
On quantum indistinguishability under chosen plaintext attack

Tore Vincent Carstens1, Ehsan Ebrahimi2, Gelo Tabia3, and Dominique Unruh4

1 University of Tartu, Estonia
2SnT, University of Luxembourg

3Center for Quantum Technology, National Tsing Hua University, Hsinchu 300, Taiwan
4University of Tartu, Estonia

May 20, 2020

Abstract. An encryption scheme is called indistinguishable under chosen plaintext attack (short IND-
CPA), if an attacker cannot distinguish the encryptions of two messages of his choice. Alternatively there
are other variants of this definition, that all turn out to be equivalent in the classical case. However in
the quantum case, there is a lack of a comprehensive study of all quantum versions of IND-CPA security
notion. We give an overview of these different variants of quantum IND-CPA for symmetric encryption
schemes. In total, 57 different notions are valid and achievable. We investigate the relations between
these notions and prove various equivalences, implications, non-equivalences, and non-implications be-
tween these variants. Some of non-implications are left as conjectures and need further research.

Keywords. Symmetric encryption, Quantum security, IND-CPA.

Contents
1 Introduction 2

1.1 Previous work . 2
1.2 Our contribution . 3
1.3 Organization of the paper . 6

2 Preliminaries 6
2.1 Realizability of Ûg as a quantum circuit . 6
2.2 Cryptographic Assumptions . 7

3 Definitions 7
3.1 Syntax of l - the learning queries . 9

3.1.1 Learning Query type CL . 9
3.1.2 Learning Query type ST . 10
3.1.3 Learning Query type EM . 10
3.1.4 Learning Query type ER . 10

3.2 Syntax of c - the challenge queries . 11
3.2.1 Challenge Query type chall(·,CL, 1ct) . 11
3.2.2 Challenge Query type chall(·,ST , 1ct) . 11
3.2.3 Challenge Query type chall(·,EM , 1ct) . 12
3.2.4 Challenge Query type chall(·,ST , 2ct) . 12
3.2.5 Challenge Query type chall(·,EM , 2ct) . 13
3.2.6 Challenge Query type chall(·,ER, 2ct) . 13
3.2.7 Challenge Query type chall(·,ER, 1ct) . 14
3.2.8 Challenge Query type chall(·,ST , ror) . 14
3.2.9 Challenge Query type chall(·,EM , ror) . 14
3.2.10 Challenge Query type chall(·,ER, ror) . 15

3.3 Instantiation of learning and challenge query models . 15
3.4 The valid combinations of the learning and challenge queries 16

1

4 Decoherence lemmas 16

5 Impossible Security Notions 22

6 Implications 23

7 Separations 37
7.1 Overview of results . 37
7.2 Separations by Quasi-Length-Preserving Encryptions . 39
7.3 Separations by Simon’s Algorithm . 40
7.4 Separations by Shi’s SetEquality problem . 42
7.5 Separations by other arguments . 45

8 Encryption secure in all notions 46

1 Introduction
Advances in quantum computing have continuously raised the interest in post-quantum secure cryptog-
raphy. In order for a post-quantum secure scheme to be designed, as a first step a security definition has
to be agreed on. There have been extensive research works toward proposing quantum counterparts of
classical security definitions for different cryptographic primitives: encryption schemes [BZ13b, GHS16,
CEV20], message authentication codes [BZ13a, AMRS18], hash functions [Zha15, Unr16], etc. For a
classical cryptographic primitive to be quantum secure, besides the necessity of a quantum hardness
assumption, we also need to consider how a quantum adversary will interact with a classical algorithm.
In the research works mentioned above, the security notions have been defined in a setting where the
quantum adversary is allowed to make superposition queries to such cyptographic primitives. In this
paper, we focus on defining quantum security definitions for symmetric encryption schemes. Our aim is
to define and relate possible quantum versions of indistinguishability under chosen plaintext attack.

Indistinguishability under chosen plaintext attack (IND-CPA) is a classical security notion for en-
cryption schemes in which the adversary interacts with the encryption oracle in two phases: the learning
phase and challenge phase. The learning phase (if it exists) is defined in a unique way: the adversary
makes queries to the encryption oracle. In contrast, the challenge phase can be defined in different ways:
(a) The adversary chooses two messages m0,m1 and sends them to the challenger. The adversary will

receive back the encryption of mb for a random bit b.
(b) The adversary chooses two messages m0,m1 and sends them to the challenger. The adversary will

receive back the encryption of mb, mb̄ for a random bit b.
(c) The adversary chooses a messages m and sends it to the challenger. The challenger will send back

either the encryption of m or a randomly chosen message depended on a random bit b.
At the end, the adversary tries to guess the bit b. In other words, the definition varies according to
how the challenger responds to the adversary during the challenge phase. We call it the “return type”.
As summarized above, there are three different return types: a) the challenger returns one ciphertext.
b) the challenger returns two ciphertexts. c) the challenger returns a real or random ciphertext. A
comprehensive study of these notions has been done in [BDJR97].

There are some scattered attempts to translate IND-CPA notions above to the quantum case [BZ13b,
GHS16, MS16] (see Section 1.1 for more details), however, it is not a complete list and we lack a study of
how the existing security definitions relate to each other. In our paper, we present all possible quantum
versions of IND-CPA. We compare them to have a comprehensive study as the classical case.

1.1 Previous work
Boneh-Zhandry definition. In ([BZ13b]), Boneh and Zhandry initiate developing a quantum security
version of IND-CPA. They consider that the adversary has “standard oracle access” to the encryption
oracle in the learning phase. The standard oracle access to the encryption oracle Enc is defined as the
unitary operator UEnc : |x, y〉 → |x, y ⊕ Enc(x)〉 (see section 3). For the challenge phase, they attempt
to translate the classical notion of one-ciphertext and two-ciphertexts return type (presented in item a
and item b) to the quantum case using standard query model. However, they show that the natural

2

translation cannot be achieved. So instead they consider classical challenge queries in their proposed
definition. This inconsistency between the learning phase and the challenge phase resulted in further
investigation of the quantum IND-CPA notion in [GHS16].

Quantum IND-CPA notions in [GHS16]. In [GHS16], the authors attempt to resolve the incon-
sistency of the learning and the challenge phase of the security definition proposed in [BZ13b]. They
propose a “security tree” of possible security notions. In a nutshell, their security tree is built on four
different perspectives on the interaction between the adversary and the challenger: 1) how the challenger
is implemented: the oracle model or the challenger model; 2) how the adversary sends the challenge
queries: the adversary sends quantum messages during the challenge phase or it sends classical descrip-
tion of quantum messages; 3) whether the challenger sends back the input registers to the adversary or
keeps them; and 4) the query model: the adversary has standard oracle access to the challenger or it
has “minimal oracle” access [KKVB02] (that is defined as |x〉 → |Enc(x)〉). Even though in total there
are 24 = 16 possible security definitions, only two are meaningful, achievable, and novel. These two def-
initions are (according to their terminology briefed above): 1) the challenger model, quantum messages,
not returning the input register and minimal oracle access 1. 2) the challenger model, classical messages,
not returning the input register and minimal oracle access. In our paper, we do not consider the case
when the adversary can submit the classical description of quantum messages. Therefore, we only study
the former security notion in our paper. However, we do not differentiate between the challenger model
and the oracle model2. Instead, we consider a black-box access to the challenger in which this black-box
access can be either standard oracle access, or minimal oracle access, or etc. In this paper, we refer to
the minimal query model as the “erasing query model” (see section 3).

Quantum IND-CPA notion in [MS16]. In [MS16], Mossayebi and Schack focus on translating the
real-or-random case (item c) to the quantum setting by considering an adversary that has standard oracle
access to the encryption oracle. Their security definition consists of two experiments, called real and
permutation. In the real experiment, the adversary’s queries will be answered by the encryption oracle
without any modification (access to UEnc) whereas in the permutation game, in each query a random
permutation will be applied to the adversary’s message and the permuted message will be encrypted
and returned to the adversary (access to UEnc◦π for a random π). The advantage of the adversary in
distinguishing these two experiments should be negligible for a secure encryption scheme. This is a secu-
rity notion without the learning phase and many challenge queries when the adversary has the standard
oracle access to the challenger and the challenge phase is implemented by the real-or-random return type.

Therefore, in total there are 3 achievable proposals for quantum IND-CPA notion in the literature so
far. In this paper, we study and relate 57 achievable proposals for quantum IND-CPA notion (including
security definitions briefed above). (See section 6.)

1.2 Our contribution
In this paper, we define all possible quantum IND-CPA security notions. In order to have a comprehensive
list of security definitions, we classify them according to several criteria:
(1) Number of queries that the adversary can make during the learning and challenge phase: zero, one

or many queries. (Note that in the learning phase either there is no query or many queries, while in
the challenge phase either there is one query or many queries.)

(2) Query model in which the adversary is interacting with the challenger: classical, standard, erasing,
or “embedding query model” where the embedding query model is the same as the standard oracle
model except that the adversary only provides the input register and the output register will be
initiated with |0〉 by the challenger (see section 3).

(3) The return type of the challenge ciphertext: one-ciphertext (similar to item a), two-ciphertexts
(similar to item b) and real-or-random (similar to item c))

1This security definition is equivalent to the indistinguishability notion proposed in [BJ15] for secret key encryption of
quantum messages when restricted to a classical encryption function operating in the minimal query type.

2Note that in order to implement the minimal oracle, a decryption query is needed and it has to be done by the
challenger in case of symmetric key encryption schemes. So in [GHS16] the authors introduce the challenger model in
which the challenger implement the minimal query model using its secret key. Later in [GKS20], the authors extend the
security notion in [GHS16] for public-key encryption schemes and they show that the adversary can implement the minimal
oracle itself (using the randomness and without using the decryption) for some public-key encryption schemes.

3

There are 5 choices for the learning phase and 24 choices for the challenge phase. Therefore, all the
combinations are 120 cases.

Not valid security notions. Note that we do not consider a security notion with different quantum
query models in the learning phase and the challenge phase to be a valid notion. (However, the classical
access can be combined with any of quantum query models!) Also, we do not consider a security notion
with no learning queries and only one challenge query since this corresponds to IND-OT-CPA notion
that will not be considered in this paper.

Impossible security notions. Any security notion with the standard query model and the return type
of one-ciphertext or two-ciphertexts in the challenge phase is impossible to be achieved. Any query model
with the embedding query type and the one-ciphertext return type in the challenge phase is impossible
to be achieved (see section 5).

This leaves us with 57 notions that remain valid. Then, we compare these notions and put the
equivalent notions in the same panel and this results in 14 panels Figure 1. We give an overview of the
equivalent notions in each panel and relation between panels below.

Security notions that are equivalent (see section 6):
Panel 1. We show that all valid security notions with the erasing query model in the challenge phase
are equivalent excluding when the return type is real-or-random (security notions in Panels 4 and 9, see
below) and when the learning queries are classical and there is one challenge query of either the return
type of one-ciphertext or two-ciphertexts (security notions in Panels 3 and 8, see below). This panel
consists of 8 security notions. (Note that this panel includes the security notion in [GHS16].) We can
conclude these equivalences by Theorem 1, Theorem 3 and Theorem 6.
Panel 2. We show that all valid security notions with the standard query model and the real-or-random
return type in the challenge phase are equivalent excluding the security notion with the classical learning
queries and one challenge query (security notion in Panel 12, see below). In other words, all valid security
notions that have many challenge queries of the standard query model and real-or-random return type
are equivalent. This panel consists of 4 security notions. (Note that this panel includes the security
notion in [MS16].) We can conclude these equivalences by Theorem 1 and Theorem 4.
Panel 3. This panel contains only one security notion: classical learning queries, one challenge query of
erasing model and two-ciphertexts return type.
Panel 4. We show that all valid security notions with the erasing query model and the real-or-random
return type in the challenge phase are equivalent excluding the security notion with the classical learning
queries and one challenge query (security notion in Panel 9, see below). This panel consists of 4 security
notions. We can conclude these equivalences by Theorem 1 and Theorem 4.
Panel 5. We show that all valid security notions with the embedding query model in the challenge phase
are equivalent excluding when the return type is one-ciphertext (security notions in Panel 11, see below)
and when the learning queries are classical and there is one challenge query of either two-ciphertexts
or real-or-random return type (security notions in Panels 7 and 13, see below). This panel consists
of 5 security notions. We can conclude these equivalences by Theorem 1, Theorem 4, Theorem 3 and
Theorem 8.
Panel 6. We show that all valid security notions with the standard query model in the learning phase
and the classical access in the challenge phase are equivalent. This panel consists of 6 security notions.
(Note that this panel includes the security notion in [BZ13b].) We can conclude these equivalences by
Theorem 1 and Theorem 2.
Panel 7. This panel consists of the security notion with the classical learning queries and one challenge
query of type embedding model with two-ciphertexts return type.
Panel 8. This panel consists of the security notion with the classical learning queries and one challenge
query of the erasing model with one-ciphertext return type.
Panel 9. This panel consists of the security notion with the classical learning queries and one challenge
query of type erasing with real-or-random return type.
Panel 10. We show that all security notions with the erasing learning queries and the classical access
in the challenge phase are equivalent. This panel consists of 6 security notions. We can conclude these
equivalences by Theorem 1 and Theorem 2.
Panel 11. We show that all security notions with the embedding learning queries and the classical
access in the challenge phase are equivalent. This panel consists of 6 security notions. We can conclude

4

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14
P1 ; ⇒ ⇒7 ⇒ ⇒9 ⇒ ⇒ ⇒ ⇒ ⇒ ;17 ⇒ ⇒
P2 ; ; ; ⇒ ⇒ ⇒ ;3 6 ?=⇒ ;14 ⇒ ⇒ ⇒ ⇒
P3 ; ; ; ; ; ⇒ ⇒ ⇒ ; 6 ?=⇒ ; ⇒ ⇒
P4 ; ; ; ⇒ 6 ?=⇒ ⇒ ;3 ⇒ ⇒ ⇒ ; ⇒ ⇒
P5 ; ; ; ; ; ⇒ ; ; ; ⇒ ; ⇒ ⇒
P6 ; ; ; ; ; ;15 ; ; ; ⇒ ; ;16 ⇒
P7 ; ; ; ; ; ; ; ; ; ; ; ⇒8 ⇒
P8 ; ; ; ; ; ; 6 ?=⇒ ⇒7 ; ; ; ⇒ ⇒
P9 ; ; ; ; ; ; ; ; ; ; ; ⇒ ⇒
P10 ; ; ; ; ; ; ;15 ; ; ⇒ ; ;13 ⇒
P11 ; ; ; ; ; ; ; ; ; ; ; ; ⇒
P12 ; ; ; ; ; ; 6 ?=⇒ ; ; ; 6 ?=⇒ ⇒ ⇒
P13 ; ; ; ; ; ; ; ; ; ; ; ; ⇒
P14 ; ; ; ; ; ; ; ; ; ; ;12 ; ;

Table 1: Implications and separations between panels. Red non-implications are conjectures. Blue
non-implications have been proven assuming that conjectures are correct. See section 7 for more details.

these equivalences by Theorem 1 and Theorem 2.
Panel 12. This panel consists of the security notion with the classical learning queries and one challenge
query of the standard query model with real-or-random return type.
Panel 13. This panel consists of the security notion with the classical learning queries and one challenge
query of the embedding query model with real-or-random return type.
Panel 14. All valid security notions with classical learning and challenge queries are equivalent. This
panel consists of 9 security notions. We can conclude these equivalences by Theorem 1 and Theorem 2.

Implications and non implications (see section 6 and section 7). The implications and sepa-
ration have been drawn in Table 1. We read the table from the left to the right and an arrow in the
position PnPm indicates if Pn implies Pm or Pn does not imply Pm. The red arrows with a question
mark on top (6 ?=⇒) were left as conjectures. The blue arrows show that proof of non-implication relies
on a conjecture. Therefore, if the corresponding conjecture necessary to prove a blue non-implication is
rejected, the non-implication becomes an open question.
Conclusions of Table 1. Two panels P1 and P2 together imply all other security notions. However,
they are not comparable to each other. This resolves an open question stated in [MS16, GKS20] for a
comparison between these security notions. As opposite to the classical case that different IND-CPA
notions with one-ciphertext, two-ciphertexts and real-or-random return type are equivalent, when the
challenge query is quantum (standard, embedding or erasing) this is not the case. More specifically, 1)
for the standard query model, only the real-or-random return type is achievable (and two others are
impossible to be achieved). 2) for the embedding query model, the one-ciphertext return type is im-
possible to be achieved, however, two other cases are equivalent (see Panel 5 above). 3) for the erasing
query model, the one-ciphertext and two-ciphertexs return type are equivalent (see Panel 1) and they
are stronger than the real-or-random return type (Panel 1 implies Panel 4 but Panel 4 does not imply
Panel 1.)

Decoherence Lemmas: We show that for a random sparse injective function if we measure the input
register of a quantum query of erasing in the computational basis, this will not be noticed by the ad-
versary. We prove similar result for the embedding query model and a random function (see section 4).
These lemmas help to prove the security of some encryption schemes since the measurement applied to
the input register effectively make the query classical.

A secure encryption scheme in all notions. Finally, we present an encryption scheme that is secure
in all security notions (see section 8). From Table 1, we can see that Panel 1 and Panel 2 together imply
all other panels. So we present an encryption scheme that is secure respected to security notions in Panel
1 and 2.

5

1.3 Organization of the paper
In section 2, we give some notations and preliminaries. The section 3 is dedicated to definitions that are
needed in the paper. We present all possible security notions for IND-CPA in the quantum case in this
section. In section 4, we prove some lemmas that are needed for security proofs. The section 5 is dedicated
to rule out security notions that are impossible to be achieved for any encryption scheme. In section 6,
we investigate implications between all security notions defined in section 3. We obtain 14 groups of
equivalent security notions. Then, we prove all implications between these 14 panels. The section 7 is
dedicated to verify the remaining relations that are non-implications between panels. Even though we
show many non-implications, we leave some of them unresolved and as conjectures (see Conjecture 1.).
Finally, we present an encryption scheme that is secure with respect to all security notions defined in
the paper in section 8.

2 Preliminaries
We recall some basic of quantum information and computation needed for our paper below. Interested
reader can refer to [NC16] for more informations. For two vectors |Ψ〉 = (ψ1, ψ2, · · · , ψn) and |Φ〉 =
(φ1, φ2, · · · , φn) in Cn, the inner product is defined as 〈Ψ,Φ〉 =

∑
i ψ
∗
i φi where ψ∗i is the complex

conjugate of ψi. Norm of |Φ〉 is defined as ‖|Φ〉‖ =
√
〈Φ,Φ〉. The outer product is defined as |Ψ〉〈Φ| :

|α〉 → 〈Φ, α〉|Ψ〉. The n-dimensional Hilbert space H is the complex vector space Cn with the inner
product defined above. A quantum system is a Hilbert space H and a quantum state |ψ〉 is a vector |ψ〉
in H with norm 1. An unitary operation over H is a transformation U such that UU† = U†U = I where
U† is the Hermitian transpose of U and I is the identity operator over H. The computational basis for
H consists of log n vectors |bi〉 of length log n with 1 in the position i and 0 elsewhere. With this basis,
the unitary CNOT is defined as CNOT: |m1,m2〉 → |m1,m2 ⊕m2〉 where m1,m2 are bit strings. The
Hadamard unitary is defined as H: |b〉 → 1√

2
(
∣∣b̄〉+ (−1)b|b〉) where b ∈ {0, 1}. An orthogonal projection

P over H is a linear transformation such that P2 = P = P†. A measurement on a Hilbert space is
defined with a family of orthogonal projectors that are pairwise orthogonal. An example of measurement
is the computational basis measurement in which any projection is defined by a basis vector. The output
of computational measurement on state |Ψ〉 is i with probability ‖〈 bi,Φ〉‖2 and the post measurement
state is |bi〉. The density operator is of the from ρ =

∑
i pi|φi〉〈φi| where pi are non-negative and add up

to 1. This represent that the system will be in the state |φi〉 with probability pi. We denote the trace
norm with || · ||1, i.e. ||M ||1 = tr(|M |) = tr(

√
M† ·M). For two density operators ρ1 and ρ2, the trace

distance is defined as TD(ρ1, ρ2) = 1
2 ||ρ1− ρ2||1. For two quantum systems H1 and H2, the composition

of them is defined by the tensor product and it is H1 ⊗H2. For two unitary U1 and U2 defined over H1

and H2 respectively, (U1 ⊗ U2)(H1 ⊗H2) = U1(H1)⊗ U2(H2).
Often, when we write “rando” we mean “uniformly random”. Many terms, which we are going to use

throughout this paper, are actually a function of the implicit security parameter η, however in order to
keep notations simple, we refuse in most cases to make the dependence of η explicit, and just omit η.
Quantum registers are denoted by Q with possibly some index. We will use the notation of Uf , Ûg for
arbitrary f , arbitrary injective g where

Uf : |x, y〉 7→ |x, y ⊕ f(x)〉 and Ûg : |x〉 7→ |g(x)〉.

2.1 Realizability of Û g as a quantum circuit
The linear operator Ûg is mathematically well defined however we have to argue that it can also be
realized in a quantum computer efficiently whenever g is efficiently computable and reversible, classically.
In order to do so we introduce a new concept, which we call the lifting of a classical injective function.
Namely

Definition 1. For an arbitrary injective g : {0, 1}h ↪→ {0, 1}n we call glift : {0, 1}h ≈−→ {0, 1}n some
chosen (but in a fixed way) bijective function such that

∀x ∈ {0, 1}h : glift(x||0n−h) = g(x)

That is, glift as just an arbitrary extension of g with a bigger domain, so that glift is bijective. Now
we implement Ûg using its inverse.

Qin :|x〉
Uglift U(glift)−1

|f(x)〉
Qout : |0〉 |0〉

6

where Uglift is implemented as the following:

Qin :|x〉
Uglift

|0〉
Qanc :

∣∣0n−h〉 |0〉
Qout : |0〉 |g(x)〉

Note that for an injective function g if there exists an efficiently computable function g−1 such that
g−1(g(x)) = x, then we can implement ER type query without the ancillary register. For instance, this
is the case for encryption scheme and its decryption:

Qin :|x〉
UEnc UDec

|f(x)〉
Qout : |0〉 |0〉

2.2 Cryptographic Assumptions
We are using the random oracle model at different places, however many results can also be derived
using only the existence of quantum one-way functions.

3 Definitions
One of the main points in this text is to compare different ways to model how a quantum-circuit can
access a classical function (i.e., how to represent a classical function as a quantum gate). There are 3
query models that model this, here called ST (standard query model), EM (embedding query model)
and ER (erasing query model). EM is in some sense the “weakest” in that it can be simulated by both
ST and ER. Let

f : {0, 1}h → {0, 1}n

be a deterministic function.
ST-query model: In this query model, an algorithm A that queries f provides two registers Qin, Qout
of h and n q-bits, respectively. Then, the unitary Uf : |x, y〉 7→ |x, y ⊕ f(x)〉 is applied to these registers
and finally the registers Qin, Qout are passed back to A. We depict the quantum circuit corresponding
to this query model as follows.

Qin : |x〉
Uf

|x〉
Qout : |y〉 |y ⊕ f(x)〉

EM-query model: , The difference of the EM -query model with the ST -model is that the lower wire
(called "output-wire") is forced to contain 0n and is not part of the input to quantum circuit but produced
locally. In other words, an algorithm A provides a register Qin of h qubits and Qout is initialized as 0n

and then the unitary Uf is applied to registers Qin, Qout and they are passed back to A. The following
quantum circuit illustrates this query model.

Qin : |x〉
Uf

|x〉
Qout : |0n〉 |f(x)〉

ER-query model: This query model is only possible for functions f that are injective.

Q : |x〉 Ûf |f(x)〉

Note that the ST and EM oracles for a classical function f can be constructed in canonical way from a
classical circuit that computes f [NC16] and the ER oracle constructed in 2.1.

Definition 2. A triple (KGen,Enc,Dec) is called an (h, n, n′, t, t′)-encryption scheme (note that these
parameters depend on η) iff

KGen : {0, 1}t
′
→ {0, 1}h

Enc : {0, 1}h × {0, 1}n × {0, 1}t → {0, 1}n
′

Dec : {0, 1}h × {0, 1}n
′
→ {0, 1}n ∪ {⊥}

7

such that
∀k ∈ {0, 1}h,m ∈ {0, 1}n, r ∈ {0, 1}t : Deck(Enck(m; r)) = m

(Note that an encryption scheme is by definition always entirely classical.) Here Enck(m; r) is written
instead of Enc(k,m, r) and Deck(c) instead of Dec(k, c). Enc is called the encryption function, Dec is
called the decryption function and KGen is called the key generation function. {0, 1}h is the key space,
{0, 1}n is the message (plaintext) space, {0, 1}n′ is the ciphertext space, {0, 1}t is the randomness space
and {0, 1}t′ is the key randomness space. The decryption is allowed but not required to output ⊥ for an
invalid ciphertext. The encryption algorithm samples an element of {0, 1}t uniformly at random and then
invokes the encryption function. The key generation algorithm samples an element of {0, 1}t′ uniformly
at random and then invokes the key generation function.

For simplicity, we allow ourselves to write k $←− KGen() instead of kr $←− {0, 1}t′ , k := KGen(kr) and
c

$←− Enck(m) instead of r $←− {0, 1}t, c := Enck(m; r).

Definition 3. For natural numbers h and n, two functions f1 : {0, 1}h → {0, 1}n and f2 : {0, 1}h →
{0, 1}n are called c-indistinguishable (short for classically indistinguishable) iff there exists a negligible ε
such that for all classical polynomial time oracle algorithms (adversaries) Â we have:

|Prob[1← Âf1()]− Prob[1← Âf2()]| < ε,

(Note, that the definition of c-indistinguishability is never used in the paper, it is just mentioned for
reference purposes) We call f1, f2 s-indistinguishable (short for standard indistinguishable) or CL-q-
indistinguishable iff there exists a negligible ε such that for all quantum polynomial time oracle algorithms
(adversaries) A and all auxiliary quantum states |ψ〉 it holds:

|Prob[1← ACL(f1)(|ψ〉)]− Prob[1← ACL(f2)(|ψ〉)]| < ε,

We call f1, f2 qm-q-indistinguishable (short for (query model)-quantum-indistinguishable) for qm ∈
{CL,ST ,ER} (note that we are not considering EM) iff there exists a negligible ε such that for all
quantum polynomial time oracle algorithms (adversaries) A making polynomial number of queries to its
oracle in the query model qm and all auxiliary quantum states |ψ〉 it holds:

|Prob[1← Aqm(f1)(|ψ〉)]− Prob[1← Aqm(f2)(|ψ〉)]| < ε.

Note that s-indistinguishability is the same as CL-q-indistinguishability.

We call a pseudorandom permutation πs a vPRP for v ∈ {c, s, q}, iff it is v-indistiguishable from a
truly random permutation.

That means, that cPRP (classically pseudorandom permutation), sPRP (standard pseudorandom per-
mutation = quantum resistant pseudorandom permutation) and qPRP (quantum pseudorandom per-
mutation) can be defined like this (Note that we mean strong PRP whenever we say PRP, we are not
considering weak PRPs):

• With cPRP is meant a pseudorandom permutation πs which is secure against a classical adversary
with classical access to πs and π−1

s .

• With sPRP is meant a pseudorandom permutation πs which is secure against a quantum adver-
sary with classical access to πs and π−1

s .

• With qPRP is meant a pseudorandom permutation πs which is secure against a quantum adver-
sary with superposition access to πs and π−1

s .

Formally ST -qPRP and ER-qPRP have to be dinstinguished, but as shown below they are equivalent.
More formally cPRP, sPRP, qPRP are defined by:

Definition 4. A (m,n)-v-strong-PRP (also called block cipher) for v ∈ {c, s, q} is a pair of two permu-
tations (= bijective functions) π and π−1 with seed s:

πs, π
−1
s : {0, 1}n → {0, 1}n, s ∈ {0, 1}m

sucht that the oracle f1(x) = πs(x) is v-indistinguishable from a truly random permutation f2 : {0, 1}n →
{0, 1}n.

8

Remark 1. Note that Zhandry showed in [Zha16] that a qPRP (ST -query-model) can be constructed from
a one-way-function. Also we are not distinguishing qPRP in the ST -query-model and in the ER-query-
model. The next lemma we will justify that by proving that ST -q-PRP-oracles and ER-q-PRP-oracles
can be constructed out of each other by a simple construction.

Lemma 1. A bijection π is a strong ST -q-PRP iff it is a strong ER-q-PRP.

Proof. The reason is, that ST and ER query models can be constructed out of each other if the oracle
function is a permutation and with access to its inverse. The following circuit shows how a ER query
can be simulated by ST queries to π and π−1:

|m〉
Uπ Uπ−1

|π(m)〉
|0〉⊗n |0〉⊗n

The following circuit shows how a ST query can be simulated by ER queries to π and π−1:

|m〉 Ûπ • Ûπ
−1 |m〉

|c〉 |c⊕ π(m)〉

Next we have to define what it means for an encryption scheme to fulfill a certain security notion.
Namely we will define what it means to be l-c-IND-CPA-secure. Here l and c are just symbols which will
be instantiated later. l stands for learning query and c stands for challenge query. Accordingly l will be
instantiated with some learning query model and c will be instantiated with some challenge query model.

Definition 5. We say the encryption scheme Enc = (KGen,Enc,Dec) is l-c-IND-CPA-secure if any
polynomial time quantum adversary A can win in the following game with probability at most 1

2 + ε for
some negligible ε.

The l-c-CPA game:

Key Gen: The challenger runs KGen to obtain a key k, i.e, k $←− KGen() .
Learning Queries: The challenger answers to the l-type queries of A using Enck. l also specifies the
number of times this step can be repeated.
Challenge Queries: The challenger picks a random bit b and answers to the c-type queries of A using
Enck and the bit b. (Note that the adversary is allowed to submit some learning queries between the
challenge queries as well.) c also specifies the number of times this step can be repeated.
Learning Queries: The challenger answers to the l-type queries of A using Enck. l also specifies the
number of times this step can be repeated.
Guess: The adversary A returns a bit b′, and wins if b′ = b.

In the two sections below, we define different types of the learning queries and the challenge queries
and we specify which combination of them are considered for IND-CPA security of encryption schemes.

3.1 Syntax of l - the learning queries

Note that in all of the following query models, we assume the challenger picks k $←− KGen(). For sim-
plicity, we omit it from our description.

3.1.1 Learning Query type CL

For any query on input message m, the challenger picks r $←− {0, 1}t and gives back c ← Enck(m; r) to
the adversary.

Input registers: None.
Classical input: m ∈ {0, 1}n.
Classical computation: r $←− {0, 1}t, c← Enck(m; r).
Quantum computation: None.

9

Output registers: None.
Classical output: c ∈ {0, 1}n′ .

3.1.2 Learning Query type ST

For any query, the challenger picks r $←− {0, 1}t and applies the unitary UEnck to the provided registers
of the adversary, Qin, Qout registers, and gives them back to the adversary.

Input registers: Qin, Qout.
Classical input: None.
Classical computation: r $←− {0, 1}t.
Quantum computation:

Qin
UEnck(·;r)

Qin

Qout Qout

Output registers: Qin, Qout.
Classical output: None.

3.1.3 Learning Query type EM

Upon receiving the provided register of the adversary, say Qin and Qout, the challenger picks r
$←− {0, 1}t

and creates a register Qout containing the state |0〉⊗n and applies the unitary UEnck to the registers
Qin, Qout, and gives them back to the adversary.

Input registers: Qin.
Classical input: None.
Classical computation: r $←− {0, 1}t.
Quantum computation:

Qin
UEnck(·;r)

Qin

|0〉⊗n
′

Qout

Output registers: Qin, Qout.
Classical output: None.

3.1.4 Learning Query type ER

Upon receiving the provided register of the adversary, say Qin, the challenger picks r $←− {0, 1}t , applies
the unitary ÛEnck(·,r) to the register Qin and gives it back to the adversary.

Input registers: Qin.
Classical input: None.
Classical computation: r $←− {0, 1}t.
Quantum computation:

Qin ÛEnck(·;r) Qout

Output registers: Qout.
Classical output: None.
Note that ÛEnck(·;r) is physically realizable because Enck is efficiently reversible for fixed r using Deck(see
Section 2.1).

10

3.2 Syntax of c - the challenge queries
First we give an informal overview over the different challenge query types, then we define each of them
in a concise way:
Overview:

• chall(·,CL, 1ct) m0,m1 7→ Enck(mb, r) classically

• chall(·,CL, 2ct) m0,m1 7→ Enck(mb, r),Enck(mb̄, r) classically

• chall(·,CL, ror) m 7→ Enck(m, r) or Enck(r∗, r) classically

• chall(·,ST , 1ct) |m0,m1, c〉 7→ |m0,m1, c⊕ Enck(mb; r)〉

• chall(·,ST , 2ct) |m0,m1, c0, c1〉 7→ |m0,m1, c0 ⊕ Enck(mb; rb), c1 ⊕ Enck(mb̄; rb̄)〉

• chall(·,ST , ror) |m, c〉 7→
∣∣m, c⊕ Enck(πb(m); r)

〉
for a random permuation π

• chall(·,EM , 1ct) |m0,m1, 0〉 7→ |m0,m1,Enck(mb; r)〉

• chall(·,EM , 2ct) |m0,m1, 0, 0〉 7→ |m0,m1,Enck(mb; rb),Enck(mb̄; rb̄)〉

• chall(·,EM , ror) |m, 0〉 7→
∣∣m,Enck(πb(m); r)

〉
for a random permuation π

• chall(·,ER, 1ct) |m0,m1〉 7→ |Enck(mb; r)〉 and trace out |mb̄〉

• chall(·,ER, 2ct) |m0,m1〉 7→ |Enck(mb; r),Enck(mb̄; r)〉

• chall(·,ER, ror) |m〉 7→
∣∣Enck(πb(m); r)

〉
for a random permuation π

Using a the permutation π in this way, is a general way of construction real-or-random-like quantum
query models and first appeared in [MS16]. The idea behind it is that a random permutation π in some
way replaces an plaintext m with a random bitstring, as this would be the case classically.

3.2.1 Challenge Query type chall(·,CL, 1ct)

(The notation 1ct stands for one-ciphertext.)
In this query model, the adversary picks two messages m0,m1 and sends them to the challenger. The
challenger picks r $←− {0, 1}t and a random bit b and returns Enck(mb; r)

Input registers: None.
Classical input: m0,m1 ∈ {0, 1}n

Classical computation: r $←− {0, 1}t, b $←− {0, 1}, c← Enck(mb; r).
Quantum computation: None.
Output registers: None.
Classical output: c ∈ {0, 1}n′ .

3.2.2 Challenge Query type chall(·,ST , 1ct)

In this query model, the adversary prepares two input registers Qin0, Qin1, one output register Qout and
sends them to the challenger. The challenger picks r $←− {0, 1}t and a random bit b, applies the following
operation on these four registers and returns the registers to the adversary.

UST ,1ct,r,b : |m0,m1, c〉 7→ |m0,m1, c⊕ Enck(mb; r)〉.

Input registers: Qin0, Qin1, Qout
Classical input: None.
Classical computation: r $←− {0, 1}t, b $←− {0, 1}.
Quantum computation:

11

Qin0 :

UST ,1ct,r,bQin1 :

Qout :

where
UST ,1ct,r,b : |m0,m1, c〉 7→ |m0,m1, c⊕ Enck(mb; r)〉

Output registers: Qin0, Qin1, Qout.
Classical output: None.

3.2.3 Challenge Query type chall(·,EM , 1ct)

In this query model, the adversary prepares two input registers Qin0, Qin1, and sends them to the
challenger. The challenger prepares an output register Qout containing |0〉⊗n

′
, picks r $←− {0, 1}t and

a random bit b, applies the following operation on these four registers and returns the registers to the
adversary.

UEM ,1ct,r,b : |m0,m1, c〉 7→ |m0,m1, c⊕ Enck(mb; r)〉.

Input registers: Qin0, Qin1.
Classical input: None.
Classical computation: r $←− {0, 1}t, b $←− {0, 1}.
Quantum computation:

Qin0 :

UEM ,1ct,r,bQin1 :

Qout : |0〉⊗n
′

where
UST ,1ct,r,b : |m0,m1, c〉 7→ |m0,m1, c⊕ Enck(mb; r)〉

Output registers: Qin0, Qin1, Qout.
Classical output: None.

3.2.4 Challenge Query type chall(·,ST , 2ct)

(The notation 2ct stands for two-ciphertexts.)
In this query model, the adversary prepares two input registersQin0, Qin1, two output registersQout0, Qout1
and sends them to the challenger. The challenger picks r0, r1

$←− {0, 1}t and a random bit b, applies the
following operation on these four registers and returns the registers to the adversary.

UST ,2ct,r0||r1,b : |m0,m1, c0, c1〉 7→ |m0,m1, c0 ⊕ Enck(mb; r0), c1 ⊕ Enck(m1−b; r1)〉.

Input registers: Qin0, Qin1, Qout0, Qout1.
Classical input: None.
Classical computation: r0

$←− {0, 1}t, r1
$←− {0, 1}t, b $←− {0, 1}

Quantum computation:

Qin0 :

UST ,2ct,r0||r1,b
Qin1 :

Qout0 :

Qout1 :

12

where
UST ,2ct,r0||r1,b : |m0,m1, c0, c1〉 7→ |m0,m1, c0 ⊕ Enck(mb; r0), c1 ⊕ Enck(m1−b; r1)〉.

Output registers: Qin0, Qin1, Qout0, Qout1.
Classical output: None.

3.2.5 Challenge Query type chall(·,EM , 2ct)

In this query model, the adversary prepares two registers Qin0, Qin1 and sends them to the challenger.
The challenger prepares two registers Qout0, Qout1 containing |0〉⊗n

′
, picks r0, r1

$←− {0, 1}t and a random
bit b, applies the following operation on these four registers and returns the registers to the adversary.

UEM ,2ct,r0||r1,b : |m0,m1, c0, c1〉 7→ |m0,m1, c0 ⊕ Enck(mb; r0), c1 ⊕ Enck(m1−b; r1)〉.

Input registers: Qin0, Qin1.
Classical input: None.
Classical computation: r0

$←− {0, 1}t, r1
$←− {0, 1}t, b $←− {0, 1}.

Quantum computation:

Qin0 :

UEM ,2ct,r0||r1,b
Qin1 :

Qout0 : |0〉⊗n
′

Qout1 : |0〉⊗n
′

where
UST ,2ct,r0||r1,b : |m0,m1, c0, c1〉 7→ |m0,m1, c0 ⊕ Enck(mb; r0), c1 ⊕ Enck(m1−b; r1)〉.

Output registers: Qin0, Qin1, Qout0, Qout1.
Classical output: None.

3.2.6 Challenge Query type chall(·,ER, 2ct)

In this query model, the adversary prepares two registers Qin0, Qin1 of h qubits and sends them to the
challenger. The challenger picks r0, r1

$←− {0, 1}t and a random bit b, applies the following operation on
these four registers and returns the outcome to the adversary.

UER,2ct,r0||r1,b : |m0,m1〉 7→ |Enck(mb; r0),Enck(m1−b; r1)〉

Input registers: Qin0, Qin1.
Classical input: None.
Classical computation: r0

$←− {0, 1}t, r1
$←− {0, 1}t, b $←− {0, 1}.

Quantum computation:
Qin0

UER,2ct,r0||r1,b
Qout0

Qin1 Qout1

Output registers: Qout0, Qout1.
Classical output: None.

13

3.2.7 Challenge Query type chall(·,ER, 1ct)

In this query model, the adversary prepares two registers Qin0, Qin1 of h qubits and sends them to the
challenger. The challenger picks r $←− {0, 1}t and a random bit b, measures the register Qinb̄ (one of
the provided registers by the adversary) and throws out the result, applies the unitary ÛEnck(·,r) to the
registers Qinb, and passes them back to the adversary.

Input registers: Qin0, Qin1.
Classical input: None.
Classical computation: r $←− {0, 1}t, b $←− {0, 1}.
Quantum computation:

Qin0 ÛEnck(·,r) Qout

Qin1 a
b •

Output registers: Qout.
Classical output: None.

3.2.8 Challenge Query type chall(·,ST , ror)

(The notation ror stands for ”real or random”.)
In this query model, the adversary provides two registersQin, Qout. The challenger picks r

$←− {0, 1}t, b $←−
{0, 1}, a random permutation π on {0, 1}n, applies the unitary UEnck◦πb to Qin, Qout and passes them
back to the adversary.

Input registers: Qin, Qout.
Classical input: None.
Classical computation: r $←− {0, 1}t, b $←− {0, 1}, π $←− {π|π : {0, 1}n → {0, 1}n is a permutation}
Quantum computation:

Qin
UEnck◦πb

Qin

Qout Qout

Output registers: Qin, Qout.
Classical output: None.

3.2.9 Challenge Query type chall(·,EM , ror)

In this query model, the adversary provides a register Qin. The challenger prepares a register Qout
containing |0〉⊗n

′
, picks r $←− {0, 1}t, b $←− {0, 1}, a random permutation π on {0, 1}n, applies the unitary

UEnck◦πb to Qin, Qout and passes them back to the adversary.

Input registers: Qin.
Classical input: None.
Classical computation: r $←− {0, 1}t, b $←− {0, 1}, π $←− {π|π : {0, 1}n → {0, 1}n is a permutation}.
Quantum computation:

Qin :
UEnck◦πb

Qin

Qout : |0〉⊗n
′

Qout

Output registers: Qin, Qout.
Classical output: None.

14

3.2.10 Challenge Query type chall(·,ER, ror)

In this query model, the adversary prepares a register Qin of h qubits and sends it to the challenger.
The challenger picks r $←− {0, 1}t, b $←− {0, 1}, a random permutation π on {0, 1}n, applies the following
operation to the register Qin, and passes it back to the adversary.

UER,ror,r,b : |m〉 7→
∣∣Enck(πb(m); r)

〉
Input registers: Qin.
Classical input: None.
Classical computation: r $←− {0, 1}t, b $←− {0, 1}, π $←− {π|π : {0, 1}h → {0, 1}h is a permutation}.
Quantum computation:

Qin UER,ror,r,b Qout

Output registers: Qout.
Classical output: None.
Note that the circuit above is physically realizable because Enck and π are injective for fixed r. We give
an alternative circuit for the above operation:

Qin Ûπ
b

ÛEnc(·,r) Qout

3.3 Instantiation of learning and challenge query models
We define l := learn(lnb, lqm) (“nb” stands for “number”, “qm” stands for “query model”) where lnb
shows the number of the learning queries and lqm shows the type of the learning queries. Therefore,
l = learn(lnb, lqm) where (lnb, lqm) ∈ ({∗}×{CL,ST ,EM ,ER})∪{(0,−)} where ∗ means arbitrary many
queries and 0 means no learning queries. For the challenge queries, we define c := chall(cnb, cqm, crt)
(“nb” stands for “number”, “qm” stands for “query model”, “rt” stands for “return type”) where cnb shows
the number of the challenge queries and cqm, crt show the type of the challenge queries. Therefore,
c = chall(cnb, cqm, crt) where (cnb, cqm, crt) ∈ {1, ∗} × {CL,ST ,EM ,ER} × {1ct, 2ct, ror}

Number of queries:

• 0: Zeros queries (only allowed for learning queries, otherwise the notion becomes trivial)

• 1: One query (only allowed for challenge queries)

• ∗: arbitrary many queries

Query models:

• CL: Classical queries

• ST : Standard quantum queries

• EM : Embedding quantum queries

• ER: Erasing quantum queries

Return types: (only relevant for challenge queries)

• 1ct: One-ciphertext, that is, the adversary sends two plaintexts m0 and m1, but only one of them,
mb is encrypted.

• 2ct: Two-ciphertexts, that is, the adversary sends two plaintexts m0 and m1 and both of them are
encrypted and the adversary has to guess which ciphertext corresponds to which plaintext.

• ror: Real or random, that is, the adversary sends one plaintextm, and he gets either the encryption
of m or of a π(m) where π is a random permutation on the plaintext space.

15

3.4 The valid combinations of the learning and challenge queries
In Definition 5, we defined the security of an encryption scheme in the sense of l-c-IND-CPA. Now, we
explicitly specify which combination of the learning queries, l, and the challenge queries, c, are considered
in this paper.

The valid combinations. We consider only combinations where,

• (lnb, cnb) ∈ {(∗, 1), (∗, ∗), (0, ∗)} i.e. (lnb, cnb) 6= (0, 1). Which means we are not considering variants
of IND-OT-CPA (which is security of encryption only used once)

• (lqm, cqm) ∈ {(CL,CL)} ∪ {(CL, x), (x,CL), (x, x)|x ∈ {ST ,EM ,ER}}, i.e, if learning queries and
challenge queries are both quantum they are not allowed to be from different query models. This
is to keep the combinatorial explosion of different notions in check, and notions that combine two
different notions of superposition queries strike as rather exotic.

4 Decoherence lemmas
The informal idea of the following lemma is, that if you have one-time access to an ER-type oracle
of a random permutation, you cannot distinguish whether this oracle “secretely” applies a projective
measurement to your input, that measures whether your input is |+〉⊗m and if not which computational
state |x〉 it is.

Lemma 2. For a bijective function π : {0, 1}m → {0, 1}m let Ûπ be the unitary that performs the ER-
type mapping |x〉 7→ |π(x)〉. Let X be a quantum register with m qubits. Then the following two oracles
can be distinguished in a single query with probability at most 2−m+1:

• F0: Pick a random permutation π and apply Ûπ on X,

• F1: Pick a random permutation π, measure X as described later and then apply Ûπ to the result.

The quantum circuit for F0 is:

|x〉 Ûπ |π(x)〉

and for F1 it is:

|x〉 H⊗m c←M|0〉〈0| H⊗m Mc Ûπ |π(x̂)〉 or |+〉

where c←M|0〉〈0| is a projective measurement, storing the result (0 or 1) in c, that projects to the spaces
span(|0〉⊗m) (corresponding to 0) and its orthogonal space (corresponding to 1) andM1 is a measurement
in the computational basis, whose outcome is denoted by x̂ andM0 means no operation.

Note, that if we write M|+〉〈+| for the projective measurement, that projects to the subspace
span(|+〉⊗m), we can write F1 simply as:

|x〉 c←M|+〉〈+| Mc Ûπ |π(x̂)〉 or |+〉

Proof. Let M := 2m and F := M ! (the number of possible permutations π). A general strategy for
distinguishing F0 and F1 can be described as follows: The adversary chooses some Hilbert space H and
for each x ∈ {0, 1}m picks α̂x ∈ C, normalized |φx〉 ∈ H such that

∑
x∈X |α̂x|2 = 1. The adversary then

prepares the bipartite state
|Ψ〉AB :=

∑
x∈{0,1}m

α̂x|φx〉A ⊗ |x〉B

and sends the B-part as the input of an oracle query to f . (We can assume this without loss of generality,
because any state |Ψ〉AB can be written in this form.) Let ρ0 be the density operator of the state after
applying the oracle in F0 to |Ψ〉. Let ρ1 be the density operator of the state after applying the oracle
in F1 to |Ψ〉. Let ρ′ be the density operator of the state in F1 if the computational measurementMc is
omitted. Decompose |Ψ〉 as:

|Ψ〉 = γyes|ψyes〉+ γno|ψno〉

16

such that |ψyes〉 ∈ H ⊗ span{|+〉⊗m} and |ψno〉 ∈ H ⊗ span{|+〉⊗m}⊥. Now choose quantum states |Φ〉
and (|ψx〉)x and scalars β and (αx)x∈X such that

γyes|ψyes〉 = β|Φ〉 ⊗ |+〉⊗m

and
γno|ψno〉 =

∑
x

(αx|ψx〉 ⊗ |x〉)

so then
|Ψ〉 = β|Φ〉 ⊗ |+〉⊗m +

∑
x

(αx|ψx〉 ⊗ |x〉)

and such that H⊗ span{|+〉⊗m} is orthogonal to
∑
x (αx|ψ〉 ⊗ |x〉⊗m). To simplify computation choose

quantum states |ψyes〉 and |ψno〉 and scalars γyes and γno (“yes” corresponds to measuring c = 0 and “no”
corresponds to measuring c = 1).
Now we prove

Claim 1. ∑
x

αx|ψx〉 = 0

Proof (of Claim): ∑
x

αx|ψx〉 =
∑
x,y

(I ⊗ 〈y|)(αx|ψx〉 ⊗ |x〉)

= 2
n
2

(
I ⊗ 〈+|⊗m

)∑
x

(αx|ψx〉 ⊗ |x〉) = 2
n
2

(
I ⊗ 〈+|⊗m

)
γno|ψno〉

But by the choice of γno|ψno〉 this is 0.
This proves the claim.

Now we show that ρ0 = ρ′ and then we show that TD(ρ0, ρ1) (which is equal to TD(ρ′, ρ1)) is negligible.

Claim 2.
γno

∑
π

(I ⊗ Ûπ)|ψno〉 = 0

Proof (of Claim):

γno

∑
π

(I ⊗ Ûπ)|ψno〉 =
∑
π

(I ⊗ Ûπ)
∑
x

(αx|ψx〉 ⊗ |x〉)

=
∑
π

∑
x

(αx|ψx〉 ⊗ |π(x)〉) =
∑
π

∑
y

(αy
∣∣ψπ−1(y)

〉
⊗ |y〉)

=
∑
y

∑
π

(αy
∣∣ψπ−1(y)

〉
⊗ |y〉) =

∑
y

∑
x

∑
π:π−1(y)=x

(αx|ψx〉 ⊗ |y〉)

=
∑
y

∑
x

M !

M
· (αx|ψx〉 ⊗ |y〉) =

M !

M
·
∑
x

|ψx〉 ⊗
∑
y

αy|y〉

(i)
=
M !

M
·
∑
x

|ψx〉 ⊗ 0 = 0

where (i) follows from Claim 1.
This proves the claim.

Claim 3.
(I ⊗ Ûπ)(γyes|ψyes〉) = γyes|ψyes〉

17

Proof (of Claim): This hold because γyes|ψyes〉 = β|Φ〉 ⊗ |+〉⊗m and Ûπ|+〉⊗m = 2−
n
2

∑
x |π(x)〉 =

|+〉⊗m.
This proves the claim.

Claim 4.
ρ0 = ρ′

Proof (of Claim): This can be shown by proving that ρ0 − ρ′ = 0. We know that

ρ0 =
1

M !

∑
π

(I ⊗ Ûπ)|Ψ〉〈Ψ|(I ⊗ Ûπ)†

and
|Ψ〉 = γyes|ψyes〉+ γno|ψno〉

Defining the shorthand ∣∣ψ′yes

〉
:= (I ⊗ Ûπ)γyes|ψyes〉 = γyes|ψyes〉

and ∣∣ψ′no,π

〉
:= (I ⊗ Ûπ)γno|ψno〉

we can write
ρ0 =

1

M !

∑
π

(
(
∣∣ψ′yes

〉
+
∣∣ψ′no,π

〉
)(
〈
ψ′yes

∣∣+
〈
ψ′no,π

∣∣))
and

ρ′ =
1

M !

∑
π

(∣∣ψ′yes

〉〈
ψ′yes

∣∣+
∣∣ψ′no,π

〉〈
ψ′no,π

∣∣)
so that means that

ρ0 − ρ′ =
1

M !

∑
π

(
∣∣ψ′yes

〉〈
ψ′no,π

∣∣+
∣∣ψ′no,π

〉〈
ψ′yes

∣∣)
=
∣∣ψ′yes

〉
(
∑
π

〈
ψ′no,π

∣∣) + (
∑
π

∣∣ψ′no,π

〉
)
〈
ψ′yes

∣∣
so this is 0 as Claim 2 implies

∑
π

∣∣ψ′no,π

〉
= 0.

This proves the claim.
Now move on to proving that TD(ρ′, ρ1) is negligible. First observe that ρ1 is the sum of two parts
ρ1 = ρyes + ρno corresponding to the situations, ρyes where c was measured to be 0 and ρno where c was
measured to be 1. And in the same way decompose ρ′ = ρyes + ρ′no by defining:

ρyes = γyes|ψyes〉〈ψyes|γ∗yes

and
ρ′no =

(1

M !

∑
π

∑
x,y

αxα
∗
y|ψx〉〈ψy| ⊗ |π(x)〉〈π(y)|

)
=

1

M !

∑
π

∣∣ψ′no,π

〉〈
ψ′no,π

∣∣
and

ρno =
(1

M !

∑
π

∑
x

|αx|2|ψx〉〈ψx| ⊗ |π(x)〉〈π(x)|
)

Now compute

ρ′ − ρ1 =
(
ρyes +

1

M !

∑
π

∣∣ψ′no,π

〉〈
ψ′no,π

∣∣)− (ρyes + ρno)

=
1

M !

∑
π

∣∣ψ′no,π

〉〈
ψ′no,π

∣∣− ρno

=
1

M !

∑
π

∑
x6=y

αxα
∗
y|ψx〉〈ψy| ⊗ |π(x)〉〈π(y)|

=

∑
x 6=y

αxα
∗
y|ψx〉〈ψy|

⊗
 1

M2

∑
u 6=w

|u〉〈w|

18

So call
σ1 :=

∑
x6=y

αxα
∗
y|ψx〉〈ψy|

and
σ2 :=

1

M2

∑
u6=w

|u〉〈w|

Then
ρ0 − ρ1 = σ1 ⊗ σ2

Now prove that ‖σ2‖1 is sufficiently small, for this sake let ρ∗ = 1
M IM :

‖σ2‖1 =

∥∥∥∥∥∥ 1

M2

∑
u 6=w

|u〉〈w|

∥∥∥∥∥∥
1

=

∥∥∥∥∥ 1

M2

(∑
u,w

|u〉〈w| −
∑
z

|z〉〈z|

)∥∥∥∥∥
1

=
1

M

∥∥∥∥∥∑
u,w

1

M
|u〉〈w| −

∑
z

1

M
|z〉〈z|

∥∥∥∥∥
1

(i)

≤ 1

M

∥∥∥∥∥ 1

M

∑
u,w

|u〉〈w|

∥∥∥∥∥
1

+

∥∥∥∥∥ 1

M

∑
z

|z〉〈z|

∥∥∥∥∥
1

=

1

M

(∥∥∥|+〉⊗m〈+|⊗m∥∥∥
1

+ ‖ρ∗‖1
)

(ii)
=

1

M
(1 + 1) = 2 · 2−m

where (i) uses the triangle inequality for the trace norm, and (ii) involves the following two facts: for
any normalized pure state |ψ〉, ‖|ψ〉〈ψ|‖1 = 1 (here in particular we have |+〉⊗m = 1√

M

∑
x |x〉) and for

the maximally mixed state ρ∗ := 1
M IM , ‖ρ∗‖1 = 1. So it follows that:

‖σ2‖1 ≤ 2−m+1

and we can compute

‖σ1‖1 =

∥∥∥∥∥∑
x,y

αxα
∗
y|ψx〉〈ψy| −

∑
x

|αx|2|ψx〉〈ψx|

∥∥∥∥∥
1

=

∥∥∥∥∥(∑
x

αx|ψx〉
)(∑

y

α∗y〈ψy|
)
−
∑
x

|αx|2|ψx〉〈ψx|

∥∥∥∥∥
1

≤ 1 +

∥∥∥∥∥∑
x

|αx|2|ψx〉〈ψx|

∥∥∥∥∥
1

≤ 1 +
∑
x

|αx|2 ‖|ψx〉〈ψx|‖1

= 1 +
∑
x

|αx|2 · 1

= 1 + ‖γno|ψno〉‖2

= 1 + |γno|2 ≤ 2

So all in all
‖ρ0 − ρ1‖1 = ‖σ1‖1 · ‖σ2‖1 ≤ 2 · 2−m+1 = 2−m+2

so
TD(ρ0, ρ1) =

1

2
‖ρ0 − ρ1‖1 ≤ 2−m+1

This implies that no adversary can distinguish the results of F0 and F1 with probability better than
2−m+1. In particular if m is at least superlogarithmical, so for instance linear in the security parameter,
then F0 and F1 are indistinguishable for one query.

Lemma 3. For numbers m and n and an injective function f : {0, 1}m → {0, 1}m+n let Ûf be the
isometry that performs the ER-type mapping |x〉 7→ |f(x)〉. Let X be a quantum register containing m
qubits. Then the following two oracles can be distinguished with probability at most 3 · 2−n.

1. F0: Pick f uniformly at random and then apply Ûf on X,

19

2. F1: Pick f uniformly at random, measure X in the computational basis then apply Ûf to the result.

The quantum circuit for F0 is:

|x〉 Ûf |f(x)〉

and for F1 it is:

|x〉 M Ûf |f(x̂)〉

whereM is a computational basis measurement (in the picture we denote the outcome of this measurement
with x̂).

Proof. Intuitively this follows from Lemma 2 because: Picking a random injection has the same distri-
bution as composing concatenation of sufficiently many 0s with a random permutation. Formally, the
equivalence is shown by a sequence of hybrid oracles where G0 = F0 and G4 = F1. In the definition of
the hybrid games, π is always a random permutation π : {0, 1}m+n → {0, 1}m+n.
G0 is the same as F0 and G1 is the following oracle:

Oracle G1 :
Ûπ|0〉⊗n

G0 and G1 are perfectly indistinguishable for any adversary, because the probability distributions of the
observed functionality are exactly the same.

G1 and G2 can be distinguished with probability at most 2−m−n+1 by Lemma 2 where G2 is the
following oracle:

Oracle G2 :
c←M|+〉〈+| Mc Ûπ|0〉⊗n

(Here we follow the same notation as above namely, that c ← M|+〉〈+| is a projective measurement,
storing the result (0 or 1) in c, that projects to the spaces span(|+〉⊗m) (corresponding to 0) and its
orthogonal space (corresponding to 1) and M1 is a measurement in the computational basis, whose
outcome is denoted by x̂ andM0 means no operation.)

Oracle G3 :
M Ûπ|0〉⊗n

G2 and G3 can be distinguished with probability at most 2−n because the probability of measuring |+〉
is 2−n. Or more formally because (|φ〉 ⊗ |0〉⊗n)†|+〉 ≤ 2−

n
2 for any |φ〉.

Oracle G4 : M Ûf

G3 and G4 are perfectly indistinguishable because the probability distributions are the same. And G4

is the same as F1. Thus F0 and F1 can be distinguished with probability at most 2−n + 2−m−n+1 + 2−n

which is bounded by 3 · 2−n

Lemma 4. For a random function f : {0, 1}m → {0, 1}n, an embedding query to f is indistinguishable
from an embedding query to f preceded by a computational measurement on the input register. Let X be
an m-qubit quantum register. Then for any input quantum register m, the following two oracles can be
distinguished with probability at most 2−n.

1. F0: apply Uf to X and another register containing n zeros. The quantum circuit for F0 is:

|x〉
Uf

|x〉
|0〉⊗n |f(x)〉

2. F1: measure X in the computational basis and apply Uf to the result and another register containing
zeros. The circuit for F1 is:

|x〉 M
Uf

|x̂〉

|0〉⊗n |f(x̂)〉

whereM is a computational basis measurement whose outcome we denote by x̂.

20

Proof. Let M := 2m and N := 2n. A general strategy for distinguishing F0 and F1 can be described as
follows: The adversary chooses some Hilbert space HA and for each x ∈ {0, 1}m picks αx ∈ C, |φx〉 ∈ HA
such that

∑
x∈X |αx|2 = 1. The adversary then prepares the bipartite state

|Ψ〉AM :=
∑
x∈X

αx|φx〉A ⊗ |x〉M

and sends the B-part as the input of an oracle query to f . (We can assume this without loss of generality,
because any state |Ψ〉AB can be written in this form.) Let ρ0 be the density operator of the state after
applying the oracle in F0 to |Ψ〉. Let ρ1 be the density operator of the state after applying the oracle in
F1 to |Ψ〉. Then holds

ρ0 =
1

NM

∑
f

∑
x,y

α∗xαy|φx〉〈φy| ⊗ |x〉〈y| ⊗ |f(x)〉〈f(y)|

and

ρ1 =
1

NM

∑
f

∑
x,y

α∗xαx|φx〉〈φx| ⊗ |x〉〈x| ⊗ |f(x)〉〈f(x)|

=
1

NM

∑
f

∑
x,y

δx=yα
∗
xαy|φx〉〈φy| ⊗ |x〉〈y| ⊗ |f(x)〉〈f(y)|

Compute

ρ0 − ρ1 =
1

NM

∑
f

∑
x,y

δx 6=yα
∗
xαy|φx〉〈φy| ⊗ |x〉〈y| ⊗ |f(x)〉〈f(y)|

=
1

NM

∑
x 6=y

∑
u,w

∑
f,f(x)=u,f(y)=w

α∗xαy|φx〉〈φy| ⊗ |x〉〈y| ⊗ |u〉〈w|

=
1

N2

(∑
x6=y

|x〉〈y|
)
⊗
(∑
u,w

|u〉〈w|
)

=
1

N

(1

N

∑
x 6=y

|x〉〈y|
)
⊗
(1

N

∑
u,w

|u〉〈w|
)

=
1

N

(
|+〉〈+| − 1

N
Id
)
⊗
(
|+〉〈+|

)
where u and w run over {0, 1}n. This implies:

‖ρ0 − ρ1‖1 = ‖ 1

N

(
|+〉〈+| − 1

N
Id
)
⊗
(
|+〉〈+|

)
‖1 =

1

N
· 2 · 1 =

2

N

so
TD(ρ0, ρ1) ≤ 1

N
= 2−n

and that’s neglible hence ρ0 and ρ1 are indistinguishable.

Corollary 1. Assume n ≥ m. For a random injective function f : {0, 1}m → {0, 1}n the oracles F0 and
F1 in Lemma 4 are distinguishable with probability at most 1/2n+C/2n where C is a universal constant.

Proof. This follows from Theorem 7 in [Zha15] that states any algorithm making q quantum queries
cannot distinguish a random function from a random injective function, except with probability at most
Cq3/2n.

Corollary 2. Let R ⊆ {0, 1}s be a (fixed) set of size 2n. Let f : {0, 1}m → {0, 1}s be a random
injection with range R, that is, f is uniformly randomly chosen from the set of all injective functions
f : {0, 1}m → {0, 1}s with im f ⊆ R. An EM -query to f is distinguishable from an EM -query to f
preceded with a computational basis measurement with probability at most 1/2n + C/2n where C is a
universal constant. In other words, the following circuits are indistinguishable.

|x〉
Uf

|x〉 |x〉 M
Uf

|x̂〉

|0〉⊗n |f(x)〉 |0〉⊗n |f(x̂)〉

21

Proof. We can write f = g ◦ π where g : {0, 1}n → {0, 1}s is a fixed injective function with range R and
π : {0, 1}m → {0, 1}n is a random injective function. Let g−1 be a left inverse for the function g. An
EM query to f can be implemented using functions g and π as follows (using an ancillary register Anc):

Qin :
Uπ

Qin

Anc : |0〉⊗n
Ug Ug−1

Qout

Qout : |0〉⊗s a

A simple calculation shows that the above circuit implements the isometry Uf = Ug◦π. Now using
Corollary 1, the circuit above is indistinguishable from the following circuit when one measures Qin
register at the beginning: (We stress that Uπ is used only once as required by Corollary 1)

Qin :
Uπ

Qin

Anc : |0〉⊗n
Ug Ug−1

Qout

Qout : |0〉⊗s a

And this is a circuit that implements an EM -query to f preceded with a measurement.

5 Impossible Security Notions
Proposition 1. There is no l-chall(cnb,ST , 1ct)-IND-CPA-secure encryption scheme where the l and
cnb can be replaced by any of the possible parameters.

Proof. This is formally proven in [BZ13b] as Theorem 4.2. For short the attack consists of inputting into
the challenge query oracle the state

|0〉⊗n ⊗ |ψ〉 ⊗ |0〉⊗n
′

where |ψ〉 is some arbitrary “sufficiently non-classical” quantum state, for example |+〉⊗n. If b = 0
the state |ψ〉 is preserved and if b = 1 the state |ψ〉 is disturbed. So the adversary can distinguish by
measuring the second register.

Proposition 2. There is no l-chall(cnb,ST , 2ct)-IND-CPA-secure encryption scheme where the l and
cnb can be replaced by any of the possible parameters.

Proof. It is formally proven in [BZ13b] as Theorem 4.4. For short the attack consists of inputting into
the challenge query oracle the state

|0〉⊗n ⊗ |ψ〉 ⊗ |0〉⊗n
′
⊗ |+〉⊗n

′

where |ψ〉 is some arbitrary “sufficiently non-classical” quantum state. If b = 0 the state |ψ〉 is preserved
as its encryption is “absorbed” by |+〉⊗n

′
, but if b = 1 the state |ψ〉 is disturbed. So the adversary can

distinguish by measuring the second register.

Lemma 5. A query with |0〉⊗n
′
on the output register to an ST -oracle can be simulated by an EM -oracle.

Proof. This follows immediately from the definition of ST - and EM -oracles.

Proposition 3. There is no l-chall(cnb,EM , 1ct)-IND-CPA-secure encryption scheme where the l and
cnb can be replaced by any of the possible parameters.

Proof. The same proof as for Proposition 1 works as the attack is based on inputting |0〉⊗n
′
on the

output register, so Lemma 5 yields the result. More precisely, the adversary inputs |0〉⊗n ⊗ |ψ〉 and gets
exactly the same output as in the proof of Proposition 1 and then can do exactly the same measurement
to distinguish.

22

6 Implications
From the theoretically (4+1)×2×4×3 = 120 possible IND-CPA-notions, we excluded 1×1×4×3 = 12
that correspond to IND-OT-CPA instead of IND-CPA, as there is no learning query and only 1 challenge.
This leaves 108 notions. Next we excluded 2×2×3×3 = 36 notations that we considered unreasonable,
as they combine quantum learning queries with quantum challenge queries of different query models.
This leaves 72 notions. Next we excluded 15 notions that are proven impossible. This leaves 57 notions.

Now we will relate the remaining IND-CPA-notions. The 57 notions can be grouped together in 14
Panels depicted in Figure 1, so that in each panel the notions are equivalent. In order to have a compact
representation in Figure 1, for any qm ∈ {ST ,EM ,ER} we define the set T ∗(qm) as

T ∗(qm) = {(learn(0,−), ∗, qm), (learn(∗,CL), ∗, qm), (learn(∗, qm), 1, qm), (learn(∗, qm), ∗, qm)}.

Note that (learn(∗,CL), 1, qm) is not in T ∗(qm). This set will only be used in Figure 1 to have a compact
representation.

Inside each panel all the notions are equivalent and apart from that, there are the following 20
implications between the panels depicted in Figure 1 using black arrows. The full set of implications
between all notions can be derived by taking the transitive closure of this graph. Every implication
that is not in the transitive closure of the graph is being disproven in the section about separations
section 7 or some of them have been stated as conjectures. The red dashed red arrows in Figure 1 show
non-implications that have left as conjectures.

Note that Panel 6 corresponds to the quantum security definitions by Boneh and Zhandry [BZ13b].
Some implications follow from some theorem proven later and some are easy enough that say can be
proven by a short argument. The arguments used are the following. In each case, we assign a short name
in bold to that argument type.

• more cqs: i.e. more challenge queries. If two security notions just differ by the fact that one of
them allows only one challenge query and the other allows polynomially many, then trivially the
notion allowing polynomially many implies the notion allowing only one. For example:

learn(∗,CL)-chall(∗,ER, ror)⇒ learn(∗,CL)-chall(1,ER, ror)

• extra lq-oracle: i.e. extra learning-query-oracle. If two security notions just differ by the fact,
that one of them allows learning queries and the other doesn’t, then trivially the notion allowing
learning queries implies the notion allowing no learning queries. For example:

learn(∗,CL)-chall(∗,ER, 1ct)⇒ learn(0,−)-chall(∗,ER, 1ct)

• other ciphertext: If two security just differ by the fact, that one of them allows chall(cnb,ER, 1ct)
challenge queries and the other chall(cnb,ER, 2ct) challenge queries, then trivially the notions al-
lowing chall(cnb,ER, 2ct) challenge queries implies the notion allowing chall(cnb,ER, 1ct) challenge
queries (see subsubsection 3.2.6). For example:

learn(∗,CL)-chall(1,ER, 2ct)⇒ learn(∗,CL)-chall(1,ER, 1ct)

• simulate classical: Classical queries can be simulated with any quantum query type by measuring
the result in the computational basis. For example:

learn(∗,ER)-chall(∗,ER, ror)⇒ learn(∗,CL)-chall(∗,ER, ror)

• simulate le with ch: When learning queries are classical, they can be simulated by the challenge
queries in the case of 1ct and 2ct. In more details, on input m as a classical leaning query, we can
query (m,m) as a challenge query and simulate the learning query. For instance:

learn(0,−)-chall(∗,ER, 2ct) =⇒ learn(∗,CL)-chall(∗,ER, 2ct)

• EM simulation by ST. The query type EM can be simulated by ST -type by putting |0〉 in the
output register Qout. For example,

learn(∗,CL)-chall(∗,ST , ror)⇒ learn(∗,CL)-chall(∗,EM , ror)

23

P1: l-chall(cnb, cqm, crt),
(l, cnb, cqm) ∈ T ∗(ER),

crt ∈ {1ct, 2ct}

P2: l-chall(cnb, cqm, ror),
(l, cnb, cqm) ∈ T ∗(ST)

P3: learn(∗,CL)-chall(1,ER, 2ct)

P4: l-chall(cnb, cqm, ror),
(l, cnb, cqm) ∈ T ∗(ER)

P5: l-chall(cnb, cqm, crt),
(l, cnb, cqm) ∈ T ∗(EM),

crt ∈ {2ct, ror}

P6: learn(∗,ST)-chall(cnb,CL, crt),
cnb ∈ {1, ∗},

crt ∈ {1ct, 2ct, ror}

P7: learn(∗,CL)-chall(1,EM , 2ct)

P8: learn(∗,CL)-chall(1,ER, 1ct)

P9: learn(∗,CL)-chall(1,ER, ror)

P10: learn(∗,ER)-chall(cnb,CL, crt),
cnb ∈ {1, ∗},

crt ∈ {1ct, 2ct, ror}

P11: learn(∗,EM)-chall(cnb,CL, crt),
cnb ∈ {1, ∗},

crt ∈ {1ct, 2ct, ror}

P12: learn(∗,CL)-chall(1,ST , ror)

P13: learn(∗,CL)-chall(1,EM , ror)

P14: l-chall(cnb,CL, crt),
(l, cnb) ∈ {(learn(0,−), ∗),

(learn(∗,CL), 1), (learn(∗,CL), ∗)},
crt ∈ {1ct, 2ct, ror}

Figure 1: The 57 notions and equivalences and implications between them. The red dashed arrows show
non-implications that have left as conjectures.

24

• EM simulation by ER. The query type EM can be simulated by ER-type queries. In the
following, we present a circuit that depicts the simulation of EM -type queries to some function f
using an ER-type query to f :

|m〉 •
|0〉⊗n Ûf

For example,
learn(∗,ER)-chall(∗,ER, ror)⇒ learn(∗,EM)-chall(∗,EM , ror)

For the panels with more than one notion, it has to be proven, that all the notations inside are equivalent:
Panel P1 (8 security notions):

learn(∗,CL)-chall(∗,ER, 2ct) =⇒ learn(∗,CL)-chall(∗,ER, 1ct) other ciphertext
learn(∗,CL)-chall(∗,ER, 1ct) =⇒ learn(0,−)-chall(∗,ER, 1ct) extra lq-oracle
learn(0,−)-chall(∗,ER, 1ct) =⇒ learn(∗,ER)-chall(∗,ER, 1ct) by Theorem 3

learn(∗,ER)-chall(∗,ER, 1ct) =⇒ learn(∗,ER)-chall(1,ER, 1ct) more cqs
learn(∗,ER)-chall(1,ER, 1ct) =⇒ learn(∗,ER)-chall(1,ER, 2ct) by Theorem 6
learn(∗,ER)-chall(1,ER, 2ct) =⇒ learn(∗,ER)-chall(∗,ER, 2ct) by Theorem 1

learn(∗,ER)-chall(∗,ER, 2ct) =⇒ learn(0,−)-chall(∗,ER, 2ct) extra lq-oracle
learn(0,−)-chall(∗,ER, 2ct) =⇒ learn(∗,CL)-chall(∗,ER, 2ct) simulate le with ch

Panel P2 (4 security notions):

learn(∗,ST)-chall(∗,ST , ror) =⇒ learn(∗,CL)-chall(∗,ST , ror) simulate classical
learn(∗,CL)-chall(∗,ST , ror) =⇒ learn(0,−)-chall(∗,ST , ror) extra lq-oracle
learn(0,−)-chall(∗,ST , ror) =⇒ learn(∗,ST)-chall(∗,ST , ror) by Theorem 4

learn(∗,ST)-chall(∗,ST , ror) =⇒ learn(∗,ST)-chall(1,ST , ror) more cqs
learn(∗,ST)-chall(1,ST , ror) =⇒ learn(∗,ST)-chall(∗,ST , ror) by Theorem 1

Panel P4 (4 security notions):

learn(∗,ER)-chall(∗,ER, ror) =⇒ learn(∗,CL)-chall(∗,ER, ror) simulate classical
learn(∗,CL)-chall(∗,ER, ror) =⇒ learn(0,−)-chall(∗,ER, ror) extra lq-oracle
learn(0,−)-chall(∗,ER, ror) =⇒ learn(∗,ER)-chall(∗,ER, ror) by Theorem 4

learn(∗,ER)-chall(∗,ER, ror) =⇒ learn(∗,ER)-chall(1,ER, ror) more cqs
learn(∗,ER)-chall(1,ER, ror) =⇒ learn(∗,ER)-chall(∗,ER, ror) by Theorem 1

Panel P5 (8 security notions):

learn(∗,EM)-chall(∗,EM , ror) =⇒ learn(∗,CL)-chall(∗,EM , ror) simulate classical
learn(∗,CL)-chall(∗,EM , ror) =⇒ learn(0,−)-chall(∗,EM , ror) extra lq-oracle

learn(0,−)-chall(∗,EM , ror) =⇒ learn(∗,EM)-chall(∗,EM , ror) by Theorem 4
learn(∗,EM)-chall(∗,EM , ror) =⇒ learn(∗,EM)-chall(1,EM , ror) more cqs
learn(∗,EM)-chall(1,EM , ror) =⇒ learn(∗,EM)-chall(1,EM , 2ct) by Theorem 1
learn(∗,EM)-chall(1,EM , 2ct) =⇒ learn(∗,EM)-chall(∗,EM , 2ct) by Theorem 1
learn(∗,EM)-chall(∗,EM , 2ct) =⇒ learn(∗,CL)-chall(∗,EM , 2ct) simulate classical

learn(∗,CL)-chall(∗,EM , 2ct) =⇒ learn(0,−)-chall(∗,EM , 2ct) extra lq-oracle
learn(0,−)-chall(∗,EM , 2ct) =⇒ learn(∗,EM)-chall(∗,EM , 2ct) by Theorem 3

learn(∗,EM)-chall(∗,EM , 2ct) =⇒ learn(∗,EM)-chall(∗,EM , ror) by Theorem 8

Panel P6 (6 security notions):

learn(∗,ST)-chall(1,CL, 1ct) =⇒ learn(∗,ST)-chall(∗,CL, 1ct) by Theorem 1
learn(∗,ST)-chall(∗,CL, 1ct) =⇒ learn(∗,ST)-chall(1,CL, 1ct) more cqs
The rest of equivalences by Theorem 2

25

Panel P10 (6 security notions):

learn(∗,ER)-chall(1,CL, 1ct) =⇒ learn(∗,ER)-chall(∗,CL, 1ct) by Theorem 1
learn(∗,ER)-chall(∗,CL, 1ct) =⇒ learn(∗,ER)-chall(1,CL, 1ct) more cqs
The rest of equivalences by Theorem 2

Panel P11 (6 security notions):

learn(∗,EM)-chall(1,CL, 1ct) =⇒ learn(∗,EM)-chall(∗,CL, 1ct) by Theorem 1
learn(∗,EM)-chall(∗,CL, 1ct) =⇒ learn(∗,EM)-chall(1,CL, 1ct) more cqs
The rest of equivalences by Theorem 2

Panel P14 (9 security notions):

learn(∗,CL)-chall(1,CL, 1ct) =⇒ learn(∗,CL)-chall(∗,CL, 1ct) by Theorem 1
learn(∗,CL)-chall(∗,CL, 1ct) =⇒ learn(∗,CL)-chall(1,CL, 1ct) more cqs

learn(∗,CL)-chall(∗,CL, 1ct) =⇒ learn(0,−)-chall(∗,CL, 1ct) extra lq-oracle
learn(0,−)-chall(∗,CL, 1ct) =⇒ learn(∗,CL)-chall(∗,CL, 1ct) simulate le with ch

The rest of equivalences by Theorem 2

The 20 arrows in detail:

• From panel 1 to panel 3
precisely: learn(∗,CL)-chall(∗,ER, 2ct) =⇒ learn(∗,CL)-chall(1,ER, 2ct)
argument: more cqs

• From panel 1 to panel 4
precisely: learn(∗,ER)-chall(∗,ER, 1ct) =⇒ learn(∗,ER)-chall(∗,ER, ror)
argument: Theorem 7

• From panel 1 to panel 6
precisely: learn(∗,ER)-chall(∗,ER, 1ct) =⇒ learn(∗,ST)-chall(∗,CL, 1ct)
argument: Theorem 9

• From panel 2 to panel 5
precisely: learn(∗,ST)-chall(∗,ST , ror) =⇒ learn(∗,EM)-chall(∗,EM , 2ct)
argument: EM simulation by ST

• From panel 2 to panel 6
precisely: learn(∗,ST)-chall(∗,ST , ror) =⇒ learn(∗,ST)-chall(∗,CL, 1ct)
argument: simulate classical

• From panel 4 to panel 5
precisely: learn(∗,ER)-chall(∗,ER, ror) =⇒ learn(∗,EM)-chall(∗,EM , ror)
argument: EM simulation by ER

• From panel 2 to panel 12
precisely: learn(∗,CL)-chall(∗,ST , ror) =⇒ learn(∗,CL)-chall(1,ST , ror)
argument: more cqs

• From panel 3 to panel 7
precisely: learn(∗,CL)-chall(∗,ER, 2ct) =⇒ learn(∗,CL)-chall(∗,EM , 2ct)
argument: EM simulation by ER.

• From panel 3 to panel 8
precisely: learn(∗,CL)-chall(1,ER, 2ct) =⇒ learn(∗,CL)-chall(1,ER, 1ct)
argument: other ciphertext

• From panel 4 to panel 10
precisely: learn(∗,ER)-chall(∗,ER, ror) =⇒ learn(∗,ER)-chall(∗,CL, 1ct)
argument: simulate classical

26

• From panel 4 to panel 9
precisely: learn(∗,CL)-chall(∗,ER, ror) =⇒ learn(∗,CL)-chall(1,ER, ror)
argument: more cqs

• From panel 5 to panel 7
precisely: learn(∗,CL)-chall(∗,EM , 2ct) =⇒ learn(∗,CL)-chall(1,EM , 2ct)
argument: more cqs

• From panel 5 to panel 11
precisely: learn(∗,EM)-chall(∗,EM , 2ct) =⇒ learn(∗,EM)-chall(∗,CL, 1ct)
argument: simulate classical

• From panel 6 to panel 11
precisely: learn(∗,ST)-chall(1,CL, 1ct) =⇒ learn(∗,EM)-chall(1,CL, 1ct)
argument: EM simulation by ST

• From panel 8 to panel 9
precisely: learn(∗,CL)-chall(1,ER, 1ct) =⇒ learn(∗,CL)-chall(1,ER, 1ct)
argument: Theorem 7

• From panel 10 to panel 11
precisely: learn(∗,ER)-chall(1,CL, 1ct) =⇒ learn(∗,EM)-chall(1,CL, 1ct)
argument: EM simulation by ER

• From panel 7 to panel 13
precisely: learn(∗,CL)-chall(1,EM , 2ct) =⇒ learn(∗,CL)-chall(1,EM , ror)
argument: Theorem 8

• From panel 9 to panel 13
precisely: learn(∗,CL)-chall(1,ER, 1ct) =⇒ learn(∗,CL)-chall(1,EM , ror)
argument: EM simulation by ER

• From panel 11 to panel 14
precisely: learn(∗,EM)-chall(1,CL, 1ct) =⇒ learn(∗,CL)-chall(1,CL, 1ct)
argument: simulate classical

• From panel 12 to panel 13
precisely: learn(∗,CL)-chall(1,ST , 1ct) =⇒ learn(∗,CL)-chall(1,EM , ror)
argument: EM simulation by ST.

• From panel 13 to panel 14
precisely: learn(∗,CL)-chall(1,EM , ror) =⇒ learn(∗,CL)-chall(∗,CL, 1ct)
arguments: We can show the implication with the application of the following arguments respec-
tively: simulate classical, Theorem 2 and Theorem 1

These are the implications. Now we prove the theorem mentioned in this list.

Theorem 1. If a chall(1, cqm, crt)-challenge-query can be efficiently simulated with an lqm-learning-query
(when knowing the challenge bit b) then learn(∗, lqm)-chall(1, cqm, crt) =⇒ learn(∗, lqm)-chall(∗, cqm, crt).

Proof. Let A be an adversary that wins in the learn(∗, lqm)-chall(∗, cqm, crt) game with non-negligible
advantage ε(n). We assume that A makes q challenge queries. We construct an adversary B that attacks
in the sense of learn(∗, lqm)-chall(1, cqm, crt). Let B be an adversary that chooses uniformly at random
an element k from {0, . . . , q+ 1}, runs the adversary A and answers to the i-th challenge query made by
A as follows:

1. When i < k, B simulates the i-th challenge query by a learning query assuming that b = 0.

2. For k-th challenge query, B uses a challenge query to answer.

3. When i > k, B simulates the i-th challenge query by a learning query assuming that b = 1.

27

At the end, B returns A’s output. We define q + 2 hybrid games Gk corresponding to the possible
choice k of B. So Gj has the same description as above when the random choice of B is j. Note that
|Pr[1 ← G0] − Pr[1 ← Gq+1]| ≥ ε(n) and therefore there exists α ∈ {0, . . . , q} such that |Pr[1 ←
Gα] − Pr[1 ← Gα+1]| ≥ ε(n)

q+1 . Since k = α with probability 1
q+2 , B can be a distinguisher for games Gα

and Gα+1 with non-negligible probability. This is a contradiction with the security in the learn(∗, lqm)-
chall(1, cqm, crt) sense.

Theorem 2. Let L = {learn(0,−), learn(∗,CL), learn(∗,ST), learn(∗,EM), learn(∗,ER)} and Cnb =
{1, ∗}. For all (l,Cnb) ∈ L× Cnb \ {

(
learn(0,−), 1

)
}, the following security notions are equivalent for all

encryption schemes: (Note that when l = learn(0,−) and cnb = 1, the security definition is IND-OT-CPA
that we have excluded.)

• C1ct := l-chall(cnb,CL, 1ct)-IND-CPA-security

• C2ct := l-chall(cnb,CL, 2ct)-IND-CPA-security

• Cror := l-chall(cnb,CL, ror)-IND-CPA-security

Proof. C2ct =⇒ C1ct: trivial.
C1ct =⇒ C2ct, case cnb = ∗: A 2ct-challenge-query of the form

(m0,m1) 7→ (Enck(mb),Enck(mb̄))

can be simulated by two queries of the form (m0,m1) 7→ Enck(mb), namely by querying

(m0,m1) 7→ Enck(mb)

to get Enck(mb) and then switching the inputs and querying

(m1,m0) 7→ Enck(mb̄)

to get Enck(mb̄). So the desired outcome (Enck(mb),Enck(mb̄)) is simulated.
C1ct =⇒ C2ct case cnb = 1: We prove that

l-chall(1,CL, 1ct) =⇒ l-chall(∗,CL, 1ct) =⇒ l-chall(∗,CL, 2ct) =⇒ l-chall(1,CL, 2ct)

(for simplicity we drop the IND-CPA-security from the notation above). The first implication follows
from Theorem 1, the second implication was proven above and the third implication is trivial, because
the only difference is that there are less challenge queries available on its right side.
C1ct =⇒ Cror: This follows from the fact that a ror-challenge-query can be simulated by a 1ct-challenge-
query as follows. Let A be a successful adversary against l-chall(cnb,CL, ror)-IND-CPA-security, trans-
form it into an adversary BA against l-chall(cnb,CL, 1ct)-IND-CPA-security. (The adversary B runs A
and plays the role of the challenger for A.) The learning queries are simply forwarded. When A performs
a challenge query with input m′, then B samples a random value r and submits (m0,m1) = (m′, r) to
the challenger. The challenger answers with Enck(mb) i.e. with Enck(m′) if b = 0 and with Enck(r) if
b = 1. This is exactly what A expects to get back, so B can simply pass it over to A.
Cror =⇒ C1ct: We want to show that the game with challenge queries (m0,m1) 7→ Enck(m0) is indistin-
guishable from the game with challenge queries (m0,m1) 7→ Enck(m1). But since Enc is Cror-secure it
follows that the game with challenge queries (m0,m1) 7→ Enck(m0) is indistinguishable from the game
with challenge queries (m0,m1) 7→ Enck(r) where r is random. And as well that the game with challenge
queries (m0,m1) 7→ Enck(r) where r is random is indistinguishable from the game with challenge queries
(m0,m1) 7→ Enck(m1). So by transitivity of indistinguishability Enc is C1ct-secure.

In the theorem below, we show that the security definition with no learning queries imply the security
definition that performs EM and ER type learning queries. The idea of proof is to simulate learning
queries with the challenge queries. Classically, we can simulate easily the learning queries using the
challenge queries by making a copy of the message sent as a learning query and send two copy of
messages as a challenge query. However, this approach is not straightforward in the quantum case
because making a copy of a quantum message required an entanglement. This makes the output registers
entangled in the chall(∗,EM , 2ct), chall(∗,ER, 2ct), chall(∗,ER, 1ct) type queries and discarding extra
registers effects the other registers. Therefore, we define two intermediate games with learning queries
that always return encryption of 0. Overall, we show that IND-CPA games and two intermediate games
are indistinguishable.

28

Theorem 3. learn(0,−)-c =⇒ learn(∗, lqm)-c where c ∈ {chall(∗,EM , 2ct), chall(∗,ER, 2ct), chall(∗,ER, 1ct)}
and lqm ∈ {EM ,ER}.

Proof. Let Enc be some encryption scheme that is learn(0,−)-c-secure for c ∈ {chall(∗,EM , 2ct), chall(∗,ER, 2ct),
chall(∗,ER, 1ct)}. We will show that Enc is learn(∗, lqm)-c-secure by defining a sequence of IND-CPA
games that demonstrate that settings with challenge bit b = 0 and b = 1 are indistinguishable.

Define the learning query l′ to be as follows: For EM type learning queries, after receiving the
quantum register Qin, measure it in the computational basis to get a classical value x, compute Enc(0),
and return |x,Enc(0)〉. For ER type learning queries, it returns |Enc(0)〉.

Let Game Gb be the IND-CPA game with c-challenge-queries and learn(∗, lqm)-learning-queries when
the challenge bit is b. Let Game G′b be the IND-CPA game with c-challenge-queries and l′-learning-queries
when the challenge bit is b.

Now we shall show in sequence that these games are indistinguishable from one another:

G0
∼= G′1

∼= G′0
∼= G1.

To do this, we construct an adversary B that breaks learn(0,−)-c-security from an adversary A that
distinguishes the two subsequent games in the relation above. Let b′ denote the challenge bit of the
adversary B’s challenger. In all the cases, the adversary B answers the challenge queries made by A by
forwarding them to its challenger. In the following, we show how the adversary B answers the learning
queries made by A in each case.
G0
∼= G′1 :G0
∼= G′1 :G0
∼= G′1 : Upon receiving the quantum register Qin as a learning query from the adversary A, the

adversary B prepares the quantum register Q′in containing |0〉, performs the c-challenge query for Qin, Q′in
registers and then does the following:

(i) When c = chall(∗,EM , 2ct), B receives back four registers. B measures and discards the second
and fourth registers and sends the first and third registers to A.

Qin : |m〉

c
Q′in : |0〉 a
Qout :|0〉⊗n

′

Q′out :|0〉⊗n
′

a
At the end, the adversary B returns the A’s output. Note that if the challenge bit is b′ = 0 then
the adversary B returns |m,Enc(m)〉 to A. This is a simulation of the EM type learning queries in
game G0. It is clear that the challenge queries made by A are simulated perfectly by B. Therefore,
the adversary B perfectly simulates game G0 when b′ = 0. When the challenge bit is b′ = 1, the
adversary B effectively measures Qin by measuring Q′out (which contains the encryption if Qin)
Thus, it returns |m,Enc(0)〉 (where m is the result of measuring Qin) as an answer for a learning
query. This is a simulation of the l′ learning queries in game G′1. Therefore, the adversary B
perfectly simulates game G′1 when b′ = 1. Since Enc is learn(0,−)-chall(∗,EM , 2ct)-secure, G0 and
G′1 are indistinguishable.

(ii) When c = chall(∗,ER, 2ct), B receives two registers. B measures and discards the second register
and sends the first register to A.

Qin : |m〉 U(ER,1ct,r0)

Q′in : |0〉 U(ER,1ct,r1) a
b′ •

At the end, the adversary B returns the A’s output. Note that if the challenge bit is b′ = 0 then
the adversary B returns |Enc(m)〉 to A. This is a simulation of ER type learning queries in game
G0. It is clear that the challenge queries made by A are simulated perfectly by B. Therefore,
the adversary B perfectly simulates game G0 when b′ = 0. When the challenge bit is b′ = 1 the
adversary B returns |Enc(0)〉 as an answer for a learning query. This is a simulation of l′ learning
queries in game G′1. Therefore, the adversary B perfectly simulates game G′1 when b′ = 1. Since
Enc is learn(0,−)-chall(∗,ER, 2ct)-secure, G0 and G′1 are indistinguishable.

29

(iii) When c = chall(∗,ER, 1ct), B receives back one register and forwards it to A.

Qin : |m〉 U(ER,1ct,r)

Q′in : |0〉 a
b′ •

At the end, the adversary B returns the A’s output. Similar to the cases above, we can show that
the adversary B simulates the game G0 when the challenge bit is b′ = 0 and it simulates the game
G′1 when the challenge bit is b′ = 1. Since Enc is learn(0,−)-chall(∗,ER, 1ct)-secure, G0 and G′1
are indistinguishable.

G′0
∼= G1G′0
∼= G1G′0
∼= G1: Similar to the cases above, we can show that G′0 and G1 are indistinguishable. In this case, the

adversary B after receiving the quantum register Qin as a learning query from the adversary A, prepares
the quantum register Q′in containing |0〉, performs the c-challenge query for Q′in, Qin registers (the order
of registers have been exchanged). Then it does exactly the same as above in each case. For instance in
the case of c = chall(∗,EM , 2ct), B receives back four registers, then measures and discards the second
and fourth registers and sends the first and third registers to A.

Q′in : |0〉

c
Qin : |m〉 a
Qout :|0〉⊗n

′

Q′out :|0〉⊗n
′

a

At the end, B returns the A’s output. The other cases are similar.

G′1
∼= G′0 :G′1
∼= G′0 :G′1
∼= G′0 : It is clear that B can simulate l′ learning queries in both cases of EM and ER type queries

by performing a c-challenge-query with input |0〉 ⊗ |0〉 to obtain Enc(0). Therefore, B can simulate the
games G′0 and G′1 when b′ = 0 and b′ = 1, respectively. At the end, B returns the A’s output. Two
games are indistinguishable because Enc is learn(0,−)-c secure. In summary, we showed that G0 and G1

are indistinguishable and therefore Enc is learn(∗, lqm)-c-secure.

Theorem 4. learn(0,−)-chall(∗, cqm, ror) =⇒ learn(∗, cqm)-chall(∗, cqm, ror), cqm ∈ {ST ,EM ,ER}.

Proof. Let Enc be some encryption scheme that is learn(0,−)-chall(∗, cqm, ror)-secure for cqm ∈ {ST ,EM ,
ER}. We will show that Enc is learn(∗, cqm)-chall(∗, cqm, ror)-secure by defining a sequence of IND-CPA
games that demonstrate that the settings with the challenge bit b = 0 and b = 1 are indistinguishable.
Let Game Gb be the IND-CPA game with chall(∗, cqm, ror)-challenge queries and learn(∗, cqm)-learning
queries when the challenge bit is b.

We define the game G′ to be the IND-CPA game with chall(∗, cqm, ror)-challenge queries with the
challenge bit b = 1 and learn(∗, l′qm)-learning queries where the learning query model l′qm is as follows:
For the query model qm = ST , after receiving the quantum registers Qin and Qout, apply a random
permutation π on register Qin, perform the query to Enc and finally apply π−1 on register Qin afterwards.
We draw the circuit below.

Qin : π
UEnc

π−1

Qout :

For the query model qm = EM , after receiving the quantum register Qin, prepare a quantum register
Qout containing |0〉⊗n

′
, apply a random permutation π on register Qin, perform the query to Enc and

finally apply π−1 on register Qin afterwards. We draw the circuit below.

Qin : π
UEnc

π−1

|0〉⊗n
′

For the query models ER, after receiving the quantum register Qin, apply a random permutation π on
register Qin, perform the query to Enc (in the ER query model). The circuit for l′qm queries in this case
is

Qin : π ÛEnc

30

Next we will show the following indistinguishability relations.

G0
∼= G′ ∼= G1

In all cases, from an adversary that distinguishes two games we construct an adversary that breaks the
learn(0,−)-chall(∗, cqm, ror) security of Enc. Let A be an adversary that distinguishes two subsequent
games in the relation above with non-negligible probability µ. We construct the adversary B that breaks
the learn(0,−)-chall(∗, cqm, ror) IND-CPA security of Enc.

G0G0G0
∼= G′G′G′: In this case, the adversary B runs A and answers to A’s learning queries by forwarding

them as the challenge queries to the challenger. B will also directly forward the challenge queries made
by A to the challenger. At the end, B returns the output of A. We show that B simulates perfectly two
games for the different type of queries separately:

1. When cqm = ST : We recall the challenge query type (ST , ror) in the circuit below.

Qin :
UEnc◦πb′

Qout :

Note that if the challenge bit b′ = 0 then B simulates the learning and challenge queries in the
game G0 and if b′ = 1 then B simulates the learning and challenge queries in the game G′. So the
advantage of B in guessing the challenge bit b′ is at least µ.

2. When cqm = EM : We recall the challenge query type (EM , ror) in the circuit below.

Qin :
UEnc◦πb′

|0〉⊗n
′

Note that if the challenge bit b′ = 0 then B simulates the learning and challenge queries in the
game G0 and if b′ = 1 then B simulates the learning and challenge queries in the game G′. So the
advantage of B in guessing the challenge bit b′ is at least µ.

3. When cqm = ER: We recall the challenge query type (ER, ror) in the circuit below.

Qin : ÛEnc◦πb′

It is clear that if the challenge bit b′ is 0 then B simulates the learning queries in the game G0 and
if the challenge bit is 1 then B simulates the learning and challenge queries in the game G′. So the
advantage of B in guessing the challenge bit b′ is at least µ.

G′G′G′ ∼= G1G1G1: We show these two games are indistinguishable for different query types:

1. When cqm = ST . In this case, the adversary B answers to A’s learning queries by forwarding
them as the challenge queries to the challenger. To answer A’s challenge queries, B applies a
random permutation π on input register Qin and sends Qin and Qout to the challenger. After
getting the response from the challenger, it applies π−1 to the input register Qin and sends them
to the adversary A. If the challenge bit b′ = 0, then the adversary B simulates learning queries
and challenge queries in the game G1. If the challenge bit b′ = 1, then the adversary B simulates
learning queries and challenge queries in the game G′.

2. When cqm = EM . The adversary B does the same as above except Qout contains |0〉⊗n.

3. When cqm = ER. In this case, the adversary B answers to A’s learning queries by forwarding them
as the challenge queries to the challenger. To answer the challenge queries, B applies a random
permutation π on input register Qin and sends it to the challenger. After getting the response from
the challenger, it forwards it to the adversary A. If the challenge bit b′ = 0, then the adversary B
simulates learning queries and challenge queries in the game G1. If the challenge bit b′ = 1, then
the adversary B simulates learning queries and challenge queries in the game G′.

Theorem 5. learn(∗,EM)-chall(∗,EM , ror) =⇒ learn(∗,EM)-chall(∗,EM , 2ct)

31

Proof. Let Enc be some encryption scheme that is learn(∗,EM)-chall(∗,EM , ror)-secure. We will show
that Enc is learn(∗,EM)-chall(∗,EM , 2ct)-secure by showing that the settings with challenge bit b = 0
and b = 1 are indistinguishable. Since the learning queries are already the same, it is sufficient to define
a sequence of games with indistinguishable challenge queries. (The learning queries are (∗,EM) in all
cases)

In the following we define c(i) challenge queries for i = 1, 2, 3, 4 :

(i) c(1): On input registers Qin0 and Qin1 and the challenge bit b does the following:

Qin0 : |m0〉
UEnc◦π

|0〉⊗n
′

Qin1: |m1〉
UEnc

|0〉⊗n
′

b •

where π is a random permutation.

(ii) c(2): On input registers Qin0 and Qin1 and the challenge bit b does the following:

Qin0 : |m0〉
UEnc◦π0

|0〉⊗n
′

Qin1: |m1〉
UEnc◦π1

|0〉⊗n
′

b •

where π0 and π1 are random permutations.

(iii) c(3): On input registers Qin0 and Qin1 and the challenge bit b does the following:

Qin0 : |m0〉 M
UEnc◦π0

|0〉⊗n
′

Qin1: |m1〉
UEnc◦π1

|0〉⊗n
′

b •

where π0 and π1 are random permutations. The measurement outcome is discarded.

(iv) c(4): On input registers Qin0 and Qin1 and the challenge bit b does the following:

Qin0 : |m0〉 M
UEnc◦π0

|0〉⊗n
′

Qin1: |m1〉 M
UEnc◦π1

|0〉⊗n
′

b •

where π0 and π1 are random permutations. The measurement outcomes are discarded.

Let c(0) = chall(∗,EM , 2ct). Let GameG(i)
b be the IND-CPA game with learn(∗,EM)-learning-queries

and c(i)-challenge-queries when the challenge bit is b, where i ∈ {0, 1, 2, 3, 4}.
We will show that the following sequence of games are indistinguishable from each other:

G
(0)
0
∼= G

(1)
0
∼= G

(2)
0
∼= G

(3)
0
∼= G

(4)
0
∼= G

(4)
1
∼= G

(3)
1
∼= G

(2)
1
∼= G

(1)
1
∼= G

(0)
1

Let assume the adversary Ai distinguishes two games G(i) and G(i+1). In the circuits depicted below,
` refers to a unitary gate implementing ` = learn(∗,EM) while c refers to a unitary gate implementing
c = chall(∗,EM , ror).
G

(0)
b
∼= G

(1)
bG

(0)
b
∼= G

(1)
bG

(0)
b
∼= G

(1)
b : Let A0 be an adversary that distinguish G(0)

b and G(1)
b . When A0 makes a learning query,

B simply passes it through. When A0 makes a challenge query for input registers Qin0, Qin1, B simulates
this by using a challenge query for the input register Qin0 and using a learning-query for Qin1. Let Qout0
denote the output of the challenge query with Qin0 and Qout1 denote the output of the learning query

32

with Qin1. Then B gives the registers Qin0, Qin1, Qoutb, Qoutb̄ to A0. We draw the circuit below in which
uses a control-swap gate depends on the value of b. At the end, B makes the same guess b′ as A0.

Qin0 : |m0〉
c

Qin0

Qin1

Qin1 : |m1〉
`

Qoutb

Qoutb̄
b •

We analyse the case when b = 0. In this case if the challenge bit b′′ = 0 then the adversary B simu-
lates (∗,EM , 2ct) challenge queries and therefore it simulates game G(0)

0G
(0)
0G
(0)
0 . When b′′ = 1 then B returns

|m0〉|m1〉|Enc(π(m0))〉|Enc(m1)〉 for a random permutation π. That is a c(1) type challenge query. In
other words, B simulates the game G(1)

0G
(1)
0G
(1)
0 . We can do the same analysis when b = 1.

G
(1)
b
∼= G

(2)
bG

(1)
b
∼= G

(2)
bG

(1)
b
∼= G

(2)
b : Let A1 be an adversary that distinguish G(1)

b and G(2)
b . When A1 makes a learning query,

B simply passes it through. When A1 makes a challenge query for input registers Qin0, Qin1, B simulates
this by picking a random permutation π0, applying to the register Qin0, sending the result as a learning
query, applying π−1

0 to Qin0 and using a challenge query for Qin1. Let Qout0 denote the output of the
learning query with Qin0 and Qout1 denote the output of the challenge query with Qin1. Then B gives
the registers Qin0, Qin1, Qoutb, Qoutb̄ to A0. We draw the circuit below in which uses a control-swap gate
depends on the value of b. At the end, B makes the same guess b′ as A0.

Qin0 : |m0〉 π0

`
π−1

0 Qin0

Qin1

Qin1 : |m1〉
c

Qoutb

Qoutb̄
b •

We analyse when b = 0. In this case if the challenge bit b′′ = 0, then the adversary B returns
(|m0〉, |m1〉, |Enc(π0(m0))〉, |Enc(m1)〉). So B simulates the game G(1)

0 . If the challenge bit b′′ = 1,
then the adversary B returns (|m0〉, |m1〉, |Enc(π0(m0))〉, |Enc(π1(m1))〉) for a random permutation π1.
That is B simulates the game G(2)

0 . We can do the same analysis when b = 1.

G
(2)
b
∼= G

(3)
bG

(2)
b
∼= G

(3)
bG

(2)
b
∼= G

(3)
b : These can be proven by direct application of Corollary 2. (with f := Encr ◦ π0 and

R := im Encr for fixed randomness r.)

G
(3)
b
∼= G

(4)
bG

(3)
b
∼= G

(4)
bG

(3)
b
∼= G

(4)
b : These can be proven by direct application of Corollary 2.

G
(4)
0
∼= G

(4)
1G

(4)
0
∼= G

(4)
1G

(4)
0
∼= G

(4)
1 : Since Enc is learn(∗,EM)-chall(∗,EM , ror) secure, it is learn(∗,EM)-chall(∗,CL, 2ct)

secure by simulating classical queries by quantum queries (Panel 5 implies Panel 11 in Figure 1). Note
that in the game G(4)

0 the outcome of a challenge query will be
(
m0,m1,Enc(π0(m0)),Enc(π1(m1))

)
and in the game G(4)

1 it will be
(
m0,m1,Enc(π1(m1)),Enc(π0(m0))

)
. If there is an adversary A that

distinguishes games G(4)
0 and G

(4)
1 , then one can construct an adversary B that breaks learn(∗,EM)-

chall(∗,CL, 2ct) security. The adversary B runs A and answers to its challenge queries as follows. Upon
receiving the quantum registers Qin0 and Qin1 from the adversary A, it measures the registers and gets
two classical values m0,m1, applies random permutations π0, π1 to m0,m1, respectively, sends the result
as a challenge query to its challenger, and finally forwards back the answer to A. It is clear that when
b = 0, the adversary A simulates the game G(4)

0 and otherwise it simulates the game G(4)
1 . In conclusion,

we have shown G0 and G1 are indistinguishable which implies Enc is learn(∗,EM)-chall(∗,EM , 2ct)
secure.

Theorem 6. learn(∗,ER)-chall(∗,ER, 1ct) =⇒ learn(∗,ER)-chall(∗,ER, 2ct)

Proof. Let Enc be some encryption scheme that is learn(∗,ER)-chall(∗,ER, 1ct)-secure. We will show
that Enc is learn(∗,ER)-chall(∗,ER, 2ct)-secure by showing that the settings with challenge bit b = 0
and b = 1 are indistinguishable. The learning queries will be learn(∗,ER) in all games.

33

Define the challenge query c′b as follows: on input registers Qin0, Qin1, discard the register Qin0,
prepares an ancillary register Anc containing |0〉⊗n

′
and use the chall(∗,ER, 1ct)-challenge-query (the

dashed box below) for the registers Qin1, Anc as follows:

Qin0 : a

Qin1 : UER,1ct Qout0

Anc : |0〉⊗n
′

UER,1ct Qout1

b •

where UER,1ct is ÛEnc(·,r0)/ÛEnc(·,r1). Define the challenge query c′′ as follows: on input registers
Qin0, Qin1, it discards Qin0, Qin1, prepares ancillary registers Anc0 and Anc1 containing |0〉⊗n

′
and

use learning queries for Anc0, Anc1. The quantum circuit for a c′′ query is shown below.

Qin0 : a
Qin1 : a

Anc0 :|0〉⊗n
′

Encl Qout0

Anc1 :|0〉⊗n
′

Encl Qout1

where Encl is ÛEnc. Let Game Gb be the IND-CPA game with chall(∗,ER, 2ct)-challenge-queries when
the challenge bit is b. Let Game G′b be the IND-CPA game with c′b-challenge queries. Let Game G′′ be
the IND-CPA game with c′′-challenge queries.

We will show that the following sequence of games are indistinguishable from each other:

G0
∼= G′1

∼= G′′ ∼= G′0
∼= G1.

To do this, we construct an adversary B that breaks learn(∗,ER)-chall(∗,ER, 1ct)-security from an
adversary A that distinguishes two consecutive games. Let b′ denotes A’s guess and b′′ denotes the
challenge bit of B’s challenger.
G0
∼= G′1 :G0
∼= G′1 :G0
∼= G′1 : When A submits the input registers Qin0, Qin1 as a challenge query, B simulates this by

using a learn(∗,ER)-learning query for Qin1 to get the second output register, prepares an ancillary
register Anc containing |0〉⊗n

′
, and making a chall(∗,ER, 1ct)-challenge-query for Qin0, Anc to get the

first output register. At the end B makes the same guess as A.

b′′ •

Qin0 : |m0〉 UER,1ct Qout0

Anc :|0〉⊗n
′

a
Qin1 : |m1〉 Encl Qout1

If the challenger bit b′′ = 0 the adversary B will receive |Enc(m0)〉 back from its challenger and sends
(|Enc(m0)〉, |Enc(m1)〉) to A. Therefore, B simulates the challenge queries in game G0 when b′′ = 0.
If the challenger bit b′′ = 1 the adversary B will receive |Enc(0)〉 back from its challenger and sends
(|Enc(0)〉, |Enc(m1)〉) to A. Note that this is an c′1 type challenge query, therefore, B simulates the
challenge queries in game G′1 when b′′ = 1.
G1
∼= G′0 :G1
∼= G′0 :G1
∼= G′0 : When A submits the input registers Qin0, Qin1 as a challenge query, B simulates this by using

a learn(∗,ER)-learning query for Qin1 to get the first output register, prepares an ancillary register Anc
containing |0〉⊗n

′
, and making a chall(∗,ER, 1ct)-challenge-query for Anc, Qin0 to get the second output

register. At the end, B returns A’s guess.

Qin1 : |m1〉 Encl Qout0

b′′ •

Anc :|0〉⊗n
′

UER,1ct Qout1
Qin0 : |m0〉 a

If the challenger bit b′′ = 0 the adversary B will receive |Enc(0)〉 back from its challenger and sends
(|Enc(m1)〉, |Enc(0)〉) to A. Note that this is an c′0 type challenge query, therefore, B simulates the

34

challenge queries in game G′0 when b′′ = 0. If the challenger bit b′′ = 1 the adversary B will receive
|Enc(m0)〉 back from its challenger and sends (|Enc(m1)〉, |Enc(m0)〉) to A. Therefore, B simulates the
challenge queries in game G1 when b′′ = 1.
G′0
∼= G′′ :G′0
∼= G′′ :G′0
∼= G′′ : When A makes a challenge query by submitting the input registers Qin0 and Qin1, B answers

this by discarding the register Qin0, preparing ancillary registers Anc0, Anc1 containing |0〉⊗n
′
, making a

chall(∗,ER, 1ct)-challenge-query for Qin1, Anc0 to get output register Qout0, and using a learning query
for Anc1 to get the output register Qout1. At the end, B makes the same guess b′ as A where b′ = 1
means A interacts in game G′′.

Qin0 : |m0〉 a
b′′ •

Qin1 : |m1〉 UER,1ct Qout0

Anc0 :|0〉⊗n
′

a

Anc1 :|0〉⊗n
′

Encl Qout1

When the challenge bit b′′ = 0, B will receive back |Enc(m1)〉 and sends (|Enc(m1)〉, |Enc(0)〉) to A.
Hence, B simulates the challenge queries in game G′0. When the challenge bit b′′ = 1 it will receive back
|Enc(0)〉 and sends (|Enc(0)〉, |Enc(0)〉) to A. Hence, B simulates the challenge queries in game G′′ in
this case.

G′1
∼= G′′ :G′1
∼= G′′ :G′1
∼= G′′ : When A makes a challenge query by submitting the input registers Qin0 and Qin1, B answers

this by discarding the register Qin0, preparing ancillary registers Anc0, Anc1 containing |0〉⊗n
′
, making

a chall(∗,ER, 1ct)-challenge-query for Anc1, Qin1 to get the output register Qout1, and using a learning
query for Anc0 to get the output register Qout0. At the end, B makes the same guess b′ as A where
b′ = 0 means A interacts in game G′′.

Qin0 : |m0〉 a

Anc0 :|0〉⊗n
′

Encl Qout0

b′′ •

Anc1 :|0〉⊗n
′

UER,1ct Qout1

Qin1 : m1 a
When the challenge bit b′′ = 0, B will receive back |Enc(0)〉 and sends (|Enc(0)〉, |Enc(0)〉) to A. Hence, B
simulates the challenge queries in game G′′. When the challenge bit b′′ = 1 it will receive back |Enc(m1)〉
and sends (|Enc(0)〉, |Enc(m1)〉) to A. Hence, B simulates the challenge queries in game G′1 in this case.

Theorem 7. The following implications hold:

• learn(∗,CL), chall(1,ER, 1ct) =⇒ learn(∗,CL)-chall(1,ER, ror).

• learn(∗,ER)-chall(∗,ER, 1ct) =⇒ learn(∗,ER)-chall(∗,ER, ror)

Proof. We prove the second implication and the first one can be proven analogously. Let Enc be an
encryption scheme that is learn(∗,ER)-chall(∗,ER, 1ct)-secure. We will show that Enc is learn(∗,ER)-
chall(∗,ER, ror)-secure by showing that the settings with challenge bit b = 0 and b = 1 are indistinguish-
able. Since the learning queries are already the same, it is sufficient to define a sequence of games with
indistinguishable challenge queries.

Define the challenge query c′ as follows: Upon receiving the input register Qin, discard it and instead
make a ER learning query for |0〉.

Qin : |m〉 a
Anc :|0〉⊗n

′

Enc(ER) Qout

Let Game Gb be the IND-CPA game with chall(∗,ER, ror)-challenge-queries and CL-learning-queries
when the challenge bit is b. Let Game G′ be the IND-CPA game with c′-challenge-queries and CL-
learning-queries.

35

Next we will show in sequence that these games are indistinguishable from one another:

G0
∼= G′ ∼= G1

To do this, we construct an adversary B that breaks learn(∗,CL)-chall(∗,ER, 1ct)-security from an ad-
versary Ab that distinguishes the game Gb from G′. Let b′′ denotes the B’s challenge bit.

G0
∼= G′ :G0
∼= G′ :G0
∼= G′ : When A0 makes a challenge query by submitting the input register Qin, B answers this by

preparing an ancillary register Anc containing |0〉⊗n
′
, and then sending the registers Qin, Anc to its

challenger and forwards back the result to A0.

b′′ •

Qin : |m〉 UER,1ct Qout

Anc :|0〉⊗n
′

a
If the challenge bit b′′ = 0 B will receive back |Enc(m)〉 and sends it to A0. Therefore, B simulates

the challenge queries in game G0. If the challenge bit b′′ = 0 B will receive back |Enc(0)〉 and sends it
to A0. Therefore, B simulates the challenge queries in game G′.

G1
∼= G′ :G1
∼= G′ :G1
∼= G′ : When A1 makes a challenge query by submitting the input register Qin, B answers this by

preparing an ancillary register Anc containing |0〉⊗n
′
, picking a qPRP π and applying it to the register

Qin, then sending the registers Anc, Qin to its challenger and forwarding back the result to A1.

b′′ •

Anc :|0〉⊗n
′

UER,1ct Qout

Qin : |m〉 π a
If the challenge bit b′′ = 0 B will receive back |Enc(0)〉 and sends it to A1. Therefore, B simulates the
challenge queries in game G′. If the challenge bit b′′ = 0, B will receive back |Enc(π(m))〉 and sends it
to A1. Therefore, B simulates the challenge queries in game G1.

Theorem 8. The following implications hold:

• learn(∗,CL)-chall(1,EM , 2ct) =⇒ learn(∗,CL)-chall(1,EM , ror)

• learn(∗,EM)-chall(∗,EM , 2ct) =⇒ learn(∗,EM)-chall(∗,EM , ror)

Proof. We prove the first implication and the second one can be proven analogously. Let Enc be an en-
cryption scheme that is learn(∗,CL)-chall(1,EM , 2ct) secure. Consider an adversary A that is successful
in attacking Enc in the sense of learn(∗,CL)-chall(1,EM , ror)-queries. Let Gb be the IND-CPA game
against learn(∗,CL)-chall(1,EM , ror)-queries when the challenge bit is b. By Corollary 2, if we measure
the input register in the game G1 this can not be detected by the adversary A. (Note that each query
uses a different random permutation π and uses it only once.) We define G′1 to be similar to the game
G1 except with a measurement in the computational basis on the input register submitted as a challenge
query. The games G1 and G′1 are indistinguishable by Corollary 2. We define G′′1 to be similar to the
game G′1 except for each challenge query the input register will be initiated with a random classical value.
It is clear that G′′1 and G′1 are indistinguishable. Since G1 and G′′1 are indistinguishable, A can distinguish
the games G′′1 and G0. We define an adversary B against learn(∗,CL)-chall(1,EM , 2ct), which uses A
as follows: when A makes a chall(1,EM , ror)-challenge-query by submitting the input register Qin, B
prepares an ancillary register Anc containing a random classical value and sends Qin, Anc as a challenge
query to its challenger. Upon receiving the response from the challenger, it discards the second and the
fourth register and forwards the first and the third register to A. At the end, B returns A’s guess.

Qin :

UEM ,2ct
Anc : a
|0〉⊗n

′

|0〉⊗n
′

a
Let b′ be the B’s challenger bit. If b′ = 0, B simulates the response in the game G0 but if b′ = 1, B
simulates the response in the game G′′1 . Therefore B can breaks the security of Enc against learn(∗,CL)
-chall(1,EM , 2ct).

36

Theorem 9. learn(∗,ER)-chall(∗,ER, 1ct) =⇒ learn(∗,ST)-chall(∗,CL, 2ct). This shows that P1 =⇒
P6.

Proof. This has been proven in [GHS16] using multiple implications. Refer to Figure 2 in [GHS16] such
that “gqIND-qCPA” in the figure is learn(∗,ER)-chall(∗,ER, 1ct) in our notation and “ ‘IND-qCPA” in
the figure is learn(∗,ST)-chall(∗,CL, 2ct) in our notation.

7 Separations
In this section all possible implications between different notions of IND-CPA security that are not shown
in Figure 1 or do not follow from it by transitivity are disproven here, apart from the nonimplications
stated in Conjecture 1, which we leave as a conjucture. First we give an overview of results in this
section.

7.1 Overview of results
In the following, we use two rules to show non-implications:

• if A 6=⇒ B and C =⇒ B then we can deduce A 6=⇒ C.

• if A 6=⇒ B and A =⇒ C then we can conclude C 6=⇒ B.

Panel 1: From the Figure 1, we can conclude that P1 =⇒ P3, P4, P5, P6, P7, P8, P9, P10, P11, P13, P14.
So it is only left to show the relation between P1 and P2, P12. From Theorem 17 P1 6=⇒ P12 and as
a corollary P1 6=⇒ P2 because P2 =⇒ P12. Therefore

P1 6=⇒ P2, P12.

This finishes all of implication and non-implications from P1.

Panel 2: From the Figure 1, we can conclude that P2 implies P5, P6, P7, P11, P12, P13, P14. We show
in Corollary 3, P2 6=⇒ P8 and since P1, P3 =⇒ P8 then P2 6=⇒ P1, P3. In Theorem 14 we show
P2 6=⇒ P10 and since P4 =⇒ P10 then P2 6=⇒ P4. From Conjecture 1, P2 6=⇒ P9. Therefore,

P2 6=⇒ P1, P3, P4, P8, P9, P10

This finishes all of implication and non-implications from P2

Panel 3: From the Figure 1, we can conclude that P3 =⇒ P7, P8, P9, P13, P14. Since P1 =⇒ P3
and P1 6=⇒ P2, P12, we can deduce P3 6=⇒ P2, P12. From Conjecture 1 P3 6=⇒ P11 and since
P1, P4, P5, P6, P10 =⇒ P11, we can deduce P3 6=⇒ P1, P4, P5, P6, P10 Therefore,

P3 6=⇒ P1, P2, P4, P5, P6, P10, P11, P12.

This finishes all of implication and non-implications from P3.

Panel 4: From the Figure 1, we can conclude that P4 =⇒ P5, P7, P9, P10, P11, P13, P14. From
Corollary 3, P4 6=⇒ P8 and since P1, P3 =⇒ P8 then P4 6=⇒ P1, P3. Since P1 6=⇒ P2, P12 and
P1 =⇒ P4 then we can deduce P4 6=⇒ P2, P12. From Conjecture 1, P4 6=⇒ P6. Therefore,

P4 6=⇒ P1, P3, P2, P6, P8, P12.

Panel 5: From the Figure 1, we can conclude that P5 =⇒ P7, P11, P13, P14. Since P1 =⇒ P5 and
P1 6=⇒ P2, P12, then P5 6=⇒ P2, P12. Since P2 =⇒ P5 and P2 6=⇒ P1, P3, P4, P8, P9, P10, we
can deduce P5 6=⇒ P1, P3, P4, P8, P9, P10 (note that P5 6=⇒ P9 is based on conjecture P2 6=⇒ P9).
Since P4 =⇒ P5 and P4 6=⇒ P6 (from Conjecture 1) then P5 6=⇒ P6 (Note that this non-implication
is based on a conjecture). Therefore,

P5 6=⇒ P1, P2, P3, P4, P6, P8, P9, P10, P12.

37

Panel 6: From the Figure 1, P6 =⇒ P11, P14. Since P2 =⇒ P6 and P2 6=⇒ P1, P3, P4, P8, P10, P12,
then we can conclude that P6 6=⇒ P1, P3, P4, P8, P10, P12. We show in Theorem 15 that P6 6=⇒ P7
and since P2, P5 =⇒ P7 then we can deduce P6 6=⇒ P2, P5. From Theorem 16, P6 6=⇒ P13 and
since P9 =⇒ P13, then P6 6=⇒ P9. Therefore

P6 6=⇒ P1, P2, P3, P4, P5, P7, P8, P9, P10, P12, P13.

We cover all implication and non-implications from P6.

Panel 7: From the Figure 1, P7 =⇒ P13, P14. Since P1 6=⇒ P2, P12 and P1 =⇒ P7,
then P7 6=⇒ P2, P12. Since P2 6=⇒ P1, P3, P4, P8, P9, P10 and P2 =⇒ P7, then P7 6=⇒
P1, P3, P4, P8, P9, P10 (note that P7 6=⇒ P9 is based on conjecture P2 6=⇒ P9). Since P3 6=⇒
P5, P6, P11 and P3 =⇒ P7, then P7 6=⇒ P5, P6, P12. (Note that these non-implications are based
on conjectures P3 6=⇒ P11.) Therefore,

P7 6=⇒ P1, P2, P3, P4, P5, P6, P8, P9, P10, P11, P12.

This covers all the cases.

Panel 8: From the Figure 1, P8 =⇒ P9, P13, P14. Since P1 6=⇒ P2, P12 and P1 =⇒ P8,
then P8 6=⇒ P2, P12. From Conjecture 1, P8 6=⇒ P7 and since P1, P3, P4, P5 =⇒ P7 then
P8 6=⇒ P1, P3, P4, P5. Since P3 6=⇒ P6, P10, P11 and P3 =⇒ P8, then P8 6=⇒ P6, P10, P11.
(Note that these non-implications are based on conjecture P3 6=⇒ P11.) Therefore,

P8 6=⇒ P1, P2, P3, P4, P5, P6, P7, P10, P11, P12.

This covers all the cases.

Panel 9: From the Figure 1, P9 =⇒ P13, P14. Since P4 6=⇒ P1, P2, P3, P8, P12 and P4 =⇒ P9,
then P9 6=⇒ P1, P2, P3, P8, P12. Since P3 6=⇒ P4, P5, P6, P10, P11 and P3 =⇒ P9, then P9 6=⇒
P4, P5, P6, P10, P11. (Note that these non-implications are based on conjectures P3 6=⇒ P11.) Since
P8 6=⇒ P7 from Conjecture 1 and P8 =⇒ P9 then P9 6=⇒ P7. Therefore,

P9 6=⇒ P1, P2, P3, P4, P5, P6, P7, P8, P10, P11, P12

Panel 10: From the Figure 1, P10 =⇒ P11, P14. Since P4 6=⇒ P1, P2, P3, P12 and P4 =⇒ P10
then P10 6=⇒ P1, P2, P3, P12. We show in Theorem 15 P10 6=⇒ P7 and since P4, P5 =⇒ P7 then
P10 6=⇒ P4, P5. From Theorem 13, P10 6=⇒ P13 and since P8, P9 =⇒ P13 then P10 6=⇒ P8, P9.
From Conjecture 1, P4 6=⇒ P6 and since P4 =⇒ P10 P10 6=⇒ P6. Therefore,

P10 6=⇒ P1, P2, P3, P4, P5, P6, P7, P8, P9, P12, P13.

Panel 11: From the Figure 1, P11 =⇒ P14. Since P6 6=⇒ P1, P2, P3, P4, P5, P7, P8, P9, P10, P12, P13
and P6 =⇒ P11 then P11 6=⇒ P1, P2, P3, P4, P5, P7, P8, P9, P10, P12, P13. From Conjecture 1
P4 6=⇒ P6 and since P4 =⇒ P11, then P11 6=⇒ P6. Therefore,

P11 6=⇒ P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P12, P13.

This covers all the cases.

Panel 12: From the Figure 1, P12 =⇒ P13, P14. Since P2 6=⇒ P1, P3, P4, P8, P9, P10 and
P2 =⇒ P12 then P12 6=⇒ P1, P3, P4, P8, P9, P10 (note that P12 6=⇒ P9 is based on conjecture
P2 6=⇒ P9). From Conjecture 1, P12 6=⇒ P7 and since P2, P5 =⇒ P7 then P12 6=⇒ P2, P5.
From Conjecture 1, P12 6=⇒ P11 and since P6 =⇒ P11 then P12 6=⇒ P6. Therefore,

P12 6=⇒ P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12

38

Panel 13: From the Figure 1, P13 =⇒ P14. Since P1 6=⇒ P2, P12 and P1 =⇒ P13,
then P13 6=⇒ P2, P12. Since P2 6=⇒ P1, P3, P4, P8, P9, P10 and P2 =⇒ P13, then P13 6=⇒
P1, P3, P4, P8, P9, P10 (note that P13 6=⇒ P9 is based on conjecture P2 6=⇒ P9.) Since P3 6=⇒
P5, P6, P11 and P3 =⇒ P13, then P13 6=⇒ P5, P6, P11. (Note that these non-implications are
based on conjectures P3 6=⇒ P11.) Since P8 6=⇒ P7 from Conjecture 1 and P8 =⇒ P13 then
P13 6=⇒ P7. Therefore,

P13 6=⇒ P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12.

Panel 14: Since P6 6=⇒ P1, P2, P3, P4, P5, P7, P8, P9, P10, P12, P13 and P6 =⇒ P14 then
P14 6=⇒ P1, P2, P3, P4, P5, P7, P8, P9, P10, P12, P13. Form Theorem 12, P14 6=⇒ P11 and since
P6 =⇒ P11, then P14 6=⇒ P6. Since P14 6=⇒ P13 and P7 =⇒ P13 then P14 6=⇒ P7. Therefore,

P14 6=⇒ P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13

7.2 Separations by Quasi-Length-Preserving Encryptions
The notion of a core function and quasi-length-preserving encryption schemes was first formally intro-
duced in [GHS16]. Intuitively, the definition splits the ciphertext into a message-independent part and
a message-dependent part that has the same length as the plaintext. We define a variant of a quasi-
length-preserving encryption scheme below.

Definition 6 (Core function). A function g : {0, 1}h ×{0, 1}t ×{0, 1}n is called the core function of an
encryption scheme (KGen,Enc,Dec) if

1. for all k ∈ {0, 1}h,m ∈ {0, 1}n, r ∈ {0, 1}t,

Enck(m; r) = f(k, r)||g(k,m, r)

where f is an arbitrary function independent of the message.

2. there exists a function f ′ such that for all k ∈ {0, 1}h,m ∈ {0, 1}n, r ∈ {0, 1}t we have f ′(k,
f(k, r), g(k,m, r)) = m.

Definition 7 (Quasi-Length-Preserving). An encryption scheme with core function g is said to be quasi-
length-preserving if for all k ∈ {0, 1}h,m ∈ {0, 1}n, r ∈ {0, 1}t,

|g(k,m, r)| = |m|,

that is, the output of the core function has the same length as the message.

In the theorem below we show that any quasi-length-preserving encryption scheme is insecure for the
query model in Panel 8. And as a corollary any quasi-length-preserving encryption scheme is insecure
for any query models in Panel 1 and Panel 3 because they imply Panel 8 Figure 1. (This corollary can
be derived directly from the proof of the theorem below since the attack does not use learning queries.)

Theorem 10. Any quasi-length-preserving encryption scheme is insecure for the query model learn(∗,CL)
-chall(1,ER, 1ct). This shows that any quasi-length-preserving encryption scheme is insecure for the
query model in Panel 8.

Proof. Suppose the function Enc is quasi-length-preserving, i.e., we can write

Enck(m; r) = f(k, r)||g(k,m, r)

for some functions f and g such that
|g(k,m, r)| = |m|.

Since the encryption function is decryptable and quasi-length-preserving then g is essentially a permu-
tation for fixed k, r. Now in the challenge query, the adversary prepares two input registers Qin0, Qin1

containing the uniform superposition of all messages and |0〉⊗n, respectively. After getting the outcome,
the adversary performs the projective measurementM|+〉 on the output register to determine whether

39

it is in the state |+〉⊗n or not. We draw the circuit below. For simplicity, we omit the classical values of
f(k, r) from the circuits.

Qin0 : |+〉⊗n gk,r M|+〉

Qin1 : |0〉⊗n |
b •

When b = 0 the measurementM|+〉 succeeds with probability 1, but when b = 1, this happens only with
negligible probability.

In the theorem below we choose two query models from Panel 2 and Panel 4 and we propose a quasi-
length-preserving encryption function that is secure in those two security notions. Then we can conclude
that there is a quasi-length-preserving encryption function that is secure for any query models in Panel 2
and Panel 4 because query models inside of panels are equivalent. (This can be concluded directly from
the proof of the theorem below as well.)

Theorem 11. If there exists a quantum secure one-way function then for query models

learn(∗, qqm)-chall(1, qqm, ror) when qqm ∈ {ST ,ER}

there is a quasi-length-preserving encryption function that is secure. This shows that there is a quasi-
length-preserving encryption function that is secure for any query models in Panels 2,4

Proof. Let
Enck(m; r) = sPRFk(r)||qPRPr(m)

where qPRP is a strong quantum-secure pseudo-random permutation [Zha16] and sPRF is a standard-
secure pseudo-random function [Zha12]. Because fresh randomness is used in each learning and challenge
query and sPRFk is indistinguishable from a truly random function, we can replace sPRPk(r) with a ran-
dom value in each (learning and challenge) query. This makes the second part of ciphertext independent
of the first part in each query. Therefore in each query we have that qPRPr is indistinguishable from
a fresh truly random permutation σ. Therefore, with ror-type challenge queries, the adversary cannot
distinguish an encryption of m from an encryption of π(m) for a truly random permutation π because σ
and σ ◦ π are indistinguishable.

Corollary 3. The security notions mentioned in Theorem 11 do not imply the security notions mentioned
in Theorem 10. Specifically, P2, P4 6=⇒ P8.

7.3 Separations by Simon’s Algorithm
Roughly speaking, in this section we construct a couple of separating examples making use of the fact
that Simon’s algorithm (see [Sim97]) can only be executed by an quantum adversary with superposition
access to the black box function, but not by a quantum adversary with classical access to the black box
function.

The idea is to define a function Fs,σ (s being a random bitstring) that is supposed to leak some
bitstring σ to an adversary with superposition access to Fs,σ but not to an adversary who has only
classical access to Fs,σ. Namely the adversary with superposition access uses Simon’s algorithm to
retrieve σ. Roughly speaking Fs,σ is composed of many small block functions fs,σ,i, i = 1, . . . , n̂ and
each of them leaking about one bit. It is proven in [Sim97] that n̂ = O(|σ|) suffice to recover σ (see
later).

The function Fs,σ is first defined and then it is used several times in this subsection as a building
block to construct separating examples for diverse IND-CPA-notions.

Definition 8. Let s = s1|| . . . ||sn̂||r1|| . . . ||rn̂ be a random bitstring. Let Psi be a quantum secure
pseudorandom permutation3 (qPRP) with the seed si and input/output length of n/2. Let

gs,σ,i(y) = Psi(y)⊕ Psi(y ⊕ σ) and fs,σ,i(y) = gs,σ,i(y)||(y ⊕ ri).

Note that when ignoring second part of fs,σ,i it is σ-periodic. The second part makes fs,σ,i injective.
Note that the inverse of fs,σ,i is easy to compute. Let

Fs,σ(x) = fs,σ,1(x1)|| . . . ||fs,σ,n̂(xn̂)

where xi is i-th block of x. Note that Fs,σ will be decryptable using s since each of fs,σ,i is decryptaable.
3Quantum secure pseudorandom permutation can be constructed from a quantum secure one-way function [Zha16].

40

Lemma 6. On the assumption of existing a quantum secure one-way function and for a random secret
s and known σ 6= 0, Fs,σ is classically one-query-indistinguishable from a truly random function.

Proof. We show that for every i and y, fs,σ,i(y) is indistinguishable from a random bitstring. Since
y⊕ ri is indistinguishable from a random bitstring (for random ri), it is left to show gs,σ,i(y) = Psi(y)⊕
Psi(y⊕σ) is indistinguishable from a random bitstring. The result follows because Psi is a pseudorandom
permutation.

Lemma 7. An adversary having one-query-EM -type quantum access to Fs,σ can guess σ with high
probability. (The reason we are looking at the embedding query model is because it is the weakest, the
same statements for the standard and the erasing query model follow automatically.)

Proof. The attack is a variation of Simon’s attack [Sim97]. Remember that Fs,σ consists of n̂-many
block function fs,σ,i. In the analysis below, we shorten fs,σ,i to fi and gs,σ,i to gi. In the attack the
same operation is done with each of the fi. Namely the attack on one of the fi happens according to
the following quantum circuit:

|+〉⊗n

Ufi

• H M

|0〉 M

|0〉

The evolution of the quantum state right after CNOT gate is

2−
n
2

∑
m

|m, 0, 0〉 7→ 2−
n
2

∑
m

|m, gi(m),m⊕ ri〉 7→ 2−
n
2

∑
m

|m, gi(m), ri〉

The last register contains a classical value and therefore it does not interfere the analysis of Simon’s
algorithm for the function gi. So the measurement returns a random m such that m · σ = 0.

Hence it yields a linear equation about σ. As this happens for every block, the adversary gets n̂ linear
equations about σ, so by the choice of n̂ (i.e. n̂ = 2|σ|) the adversary is able to retrieve σ with high
probability.

Theorem 12. If there exists a quantum secure one-way function then learn(∗,CL)-chall(∗,CL, 1ct) 6=⇒
learn(∗,EM)-chall(1,CL, 1ct). This shows that Panel 14 6=⇒ Panel 11.

Proof. Consider

Enck,k′(m,m
′; r||r′) = Fr,k(m)||PRFk′(r)||(PRFk(r′)⊕m′)||r′,

where PRFk and PRFk′ are standard secure pseudorandom functions with the key k, k′ respectively.
Enck,k′ is decryptable because using the secret key k and the last part of ciphertext (r′) we can obtain
m′ and using the secret key k′ we can obtain the randomness r and then decrypt Fr,k. We prove
Enc is learn(∗,CL)-chall(∗,CL, 1ct)-secure. In every query, since r is fresh randomness and PRFk′ is a
pseudorandom function, we can replace PRFk′(r) with a random bitstring. Now we can use Lemma 6
to replace Fr,k(m) with a random bitstring. Finally, since r′ is a fresh randomness in each query and
PRFk is a pseudorandom function we can replace PRFk(r′)⊕m′ with a random bitstring. Therefore, in
each query the encryption scheme just returns a random looking bitstring, which obviously hides b. This
proves the learn(∗,CL)-chall(∗,CL, 1ct)-security. We show the learn(∗,EM)-chall(1,CL, 1ct)-insecurity.
In the attack, the adversary uses one learning query to retrieve k, according to Lemma 7 and then the
challenge query can be trivially distinguished by decrypting the third part of the challenge ciphertext
(adversary knows k, r′ and can decrypt PRFk(r′)⊕m′.)

Theorem 13. If there exists a quantum secure one-way function then the following nonimplication holds:

learn(∗,ER)-chall(∗,CL, 1ct) 6=⇒ learn(∗,CL)-chall(1,EM , ror).

This means that P10 6=⇒ P13.

41

Proof. The idea of the proof is like in the last theorem to open up a backdoor that only a quantum
adversary can use. We define Enc as follows.

Enck(z||x; l||s) = sPRPk(l||s)||qPRPl(z)||Fs,l(x)

where Fs,l is defined in Definition 8. Enck is decryptable since we can obtain l, s from sPRPk(l||s) and
then decrypt qPRPl(z) using l and decrypt Fs,l(x) using s, l. Now we show that Enc is insecure in
the learn(∗,CL)-chall(∗,EM , ror)-sense. The attack works as follows: A chooses z = 0n and puts in
the register for x a superposition of the form |+〉⊗n. Then A passes the result as a challenge query to
the challenger. Upon receiving the answer from the challenger, A performs the algorithm presented in
Lemma 7 to the last part of the ciphertext to recover l. Let l̂ be the output of the algorithm presented
in Lemma 7. Then A uses l̂ to decrypt the classical part of the challenge ciphertext, qPRPl(z). Let ĉ
be the output of the decryption using l̂. If ĉ = 0n A returns 0, otherwise it returns 1. We analyse how
A can distinguish the two cases when the challenge bit is b = 0 and b = 1. When the challenge bit is
b = 0, the algorithm in Lemma 7 will recover l with high probability and therefore A returns 0 with
high probability. When the challenge bit is b = 1 then A will get back Enck(·; r) ◦π applied to the input
register. In this case, by Corollary 2 a measurement on the input register remains indistinguishable for
A (with R := range Enck(·; r) in Corollary 2). So we can assume the input register collapses to the
classical message. Therefore A will recover l with negligible probability.

We show that Enc is secure in the learn(∗,ER)-chall(∗,CL, 1ct)-sense. Let Gb be the learn(∗,ER)
-chall(∗,CL, 1ct)-IND-CPA game when the challenge bit is b. We show that G0 and G1 are indistin-
guishable. We define the game G′ in which the challenge query will be answered with a random string
and learning queries are answered with ER. We show that Gb is indistinguishable from G′. We can
replace sPRPk(l||s) with a random element in the challenge query. Since s is a fresh randomness in the
challenge query by Lemma 6 Fs,l(xb) is indistinguishable from a random element. Finally, we can replace
qPRPl(zb) with a random element. Therefore, games Gb and G′ are indistinguishable.

7.4 Separations by Shi’s SetEquality problem
Definition 9 (SetEquality problem). The general SetEquality problem can be described as follows. Given
oracle access to two injective functions

f, g : {0, 1}m → {0, 1}n

and the promise that
im f = im g ∨ (im f ∩ im g) = ∅)

decide which of the two holds. (Here the notation im f means {f(x) : x ∈ {0, 1}m})

Here we will be consider the average-case problem, which involves random injective functions f and
g. For SetEquality, the average-case and worst-case problem are equivalent: if we have an average-case
distinguisher D then we can construct a worst-case-distinguisher by applying random permutations on
the inputs and outputs of queries to f and g, which simulates an oracle for D.

The SetEquality problem was first posed by Shi [Shi02] in the context of quantum query complexity.
In [Zha15] it is proven that with ST -type-oracle access this problem is hard in m. However, a trivial
implication of the swap-test shows that with ER-type oracle access it has constant complexity.

Lemma 8. The SetEquality problem is indistinguishable under polynomial ST -type queries.

Proof. This follows from Theorem 4 in [Zha15], which shows that Ω
(
2m/3

)
ST -type queries are required

to distinguish the two cases.

Lemma 9. The SetEquality problem is distinguishable under one ER-type query. That is, an adversary
can, by only accessing f once and g once, decide whether they have equal or disjoint ranges with non-
negligible probability.

Proof. The attack works by a so-called swap-test, shown in the following circuit where the unitary
control-Swap is defined as cSwap : |b,m0,m1〉 → |b,mb⊕0,mb⊕1〉.

|+〉 • H M

|+〉⊗m Ûf
Swap

|+〉⊗m Ûg

42

Let |Φ〉 = 2−m/2
∑
x |x〉 and |φM〉 =

∑
x |M(x)〉,M∈ {f, g}, where the sums are over all x ∈ {0, 1}m.

Then, up to normalization, the quantum circuit above implements the following:

|+〉|Φ〉|Φ〉 I⊗Û
f⊗Ûg

7−→ |+〉|φf 〉|φg〉
cSwap7→ |0〉|φf 〉|φg〉+ |1〉|φg〉|φf 〉
H⊗I7→ |0〉 (|φf 〉|φg〉+ |φg〉|φf 〉) + |1〉 (|φf 〉|φg〉 − |φg〉|φf 〉)

If the ranges of f and g are equal, then a measurement of the top qubit in the computational basis is
guaranteed to yield 0. If the ranges are disjoint, then the measurement yields 0 or 1 with probability
1
2 .

In order to apply the SetEquality problem to encryption schemes, we define constructions for f and
g that use a random seed s.

Definition 10. Let σs1 , σ′s2 : {0, 1}m → {0, 1}m be qPRPs with seed s1, s2. Let Js3 , Js4 be a pseudo-
random sparse injection built from a qPRP, i.e., for some qPRP J̃s3 , J̃s4 : {0, 1}n → {0, 1}n, and any
x ∈ {0, 1}m with n > m, define Js3(x) := J̃s3(x||0n−m) and Js4(x) := J̃s4(x||0n−m). We can then define
F0,s1,s2,s3 , G0,s1,s2,s3 : {0, 1}m → {0, 1}n to be a pair of pseudorandom sparse injections with equal range:

F0,s1,s2 := Js3 ◦ σs1 , G0,s1,s2 := Js4 ◦ σ′s2 .

Let τs5 , τs6 : {0, 1}n → {0, 1}n be a qPRP with seed s5, s6. Let K̃s7 , K̃
′
s8 : {0, 1}m → {0, 1}n−1 be a

pair of pseudorandom sparse injections, and define Ks7 := 0||K̃s7 ,K
′
s8 := 1||K̃ ′s8 . We can then define

F1,s′ , G1,s′ : {0, 1}m → {0, 1}n (where s′ = (s1, s2, s5, s6, s7, s8)) to be a pair of pseudorandom sparse
injections with disjoint ranges:

F1,s1,s4,s5 := τs5 ◦Ks7 ◦ σs1 , G1,s1,s4,s5 := τs6 ◦K ′s8 ◦ σ
′
s2 .

Let s = (s1, s2, s3, s4, s5, s6, s7, s8). Note that Fb,s and Gb,s are decryptable using b, s.

Theorem 14. If there exists a quantum secure one-way function then learn(∗,ST)-chall(1,ST , ror) 6=⇒
learn(∗,ER)-chall(1,CL, 1ct) in the quantum random oracle model. This shows that Panel 2 6=⇒ Panel
10.

Proof. Let H : {0, 1}h → {0, 1}|s| be a random oracle. Let sPRP be a standard secure pseudo random
permutation with seed of length |s|. Let γk(m1||m2; r, j) := Fkj ,H(r)(m1)||Gkj ,H(r)(m2) where kj is j-th
bit of k. Consider the encryption function

Enck(m1||m2; r, r̃, j) := γk(qPRPr(m1||m2); r, j)||sPRPH(k)(r)||j, (1)

where qPRPr is a quantum secure pseudo random permutation with seed r. The encryption scheme
above is decryptable as follows. First one can decrypt sPRPH(k) using the random oracle H and the
secret key k and then decrypt the other part of the ciphertext using j, r, the secret key k and the random
oracle H. We show that the above encryption scheme is learn(∗,ST)-chall(1,ST , ror) secure. Let A
be an adversary that attacks in the sense of learn(∗,ST)-chall(1,ST , ror) IND-CPA. In the following,
we abuse the notation and use π(qPRPr(m1))1, π(qPRPr(m2))2 to indicate the first m bits and the
second m bits of π(qPRPr(m1||m2)), respectively. The challenge query submitted by the adversary
is two registers Qin and Qout that may contain superposition of many |m1,m2〉Qin

|y〉Qout
basis states

(QinQout :
∑
m1,m2,y

αm1,m2,y|m1,m2〉|y〉). For simplicity, we only show one of the computational basis
states in the presentation of the games and with linearity of UEnc it will be similar for the rest.

Game 0 : learn(∗,ST)-chall(∗,ST , ror) IND-CPA
k

$← {0, 1}h, b $← {0, 1}, π $← ({0, 1}2m+1 → {0, 1}2m+1), r
$← {0, 1}t, j $← {1, · · · , n},

|m1,m2〉|y〉 ← AH,Enc(),
c := |m1,m2〉

∣∣y ⊕ (Fkj ,H(r)(π
b(qPRPr(m1))1), Gkj ,H(r)(π

b(qPRPr(m2))2, sPRPH(k)(r), j))
〉

b′ ← AH,Enc(c),
return [b = b′] .

Let {r, r2, · · · , rq} is the set of all randomness used in the learning queries and the challenge query in γ
part of encryption. In the following game we replace H(k), H(r), H(r2) · · · , H(rq) with random values

43

in the learning queries and challenge queries. We call this Game 1 and in the presentation below we only
show the replacement in the challenge query. The same replacement will occur in all learning queries.

Game 1 :

k
$← {0, 1}h, b $← {0, 1}, π $← ({0, 1}2m+1 → {0, 1}2m+1), r

$← {0, 1}t, j $← {1, · · · , n}, r∗, k∗ $← {0, 1}|s|
|m1,m2〉|y〉 ← AH,Enc(),
c := |m1,m2〉

∣∣y ⊕ (Fkj ,r∗(π
b(qPRPr(m1))1), Gkj ,r∗(π

b(qPRPr(m2))2, sPRPk∗(r), j))
〉

b′ ← AH,Enc(c),
return [b = b′] .

In order to show that Game 0 and Game 1 are indistinguishable, we use Theorem 3 in [AHU18]. Let
q be the total number of queries to the random oracle H. By Theorem 3 in [AHU18], there exists a
polynomial time adversary B that returns the output x such that

|Pr[1← Game 0]− Pr[1← Game 1]| ≤
√
qPr[x ∈ {r, r2, · · · , rq, k} : Game 2]

where Game 2 is defined as below (with randomness r∗, r∗2 , · · · , r∗q and random key k∗):

Game 2 :

k
$← {0, 1}h, b $← {0, 1}, π $← ({0, 1}2m+1 → {0, 1}2m+1), r

$← {0, 1}t, j $← {1, · · · , n}, r∗, k∗ $← {0, 1}|s|
|m1,m2〉|y〉 ← AH,Enc(),
c := |m1,m2〉

∣∣y ⊕ (Fkj ,r∗(π
b(qPRPr(m1))1), Gkj ,r∗(π

b(qPRPr(m2))2, sPRPk∗(r), j))
〉

b′ ← AH,Enc(c),
x← BH,Enc(c).

Let F ∗0 and G∗0 be random injection functions with equal ranges. Let F ∗1 and G∗1 be random injection
functions with disjoint ranges. Note that since r∗ is a fresh randomness by construction of Fkj ,r∗
and Gkj ,r∗ in Definition 10 they are indistinguishable from F ∗0 and G∗0 when kj = 0 and they are
indistinguishable from F ∗1 and G∗1 when kj = 1. Next, we replace Fkjr∗ and Gkjr∗ with F ∗1 and G∗1
respectively in the challenge query in Game 2. Note that the same argument holds for the learning
queries and we replace all Fkj ,r∗i and Gkj ,r∗i with independent random injective functions F (i)

1 and G(i)
1

with disjoint ranges. Let call the modified game Game 2a. Note that two games are indistinguishable
because the set-equality problem is hard for ST-type queries by Lemma 8.

Game 2a :

k
$← {0, 1}h, b $← {0, 1}, π $← ({0, 1}2m+1 → {0, 1}2m+1), r

$← {0, 1}t, j $← {1, · · · , n}, r∗, k∗ $← {0, 1}|s|
|m1,m2〉|y〉 ← AH,Enc(),
c := |m1,m2〉

∣∣y ⊕ (F ∗1 (πb(qPRPr(m1))1), G∗1(πb(qPRPr(m2))2, sPRPk∗(r), j))
〉

b′ ← AH,Enc(c),
x← BH,Enc(c).

Since in each query a fresh randomness will be encrypted by sPRPk∗ , we can replace sPRPk∗(randomness)
with random values in Game 2b. Next, in Game 2c we can replace qPRP with a independent random
permutation in each query because the seed of qPRP is chosen independently at random in each query
and it is not used elsewhere in Game 2b. It is clear that the success probability of Game 2c is (q+ 1)/2h

because k, r, r2, · · · , rq has not been used in Game 2c. Now we show that the success probability in
Game 1 is 1/2 + neg. We can do similar modification presented above to define Game 1a. So in each
query, two random injective functions with disjoint ranges will be used. Next we define Game 1b in
which we replace sPRPk∗(r) with a random value α∗ in the challenge query. This can be done since r
is a fresh randomness and sPRP is a standard secure pseudo random permutation. Finally, we replace
qPRPr with a random permutation π′ in the challenge query in Game 1c. This can be done because r
is a fresh randomness that has been used only as seed of qRPR in Game 1b.

Game 1c :

k
$← {0, 1}h, b $← {0, 1}, π $← ({0, 1}2m+1 → {0, 1}2m+1), r

$← {0, 1}t, j $← {1, · · · , n}, r∗, k∗ $← {0, 1}|s|
|m1,m2〉|y〉 ← AH,Enc(),
c := |m1,m2〉

∣∣y ⊕ (F ∗1 (πb(π′(m1))1), G∗1(πb(π′(m2))2, α
∗)
〉

b′ ← AH,Enc(c),
return [b = b′] .

44

It is clear that the success probability of Game 1c is 1/2 + neg. Overall, we showed that the success
probability of Game 1 is 1/2 + neg and this finishes the security proof.

Now we show that Enc can be broken in learn(∗,ER)-chall(1,CL, 1ct). Let A′Enc denote the adversary
that plays the learn(∗,ER)-chall(1,CL, 1ct)-IND-CPA game. By Lemma 9, it is possible for A′Enc to
perform a learn(∗,ER)-learning-query for m ← |+〉⊗m|+〉⊗m and conduct a swap-test to determine kj
with high probability for a random j (Note that j is the last part of ciphertext and is known to the
adversary). The procedure is repeated polynomially many times until A′Enc has enough information
about the key k to guess it with sufficiently high probability. Finally, A′Enc can choose any two classical
messages m0,m1 for challenge query, and use the private key k to decrypt the result and determine the
challenge bit b.

7.5 Separations by other arguments
Theorem 15. On the existence of a quantum secure one-way function, the following separation holds:

1. learn(∗,ST)-chall(∗,CL, 1ct), learn(∗,ER)-chall(∗,CL, 1ct) 6=⇒ learn(∗,CL)-chall(1,EM , 2ct)
P6, P10 6=⇒ P7

Proof. Consider
Enck(m; r) = r||PRPk(r)⊕m for m, r ∈ {0, 1}n

where PRP is a standard secure pseudorandom permutation. The security in learn(∗,ST)-chall(∗,CL, 1ct)
and learn(∗,ER)-chall(∗,CL, 1ct) senses follows by Lemma 3 in [ATTU16]. We show the insecurity using
a challenge query of type chall(1,EM , 2ct). The attack is described by the following quantum circuit.
For simplicity, we omit the wires corresponding to the r-parts of two ciphertexts.

|+〉

UEM,2ct,r0||r1,b

• H M

|0〉
|0〉
|0〉

When b = 0, the measurement returns 0 with probability 1 and it outputs 0 only with negligible proba-
bility when b = 1.

Theorem 16. On the existence of a quantum secure one-way function, learn(∗,ST)-chall(∗,CL, 1ct) 6=⇒
learn(∗,CL)-chall(1,EM , 1ct). This shows that P6 6=⇒ P13.

Proof. Consider
Enck(m; r) = r||PRPk(r)⊕m for m, r ∈ {0, 1}n

where PRP is a standard secure pseudorandom permutation. The security in learn(∗,ST)-chall(∗,CL, 1ct)
and learn(∗,ER)-chall(∗,CL, 1ct) senses follows by Lemma 3 in [ATTU16]. The insecurity follows from
Lemma 10 in [CEV20].

Theorem 17. On the existence of quantum secure one-way function, learn(∗,ER)-chall(1,ER, 1ct) 6=⇒
learn(∗,CL)-chall(1,ST , ror). This shows that P1 6=⇒ P12.

Proof. Let qPRP and qPRP ′ be two quantum secure pseudo random permutations with input/output
{0, 1}2n. Let sPRP be a standard secure pseudo random permutation. For m1 and m2 of length n-bits,
we define Enc as following:

Enck(m1,m2; r1, r2) = qPRPr1(0n||m1)||qPRPr2(0n||m2)||sPRPk(r1, r2).

First, we prove that Enc is learn(∗,ER)-chall(1,ER, 1ct) secure. Note that in each query we can replace
sPRPk(r1, r2) with a random value because r1 and r2 are fresh randomness and sPRP is a standard
secure pseudo random permutation. Then in each query we can replace qPRPr1 and qPRPr2 with
random permutations π1 and π2, respectively. Now we can measure the input register by Lemma 3 and
the security follows from learn(∗,CL)-chall(1,CL, 1ct) security of Enc.
Now we show that Enc is not secure respected to learn(∗,CL)-chall(1,ST , ror) notion. Let Qin1

and
Qin2 be input registers corresponding to first n bits and second n bits of message, respectively. Similarly,
Qin1 and Qin2 be output registers. The adversary can query

Qin1
Qin2

Qout1Qout2 := |+〉⊗n|0〉⊗n|+〉⊗n|0〉⊗n

45

in the challenge query. After receiving the answer, it applies the Hadamard operator to Qin1
then

measures the register in the computational basis:

Qin1 |+〉⊗n

UEnc◦πb

H⊗n M

Qin2 |0〉
Qout1 |+〉⊗n

Qout2 |0〉

When b = 0 the measurement returns 0 with probability 1. In other hand, when b = 1 the permutation
will be applied to the message and therefore Qin1

register will be entangled with output registers. In
this case, the measurement returns 0 with negligible probability.

Conjecture 1. We conjecture that the following non-implications hold.
(P2 6=⇒ P9), (P3 6=⇒ P11), (P4 6=⇒ P6), (P8 6=⇒ P7), (P12 6=⇒ P11, P7).

8 Encryption secure in all notions
In this section we propose an encryption function that is secure for all security notions described in
this paper. From Figure 1, Panel 1 and Panel 2 imply all other panels. Therefore it is sufficient to
construct an encryption function that is secure in a setting where there are no learning queries, and
where the challenge queries are either c1 = chall(∗,ER, 1ct) or c2 = chall(∗,ST , ror). Consider the
encryption scheme Enc as Enck(m; r, r′) = qPRPr(r

′||m)||sPRPk(r) for r′,m ∈ {0, 1}n. In order to
decrypt the ciphertext, first we decrypt sPRPk(r) using the secret key k and obtain r then we can
obtain the message m using r. Now we show that Enc is c1 = chall(∗,ER, 1ct) and c2 = chall(∗,ST , ror)
secure in the following:

Theorem 18. The encryption scheme Enck(m; r, r′) = qPRPr(r
′||m)||sPRPk(r) presented above is

chall(∗,ER, 1ct) and chall(∗,ST , ror) secure.

Proof. chall(∗,ER, 1ct) security: In each query we can replace sPRPk(r) with a random bit string
because r is a fresh randomness and sPRP is a standard secure pseudo random function. Now we can
replace qPRPr with a random permutation π′ in each query and use Lemma 3 to measure the input
register (with f := π′(r′||·)). This collapses to the security against chall(∗,CL, 1ct) queries that it is
trivial.

chall(∗,ST , ror) security: In each query we can replace sPRPk(r) with a random bit string because
r is a fresh randomness and sPRP is a standard secure pseudo random function. Then we can replace
qPRPr with a random permutation π′ in each query. The security is trivial because for a random r′,
f1(m) = π′(r′||m)) (when the challenge bit is 0) and f2(m) = π′(r′||π(m)) (when the challenge bit is 1)
have the same distribution .

References
[AHU18] Andris Ambainis, Mike Hamburg, and Dominique Unruh. Quantum security proofs using

semi-classical oracles. IACR Cryptology ePrint Archive, 2018:904, 2018.

[AMRS18] Gorjan Alagic, Christian Majenz, Alexander Russell, and Fang Song. Quantum-secure mes-
sage authentication via blind-unforgeability. IACR Cryptology ePrint Archive, 2018:1150,
2018.

[ATTU16] Mayuresh Vivekanand Anand, Ehsan Ebrahimi Targhi, Gelo Noel Tabia, and Dominique Un-
ruh. Post-quantum security of the cbc, cfb, ofb, ctr, and XTS modes of operation. In Tsuyoshi
Takagi, editor, Post-Quantum Cryptography - 7th International Workshop, PQCrypto 2016,
Fukuoka, Japan, February 24-26, 2016, Proceedings, volume 9606 of Lecture Notes in Com-
puter Science, pages 44–63. Springer, 2016.

[BDJR97] Mihir Bellare, Anand Desai, E. Jokipii, and Phillip Rogaway. A concrete security treat-
ment of symmetric encryption. In 38th Annual Symposium on Foundations of Computer
Science, FOCS ’97, Miami Beach, Florida, USA, October 19-22, 1997, pages 394–403. IEEE
Computer Society, 1997.

46

[BJ15] Anne Broadbent and Stacey Jeffery. Quantum homomorphic encryption for circuits of low t-
gate complexity. In Rosario Gennaro and Matthew Robshaw, editors, Advances in Cryptology
- CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August
16-20, 2015, Proceedings, Part II, volume 9216 of Lecture Notes in Computer Science, pages
609–629. Springer, 2015.

[BZ13a] Dan Boneh and Mark Zhandry. Quantum-secure message authentication codes. In Thomas
Johansson and Phong Q. Nguyen, editors, Advances in Cryptology - EUROCRYPT 2013,
32nd Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Athens, Greece, May 26-30, 2013. Proceedings, volume 7881 of Lecture Notes
in Computer Science, pages 592–608. Springer, 2013.

[BZ13b] Dan Boneh and Mark Zhandry. Secure signatures and chosen ciphertext security in a post-
quantum world. IACR Cryptology ePrint Archive, 2013:88, 2013.

[CEV20] Céline Chevalier, Ehsan Ebrahimi, and Quoc Huy Vu. On the security notions for encryption
in a quantum world. IACR Cryptology ePrint Archive, 2020:237, 2020.

[GHS16] Tommaso Gagliardoni, Andreas Hülsing, and Christian Schaffner. Semantic security and
indistinguishability in the quantum world. In Matthew Robshaw and Jonathan Katz, editors,
Advances in Cryptology - CRYPTO 2016 - 36th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part III, volume 9816 of Lecture
Notes in Computer Science, pages 60–89. Springer, 2016.

[GKS20] Tommaso Gagliardoni, Juliane Krämer, and Patrick Struck. Make quantum indistinguisha-
bility great again. IACR Cryptology ePrint Archive, 2020:266, 2020.

[KKVB02] Elham Kashefi, Adrian Kent, Vlatko Vedral, and Konrad Banaszek. Comparison of quantum
oracles. Phys. Rev. A, 65:050304, May 2002.

[MS16] Shahram Mossayebi and Rüdiger Schack. Concrete security against adversaries with quantum
superposition access to encryption and decryption oracles. CoRR, abs/1609.03780, 2016.

[NC16] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information
(10th Anniversary edition). Cambridge University Press, 2016.

[Shi02] Yaoyun Shi. Quantum lower bounds for the collision and the element distinctness problems. In
The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings.,
pages 513–519, 2002.

[Sim97] Daniel R. Simon. On the power of quantum computation. SIAM J. Comput., 26(5):1474–
1483, October 1997.

[Unr16] Dominique Unruh. Computationally binding quantum commitments. In Marc Fischlin and
Jean-Sébastien Coron, editors, Advances in Cryptology - EUROCRYPT 2016 - 35th An-
nual International Conference on the Theory and Applications of Cryptographic Techniques,
Vienna, Austria, May 8-12, 2016, Proceedings, Part II, volume 9666 of Lecture Notes in
Computer Science, pages 497–527. Springer, 2016.

[Zha12] Mark Zhandry. How to construct quantum random functions. In 53rd Annual IEEE Sympo-
sium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October
20-23, 2012, pages 679–687. IEEE Computer Society, 2012.

[Zha15] Mark Zhandry. A note on the quantum collision and set equality problems. Quantum Infor-
mation & Computation, 15(7&8):557–567, 2015.

[Zha16] Mark Zhandry. A note on quantum-secure prps. IACR Cryptology ePrint Archive, 2016:1076,
2016.

47

	Introduction
	Previous work
	Our contribution
	Organization of the paper

	Preliminaries
	Realizability of g as a quantum circuit
	Cryptographic Assumptions

	Definitions
	Syntax of l - the learning queries
	Learning Query type CL
	Learning Query type ST
	Learning Query type EM
	Learning Query type ER

	Syntax of c - the challenge queries
	Challenge Query type chall(, CL, 1ct)
	Challenge Query type chall(, ST, 1ct)
	Challenge Query type chall(, EM, 1ct)
	Challenge Query type chall(, ST, 2ct)
	Challenge Query type chall(, EM, 2ct)
	Challenge Query type chall(, ER, 2ct)
	Challenge Query type chall(, ER, 1ct)
	Challenge Query type chall(, ST, ror)
	Challenge Query type chall(, EM, ror)
	Challenge Query type chall(, ER, ror)

	Instantiation of learning and challenge query models
	The valid combinations of the learning and challenge queries

	Decoherence lemmas
	Impossible Security Notions
	Implications
	Separations
	Overview of results
	Separations by Quasi-Length-Preserving Encryptions
	Separations by Simon's Algorithm
	Separations by Shi's SetEquality problem
	Separations by other arguments

	Encryption secure in all notions

