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Abstract

In multi-party threshold private set intersection (PSI), n parties each with a private set
wish to compute the intersection of their sets if the intersection is sufficiently large. Previously,
Ghosh and Simkin (CRYPTO 2019) studied this problem for the two-party case and demon-
strated interesting lower and upper bounds on the communication complexity. In this work, we
investigate the communication complexity of the multi-party setting (n ≥ 2). We consider two
functionalities for multi-party threshold PSI. In the first, parties learn the intersection if each
of their sets and the intersection differ by at most T . In the second functionality, parties learn
the intersection if the union of all their sets and the intersection differ by at most T .

For both functionalities, we show that any protocol must have communication complexity
Ω(nT ). We build protocols with a matching upper bound of O(nT ) communication complexity
for both functionalities assuming threshold FHE. We also construct a computationally more
efficient protocol for the second functionality with communication complexity Õ(nT 2) under a
weaker assumption of threshold additive homomorphic encryption.

As a consequence, we achieve the first “regular” multi-party PSI protocol where the commu-
nication complexity only grows with the size of the set difference and does not depend on the
size of the input sets.

1 Introduction

Private set intersection (PSI) protocols allow several mutually distrustful parties P1, P2, . . . , Pn
each holding a private set S1, S2, . . . , Sn respectively to jointly compute the intersection I =⋂n
i=1 Si without revealing any other information. PSI has numerous privacy-preserving applica-

tions, e.g., DNA testing and pattern matching [TPKC07], remote diagnostics [BPSW07], botnet
detection [NMH+10], online advertising [IKN+17]. Over the last years enormous progress has been
made towards realizing this functionality efficiently [Mea86, HFH99, FNP04, KS05, HN10, DCT10,
DCW13, PSZ14, PSSZ15, KKRT16, OOS16, RR17a, RR17b, KMP+17, HV17, PSWW18, PRTY19,
GN19, GS19a, PRTY20] in the two-party, multiparty, and server-aided settings with both semi-
honest and malicious security.

Threshold PSI. In certain scenarios, the standard PSI functionality is not sufficient. In partic-
ular, the parties may only be willing to reveal the intersection if they have a large intersection. For
example, in privacy-preserving data mining and machine learning [MZ17] where the data is verti-
cally partitioned among multiple parties (that is, each party holds different features of the same
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object), the parties may want to learn the intersection of their datasets and start their collaboration
only if their common dataset is sufficiently large. If their common dataset is too small, in which
case they are not interested in collaboration, it is undesirable to let them learn the intersection. In
privacy-preserving ride sharing [HOS17], multiple users only want to share a ride if large parts of
their trajectories on a map intersect. In this case, the users may be interested in the intersection of
their routes, but only when the intersection is large. This problem can be formalized as threshold
private set intersection, where, roughly speaking, the parties only learn the intersection if their sets
differ by at most T elements.

Many works [FNP04,HOS17,PSWW18,ZC18,GN19] achieve this functionality by first comput-
ing the cardinality of the intersection and then checking if this is sufficiently large. The communica-
tion complexity of these protocols scales at least linearly in the size of the smallest input set. Notice
that Freedman et al. [FNP04] proved a lower bound of Ω(m) on the communication complexity
of any private set intersection protocol, where m is the size of the smallest input set. This lower
bound directly extends to protocols that only compute the cardinality of the intersection, which
constitutes a fundamental barrier to the efficiency of the above protocols.

Recently, the beautiful work of Ghosh and Simkin [GS19a] revisited the communication complex-
ity of two-party threshold PSI and demonstrated that the Ω(m) lower bound can be circumvented
by performing a private intersection cardinality testing (i.e., testing whether the intersection is suffi-
ciently large) instead of computing the actual cardinality. After passing the cardinality testing, their
protocol allows each party to learn the set difference, where the communication complexity only
grows with T , which could be sublinear in m. Specifically, [GS19a] proved a communication lower
bound of Ω(T ) for two-party threshold PSI and presented a protocol achieving a matching upper
bound O(T ) based on fully homomorphic encryption (FHE). They also showed a computationally
more efficient protocol with communication complexity of Õ(T 2) based on weaker assumptions,
namely additively homomorphic encryption (AHE).

In this work, we investigate the communication complexity of multi-party threshold PSI. In
particular, we ask the question of whether sublinear lower and upper bounds can also be achieved
in the multi-party setting.

1.1 Our Contributions

We first identify and formalize the definition of multi-party threshold private set intersection. While
the definition for “regular” multi-party PSI1 follows naturally from the definition of two-party PSI
since the goal remains the same (to compute the intersection), the same does not hold in the
threshold case. In particular, we put forth and study two functionalities for multi-party threshold
PSI that are in fact both equivalent in the two-party case but are vastly different in the multi-party
scenario. Assume there are n parties P1, P2, . . . , Pn, and each party Pi holds a private set Si of size
m. The first functionality allows the parties to learn the intersection I =

⋂n
i=1 Si only if |Si\I| ≤ T ,

or equivalently, |I| ≥ m − T . In the second functionality, the parties can learn the intersection I
only if | (

⋃n
i=1 Si) \ I| ≤ T .

We briefly discuss the difference between the two functionalities. The first functionality focuses
on whether the intersection is sufficiently large, hence we call it FTPSI-int. The second functionality
focuses on whether the set difference is sufficiently small, thus we call it FTPSI-diff . In the two-party
case, we have the guarantee that | (

⋃n
i=1 Si) \ I| = 2 · |Si \ I|, so we don’t have to differentiate

1By “regular” PSI, we refer to the standard notion of PSI without threshold.
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between these two functionalities. However, in the multi-party case, we only know that 2 · |Si \ I| ≤
| (
⋃n
i=1 Si) \ I| ≤ n · |Si \ I|, hence the two functionalities could lead to very different outcomes.

Which functionality to choose and what threshold to set in practice highly depend on the actual
application.

Sublinear Communication. The core contribution of this work is demonstrating sublinear (in
the set sizes) communication lower and upper bounds for both functionalities of multi-party thresh-
old PSI. We summarize our results in Table 1. For lower bound, we prove that both functionalities
require at least Ω(nT ) bits of communication. For upper bound, we present protocols for both
functionalities achieving a matching upper bound of O(nT ) based on n-out-of-n threshold fully
homomorphic encryption (TFHE) [BGG+18]. We also give a computationally more efficient proto-
col based on weaker assumptions, namely n-out-of-n threshold additively homomorphic encryption
(TAHE) [Ben94, Pai99], with communication complexity of Õ(nT 2).2 All these protocols achieve
semi-honest security where up to (n− 1) parties could be corrupted.

Functionality
Communication TFHE-based TAHE-based
Lower Bound Upper Bound Upper Bound

FTPSI-int Ω(nT ) O(nT ) unknown

FTPSI-diff Ω(nT ) O(nT ) Õ(nT 2)

Table 1: Communication lower and upper bounds for multi-party threshold PSI.

Our Protocols. As summarized in Table 1, we present three protocols for upper bounds, one for
FTPSI-int and two for FTPSI-diff . At a high level, all three protocols compute their functionality in
two phases. In the first phase, they perform a multi-party private intersection cardinality testing
where the parties jointly decide whether their intersection is sufficiently large. In particular, for
FTPSI-int, the cardinality testing, which we call FCTest-int, allows all the parties to learn whether
|I| ≥ (m− T ). For FTPSI-diff , the cardinality testing, which we call FCTest-diff , allows all the parties
to learn whether | (

⋃n
i=1 Si) \ I| ≤ T . The communication complexity of our multi-party private

intersection cardinality testing protocols is summarized in Table 2. In particular, for FCTest-int, we
present a protocol with communication complexity O(nT ) based on TFHE. For FCTest-diff , we show a
TFHE-based construction with communication complexity O(nT ) and a TAHE-based construction
with communication complexity Õ(nT 2).

Functionality
TFHE-based TAHE-based

Protocol Protocol

FCTest-int O(nT ) unknown

FCTest-diff O(nT ) Õ(nT 2)

Table 2: Communication complexity of our protocols for multi-party private cardinality testing.

If the intersection is sufficiently large, namely it passes the cardinality testing, then the parties
start the second phase of our protocols, which allows each party Pi to learn their set difference

2Õ(·) hides polylog factors. All the upper bounds omit a poly(λ) factor where λ is the security parameter.
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Si \ I. We present a singe protocol for the second phase, which works for both FTPSI-int and
FTPSI-diff . The second-phase protocol is based on TAHE and has communication complexity of
O(nT ). Thus, to construct a protocol for multi-party threshold PSI, we combine the first-phase
protocols summarized in Table 2 with the second-phase one described above. Doing so, we achieve
the communication upper bounds in Table 1.

This modular design enables our constructions to minimize the use of TFHE as it is not needed
in the second phase. Moreover, it allows future work to focus on improving Table 2. In par-
ticular, since the second-phase protocol is already tight in communication (O(nT )) based on the
weaker assumption of TAHE, future work could focus on building protocols for private intersection
cardinality testing with better communication complexity and/or from weaker assumptions.

Communication Topology. All our protocols are designed in the so-called star network topol-
ogy, where a designated party communicates with every other party. An added benefit of this
topology is that not all parties must be online at the same time. Our communication lower bounds
are proved in point-to-point fully connected networks, which are a generalization of the star network.

For networks with broadcast channels, we prove another communication lower bound of Ω(T log n+
n) for FTPSI-int in Section 9 and leave further exploration in the broadcast model for future work.

1.2 Other Implications

Sublinear Communication PSI. Our multi-party threshold PSI protocols for both FTPSI-int

and FTPSI-diff can also be used to achieve multi-party “regular” PSI where the communication
complexity only grows with the size of the set difference and independent of the input set sizes.

In particular, if we run a sequence of multi-party threshold PSI protocols on T = 20, 21, 22, . . .
until hitting the smallest T = 2k where the protocol outputs the intersection, then we can achieve
multi-party PSI. The communication complexity of the resulting protocol is a factor log T times
that of a single instance but still independent of the input set sizes. Therefore, when the intersection
is very large, namely the set difference is significantly smaller than the set sizes, this new approach
achieves the first multi-party PSI with sublinear (in the set sizes) communication complexity.

This approach can also be applied to our multi-party private intersection cardinality testing
protocols to achieve the first multi-party private intersection cardinality protocol with sublinear
communication where the parties want to jointly just learn the cardinality of their set intersection.

Compact MPC. It is an open problem to construct a compact MPC protocol in the plain model
where the communication complexity does not grow with the output length of the function. Prior
works [HW15,BFK+19] construct compact MPC for general functions in the presence of a trusted
setup (CRS, random oracle) from strong computational assumptions such as obfuscation. Our
multi-party threshold PSI protocols have communication complexity independent of the output
size (the set intersection). To the best of our knowledge, ours are the first compact MPC protocols
for even a specific function in the plain model. The only prior compact protocol in the plain model
we are aware of is the two-party threshold PSI protocol [GS19a].

1.3 Concurrent and Future Work

Concurrent and Independent Work. In a very recent update to the full version of the paper
by Ghosh and Simkin [GS19b], they extend the two-party threshold PSI protocol to the multi-party
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setting and consider the functionality FTPSI-int. In particular, they do not consider the functionality
FTPSI-diff that we additionally consider in our work.

For functionality FTPSI-int, Ghosh and Simkin [GS19b] also first construct a TFHE-based pro-
tocol for the multi-party private intersection cardinality testing functionality FCTest-int. They then
have a second-phase protocol for computing the intersection in which they use MPC to compute
the evaluations of a random polynomial, where the concrete communication complexity depends
on how the MPC is instantiated.

Open Problems. We briefly mention a collection of interesting open problems for future work.
• Build private intersection cardinality testing protocols for FCTest-int from weaker computa-

tional assumptions than TFHE.

• Construct practically more efficient threshold PSI protocols with sublinear communication.

• Explore multi-party threshold PSI in the broadcast model.

• Design more efficient threshold PSI protocols in the setting where all parties have different
sized sets (rather than padding all of them to have the same size and using our protocol).

• Construct threshold PSI protocols with malicious security.

• Optimize round complexity of threshold PSI with sublinear communication.

2 Technical Overview

We now give an overview of the techniques used in our work. As mentioned previously, we consider
the star network topology. We denote P1 to be the designated party that can communicate with
all the other parties.

2.1 TFHE-Based Protocol for FCTest-int

To construct multi-party private intersection cardinality testing from TFHE, our starting point is
the FHE-based protocol for private intersection cardinality testing in the two-party setting [GS19a].
We first briefly recall the idea. For two parties Alice and Bob with sets SA = {a1, . . . , am} and SB =
{b1, . . . , bm} respectively, we encode the elements into two polynomials pA(x) =

∏m
i=1(x− ai) and

pB(x) =
∏m
i=1(x−bi). Let I := SA∩SB be the intersection. A key observation in [MTZ03,GS19a] for

such an encoding procedure is that p(x) := pB(x)
pA(x)

=
pB\I(x)

pA\I(x)
. Both the numerator and denominator

of p have degree |SA \ I|. If |SA \ I| ≤ T , then p(x) has degree at most 2T and can be recovered
from 2T + 1 evaluations by rational function interpolation.3 Given p(x), the elements in SA \ I are
simply the roots of the polynomial in the denominator.

Two-party protocol. At a high level, the two-party protocol works as follows. First, Alice
and Bob evaluate their own polynomials on 2T + 1 publicly known distinct points {α1, . . . , α2T+1}
to obtain {pA(α1), . . . , pA(α2T+1)} and {pB(α1), . . . , pB(α2T+1)}, respectively. Then, Alice gener-
ates a public-secret key pair of the FHE scheme and sends Bob the FHE public key, encrypted

3A rational function is a fraction of two polynomials. We refer to Minskey et al. [MTZ03] for details on rational
function interpolation over a field. Also, we note that monic polynomials can be interpolated with 2T evaluation but
we use 2T + 1 for consistency with our other protocols.
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evaluations {pA(α1), . . . , pA(α2T+1)}, a uniformly random z and encrypted evaluation pA(z). Bob
can then homomorphically interpolate the rational function p(x) from {pA(α1), . . . , pA(α2T+1)}
and {pB(α1), . . . , pB(α2T+1)} and homomorphically compute encrypted p(z). Bob then computes

pB(z) and homomorphically computes encrypted pB(z)
pA(z)

. We know that p(z) = pB(z)
pA(z)

if and only if

the degree of p(x) is ≤ 2T , namely |SA \ I| ≤ T . Therefore Bob homomorphically computes an

encryption of the predicate b =
(

p(z)
?
= pB(z)

pA(z)

)
and sends the encryption of b back to Alice. Finally

Alice decrypts and learns whether |SA \ I| ≤ T .

Generalize to multi-party. To generalize this protocol to n parties, a natural idea is to consider

p(x) :=
p2(x) + · · ·+ pn(x)

p1(x)
=

p2\I(x) + · · ·+ pn\I(x)

p1\I(x)
, (1)

where pi(x) encodes the set Si = {ai1, . . . , aim} as pi(x) :=
∏m
j=1(x− aij). Instead of FHE, we make

use of n-out-of-n threshold fully homomorphic encryption (TFHE) with distributed setup, which
enables n parties to jointly generate an FHE public key, where the secret key is shared among the
n parties. The protocol for FCTest-int roughly works as follows. The n parties first jointly generate
the TFHE keys. Each party Pi then evaluates its own polynomial pi(·) on {α1, . . . , α2T+1, z} and
sends encrypted evaluations {pi(α1), . . . , pi(α2T+1), pi(z)} to P1. Now P1 can homomorphically
interpolate p(x) from 2T + 1 evaluations and homomorphically compute an encryption of the

predicate b =
(

p(z)
?
= p2(z)+···+pn(z)

p1(z)

)
. Finally the n parties jointly decrypt the encryption of b.

Unexpected degree reduction. This seemingly correct protocol has a subtle issue.4 Intuitively,
we want to argue that p(x) in Equation 1 has degree ≤ 2T if and only if |S1 \ I| ≤ T . However,
this is not true because Equation 1 is not accurate. In particular, in addition to the elements
in intersection I that will be canceled out in the numerator and denominator of p(x), elements
not in the intersection might also be canceled out in certain scenarios. This is undesirable as
it unexpectedly reduces the degree of the numerator and denominator of p(x)! Here is a concrete
example. Consider three sets with distinct elements S1 = {a}, S2 = {b}, S3 = {c}, where b+c = 2·a.
The intersection I = ∅. Ideally we want the rational polynomial p(x) to have degree 1 in both the
numerator and denominator because |S1 \ I| = 1. However,

p(x) =
(x− b) + (x− c)

x− a
=

2x− (b+ c)

x− a
=

2x− 2a

x− a
= 2.

The key issue in the above example is that the term (x−a) is unexpectedly canceled out. More
generally, this approach does not work because the polynomial in the numerator p2(x)+ · · ·+pn(x)
may accidentally create roots that are not in the intersection, but coincide with elements in S1
thereby reducing the degree of the numerator and denominator.

Randomness to the rescue. On first thought, it seems that this approach is fundamentally
flawed as such additional roots can always be created when we add polynomials in the numerator.

4In fact, this subtle issue was initially overlooked by [GS19b] in their recent update to the multi-party setting
causing their protocol to produce incorrect output on certain inputs. We pointed this out to the authors and they
have subsequently fixed it. This was confirmed in personal communication.
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Our key insight to solve the problem is to add “enough” randomness to each polynomial in the
numerator to prevent this issue from arising except with negligible probability. In more detail, we
add a single random multiplicative term (x − ri) to each polynomial pi and set a new polynomial
p′i(x) := pi(x) · (x− ri) for a random ri chosen by party Pi. Now, consider the rational polynomial

p′(x) :=
p′2(x) + · · ·+ p′n(x)

p′1(x)
=

p′2\I(x) + · · ·+ p′n\I(x)

p′1\I(x)
.

At a high level, the term (x − ri) will randomize the roots of the numerator sufficiently to ensure
that these roots are unlikely to coincide with the roots of the denominator. We formally prove
that this unexpected degree reduction (that is, elements not in the intersection canceling out in
the numerator and denominator) only happens with negligible probability by just adding this one
random term to each polynomial.

Alternative protocol. There is another way to compute the functionality FCTest-int from TFHE.
As we will see, the second construction is in fact simpler and cleaner than the first one. However,
we still present the first construction above to illustrate the subtle issue that we discussed which
will also later arise when computing the concrete intersection in the second phase of our protocols.

We describe the alternative protocol as follows. The n parties first jointly generate the TFHE
keys as before. Then, as in the two-party protocol, party P1 homomorphically interpolates

p̃i(x) =
pi(x)

p1(x)
=

pi\1(x)

p1\i(x)

from 2T + 1 evaluations and homomorphically computes an encryption of D1,i = S1 \ Si for every
other party Pi. Note that if |S1 \ I| ≤ T , then the degree of each p̃i(x) is at most 2T , hence P1 can
interpolate it using 2T +1 evaluations. Since S1 \I =

⋃m
i=2(S1 \Si), party P1 can homomorphically

compute an encryption of (S1 \ I) and an encryption of predicate b =

(
|S1 \ I|

?
≤ T

)
. Finally, the

n parties jointly decrypt the encryption of b to learn the output.

2.2 TFHE-Based Protocol for FCTest-diff

The above alternative construction can be slightly modified to compute FCTest-diff from TFHE. In

particular, party P1 homomorphically interpolates p̃i(x) = pi(x)
p1(x)

=
pi\1(x)

p1\i(x)
from (2T +1) evaluations

and computes encrypted D1,i = S1 \Si as well as Di,1 = Si \S1 for every other party Pi. Note that
if | (

⋃m
i=1 Si) \ I| ≤ T , then |Si \ I| ≤ T for all i and the degree of each p̃i(x) is at most 2T , hence

P1 can interpolate it using (2T + 1) evaluations. Observe that (
⋃m
i=1 Si) \ I =

⋃m
i=2 (D1,i ∪Di,1),

because each element a ∈ (
⋃m
i=1 Si) \ I must be one of the two cases: (1) a ∈ S1 and a /∈ Si for

some i (i.e., a ∈ D1,i), or (2) a /∈ S1 and a ∈ Si for some i (i.e., a ∈ Di,1). Therefore, party
P1 can homomorphically compute an encryption of (

⋃m
i=1 Si) \ I and an encryption of predicate

b =

(
|(
⋃m
i=1 Si) \ I|

?
≤ T

)
. Finally, as before, the n parties jointly decrypt the encryption of b to

learn the output.
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2.3 TAHE-Based Protocol for FCTest-diff

To construct multi-party private intersection cardinality testing from threshold additive homomor-
phic encryption (TAHE), we start with the two-party protocol [GS19a] based on additive homo-
morphic encryption (AHE).

Two-party protocol. For two parties Alice and Bob with private sets SA and SB, if we encode
their elements into two polynomials pA(x) =

∑m
i=1 x

ai and pB(x) =
∑m

i=1 x
bi , then the number of

monomials in the polynomial p(x) := pA(x) − pB(x) is exactly |(SA \ SB) ∪ (SB \ SA)|. Now the
problem of cardinality testing (i.e., determining if |(SA \ SB) ∪ (SB \ SA)| ≤ 2T ) has be reduced
to determining whether the number of monomials in p(x) is ≤ 2T . Using the polynomial sparsity
test of Grigorescu et al. [GJR10], we can further reduce the problem to determining whether the
Hankel matrix below is singular or not:

H =


p(u0) p(u1) . . . p(u2T )
p(u1) p(u2) . . . p(u2T+1)

...
...

. . .
...

p(u2T ) p(u2T+1) . . . p(u4T )

,


where u is chosen uniformly at random. In the two-party protocol, Alice generates a public-
secret key pair of the AHE scheme and sends Bob the public key, a uniformly random u along with
encrypted Hankel matrix for pA. Then Bob can homomorphically compute an encryption of Hankel
matrix for p. Now Alice holds the secret key and Bob holds an encryption of matrix H. They need
to jointly perform a matrix singularity testing to determine if the matrix is singular or not without
revealing any other information, which can be done using the protocol of Kiltz et al. [KMWF07].

Our approach. In our multi-party protocol, we will make use of n-out-of-n threshold additive
homomorphic encryption (TAHE) with distributed setup. Our strategy is to first find a polynomial
where the number of monomials equals the size of the set difference |(

⋃m
i=1 Si) \ I|. Furthermore,

the polynomial should only involve linear operations among the parties to allow for additive homo-
morphic evaluation. Then, we construct a multi-party protocol for matrix singularity testing.

Identifying the right polynomial. At first sight, if we want to compute the total set difference
| (
⋃m
i=1 Si)\I|, we should take into account the set difference between every pair of parties. However,

from our experience in the TFHE-based constructions, it suffices to consider the set difference
between P1 and every other party. In particular, we encode the set Si = {ai1, . . . , aim} as pi(x) :=∑m

j=1 x
aij , and let p(x) := (p1(x)− p2(x)) + · · ·+ (p1(x)− pn(x)) = (n− 1)p1(x)−

∑n
i=2 pi(x). We

can show that the number of terms in p(x) is exactly | (
⋃m
i=1 Si) \ I|. If the parties first jointly

generate public key and secret key shares of TAHE, then every party Pi (except P1) can send an
encryption of Hankel matrix for pi to party P1 and P1 can homomorphically compute an encryption
of Hankel matrix for p. Now, party P1 holds an encryption of matrix H, where the secret key is
shared among all the parties.

Our next goal is to construct a new multi-party protocol that allows the n parties to jointly de-
cide whether the matrix is singular or not generalizing the result in the work of Kiltz et al. [KMWF07].
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Multi-party homomorphic matrix multiplication. A key building block in the two-party
protocol of Kiltz et al. [KMWF07] is a two-party protocol for homomorphic matrix multiplication.
Here, we design a multi-party protocol for this task. In particular, P1 holds two encrypted matrices
Enc(A) and Enc(B) where the secret key is shared among all the parties and they want to jointly
enable P1 to learn Enc(A · B) without leaking any other information. We briefly describe our
multi-party homomorphic matrix multiplication protocol inspired by [Bea91]. First, each party Pi
sends encryptions of two matrices RAi and RBi to party P1, where RAi and RBi are uniformly random
matrices sampled by Pi. Then P1 homomorphically computes encryptions of RA =

∑n
i=1R

A
i , MA =

A + RA, MB = B +
∑n

i=1R
B
i and sends to all the parties. The n parties can jointly decrypt two

matrices MA and MB to P1. Then, each party Pi homomorphically computes encryptions of three
matrices MARBi , R

A
i M

B, RARBi and sends them to P1. Finally, P1 can homomorphically compute
an encryption of A · B by performing a linear combination of these ciphertexts. In particular,
A · B = MAMB −

∑n
i=1M

ARBi −
∑n

i=1R
A
i M

B +
∑n

i=1R
ARBi . We refer the reader to Section 6

for more details on the other components of our multi-party protocol for singularity testing.

Subtle issue with modularization. There is a subtle issue when incorporating the multi-party
matrix singularity testing protocol into the private intersection cardinality testing. Ideally we
would like to prove security separately for the multi-party matrix singularity testing protocol and
then use it as a black box. However, it turns out formally proving the security of our multi-party
matrix singularity testing protocol is hard. In particular, if we formalize the ideal functionality
for the multi-party matrix singularity testing, one party holds an encrypted matrix and the secret
key is shared among all the parties. In a simulation-based security proof, we would hope to argue
that nothing is leaked about the underlying matrix by relying on the security of the underlying
encryption scheme, intuitively, based on the fact that any subset of parties cannot recover the secret
key of the encryption scheme. On the other hand, since the distinguisher can in fact choose the
inputs for all the parties, it knows all the secret key shares of the encryption scheme. Hence, we can
not rely on the security of the encryption scheme. The same issue arises when we try to modularize
multi-party homomorphic matrix multiplication and formally prove it separately. The fundamental
problem in both scenarios is that when formalizing these ideal functionalities, the natural design
would result in involving cryptographic primitives as part of the input/output behaviour, which
makes it hard to argue security based on these primitives. We get around this problem by including
all the sub-protocols in our final multi-party private intersection cardinality testing protocol and
directly providing a single security proof for our cardinality testing protocol.

Challenges for functionality FCTest-int. We briefly discuss the hardness of applying similar
techniques to obtain a TAHE-based protocol for the other functionality FCTest-int. The main chal-
lenge is to find a polynomial that can be linearly computed by the parties and the number of
monomials in the polynomial equals |S1 \ I|. If such a polynomial can be found, then the second
step of multi-party matrix singularity testing follows the same way. We leave it as an open problem
to identify such a polynomial.

2.4 Computing Set Intersection

After the first phase of our protocols (i.e., cardinality testing), we present a single construction
for the second phase that computes the concrete set intersection for both FTPSI-int and FTPSI-diff .
Again, we start from the two-party protocol [GS19a] based on AHE.
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Two-party protocol. For two parties Alice and Bob, we use the first encoding method to encode
the elements into two polynomials pA(x) =

∏m
i=1(x − ai) and pB(x) =

∏m
i=1(x − bi). After the

cardinality testing, we already know that the rational polynomial p(x) := pB(x)
pA(x)

=
pB\I(x)

pA\I(x)
has

degree at most 2T . If Alice learns the evaluation of pB(·) on 2T +1 distinct points {α1, . . . , α2T+1},
then she can evaluate pA on those points by herself and compute {p(α1), . . . , p(α2T+1)}. Using these
evaluations of p(·), Alice can recover p(x) by rational polynomial interpolation, and then learn the
set difference SA \ I from the denominator of p(x). However, p(x) also allows Alice to learn SB \ I,
which breaks security. Instead of letting Alice learn the evaluations of pB(·), the two-party protocol
of [GS19a] enables Alice to learn the evaluations of a “noisy” polynomial V(x) := pA(x) · R1(x) +
pB(x) · R2(x), where R1 and R2 are uniformly random polynomials of degree T . Note that

p′(x) :=
V(x)

pA(x)
=

pA\I(x) · R1(x) + pB\I(x) · R2(x)

pA\I(x)

has degree at most 3T . Given 3T + 1 evaluations of V(·), Alice can interpolate p′(x) and figure
out the denominator, but now the numerator is sufficiently random and does not leak any other
information about SB. It is crucial that Alice doesn’t pick R1 on her own and similarly, Bob doesn’t
pick R2 on his own. The protocol of [GS19a] uses an oblivious linear function evaluation (OLE)
protocol to let Alice and Bob jointly generate and evaluate the random polynomials R1 and R2.

Alternative approach using TAHE. We take a different approach to let Alice learn the
evaluations of V(x) in the two-party setting using 2-out-of-2 TAHE, which is arguably simpler
than the approach in [GS19a] and can be generalized to the multi-party setting. We first define

V(x) :=
(

pA(x) ·
(
RA1 (x) + RB1 (x)

)
+ pB(x) ·

(
RA2 (x) + RB2 (x)

) )
, where (RA1 ,R

A
2 ) and (RB1 ,R

B
2 ) are

uniformly random polynomials of degree T generated by Alice and Bob, respectively. Instead of
relying on OLE to jointly generate the random polynomials R1 and R2, now we let each party
generate an additive share of the polynomials. To obtain an evaluation of V(α), Alice first sends
an encryption of pA(α) and RA2 (α) to Bob. Then Bob homomorphically computes an encryption of
r = pA(α) ·RB1 (α)+pB(α) ·

(
RA2 (α) + RB2 (α)

)
and sends it back to Alice. Alice can homomorphically

compute an encryption of V(α) = pA(α) · RA1 (α) + r. Finally, both parties jointly decrypt it.

Generalization. To generalize to multiple parties, we first encode each set Si = {ai1, . . . , aim} as
a polynomial pi(x) :=

∏m
j=1(x− aij), and then define

V(x) :=p1(x) · R1(x) + · · ·+ pn(x) · Rn(x)

:=p1(x) · (R1,1(x) + · · ·+ Rn,1(x)) + · · ·+ pn(x) · (R1,n(x) + · · ·+ Rn,n(x)) ,

where (Ri,1, . . . ,Ri,n) are uniformly random polynomials of degree T generated by party Pi. For
both functionalities FTPSI-int and FTPSI-diff , if the protocol passes the cardinality testing, then

p′(x) :=
V(x)

p1(x)
=

p1\I(x) · R1(x) + · · ·+ pn\I(x) · Rn(x)

p1\I(x)

has degree at most 3T . If P1 learns 3T + 1 evaluations of V(·), then it can interpolate p′(x) and
recover S1 \ I from the denominator while the numerator does not leak any other information.
To enable party P1 to learn an evaluation of V(α) after the TAHE setup, every party Pi first
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sends an encryption of {Ri,1(α), . . . ,Ri,n(α)} to P1. Then, P1 can homomorphically compute an
encryption of {R1(α), . . . ,Rn(α)} and send an encryption of Ri(α) to party Pi. Each party Pi then
homomorphically computes an encryption of pi(αi) · Ri(α) and sends it back to P1. Finally, P1

homomorphically computes an encryption of V(α) =
∑n

i=1 (pi(αi) · Ri(α)) and jointly decrypts it
with all the other parties.

Communication blow-up. This protocol requires O(n2) communication complexity per evalu-
ation, and the total communication complexity is O(n2T ) for (3T + 1) evaluations. However, recall
that our goal was to run this phase of the protocol with just O(nT ) communication to match the
lower bound Ω(nT ). Observe that the bottleneck of the communication in this approach is in the
first step, where every party Pi sends n encrypted evaluations {Ri,1(α), . . . ,Ri,n(α)} to P1. We now
focus on reducing the communication complexity of the protocol.

Idea 1: Mask your own polynomials. Our first idea is to reduce the number of random
polynomials used in defining V(·). Intuitively, suppose the central party of the network P1 is
honest, then for every other party Pi, it seems sufficient that the polynomial pi(x) is masked by a
random polynomial chosen by P1. Similarly, suppose P1 is corrupt, for any honest party Pi, it seems
sufficient that it contributes two random polynomials: one to mask its own random polynomial pi(x)
and one to mask p1(x). In particular, we re-define V(x) as

V(x) :=p1(x) · R1(x) + · · ·+ pn(x) · Rn(x)

:=p1(x) · (R1,1(x) + · · ·+ Rn,1(x)) + p2(x) ·
(

R1,2(x) + R̃2(x)
)

+ · · ·+ pn(x) ·
(

R1,n(x) + R̃n(x)
)
,

where (R1,1, . . . ,R1,n) are random polynomials of degree T generated by P1, and every other party

Pi only generates two random polynomials Ri,1 and R̃i. Now, in the first step of our protocol,

each party Pi only needs to send 2 encrypted evaluations Ri,1(α) and R̃i(α) to P1, and the total
communication complexity can be reduced to O(nT ).

Every polynomial needs a mask. However, it turns out this protocol is in fact insecure because
evaluations of V(·) may leak more information than expected! In particular, consider the case where

all parties except Pn are corrupted. Then, they can jointly compute V′(α) =
(

p1(α) ·R1(α)+pn(α) ·

Rn(α)
)

from V(α). Given 3T + 1 evaluations of V′(·), they can interpolate the rational polynomial

V′(α)

p1(α)
=

p1\n(α) · R1(α) + pn\1(α) · Rn(α)

p1\n(α)
.

The denominator leaks the set difference S1\Sn, which shouldn’t be leaked in the ideal functionality.
The lesson we learned from above is that every polynomial pi(x) should be masked by at least one
random polynomial contributed by an honest party. However, this brings us back to our first
solution where the communication complexity was O(n2T ).

Idea 2: Re-use masks for other parties. Our second idea is to re-use the random polynomials
of honest parties in such a way that each honest party Pi picks one random polynomial R̃i to mask
its own polynomial pi and one random polynomial Ri to mask those of all other parties. That is:

V(x) :=p1(x) ·
(

R̃1(x) + R2(x) + · · ·+ Rn(x)
)

+ p2(x) ·
(

R1(x) + R̃2(x) + R3(x) + · · ·+ Rn(x)
)
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+ · · ·+ pn(x) ·
(

R1(x) + · · ·+ Rn−1(x) + R̃n(x)
)
,

where Ri and R̃i are random polynomials of degree T generated by party Pi. In the first step of
our protocol, each party Pi still only sends 2 encrypted evaluations Ri(α) and R̃i(α) to P1, and the
total communication complexity is O(nT ). Consider the same attack as above. If all parties except
Pn are corrupted, they can jointly compute

V′(α) = (p1(α) + · · ·+ pn−1(α)) · Rn(α) + pn(x) ·
(

R1(x) + · · ·+ Rn−1(x) + R̃n(x)
)

from V(α). Given 3T + 1 evaluations of V′(·), they can interpolate the rational polynomial

V′(x)

p1(x)
=

(
p1\I(x) + · · ·+ pn−1\I(x)

)
· Rn(x) + pn\I(x) ·

(
R1(x) + · · ·+ Rn−1(x) + R̃n(x)

)
p1\I(x)

.

The numerator seems to be sufficiently random as both terms include random polynomials (Rn and
R̃n) contributed by the honest party Pn.

Return of the unexpected degree reduction. However, there is a subtle issue that we have
seen when constructing a TFHE-based protocol for FCTest-int. In particular, (p1(x) + · · ·+ pn−1(x))
might accidentally create some roots that are not in the intersection but can be canceled out with p1

and pn. A concrete example is four sets S1 = {a}, S2 = {b}, S3 = {c}, S4 = {a} where b+ c = 2 · a.
To resolve this problem, we follow the same approach as in the TFHE-based protocol. In

particular, we set each polynomial p′i(x) := pi(x) · (x− ri) for a random ri chosen by Pi and define

V(x) =p′1(x) ·
(

R̃1(x) + R2(x) + · · ·+ Rn(x)
)

+ p′2(x) ·
(

R1(x) + R̃2(x) + R3(x) + · · ·+ Rn(x)
)

+ · · ·+ p′n(x) ·
(

R1(x) + · · ·+ Rn−1(x) + R̃n(x)
)
.

This makes our protocol secure while maintaining the communication complexity to be O(nT ).

2.5 Lower Bounds

We briefly discuss the communication lower bound for multi-party threshold PSI. To prove lower
bound in the point-to-point network, we perform a reduction from two-party threshold PSI (for
which [GS19a] showed a lower bound of Ω(T )) to multi-party threshold PSI. We first prove that
the total “communication complexity of any party” is Ω(T ) which denotes the sum of all the
bits exchanged by that party (both sent and received). As a corollary, the total communication
complexity of any multi-party threshold PSI protocol is Ω(nT ). We refer to Section 4 for more
details about the reduction.

To prove a lower bound in the broadcast model, we rely on the communication lower bound
of the multi-party set disjointness problem shown by Braverman and Oshman [BO15]. We reduce
the problem of multi-party set disjointness to multi-party threshold PSI FTPSI-int and prove a lower
bound Ω(T log n + n) for any multi-party threshold PSI protocol in the broadcast network. We
refer to Section 9 for more details about the reduction.
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2.6 Roadmap

We describe some preliminaries and definitions in Section 3, the lower bound in Section 4, and the
TFHE based private intersection cardinality testing protocols in Section 5. We describe the TAHE
based private intersection cardinality testing protocol in Section 6. Finally, we present the second
phase protocol to compute the actual intersection in Section 7.

3 Preliminaries

3.1 Notations

We use λ to denote the security parameters. By poly(λ) we denote a polynomial function in λ. By
negl(λ) we denote a negligible function, that is, a function f such that f(λ) < 1/p(λ) holds for any
polynomial p(·) and sufficiently large λ. We use JxK to denote an encryption of x. We use Õ(x) to
ignore any polylog factor, namely Õ(x) = O(x · polylog(x)).

3.2 Secure Multi-Party Computation

We follow the security definitions for secure multi-party computation (MPC) in the universal com-
posability (UC) framework [Can01]. We provide a brief overview here and refer the reader to [Can01]
for more details of the security model.

We consider a protocol Π amongst n parties that implements an ideal functionality F . We define
security in the real/ideal world paradigm. In the real execution, the parties execute the protocol
Π, which is allowed to call any ideal functionality G. An environment Z chooses the inputs of all
parties, models everything that is external to the protocol, and represents the adversary. Z may
corrupt any subset (not all) of the parties and get access to those parties’ internal tapes. In the
ideal execution, n dummy parties send their inputs to the ideal functionality F and get back the
output of the computation. A simulator Sim, also known as the ideal world adversary, emulates
Z’s view of a real protocol execution. Sim has full control of the corrupted dummy parties and
emulates Z’s view of those parties. Let Real[Z,Π,G] and Ideal[Z, Sim,F ] be the output of Z in the
real and ideal executions, respectively. We say the protocol Π securely implements F if for any
PPT Z, there exists a PPT Sim such that

Real[Z,Π,G]
c
≈ Ideal[Z,Sim,F ].

3.3 Multi-Party Threshold Private Set Intersection

Setting. Consider n parties P1, . . . , Pn with input sets S1, . . . , Sn respectively. Throughout the
paper, we consider all the sets to be of equal size m. We assume that the set elements come
from a field Fp, where p is a Θ(λ)-bit prime. Also, throughout the paper, we focus only on the
point-to-point network channels. For the lower bounds, we consider a setting where every pair
of parties has a point-to-point channel between them. For the upper bounds, we consider a more
restrictive model – the star network, where only one central party has a point-to-point channel with
every other party and the other parties cannot communicate with each other. Note that when an
adversary corrupts a set of parties, they are free to communicate and share information amongst
each other.
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The goal of the parties is to run an MPC protocol Π at the end of which each party learns the
intersection I of all the sets if certain conditions hold. In the definition of two-party threshold PSI,
both parties P1 and P2 learn the intersection I if the size of their set difference is small, namely
|(S1 \ S2) ∪ (S2 \ S1)| < 2T . In the multi-party case, we consider two different functionalities, each
of which might be better suited to different applications.

Functionalities. In the first definition, we consider functionality FTPSI-int, in which each party Pi
learns the intersection I if the size of its own set minus the intersection is small, namely |Si \ I| ≤ T
for some threshold T . Recall that we consider all the sets to be of equal size, hence either all the
parties learn the output or all of them don’t. In the second definition, we consider a functionality
FTPSI-diff , where each party learns the intersection I if the size of the union of all the sets minus
the intersection is small, namely |(

⋃n
i=1 Si) \ I| ≤ T . The formal definitions of the two ideal

functionalities are shown in Figure 1 and Figure Figure 2.

Parameters: Parties P1, . . . , Pn. Each party has a set of m elements. Threshold T ∈ N.

Inputs: Party Pi has an input set Si = {ai1, . . . , aim} where aij ∈ Fp for all j ∈ [m].

Output: Each party Pi receives the set intersection I =
⋂n
i=1 Si if and only if |Si \ I| ≤ T .

Figure 1: Ideal functionality FTPSI-int for multi-party threshold PSI.

Parameters: Parties P1, . . . , Pn. Each party has a set of m elements. Threshold T ∈ N.

Inputs: Party Pi has an input set Si = {ai1, . . . , aim} where aij ∈ Fp for all j ∈ [m].

Output: Each party Pi receives the set intersection I =
⋂n
i=1 Si if and only if |(

⋃n
i=1 Si) \ I| ≤ T .

Figure 2: Ideal functionality FTPSI-diff for multi-party threshold PSI.

3.4 Multi-Party Private Intersection Cardinality Testing

An important building block in our multi-party threshold PSI protocols is a multi-party protocol
for private intersection cardinality testing which we define below. Consider n parties P1, . . . , Pn
with input sets S1, . . . , Sn respectively of equal size m. Their goal is to run an MPC protocol Π at
the end of which each party learns whether the size of the intersection I of all the sets is sufficiently
large. As before, we consider two functionalities. In the first functionality FCTest-int, each party
Pi learns whether |Si \ I| ≤ T . In the second functionality FCTest-diff , each party learns whether
|(
⋃n
i=1 Si) \ I| ≤ T . The formal definitions of the two ideal functionalities are presented in Figure 3

and Figure 4.

Parameters: Parties P1, . . . , Pn. Each party has a set of m elements. Threshold T ∈ N.

Inputs: Party Pi has an input set Si = {ai1, . . . , aim} where aij ∈ Fp for all j ∈ [m].

Output: Each party Pi receives similar if |Si \ I| ≤ T and different otherwise where I =
⋂n
i=1 Si.

Figure 3: Ideal functionality FCTest-int for multi-party private intersection cardinality testing.

14



Parameters: Parties P1, . . . , Pn. Each party has a set of m elements. Threshold T ∈ N.

Inputs: Party Pi has an input set Si = {ai1, . . . , aim} where aij ∈ Fp for all j ∈ [m].

Output: Each party Pi receives similar if |(
⋃n
i=1 Si) \ I| ≤ T and different otherwise where I =⋂n

i=1 Si.

Figure 4: Ideal functionality FCTest-diff for multi-party private intersection cardinality testing.

3.5 Threshold Fully Homomorphic Encryption

We define the notion of a threshold fully homomorphic encryption (TFHE) scheme with distributed
setup introduced in the work of Boneh et al. [BGG+18]. Also, throughout the paper, we are only
interested in the n-out-of-n threshold setting.

Definition 3.1. (Threshold Fully Homomorphic Encryption (TFHE) with Distributed
Setup) Let P = {P1, . . . , Pn} be a set of parties. A TFHE scheme consists of a tuple of PPT
algorithms TFHE = (TFHE.DistSetup,TFHE.Enc,TFHE.Eval,TFHE.PartialDec,TFHE.Combine) with
the following syntax:

• (pki, ski)← TFHE.DistSetup(1λ, i): On input the security parameter λ and a party index i, the
distributed setup algorithm outputs the parameters associated with the i-th party: a component
of the public key pki, and a share of the secret key ski. We denote the public key of the scheme
pk to be (pk1|| . . . ||pkn).

• JmK ← TFHE.Enc(pk,m): On input a public key pk and a plaintext m in the message space
M, the encryption algorithm outputs a ciphertext JmK.

• JyK← TFHE.Eval(pk,C, Jm1K , . . . , JmkK): On input a public key pk, a circuit C of polynomial
size that takes k inputs each from the message space and outputs one value in the message
space, and a set of ciphertexts Jm1K , . . . , JmkK, the evaluation algorithm outputs a ciphertext
JyK.

• Jm : skiK ← TFHE.PartialDec(ski, JmK): On input a a secret key share ski and a ciphertext
JmK, the partial decryption algorithm outputs a partial decryption Jm : skiK.

• m/⊥ ← TFHE.Combine(pk, {Jm : skiK}i∈[n]): On input a public key pk and a set of partial
decryptions {Jm : skiK}i∈[n], the combination algorithm either outputs a plaintext m or the
symbol ⊥.

As in a standard homomorphic encryption scheme, we require that a TFHE scheme satisfies
compactness, correctness and security. We discuss these properties below.

Compactness. A TFHE scheme is said to be compact if there exists polynomials poly1(·) and
poly2(·) such that for all λ, all message spaces M with size of each message being poly3(λ), circuit
C of size at most poly4(λ) and mi ∈M for i ∈ [k], the following condition holds. For {(pkj , skj)←
TFHE.DistSetup(1λ, j)}j∈[n], JmiK ← TFHE.Enc(pk,mi) for i ∈ [k], JyK ← TFHE.Eval(pk,C, Jm1K ,
. . . , JmkK), Jy : skjK = TFHE.PartialDec(JyK , skj) for j ∈ [n], | JyK | ≤ poly1(λ) and | Jy : skjK | ≤
poly2(λ).5

5Note that in the definition given in [BGG+18], the size of the partial decryption also grows with n for arbitrary
t-out-of-n threshold schemes. Here, we focus only on the n-out-of-n threshold, in which case there is no dependence
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Evaluation Correctness. Informally, a TFHE scheme is said to be correct if recombining partial
decryptions of a ciphertext output by the evaluation algorithm returns the correct evaluation of the
corresponding circuit on the underlying plaintexts. Formally, We say that a TAHE scheme satisfies
evaluation correctness if for all λ, all message spaces M, circuit C and mi ∈ M for i ∈ [k], the
following condition holds. For {(pkj , skj)← TFHE.DistSetup(1λ, j)}j∈[n], JmiK← TFHE.Enc(pk,mi)
for i ∈ [k], JyK← TFHE.Eval(pk,C, Jm1K , . . . , JmkK),

Pr[TFHE.Combine(pk,TFHE.PartialDec(JyK , ski)i∈[n]) = C(m1, . . . ,mk)] = 1− negl(λ).

Semantic Security. Informally, a TFHE scheme is said to provide semantic security if any PPT
adversary cannot distinguish between encryptions of arbitrarily chosen plaintext messages m0 and
m1, even given the secret key shares corresponding to a subset S of the parties for any set S of size
at most (n − 1). Formally, a TFHE scheme satisfies semantic security if for all λ, message space
M, for any PPT adversary A, Pr[ExptTFHE,sem(1λ) = 1] ≤ 1/2 + negl(λ) where the experiment

ExptTFHE,sem(1λ) is defined as:

ExptTFHE,sem(1λ):

1. On input the security parameter 1λ, the message space M and the number of parties n, the
adversary A does the following: Pick a set S of size at most (n− 1). For each i ∈ S, compute
(pki, ski)← TAHE.DistSetup(1λ, i). Pick two messages (m0,m1). Send (S, {pki, ski}i∈S ,m0,m1)
to the challenger.

2. The challenger runs {(pkj , skj) ← TFHE.DistSetup(1λ, j)}j∈[n]\S , and provides {pki}i∈[n]\S)
along with TFHE.Enc(pk,mb) toA where b is picked uniformly at random and pk = (pk1|| . . . ||pkn).

3. A outputs a guess b′. The experiment outputs 1 if b = b′.

Simulation Security. Informally, a TFHE scheme is said to provide simulation security if there
exists an efficient algorithm TFHE.Sim that takes as input a circuit C, a ciphertext JyK that is
computed by running the TFHE.Eval algorithm on a set of ciphertexts Jm1K , . . . , JmkK, the output
of C on the corresponding plaintexts, and outputs a set of partial decryptions corresponding to
some subset of parties, such that its output is computationally indistinguishable from the output
of a real algorithm that homomorphically evaluates the circuit C on the ciphertexts Jm1K , . . . , JmkK
and outputs partial decryptions using the corresponding secret key shares for the same subset of
parties. In particular, the computational indistinguishability holds even when a PPT adversary is
given the secret key shares corresponding to a subset S of the parties, so long as TFHE.Sim also
gets the secret key shares corresponding to the set of parties in S.

Formally, a TFHE scheme satisfies simulation security if for all λ, message space M, for any
PPT adversary A, there exists a simulator TFHE.Sim such that the following two experiments
ExptTFHE,Real(1

λ) and ExptTFHE,Ideal(1
λ) are computationally indistinguishable.

ExptTFHE,Real(1
λ):

on n for the sizes. Also, the definition given in [BGG+18] specifies an upper bound d on the circuit depth and the
size of partial decryption grows with the circuit depth. We do not include d in our definition because we will rely on
circular-secure LWE to achieve the “strong” compactness.
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1. On input of the security parameter 1λ, the message space M and the number of parties n,
the adversary A does the following: Pick a set S of size at most (n − 1). For each i ∈ S,
compute (pki, ski)← TAHE.DistSetup(1λ, i). Send (S, {pki, ski}i∈S) to the challenger.

2. The challenger runs {(pkj , skj)← TFHE.DistSetup(1λ, 1d, j)}j∈[n]\S , and provides ({pki}i∈[n]\S)
to A. Set pk := (pk1|| . . . ||pkn).

3. The adversary picks a set of messages m1, . . . ,mk for k = poly(λ) and a set S1 ⊆ [k]. It
computes JmiK := TFHE.Enc(pk,mi; ri) for each i ∈ S1 and sends (m1, . . . ,mk, {ri}i∈[S1]) to
the challenger.

4. The challenger computes and sends JmiK := TFHE.Enc(pk,mi; ri) to A for each i ∈ [k] \ S1.

5. A issues a query with a circuit C. The challenger first computes JyK := TFHE.Eval(pk,C, Jm1K ,
. . . , JmkK) where JmiK = TFHE.Enc(pk,mi; ri). Then, it outputs {TFHE.PartialDec(ski, JyK)}i/∈S
to A.

6. The adversary may repeat step 5 poly(λ) many times.

7. At the end of the experiment, A outputs a distinguishing bit b.

ExptTFHE,Ideal(1
λ):

1. Perform steps 1-4 of the real world experiment ExptTFHE,Real(1
λ).

2. A issues a query with a circuit C. The challenger first computes JyK := TFHE.Eval(pk,C,
Jm1K , . . . , JmkK). Then, the challenger outputs TFHE.Sim(C,C(m1, . . . ,mk), JyK , {ski}i∈S) to
A.

3. The adversary may repeat step 2 poly(λ) many times.

4. At the end of the experiment, A outputs a distinguishing bit b.

Imported Theorem 1 ( [BGG+18, BJMS18]). Assuming circular-secure LWE, there exists a
TFHE scheme for the n-out-of-n threshold access structure.6

3.6 Threshold Additive Homomorphic Encryption

We define a threshold additive homomorphic encryption scheme (TAHE) with distributed setup by
following the definition of threshold fully homomorphic encryption above but restricting it to only
additive homomorphism. A TAHE scheme with distributed setup consists of the following PPT al-
gorithms TAHE = (TAHE.DistSetup,TAHE.Enc, TAHE.Eval,TAHE.PartialDec,TAHE.Combine) with
the only difference from TFHE being that in the algorithm TAHE.Eval, the circuit C is only allowed
to be linear. That is, by a linear circuit, we mean that C(x1, . . . , xk) = (Σk

i=1ai · xi + b) for some
values (a1, . . . , ak, b) hardwired into the circuit.

6Note that we require circular-secure LWE and not standard LWE only because we require “strong” compactness
where the size of the ciphertext and partial decryption doesn’t grow with the circuit depth.
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Instantiations. We note that several popular additively homomorphic encryption schemes in
literature such as ElGamal encryption [Gam84] (based on the Decisional Diffie Hellman assumption)
and Paillier encryption [Pai99] (based on the Decisional Composite Residuosity assumption). can
in fact be easily converted into a TAHE scheme with the security properties we require. We refer
the reader to the work of Hazay and Venkitasubramaniam [HV17] for more details.

Re-randomization. We implicitly assume that each homomorphic evaluation on a set of cipher-
texts is concluded with a refresh operation, where the party adds the resulting ciphertext with an
independently generated ciphertext that encrypts zero. This is required in order to ensure that the
randomness of the final ciphertext is independent of the randomness of the original set of cipher-
texts. For the schemes we mentioned above, a homomorphically evaluated ciphertext is statistically
identical to a fresh ciphertext. That is, for any {(pkj , skj)← TAHE.DistSetup(1λ, j)}j∈[n], any linear
circuit C with input m1, . . . ,mk, any JmiK← TAHE.Enc(pk,mi), it holds that

TAHE.Eval(pk,C, Jm1K , . . . , JmkK) ≡ TAHE.Enc(pk,C(m1, . . . ,mk)).

3.7 Linear Algebra

In the security proofs of our protocols, we will make use of a few lemmas about polynomials stated
below. The proofs are postponed to Appendix A.

Imported Lemma 1 (Lemma 2 from [GS19a]). Let F be a finite field of order q = Ω(2λ). Let
polynomial p(x) ∈ F[x] be an arbitrary but fixed non-zero polynomial of degree at most dp and let
R(x) ∈ F[x] be a uniformly random polynomial of degree dR. Then

Pr[gcd(p(x), R(x)) 6= 1] ≤ negl(λ).

Lemma 3.2. Let F be a finite field of order q = Ω(2λ). Fix any n = O(poly(λ)). For all polynomials
p1(x), ..., pn(x) ∈ F[x] such that gcd(p1, ..., pn) = 1, for all 1 ≤ i < n,

Pr
rj

[gcd(p′1 + ...+ p′i, p
′
i+1, ..., p

′
n) 6= 1] ≤ negl(λ)

where for all j ∈ [n], p′j(x) := p(x) · (x− rj) and rj
$← F.

Lemma 3.3. Let F be a finite field of prime order q. Fix any n = O(poly(λ)). For all polynomials
p1(x), . . . , pn(x) ∈ F[x] each of degree α with gcd(p1, . . . , pn) = 1, let R1(x), . . . , Rn(x) ∈ F[x] be

random polynomials with degree β ≥ α. Specifically, R1(x) =
∑β

j=0 r1,jx
j , . . . , Rn(x) =

∑β
j=0 rn,jx

j

where ri,j
$← F are sampled independently and uniformly at random. Let U(x) =

∑n
i=1(pi(x) ·

Ri(x)) =
∑α+β

j=0 ujx
j, then uj’s are distributed uniformly and independently over F.

4 Communication Lower Bound

In this section, we prove communication lower bounds for multi-party threshold PSI protocols in
the point-to-point network model. Recall that we consider all parties to have sets of the same size
m. We show that any secure protocol must have communication complexity at least Ω(n ·T ), where
n denotes the number of parties and T is the threshold parameter for both functionalities FTPSI-int

and FTPSI-diff .
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4.1 Lower Bound for FTPSI-int

Before proving the lower bound, we first prove another related theorem below.

Theorem 4.1. For any multi-party threshold PSI protocol for functionality FTPSI-int that is secure
against a semi-honest adversary that can corrupt up to (n − 1) parties, for every party Pi, the
communication complexity of Pi is Ω(T ).7

Proof. Suppose this is not true. That is, suppose there exists a secure multi-party threshold PSI
protocol Π for functionality FTPSI-int in which for some party Pi∗ , CC(Pi∗) = o(T ) where CC(·)
denotes the communication complexity. We will now use this protocol Π as a subroutine to design
a secure two-party threshold PSI protocol which has communication complexity o(T ).

Consider two parties Q1 and Q2 with input sets X1 and X2 (of same size m) who wish to run
a secure two-party threshold PSI protocol for the following functionality: both parties learn the
output if |(X1 \ X2) ∪ (X2 \ X1)| ≤ 2 · T . We invoke the multi-party threshold PSI protocol Π
with threshold T as follows: Q1 emulates the role of party Pi∗ with input set Si∗ = X1 and Q2

emulates the role of all the other (n − 1) parties with each of their input sets as X2. From the
definition of the functionality FTPSI-int, Q1 learns the output at the end of the protocol if and only
if |X1 \I| ≤ T . Similarly, Q2 learns the output at the end of the protocol if and only if |X2 \I| ≤ T .
Notice that since |X1| = |X2| and I = X1 ∩ X2, |X1 \ I| = |X2 \ I|. Thus, the parties learn the
output if and only if (|X1 \ I|) + (|X2 \ I|) ≤ 2 · T , namely |(X1 \X2) ∪ (X2 \X1)| ≤ 2 · T , which
is the functionality of the two-party threshold PSI. Therefore, correctness is easy to observe. For
security, notice that if Q1 is corrupt, we can simulate it by considering only a corrupt Pi∗ in the
underlying protocol Π and if Q2 is corrupt, we can simulate it by considering all parties except Pi∗

to be corrupt in the underlying protocol Π.
Finally, notice that the communication complexity of the two-party protocol is exactly the same

as CC(Pi∗) in the multi-party protocol Π, which is o(T ). However, recall from the work of Ghosh
and Simkin [GS19a] that any two-party threshold PSI for this functionality has communication
complexity lower bound Ω(T ) leading to a contradiction. Thus, the assumption that there exists a
secure multi-party PSI protocol Π in which for some party Pi∗ , CC(Pi∗) = o(T ) is wrong and this
completes the proof of the theorem.

It is easy to observe that as a corollary of the above theorem, in a setting with only point-
to-point channels (which also includes the star network), the overall communication complexity of
the protocol must be at least n times the minimum communication complexity that each party is
involved in, giving the lower bound of Ω(n · T ). Formally,

Corollary 4.2. For any multi-party threshold PSI protocol for functionality FTPSI-int that is secure
against a semi-honest adversary that can corrupt up to (n−1) parties, the communication complexity
is Ω(n · T ).

4.2 Lower Bound for FTPSI-diff

The lower bound proof for functionality FTPSI-diff is very similar to the one for FTPSI-int. The only
difference is that in the reduction, we invoke the two-party threshold PSI protocol where both

7We define the communication complexity of a party Pi in any protocol execution as the complexity of all the
communication that Pi is involved in. That is, the complexity of the messages both incoming to and outgoing from
Pi.
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parties learn the output if |(X1 \X2) ∪ (X2 \X1)| ≤ T instead of 2 · T as in the previous case. We
elaborate on the proof for the sake of completeness.

Once again, before we prove the lower bound, we first prove another related theorem below.

Theorem 4.3. For any multi-party threshold private intersection protocol for functionality FTPSI-diff

that is secure against a semi-honest adversary that can corrupt up to (n−1) parties, for every party
Pi, the communication complexity of Pi is Ω(T ).

Proof. Suppose this is not true. That is, suppose there exists a secure multi-party threshold PSI
protocol Π for functionality FTPSI-diff in which for some party Pi∗ , CC(Pi∗) = o(T ). We will now
use this protocol Π as a subroutine to design a secure two-party threshold PSI protocol which has
communication complexity o(T ).

Consider two parties Q1 and Q2 with input sets X1 and X2 (of same size) who wish to run
a secure two-party threshold PSI protocol for the following functionality: both parties learn the
output if |(X1 \X2) ∪ (X2 \X1)| ≤ T . We invoke the multi-party threshold PSI protocol Π with
threshold T as follows: Q1 emulates the role of party Pi∗ with input set Si∗ = X1 and Q2 emulates
the role of all the other (n − 1) parties with each of their input sets as X2. From the definition
of the functionality FTPSI-diff , the parties learn the output at the end of the protocol if and only if
|(
⋃n
i=1 Si) \ I| ≤ T , namely |(X1 \X2)∪ (X2 \X1)| ≤ T , which is the functionality of the two-party

threshold PSI primitive. Thus, correctness is easy to observe. For security, notice that if Q1 is
corrupt, we can simulate it by considering only a corrupt Pi∗ in the underlying protocol Π and if Q2

is corrupt, we can simulate it by considering all parties except Pi∗ to be corrupt in the underlying
protocol Π.

Finally, notice that the communication complexity of the two-party protocol is exactly the same
as CC(Pi∗) in the multi-party protocol Π, which is o(T ). However, recall from the work of Ghosh
and Simkin [GS19a] that any two-party threshold PSI for this functionality has communication
complexity lower bound Ω(T ) leading to a contradiction. Thus, the assumption that there exists a
secure multi-party threshold PSI protocol Π in which for some party Pi∗ , CC(Pi∗) = o(T ) is wrong
and this completes the proof of the theorem.

Similarly as in the proof for FTPSI-int, we get the following corollary from the above theorem:

Corollary 4.4. For any multi-party threshold PSI protocol for functionality FTPSI-diff that is secure
against a semi-honest adversary that can corrupt up to (n−1) parties, the communication complexity
is Ω(n · T ) where n is the number of parties and T is the threshold parameter.

5 TFHE-Based Private Intersection Cardinality Testing

In this section, we present two protocols for private intersection cardinality testing, one for func-
tionalities FCTest-int (described in Figure 3) and the other for FCTest-diff (described in Figure 4).
Both protocols are based on n-out-of-n threshold fully homomorphic encryption with distributed
setup. The former functionality states that the intersection must be of size at least (m− T ) where
m is the size of each set. The latter functionality requires the difference between the union of all
the sets and the intersection be of size at most T . Due to the possibility of elements appearing in
a strict subset of the sets, these two functionalities are not equivalent.
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5.1 Protocol for Functionality FCTest-int

In this protocol, we compute the cardinality predicate b where b = 1 if and only if ∀i, |Si \ I| ≤ T .
The communication complexity of this protocol involves sending O(nT ) TFHE ciphertexts and
performing a single decryption of the result. We briefly describe the approach below.

Each party Pi first encodes their set Si as a polynomial pi(x) :=
∏
a∈Si(x − a) ∈ F[x]. Each

of these polynomials are then randomized as p′i(x) := pi(x) · (x − ri) where Pi uniformly samples

ri
$← F. The central party also picks a random z

$← F which is sent to every other party. Each
party Pi then computes ei,j := p′i(j) for j ∈ [2T + 3] and e′i := p′i(z). Pi sends the ciphertexts
Jei,jK := TFHE.Enc(pk, ei,j) and Je′iK := TFHE.Enc(pk, e′i) to P1. Party P1 considers the rational
polynomial

p′(x) =
p′2(x) + · · ·+ p′n(x)

p′1(x)

and homomorphically computes 2T + 3 encrypted evaluations(
j,

s
e2,j + · · ·+ en,j

e1,j

{)
for j = [2T + 3]. Using these encrypted evaluations, P1 homomorphically computes an encrypted
rational polynomial Jp∗(x)K using rational polynomial interpolation. Note that p∗(x) = p′(x) if
p′(x) has degree at most 2T + 2. Furthermore, P1 can homomorphically compute an encryption of

the predicate b :=
(

p∗(z)
?
=

e′2+···+e′n
e′1

)
. Finally the parties jointly perform a threshold decryption

of JbK and party P1 learns the output which is sent to every other party.
There are a few subtleties in parsing this protocol. First, the protocol attempts to interpolate

the rational polynomial p′(x) =
p′2(x)+···+p′n(x)

p′1(x)
using 2T+3 points.8 This is because p′(x) has degree

at most 2T + 2 if the intersection is of size at least m − T . In particular, if |I| ≥ m − T , then
the roots that encode the intersection will be canceled out in the numerator and denominator of
p′(x) leaving a rational polynomial of degree at most 2T + 2. If this is the case, then p∗(x) = p′(x)

and hence p∗(z) = p′(z) =
e′2+···+e′n

e′1
. Otherwise the equality only holds with negligible probability.

Another subtlety in the protocol is that we add a random term (x− ri) in each polynomial p′i(x).
Note that there is a subtle issue if we only use (p2(x)+ · · ·+pn(x)) in the numerator. In particular,
it is possible for the sum of these polynomials to accidentally generate roots that are not in the
intersection and cancel out with p1(x). To prevent this issue we randomize each polynomial pi(x)
as p′i(x) = pi(x) · (x− ri) for some random value ri. The full protocol is detailed in Figure 5.

Theorem 5.1. Assuming threshold FHE with distributed setup, protocol ΠTFHE-CTest-int (Figure 5)
securely realizes FCTest-int (Figure 3).

Proof. Correctness. We first prove the protocol is correct. By the correctness of the TFHE
scheme, we only need to show that the computed predicate b = 1 if and only if ∀i, |Si \ I| ≤ T .
First consider the case where the protocol should output similar. Since

p′(x) =
p′2(x) + · · ·+ p′n(x)

p′1(x)
=

p2\I(x) · (x− r2) + · · ·+ pn\I(x) · (x− rn)

p1\I(x) · (x− r1)
,

8A rational polynomial p(x) = f(x)/g(x) where f, g are of degree d can be uniquely interpolated with (2d + 1)
evaluations.
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Parameters: Parties P1, . . . , Pn. Each party has a set of m elements. Threshold T ∈ N. F is a
finite field where |F| = Ω(2λ).

Inputs: Party Pi has an input set Si = {ai1, . . . , aim} where aij ∈ F for all j ∈ [m].

Output: Each party Pi receives similar if |Si \ I| ≤ T and different otherwise where I =
⋂n
i=1 Si.

Protocol:
1. Each party Pi generates (pki, ski) ← TFHE.DistSetup(1λ, i) and sends pki to P1. Then P1

sends pk = (pk1‖ . . . ‖pkn) to all the other parties.

2. P1 picks a random value z ∈ F and sends it to all the other parties.

3. Each party Pi does the following:

(a) Define the polynomial pi(x) :=
∏
a∈Si(x−a) and randomize it by p′i(x) := pi(x) · (x−ri)

where ri
$← F.

(b) Compute ei,j := p′i(j) for j ∈ [2T + 3] and e′i := p′i(z).

(c) Send encrypted evaluations Jei,jK := TFHE.Enc(pk, ei,j) for all j ∈ [2T + 3] and Je′iK :=
TFHE.Enc(pk, e′i) to P1.

4. P1 does the following:

(a) Use the algorithm TFHE.Eval to homomorphically compute an encryption Jp∗(x)K by

rational polynomial interpolation from encrypted evaluations
(
j,

r
e2,j+···+en,j

e1,j

z)
for j ∈

[2T + 3].

(b) Homomorphically compute the encrypted predicate JbK where b = 1 if p∗(z) =
e′2+···+e′n

e′1
and 0 otherwise.

5. P1 sends JbK to all parties who respond with Jb : skiK := TFHE.PartialDec(ski, JbK). P1 broad-
casts b := TFHE.Combine(pk, {Jb : skiK}i∈[n]) and all parties output similar if b = 1 and different
otherwise.

Figure 5: Multi-party private intersection cardinality testing protocol ΠTFHE-CTest-int for FCTest-int.

the degree of each term pi\I(x) · (x − ri) is at most T + 1 and therefore the rational polynomial
interpolation requires a total of (2T + 3) evaluation points. Therefore p∗(x) = p′(x) and p∗(z) =

p′(z) =
e′2+···+e′n

e′1
. Thus b = 1 as required.

Now consider the case where the protocol should output different, namely when |I| < m − T .
Observe that gcd(p1\I , · · · , pn\I) = 1 by construction and therefore Lemma 3.2 states that

gcd
(

p′2\I(x) + · · ·+ p′n\I(x), p′1\I(x)
)

= 1

except with negligible probability, where p′i\I(x) := pi\I(x)·(x−ri). Assuming gcd
(

p′2\I(x) + · · ·+ p′n\I(x), p′1\I(x)
)

=

1, it then follows that the degree of the rational polynomial p′(x) is the degree of p′2\I(x) +

· · · + p′n\I(x) plus the degree of p′1\I(x). The former must have a leading term with degree

(m − |I| + 1) > (T + 1). Similarly, the latter also has degree (m − |I| + 1) > T + 1. Hence
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the degree of p′(x) is at least 2T + 4. The probability of b = 1 is Prz[p
′(z) = p∗(z)] where p∗(x) is

the polynomial interpolated by P1 using (2T + 3) evaluations. However, since the degree of p′(x)
is at least 2T + 4, Prz[p

′(z) = p∗(z)] ≤ negl(λ).

Communication Cost. Each party sends (2T+4) TFHE encryptions and one partial decryption
to P1 where each plaintext is a field element. P1 sends one ciphertext to every other party. The
size of each encryption and each partial decryption is poly(λ). Thus, the overall communication
complexity is O(n · T · poly(λ)) in a star network and the protocols runs in O(1) rounds.

Security. Consider an environment Z who corrupts a set S∗ of n∗ parties where n∗ < n. The
simulator Sim has output w ∈ {similar, different} from the ideal functionality. Sim sets a bit b∗ = 1
if w = similar and b∗ = 0 otherwise. Also, for each corrupt party Pi, Sim has as input the tuple
(Si, ri) indicating the party’s input and randomness for the protocol. The strategy of the simulator
Sim for our protocol is described below.

1. Sim runs the distributed key generation algorithm TFHE.DistSetup(1λ, i) of the TFHE scheme
honestly on behalf of each honest party Pi as in the real world. Note that Sim also knows
({ski}i∈S∗) as it knows the randomness for the corrupt parties.

2. In Steps 2-4 of the protocol, Sim plays the role of the honest parties exactly as in the real
world except that on behalf of every honest party Pi, whenever Pi has to send any ciphertext,
compute J0K = TFHE.Enc(0) using fresh randomness.

3. In Step 5, on behalf of each honest party Pi, instead of sending the value Jb : skiK by running
the honest TFHE.PartialDec algorithm as in the real world, Sim computes the partial decryp-
tions by running the simulator TFHE.Sim as follows: {Jb : SimiK}i∈[n]\S∗ ← TFHE.Sim(C, b∗, JbK , {ski}i∈S∗)
where the circuit C denotes the whole computation done by P1 in the real world to evaluate
bit b. On behalf of the honest party Pi the simulator sends Jb : SimiK. This corresponds to
the ideal world.

We now show that the above simulation strategy is successful against all environments Z that
corrupt parties in a semi-honest manner. We will show this via a series of computationally indistin-
guishable hybrids where the first hybrid Hybrid0 corresponds to the real world and the last hybrid
Hybrid2 corresponds to the ideal world.

• Hybrid0 - Real World: In this hybrid, consider a simulator SimHyb that plays the role of
the honest parties as in the real world.

• Hybrid1 - Simulate Partial Decryptions: - In this hybrid, in Step 5, SimHyb simulates the
partial decryptions generated by the honest parties as done in the ideal world. That is, the
simulator calls {Jb : SimiK}i∈[n]\S ← TFHE.Sim(C, b∗, JbK , {ski}i∈S). On behalf of the honest
party Pi the simulator sends Jb : SimiK instead of Jb : skiK.

• Hybrid2 - Switch Encryptions: In this hybrid, SimHyb now computes every ciphertext
generated on behalf of any honest party as encryptions of 0 as done by Sim in the ideal world.
This hybrid corresponds to the ideal world.

We now show that every pair of consecutive hybrids is computationally indistinguishable.
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Lemma 5.2. Assuming the simulation security of the threshold fully homomorphic encryption
scheme, Hybrid0 is computationally indistinguishable from Hybrid1.

Proof. The only difference between the two hybrids is that in Hybrid0, the simulator SimHyb gen-
erates the partial decryptions of the TFHE scheme on behalf of the honest parties as in the real
world while in Hybrid1, they are simulated by running the simulator TFHE.Sim. We now show
that if there exists an environment Z that can distinguish between these two hybrids with some
non-negligible probability ε, we will come up with a reduction A that can break the simulation
security of the TFHE scheme.
A interacts with a challenger C in the simulation security game for TFHE and with the envi-

ronment Z in the game between Hybrid0 and Hybrid1. A corrupts the same set of parties as done
by Z in its game with C. Further, A forwards the public key-secret key pairs (pki, ski) for the
corrupt parties it receives from Z to the challenger and the public keys pki for the honest parties
from C to Z. A also forwards to C the set of messages to be encrypted along with the randomness
for the ones encrypted by the adversary, received from Z. Similarly, it forwards the ciphertexts
received from C to Z. Finally, A sends the circuit C that denotes the whole computation done by
P1 in the real world to evaluate bit b and receives a set of partial decryptions on behalf of each
honest party which it forwards to A. It continues interacting with Z as in Hybrid0 in the rest of its
interaction. It is easy to see that if C sent honestly generated partial decryptions, the interaction
between A and Z exactly corresponds to Hybrid0 and if the partial decryptions were simulated, the
interaction between A and Z exactly corresponds to Hybrid1. Thus, if Z can distinguish between
the two hybrids with non-negligible probability ε, A can break the simulation security of the TFHE
scheme with the same probability ε which is a contradiction.

Lemma 5.3. Assuming the semantic security of the threshold fully homomorphic encryption scheme,
Hybrid1 is computationally indistinguishable from Hybrid2.

Proof. The only difference between the two hybrids is that in Hybrid1, the simulator SimHyb gener-
ates the encryptions of the TFHE scheme on behalf of the honest parties as in the real world while
in Hybrid2, they are generated as encryptions of 0. We now show that if there exists an adversarial
environment Z that can distinguish between these two hybrids with some non-negligible probability
ε, we will come up with a reduction A that can break the semantic security of the TFHE scheme.
A interacts with a challenger C in the semantic security game for TFHE and with the environ-

ment Z in the game between Hybrid1 and Hybrid2. A corrupts the same set of parties as done by
Z in its game with C. Further, A forwards the public key-secret key pairs (pki, ski) for the corrupt
parties it receives from Z to the challenger and the public keys pki for the honest parties from C
to Z. A also forwards the pair of 0 and the set of honestly generated plaintexts to be encrypted,
to the challenger and receives back a ciphertext for each of them which it uses in its interaction
with Z. It continues interacting with Z as in Hybrid1 in the rest of its interaction. It is easy to see
that if C sent honestly generated ciphertexts, the interaction between A and Z exactly corresponds
to Hybrid1 and if the ciphertexts were generated as encryptions of 0, the interaction between A
and Z exactly corresponds to Hybrid2. Thus, if Z can distinguish between the two hybrids with
non-negligible probability ε, A can break the semantic security of the TFHE scheme with the same
probability ε which is a contradiction.
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5.2 Protocol for Functionality FCTest-diff

This protocol will compute the cardinality predicate b where b = 1 if and only if |(
⋃n
i=1 Si) \ I| ≤ T .

The core idea behind the protocol is that P1 (the star of the network) and Pi first run a protocol
to compute an encryption (via TFHE) of their set differences D1,i = S1 \ Si and Di,1 = Si \ S1
with O(T ) communication complexity if |S1 \ Si| ≤ T . Before we describe how this is achieved,
notice that at this point, the protocol enables P1 to reconstruct an encryption of (

⋃n
i=1 Si) \ I =⋃

i∈[n]\{1}(D
∗
1,i ∪D∗i,1) and a predicate b where b = 1 if and only if |(

⋃n
i=1 Si) \ I| ≤ T . P1 can then

send this encryption to all parties to run threshold decryption.
We now describe in more detail how the encryption of D1,i and Di,1 are computed. The idea

follows from the two-party protocol of Ghosh and Simkin [GS19a]. Each party Pi encodes their set
Si as pi(x) := Πa∈Si(x−a) ∈ F[x]. Pi then computes ei,j := pi(j) for j ∈ [2T +1] and e′i := pi(z) on
a special random point z ∈ F (picked uniformly at random by P1). Party Pi encrypts these values
as Jei,jK , Je′iK and sends them to P1. Party P1 considers the rational polynomial

p̃i(x) =
pi(x)

p1(x)
=

pi\1(x)

p1\i(x)

and homomorphically computes 2T + 1 encrypted evaluations
(
j,

r
ei,j
e1,j

z)
for j = [2T + 1]. Us-

ing these encrypted evaluations, P1 homomorphically computes an encrypted rational polynomial
Jp̃∗i (x)K using rational polynomial interpolation. P1 then homomorphically reconstructs the roots

of pi\1(x) and p1\i(x) from p̃∗i to obtain
r
D∗i,1

z
,
r
D∗1,i

z
. Note that p̃∗i (x) = p̃i(x) if p̃i(x) has degree

at most 2T , in which case D∗i,1 = Di,1 and D∗1,i = D1,i.
In the final protocol, P1 homomorphically computes encrypted predicates bi where bi = 1 iff

p̃∗i (z) =
e′i
e′1

for each i ∈ [n]\{1} and encrypted predicate b′ where b′ = 1 iff
∣∣∣⋃i∈[n]\{1}(D

∗
1,i ∪D∗i,1)

∣∣∣ ≤
T . The output predicate b is homomorpically computed as JbK =

r
b′ ·
∏
i∈[n]\{1} bi

z
and jointly

decrypted by all the parties. The protocol is formally described in Figure 6.

Theorem 5.4. Assuming threshold FHE with distributed setup, protocol ΠTFHE-CTest-diff (Figure 6)
securely realizes FCTest-diff (Figure 4).

Proof. Correctness. We first prove the protocol is correct. By the correctness of the TFHE
scheme, we only need to show that the computed predicate b = 1 if and only if |(

⋃n
i=1 Si) \ I| ≤ T .

First consider the case where the protocol should output similar. Since

p̃i(x) =
pi(x)

p1(x)
=

pi\1(x)

p1\i(x)
,

both the numerator and denominator have degree at most T and therefore the rational polynomial
interpolation requires at most (2T + 1) evaluation points. Hence p̃∗i (x) = p̃i(x) and p̃∗i (z) = p̃i(z) =
e′i
e′1

, thus bi = 1. Since the roots of pi\1 is simply the set difference Di,1 = Si \ S1, we have

D∗i,1 = Di,1 = Si \S1. Similarly D∗1,i = S1 \Si. Since
∣∣∣⋃i∈[n]\{1}(D

∗
1,i ∪D∗i,1)

∣∣∣ = |(
⋃n
i=1 Si) \ I| ≤ T ,

we have b′ = 1. Hence the protocol will output b = 1.
Now consider the case where the protocol should output different, namely |(

⋃n
i=1 Si) \ I| > T .

There are two possible cases. In the first case, |Si \S1| > T for some i. Then p̃i has degree at least
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Parameters: Parties P1, . . . , Pn. Each party has a set of m elements. Threshold T ∈ N. F is a
finite field where |F| = Ω(2λ).

Inputs: Party Pi has an input set Si = {ai1, . . . , aim} where aij ∈ F for all j ∈ [m].

Output: Each party Pi receives similar if |(
⋃n
i=1 Si) \ I| ≤ T and different otherwise where I =⋂n

i=1 Si.

Protocol:
1. Each party Pi generates (pki, ski) ← TFHE.DistSetup(1λ, i) and sends pki to P1. Then P1

sends pk = (pk1‖ . . . ‖pkn) to all the other parties.

2. P1 picks a random value z ∈ F and sends it to all parties.

3. Each party Pi does the following:

(a) Define the polynomial pi(x) :=
∏
a∈Si(x− a).

(b) Compute ei,j := pi(j) for j ∈ [2T + 1] and e′i := pi(z).

(c) Send encrypted evaluations Jei,jK := TFHE.Enc(pk, ei,j) for j ∈ [2T + 1] and Je′iK :=
TFHE.Enc(pk, e′i) to P1.

4. P1 does the following:

(a) For each i ∈ [n] \ {1}, use the algorithm TFHE.Eval to homomorphically compute an en-
cryption Jp̃∗i (x)K by rational polynomial interpolation from 2T +1 encrypted evaluations(
j,

r
ei,j
e1,j

z)
for j ∈ [2T + 1].

(b) For each i ∈ [n] \ {1}, homomorphically compute the encrypted predicate JbiK where

bi = 1 if p̃∗i (z) =
e′i
e′1

and 0 otherwise.

(c) For each i ∈ [n] \ {1}, homomorphically compute the encrypted roots
r
D∗i,1

z
,
r
D∗1,i

z
of

the numerator and denominator of p̃∗i (x), respectively.

(d) Homomorphically compute the encrypted predicate Jb′K where b′ = 1 if∣∣∣⋃i∈[n]\{1}(D
∗
1,i ∪D∗i,1)

∣∣∣ ≤ T and 0 otherwise.

5. P1 sends JbK =
r
b′ ·
∏
i∈[n]\{1} bi

z
to all parties who respond with Jb : skiK :=

TFHE.PartialDec(ski, JbK). P1 broadcasts b := TFHE.Combine(pk, {Jb : skiK}i∈[n]) and all par-
ties output similar if b = 1 and different otherwise.

Figure 6: Multi-party private intersection cardinality testing protocol ΠTFHE-CTest-diff for FCTest-diff

2T + 2 but p̃∗i is interpolated from 2T + 1 evaluation points, hence b′i = 0 with all but negligible
probability. In the second case, |Si \ S1| ≤ T for all i ∈ [n] \ {1}. Then D∗i,1 = Di,1 = Si \ S1,
D∗1,i = S1 \ Si, and bi = 1 for all i. Since |(

⋃n
i=1 Si) \ I| > T , b′ = 0. In both cases, we have

b = b′ ·
∏
i∈[n]\{1} bi = 0 with all but negligible probability.

Communication Cost. Each party sends (2T+2) TFHE encryptions and one partial decryption
to P1 where each plaintext is a field element. P1 sends one ciphertext to every other party. The
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size of each encryption and each partial decryption is poly(λ). Thus, the overall communication
complexity is O(n · T · poly(λ)) in a star network and the protocols runs in O(1) rounds.

Security. The proof of security is identical to the proof of Theorem 5.1. We describe it below for
the sake of completeness.
Consider an environment Z who corrupts a set S∗ of n∗ parties where n∗ < n. The simulator Sim
has input w ∈ {similar, different} from the ideal functionality. Sim sets a bit b∗ = 1 if w = similar and
b∗ = 0 otherwise. Also, for each corrupt party Pi, Sim has as input the tuple (Si, ri) indicating the
party’s input and randomness for the protocol. The strategy of the simulator Sim for our protocol
is described below.

1. Sim runs the distributed key generation algorithm TFHE.DistSetup(1λ, i) of the TFHE scheme
honestly on behalf of each honest party Pi as in the real world. Note that Sim also knows
({ski}i∈S∗) as it knows the randomness for the corrupt parties.

2. In Steps 2-4 of the protocol, Sim plays the role of the honest parties exactly as in the real
world except that on behalf of every honest party Pi, whenever Pi has to send any ciphertext,
compute J0K = TFHE.Enc(0) using fresh randomness.

3. In Step 5, on behalf of each honest party Pi, instead of sending the value Jb : skiK by running
the honest TFHE.PartialDec algorithm as in the real world, Sim computes the partial decryp-
tions by running the simulator TFHE.Sim as follows: {Jb : SimiK}i∈[n]\S∗ ← TFHE.Sim(C, b∗, JbK ,
{ski}i∈S∗) where the circuit C denotes the whole computation done by P1 in the real world
to evaluate bit b. On behalf of the honest party Pi the simulator sends Jb : SimiK. This
corresponds to the ideal world.

We now show that the above simulation strategy is successful against all environments Z that
corrupt parties in a semi-honest manner. We will show this via a series of computationally indistin-
guishable hybrids where the first hybrid Hybrid0 corresponds to the real world and the last hybrid
Hybrid2 corresponds to the ideal world.

• Hybrid0 - Real World: In this hybrid, consider a simulator SimHyb that plays the role of
the honest parties as in the real world.

• Hybrid1 - Simulate Partial Decryptions: - In this hybrid, in Step 5, SimHyb simulates the
partial decryptions generated by the honest parties as done in the ideal world. That is, the
simulator calls {Jb : SimiK}i∈[n]\S ← TFHE.Sim(C, b∗, JbK , {ski}i∈S). On behalf of the honest
party Pi the simulator sends Jb : SimiK instead of Jb : skiK.

• Hybrid2 - Switch Encryptions: In this hybrid, SimHyb now computes every ciphertext
generated on behalf of any honest party as encryptions of 0 as done by Sim in the ideal world.
This hybrid corresponds to the ideal world.

We now show that every pair of consecutive hybrids is computationally indistinguishable.

Lemma 5.5. Assuming the simulation security of the threshold fully homomorphic encryption
scheme, Hybrid0 is computationally indistinguishable from Hybrid1.

Proof. This is identical to the proof of Lemma 5.2.
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Lemma 5.6. Assuming the semantic security of the threshold fully homomorphic encryption scheme,
Hybrid1 is computationally indistinguishable from Hybrid2.

Proof. This is identical to the proof of Lemma 5.3.

6 TAHE-Based Protocol for FCTest-diff

In this section, we present a multi-party protocol for private intersection cardinality testing for
functionality FCTest-diff based on threshold additive homomorphic encryption with distributed setup.
That is, the parties learn whether their sets satisfy |(

⋃n
i=1 Si) \ I| ≤ T . Our protocol works in the

star network communication model where P1 is the central party.
In our construction we will make use of a sub-protocol that realizes multi-party homomorphic

matrix multiplication, which enables the parties to homomorphically multiply two encrypted ma-
trices. The details will be presented in Section 6.1. In addition, we need a secure multi-party
computation (MPC) protocol that computes the minimal polynomial of a linearly recurrent se-
quence, which we discuss in Section 6.2. Finally, we present our protocol in Section 6.3.

6.1 Multi-Party Homomorphic Matrix Multiplication

In the sub-protocol for multi-party homomorphic matrix multiplication, two encrypted matrices
JAK and JBK are publicly known to all the parties and the secret key of the TAHE scheme is shared
among all the parties. At the end of the sub-protocol, all the parties learn as output a fresh
encryption of the multiplied matrix JA ·BK, and nothing else is leaked.

Our protocol is a generalization of the two-party homomorphic matrix multiplication proto-
col [KMWF07]. We briefly describe our protocol inspired by [Bea91]. First each party Pi generates
two uniformly random matrices RAi and RBi sends encryption

q
RAi

y
,
q
RBi

y
to party P1. Then P1

homomorphically computes three encrypted matrices
q
RA

y
=

q∑n
i=1R

A
i

y
,

q
MA

y
=

q
A+RA

y
,

and
q
MB

y
=

q
B +

∑n
i=1R

B
i

y
and sends back to all the parties. The parties jointly decrypt

q
MA

y

and
q
MB

y
to P1. Now P1 has two matrices (MA,MB) in the clear, and each party Pi holdsq

RA
y
,
q
MA

y
,
q
MB

y
. Note that

AB =

(
MA −

n∑
i=1

RAi

)
·

(
MB −

n∑
i=1

RBi

)

=MAMB −
n∑
i=1

MARBi −
n∑
i=1

RAi M
B +

n∑
i=1

RARBi .

To compute an encryption ofAB, each party Pi homomorphically computes
q
RARBi −MARBi −RAi MB

y

and sends to P1. Finally P1 can homomorphically compute JABK from a linear combination of ex-
isting ciphertexts. Our multi-party protocol ΠMMult is presented in Figure 7.

Correctness. Correctness of the protocol mainly follows from the correctness of TAHE. We
show that the final ciphertext computed by P1 in Step 4c is an encryption of A · B. Note that
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Input: Each party Pi inputs (pk, JAK , JBK , ski), where pk is the public key of the TAHE scheme,
JAK and JBK are item-wise encryption of matrix A ∈ Fk×s and matrix B ∈ Fs×`, ski is the secret
key share of party Pi for TAHE.

Output: Each party receives a fresh encryption of A ·B, namely JA ·BK.

Protocol:
1. Each party Pi samples two random matrices RAi

$← Fk×s, RBi
$← Fs×`, and sends encryption

of them (
q
RAi

y
,
q
RBi

y
) to P1.

2. Let RA =
∑n

i=1R
A
i , MA = A + RA, RB =

∑n
i=1R

B
i , MB = B + RB. P1 homomorphically

compute
q
RA

y
,
q
MA

y
,
q
MB

y
, and sends them to all the other parties.

3. Each party Pi does the following:

(a) Homomorphically compute cti =
q
RARBi −MARBi −RAi MB

y
and send to P1.

(b) Compute
q
MA : ski

y
← TAHE.PartialDec(ski,

q
MA

y
) and

q
MB : ski

y
←

TAHE.PartialDec(ski,
q
MB

y
), and send

(q
MA : ski

y
,
q
MB : ski

y)
to P1.

4. P1 does the following:

(a) Compute MA ← TAHE.Combine(pk, {
q
MA : ski

y
}i∈[n]) and MB ← TAHE.Combine(pk,

{
q
MB : ski

y
}i∈[n]).

(b) Compute an encryption of the product of the two matrices
q
MA ·MB

y
.

(c) Homomorphically compute

JA ·BK =

t

MA ·MB +

n∑
i=1

(
RA ·RBi −MA ·RBi −RAi ·MB

)|

and send to all the other parties.

Figure 7: Multi-party homomorphic matrix multiplication protocol ΠMMult.

MA = A+RA = A+
∑n

i=1R
A
i and MB = B +RB = B +

∑n
i=1R

B
i . We have

AB =

(
MA −

n∑
i=1

RAi

)
·

(
MB −

n∑
i=1

RBi

)

=MAMB −
n∑
i=1

MARBi −
n∑
i=1

RAi M
B +

n∑
i=1

RARBi

=MAMB +
n∑
i=1

(
RARBi −MARBi −RAi MB

)
.

Communication Cost. The protocol requires O(1) rounds of communication in a star network
and the total communication complexity is O((ks+ s`) · n · poly(λ)).

Security. Intuitively speaking, the protocol does not leak any information apart from the output
and the security is relying on the security of the TAHE scheme and the fact that any subset of
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parties cannot recover the secret key of the TAHE scheme. However, there is a subtle issue in
formally proving security of the protocol. In particular, if we formalize the ideal functionality for
the multi-party homomorphic matrix multiplication, every party holds two encrypted matrices and
the secret key is shared among all the parties. Since the distinguisher can choose the inputs for
all the parties, it knows all the secret key shares of the TAHE scheme, hence we can not rely on
the security of TAHE. The fundamental problem is that when formalizing the ideal functionality,
we have to involve cryptographic primitives in the inputs, which makes it hard to argue security
based on these primitives. We get around this problem by including all the sub-protocols in our
final multi-party private intersection cardinality testing protocol in Section 6.3 and provide a single
security proof. This approach complicates the security proof, but it avoids including cryptographic
primitives in the inputs.

6.2 Computing Minimal Polynomial

In Section 6.3, we will see that intersection cardinality testing can be reduced to determining
whether the determinant of a matrix is 0 or not. The latter problem can be reduced to computing
the minimal polynomial of that matrix, which can be further reduced to computing the minimal
polynomial of a linearly recurrent sequence a = {u>Aiv}i∈N for the matrix A and random vectors
u and v. We take the following theorems from [KMWF07] (Corollary 2 and Lemma 3) and refer the
reader to [VZGG13,KMWF07] for formal definitions of minimal polynomials and linearly recurrent
sequences.

Imported Theorem 2. Let A ∈ Fk×k and let mA(·) be the minimal polynomial of matrix A. Then
det(A) = 0 if and only if mA(0) = 0.

Imported Theorem 3. Let A ∈ Fk×k and let mA(·) be the minimal polynomial of matrix A. For
u,v ∈ Fk chosen uniformly at random, let ma(·) be the minimal polynomial of the linearly recurrent
sequence a = {u>Aiv}i∈N. Then mA = ma with probability at least 1− 2k/|F|.

To compute the minimal polynomial of the sequence a, the first 2k entries of the sequence will
suffice. Specifically, computing the minimal polynomial can be reduced to computing the greatest
common division (GCD) of two polynomial of degree 2k [KMWF07, Appendix A.2]. Using the fast
Extended Euclidean algorithm [VZGG13, Chapter 11], the computation can be carried out using
an arithmetic circuit of size O(k log k).

In our multi-party intersection cardinality testing protocol, the first 2k entries of a will be addi-
tively secret shared among all the parties, and the parties will run a secure multi-party computation
(MPC) protocol to jointly compute the minimal polynomial of a and ma(0), which equals 0 if and
only if the matrix A is singular. The ideal functionality FMinPoly for the multi-party minimal poly-
nomial computation is defined in Figure 8. We will need an MPC protocol that realizes FMinPoly

with communication complexity at most Õ(k2 · n · poly(λ)). Any such protocol suffices, and we
denote by ΠMinPoly the MPC protocol realizing FMinPoly.

Here we describe two such protocols with communication complexity Õ(k · n · poly(λ)) based

on TAHE. In the first protocol, after the TAHE setup, each party Pi sends
q
r0i

y
, . . . ,

r
r2k−1i

z
to

P1 and P1 homomorphically computes
q
aj

y
for all j. Afterwards P1 can homomorphically evaluate

a circuit C that computes a predicate b
?
= (ma(0) = 0), following the ideas from [FH96, CDN01].

Finally the parties jointly decrypt the encrypted output. Since the size and depth of C are both
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Parameters: Parties P1, . . . , Pn.

Inputs: Each party Pi inputs 2k field elements r0i , r
1
i , . . . , r

2k−1
i ∈ F.

Output: Let aj =
∑n

i=1 r
j
i for j = 0, 1, . . . , 2k − 1. Compute the minimal polynomial ma of the

sequence {aj}2k−1j=0 . Each party receives 0 if ma(0) = 0 and 1 otherwise.

Figure 8: Ideal functionality FMinPoly for multi-party minimal polynomial computation.

O(k log k), the total communication complexity of this protocol is O(k log k · n · poly(λ)) and the
round complexity is O(k log k).

As a second protocol, the parties jointly compute another C ′ that takes {aj}2k−1j=0 and a random
PRF key r as input and outputs a Yao’s garbled circuit [Yao86] that computes C. This approach
is inspired by the work of Damg̊ard et al. [DIK+08]. Since both {aj} and r are additively shared
among all the parties, this MPC can be done similarly as in the previous protocol, namely P1 first
obtains

q
aj

y
and JrK and then homomorphically evaluates C ′. Since the size C ′ is Õ(k ·poly(λ)) and

the depth of C ′ is constant assuming PRG is a circuit in NC1 [AIK05], the total communication
complexity of this protocol is Õ(k · n · poly(λ)) and the round complexity is O(1).

6.3 Our Protocol

In this section we present our multi-party private intersection cardinality testing protocol. That is,
the parties learn whether their sets satisfy |(

⋃n
i=1 Si) \ I| ≤ T .

At a high level, our protocol first encodes each party Pi’s set as a polynomial pi(x) =
∑m

j=1 x
aij ,

and let p(x) := (n− 1)p1(x)−
∑n

i=2 pi(x). Notice that a term xa is cancelled out in the polynomial
p if and only if the element a is in the set intersection I. Therefore, the number of monomials in p
is exactly |(

⋃n
i=1 Si) \ I|.

To determine if the number of monomials in p is ≤ T , we can apply the polynomial sparsity test

of Grigorescu et al. [GJR10] similarly as in [GS19a]. In particular, pick a field Fq, sample u
$← Fq

uniformly at random, and compute the Hankel matrix

H =


p(u0) p(u1) . . . p(uT )
p(u1) p(u2) . . . p(uT+1)

...
...

. . .
...

p(uT ) p(uT+1) . . . p(u2T )

 .
Determining if the number of monomials in p is ≤ T can be reduced to computing the determinant
of H. In particular, we take the following theorem from [GJR10, Theorem 3] and [GS19a, Theorem
1].

Imported Theorem 4. Let q > T (T + 1)(p − 1)2κ be a prime. If the number of monomials
in p is ≤ T , then Pr[det(H) = 0] = 1, and if the number of monomials in p is > T , then
Pr[det(H) = 0] ≤ 2−κ,

In our multi-party private intersection cardinality testing protocol, the parties will first jointly
compute an encryption of H under TAHE and then jointly determine the singularity of H. Recall
that by Imported Theorem 2 and 3, determining the singularity of H can be reduced to computing
the minimal polynomial of a linearly recurrent sequence a = {u>H iv}i∈N for random vectors u
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and v. If P1 picks u,v randomly and sends to all the other parties, then all the parties can jointly
compute encryption of a by multi-party homomorphic matrix multiplication. Afterwards a can
be additively shared among the parties. Finally the parties run a multi-party minimal polynomial
computation protocol to jointly compute the minimal polynomial of a. The protocol is presented
in Figure 9.

Theorem 6.1. Let q > T (T + 1)(p − 1)2κ be a prime. Assuming threshold additive homomor-
phic encryption scheme with distributed setup, the protocol ΠCTest-diff (Figure 9) securely realizes
FCTest-diff in the FMinPoly-hybrid model.

Proof. Correctness. By the correctness of TAHE, at the end of Step 2, P1 obtains an encryption
of the Hankel matrix H. By the correctness of TAHE and ΠMMult, at the end of Step 3e, P1 gets
encryptions of {u>Hjv}2k−1j=0 for random u and v, namely encryptions of the first 2k entries of the

linearly recurrent sequence a = {u>H iv}i∈N. By the correctness of TAHE, at the end of Step 3h,
the first 2k entries of a are secret shared among the n parties. Specifically, each party Pi holds
r0i , . . . , r

2k−1
i such that aj =

∑n
i=1 r

j
i for j = 0, 1, . . . , 2k−1. By the correctness of FMinPoly, in Step 3i

all the parties learn a bit b and b = 0 if and only if ma(0) = 0, where ma is the minimal polynomial
of the sequence {aj}2k−1j=0 . By Imported Theorem 2 and 3, b = 0 if and only if det(H) = 0 with all
but negligible probability. Finally, by Theorem 4, b = 0 if and only if |(

⋃n
i=1 Si) \ I| ≤ T with all

but negligible probability. Therefore the protocol is correct with all but negligible probability.

Communication Cost. The bottleneck of protocol is Step 3d. The total round complexity is
O(log T ) in a star network and the total communication complexity is Õ(T 2 · n · poly(λ)).

Security. We construct a PPT Sim which simulates the view of the corrupted parties. We consider
two cases of corrupted parties. In the first case P1 is corrupted and in the second case P1 is honest.

Case 1: P1 is corrupted. Assume WLOG that the corrupted parties are P1, P2, . . . , Pt where
1 ≤ t ≤ n − 1. The simulator Sim has output w ∈ {similar, different} from the ideal functionality.
Sim sets a bit b∗ = 1 if w = similar and b∗ = 0 otherwise. Also, for each corrupt party Pi, Sim
has as input the tuple (Si, ri) indicating the party’s input and randomness for the protocol. The
strategy of the simulator Sim for our protocol is described below.

1. Invoke the corrupted parties with their corresponding inputs and randomness.

2. Play the role of the honest parties as follows: Run the protocol honestly except that in
Step 2b, each honest party Pi sets Zi := 0k×k and sends JZiK to P1.

3. In Step 3i, play the role of FMinPoly and respond b∗.

Next we argue that the view of the corrupted parties generated by Sim is computationally
indistinguishable to their view in the real world from Z’s point of view, via the following hybrids.

• Hybrid0: The view of corrupted parties and the output of honest parties in the real world.

• Hybrid1: Same as Hybrid0 but the output form FMinPoly is replaced by 0 if |(
⋃n
i=1 Si) \ I| ≤ T

and 1 otherwise. This hybrid is computationally indistinguishable from Hybrid0 because of
the correctness of the protocol.
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1. TAHE Key Generation. Each party Pi generates (pki, ski) ← TAHE.DistSetup(1λ, i) and sends pki to P1.
Then P1 sends pk = (pk1‖ . . . ‖pkn) to all the other parties.

2. Computing Encrypted Hankel Matrix H.

(a) P1 picks a uniform random u
$← Fq and sends to all other parties.

(b) Each party Pi (i = 2, 3, . . . , n) sets a polynomial pi(x) =
∑m
j=1 x

aij in Fq[X], computes the Hankel matrix

Hi =


pi(u

0) pi(u
1) . . . pi(u

T )
pi(u

1) pi(u
2) . . . pi(u

T+1)
...

...
. . .

...
pi(u

T ) pi(u
T+1) . . . pi(u

2T )

 ,
and sends an item-wise encryption of the matrix JHiK to P1.

(c) P1 does the following:

i. Set a polynomial p1(x) =
∑m
j=1(n− 1) · xa

1
j in Fq[X], compute the Hankel matrix H1 on p1 and u,

and compute an item-wise encryption of the matrix JH1K.
ii. Homomorphically compute JHK =

q
H1 −

∑n
i=2Hi

y
and send to all the other parties.

3. Matrix Singularity Testing of H.

(a) Let k = T + 1, then H ∈ Fk×kq .

(b) P1 samples a uniform random vector v
$← Fkq and sends an item-wise encryption JvK to all the other

parties.

(c) Parties run log k instances of ΠMMult (sequentially) to compute
r
H2j

z
for 1 ≤ j ≤ log k, where H2j =

H2j−1

·H2j−1

.

(d) Parties run log k instances of ΠMMult to compute the following homomorphic matrix multiplications,
where X|Y denotes the concatenation of two matrices X and Y .

JHvK = JHK · JvK
q
H3v|H2v

y
=

q
H2y · JHv|vK

q
H7v|H6v|H5v|H4v

y
=

q
H4y ·

q
H3v|H2v|Hv|v

y

...
r
H2k−1v| . . . |Hk+1v|Hkv

z
=

r
Hk

z
·
r
Hk−1v| . . . |Hv|v

z

(e) P1 samples another uniform random vector u
$← Fkq and homomorphically computes

q
hj

y
=

q
u>Hjv

y

for all j = 0, 1, . . . , 2k − 1.

(f) Each party Pi (except P1) samples rji
$← Fkq for each j = 0, 1, . . . , 2k − 1 and sends an encryption

q
rji

y

to P1.

(g) P1 homomorphically computes
q
rj1

y
=

q
hj −

∑n
i=2 r

j
i

y
for each j = 0, 1, . . . , 2k − 1 and sends to all the

other parties.

(h) Each party Pi computes
q
rj1 : ski

y
← TAHE.PartialDec(ski,

q
rj1

y
) for each j = 0, 1, . . . , 2k − 1 and sends

to P1. P1 computes rj1 ← TAHE.Combine(pk, {
q
rj1 : ski

y
}i∈[n]) for each j = 0, 1, . . . , 2k − 1.

(i) Parties invoke an instance of FMinPoly where each party Pi inputs r0i , . . . , r
2k−1
i and obtains a bit b.

4. Output. Each party Pi outputs similar if b = 0 and different otherwise.

Figure 9: Multi-party private intersection cardinality testing protocol ΠCTest-diff .
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• Hybrid2: Same as Hybrid1 except that in Step 3b of each instance of ΠMMult, the messages
sent from honest parties are replaced by TAHE.Sim(MA,

q
MA

y
, {ski}ti=1) and TAHE.Sim(MB,q

MB
y
, {ski}ti=1); in Step 3h of ΠCTest-diff , the messages sent from honest parties are replaced

by TAHE.Sim(rj1,
r
rj1

z
, {ski}ti=1) for each j = 0, 1, . . . , 2k − 1. Here we omit the circuits

C in TAHE.Sim but they are all public linear functions. This hybrid is computationally
indistingushable from Hybrid3 based on the simulation security of TAHE. In particular, if
there exists a PPT distinguisher D that can distinguish Hybrid1 and Hybrid2, then we can
construct a PPT adversary A that breaks the simulation security of TAHE.

A plays the simulation security game as follows. A generates the view in the same way as
Hybrid1 except the following: (a) A generates (pki, ski) for each corrupted party Pi and sends
to the challenger; then it receives the pki for each honest party Pi. (b) For each encryption,
A computes it and sends the message along with the randomness to the challenger. (c) In
Step 3b of each instance of ΠMMult and Step 3h of ΠCTest-diff , A queries the challenger for
partial decryption of the honest parties. Finally, A outputs the view of the corrupted parties
along with the output of honest parties to D. If A is playing the real game, then D receives
Hybrid1; otherwise D receives Hybrid2. Hence A can break the simulation security of TAHE if
D can distinguish Hybrid1 from Hybrid2.

• Hybrid3: Same as Hybrid2 but in Step 3f, sample rj1, . . . , r
j
n−1 uniformly at random and let

rjn := hj−
∑n−1

i=1 r
j
i for all j = 0, 1, . . . , 2k−1. This hybrid is statistically identical to Hybrid2.

• Hybrid4: Same as Hybrid3 but in Step 3f, party Pn homomorphically computes
r
hj −

∑n−1
i=1 r

j
i

z

instead of computing
r
rjn

z
directly, where

q
hj

y
is computed in Step 3e and

r
rji

z
’s are com-

puted in Step 3f. This hybrid is statistically identical to Hybrid3 because a homomorphically
evaluated ciphertext is statistically identical to a fresh ciphertext.

Notice that now in Hybrid4, the honest values of hj ’s are not needed to generate the view of
corrupted parties.

• Hybrid5: Same as Hybrid4 except that in each instance of ΠMMult, we first sample two matrices
MA,MB uniformly at random; then in Step 1 of ΠMMult, let RAn := MA − A −

∑n−1
i=1 R

A
i ,

RBn := MB −B −
∑n−1

i=1 R
B
i for party Pn. This hybrid is statistically identical to Hybrid4.

• Hybrid6: Same as Hybrid5 except that in each instance of ΠMMult, we first compute
q
MA

y
,q

MB
y
, JABK, and

q
MAMB

y
; then in Step 1 of ΠMMult, party Pn homomorphically computes

q
RAn

y
=

r
MA −A−

∑n−1
i=1 R

A
i

z
and

q
RBn

y
=

r
MB −B −

∑n−1
i=1 R

B
i

z
; in Step 3a of ΠMMult,

Pn homomorphically computes ctn =
r
AB −MAMB −

∑n−1
i=1 (RARBi −MARBi −RAi MB)

z
.

This hybrid is statistically identical to Hybrid5 because a homomorphically evaluated cipher-
text is statistically identical to a fresh ciphertext.

• Hybrid7: Same as Hybrid6 except that in each instance of ΠMMult, JABK is replaced by an
encryption of an all-zero matrix. Hybrid7 is computationally indistinguishable from Hybrid6

based on the semantic security of TAHE. We show the indistinguishability via a sequence of
(2 log k + 1) hybrids.

In Hybrid7,h, in the last h instances of ΠMMult, JA ·BK is replaced by an encryption of an
all-zero matrix. Then Hybrid7,0 = Hybrid6 and Hybrid7,2 log k = Hybrid7. Next we prove that
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Hybrid7,h−1 is computationally indistinguishable from Hybrid7,h for all h ∈ [2 log k].

Assume there exists a PPT distinguisher D that can distinguish between Hybrid7,h−1 and
Hybrid7,h, then we construct a PPT A to break the semantic security of TAHE. A plays
the semantic security game as follows. A generates the view in the same way as Hybrid7,h−1
except the following: (a) A generates (pki, ski) for each corrupted party Pi and sends to the
challenger; then it receives the pki for each honest party Pi. (b) In the h-th from last instance
of ΠMMult, A sends AB and an all-zero matrix to the challenger and gets back an encryption;
then A uses that as JABK. Strictly speaking, A can only send one pair of messages to the
challenger, so we need another sequence of hybrids where A changes one message at a time.
We omit the details here. Finally, A outputs the view of the corrupted parties along with
the output of honest parties to D. If the challenger returns an encryption of A · B, then D
receives Hybrid7,h−1; otherwise D receives Hybrid7,h. Hence A can break the semantic security
of TAHE if D can distinguish between Hybrid7,h−1 and Hybrid7,h.

Notice that now in Hybrid7, the honest values of A and B are not needed in ΠMMult when
generating the view of corrupted parties.

• Hybrid8: Same as Hybrid7 except that in Step 2b the messages from honest parties are replaced
by encryption of all-zero matrices. This hybrid is computationally indistingushable from
Hybrid7 based on the semantic security of TAHE.

Assume there exists a PPT distinguisher D that can distinguish between Hybrid7 and Hybrid8,
then we construct a PPT A to break the semantic security of TAHE. A plays the semantic
security game as follows. A generates the view in the same way as Hybrid7 except the following:
(a) A generates (pki, ski) for each corrupted party Pi and sends to the challenger; then it
receives the pki for each honest party Pi. (b) In Step 2b, A sends honest matrices and an
all-zero matrices to the challenger and gets back encryption of one of them; then A uses that
as the messages from honest parties. Strictly speaking, A can only send one pair of messages
to the challenger, so we need a sequence of hybrids where A changes one message at a time.
We omit the details here. Finally, A outputs the view of the corrupted parties along with the
output of honest parties to D. If the challenger returns encryption of honest matrices, then
D receives Hybrid7; otherwise D receives Hybrid8. Hence A can break the semantic security
of TAHE if D can distinguish between Hybrid7 and Hybrid8.

• Hybrid9: Same as Hybrid8 but in each instance of ΠMMult, JABK is computed from honestly
computed A and B. Hybrid9 is computationally indistinguishable from Hybrid8 based on the
semantic security of TAHE. We can argue the indistinguishability via a sequence of (2 log k+1)
hybrids similarly as the argument between Hybrid6 and Hybrid7.

• Hybrid10: Same as Hybrid9 except that in Steps 1 and 3a of each instance of ΠMMult, party
Pn computes its encryptions from RAn and RBn as described in the protocol. This hybrid
is statistically identical to Hybrid9 because a fresh ciphertext is statistically identical to a
homomorphically evaluated ciphertext.

• Hybrid11: Same as Hybrid10 except that in each instance of ΠMMult, Pn samples RAn and RBn
honestly. This hybrid is statistically identical to Hybrid10.

• Hybrid12: Same as Hybrid11 but in Step 3f, party Pn computes
r
rjn

z
directly from rjn for all

j = 0, 1, . . . , 2k−1. This hybrid is statistically identical to Hybrid11 because a fresh ciphertext
is statistically identical to a homomorphically evaluated ciphertext.
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• Hybrid13: Same as Hybrid12 but in Step 3f, party Pn samples rjn honestly for all j = 0, 1, . . . , 2k−
1. This hybrid is statistically identical to Hybrid12.

• Hybrid14: Same as Hybrid13 except that in Steps 3b and 3h of each instance of ΠMMult, the
messages sent from honest parties are computed honestly by TAHE.PartialDec. This hybrid is
computationally indistingushable from Hybrid13 based on the simulation security of TAHE. We
can prove the indistinguishability similarly as in the argument between Hybrid1 and Hybrid2,
This hybrid outputs the view generated by Sim and the output of honest parties in the ideal
world.

Case 2: P1 is honest. Assume WLOG that the corrupted parties are Pt, Pt+1, . . . , Pn where
2 ≤ t ≤ n. The simulator Sim has output w ∈ {similar, different} from the ideal functionality. Sim
sets a bit b∗ = 1 if w = similar and b∗ = 0 otherwise. Also, for each corrupt party Pi, Sim has as
input the tuple (Si, ri) indicating the party’s input and randomness for the protocol. The strategy
of the simulator Sim for our protocol is described below.

1. Invoke the corrupted parties with their corresponding inputs and randomness.

2. Play the role of the honest parties as follows: Run the protocol honestly except that in
Step 2(c)ii, P1 sets Z := 0k×k and sends JZK to all the other parties.

3. In Step 3i, play the role of FMinPoly and respond b∗.

Next we argue that the view of the corrupted parties generated by Sim is computationally
indistinguishable to their view in the real world from Z’s point of view, via the following hybrids.

• Hybrid0: The view of corrupted parties and the output of honest parties in the real world.

• Hybrid1: Same as Hybrid0 but the output form FMinPoly is replaced by 0 if |(
⋃n
i=1 Si) \ I| ≤ T

and 1 otherwise. This hybrid is computationally indistinguishable from Hybrid0 because of
the correctness of the protocol.

• Hybrid2: Same as Hybrid1 except that all the encryptions sent from P1 are replaced by fresh
encryptions. In particular, in Steps 2(c)ii, 3g of ΠCTest-diff and Steps 2, 4c of ΠMMult, P1 sends
fresh encryptions instead of homomorphically computed ciphertexts to the corrupted par-
ties. This hybrid is statistically identical to Hybrid1 because a fresh ciphertext is statistically
identical to a homomorphically evaluated ciphertext.

• Hybrid3: Same as Hybrid2 but all the encryptions sent from P1 are replaced by encryptions
of zero. In particular, in Steps 2(c)ii, 3g of ΠCTest-diff and Steps 2, 4c of ΠMMult, P1 sends
encryption of zeros to the corrupted parties. Hybrid3 is computationally indistinguishable
from Hybrid2 based on the semantic security of TAHE.

Assume there exists a PPT distinguisher D that can distinguish between Hybrid2 and Hybrid3,
then we construct a PPT A to break the semantic security of TAHE. A plays the semantic
security game as follows. A generates the view in the same way as Hybrid2 except the following:
(a) A generates (pki, ski) for each corrupted party Pi and sends to the challenger; then it
receives the pki for each honest party Pi. (b) In Steps 2(c)ii, 3g of ΠCTest-diff and Steps 2, 4c
of ΠMMult, A sends honest values and zeros to the challenger and gets back encryption of one
of them; then A uses that as the messages sent to the corrupted parties. Strictly speaking,

36



A can only send one pair of messages to the challenger, so we need a sequence of hybrids
where A changes one message at a time (from the last to the first). We omit the details here.
Finally, A outputs the view of the corrupted parties along with the output of honest parties
to D. If the challenger returns encryption of honest values, then D receives Hybrid2; otherwise
D receives Hybrid3. Hence A can break the semantic security of TAHE if D can distinguish
between Hybrid2 and Hybrid3.

• Hybrid4: Same as Hybrid3 except that all the encryptions sent from P1 in Step 3g of ΠCTest-diff

and Steps 2, 4c of ΠMMult are replaced by fresh encryptions of honestly computed values.
Hybrid4 is computationally indistinguishable from Hybrid3 based on the semantic security of
TAHE.

• Hybrid5: Same as Hybrid3 except that all the encryptions sent from P1 in Step 3g of ΠCTest-diff

and Steps 2, 4c of ΠMMult are replaced by homomorphically computed ciphertexts. Hybrid4

is computationally indistinguishable from Hybrid5 because a fresh ciphertext is statistically
identical to a homomorphically evaluated ciphertext. This hybrid outputs the view generated
by Sim and the output of honest parties in the ideal world.

Corollary 6.2. Assuming TAHE with distributed setup, protocol ΠCTest-diff (Figure 9) securely
realizes FCTest-diff in the star network communication model with communication complexity Õ(n ·
T 2 · poly(λ)) and round complexity O(log T ).

7 Threshold PSI for FTPSI-diff

Recall that in a multi-party threshold PSI protocol for functionality FTPSI-diff defined in Figure 2,
each party wishes to learn the intersection of all their sets if |(

⋃n
i=1 Si) \ I| ≤ T , that is, if the size

of the union of all their sets minus the intersection is less than the threshold T . In this section,
we describe our multi-party threshold PSI protocol based on any protocol for multi-party private
intersection cardinality testing. We rely on threshold additive homomorphic encryption (TAHE)
with distributed setup.

Theorem 7.1. Assuming threshold additive homomorphic encryption with distributed setup, proto-
col ΠTPSI-diff (Figure 10) securely realizes FTPSI-diff in the FCTest-diff-hybrid model in the star network
communication model. Our protocol is secure against a semi-honest adversary that can corrupt up
to (n− 1) parties.

The protocol runs in a constant number of rounds and the communication complexity is O(n ·
T · poly(λ)) in the FCTest-diff-hybrid model. We then instantiate the FCTest-diff-hybrid with the two
protocols from the previous sections: one based on TFHE from Section 5.2 that has constant round
complexity and O(n · T · poly(λ)) communication complexity and the other based on TAHE from
Section 6 that has round complexity O(log T ) and communication complexity Õ(n · T 2 · poly(λ)).
Formally, we get the following corollaries:

Corollary 7.2. Assuming TFHE with distributed setup, protocol ΠTPSI-diff (Figure 10) securely
realizes FTPSI-diff in the star network communication model with communication complexity O(n ·
T · poly(λ)).
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Corollary 7.3. Assuming TAHE with distributed setup, protocol ΠTPSI-diff (Figure 10) securely
realizes FTPSI-diff in the star network communication model with communication complexity Õ(n ·
T 2 · poly(λ)) and round complexity O(log T ).

Our threshold PSI protocol for functionality FTPSI-int is almost identical and we describe the details
in Appendix 8.

7.1 Protocol

Consider n parties P1, . . . , Pn with input sets S1, . . . , Sn of size m and a star network where the
central party is P1. The parties first run the private intersection cardinality testing protocols for
functionality FCTest-diff from the previous sections and proceed if |(

⋃n
i=1 Si) \ I| ≤ T . Then, each

party Pi encodes its set as a polynomial p′i(x) = (x−ri)·
∏m
j=1(x−aij) where ri is picked uniformly at

random. The parties then compute (3T + 4) evaluations of the following polynomial V(·) on points
1, . . . . , (3T + 4) using threshold additive homomorphic encryption: V(x) =

∑n
i=1 (p′i(x) · Ri(x))

where each Ri(·) is a uniformly random polynomial of degree T that is computed as an addition
of n random polynomials - one generated by each party. Then, each party Pi interpolates the
degree (3T +3) rational polynomial V(·)

p′i(·)
using the (3T +4) evaluations. Finally, each party outputs

the intersection as Si \Di where Di denotes the roots of the above interpolated polynomial. Our
protocol is formally described in Figure 10.

7.2 Security Proof

In this section, we formally prove Theorem 7.1.

Correctness. If |(
⋃n
i=1 Si) \ I| > T , then the protocol terminates after the first step – private

intersection cardinality testing. If, on the other hand, |(
⋃n
i=1 Si) \ I| ≤ T , observe that polynomial

V(x) can be rewritten as
∑n

i=1 p′i(x) · Ui(x) where each Ui is a uniformly random polynomial of
degree at most T + 1. Now, from the correctness of the TAHE scheme, each party Pi learns 3T + 4
evaluations of the rational polynomial:

qi(x) =
V(x)

p′i(x)
=

∑n
i=1 p′i(x) · Ui(x)

p′i(x)
=

∑n
i=1 pi\I(x) · (x− ri) · Ui(x)

pi\I(x) · (x− ri)
.

Since |Si− I| ≤ T for each i ∈ [n], the numerator is a polynomial of degree at most 2T + 2 and the
denominator is a polynomial of degree at most T + 1. Further, since each Ui is uniformly random,
by Lemma 3.3, the numerator is a random degree 2T + 2 polynomial. From Imported Lemma 1,
the gcd of the polynomials in the numerator and denominator is 1 and hence no other terms will
get canceled out. Therefore, each party Pi can interpolate this rational polynomial using 3T + 4
evaluation points and thereby learn the numerator and denominator. Finally, observe that for each
party Pi, the roots of the denominator contains the set Si \ I and a random ri, from which Pi can
easily compute the intersection I.

Communication Cost. The first phase of the protocol, namely private intersection cardinality
testing, has a communication complexity of O(n · T · poly(λ)) when instantiated with the scheme
based on threshold fully homomorphic encryption as shown in Section 5.2 and a communication
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Parameters: Parties P1, . . . , Pn. Each party has a set of m elements. Threshold T ∈ N. F is a finite field
where |F| = Ω(2λ).

Inputs: Party Pi has an input set Si = {ai1, . . . , aim} where aij ∈ F for all j ∈ [m].

Output: Each party Pi receives the set intersection I =
⋂n
i=1 Si if and only if |(

⋃n
i=1 Si) \ I| ≤ T .

Protocol:

1. Private Intersection Cardinality Testing. The parties invoke FCTest-diff on inputs S1, . . . , Sn and
receive back w ∈ {similar, different}. If w = different then all parties output ⊥.

2. TAHE Key Generation. Each party Pi generates (pki, ski)← TAHE.DistSetup(1λ, i) and sends pki
to P1. Then P1 sends pk = (pk1‖ . . . ‖pkn) to all the other parties.

3. Evaluations of Random Polynomial. In this phase the parties will evaluate a polynomial

V(x) =

n∑
i=1

(
p′i(x) ·

(
R1(x) + . . .+ Ri−1(x) + R̃i(x) + Ri+1(x) . . .+ Rn(x)

))
for x ∈ [3T + 4] where the terms are defined as follows.

(a) Each party Pi defines pi(x) =
∏m
j=1(x− aij) and p′i(x) = pi(x) · (x− ri) where ri

$← F.

(b) Each party Pi uniformly samples Ri, R̃i
$← F[x] of degree T + 1, computes Ri(x) for x ∈ [3T + 4]

and sends encrypted JRi(x)K to P1.

(c) For each i ∈ [n], x ∈ [3T + 4], party P1 sends Jei,xK =
r∑

j∈[n]\{i} Rj(x)
z

to Pi.

(d) For each x ∈ [3T + 4], each party Pi sends Jvi,xK =
r

p′i(x) ·
(
ei,x + R̃i(x)

)z
to P1.

(e) For each x ∈ [3T + 4], P1 sends JvxK = J
∑n
i=1 vi,xK to all Pi.

(f) For each x ∈ [3T + 4], each party Pi sends Jvx : skiK← TAHE.PartialDec(ski, JvxK) to P1.

(g) For each x ∈ [3T + 4], P1 sends V(x) = TAHE.Combine(pk, {Jvx : skiK}i∈[n]) to all Pi.

4. Computing Set Intersection. Each party Pi does the following:

(a) Interpolate qi(x) to be the degree 3T + 3 rational polynomial such that qi(x) = V(x)
p′i(x)

for x ∈
[3T + 4] and the gcd of the numerator and denominator is 1. Let Di be the roots of the
denominator of qi(x).

(b) Output the set intersection I = Si \Di.

Figure 10: Multi-party threshold PSI protocol ΠTPSI-diff for functionality FTPSI-diff .

complexity of Õ(n · T 2 · poly(λ)) when instantiated with the scheme based on threshold additive
homomorphic encryption as shown in Section 6.

We now analyze the communication cost for the second phase where the parties compute the
concrete intersection. The TAHE key generation is independent of the set sizes and the threshold
T and has a communication complexity of only O(n · poly(λ)). The bottleneck of the protocol is
in Step 3, that is, evaluating the random polynomial. In Steps 3b, 3d, and 3f, every party sends
3T + 4 encryptions or partial decryptions to P1 hence the cost for these steps is O(n · T · poly(λ)).
In Steps 3c, 3e, and 3g, P1 sends 3T + 4 ciphertexts or plaintexts to every other party so the cost
of these steps is O(n · T · poly(λ)). Finally, the last stage, namely computing the set intersection,
does not involve any communication. Thus, the overall communication cost for computing the
intersection is O(n · T · poly(λ)).
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Therefore, when the private intersection cardinality testing protocol is instantiated with the
TFHE-based protocol, the overall communication complexity is O(n ·T · poly(λ)) and when instan-
tiated with the TAHE-based scheme, the overall communication complexity is Õ(n · T 2 · poly(λ))
for some apriori fixed polynomial poly(·) and is independent of the size of each input set m.

Security. Consider an environment Z who corrupts a set S∗ of n∗ parties where n∗ < n. The
simulator Sim has the output of the functionality FTPSI-diff , namely the intersection set I or ⊥.
Sim sets w = similar if the output is I and w = different if the output is ⊥. In addition, Sim has
the tuple (Si, ri) for each corrupt party Pi indicating the party’s input and randomness for the
protocol. The strategy of the simulator Sim for our multi-party threshold PSI protocol is described
below.

(a) Private Intersection Cardinality Testing: Sim plays the role of the ideal functionality
FCTest-diff and responds with w.

(b) TAHE Key Generation: Sim runs the distributed key generation algorithm TAHE.DistSetup(1λ, i)
of the TAHE scheme honestly on behalf of each honest party Pi as in the real world. Note that
Sim also knows ({ski}i∈S∗) as it knows the randomness for the corrupt parties.

(c) Evaluations of Random Polynomial: Sim does the following:

1. Encode the intersection set I = {b1, . . . , b|I|} as a polynomial as follows: pI(x) = Π
|I|
i=1(x−bi).

2. Pick a random polynomial U(·) of degree 2T + 2 and set the polynomial V(x) as follows:
V(x) = pI(x) · U(x).

3. In Steps 3b-3e, on behalf of every honest party Pi, whenever Pi has to send any ciphertext,
send J0K using fresh randomness.

4. For each x ∈ [3T + 4], let JvxK denote the ciphertext that is sent to all the parties at the end
of Step 3f.

5. In Step 3f, for each j ∈ [3T + 4], on behalf of each honest party Pi, instead of computing
{Jvx : skiK} by running the honest TAHE.PartialDec algorithm as in the real world, Sim com-
putes the partial decryptions by running the simulator TAHE.Sim as follows: {Jvx : skiK} ←
TAHE.Sim(C,V(x), JvxK , {ski}i∈S∗), where C is the public linear circuit to compute V(x) by
P1.

6. Finally, in Step 3g, if P1 is honest, send the evaluations of polynomial V(x) as in the real
world description.

Hybrids. We now show that the above simulation strategy is successful against all environments
Z that corrupt parties in a semi-honest manner. That is, the view of the corrupt parties along with
the output of the honest parties is computationally indistinguishable in the real and ideal worlds.
We will show this via a series of computationally indistinguishable hybrids where the first hybrid
Hybrid0 corresponds to the real world and the last hybrid Hybrid4 corresponds to the ideal world.
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• Hybrid0 - Real World: In this hybrid, consider a simulator SimHyb that plays the role of
the honest parties as in the real world.

• Hybrid1 - Private Intersection Cardinality Testing: In this hybrid, SimHyb plays the
role of the ideal functionality FCTest-diff and responds with similar if |(

⋃n
i=1 Si) \ I| ≤ T and

different otherwise.

• Hybrid2 - Simulate Partial Decryptions: In this hybrid, in the evaluations of random
polynomial, SimHyb simulates the partial decryptions generated by the honest parties in
Step 3f as done in the ideal world. That is, for each j ∈ [3T + 4], SimHyb computes the
partial decryptions as {Jvx : skiK} ← TAHE.Sim(C,V(x), JvxK , {ski}i∈S∗). Observe that the
polynomial V(·) is still computed as in the real world (and in Hybrid2).

• Hybrid3 - Switch Polynomial Computation: In this hybrid, the polynomial V(·) is no
longer computed as in the real world. Instead, SimHyb now picks a random polynomial U(·)
of degree 2T + 2 and sets the polynomial V(·) as follows: V(x) = pI(x) · U(x).

• Hybrid4 - Switch Encryptions: In this hybrid, in the evaluations of random polynomial,
SimHyb now computes every ciphertext generated on behalf of any honest party as encryptions
of 0 as done by Sim in the ideal world. This hybrid corresponds to the ideal world.

We now show that every pair of consecutive hybrids is computationally indistinguishable.

Lemma 7.4. Hybrid0 is computationally indistinguishable from Hybrid1 based on the correctness of
our protocol.

Proof. The only difference between the two hybrids is that in Hybrid0, the simulator SimHyb calls
FCTest-diff honestly while in Hybrid1, SimHyb plays the role of the ideal functionality FCTest-diff

responds with similar if |(
⋃n
i=1 Si) \ I| ≤ T and different otherwise. The output of FCTest-diff in

Hybrid1 is always correct. Based on the correctness of our protocol ΠTPSI-diff , the output of FCTest-diff

in Hybrid0 is correct with overwhelming probability. Hence Hybrid0 and Hybrid1 are computationally
indistinguishable.

Lemma 7.5. Assuming the simulation security of the threshold additive homomorphic encryption
scheme, Hybrid1 is computationally indistinguishable from Hybrid2.

Proof. The only difference between the two hybrids is that in Hybrid1, the simulator SimHyb gen-
erates the partial decryptions of the TAHE scheme on behalf of the honest parties as in the real
world while in Hybrid2, they are simulated by running the simulator TAHE.Sim. We now show that
if there exists an adversarial environment Z that can distinguish between these two hybrids with
some non-negligible probability ε, we will come up with a reduction A that can break the simulation
security of the TAHE scheme.
A interacts with a challenger C in the simulation security game for TAHE and with the envi-

ronment Z in the game between Hybrid1 and Hybrid2. A corrupts the same set of parties as done by
Z in its game with C. Further, A forwards the public key-secret key pairs (pki, ski) for the corrupt
parties it receives from Z to the challenger and the public keys pki for the honest parties from C
to Z. A also forwards to C the set of messages to be encrypted along with the randomness for the
ones encrypted by the adversary, received from Z. Similarly, it forwards the ciphertexts received
from C to Z. Finally, A sends the circuit corresponding to the evaluation of polynomial V(·) to C
and receives a set of partial decryptions on behalf of each honest party which it forwards to A. It
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continues interacting with Z as in Hybrid1 in the rest of its interaction. It is easy to see that if C
sent honestly generated partial decryptions, the interaction between A and Z exactly corresponds
to Hybrid1 and if the partial decryptions were simulated, the interaction between A and Z exactly
corresponds to Hybrid2. Thus, if Z can distinguish between the two hybrids with non-negligible
probability ε, A can break the simulation security of the TAHE scheme with the same probability
ε which is a contradiction.

Lemma 7.6. Hybrid2 is statistically close to Hybrid3.

Proof. The only difference between the two hybrids is the way the polynomial V(·) is computed.
In Hybrid3, V(x) = pI(x) · U(x) where U(·) is a uniformly random polynomial of degree 2T + 2. In
Hybrid2,

9

V(x) =
n∑
i=1

(
p′i(x) ·

(
R1(x) + . . .+ Ri−1(x) + R̃i(x) + Ri+1(x) . . .+ Rn(x)

))
=pI(x) ·

n∑
i=1

(
p′i\I(x) ·

(
R1(x) + . . .+ Ri−1(x) + R̃i(x) + Ri+1(x) . . .+ Rn(x)

))

=pI(x) ·

[∑
i∈S∗

p′i\I(x) ·

R̃i(x) +
∑
j∈S∗

Rj(x)

+
∑
i∈S∗

p′i\I(x) ·

 ∑
j∈[n]\S∗

Rj(x)


+

∑
i∈[n]\S∗

p′i\I(x) ·

R̃i(x) +
∑
j∈[n]

Ri(x)

]
=pI(x) · [A(x) +B(x)]

where

A(x) =
∑
i∈S∗

p′i\I(x) ·

R̃i(x) +
∑
j∈S∗

Rj(x)


B(x) =

∑
i∈S∗

p′i\I(x) ·

 ∑
j∈[n]\S∗

Ri(x)

+
∑

i∈[n]\S∗
p′i\I(x) ·

R̃i(x) +
∑
j∈[n]

Rj(x)

 .

Note that for all i ∈ [n], Deg(pi\I(x)) ≤ T , Deg(p′i\I(x)) ≤ T + 1, Deg(Ri(x)) = Deg(R̃i(x)) =

T + 1. Thus, Deg(A(x)) = deg(B(x)) = 2T + 2. Now, suppose we prove that B(x) is statistically
close to a uniformly random polynomial of degree 2T + 2, then in Hybrid2,

V(x) ≡ pI(x) ·
[
A(x) + U1(x)

]
≡ pI(x) · U2(x)

where U1(·) and U2(·) are uniformly random polynomials of degree 2T + 2. Thus, V(x) in Hybrid2

is statistically close to the distribution of V(x) in Hybrid3. Therefore, the only remaining step is to
prove the below claim.

9Here, p′i\I(x) =
p′i(x)
pI (x)

= pi\I(x) · (x− ri).
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Claim 7.7. B(x) is statistically close to a uniformly random polynomial of degree 2T + 2.

Proof.

B(x) =

∑
i∈S∗

p′i\I(x) ·

 ∑
j∈[n]\S∗

Ri(x)

+
∑

i∈[n]\S∗
p′i\I(x) ·

R̃i(x) +
∑
j∈[n]

Rj(x)


=

(∑
i∈S∗

p′i\I(x)

)
· Ũ(x) +

∑
i∈[n]\S∗

(
p′i\I(x) · Ui(x)

)
.

where Ũ(x), Ui(x) are uniformly random polynomials of degree T + 1.

Note that by the definition of the set intersection I,

gcd(p1\I(x), . . . , pn\I(x)) = 1.

By a direct invocation of Lemma 3.2,

gcd

(∑
i∈S∗

p′i\I(x), p′j1\I(x), p′j2\I(x), . . . , p′jt\I(x)

)
= 1

except with negligible probability where j1, . . . , jt denotes the indices of the honest parties. Then,
by Lemma 3.3, we can conclude that B(x) is statistically close to a uniformly random polynomial
of degree 2T + 2.

Lemma 7.8. Assuming the semantic security of the threshold additive homomorphic encryption
scheme, Hybrid3 is computationally indistinguishable from Hybrid4.

Proof. The only difference between the two hybrids is that in Hybrid3, the simulator SimHyb gener-
ates the encryptions of the TAHE scheme on behalf of the honest parties as in the real world while
in Hybrid4, they are generated as encryptions of 0. We now show that if there exists an adversarial
environment Z that can distinguish between these two hybrids with some non-negligible probability
ε, we will come up with a reduction A that can break the semantic security of the TAHE scheme.
A interacts with a challenger C in the semantic security game for TAHE and with the environ-

ment Z in the game between Hybrid3 and Hybrid4. A corrupts the same set of parties as done by
Z in its game with C. Further, A forwards the public key-secret key pairs (pki, ski) for the corrupt
parties it receives from Z to the challenger and the public keys pki for the honest parties from C
to Z. A also forwards the pair of 0 and the set of honestly generated plaintexts to be encrypted,
to the challenger and receives back a ciphertext for each of them which it uses in its interaction
with Z. It continues interacting with Z as in Hybrid3 in the rest of its interaction. It is easy to see
that if C sent honestly generated ciphertexts, the interaction between A and Z exactly corresponds
to Hybrid3 and if the ciphertexts were generated as encryptions of 0, the interaction between A
and Z exactly corresponds to Hybrid4. Thus, if Z can distinguish between the two hybrids with
non-negligible probability ε, A can break the semantic security of the TAHE scheme with the same
probability ε which is a contradiction.
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8 Threshold PSI for Functionality FTPSI-int

In this section, we give a multiparty threshold PSI protocol for the functionality FTPSI-int. Recall
that in a multi-party threshold PSI protocol for functionality FTPSI-int defined in Figure 1, each
party Pi wishes to learn the intersection of all the sets if |Si \ I| ≤ T , that is, if the size of its
own set minus the intersection is less than the threshold T . Our protocol is almost identical to
the protocol from Section 7 for functionality FTPSI-diff with the only difference being in the first
step of the protocol, we run the multiparty private intersection cardinality testing protocol for
functionality FTPSI-int instead of FTPSI-diff . The rest of the protocol is the same. We elaborate on
the details here for completeness.

As before, we formally prove the following theorem:

Theorem 8.1. Assuming the existence of threshold additive homomorphic encryption, protocol
ΠTPSI-int (Figure 11) securely realizes FTPSI-int in the FCTest-int-hybrid model in the star network
communication model. Our protocol is secure against a semi-honest adversary that can corrupt up
to (n− 1) parties.

The protocol runs in a constant number of rounds and the communication complexity is
O(n · T · poly(λ)) in the FCTest-int-hybrid model. We then instantiate the FCTest-int-hybrid with the
protocol based on TFHE from Section 5.1 that has constant round complexity and O(n ·T ·poly(λ))
communication complexity. Formally, we get the following corollary:

Corollary 8.2. Assuming TFHE with distributed setup, protocol ΠTPSI-int (Figure 11) securely
realizes FTPSI-diff in the star network communication model with communication complexity O(n ·
T · poly(λ)).

8.1 Protocol

Our protocol, which is almost identical to the protocol from Section 7 is described below. The
change is highlighted in red.

Correctness. If |Si \ I| > T , then the protocol terminates after the first step - the private
intersection cardinality testing. Note that since |Si| is the same for all i, the protocol either
terminates for all the parties or proceeds for all the parties. If, on the other hand, |Si \ I| ≤ T , the
rest of the correctness analysis is identical to the one performed for the protocol in Section 7.

Communication Complexity. The communication complexity analysis is identical to the one
performed for the protocol in Section 7.

Security Proof The proof is identical to the proof of Theorem 7.1 from Section 7.

9 Other Communication Models

Throughout the paper we focus on the communication lower bounds in point-to-point networks and
design protocols in the star network (which can be implemented on point-to-point network). In this
section, we initiate the study of multiparty threshold PSI on networks with broadcast channels. We
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Parameters: Parties P1, . . . , Pn. Each party has a set of m elements. Threshold T ∈ N. F is a finite field
where |F| = Ω(2λ).

Inputs: Party Pi has an input set Si = {ai1, . . . , aim} where aij ∈ F for all j ∈ [m].

Output: Each party Pi receives the set intersection I =
⋂n
i=1 Si if and only if |Si \ I| ≤ T .

Protocol:

1. Private Intersection Cardinality Testing. The parties invoke FCTest-diff on inputs S1, . . . , Sn and
receive back w ∈ {similar, different}. If w = different then all parties output ⊥.

2. TAHE Key Generation. Each party Pi generates (pki, ski)← TAHE.DistSetup(1λ, i) and sends pki
to P1. Then P1 sends pk = (pk1‖ . . . ‖pkn) to all the other parties.

3. Evaluations of Random Polynomial. In this phase the parties will evaluate a polynomial

V(x) =

n∑
i=1

(
p′i(x) ·

(
R1(x) + . . .+ Ri−1(x) + R̃i(x) + Ri+1(x) . . .+ Rn(x)

))
for x ∈ [3T + 4] where the terms are defined as follows.

(a) Each party Pi defines pi(x) =
∏m
j=1(x− aij) and p′i(x) = pi(x) · (x− ri) where ri

$← F.

(b) Each party Pi uniformly samples Ri, R̃i
$← F[x] of degree T + 1, computes Ri(x) for x ∈ [3T + 4]

and sends encrypted JRi(x)K to P1.

(c) For each i ∈ [n], x ∈ [3T + 4], party P1 sends Jei,xK =
r∑

j∈[n]\{i} Rj(x)
z

to Pi.

(d) For each x ∈ [3T + 4], each party Pi sends Jvi,xK =
r

p′i(x) ·
(
ei,x + R̃i(x)

)z
to P1.

(e) For each x ∈ [3T + 4], P1 sends JvxK = J
∑n
i=1 vi,xK to all Pi.

(f) For each x ∈ [3T + 4], each party Pi sends Jvx : skiK← TAHE.PartialDec(ski, JvxK) to P1.

(g) For each x ∈ [3T + 4], P1 sends V(x) = TAHE.Combine(pk, {Jvx : skiK}i∈[n]) to all Pi.

4. Computing Set Intersection. Each party Pi does the following:

(a) Interpolate qi(x) to be the degree 3T + 3 rational polynomial such that qi(x) = V(x)
p′i(x)

for x ∈
[3T + 4] and the gcd of the numerator and denominator is 1. Let Di be the roots of the
denominator of qi(x).

(b) Output the set intersection I = Si \Di.

Figure 11: Multi-party threshold PSI protocol ΠTPSI-int for functionality FTPSI-int.

give a new lower bound for the functionality FTPSI-int in the broadcast model of communication.
Note that the lower bound of Ω(n · T ) from Section 4 for the point-to-point network does not
necessarily apply to the broadcast setting.

At a high level, we reduce the problem of multiparty set disjointness to multiparty threshold
PSI for the ideal functionality FTPSI-int. In the multiparty set disjointness problem, there are n
parties each holding a set Xi ⊆ [N ]. The parties’ task is to determine if

⋂n
i=1Xi = ∅. It is shown by

Braverman and Oshman [BO15] that the communication complexity of multiparty set disjointness
in the broadcast model is Ω(N log n + n). Given this result, we prove the communication lower
bound for multiparty threshold PSI:

Theorem 9.1. For any multiparty threshold private set intersection protocol for functionality
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FTPSI-int, the communication complexity in the broadcast model is Ω(T log n + n) where n is the
number of parties and T is the threshold parameter.

Proof. We prove the theorem by giving a reduction from multiparty set disjointness to multiparty
threshold PSI. Assume there is a multiparty threshold PSI protocol ΠTPSI-int that achieves com-
munication complexity o(T log n + n) in the broadcast model, then we can solve multiparty set
disjointness with communication complexity o(N log n + n), which leads to a contradiction. We
show the reduction in the following.

Given an instance of multiparty set disjointness where there are n parties each holding a set
Xi ⊆ [N ], we construct an instance of multiparty threshold PSI as follows. There are n parties.
Each party Pi has a set of size N . We set the sets as Si := Xi∪Ui, where |Si| = N , and Ui consists
of unique elements that can only appear in Si. Notice that

⋂n
i=1Xi 6= ∅ if and only if

⋂n
i=1 Si 6= ∅,

namely |Si −
⋂n
i=1 Si| ≤ (N − 1). The n parties in the multiparty set disjointness problem run the

multiparty threshold PSI protocol ΠTPSI-int where each party Pi inputs set Si and the threshold is
set to be T := N − 1. If ΠTPSI-int outputs the set intersection, then the parties output

⋂n
i=1Xi 6= ∅;

otherwise the parties output
⋂n
i=1Xi = ∅.

We leave further exploration in the broadcast model including a lower bound for the other func-
tionality FTPSI-diff as well as designing more efficient protocols as interesting open problems.
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A Linear Algebra Proofs

A.1 Proof of Lemma 3.3

This lemma is a generalization of Lemma 2 in the work of Kissner and Song [KS05]. They proved
the lemma for two polynomials and we generalize it to multiple polynomials. We first extend [KS05,
Lemma 2] for two polynomials to the case where p1 and p2 do not necessarily have the same degree.
Formally, we first prove the following lemma.

Lemma A.1. Let F be a finite field of prime order q. Fix any n = O(poly(λ)). For any two

polynomials p1(x), p2(x) ∈ F[x] of degrees α1 and α2 respectively, if R1(x) =
∑β1

j=0 r1,jx
j , R2(x) =∑β2

j=0 r2,jx
j ∈ F[x] where α1 + β1 = α2 + β2 ≥ α1 +α2 and ri,j

$← F are sampled independently and
uniformly at random. Let S(x) = p1(x)·R1(x)+p2(x)·R2(x). Then S(x) = gcd(p1(x), p2(x))·U(x),

where U(x) =
∑α1+β1−γ

j=0 ujx
j, in which γ is the degree of gcd(p1(x), p2(x)), uj’s are distributed

uniformly and independently over F.

Proof. Let g = gcd(p1, p2), and let p1(x) = g(x) · q1(x), p2(x) = g(x) · q2(x). We know that g has
degree γ, hence q1, q2 has degrees α1 − γ and α2 − γ, respectively. In addition, gcd(q1, q2) = 1.
Since

S(x) = p1(x) ·R1(x) + p2(x) ·R2(x) = g(x) · (q1(x) ·R1(x) + q2(x) ·R2(x)) ,

we only need to show that q1(x) ·R1(x) + q2(x) ·R2(x) =
∑α1+β1−γ

j=0 ujx
j where uj ’s are distributed

uniformly and independently over F.
Given any fixed polynomial U of degree α1 + β1 − γ, we calculate the number of (R1, R2) pairs

such that q1 ·R1 + q2 ·R2 = U . Let us assume for this particular U there exists at least one pair of
(R1, R2) such that q1 ·R1 + q2 ·R2 = U . Then for any other satisfying pair (R′1, R

′
2), we have that

q1 · (R1 −R′1) + q2 · (R2 −R′2) = 0,

q1 · (R1 −R′1) = q2 · (R′2 −R2).

Since gcd(q1, q2) = 1 and F is a finite field of prime order, we have q2|(R1 −R′1) and q1|(R′2 −R2).
Let R1 −R′1 = q2 · h, then R′2 −R2 = q1 · h, where h is a polynomial with degree

d = deg(U)− deg(q1)− deg(q2)

=(α1 + β1 − γ)− (α1 − γ)− (α2 − γ)

=β1 − α2 + γ.

Every pair of satisfying (R′1, R
′
2) decides a unique polynomial h and every polynomial h corresponds

to a unique satisfying pair (R′1, R
′
2). Hence the total number of (R′1, R

′
2) pairs equals the total

number of degree-d polynomial h in F[x], which is qβ1−α2+γ+1.
Now consider the polynomial (q1 · R1 + q2 · R2). We know that for any fixed polynomial U as

a possible result, there are qβ1−α2+γ+1 pairs of (R1, R2) that lead to the result. Since there are a
total number of qβ1+β2+2 possible pairs of (R1, R2), the total number of possible resulting U is

qβ1+β2+2

qβ1−α2+γ+1
= qα2+β2−γ+1 = qα1+β1−γ+1,

which is exactly the total number of U . Therefore, for randomly generated R1, R2, each possible
polynomial with degree α1 + β1 − γ will be the result with equal probability.
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Given Lemma A.1,

p1(x) ·R1(x) + p2(x) ·R2(x) · · ·+ pn(x) ·Rn(x)

= gcd(p1(x), p2(x)) · U2(x) + p3(x) ·R3(x) · · ·+ pn(x) ·Rn(x)

= gcd(p1(x), p2(x), p3(x)) · U3(x) + p4(x) ·R4(x) · · ·+ pn(x) ·Rn(x)

= . . .

= gcd(p1(x), . . . , pn) · Un(x),

where Ui(x) =
∑α+β−γi

j=0 ui,jx
j , in which γi is the degree of gcd(p1(x), . . . , pi(x)), ui,j ’s are dis-

tributed uniformly and independently over F. Since gcd(p1, . . . , pn) = 1, we have γn = 0. Hence∑n
i=1(pi(x) ·Ri(x)) =

∑α+β
j=0 ujx

j , then uj ’s are distributed uniformly and independently over F.

A.2 Proof of Lemma 3.2

Fix any i such that 1 ≤ i < n. Let’s denote p∗i (x) := p′1(x) + ... + p′i(x). Observe that
gcd(p∗i , p

′
i+1, . . . , p

′
n) = gcd(p∗i , gcd(p′i+1, . . . , p

′
n)) = gcd(p∗i , gcd(pi+1, . . . , pn)) since the probabil-

ity that for j > i, rj is a root of p′k, where k > i, k 6= j is negligible.
Consider any root v of gcd(pi+1, . . . , pn). We now analyze the event: Prrj [p

∗
i (v) = 0]. First,

note that since gcd(p1, ..., pn) = 1, there exists k ≤ i s.t. (x− v) - pk(x). Further, since rk is picked
uniformly at random, Prrk [rk = v] ≤ negl(λ). Therefore, except with negligible probability, there
exists k <= i s.t. (x− v) - p′k(x).

As such it must hold that

p′1(v) + ...+ p′k−1(v) + p′k+1(v) + ...+ p′i(v) = −p′k(v),

p′1(v) + ...+ p′k−1(v) + p′k+1(v) + ...+ p′i(v)

pk(v)
+ v = rk.

Since rk ∈ F is picked uniformly at random, the probability of this event is 1/q = negl(λ). Taking
a union bound over all the roots of gcd(pi+1, . . . , pn) yields

Pr
rj

[gcd(p∗i , gcd(pi+1, . . . , pn)) 6= 1] ≤ negl(λ)

and this completes the proof.

51


	Introduction
	Our Contributions
	Other Implications
	Concurrent and Future Work

	Technical Overview
	TFHE-Based Protocol for FCTest-int
	TFHE-Based Protocol for FCTest-diff
	TAHE-Based Protocol for FCTest-diff
	Computing Set Intersection
	Lower Bounds
	Roadmap

	Preliminaries
	Notations
	Secure Multi-Party Computation
	Multi-Party Threshold Private Set Intersection
	Multi-Party Private Intersection Cardinality Testing
	Threshold Fully Homomorphic Encryption
	Threshold Additive Homomorphic Encryption
	Linear Algebra

	Communication Lower Bound
	Lower Bound for FTPSI-int
	Lower Bound for FTPSI-diff

	TFHE-Based Private Intersection Cardinality Testing
	Protocol for Functionality FCTest-int 
	Protocol for Functionality FCTest-diff 

	TAHE-Based Protocol for FCTest-diff
	Multi-Party Homomorphic Matrix Multiplication
	Computing Minimal Polynomial
	Our Protocol

	Threshold PSI for FTPSI-diff
	Protocol
	Security Proof

	Threshold PSI for Functionality FTPSI-int
	Protocol

	Other Communication Models
	Linear Algebra Proofs
	Proof of [lem:poly0]Lemma 3.3
	Proof of [lem:poly1]Lemma 3.2


