic sharing of bR, the

servers can compute an arithmetic sharing of βR
b , αR

b and
βR
bαR

b . This can be done as follows. P0,P3 execute Πjsh4 on
αR
b in the preprocessing phase to generate JαR

b K. Similarly,
P1,P2 execute Πjsh4 on βR

b in the online phase to generate
JβR

b K. This is followed by Πmult4 on JβR
b K,JαR

b K, followed by
local computation to obtain JbRK.

While the above approach serves the purpose, we now
provide an improved version, which further helps in reducing
the online cost. We observe that bR can be written as follows.
bR =(αb⊕βb)

R =((αb⊕γb)⊕(βb⊕γb))
R =(e⊕c)R = eR+

cR−2eRcR where e=αb⊕γb and c= βb⊕γb. Thus, to obtain
an arithmetic sharing of bR, P3 generates 〈·〉-sharing of eR.
To ensure the correctness of the shares, the servers P0,P1,P2
check whether the following equation holds: (e⊕ rb)

R = eR+
rRb −2eRrRb . If the verification fails, a TTP is identified. Else,
this is followed by servers locally converting 〈eR〉-shares to
JeRK according to Table 5, followed by multiplying JeRK,JcRK
and locally computing JbRK = JeRK+ JcRK− 2JeRcRK. Note
that during Πjsh4(P0,P1,P2,c

R) since αcR and γcR are set to 0,

the preprocessing of multiplication can be performed locally.
The formal protocol appears in Fig. 21.

Preprocessing :

– Servers execute Πash4(P3,e
R) (Fig. 18) where e = αb⊕ γb.

Let the shares be 〈eR〉0 = (e0,e1),〈eR〉1 = (e1,e2),〈eR〉2 =
(e2,e0),〈eR〉3 = (e0,e1,e2).

– Verification of 〈eR〉-sharing is performed as follows:
– P1,P2,P3 sample a random r ∈ Z2` and a bit rb ∈ Z21 .
– P1,P2 compute x1 = γb⊕ rb, and jmp4-send x1 to P0.
– P1,P3 compute y1 = (e1 + e2)(1−2rRb )+ rRb + r, and

jmp4-send y1 to P0.
– P2,P3 compute y2 = e0(1−2rRb )− r, and jmp4-send H(y2)

to P0.
– P0 computes x = e⊕ rb = [αb]1⊕ [αb]2⊕x1 and checks if

H(xR−y1) = H(y2).
– If verification fails, P0 sets flag = 1, else it sets flag = 0. P0

sends flag to P1. Next, P1,P0 jmp4-send flag to P2 and P3.
Servers set TTP = P1 if flag = 1.

– If verification succeeds, servers locally convert 〈eR〉 to JeRK
by setting their shares according to Table 5.

Online :

– Servers execute Πjsh4(P0,P1,P2,c
R) where c = βb⊕ γb.

– Servers execute Πmult4(P ,JeRK,JcRK) to generate JeRcRK.
– Servers compute JbRK = JeRK+ JcRK−2JeRcRK.

Protocol Πbit2A4(P ,JbKB)

Figure 21: 4PC: Bit2A Protocol

Lemma 4.9 (Communication). Πbit2A4 (Fig. 21) requires an
amortized communication of 3`+4 bits in the preprocessing
phase, and 1 round with amortized communication of 3` bits
in the online phase.

Proof. During preprocessing, one instance of Πash4 requires
2` bits of communication. Further, sending x1 requires 1 bit,
while sending y1 requires ` bits. Sending of H(y2) can be
amortized over several instances. Finally, communicating flag
requires 3 bits. Thus, the overall amortized communication
cost in preprocessing phase is 3`+4 bits. In the online phase,
joint sharing of cR can be performed non-interactively. The
only cost is due to the online phase of multiplication which
requires 3` bits and one round. Thus, the amortized commu-
nication cost in the online phase is 3` bits with one round of
communication.

Bit Injection Protocol Given the boolean sharing of a bit b,
denoted as JbKB, and the arithmetic sharing of v ∈ Z2` , proto-
col Πbitinj4 (Fig. 22) computes J·K-sharing of bv. This can be
naively computed by servers first executing Πbit2A4 on JbKB

to generate JbK, followed by servers computing JbvK by exe-
cuting Πmult4 protocol on JbK and JvK. Instead, we provide an
optimized variant which helps in reducing the communication
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cost of the naive approach in, both, the preprocessing and
online phase. We give the details next.

Let cb = βb⊕ γb, eb = αb⊕ γb, cv = βv+ γv, ev = αv+ γv and
ez = eRb ev.

Preprocessing :

– P0,P3,Pj for j ∈ {1,2} sample [αz]1 ∈ Z2` while P1,P2,P3
sample γz ∈ Z2` .

– Servers execute Πash4(P3,e
R
b ) and Πash4(P3,ez). Shares of

〈ev〉 are set locally as ev0 = [αv]2 ,ev1 = [αv]1 ,ev3 = γv.
– Servers verify correctness of 〈eRb 〉 using steps similar to

Πbit2A4 (Fig. 21). Correctness of 〈ez〉 is verified as follows.
– P0,P3,Pj for j ∈ {1,2} sample a random r j ∈ Z2` while

P1,P2,P3 sample a random r0 ∈ Z2` . P0,P3 set a0 = r1− r2,
P1,P3 set a1 = r0− r1 and P2,P3 set a2 = r2− r0.

– P1,P3 compute x1 = ev2 eb2 + ev1 eb2 + ev2 eb1 +a1.
– P2,P3 compute x2 = ev0 eb0 + ev0 eb2 + ev2 eb0 +a2.
– P0 computes x0 = ev1 eb1 + ev1 eb0 + ev0 eb1 +a0.
– P1,P3 jmp4-send y1 = x1 − ez1 to P0, while P2,P3

jmp4-send H(−y2) to P0, where y2 = x2− ez2 .
– P0 computes y0 = x0 − ez0 , and checks if H(y0 + y1) =

H(−y2).
– If verification fails, P0 sets flag = 1, else it sets flag = 0. P0

sends flag to P1. Next, P1,P0 jmp4-send flag to P2 and P3.
Servers set TTP = P1 if flag = 1.

Online :

– P0,P1 compute u1 = −cRb ev1 + (cv − 2cRb cv)e
R
b1

+ (2cRb −
1)ez1 +[αz]1, and jmp4-send u1 to P2.

– P0,P2 compute u2 = −cRb ev0 + (cv − 2cRb cv)e
R
b0

+ (2cRb −
1)ez0 +[αz]2, and jmp4-send u2 to P1.

– P1,P2 compute βz = u1 + u2 − cRb ev2 + (cv − 2cRb cv)e
R
b2

+

(2cRb −1)ez2 + cRb cv.
– P1,P2 jmp4-send βz+ γz to P0.

Protocol Πbitinj4(P ,JbKB,JvK)

Figure 22: 4PC: Bit Injection Protocol

Let z = bRv, where bR denotes the value of b in Z2` . Then,
during the computation of JzK, we observe the following:

z = bRv = (αb⊕βb)
R(βv−αv)

= ((αb⊕ γb)⊕ (βb⊕ γb))
R((βv+ γv)− (αv+ γv))

= (cb⊕ eb)
R(cv− ev) = (cRb + eRb −2cRb eRb )(cv− ev)

= cRb cv− cRb ev+(cv−2cRb cv)e
R
b +(2cRb −1)eRb ev

where cb = βb ⊕ γb, eb = αb ⊕ γb, cv = βv + γv and ev =
αv+ γv. The protocol proceeds with P3 generating 〈·〉-shares
of eRb and ez = eRb ev, followed by verification of the same
by P0,P1,P2. If verification succeeds, then to enable P2 to
compute βz = z+αz, P1,P0 jmp4-send the missing share of
βz to P2. Similarly for P1. Next, P1,P2 reconstruct βz, and
jmp4-send βz+ γz to P0 completing the protocol.

Lemma 4.10 (Communication). Protocol Πbitinj4 requires
an amortized communication cost of 6`+ 4 bits in the pre-
processing phase, and requires 1 round with an amortized
communication of 3` bits in the online phase.

Proof. The preprocessing phase requires two instances of
Πash4 which require 4` bits of communication. Verifying cor-
rectness of 〈eRb 〉 requires `+ 1 bits, whereas for 〈ez〉 we re-
quire ` bits. Finally, communicating the flag requires 3 bits.
This results in the amortized communication of 6`+4 bits in
the preprocessing phase. The online phase consists of three
calls to Πjmp4 which requires 3` bits of amortized commu-
nication. Note that the last call can be deferred towards the
end of the computation, thereby requiring a single round for
multiple instances. Thus, the number of rounds required in
the online phase is one.

Dot Product Given J·K-shares of two n-sized vectors~x,~y,
protocol Πdotp4 (Fig. 23) enables servers to compute JzK with
z =~x�~y. The protocol is essentially similar to n instances of
multiplications of the form zi = xiyi for i ∈ [n]. But instead
of communicating values corresponding to each of the n in-
stances, servers locally sum up the shares and communicate
a single value. This helps to obtain a communication cost
independent of the size of the vectors.

Preprocessing :

– P0,P3,Pj, for j ∈ {1,2}, sample random [αz] j ∈ Z2` , while
P0,P1,P3 sample random

[
Γ~x�~y

]
1 ∈ Z2` .

– P1, P2, P3 together sample random γz,ψ, r ∈Z2` and set [ψ]1 =
r, [ψ]2 = ψ− r.

– P0,P3 compute
[
Γ~x�~y

]
2 = Γ~x�~y −

[
Γ~x�~y

]
1, where Γ~x�~y =

∑
n
i=1 αxi αyi . P0,P3 jmp4-send

[
Γ~x�~y

]
2 to P2.

– P3,Pj, for j ∈ {1,2}, set [χ] j = ∑
n
i=1(γxi [αyi ] j + γyi [αxi ] j)+[

Γ~x�~y
]

j− [ψ] j.

– P1,P3 jmp4-send [χ]1 to P0, and P2,P3 jmp4-send [χ]2 to P0.

Online :

– P0,Pj, for j ∈ {1,2}, compute [β?
z ] j = −∑

n
i=1((βxi +

γxi) [αyi ] j +(βyi + γyi) [αxi ] j)+ [αz] j +[χ] j.

– P1,P0 jmp4-send [β?
z ]1 to P2, while P2,P0 jmp4-send [β?

z ]2 to
P1.

– Pj for j ∈ {1,2} computes β?
z = [β?

z ]1 + [β?
z ]2 and sets βz =

β?
z +∑

n
i=1(βxi βyi)+ψ.

– P1,P2 jmp4-send βz+ γz to P0.

Protocol Πdotp4(P ,{JxiK,JyiK}i∈[n])

Figure 23: 4PC: Dot Product Protocol (z =~x�~y)

In more detail, the dot product protocol proceeds as follows.
During the preprocessing phase, similar to the multiplica-
tion protocol P0,P1,P3 sample a random

[
Γ~x�~y

]
1. P0,P3 com-

pute Γ~x�~y = ∑
n
i=1 αxiαyi and jmp4-send

[
Γ~x�~y

]
2 = Γ~x�~y−[

Γ~x�~y
]

1 to P2. P1,P2,P3 sample a random ψ, and generate
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its [·]-shares locally. Servers P3,Pj for j ∈ {1,2} then com-
pute [χ] j = ∑

n
i=1(γxi [αyi ] j + γyi [αxi ] j)+

[
Γ~x�~y

]
j− [ψ] j, and

jmp4-send [χ] j to P0. The formal protocol is given in Fig. 23.

Lemma 4.11 (Communication). Πdotp4 (Fig. 23) requires
an amortized communication of 3` bits in the preprocessing
phase, and 1 round and an amortized communication of 3`
bits in the online phase.

Proof. The preprocessing phase requires three calls to Πjmp4,
one to jmp4-send

[
Γ~x�~y

]
2 to P2, and two to jmp4-send

[χ]1 , [χ]2 to P0. Each invocation of Πjmp4 requires ` bits re-
sulting in the amortized communication cost of preprocessing
phase to be 3` bits. In the online phase, there are 2 parallel
invocations of Πjmp4 to jmp4-send [β?

z ]1 , [β
?
z ]2 to P2,P1, re-

spectively, which require amortized communication of 2` bits
and one round. This is followed by another call to Πjmp4 to
jmp4-send βz+ γz to P0 which requires one more round and
amortized communication of ` bits. As in the multiplication
protocol, this step can be delayed till the end of the protocol
and clubbed for multiple instances. Thus, the online phase
requires one round and an amortized communication of 3`
bits.

Truncation Given the J·K-sharing of a value v and a ran-
dom truncation pair ([r] ,JrdK), the J·K-sharing of the truncated
value vd (right shifted value by, say, d positions) can be com-
puted as follows. Servers open the value (v− r), truncate it
and add it to JrdK to obtain JvdK. The protocol for generating
the truncation pair ([r] ,JrdK) is described in Fig. 24.

– P0,P3,Pj, for j ∈ {1,2} sample random R j ∈ Z2` . P0,P3 sets
r = R1 +R2 while Pj sets [r] j = R j.

– P0,P3 locally truncate r to obtain rd and execute
Πjsh4(P0,P3, r

d) to generate JrdK.

Protocol Πtrgen4(P )

Figure 24: 4PC: Generating Random Truncated Pair (r, rd)

Lemma 4.12 (Communication). Πtrgen4 (Fig. 24) requires 1
round and an amortized communication of ` bits in the online
phase.

Proof. The cost follows directly from that of
Πjmp4 (Lemma 4.2 and 4.4).

Dot Product with Truncation Protocol Πdotpt4 (Fig. 25)
enables servers to generate J·K-sharing of the truncated value
of z =~x�~y, denoted as zd , given the J·K-sharing of n-sized
vectors~x and~y. This protocol is similar to the 3PC protocol.

Lemma 4.13 (Communication). Πdotpt4 (Fig. 25) requires
an amortized communication of 4` bits in the preprocessing
phase, and 1 round with amortized communication of 3` bits
in the online phase.

Proof. The preprocessing phase comprises of the preprocess-
ing phase of Πdotp4 and Πtrgen4 which results in an amortized
communication of 3`+ `= 4` bits. The online phase follows
from that of Πdotp4 protocol except that, now, P1,P2 compute
[·]-shares of z− r. This requires one round and an amortized
communication cost of 2` bits. P1,P2 then jointly share the
truncated value of z− r with P0, which requires 1 round and `
bits. However, this step can be deferred till the end for multi-
ple instances, which results in amortizing this round. The total
amortized communication is thus 3` bits in online phase.

Preprocessing :

– Servers execute the preprocessing phase of Πdotp4(P ,
{JxiK,JyiK}i∈[n]).

– Servers execute Πtrgen4(P ) to generate the truncation pair
([r] ,JrdK). P0 obtains the value r in clear.

Online :

– P0,Pj, for j ∈ {1,2}, compute [Ψ] j = −∑
n
i=1((βxi +

γxi) [αyi ] j + (βyi + γyi) [αxi ] j) − [r] j and sets
[
(z− r)?

]
j =

[Ψ] j +[χ] j.

– P1,P0 jmp4-send
[
(z− r)?

]
1 to P2 and P2,P0 jmp4-send[

(z− r)?
]

2 to P1.

– P1,P2 locally compute (z− r)? =
[
(z− r)?

]
1+
[
(z− r)?

]
2 and

set (z− r) = (z− r)?+∑
n
i=1(βxi βyi)+ψ.

– P1,P2 locally truncate (z− r) to obtain (z− r)d and execute
Πjsh4(P1,P2,(z− r)d) to generate J(z− r)dK.

– Servers locally compute JzdK = J(z− r)dK+ JrdK .

Protocol Πdotpt4(P ,{JxiK,JyiK}i∈[n])

Figure 25: 4PC: Dot Product Protocol with Truncation

Activation Functions Here, as in the 3PC case, we consider
two activation functions – ReLU and Sig.

Lemma 4.14 (Communication). Protocol for relu requires
an amortized communication of 13`− 2 bits in the prepro-
cessing phase and requires log`+1 rounds and an amortized
communication of 10`−6 bits in the online phase.

Proof. One instance of relu protocol comprises of execution
of one instance of Πbitext4, followed by Πbitinj4. The cost,
therefore, follows from Lemma 4.8, and Lemma 4.10.

Lemma 4.15 (Communication). Protocol for sig requires an
amortized communication of 23`−1 bits in the preprocess-
ing phase and requires log`+ 2 rounds and an amortized
communication of 20`−9 bits in the online phase.

Proof. An instance of sig protocol involves the execution of
the following protocols in order– i) two parallel instances
of Πbitext4 protocol, ii) one instance of Πmult4 protocol over
boolean value, and iii) one instance of Πbitinj4 and Πbit2A4 in
parallel. The cost follows from Lemma 4.8, Lemma 4.9 and
Lemma 4.10.
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5 Applications and Benchmarking

In this section, we empirically show the practicality of our
protocols for PPML. We consider training and inference for
Logistic Regression, and inference for 3 different Neural Net-
works (NN). NN training requires additional tools to allow
mixed world computations, which we leave as future work.
We refer readers to SecureML [43], ABY3 [41], BLAZE [46],
FALCON [55] for a detailed description of the training and in-
ference steps for the aforementioned ML algorithms. All our
benchmarking is done over the publicly available MNIST [38]
and CIFAR-10 [36] dataset. For training, we use a batch size
of B = 128 and define 1 KB = 8192 bits.

In 3PC, we compare our results against the best-known
framework BLAZE that provides fairness in the same setting.
We observe that the technique of making the dot product cost
independent of feature size can also be applied to BLAZE to
obtain better costs. Hence, for a fair comparison, we addition-
ally report these improved values for BLAZE. Further, we
only consider the PPA circuit based variant of bit extraction
for BLAZE since we aim for high throughput; the GC based
variant results in huge communication and is not efficient for
deep NNs. Our results imply that we get GOD at no additional
cost compared to BLAZE. For 4PC, we compare our results
with two best-known works FLASH [11] (which is robust)
and Trident [15] (which is fair). Our results halve the cost of
FLASH and are on par with Trident.

Benchmarking Environment We use a 64-bit ring (Z264).
The benchmarking is performed over a WAN that was in-
stantiated using n1-standard-8 instances of Google Cloud7,
with machines located in East Australia (P0), South Asia (P1),
South East Asia (P2), and West Europe (P3). The machines
are equipped with 2.3 GHz Intel Xeon E5 v3 (Haswell) pro-
cessors supporting hyper-threading, with 8 vCPUs, and 30
GB of RAM Memory and with a bandwidth of 40 Mbps. The
average round-trip time (rtt) was taken as the time for com-
municating 1 KB of data between a pair of parties, and the rtt
values were as follows.

P0-P1 P0-P2 P0-P3 P1-P2 P1-P3 P2-P3

151.40ms 59.95ms 275.02ms 92.94ms 173.93ms 219.37ms

Software Details We implement our protocols using the
publicly available ENCRYPTO library [21] in C++17. We
obtained the code of BLAZE and FLASH from the respective
authors and executed them in our environment. The collision-
resistant hash function was instantiated using SHA-256. We
have used multi-threading, and our machines were capable of
handling a total of 32 threads. Each experiment is run for 20
times, and the average values are reported.

7https://cloud.google.com/

Datasets We use the following datasets:
- MNIST [38] is a collection of 28× 28 pixel, handwritten

digit images along with a label between 0 and 9 for each
image. It has 60,000 and respectively, 10,000 images in the
training and test set. We evaluate logistic regression, and
NN-1, NN-2 (cf. §5.2) on this dataset.

- CIFAR-10 [36] consists of 32×32 pixel images of 10 dif-
ferent classes such as dogs, horses, etc. There are 50,000
images for training and 10,000 for testing, with 6000 images
in each class. We evaluate NN-3 (cf. §5.2) on this dataset.

Benchmarking Parameters We use throughput (TP)
as the benchmarking parameter following BLAZE and
ABY3 [41] as it would help to analyse the effect of improved
communication and round complexity in a single shot. Here,
TP denotes the number of operations (“iterations" for the case
of training and “queries" for the case of inference) that can
be performed in unit time. We consider minute as the unit
time since most of our protocols over WAN requires more
than a second to complete. An iteration in ML training con-
sists of a forward propagation phase followed by a backward
propagation phase. In the former phase, servers compute the
output from the inputs. At the same time, in the latter, the
model parameters are adjusted according to the difference
in the computed output and the actual output. The inference
can be viewed as one forward propagation of the algorithm
alone. In addition to TP, we provide the online and over-
all communication and latency for all the benchmarked ML
algorithms.

We observe that due to our protocols’ asymmetric nature,
the communication load is unevenly distributed among all the
servers, which leaves several communication channels under-
utilized. Thus, to improve the performance, we perform load
balancing, where we run several parallel execution threads,
each with roles of the servers changed. This helps in utilizing
all channels and improving the performance.

5.1 Logistic Regression

In Logistic Regression, one iteration comprises updating the
weight vector ~w using the gradient descent algorithm (GD).
It is updated according to the function given below: ~w =
~w− α

B XT
i ◦ (sig(Xi ◦~w)−Yi) . where α and Xi denote the

learning rate, and a subset, of batch size B, randomly selected
from the entire dataset in the ith iteration, respectively. The
forward propagation comprises of computing the value Xi ◦
~w followed by an application of a sigmoid function on it.
The weight vector is updated in the backward propagation,
which internally requires the computation of a series of matrix
multiplications, and can be achieved using a dot product. The
update function can be computed using J·K shares as: J~wK =
J~wK− α

B JXT
j K◦ (sig(JX jK◦ J~wK)− JY jK). We summarize our

results in Table 6.
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Setting Ref.
Online (TP in ×103) Total

Latency (s) Com [KB] TP Latency (s) Com [KB]

3PC
Training

BLAZE 0.74 50.26 4872.38 0.93 203.35
SWIFT 1.05 50.32 4872.38 1.54 203.47

3PC
Inference

BLAZE 0.66 0.28 7852.05 0.84 0.74
SWIFT 0.97 0.34 6076.46 1.46 0.86

4PC
Training

FLASH 0.83 88.93 5194.18 1.11 166.75
SWIFT 0.83 41.32 11969.48 1.11 92.91

4PC
Inference

FLASH 0.76 0.50 7678.40 1.04 0.96
SWIFT 0.75 0.27 15586.96 1.03 0.57

Table 6: Logistic Regression training and inference. TP is given in
(#it/min) for training and (#queries/min) for inference.

We observe that the online TP for the case of 3PC infer-
ence is slightly lower compared to that of BLAZE. This is
because the total number of rounds for the inference phase
is slightly higher in our case due to the additional rounds
introduced by the verification mechanism (aka verify phase
which also needs broadcast). This gap becomes less evident
for protocols with more number of rounds, as is demonstrated
in the case of NN (presented next), where verification for
several iterations is clubbed together, making the overhead
for verification insignificant.

For the case of 4PC, our solution outperforms FLASH in
terms of communication as well as throughput. Concretely,
we observe a 2× improvement in TP for inference and a 2.3×
improvement for training. For Trident [15], we observe a drop
of 15.86% in TP for inference due to the extra rounds re-
quired for verification to achieve GOD. This loss is, however,
traded-off with the stronger security guarantee. For training,
we are on par with Trident as the effect of extra rounds be-
comes less significant for more number of rounds, as will also
be evident from the comparisons for NN inference.

As a final remark, note that our 4PC sees roughly 2.5×
improvement compared to our 3PC for logistic regression.

5.2 NN Inference
We consider the following popular neural networks for bench-
marking. These are chosen based on the different range of
model parameters and types of layers used in the network. We
refer readers to [55] for a detailed architecture of the neural
networks.
NN-1: This is a 3-layered fully connected network with ReLU
activation after each layer. This network has around 118K
parameters and is chosen from [41, 46].
NN-2: This network, called LeNet [37], contains 2 convolu-
tional layers and 2 fully connected layers with ReLU activa-
tion after each layer, additionally followed by maxpool for
convolutional layers. This network has approximately 431K
parameters.
NN-3: This network, called VGG16 [50], was the runner-up
of ILSVRC-2014 competition. This network has 16 layers in
total and comprises of fully-connected, convolutional, ReLU
activation and maxpool layers. This network has about 138

million parameters.

Network Ref.
Online Total

Latency (s) Com [MB] TP Latency (s) Com [MB]

NN-1 BLAZE 1.92 0.04 49275.19 2.35 0.11
SWIFT 2.22 0.04 49275.19 2.97 0.11

NN-2 BLAZE 4.77 3.54 536.52 5.61 9.59
SWIFT 5.08 3.54 536.52 6.22 9.59

NN-3 BLAZE 15.58 52.58 36.03 18.81 148.02
SWIFT 15.89 52.58 36.03 19.29 148.02

Table 7: 3PC NN Inference. TP is given in (#queries/min).

Table 7 summarise our benchmarking results for 3PC NN
inference. As illustrated, the performance of our 3PC frame-
work is on par with BLAZE while providing better security
guarantee.

Network Ref.
Online Total

Latency (s) Com [MB] TP Latency (s) Com [MB]

NN-1 FLASH 1.70 0.06 59130.23 2.17 0.12
SWIFT 1.70 0.03 147825.56 2.17 0.06

NN-2 FLASH 3.93 5.51 653.67 4.71 10.50
SWIFT 3.93 2.33 1672.55 4.71 5.40

NN-3 FLASH 12.65 82.54 43.61 15.31 157.11
SWIFT 12.50 35.21 110.47 15.14 81.46

Table 8: 4PC NN Inference. TP is given in (#queries/min).

Table 8 summarises NN inference for 4PC setting. Here,
we outperform FLASH in every aspect, with the improvement
in TP being at least 2.5× for each NN architecture. Further,
we are on par with Trident [15] because the extra rounds
required for verification get amortized with an increase in the
number of rounds required for computing NN inference. This
establishes the practical relevance of our work.

As a final remark, note that our 4PC sees roughly 3× im-
provement compared to our 3PC for NN inference. This re-
flects the improvements brought in by the additional honest
server in the system.

6 Conclusion

In this work, we presented an efficient framework for PPML
that achieves the strongest security of GOD or robustness. Our
3PC protocol builds upon the recent work of BLAZE [46]
and achieves almost similar (in some cases, better) perfor-
mance albeit improving the security guarantee. For the case
of 4PC, we outperform the best-known– (a) robust protocol
of FLASH [11] by 2× performance-wise and (b) fair protocol
of Trident [15] by uplifting its security.

We leave the problem of extending our framework to sup-
port mixed-world conversions as well as to design protocols
to support algorithms like Decision Trees, k-means Clustering
etc. as open problem.
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A Preliminaries

A.1 Shared Key Setup

Let F : {0,1}κ×{0,1}κ → X be a secure pseudo-random
function (PRF), with co-domain X being Z2` . The set of keys
established between the servers for 3PC is as follows:

– One key shared between every pair– k01,k02,k12 for the
servers (P0,P1),(P0,P2)and(P1,P2), respectively.

– One shared key known to all the servers– kP .
Suppose P0,P1 wish to sample a random value r ∈ Z2` non-

interactively. To do so they invoke Fk01(id01) and obtain r.
Here, id01 denotes a counter maintained by the servers, and
is updated after every PRF invocation. The appropriate keys
used to sample is implicit from the context, from the identities
of the pair that sample or from the fact that it is sampled by
all, and, hence, is omitted.

Fsetup interacts with the servers in P and the adversary S . Fsetup

picks random keys ki j for i, j ∈ {0,1,2} and kP . Let ys denote the
keys corresponding to server Ps. Then
– ys = (k01,k02 and kP ) when Ps = P0.
– ys = (k01,k12 and kP ) when Ps = P1.
– ys = (k02,k12 and kP ) when Ps = P2.

Output: Send (Output,ys) to every Ps ∈ P .

Functionality Fsetup

Figure 26: 3PC: Ideal functionality for shared-key setup

The key setup is modelled via a functionality Fsetup (Fig.
26) that can be realised using any secure MPC protocol. Anal-
ogously, key setup functionality for 4PC is given in Fig. 27.

Fsetup4 interacts with the servers in P and the adversary S .
Fsetup4 picks random keys ki j and ki jk for i, j,k ∈ {0,1,2} and
kP . Let ys denote the keys corresponding to server Ps. Then
– ys = (k01,k02,k03,k012,k013,k023 and kP ) when Ps = P0.
– ys = (k01,k12,k13,k012,k013,k123 and kP ) when Ps = P1.
– ys = (k02,k12,k23,k012,k023,k123 and kP ) when Ps = P2.
– ys = (k03,k13,k23,k013,k023,k123 and kP ) when Ps = P3.

Output: Send (Output,ys) to every Ps ∈ P .

Functionality Fsetup4

Figure 27: 4PC: Ideal functionality for shared-key setup

To generate a 3-out-of-3 additive sharing of 0 i.e. ζs for
s∈{0,1,2} such that Ps holds ζs, and ζ0+ζ1+ζ2 = 0, servers

proceed as follows. Every pair of servers, Ps,P(s+1)%3, non-
interactively generate rs, as described earlier, and each Ps sets
ζs = rs− r(s−1)%3.

A.2 Collision Resistant Hash Function
Consider a hash function family H = K ×L → Y . The hash
function H is said to be collision resistant if, for all proba-
bilistic polynomial-time adversaries A , given the description
of Hk where k ∈R K , there exists a negligible function negl()
such that Pr[(x1,x2)←A(k) : (x1 6= x2)∧Hk(x1) =Hk(x2)]≤
negl(κ), where m = poly(κ) and x1,x2 ∈R {0,1}m.

A.3 Commitment Scheme
Let Com(x) denote the commitment of a value x. The com-
mitment scheme Com(x) possesses two properties; hiding
and binding. The former ensures privacy of the value v
given just its commitment Com(v), while the latter prevents
a corrupt server from opening the commitment to a differ-
ent value x′ 6= x. The practical realization of a commitment
scheme is via a hash function H () given below, whose secu-
rity can be proved in the random-oracle model (ROM)– for
(c,o) = (H (x||r),x||r) = Com(x;r).

B Instantiating FDotPPre

As mentioned earlier, a trivial way to instantiate ΠdotpPre is
to treat a dot product operation as n multiplications. However,
this results in a communication cost that is linearly dependent
on the feature size. Instead, we instantiate ΠdotpPre by a semi-
honest dot product protocol followed by a verification phase
to check the correctness. For the verification phase, we extend
the techniques of [8, 9] to provide support for verification of
dot product tuples. Setting the verification phase parameters
appropriately gives a ΠdotpPre whose (amortized) communi-
cation cost is independent of the feature size. We provide the
details next.

To realize FDotPPre, the approach is to run a semi-honest
dot product protocol followed by a verification phase to check
the correctness of the output. For verification, the work of [8]
provides techniques to verify the correctness of m multipli-
cation triples (and degree-two relations) at a cost of O(

√
m)

extended ring elements, albeit with abort security. While [9]
improves their techniques to provide robust verification for
multiplication, we show how to extend the techniques in [9]
to robustly verify the correctness of m dot product tuples (dot
product being a degree two relation), with vectors of dimen-
sion n, at a cost of O(

√
nm) extended ring elements. Thus, the

cost to realize one instance of FDotPPre can be brought down
to only the cost of a semi-honest dot product computation
(which is 3 ring elements and independent of the vector di-
mension), where the cost due to verification can be amortized
away by setting n,m appropriately.
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Given vectors~d = (d1, . . . ,dn),~e = (e1, . . . ,en), let server
Pi, for i ∈ {0,1,2}, hold 〈d j〉i = (d j,i,d j,(i+1)%3) and 〈e j〉i =
(e j,i,e j,(i+1)%3) where j ∈ [n] (henceforth, we omit the use of
%3 in the subscript as it is understood from the context). The
semi-honest dot product protocol proceeds as follows. The
servers, using the shared key setup, non-interactively generate
3-out-of-3 additive shares of zero (as described in A.1), i.e
Pi has ζi, such that ζ0 + ζ1 + ζ2 = 0. Then, each Pi locally
computes 3-out-of -3 additive share of f =~d�~e as:

fi = ζi +
n

∑
j=1

(d j,i · e j,i +d j,i · e j,i+1 +d j,i+1 · e j,i) (7)

Now, to complete the 〈·〉-sharing of f, Pi sends fi to Pi−1. To
check the correctness of the computation 〈f〉= 〈~d�~e〉, each
Pi ∈ P needs to prove that the fi it sent in the semi-honest
protocol satisfies 7, i.e.

ζi +
n

∑
j=1

(d j,i · e j,i +d j,i · e j,i+1 +d j,i+1 · e j,i)− fi = 0 (8)

This difference in the expected message that should be sent
(computed using Pi’s correct input shares) and actual message
that is sent by Pi is captured by a circuit c, defined below.

c
(
{d j,i,d j,i+1,e j,i,e j,i+1}nj=1,ζi, fi

)
= ζi +

n

∑
j=1

(d j,i · e j,i +d j,i · e j,i+1 +d j,i+1 · e j,i)− fi
(9)

Here, c takes as input u = 4n+2 values: 〈·〉-shares of~d,~e
held by Pi, i.e. {d j,i,d j,i+1,e j,i,e j,i+1}nj=1, the additive share
of zero, ζi, that Pi holds, and the additive share fi sent by Pi.
For correct computation with respect to Pi, we require the
difference in the expected message and the actual message to
be 0, i.e.,

c
(
{d j,i,d j,i+1,e j,i,e j,i+1}nj=1,ζi, fi

)
= 0 (10)

We now explain how to verify the correctness for m dot
product tuples assuming that the operations are carried out
over a prime-order field. The verification can be extended
to support operations over rings following the techniques
of [8, 9]. To verify the correctness for m dot product tuples,
{~dk,~ek, fk}m

k=1 where fk =~dk�~ek, the output of c (which is
the difference in the expected and actual message sent) for
each of the corresponding dot product tuple must be 0. To
check correctness of all dot products at once, it suffices to
check if a random linear combination of the output of each
c (for each dot product) is 0. This is because the random
linear combination of the differences will be 0 with high
probability if fk =~dk�~ek for each k ∈ {1, . . . ,m}. We remark
that the definition of c(·) in [9] enables the verification of
only multiplication triples. With the re-definition of c as in 9,
we can now verify the correctness of dot products while the

rest of the verification steps remain similar to that in [9]. We
elaborate on the details, next.

A verification circuit, constructed as follows, enables Pi to
prove the correctness of the additive share of f that it sent,
for m instances of dot product at once. Note that the proof
system is designed for the distributed-verifier setting where
the proof generated by Pi will be shared among Pi−1,Pi+1,
who can together verify its correctness. First, a sub-circuit
g is defined as: group L small c circuits and take a random
linear combination of the values on their output wires. Since
each c circuit takes u = 4n+2 inputs as described earlier, g
takes in uL inputs. Precisely, g is defined as follows:

g(x1, . . . ,xuL) =
L

∑
k=1

θk · c(x(k−1)u+1, . . . ,x(k−1)u+u)

Since there are total m dot products to be verified, there
will be M = m/L sub-circuits g. Looking ahead, this grouping
technique enables obtaining a sub-linear communication cost
for verification because the communication cost turns out to
be O(uL+M) and setting uL = M gives the desired result.
The sub-circuits g make up the circuit G which outputs a
random linear combination of the values on the output wires
of each g, i.e:

G(x1, . . . ,xum) =
M

∑
k=1

ηk ·g(x(k−1)uL+1, . . . ,x(k−1)uL+uL)

Here, θk and ηk are randomly sampled (non-interactively) by
all parties. To prove correctness, Pi needs to prove that G
outputs 0. For this, Pi defines f1 . . . , fuL random polynomials
of degree M, one for each input wire of g. For ` ∈ {1, . . . ,M}
and j ∈ {1, . . . ,uL}, f j(0) is chosen randomly and f j(`) =
x(`−1)u+ j (i.e the jth input of the `th g gate). Pi further defines
a 2M degree polynomial p(·) on the output wires of g, i.e
p(·) = g( f1, . . . , fuL) where p(`) for ` ∈ {1, . . . ,M} is the
output of the `th g gate. The additional M+1 points required
to interpolate the 2M degree polynomial p, are obtained by
evaluating f1, . . . , fuL on M + 1 additional points, followed
by an application of g circuit. The proof generated by Pi
consists of f1(0), . . . , fuL(0) and the coefficients of p. Recall
that since we are in the distributed-verifier setting, the prover
Pi additively shares the proof with Pi−1,Pi+1. Note here, that
shares of f1(0), . . . , fuL(0) can be generated non-interactively.

To verify the proof, verifiers Pi−1,Pi+1 need to check if
the output of G is 0. This can be verified by computing the
output of G as b = ∑

M
`=1 η` · p(`) and checking if b = 0, where

η`’s are non-interactively sampled by all after the proof is
sent. If p is defined correctly, then this is indeed a random
linear combination of the outputs of all the g-circuits. This
necessitates the second check to verify the correctness of
p as per its definition i.e p(·) = g( f1(·), . . . , fuL(·)). This is
performed by checking if p(r) = g( f1(r), . . . , fuL(r)) for a
random r /∈ {1, . . . ,M} (for privacy to hold) sampled non-
interactively by all after the proof is sent. For the first check,
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verifiers can locally compute additive shares of b (using the
additive shares of coefficients of p obtained as part of the
proof) and reconstruct b to check for equality with 0. For the
second, verifiers locally compute additive shares of p(r) using
the shares of coefficients of p, and shares of f1(r), . . . , fuL(r)
by interpolating f1, . . . , fuL using (Pi’s) inputs to the c-circuits
which are implicitly additively shared between them (owing
to the replicated sharing property). Verifiers exchange these
values among themselves, reconstruct it and check if p(r) =
g( f1(r), . . . , fuL(r)). Note that, the messages computed and
exchanged by the verifiers, depend only on the proof sent
by Pi and the random values (r,η) sampled by all. These
messages can also be independently computed by Pi. Thus,
in order to prevent a verifier from falsely rejecting a correct
proof, we use jmp to exchange these messages. To optimize
the communication cost further, it suffices if a single verifier
computes the output of verification.

Setting the parameters: The proof sent by Pi consists of
the constant terms f j(0) for j ∈ {1, . . . ,uL} and 2M +1 co-
efficients of p. The former can be can be generated non-
interactively. Hence, Pi needs to communicate 2M + 1 ele-
ments to the verifiers (one of which can be performed non-
interactively). The message sent by the verifier consists of
the additive share of ∑

M
`=1 η` · p(`) (for the first check) and

f1(r), . . . , fuL(r), p(r) (for the second check). Thus, the veri-
fier communicates uL+2 elements. As the proof is executed
three times, each time with one party acting as the prover
and the other two acting as the verifiers, overall, each party
communicates uL+2M+3 elements. Setting uL = 2M and
M = m

L results in the total communication required for veri-
fying m dot products to be O(

√
nm). Thus, verifying a single

dot product has an amortized cost of O
(√

n
m

)
which can be

made very small by appropriately setting the values of n,m.
Thus, the (amortized) cost of a maliciously secure dot prod-
uct protocol can be made equal to that of a semi-honest dot
product protocol, which is 3 ring elements.

To support verification over rings [9], verification opera-
tions are carried out on the extended ring Z2`/ f (x), which is
the ring of all polynomials with coefficients in Z2` modulo a
polynomial f , of degree d, irreducible over Z2 . Each element
in Z2` is lifted to a d-degree polynomial in Z2` [x]/ f (x) (which
results in blowing up the communication by a factor d). Thus,
the per party communication amounts to (uL+2M+3)d el-
ements of Z2` for verifying m dot products of vector size n
where u= 4n+2. Further, the probability of a cheating prover
is bounded by 2(`−1)d ·2M+1

2`d−M (cf. Theorem 4.7 of [9]). Thus, if
γ is such that 2γ ≥ 2M, then the cheating probability is

2(`−1)d ·2M+1
2`d−M

≤ 2(`−1)d ·2γ +1
2`d−M

≈ 2−(d−γ)

We note that both, [9] and our technique require a commu-
nication cost of O(

√
mn) ring elements for verifying m dot

products of vector size n. This is because multiplication is a
special case of dot product with n = 1. However, since our
verification is for dot products, we can get away with perform-
ing only m semi-honest dot products whose cost is equiva-
lent to computing m semi-honest multiplications, whereas [9]
requires to execute mn multiplications (as their technique
can only verify correctness of multiplications), resulting in a
dot product cost dependent on the vector size. Concretely, to
get 40 bits of statistical security and for a vector size of 210

(CIFAR-10 [36] dataset), the aforementioned parameters can
be set as given in Table 9.

m M γ d Cost (per dot product)

220 216 17 57 7.125

230 221 22 62 0.242

240 226 27 67 0.008

250 231 32 72 0.0002

Table 9: Cost of verification in terms of the number of ring elements
communicated per dot product, and parameters for vector size n =
210 and 40 bits of statistical security. Here, m - #dot products to be
verified, M- #g sub-circuits, d-degree of extension.

It is possible to further bring down the communication cost
required for verifying m dot product tuples to O(log(nm)) at
the expense of requiring more rounds by further extending
the technique of [8], which we leave as an exercise. We refer
readers to [9] for formal details.

C Security Analysis of Our Protocols

In this section, we provide detailed security proofs for our
constructions in both the 3PC and 4PC domains. We prove
security using the real-world/ ideal-word simulation based
technique. We provide proofs in the Fsetup-hybrid model for
the case of 3PC, where Fsetup (Fig. 26) denotes the ideal
functionality for the three server shared-key setup. Similarly,
4PC proofs are provided in Fsetup4-hybrid model (Fig. 27).

Let A denote the real-world adversary corrupting at most
one server in P , and S denote the corresponding ideal world
adversary. The strategy for simulating the computation of
function f (represented by a circuit ckt) is as follows: The
simulation begins with the simulator emulating the shared-key
setup (Fsetup/Fsetup4) functionality and giving the respective
keys to the adversary. This is followed by the input sharing
phase in which S extracts the input of A , using the known
keys, and sets the inputs of the honest parties to be 0. S now
knows all the inputs and can compute all the intermediate
values for each of the building blocks in clear. Also, S can
obtain the output of the ckt in clear. S now proceeds simulat-
ing each of the building block in topological order using the
aforementioned values (inputs of A , intermediate values and
circuit output).
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In some of our sub protocols, adversary is able to decide
on which among the honest parties should be chosen as the
Trusted Third Party (TTP) in that execution of the proto-
col. To capture this, we consider corruption-aware function-
alities [5] for the sub-protocols, where the functionality is
provided the identity of the corrupt server as an auxiliary
information.

For modularity, we provide the simulation steps for each
of the sub-protocols separately. These steps, when carried
out in the respective order, result in the simulation steps for
the entire 3/4PC protocol. If a TTP is identified during the
simulation of any of the sub-protocols, simulator will stop
the simulation at that step. In the next round, the simulator
receives the input of the corrupt party in clear on behalf of the
TTP for the 3PC case, whereas it receives the input shares
from adversary for 4PC.

C.1 Security Proofs for 3PC protocols
The ideal functionality F3PC for 3PC appears in Fig. 28.

F3PC interacts with the servers in P and the adversary S . Let
f denote the functionality to be computed. Let xs be the input
corresponding to the server Ps, and ys be the corresponding output,
i.e (y0,y1,y2) = f (x0,x1,x2).

Step 1: F3PC receives (Input,xs) from Ps ∈ P , and computes
(y0,y1,y2) = f (x0,x1,x2).

Step 2: F3PC sends (Output,ys) to Ps ∈ P .

Functionality F3PC

Figure 28: 3PC: Ideal functionality for evaluating a function f

C.1.1 Joint Message Passing (jmp) Protocol

This section provides the security proof for the jmp primitive,
which forms the crux for achieving GOD in our constructions.
Let Fjmp (Fig. 1) denote the ideal functionality and let S Ps

jmp

denote the corresponding simulator for the case of corrupt
Ps ∈ P . We begin with the case for a corrupt sender, Pi. The
case for a corrupt Pj is similar and hence we omit details for
the same.

– SPi
jmp initializes ttp =⊥ and receives vi from A on behalf of

Pk.
– In case, A fails to send a value SPi

jmp broadcasts
"(accuse,Pi)", sets ttp = Pj , vi =⊥, and skip to the last step.

– Else, it checks if vi = v, where v is the value computed by
SPi
jmp based on the interaction with A , and using the knowledge

of the shared keys. If the values are equal, SPi
jmp sets bk = 0,

else, sets bk = 1, and sends the same to A on the behalf of Pk.
– If A broadcasts "(accuse,Pk)", SPi

jmp sets vi =⊥, ttp = Pj,
and skips to the last step.

– SPi
jmp computes and sends b j to A on behalf of Pj and receives

Simulator SPi
jmp

bA from A on behalf of honest Pj.

– If SPi
jmp does not receive a bA on behalf of Pj, it broadcasts

"(accuse,Pi)", sets vi =⊥, ttp = Pk. If A broadcasts
"(accuse,Pj)", SPi

jmp sets vi =⊥, ttp = Pk. If ttp is set, skip
to the last step.

– If (vi = v) and bA = 1, SPi
jmp broadcasts H j = H(v) on behalf

of Pj.

– Else if vi 6= v j : SPi
jmp broadcasts H j = H(v) and Hk = H(vi)

on behalf of Pj and Pk, respectively. If A does not broadcast,
SPi
jmp sets ttp = Pk. Else if, A broadcasts a value HA :

• If HA 6= H j : SPi
jmp sets ttp = Pk.

• Else if HA 6= Hk : SPi
jmp sets ttp = Pj.

– SPi
jmp invokes Fjmp on (Input,vi) and (Select,ttp) on behalf

of A .

Figure 29: Simulator SPi
jmp for corrupt sender Pi

The case for a corrupt receiver, Pk is provided in Fig. 30.

– SPk
jmp initializes ttp =⊥, computes v honestly and sends v and

H(v) to A on behalf of Pi and Pj, respectively.
– If A broadcasts "(accuse,Pi)", set ttp = Pj, else if A

broadcasts "(accuse,Pj)", set ttp = Pi. If both messages are
broadcast, set ttp = Pi. If ttp is set skip to the last step.

– On behalf of Pi,Pj , SPk
jmp receives bA from A . Let bi (resp. b j)

denote the bit received by Pi (resp. Pj) from A .

– If A failed to send bit bA to Pi, SPk
jmp broadcasts

"(accuse,Pk)", set ttp = Pj. Similarly, for Pj . If both Pi,Pj
broadcast "(accuse,Pk)", set ttp = Pi. If ttp is set, skip to the
last step.

– If bi∨b j = 1 : SPk
jmp broadcasts Hi,H j where Hi = H j = H(v)

on behalf of Pi,Pj, respectively.

– If A does not broadcast SPk
jmp sets ttp =⊥. If A broadcasts a

value HA :
• If HA 6= Hi : SPk

jmp sets ttp = Pj.

• Else if HA = Hi = H j : SPk
jmp sets ttp = Pi.

– SPk
jmp invokes Fjmp on (Input,⊥) and (Select,ttp) on behalf

of A .

Simulator SPk
jmp

Figure 30: Simulator SPk
jmp for corrupt receiver Pk

C.1.2 Sharing Protocol

The case for a corrupt P0 is provided in Fig. 36.

Preprocessing: SP0
sh emulates Fsetup and gives the keys

(k01,k02,kP ) to A . The values that are commonly held along with
A are sampled using appropriate shared key. Otherwise, values
are sampled randomly.
Online:

– If the dealer Ps = P0:

Simulator SP0
sh
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• SP0
sh receives βv on behalf of P1 and sets msg = v accordingly.

• Steps for Πjmp protocol are simulated according to SPi
jmp

(Fig. 29), where P0 plays the role of one of the senders.
– If the dealer Ps = P1:
• SP0

sh sets v = 0 by assigning βv = αv.

• Steps for Πjmp protocol are simulated similar to SPk
jmp

(Fig. 30), with P0 acting as the receiver.
– If the dealer if P2 : Similar to the case when Ps = P1.

Figure 31: Simulator SP0
sh for corrupt P0

The case for a corrupt P1 is provided in Fig. 32. The case
for a corrupt P2 is similar.

Preprocessing: SP1
jsh emulates Fsetup and gives the keys

(k01,k12,kP ) to A . The values that are commonly held along with
A are sampled using appropriate shared key. Otherwise, values
are sampled randomly.
Online:

– If dealer Ps = P1 : SP1
sh receives βv from A on behalf of P2.

– If Ps = P0 : SP1
sh sets v = 0 by assigning βv = αv and sends βv

to A on behalf of Ps.
– If Ps = P2 : Similar to the case where Ps = P0.
– Steps of Πjmp, in all the steps above, are simulated similar to

SPi
jmp (Fig. 29), ie. the case of corrupt sender.

Simulator SP1
sh

Figure 32: Simulator SP1
sh for corrupt P1

C.1.3 Multiplication Protocol

The case for a corrupt P0 is provided in Fig. 33.

Preprocessing:

– SP0
mult samples [αz]1 , [αz]2 and γz on behalf of P1,P2 and gen-

erates the 〈·〉-shares of d,e honestly.

– SP0
mult emulates FMulPre, and extracts ψ, [χ]1 , [χ]2 on behalf of

P1,P2.

Online:

– SP0
mult computes [β?

z ]1 , [β
?
z ]2 and steps of Πjmp are simulated

according to SPi
jmp with A as one of the sender for both [β?

z ]1,
and [β?

z ]2.

– SP0
mult computes βz+ γz on behalf of P1,P2 and steps of Πjmp

are simulated according to SPk
jmp with A as the receiver for βz+

γz.

Simulator SP0
mult

Figure 33: Simulator SP0
mult for corrupt P0

The case for a corrupt P1 is provided in Fig. 34. The case
for a corrupt P2 is similar.

Preprocessing:

– SP1
mult samples [αz]1 ,γz and [αz]2 on behalf of P0,P2. SP1

mult
generates the 〈·〉-shares of d,e honestly.

– SP1
mult emulates FMulPre, and extracts ψ, [χ]1 , [χ]2 on behalf of

P0,P2.

Online:

– SP1
mult computes [β?

z ]1 , [β
?
z ]2 on behalf of P0,P2, and steps of

Πjmp are simulated according to SPi
jmp with A as one of the

sender for [β?
z ]1, and as the receiver for [β?

z ]2.

– SP1
mult computes βz + γz on behalf of P2 and steps of Πjmp

are simulated according to SPi
jmp with A one of the senders for

βz+ γz.

Simulator SP1
mult

Figure 34: Simulator SP1
mult for corrupt P1

C.1.4 Reconstruction Protocol

The case for a corrupt P0 is provided in Fig. 51. The case for
a corrupt P1,P2 is similar.

Preprocessing:

– Srec computes commitments on [αv]1 , [αv]2 and γv on behalf
of P1,P2, using the respective shared keys.

– The steps of Πjmp are simulated similar to SPk
jmp with A acting

as the receiver for Com(γv), and SPi
jmp with A acting as one of

the senders for Com([αv]1) and Com([αv]2).

Online:

– Srec receives openings for Com([αv]1),Com([αv]2) on behalf
of P2 and P1, respectively.

– Srec opens Com(γv) to A on behalf of P1,P2.

Simulator Srec

Figure 35: Simulator Srec for corrupt P0

C.1.5 Joint Sharing Protocol

The case for a corrupt P0 is provided in Fig. 36. The case for
a corrupt P1,P2 is similar.

Preprocessing: SP0
sh emulates Fsetup and gives the keys

(k01,k02,kP ) to A . The values that are commonly held along with
A are sampled using appropriate shared key. Otherwise, values
are sampled randomly.
Online:

– If (Pi,Pj) = (P1,P0) : Sjsh computes βv = v+αv on behalf of
P1. The steps of Πjmp are simulated similar to SPi

jmp, where the
A acts as one of the senders.

– If (Pi,Pj) = (P2,P0) : Similar to the case when (Pi,Pj) =
(P1,P0).

Simulator Sjsh

30



– If (Pi,Pj) = (P1,P2) : Sjsh sets v = 0 by setting βv = αv. The
steps of Πjmp are simulated similar to SPk

jmp, where the A acts
as the receiver.

Figure 36: Simulator Sjsh for corrupt P0

C.1.6 Dot Product Protocol

The case for a corrupt P0 is provided in Fig. 37.

Preprocessing: Sdotp emulates FDotPPre and derives ψ and re-

spective [·]-shares of χ honestly on behalf of P1,P2.
Online:

– SP0
dotp computes [·]-shares of β?

z on behalf of P1,P2. The steps
of Πjmp, required to provide P1 with [β?

z ]2, and P2 with [β?
z ]1,

are simulated similar to SPi
jmp, where P0 acts as one of the sender

in both cases.
– SP0

dotp computes β?
z and βz on behalf of P1,P2. The steps of the

Πjmp, required to provide P0 with βz+ γz, are simulated similar
to SPk

jmp, where P0 acts as the receiver.

Simulator SP0
dotp

Figure 37: Simulator Sdotp for corrupt P0

The case for a corrupt P1 is provided in Fig. 38. The case
for a corrupt P2 is similar.

Preprocessing: SP1
dotp emulates FDotPPre and derives [·]-shares

of ψ,χ honestly on behalf of P0,P2.
Online:

– SP1
dotp computes [β?

z ]1 on behalf of P0, and [β?
z ]2 on behalf of

P0 and P2. The steps of Πjmp, required to provide P1 with [β?
z ]2,

and P2 with [β?
z ]1, are simulated similar to SPi

jmp, where A acts
as one of the sender in the former case, and as a receiver in the
latter case.

– SP1
dotp computes β?

z and βz on behalf of P2. The steps of Πjmp,
required to provide P0 with βz + γz, are simulated similar to
SPi
jmp, where A acts as one of the sender.

Simulator SP1
dotp

Figure 38: Simulator Sdotp for corrupt P1

C.1.7 Truncation Protocol

The case for a corrupt P0 is provided in Fig. 39.

– For i ∈ {0, . . . , `− 1}, for j ∈ {1,2}, SP0
trgen samples r j[i] on

behalf of Pj along with A using respective keys.

– SP0
trgen acting on behalf of P1,P2 generates J·K-shares of (r j[i])R

for i ∈ {0, . . . , `−1}, j ∈ {1,2} non-interactively.

– SP0
trgen defines~x,~y,~p and~q as per Fig. 12. The steps for Πdotp

Simulator SP0
trgen

are simulated similar to SP0
Πdotp

for generating A,B.

Figure 39: Simulator SP0
trgen for corrupt P0

The case for a corrupt P1 is provided in Fig. 40. The case
for a corrupt P2 is similar.

– For i∈ {0, . . . , `−1}, SP1
trgen samples r1[i] on behalf of P0 along

with A , using respective keys, and it samples r2[i] randomly on
behalf of P0,P2.

– SP1
trgen acting on behalf of P0,P2 generates J·K-shares of (r j[i])R

for i ∈ {0, . . . , `−1}, j ∈ {1,2} non-interactively.
– SP1

trgen defines~x,~y,~p and~q as per Fig. 12. The steps for Πdotp

are simulated similar to SP1
Πdotp

for generating A,B.

Simulator SP1
trgen

Figure 40: Simulator SP1
trgen for corrupt P1

C.2 Security Proofs for 4PC protocols
The ideal functionality F4PC for evaluating a function f to be
computed by ckt in 4PC appears in Fig. 41.

F4PC interacts with the servers in P and the adversary S . Let f
denote the function to be computed. Let xs be the input corre-
sponding to the server Ps, and ys be the corresponding output, i.e
(y0,y1,y2,y3) = f (x0,x1,x2,x3).

Step 1: F4PC receives (Input,xs) from Ps ∈ P , and computes
(y0,y1,y3,y3) = f (x0,x1,x2,x3).

Step 2: F4PC sends (Output,ys) to Ps ∈ P .

Functionality F4PC

Figure 41: 4PC: Ideal functionality for computing f in 4PC setting

C.2.1 Joint Message Passing

Let Fjmp4 Fig. 14 denote the ideal functionality and let S Ps
jmp4

denote the corresponding simulator for the case of corrupt
Ps ∈ P .

We begin with the case for a corrupt sender, Pi, which is
provided in Fig. 42. The case for a corrupt Pj is similar and
hence we omit details for the same.

– SPi
jmp4 receives vi from A on behalf of honest Pk. If vi = v j

(where v j is the value computed by SPi
jmp4 based on the interac-

tion with A , and using the knowledge of the shared keys), then
SPi
jmp4 sets bk = 0, else it sets bk = 1. If A fails to send a value,

bk is set to be 1. SPi
jmp4 sends bk to A on behalf of Pk.

– SPi
jmp4 sends bl = bk and b j = bk to A , and receives bi from A

on behalf of honest Pl ,Pj, respectively.

– If bk = 1, SPi
jmp4 sets ttp = 1, else it sets ttp = 0. SPi

jmp4 invokes

Simulator SPi
jmp4
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Fjmp4 with (Input,vi) and (Select,bk) on behalf of A .

Figure 42: Simulator SPi
jmp4 for corrupt sender Pi

The case for a corrupt receiver, Pk is provided in Fig. 43.

– SPk
jmp4 sends v, H(v) (where v is the value computed by SPk

jmp4
based on the interaction with A , and using the knowledge of the
shared keys) to A on behalf of honest Pi,Pj, respectively.

– SPk
jmp4 receives bki,bk j,bkl from A on behalf of Pi,Pj,Pl , re-

spectively. If A fails to send a value, it is assumed to be 1.
– SPk

jmp4 sets bk to be majority value in bki,bk j,bkl . If bk = 1,

SPk
jmp4 sets ttp = 1, else it sets ttp = 0. SPk

jmp4 invokes Fjmp4

with (Input,⊥) and (Select,bk) on behalf of A .

Simulator SPk
jmp4

Figure 43: Simulator SPk
jmp4 for corrupt receiver Pk

The case for a corrupt receiver, Pl , which is the server out-
side the computation involved in Πjmp4, is provided in Fig.
44.

– SPl
jmp4 sends bk = 0 followed by bi = 0,b j = 0 to A on behalf

of Pk and Pi,Pj, respectively.

– SPl
jmp4 invokes Fjmp4 with (Input,⊥) and (Select,bk) on be-

half of A .

Simulator SPl
jmp4

Figure 44: Simulator SPl
jmp4 for corrupt fourth server Pl

C.2.2 Sharing Protocol

The case for corrupt P0 is given in Fig. 45.

Preprocessing: SP0
Πsh4

emulates Fsetup4 and gives the keys

(k01,k02,k03,k012,k013,k023 and kP ) to A . The values that are
commonly held with A are sampled using the respective keys,
while others are sampled randomly.
Online:

– If dealer is P0, SP0
Πsh4

receives βv from A on behalf of P1. Steps

corresponding to Πjmp4 are simulated according to SPi
Πjmp4

where
P0 acts as one of the sender for sending βv.

– If dealer is P1 or P2, SP0
Πsh4

sets v = 0 by assigning βv = αv.
Steps corresponding to Πjmp4 for sending βv + γv to A are
simulated according to SPk

Πjmp4
where P0 acts as the receiver.

– If dealer is P3, SP0
Πsh4

sets v = 0 by assigning βv = αv. SP0
Πsh4

sends βv + γv to A on behalf of P3. Steps corresponding to
Πjmp4 are simulated according to SPj

Πjmp4
where P0 acts as one

of the sender with P1, P2 as the receivers, separately.

Simulator SP0
Πsh4

Figure 45: Simulator SP0
Πsh4

for corrupt P0

The case for corrupt P1 is given in Fig. 46. The case for a
corrupt P2 is similar.

Preprocessing: SP1
Πsh4

emulates Fsetup4 and gives the keys

(k01,k12,k13,k012,k013,k123 and kP ) to A . The values that are
commonly held with A are sampled using the respective keys,
while others are sampled randomly.
Online:

– If dealer is P1, SP1
Πsh4

receives βv from A on behalf of P2. Steps

corresponding to Πjmp4 are simulated according to SPi
Πjmp4

where
P1 acts as one of the sender for sending βv+ γv to P0.

– If dealer is P0 or P2, SP1
Πsh4

sets v = 0 by assigning βv = αv.

• If dealer is P0, SP1
Πsh4

sends βv to A on behalf of P0. Steps

corresponding to Πjmp4 are simulated according to SPj
Πjmp4

where P1 acts as one of the sender to send βv.
• If dealer is P2, SP1

Πsh4
sends βv to A on behalf of P2. Steps

corresponding to Πjmp4 are simulated according to SPi
Πjmp4

where P1 acts as one of the sender to send βv+ γv.
– If dealer is P3, SP1

Πsh4
sets v = 0 by assigning βv = αv. Steps

corresponding to Πjmp4 are simulated according to SPk
Πjmp4

where
P1 acts as the receiver for receiving βv+ γv.

Simulator SP1
Πsh4

Figure 46: Simulator SP1
Πsh4

for corrupt P1

The case for corrupt P3 is given in Fig. 47.

Preprocessing: SP3
Πsh4

emulates Fsetup4 and gives the keys

(k03,k13,k23,k013,k023,k123 and kP ) to A . The values that are
commonly held with A are sampled using the respective keys,
while others are sampled randomly.
Online:

– If dealer is P3, SP3
Πsh4

receives βv+ γv from A on behalf of P0.

Steps corresponding to Πjmp4 are simulated according to SPi
Πjmp4

where P3 acts as one of the sender with P1, P2 as the receivers,
separately.

– If dealer is P0 or P1 or P2, steps corresponding to Πjmp4 are
simulated according to SPl

Πjmp4
where P3 acts as the server outside

the computation.

Simulator SP3
Πsh4

Figure 47: Simulator SP3
Πsh4

for corrupt P3

C.2.3 Multiplication Protocol

The case for corrupt P0 is given in Fig. 48.

Preprocessing:

– SP0
Πmult4

samples [αz]1 , [αz]2 , [Γxy]1 using the respective keys

with A . SP0
Πmult4

samples γz,ψ, r randomly on behalf of the re-

Simulator SP0
Πmult4
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spective honest parties, and computes [Γxy]2 honestly.
– Steps corresponding to Πjmp4 are simulated according to

SPi
Πjmp4

where P0 acts as one of the sender for sending [Γxy]2.

– SP0
Πmult4

computes [χ]1 , [χ]2 honestly. Steps corresponding to

Πjmp4 are simulated according to SPk
Πjmp4

where P0 acts as the
receiver for [χ]1 , [χ]2.

Online:

– SP0
Πmult4

computes [β?
z ]1 , [β

?
z ]2 honestly. Steps corresponding to

Πjmp4 are simulated according to SPj
Πjmp4

where P0 acts as one
of the sender for sending [β?

z ]1 , [β
?
z ]2.

– SP0
Πmult4

computes βz+ γz. Steps corresponding to Πjmp4 are

simulated according to SPk
Πjmp4

where P0 acts as the receiver for
receiving βz+ γz.

Figure 48: Simulator SP0
Πmult4

for corrupt P0

The case for corrupt P1 is given in Fig. 49. The case for a
corrupt P2 is similar.

Preprocessing:

– SP1
Πmult4

samples [αz]1 ,γz,ψ, r, [Γxy]1 using the respective keys

with A . SP1
Πmult4

samples [αz]2 randomly on behalf of the respec-
tive honest parties.

– Steps corresponding to Πjmp4 are simulated according to
SPl

Πjmp4
where P1 acts as the server outside the computation while

communicating [Γxy]2.

– SP1
Πmult4

computes [χ]1. Steps corresponding to Πjmp4 are simu-

lated according to SPi
Πjmp4

where P1 acts as one of the sender for
[χ]1.

– Steps corresponding to Πjmp4 are simulated according to
SPl

Πjmp4
where P1 acts as the server outside the computation while

communicating [χ]2.

Online:

– SP1
Πmult4

computes [β?
z ]1 , [β

?
z ]2. Steps corresponding to Πjmp4

are simulated according to SPi
Πjmp4

and SPk
Πjmp4

, where P1 acts as
one of the sender for sending [β?

z ]1, and P1 acts as the receiver
for receiving [β?

z ]2, respectively.

– SP1
Πmult4

computes βz+ γz. Steps corresponding to Πjmp4 are

simulated according to SPi
Πjmp4

where P1 acts as one of the sender
for sending βz+ γz.

Simulator SP1
Πmult4

Figure 49: Simulator SP1
Πmult4

for corrupt P1

The case for corrupt P3 is given in Fig. 50.

Preprocessing:

– SP3
Πmult4

samples [αz]1 , [αz]2 ,γz,ψ, r, [Γxy]1 using the respective

Simulator SP3
Πmult4

keys with A . SP3
Πmult4

computes [Γxy]2 honestly.
– Steps corresponding to Πjmp4 are simulated according to

SPj
Πjmp4

where P3 acts as one of the sender for sending [Γxy]2.

– SP3
Πmult4

computes [χ]1 , [χ]2. Steps corresponding to Πjmp4 are

simulated according to SPj
Πjmp4

where P3 acts as one of the sender
for sending [χ]1 and [χ]2.

Online:

– Steps corresponding to Πjmp4 are simulated according to
SPl

Πjmp4
where P3 acts as the server outside the computation in-

volving [β?
z ]1 , [β

?
z ]2 and βz+ γz.

Figure 50: Simulator SP3
Πmult4

for corrupt P3

C.2.4 Reconstruction Protocol

The case for corrupt P0 is given in Fig. 51. The cases for
corrupt P1,P2,P3 are similar.

– SP0
Πrec4

sends γv to A on behalf of P1,P2, and H(γv) on behalf
of P3, respectively.

– SP0
Πrec4

receives H([αv]1),H([αv]2),βv + γv from A on behalf
of P2,P1,P3, respectively.

Simulator SP0
Πrec4

Figure 51: Simulator SP0
Πrec4

for corrupt P0

C.2.5 Joint Sharing Protocol

The case for corrupt P0 is given in Fig. 52.

Preprocessing:

– SP0
Πjsh4

has knowledge of αv and γv, which it obtains while
emulating Fsetup4. The common values shared with the A are
sampled using the appropriate shared keys, while other values
are sampled at random.

Online:

– If dealers are (P0,P1): SP0
Πjsh4

computes βv using v. Steps corre-

sponding to Πjmp4 are simulated according to SPj
Πjmp4

where P0

acts as one of the sender for βv.
– If dealers are (P0,P2) or (P0,P3): Analogous to the above case.

– If dealers are (P1,P2): SP0
Πjsh4

sets v = 0 and βv = [αv]1 +[αv]2.

Steps corresponding to Πjmp4 are simulated according to SPk
Πjmp4

where P0 acts as the receiver for βv+ γv.
– If dealers are (P3,P1): SP0

Πjsh4
sets v = 0 and βv = [αv]1 +[αv]2.

Steps corresponding to Πjmp4 are simulated according to SPl
Πjmp4

where P0 acts as the server outside the computation for βv, and

Simulator SP0
Πjsh4
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according to SPk
Πjmp4

where P0 acts as the receiver for βv+ γv.

– If dealers are (P3,P2): Analogous to the above case.

Figure 52: Simulator SP0
Πjsh4

for corrupt P0

The case for corrupt P1 is given in Fig. 53. The case for
corrupt P2 is similar.

Preprocessing:

– SP1
Πjsh4

has knowledge of α-values and γ corresponding to v

which it obtains while emulating Fsetup4. The common values
shared with the A are sampled using the appropriate shared keys,
while other values are sampled at random.

Online:

– If dealers are (P0,P1): SP1
Πjsh4

computes βv using v. Steps corre-

sponding to Πjmp4 are simulated according to SPi
Πjmp4

where P1

acts as one of the sender for βv.
– If dealers are (P1,P2): Analogous to the previous case, except

that now βv+ γv is sent instead of βv.
– If dealers are (P3,P1): SP1

Πjsh4
computes βv and βv+ γv. Steps

corresponding to Πjmp4 are simulated according to SPi
Πjmp4

where
P1 acts as one of the sender for βv, βv+ γv.

– If dealers are (P0,P2) or (P0,P3) or (P3,P2): SP1
Πjsh4

sets v =

0 and βv = [αv]1 + [αv]2. Steps corresponding to Πjmp4 are
simulated according to SPk

Πjmp4
where P1 acts as the receiver for

βv.

Simulator SP1
Πjsh4

Figure 53: Simulator SP1
Πjsh4

for corrupt P1

The case for corrupt P3 is given in Fig. 54.

Preprocessing:

– SP3
Πjsh4

has knowledge of α-values and γ corresponding to v

which it obtains while emulating Fsetup4. The common values
shared with the A are sampled using the appropriate shared keys,
while other values are sampled at random.

Online:

– If dealers are (P1,P2): SP3
Πjsh4

sets v = 0. Steps corresponding

to Πjmp4 are simulated according to SPl
Πjmp4

where P3 acts as the
server outside the computation for βv+ γv.

– If dealers are (P0,P1) or (P0,P2): Analogous to the above case.

– If dealers are (P0,P3): SP3
Πjsh4

computes βv using v. Steps corre-

sponding to Πjmp4 are simulated according to SPi
Πjmp4

where P3

acts as one of the sender for sending βv.
– If dealers are (P3,P1): SP3

Πjsh4
computes βv and βv+ γv. Steps

corresponding to Πjmp4 are simulated according to SPj
Πjmp4

where
P3 acts as one of the sender for sending βv,βv+ γv.

Simulator SP3
Πjsh4

– If dealers are (P3,P2): Analogous to the above case.

Figure 54: Simulator SP3
Πjsh4

for corrupt P3

C.2.6 Dot Product Protocol

The case for corrupt P0 is given in Fig. 55.

Preprocessing:

– SP0
Πdotp4

samples [αz]1 , [αz]2 ,
[
Γ~x�~y

]
1 using the respective keys

with A . SP0
Πdotp4

samples γz,ψ, r randomly on behalf of the re-

spective honest parties, and computes
[
Γ~x�~y

]
2 honestly.

– Steps corresponding to Πjmp4 are simulated according to
SPi

Πjmp4
where P0 acts as one of the sender for

[
Γ~x�~y

]
2.

– SP0
Πdotp4

computes χ1,χ2 honestly. Steps corresponding to

Πjmp4 are simulated according to SPk
Πjmp4

where P0 acts as the
receiver for χ1 and χ2.

Online:

– SP0
Πdotp4

computes [β?
z ]1 , [β

?
z ]2 honestly. Steps corresponding to

Πjmp4 are simulated according to SPj
Πjmp4

where P0 acts as one
of the sender for [β?

z ]1 , [β
?
z ]2.

– SP0
Πdotp4

computes βz+ γz. Steps corresponding to Πjmp4 are

simulated according to SPk
Πjmp4

where P0 acts as the receiver for
βz+ γz.

Simulator SP0
Πdotp4

Figure 55: Simulator SP0
Πdotp4

for corrupt P0

The case for corrupt P1 is given in Fig. 56. The case for
corrupt P2 is similar.

Preprocessing:

– SP1
Πdotp4

samples [αz]1 ,γz,ψ, r,
[
Γ~x�~y

]
1 using the respective

keys with A . SP1
Πdotp4

samples [αz]2 randomly on behalf of the
respective honest parties.

– Steps corresponding to Πjmp4 are simulated according to
SPl

Πjmp4
where P1 acts as the server outside the computation for[

Γ~x�~y
]

2.

– SP1
Πdotp4

computes χ1. Steps corresponding to Πjmp4 are simu-

lated according to SPi
Πjmp4

where P1 acts as one of the sender for
χ1.

– Steps corresponding to Πjmp4 are simulated according to
SPl

Πjmp4
where P1 acts as the server outside the computation for

χ2.

Online:

– SP1
Πdotp4

computes [β?
z ]1 , [β

?
z ]2. Steps corresponding to Πjmp4

are simulated according to SPi
Πjmp4

and SPk
Πjmp4

, where P1 acts as
one of the sender for [β?

z ]1, and P1 acts as the receiver for [β?
z ]2.

Simulator SP1
Πdotp4
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– SP1
Πdotp4

computes βz+ γz. Steps corresponding to Πjmp4 are

simulated according to SPi
Πjmp4

where P1 acts as one of the sender
for βz+ γz.

Figure 56: Simulator SP1
Πdotp4

for corrupt P1

The case for corrupt P3 is given in Fig. 57.

Preprocessing:

– SP3
Πdotp4

samples [αz]1 , [αz]2 ,γz,ψ, r,
[
Γ~x�~y

]
1 using the respec-

tive keys with A . SP3
Πdotp4

computes
[
Γ~x�~y

]
honestly.

– Steps corresponding to Πjmp4 are simulated according to

SPj
Πjmp4

where P3 acts as one of the sender for
[
Γ~x�~y

]
2.

– SP3
Πdotp4

computes χ1,χ2. Steps corresponding to Πjmp4 are

simulated according to SPj
Πjmp4

where P3 acts as one of the sender
for χ1,χ2.

Online:

– Steps corresponding to Πjmp4 are simulated according to
SPl

Πjmp4
where P3 acts as the server outside the computation for

[β?
z ]1 , [β

?
z ]2, βz+ γz.

Simulator SP3
Πdotp4

Figure 57: Simulator SP3
Πdotp4

for corrupt P3

C.2.7 Truncation Pair Generation

Here we give the simulation steps for Πtrgen4. The case for
corrupt P0 is given in Fig. 58. The case for corrupt P3 is
similar.

– SP0
Πtrgen4

samples R1,R2 using the respective keys with A .

– Steps corresponding to Πjsh4 are simulated according to SP0
Πjsh4

(Fig. 52).

Simulator SP0
Πtrgen4

Figure 58: Simulator SP0
Πtrgen4

for corrupt P0

The case for corrupt P1 is given in Fig. 59. The case for
corrupt P2 is similar.

– SP1
Πtrgen4

samples R1 using the respective keys with A , and sam-
ples R2 randomly.

– Steps corresponding to Πjsh4 are simulated according to SP1
Πjsh4

(Fig. 53).

Simulator SP1
Πtrgen4

Figure 59: Simulator SP1
Πtrgen4

for corrupt P1

35


	Introduction
	Our Contributions
	Organisation of the paper

	Preliminaries
	Robust 3PC and PPML
	Joint Message Passing primitive
	3PC Protocols
	Building Blocks for PPML using 3PC

	Robust 4PC and PPML
	4PC Joint Message Passing Primitive
	4PC Protocols
	Building Blocks for PPML using 4PC

	Applications and Benchmarking
	Logistic Regression
	NN Inference

	Conclusion
	Preliminaries
	Shared Key Setup
	Collision Resistant Hash Function
	Commitment Scheme

	Instantiating FDotPPre
	Security Analysis of Our Protocols
	Security Proofs for 3PC protocols
	Joint Message Passing (jmp) Protocol
	Sharing Protocol
	Multiplication Protocol
	Reconstruction Protocol
	Joint Sharing Protocol
	Dot Product Protocol
	 Truncation Protocol

	Security Proofs for 4PC protocols
	Joint Message Passing
	Sharing Protocol
	Multiplication Protocol
	Reconstruction Protocol
	Joint Sharing Protocol
	Dot Product Protocol
	 Truncation Pair Generation



