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1 INTRODUCTION
1.1 Background
In 2008, Satoshi Nakamoto invented the concept of blockchains as a
technology for maintaining decentralized ledgers [Nak08]. A core

contribution of this work is the longest chain protocol, a deceptively
simple consensus algorithm. Although invented in the context of

Bitcoin and its Proof-of-Work (PoW) setting, the longest chain

protocol has been adopted in many blockchain projects, as well as

extended to other more energy-efficient settings such as Proof-of-

Stake (PoS) (eg. [BPS16], [KRDO17],[DGKR18],[BGK
+
18],[FZ18])

and Proof-of-Space (PoSpace) (eg. [AAC
+
17, CP19, PKF

+
18]).

Used to maintain a ledger for a valued asset in a permissionless

environment, the most important property of the longest chain

protocol is its security: how much resource does an adversary need

to attack the protocol and revert transactions already confirmed?

Nakamoto analyzed this property by proposing a specific attack:

the private double-spend attack (Figure 2(a)). The adversary grows

a private chain of blocks in a race to attempt to outpace the public

longest chain and thereby replacing it after a block in the public

chain becomes 𝑘-deep. Let _ℎ and _𝑎 be the rate at which the honest

nodes and the adversary mine blocks, proportional to their respec-

tive hashing powers. Then it is clear from a law of large numbers

argument that if _𝑎 > _ℎ , then the adversary will succeed with

high probability no matter how large 𝑘 is. Conversely, if _𝑎 < _ℎ ,

the probability of the adversary succeeding decreases exponentially

with 𝑘 . When there is a network delay of Δ between honest nodes,

this condition for security becomes:

_𝑎 < _
growth

(_ℎ,Δ), (1)

where _
growth

(_ℎ,Δ) is the growth rate of the honest chain under

worst-case forking. In a fully decentralized setting with many hon-

est nodes each having small mining power, [SZ15] calculates this to

be _
growth

= _ℎ/(1 + _ℎΔ). If we let 𝛽 to be the adversary fraction

of power, then (1) yields the following condition:

𝛽 <
1 − 𝛽

1 + (1 − 𝛽)_Δ . (2)
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Here, _ is the total mining rate, and _Δ is the number of blocks

mined per network delay. 1/(_Δ) is the block speed normalized by

the network delay. Solving (2) at equality gives a security thresh-

old 𝛽pa (_Δ). When _Δ is small, 𝛽𝑝𝑎 (_Δ) ≈ 0.5, and this leads to

Nakamoto’s main claim in [Nak08]: the longest chain protocol is

secure as long as the adversary has less than 50% of the total hash-

ing power and the mining rate is set to be low. A more aggressive

mining rate to speed up the blockchain reduces the security thresh-

old. Hence (2) can be viewed as a tradeoff between security and

block speed.

The private double-spend attack is a specific attack, andNakamoto

claimed security based on the analysis of this attack alone. But

what about other attacks? Are there other worse attacks? A per-

tinent question after Nakamoto’s work is the identification of the

true security threshold 𝛽∗ (_Δ) in the face of the worst attack. The
groundbreaking work [GKL15] first addressed this question by

formulating and performing a formal security analysis of the Proof-

of-work longest chain protocol. They used a lock-step round-by-

round synchronous model, and the analysis was later extended to

the more realistic Δ-synchronous model [PSS17]. The results show

that when _Δ → 0, indeed 𝛽∗ (_Δ) approaches 50%, thus validating

Nakamoto’s intuition. However, for _Δ > 0, there is a gap between

their bounds and the private attack security threshold, and this gap

grows when _Δ grows.

1.2 Main contribution
Themain contribution of this work is a new approach to the security

analysis of longest chain protocols. This approach is driven by the

question of whether the private attack is the worst attack for longest

chain protocols in a broad sense. Applying this approach to analyze

three classes of longest chain protocols in the Δ−synchronous
model[PSS17], we answer this question in the affirmative in all

cases: the true security threshold is the same as the private
attack threshold:

𝛽∗ (_Δ) = 𝛽pa (_Δ) for all _Δ ≥ 0. (3)

(Figure 1). The three classes are: 1) the original Nakamoto PoW

protocol; 2) Ouroboros Praos [DGKR18] and SnowWhite [PS17,

BPS16] PoS protocols; 3) Chia PoSpace protocol [CP19]. They all use

the longest chain rule but differ in how the lotteries for proposing

blocks are run. (Figure 4) In the first two protocols, we close the



Figure 1: True security threshold as a function of normalized
block speed, compared to bounds in the literature. (a) Proof-
of-work model; (b) Ouroboros/SnowWhite Proof-of-Stake
model; (c) Chia Proof-of-Spacemodel. In (a) and (b), the blue
curve represents 𝛽∗ (_Δ) = 𝛽pa (_Δ); both PoW and PoS have
the same (true) security threshold. In (a), the red, green and
yellow curves are obtained by solving 𝛽 = (1 − 𝛽)𝑒−2(1−𝛽)_Δ,
𝛽 = (1−𝛽) (1−2_Δ(1−𝛽)) and 𝛽 = (1−𝛽) (1−10_Δ(1−𝛽)) respec-
tively. In (b), the red and green curves are (1−𝛽)/(1+_Δ) = 1/2

and (1− 𝛽) (1−_Δ) = 1/2 respectively. In (c), the blue curve is
the solution of 𝑒𝛽 =

1−𝛽
1+(1−𝛽)_Δ , the true threshold, and also

that of private attack. Unlike in (a) and (b), the true thresh-
old does not reach 0.5 when _Δ → 0, but reach 1/(1 + 𝑒) in-
stead. Note that while in all cases , the true security thresh-
old equals the private attack threshold, the threshold is dif-
ferent for Chia than for the other two.

gap between existing bounds and the private attack threshold by

identifying the true threshold to be the private attack threshold at

all values of _Δ. For Chia, the adversary is potentially very powerful,
since at each time, the adversary can mine on every block of the

blocktree, and each block provides an independent opportunity for

winning the lottery. It was not known to be secure for any non-zero
fraction of adversary power. Our result not only says that Chia is

secure, but it is secure all the way up to the private attack threshold

(although the private attack threshold is smaller for Chia than for

the other two classes of protocols due to the increased power of

the adversary.)

That the true security threshold matches the private attack

threshold in all these protocols is not a coincidence. It is due to

an intimate connection between the private attack and any gen-

eral attack. Our approach exposes and exploits this connection by

defining two key concepts: blocktree partitioning and Nakamoto
blocks. Through these concepts, we can view any attack as a race

between adversary and honest chains, not just the private attack.

However, unlike the private attack, a general attack may send many

adversary chains to simultaneously race with the honest chain.

The entire blocktree, consisting of both honest and adversary

blocks, public or private, is particularly simple under a private

attack: it can be partitioned into two chains, one honest and one

adversary (Figure 2(a)). In contrast, under a general attack where

the adversary can make public blocks at multiple time instances, a

much more complex blocktree can emerge (Figure 2(b)). However,

what we observe is that by partitioning this more complex tree into

sub-trees, each rooted at a honest block and consisting otherwise

entirely of adversary blocks, one can view the general attack as

initiatingmultiple adversary sub-trees to race with a single fictitious
chain consisting of only honest blocks (Figure 3). The growth rate of

each of these adversary sub-trees is upper bounded by the growth

rate of the adversary chain used in the private attack. Therefore,

if the private attack is unsuccessful, we know that the growth

rate of each of the adversary trees must be less than that of the

fictitious honest chain. What we show, for each of the three classes

of protocols, is that under that condition, there must exist honest

blocks, which we call Nakamoto blocks, each having the property

that none of the past adversary trees can ever catch up after the

honest chain reaches the block. These Nakamoto blocks serve to

stabilize the blockchain: when each such block enters the blocktree,

complex as it may be, we are guaranteed that the entire prefix of

the longest chain up to that block remains immutable in the future
1
.

When Nakamoto blocks occur and occur frequently, the persistence

and liveness of the blockchain is guaranteed.

1.3 Related works
There have been several significant ideas that have emerged from

the security analysis of blockchains in the past few years, and below

we put our contribution in the perspective of these ideas.

[GKL15] initiated blockchain security analysis through defining

key backbone properties2 of chain common prefix, chain quality

and chain growth. Applying this framework to analyse the PoW

longest chain protocol in the lock-step round-by-round model, it is

shown that the common prefix property, the most difficult property

to analyze, is satisfied if the number of adversary blocks over a

long window is less than the number of uniquely successful honest

blocks
3
. A similar block counting analysis is conducted by [PSS17]

in the Δ− synchronous model, with the notion of uniquely suc-

cessful blocks replaced by the notion of convergence opportunities.
The resulting bound is tight when _Δ is small but loose in gen-

eral. Moreover, the block-counting technique completely breaks

down for analyzing PoS longest chain protocols because of the

notorious Nothing-at-Stake problem: winning one lottery can yield

a very large number of blocks for the adversary. To overcome this

1
Thus, Nakamoto blocks have a god-like permanence, they exist, but nobody knows

which block is a Nakamoto block.

2
Properties of the blocktree, independent of the content of the blocks.

3
A uniquely successful honest block is one that is the only honest block mined in a

round.
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Figure 2: (a)Nakamoto’s private attack as a race between a single adversary chain and the honest chain. (b) By blocktree par-
titioning, a general attack is represented as multiple adversary chains simultaneously racing with a fictitious honest chain.
Note that this fictitious chain is formed by only the honest blocks, and may not correspond to the longest chain in the actual
system. However, the longest chain in the actual system must grow no slower than this fictitious chain.

Figure 3: Race between the adversary trees and the fictitious honest chain. While there may be multiple adversary trees simul-
taneously racing with the honest chain, the growth rate of each tree is bounded by the growth rate of the adversary chain in
the private attack. An honest block is a Nakamoto block when all the previous adversary trees never catch up with the honest
chain past that block.
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issue, two new ideas were invented. In the Ouroboros line of work

[KRDO17, DGKR18, BGK
+
18], a new notion of forkable strings was

invented and a Markov chain analysis was performed to show con-

vergence of the longest chain regardless of adversary action if the

adversary stake is below a certain threshold. Sleepy Consensus and

SnowWhite [PS17, BPS16] took a different approach and defined a

notion of a pivot, which is a time instance 𝑡 such that in all time in-

tervals around 𝑡 , there are more honest convergence opportunities

than the number of adversary slots. They showed that a pivot forces

convergence of the longest chain up to that time, and moreover

if the adversary stake is less than a certain threshold, then these

pivots must occur and they must occur often.

Despite this impressive stream of ideas, the true security thresh-

old was still unknown for both the PoW and PoS longest chain

protocols. Moreover, the analysis techniques seem very tied to the

specific longest chain protocol under study. The definition of a pivot

in [PS17], for example, is tied to the specific longest chain protocol,

SnowWhite, they designed. In contrast, the notion of Nakamoto

blocks in our approach can be viewed as a more general notion of

pivots, but defined for general longest chain protocols and designed

to tie the problem back to the private attack. Even though the anal-

ysis method in [PS17] has already evolved (or, shall we say, pivoted)

from the analysis method in [GKL15], the influence of the block

counting method is still felt in the definition of a pivot. We depart

from this method by defining a Nakamoto block directly in terms

of structural properties of the evolving blocktree itself. In fact, our

approach was motivated from analyzing a protocol like Chia, where

the rate of adversary winning slots grows exponentially over time

and hence a condition like the one used in [PS17] does not give

non-trivial bounds.

The present paper is an extension of an earlier version [BDK
+
19],

where we introduced and applied this approach to analyze a PoS

longest chain protocol [FZ18] similar to the Chia protocol. Since

we released that early version, we became aware of an indepen-

dent work [KQR20], which obtains the true security threshold as

well as linear consistency for the Ouroboros Praos protocol in the

lock-step round-by-round model. They achieved this by tightening

the definition of a pivot in [PS17] to count all honest slots, includ-

ing concurrent ones, not only uniquely successful ones. Like the

original definition of pivots, however, this definition is tied to the

specific protocol. The approach would not give non-trivial bounds

for the Chia protocol, for example. Moreover, their result on the

Praos protocol under the Δ-synchronous model is not tight (Figure

1(b)). We believe this is due to their analysis technique of mapping

the Δ-synchronous model back to the lock-step round-by-round

model. In contrast, our analysis is directly in the Δ-synchronous
model and yields tight results in that model.

1.4 Outline
In Section 2, we introduce a unified model for all three classes of

protocols. In Section 3, we introduce the central concepts of this

work: blocktree partitioning and Nakamoto blocks. These concepts

are applicable to any longest chain protocol. In Section 4, we use

these concepts in the security analysis of the three classes of pro-

tocol attaining the private attack security threshold of each. In

Section 5 we explore the question of whether the private attack is

worst case in a stronger sense for longest chain protocols.

2 MODELS
A key goal of this paper is to provide a common framework to

analyze the security properties of various longest chain protocols.

We focus here primarily on the graph theoretic and the stochastic

aspects of the problem: some resource-dependent randomness is

utilized by these protocols to select which node is eligible to create

a block. The modality in which the randomness is generated leads

to different stochastic processes describing the blocktree growth.

Understanding these stochastic processes and the ability of the

adversary to manipulate these processes to its advantage is the

primary focus of the paper.

Different longest chain protocols use different cryptographic

means to generate the randomness needed. We specifically exclude

here the cryptographic aspects of the protocols, whose analysis is

necessary to guarantee the full security of these protocols. In most

of the protocols we consider (for example [GKL15, KRDO17]), the

cryptographic aspects have already been carefully studied in the

original papers and are not the primary bottleneck. In others, further

work may be necessary to guarantee the full cryptographic security.

In all of these protocols, we assume ideal sources of randomness to

create a model that can then be analyzed independently.

We will adopt a continuous-time model, following the tradition

set by Nakamoto [Nak08] and also used in several subsequent influ-

ential works (eg. [SZ15]) as well as more recent works (eg. [Ren19]).

The continuous-time model affords analytical simplicity and allows

us to focus on the essence of the problem without being cluttered

by too many parameters. Our model corresponds roughly to the

Δ−synchronous network model introduced in [PSS17] in the limit

of a large number of lottery rounds over the duration of the network

delay. This assumption seems quite reasonable. For example, the

total hash rate in today’s Bitcoin network is about 100 ExaHash/s,

i.e. solving 10
21

puzzles per second. Nevertheless, we believe our

results can be extended to the discrete setting.

We first explain the model in the specific context of Nakamoto’s

Proof-of-Work longest chain protocol, and then generalize it to a

unified model for all three classes of protocols we study in this

paper.

2.1 Modeling proof-of-work longest chain
The blockchain is run on a network of 𝑛 honest nodes and a set

of malicious nodes. Each honest node mines blocks, adds them to

the tip of the longest chain in its current view of the blocktree and

broadcasts the blocks to other nodes. Malicious nodes also mine

blocks, but they can be mined elsewhere on the blocktree, and they

can also be made public at arbitrary times. Due to the memoryless

nature of the puzzle solving and the fact that many attempts are

tried per second, we model the block mining processes as Poisson

with rates proportional to the hashing power of the miner.

Because of network delay, different nodes may have different

views of the blockchain. Like the Δ-synchronous model in [PSS17],

we assume there is a bounded communication delay Δ seconds

between the 𝑛 honest nodes. We assume malicious nodes have zero

communication delay among each other, and they can always act

4



in collusion, which in aggregate is referred as the adversary. Also
the adversary can delay the delivery of all broadcast blocks by up

to Δ time. Hence, the adversary has the ability to have one message

delivered to honest nodes at different times, all of which has to be

within Δ time of each other.

More formally, the evolution of the blockchain can be modeled

as a process {(T (𝑡), C(𝑡),T (𝑝) (𝑡), C (𝑝) (𝑡)) : 𝑡 ≥ 0, 1 ≤ 𝑝 ≤ 𝑛}, 𝑛
being the number of honest miners, where:

• T (𝑡) is a tree, and is interpreted as the mother tree consist-
ing of all the blocks that are mined by both the adversary

and the honest nodes up until time 𝑡 , including blocks that

are kept in private by the adversary and including blocks

that are mined by the honest nodes but not yet heard by

other honest nodes in the network.

• T (𝑝) (𝑡) is an induced (public) sub-tree of the mother tree

T (𝑡) in the view of the 𝑝-th honest node at time 𝑡 . It is

the collection of all the blocks that are mined by node 𝑝 or

received from other nodes up to time 𝑡 .

• C (𝑝) (𝑡) is a longest chain in the tree T (𝑝) (𝑡), and is inter-

preted as the longest chain in the local view of the 𝑝-th

honest node on which it is mining at time 𝑡 . Let 𝐿 (𝑝) (𝑡)
denote the depth, i.e the number of blocks in C (𝑝) (𝑡) at
time 𝑡 .

• C(𝑡) is the common prefix of all the local chains C (𝑝) (𝑡)
for 1 ≤ 𝑝 ≤ 𝑛.

The process evolution is as follows.

• M0: T (0) = T (𝑝) (0) = C (𝑝) (0), 1 ≤ 𝑝 ≤ 𝑛 is a single root

block, the genesis block.

• M1: Adversary blocks are mined following a Poisson pro-

cess at rate _𝑎 . When a block is mined by the adversary,

the mother tree T (𝑡) is updated. The adversary can choose

which block in T (𝑡) to be the parent of the adversary block
(i.e. the adversary can mine anywhere in the tree T (𝑡).)

• M2: Honest blocks are mined at a total rate of _ℎ across

all the honest nodes. When a block is mined by the honest

node 𝑝 , the sub-tree T (𝑝) (𝑡) and the longest chain C (𝑝) (𝑡)
is updated. According to the longest chain rule, this honest

block is appended to the tip of C (𝑝) (𝑡). The mother tree

T (𝑡) is updated accordingly.

• M3: T (𝑝) (𝑡) and C (𝑝) (𝑡) can also be updated by the adver-

sary, in two ways: i) a block (whether is honest or adver-

sary) must be added to T (𝑝) (𝑡) within time Δ once it has

appeared in T (𝑞)
for some 𝑞 ≠ 𝑝 , and the longest chain

C (𝑝) (𝑡) is extended if the block is at its tip; ii) the adversary
can replace T (𝑝) (𝑡−) by another sub-tree T (𝑝) (𝑡) from
T (𝑡) as long as the new sub-tree T (𝑝) (𝑡) is an induced

sub-tree of the new tree T (𝑝) (𝑡), and can update C (𝑝) (𝑡−)
to a longest chain in 𝑇 (𝑝) (𝑡). 4

We highlight the capabilities of the adversary in this model:

• A1: Can choose to mine on any one block of the tree T (𝑡)
at any time.

• A2: Can delay the communication of blocks between the

honest nodes, but no more than Δ time.

4
All jump processes are assumed to be right-continuous with left limits, so that

C(𝑡 ), T(𝑡 ) etc. include the new arrival if there is a new arrival at time 𝑡 .

• A3: Can broadcast privately mined blocks at times of its

own choosing: when private blocks are made public at time

𝑡 to node 𝑝 , then these nodes are added to T (𝑝) (𝑡−) to
obtain T (𝑝) (𝑡). Note that by property M3(i), when private

blocks appear in the view of some honest node 𝑝 , they will

also appear in the view of all other honest nodes by time

𝑡 + Δ.
• A4: Can switch the 𝑝-th honest node’s mining from one

longest chain to another of equal length at any time, even

when its view of the tree does not change. In this case,

T (𝑝) (𝑡) = T (𝑝) (𝑡−) but C (𝑝) (𝑡) ≠ C (𝑝) (𝑡−).
The question is on what information can the adversary base

in making these decisions? We will assume a very powerful non-

causal adversary which has full knowledge of all past and future
mining times of the honest blocks and the adversary blocks.

Proving the security (persistence and liveness) of the protocol

boils down to providing a guarantee that the chain C(𝑡) converges
fast as 𝑡 → ∞ and that honest blocks enter regularly into C(𝑡)
regardless of the adversary’s strategy.

2.2 From PoW to a unified model
The model introduced in the last section can serve as a unified

model for all three classes of protocols we study in this paper. The

key difference between these classes of protocols is how the lottery

in winning block proposal slots is conducted. This difference can

be encapsulated by changing only one modeling assumption:M1,
the assumption on the adversary mining process (Figure 4). In

particular, the assumption on the honest behavior (M2) remains

the same,

• M1-PoW (Proof-of-Work): The original assumption we

already had: Adversary blocks are mined according to a

Poisson process at rate _𝑎 , and the mined block can be ap-

pended to any parent block but only one, of the adversary’s

choosing, in the current mother tree T (𝑡). This models the

random attempts at solving the hash puzzle on one of the

existing blocks.

• M1-PS (Praos/SnowWhite Proof-of-Stake model): The ad-

versary blocks are mined
5
according to a Poisson process

at rate _𝑎 (similar to PoW), but the adversary is allowed to

append a version of each mined block simultaneously at

all the blocks in the current tree T (𝑡).
• M1-Chia (Chia Proof-of-Spacemodel): The adversary blocks

are mined according to multiple independent Poisson pro-

cesses of rate _𝑎 , one at each block of the current tree T (𝑡).
A new block is appended to the tree at a certain block when

a mining event happens.

UnderM1-PoW, miners can only mine on one parent block at

a time, a consequence of conservation of work. Hence, the mined

block can only be appended to one of the parent blocks. In M1-PS
and M1-Chia, the adversary is able to mine new blocks on all of
the existing blocks of the blocktree. This is a consequence of the

phenomenon of Nothing-at-stake: the same resource (stake in PoS,

5
In these Proof-of-Stake protocols, block proposal slots are won by conducting lotteries

using the keys of the stake holders rather than by solving difficult computational

puzzles as in Proof-of-Work protocols. However,for convenience, we use the term

"mining" to denote the winning of any type of lotteries.

5



Figure 4: Three models for adversary block mining. In all models, adversary blocks are visualized as arriving via Poisson
queues, and the focus is on how the block at the head of each queue is appended to the blocktree. In the PoW model, each
adversary block can be appended to exactly one of the parent blocks of the existing blocktree. In the Paos/SnowWhte model,
each adversary block can be appended to all possible parents blocks. In the Chia PoSpace model, the adversary blocks are
mined independently on the parent blocks of the existing tree.

disk space in PoSpace) can be used by the nodes to participate

in random lotteries at all parent blocks to propose new blocks.

Hence, unlike under assumption M1-PoW, the overall mining rate

of adversary blocks increases as the tree T (𝑡) grows over time

under both M1-PS and M1-Chia. However, the mining events

across different blocks are fully dependent inM1-PS and completely

independent inM1-Chia. This is a consequence of the difference of
how randomness is used in running the lotteries at different blocks.

In the case of Praos/SnowWhite, the same randomness is used. In

the case of Chia, independent randomness is used.

We note that it may appear that the capability A1 of the adver-

sary (choosing where to mine), which is present in M1-PoW, is

gone under M1-PS and M1-Chia. However, the reason is that the

adversary does not have to choose because it can mine everywhere

simultaneously. Thus the adversary is actually more powerful un-

der theM1-PS andM1-Chia conditions because the adversary has
at its disposal much larger number of adversary blocks to attack

the protocol. Somewhat surprisingly, our security threshold results

show that this extra power is not useful in Praos/SnowWhite but

useful in Chia.

The modeling assumptions for these protocols will be justified

in more details in the following two subsections. The reader who is

comfortable with these assumptions can go directly to Section 3.

2.3 Ouroboros Praos and SnowWhite
Proof-of-Stake model

This section shows how Ouroboros Praos [DGKR18] and Snow

White [BPS16] Proof-of-Stake protocols can be modeled using as-

sumptionM1-PS as mentioned earlier. Both of these are Proof-of-

Stake protocols, which means nodes get selected to create blocks

in proportion to the number of coins (=stake) that they hold rather

than the computation power held by the nodes. While the two

protocols are similar at the level required for the analysis here, for

concreteness, we will describe here the relation with Ouroboros

Praos, which can handle adaptive corruption of nodes.

We consider here only the static stake scenario - the stake of var-

ious nodes is fixed during the genesis block and assume that there

is a single epoch (the composition of epochs into a dynamic stake

protocol can be done using the original approach in [DGKR18]).

The common randomness as well as the stake of various users is

fixed at genesis (more generally, these are fixed at the beginning of

each epoch for the entire duration of the epoch). For this protocol,

we will assume that all nodes have a common clock (synchronous

execution). At each time 𝑡 , every node computes a verifiable random

function (VRF) of the current time, the common randomness and

the secret key. If the output value of the VRF is less than a certain

threshold, then that node is allowed to propose a block at that time,

to which it appends its signature. The key property of the VRF is

that any node with knowledge only of the public key can validate

that it was obtained with a node possessing the corresponding se-

cret key. An honest node will follow the prescribed protocol and

thus only create one block which it will append to the longest chain

in its view. However, a winning dishonest node can create many

different blocks mining on top of distinct chains. Blocks which are

well-embedded into the longest-chain are considered confirmed.

Now, we explain the connection of the protocol to our modeling

in the earlier section. The first assumption is that time is quantized

so finely that the continuous time modeling makes sense - this

assumes that there is no simultaneous mining at any time point.

However, if nodes mine blocks close to each other in time, they

can be forked due to the delay Δ in the propagation time (thus we

model concurrent mining through the effect of the propagation

delay rather than through discrete time). Second, the honest action

is to grow the longest chain through mining a new block at the tip

- this justifies M2 (here _ℎ is proportional to the total honest stake).

The adversaries can mine blocks which can be appended to many
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different positions in the blockchain. We assume that in the worst

case, every adversary arrival contributes to a block extending every

single block in the tree. We note that furthermore, there is another

action, which is that the adversary can create many different blocks

at any given position of the blockchain. Since this action does

not increase the length of any chain or increase future mining

opportunities, we do not need to model this explicitly. However, we

point out that, since we show that a certain prefix of the blockchain

ending at a honest block remains fixed for all future, that statement

continues to hold even under this expanded adversary action space.

2.4 Chia Proof-of-Space model
Chia consensus [CP19] incorporates a combination of Proof of

Space (PoSpace) and Proof of time, and is another energy effi-

cient alternative to Bitcoin. PoSpace [AAC
+
17, DFKP15] is a cryp-

tographic technique where provers can efficiently generate proofs

to show that they allocate unused hard drive space for storage

space. Proof of time is implemented by a Verifiable Delay Function

(VDF) [BBBF18, Pie18] that requires a certain amount of sequential

computations to execute, but can be verified far quicker: a VDF

takes a challenge 𝑐 ∈ {0, 1}𝑤 and and a time parameter 𝑡 ∈ Z+ as

input, and produces a output 𝜏 and a proof 𝜋 in (not much more

than) 𝑡 sequential steps; the correctness of output 𝜏 can be verified

with the proof 𝜋 in much less than 𝑡 steps. PoSpace enables Sybil

resistance by restricting participation to nodes that have reserved

enough hard disk space and VDF enables coordination without hav-

ing synchronized clocks as well as preventing long-range attacks

[PKF
+
18].

In Chia, each valid block 𝐵 contains a PoSpace 𝜎 and a VDF

output 𝜏 . A Chia full node mines a new block (𝐵𝑖 , with 𝑖 denoting

the depth of the block from Genesis) as follows:

(1) It first picks the block 𝐵𝑖−1, at the tip of the longest chain

in its local view of the blocktree, as the parent block that

the newly generated block 𝐵𝑖 will be appended to.

(2) It draws a challenge 𝑐1 deterministically from 𝐵𝑖−1 and

generates a valid PoSpace 𝜎𝑖 based on 𝑐1 and a large file of

size at least𝑀 bits it stores.

(3) It computes a valid VDF output 𝜏𝑖 based on a challenge 𝑐2

and a time parameter 𝑡 , where 𝑐2 is also drawn determin-

istically from 𝐵𝑖−1 and 𝑡 is the hash of 𝜎𝑖 multiplied by a

difficulty parameter 𝑇 (i.e. 𝑡 = 0.H(𝜎𝑖 ) × 𝑇 where H is a

cryptographic hash function).

(4) A new block 𝐵𝑖 comprised of 𝜎𝑖 , 𝜏𝑖 and some payload (ex-

ample: transactions) is appended to 𝐵𝑖−1 in the blocktree.

For each node, the “mining” time of a new block follows a uni-

form distribution in (0,𝑇 ): this is because the hash function H out-

puts a value that is uniformly distributed over its range. Suppose

there are 𝑁 full nodes in the Chia network, then the inter-arrival

block time in Chia consensus would be min(𝑈1,𝑈2, · · · ,𝑈𝑁 ), where
𝑈𝑖 ∼ Unif (0,𝑇 ) for 1 ≤ 𝑖 ≤ 𝑁 . Then the expected inter-arrival block

time is

E[min(𝑈1,𝑈2, · · · ,𝑈𝑁 )] =
∫ 𝑇

0

(1 − 𝑡/𝑇 )𝑁𝑑𝑡 = 𝑇

𝑁 + 1

.

So to maintain a fixed inter-arrival block time (example: 10 min-

utes in Bitcoin), the difficulty parameter 𝑇 needs to be adjusted

linearly as number of full nodes 𝑁 grows. We also observe that the

chance for a node storing two large files each of size at least 𝑀

bits to find the first block is exactly doubled compared with a node

storing one file, which provides Sybil resistance to Chia. Further we

can model the mining process in Chia as a Poisson point process for

large 𝑁 . Fixing a parent block in the block tree, the number of new

blocks mined in time 𝑡 follows a binomial distribution bin(𝑁, 𝑡/𝑇 ),
which approaches a Poisson distribution Poi(𝑁𝑡/𝑇 ) when 𝑁 → ∞
and 𝑁 /𝑇 → 𝐶 for some constant 𝐶 .

Assume there are𝑛 honest nodes each controlling𝑀 bits of space,

and the adversary has 𝑎 ·𝑀 bits of space, then the mining processes

of honest blocks and adversary blocks are Poisson point processes

with rate _ℎ and _𝑎 respectively, where _ℎ and _𝑎 are proportional

to total size of disk space controlled by honest nodes (𝑛 ·𝑀) and

the adversary (𝑎 ·𝑀) respectively. Also while the honest nodes are

following the longest chain rule, the adversary canwork onmultiple

blocks or even all blocks in the block tree as a valid PoSpace is easy

to generate and the adversary can compute an unlimited amount

of VDF outputs in parallel; a similar phenomenon occurs in Proof-

of-Stake blockchains where it is termed as the Nothing-at-Stake

(NaS) attack [BDK
+
19]. Hence, we can model the adversary blocks

as generated according to multiple independent Poisson processes

of rate _𝑎 , one at each block of the current tree T (𝑡). A new block

is appended to the tree at a certain block when a generation event

happens. Like in the model for Ouroboros Praos and Snow White,

the total rate of adversary block generation increases as the tree

grows; however the generation events across different blocks are

independent rather than fully dependent.

3 BLOCKTREE PARTITIONING AND
NAKAMOTO BLOCKS

In this section, we will introduce the concept of blocktree parti-
tioning to represent a general adversary attack as a collection of

adversary trees racing against a fictitious honest chain. Using this

representation, we define the key notion of Nakamoto blocks as
honest blocks that are the winners of the race against all the past

trees, and show that if a block is a Nakamoto block, then the block

will forever remain in the longest chain. The results in this section

apply to all three models. In fact, they are valid for any assumption

on the adversary mining process in M1 in the model in Section 2.1,

because no statistical assumptions are made. In Section 4, we will

perform security analysis in all three backbone models using the

tool of Nakamoto blocks, by showing that they occur frequently

with high probability whenever the adversary power is not suffi-

cient to mount a successful private attack. This proves the liveness

and persistency of the protocols.

First, we introduce the concept of blocktree partitioning and

define Nakamoto blocks in the simpler case when Δ = 0, and then

we extend to general Δ. The unrealistic but pedagogically useful

zero-delay case allows us to focus on the capability of the adversary

to mine and publish blocks, while the general case brings in its

capability to delay the delivery of blocks by the honest nodes as

well.
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3.1 Network delay Δ = 0

3.1.1 Blocktree partitioning

Let 𝜏ℎ
𝑖
and 𝜏𝑎

𝑖
be the mining time of the 𝑖-th honest and adversary

blocks respectively; 𝜏ℎ
0
= 0 is the mining time of the genesis block,

which we consider as the 0-th honest block.

Definition 3.1. Blocktree partitioning Given the mother tree
T (𝑡), define for the 𝑖-th honest block 𝑏𝑖 , the adversary tree T𝑖 (𝑡) to
be the sub-tree of the mother tree T (𝑡) rooted at 𝑏𝑖 and consists of
all the adversary blocks that can be reached from 𝑏𝑖 without going
through another honest block. The mother tree T (𝑡) is partitioned
into sub-trees T0 (𝑡),T1 (𝑡), . . .𝑇𝑗 (𝑡), where the 𝑗-th honest block is the
last honest block that was mined before time 𝑡 .

See Figure 2(b) for an example.

The sub-tree T𝑖 (𝑡) is born at time 𝜏ℎ
𝑖
as a single block 𝑏𝑖 and

then grows each time an adversary block is appended to a chain

of adversary blocks from 𝑏𝑖 . Let 𝐷𝑖 (𝑡) denote the depth of T𝑖 (𝑡);
𝐷𝑖 (𝜏ℎ𝑖 ) = 0.

3.1.2 Nakamoto blocks

Let 𝐴ℎ (𝑡) be the number of honest blocks mined from time 0 to

𝑡 . 𝐴ℎ (𝑡) increases by 1 at each time 𝜏ℎ
𝑖
. We make the following

important definition.

Definition 3.2. (Nakamoto block for Δ = 0) Define

𝐸0

𝑖 𝑗 = event that 𝐷𝑖 (𝑡) < 𝐴ℎ (𝑡) −𝐴ℎ (𝜏ℎ𝑖 ) for all 𝑡 > 𝜏ℎ
𝑗

(4)

for some 𝑖 < 𝑗 . The 𝑗-th honest block is called a Nakamoto block if

𝐹 0

𝑗 =

𝑗−1⋂
𝑖=0

𝐸0

𝑖 𝑗 (5)

occurs.

We can interpret the definition of a Nakamoto block in terms of

a fictitious system, having the same block mining times as the actual

system, where there is a growing chain consisting of only honest

blocks and the adversary trees are racing against this honest chain.

(Figure 3). The event 𝐸0

𝑖 𝑗
is the event that the adversary tree rooted

at the 𝑖-th honest block does not catch with the fictitious honest

chain any time after the mining of the 𝑗-th honest block. When the

fictitious honest chain reaches a Nakamoto block, it has won the

race against all adversary trees rooted at the past honest blocks.

Even though the events are about a fictitious system with a

purely honest chain and the longest chain in the actual system

may consist of a mixture of adversary and honest blocks, the actual

chain can only grow faster than the fictitious honest chain, and so

we have the following key lemma showing that a Nakamoto block

will stabilize and remain in the actual chain forever.

Lemma 3.1. (Nakamoto blocks stabilize, Δ = 0.) If the 𝑗-th
honest block is a Nakamoto block, then it will be in the longest chain
C(𝑡) for all 𝑡 > 𝜏ℎ

𝑗
. Equivalently, C(𝜏ℎ

𝑗
) will be a prefix of C(𝑡) for

all 𝑡 > 𝜏ℎ
𝑗
.

Proof. Note that although honest nodes may have different

views of the longest chain because of the adversary capability A4,

T (𝑝) (𝑡) = T (𝑞) (𝑡) and hence 𝐿 (𝑝) (𝑡) = 𝐿 (𝑞) (𝑡) always hold for

any 𝑞 ≠ 𝑝 at any time 𝑡 when Δ = 0. Let 𝐿(𝑡) be the length of the

longest chain in the view of honest nodes. 𝐿(0) = 0. Note that since

the length of the chain C (𝑝) (𝑡) increments by 1 immediately at

every honest block mining event (this is a consequence of Δ = 0),

it follows that for all 𝑖 and for all 𝑡 > 𝜏ℎ
𝑖
,

𝐿(𝑡) − 𝐿(𝜏ℎ𝑖 ) ≥ 𝐴ℎ (𝑡) −𝐴ℎ (𝜏ℎ𝑖 ) . (6)

We now proceed to the proof of the lemma.

We will argue by contradiction. Suppose 𝐹 0

𝑗
occurs and let 𝑡∗ >

𝜏ℎ
𝑗
be the smallest 𝑡 such that C(𝜏ℎ

𝑗
) is not a prefix of C (𝑝) (𝑡) for

some 1 ≤ 𝑝 ≤ 𝑛. Let 𝑏𝑖 be the last honest block on C (𝑝) (𝑡∗) (which
must exist, because the genesis block is by definition honest.) If 𝑏𝑖

is generated at some time 𝑡1 > 𝜏ℎ
𝑗
, then C (𝑝) (𝑡−

1
) is the prefix of

C (𝑝) (𝑡∗) before block 𝑏𝑖 , and does not contain C(𝜏ℎ
𝑗
) as a prefix,

contradicting the minimality of 𝑡∗. So 𝑏𝑖 must be generated before

𝜏ℎ
𝑗
, and hence 𝑏𝑖 is the 𝑖-th honest block for some 𝑖 < 𝑗 . The part

of C (𝑝) (𝑡∗) after block 𝑏𝑖 must lie entirely in the adversary tree

𝑇𝑖 (𝑡∗) rooted at 𝑏𝑖 . Hence,

𝐿(𝑡∗) ≤ 𝐿(𝜏ℎ𝑖 ) + 𝐷𝑖 (𝑡∗)

However we know that

𝐷𝑖 (𝑡∗) < 𝐴ℎ (𝑡∗) −𝐴ℎ (𝜏ℎ𝑖 ) ≤ 𝐿(𝑡∗) − 𝐿(𝜏ℎ𝑖 ), (7)

where the first inequality follows from the fact that 𝐹 𝑗 holds, and

the second inequality follows from the longest chain policy (eqn.

(6)). From this we obtain that

𝐿(𝜏ℎ𝑖 ) + 𝐷𝑖 (𝑡∗) < 𝐿(𝑡∗) (8)

which is a contradiction since 𝐿(𝑡∗) ≤ 𝐿(𝜏ℎ
𝑖
) + 𝐷𝑖 (𝑡∗). □

Lemma 3.1 justifies the name Nakamoto block: just like its name-

sake, a Nakamoto block has a godlike permanency. Also like its

namesake, no one knows for surewhether a given block is a Nakamoto

block: it is defined in terms of what happens in the indefinite future.

However, the concept is useful because as long as a Nakamoto block

appears in the last 𝑘 blocks of the current longest chain, then the

prefix before these 𝑘 blocks will stabilize. Hence, the problem is

reduced to showing under what conditions Nakamoto blocks exist

and they enter the blockchain frequently.

Since Nakamoto blocks are defined in terms of a race between

adversary trees and the honest chain, and the growth rate of each

adversary tree is bounded by the growth rate of the private attack

adversary chain no matter what the attack is, one can intuitively

expect that if the private attack is not successful, i.e. the growth

rate of the private adversary chain is less than that of the honest

chain, then once in a while Nakamoto blocks will occur because

the adversary trees cannot win all the time. This intuition is made

precise in Section 4 for the three models of interest. The current

task at hand is to extend the notion of Nakamoto blocks to the

Δ > 0 case.

3.2 General network delay Δ
Definition 3.2 of a Nakamoto block is tailored for the zero network

delay case. When the network delay Δ > 0, there is forking in the
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blockchain even without adversary blocks, and two complexities

arise:

(1) Even when a honest block 𝑏 has won the race against all

the previous adversary trees, there can still be multiple

honest blocks on the same level as 𝑏 in the mother tree

T (𝑡) due to forking. Hence there is no guarantee that 𝑏

will remain in the longest chain.

(2) Even when the honest block 𝑏 is the only block in its level,

the condition in Equation (4) is not sufficient to guarantee

the stabilization of 𝑏: the number of honest blocks mined is

an over-estimation of the amount of growth in the honest

chain due to forking.

The first complexity is a consequence of the fact that when the

network delay is non-zero, the adversary has the additional power

to delay delivery of honest blocks to create split view among the

honest nodes. In the context of the formal security analysis of

Nakamoto’s PoW protocol, the limit of this power is quantified by

the notion of uniquely successful rounds in [GKL15] in the lock-step

synchronous round-by-round model, and extended to the notion of

convergence opportunities in [PSS17] in the Δ-synchronous model.

The honest blocks encountering the convergence opportunities are

called loners in [Ren19].

Definition 3.3. The 𝑗-th honest block mined at time 𝜏ℎ
𝑗
is called

a loner if there are no other honest blocks mined in the time interval
[𝜏ℎ

𝑗
− Δ, 𝜏ℎ

𝑗
+ Δ].

It is shown in [PSS17, Ren19] that a loner must be the only

honest block in its depth in T (𝑡) at any time 𝑡 after the block is

mined. Thus, to deal with the first complexity, we simply strengthen

the definition of a Nakamoto block to restrict it to also be a loner

block. Since loner blocks occur frequently, this is not an onerous

restriction.

To deal with the second complexity, we define the race of the

adversary trees not against a fictitious honest chain without forking

as in definition 3.2, but against a fictitious honest tree with worst-

case forking. This tree is defined as follows.

Definition 3.4. Given honest block mining times 𝜏ℎ
𝑖
’s, define a

honest fictitious tree Tℎ (𝑡) as a tree which evolves as follows:
(1) Tℎ (0) is the genesis block.
(2) The first mined honest block and all honest blocks within

Δ are all appended to the genesis block at their respective
mining times to form the first level.

(3) The next honest block mined and all honest blocks mined
within time Δ of that are added to form the second level
(which first level blocks are parents to which new blocks is
immaterial) .

(4) The process repeats.
Let 𝐷ℎ (𝑡) be the depth of Tℎ (𝑡).

We are now ready to put everything together to define Nakamoto

blocks in general.

Definition 3.5. (Nakamoto block for general Δ) Let us de-
fine:

𝐸𝑖 𝑗 = event that 𝐷𝑖 (𝑡) < 𝐷ℎ (𝑡 − Δ) − 𝐷ℎ (𝜏ℎ𝑖 + Δ) for all 𝑡 > 𝜏ℎ
𝑗
+ Δ.

(9)

The 𝑗-th honest block is called a Nakamoto block if it is a loner and

𝐹 𝑗 =

𝑗−1⋂
𝑖=0

𝐸𝑖 𝑗 (10)

occurs.

Note that when Δ = 0, 𝐷ℎ (𝑡) = 𝐴ℎ (𝑡), the number of honest

blocks mined in [0, 𝑡]. Hence 𝐸𝑖 𝑗 = 𝐸0

𝑖 𝑗
. Also, every block is a loner.

Here Definition 3.5 degenerates to Definition 3.2. Moreover, it is

not difficult to see that

𝐷ℎ (𝑡 − Δ) − 𝐷ℎ (𝜏ℎ𝑖 + Δ) ≤ 𝐴ℎ (𝑡) −𝐴ℎ (𝜏ℎ𝑖 )

so Definition 3.5 is indeed a strengthening of Definition 3.2. This

strengthening allows us to show that Nakamoto blocks stabilize for

all Δ > 0.

Theorem 3.2. (Nakamoto blocks stabilize, general Δ) If the
𝑗-th honest block is a Nakamoto block, then it will be in the chain
C(𝑡) for all 𝑡 > 𝜏ℎ

𝑗
+ Δ. This implies that the longest chain until the

𝑗-th honest block has stabilized.

For the proof of the stabilization property of a Nakamoto block,

it is crucial to show that 𝐷ℎ (𝑡) gives a conservative bound on the

growth of the chains C (𝑝)
from time 𝑠 to 𝑡 . For this purpose, we

prove the following proposition:

Proposition 3.3. For any given 𝑠 , 𝑡 such that 𝑠 + Δ < 𝑡 − Δ;

𝐷ℎ (𝑡 − Δ) − 𝐷ℎ (𝑠 + Δ) ≤ 𝐿 (𝑝) (𝑡) − 𝐿 (𝑝) (𝑠)

for any honest miner 𝑝 .

Proof. Assume that the increase in 𝐿 (𝑝) within the interval

[𝑠, 𝑡] is solely due to the arrival of honest blocks to some miner

in the interval [𝑠 − Δ, 𝑡]. Then, we first show that delaying every

block that arrives within this interval by Δ minimizes the increase

in 𝐿 (𝑝) from 𝑠 to 𝑡 for any 𝑡 > 𝑠 + Δ. To prove this, first observe

that minimizing the increase in 𝐿 (𝑝) is equivalent to maximizing

the time it takes for C (𝑝)
to reach any depth 𝑑 . Now, let ℎ𝑖 be the

block at the tip of C (𝑝)
when it reaches depth 𝑑 , and, assume that

it took 𝛿𝑖 ≤ Δ time for 𝑝 to learn about ℎ𝑖 after it was mined. Then,

C (𝑝)
reaches depth 𝑑 at time 𝜏ℎ

𝑖
+𝛿𝑖 . However, if the message for ℎ𝑖

was delayed for 𝛿 ′
𝑖
> 𝛿𝑖 time, then, either C (𝑝)

would have reached

depth 𝑑 at time 𝜏ℎ
𝑖
+ 𝛿 ′

𝑖
≥ 𝜏ℎ

𝑖
+ 𝛿𝑖 with block ℎ𝑖 at its tip, or, another

block ℎ 𝑗 , with index 𝑗 ≠ 𝑖 would have brought C (𝑝)
to depth 𝑑 at

some time 𝑡 , 𝜏ℎ
𝑖
+𝛿 ′

𝑖
> 𝑡 > 𝜏ℎ

𝑖
+𝛿𝑖 . Hence, delaying the transmission

of ℎ𝑖 increases the time it takes for C (𝑝)
to reach depth 𝑑 . This

implies that ℎ𝑖 should be delayed as long as possible, which is Δ.
Since this argument also applies to any other block ℎ 𝑗 that might

also bring C (𝑝)
to depth 𝑑 when ℎ𝑖 is delayed, every block should

be delayed by Δ to maximize the time for C (𝑝)
to reach any depth

𝑑 . This, in turn, minimizes the increase in 𝐿 (𝑝) by any time 𝑡 > 𝑠 .

Next, define the following random variable:

𝐿𝑚𝑎𝑥 (𝑡) = max

𝑝=1,..,𝑛
(𝐿 (𝑝) (𝑡)) .

Then, we can assert that;

𝐿𝑚𝑎𝑥 (𝑡 − Δ) ≤ 𝐿 (𝑝) (𝑡) ≤ 𝐿𝑚𝑎𝑥 (𝑡)
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for any honest miner 𝑝 . Then,

𝐿 (𝑝) (𝑡) − 𝐿 (𝑝) (𝑠) ≥ 𝐿𝑚𝑎𝑥 (𝑡 − Δ) − 𝐿𝑚𝑎𝑥 (𝑠) .

From the paragraph above, we know that delaying every honest

block by Δ minimizes 𝐿 (𝑝) (𝑡) for any 𝑡 . Hence, this action also

minimizes 𝐿 (𝑝) (𝑡) − 𝐿 (𝑝) (𝑠) for any 𝑡 > 𝑠 + 2Δ. Now, assume that

no honest miner hears about any adversary block in the interval

[𝑠, 𝑡] and every honest block is delayed by Δ. Then, the difference
𝐿𝑚𝑎𝑥 (𝑡 − Δ) − 𝐿𝑚𝑎𝑥 (𝑠) will be solely due the honest blocks that

arrive within the period [𝑠, 𝑡 − Δ]. However, in this case, depth of

𝐿𝑚𝑎𝑥 changes via the same process as 𝐷ℎ (when each miner has

infinitesimal power), which implies the following inequality:

𝐿𝑚𝑎𝑥 (𝑡 − Δ) − 𝐿𝑚𝑎𝑥 (𝑠) ≥ 𝐷ℎ (𝑡 − Δ) − 𝐷ℎ (𝑠 + Δ).

Hence, we see that when every block is delayed by Δ and there are

no adversary blocks heard by 𝑝 in the time interval [𝑠, 𝑡];

𝐿 (𝑝) (𝑡) − 𝐿 (𝑝) (𝑠) ≥ 𝐷ℎ (𝑡 − Δ) − 𝐷ℎ (𝑠 + Δ) .

However, delaying honest blocks less than Δ time or the arrival

of adversary blocks to 𝑝 in the period [𝑠, 𝑡] only increases the

difference 𝐿 (𝑝) (𝑡) − 𝐿 (𝑝) (𝑠). Consequently;

𝐷ℎ (𝑡 − Δ) − 𝐷ℎ (𝑠 + Δ) ≤ 𝐿 (𝑝) (𝑡) − 𝐿 (𝑝) (𝑠)

for any honest miner 𝑝 .

□

Now we are ready to prove Theorem 3.2.

Proof. We prove that the 𝑗-th honest block will be included in

any future chain C(𝑡) for 𝑡 > 𝜏ℎ
𝑖
+ Δ, by contradiction. Suppose

𝐹 𝑗 occurs and let 𝑡∗ > 𝜏ℎ
𝑗
+ Δ be the smallest 𝑡 such that the 𝑗-th

honest block is not contained in C (𝑝) (𝑡) for some 1 ≤ 𝑝 ≤ 𝑛. Let

ℎ𝑖 be the last honest block on C (𝑝) (𝑡∗), which must exist, because

the genesis block is by definition honest. If 𝜏ℎ
𝑖

> 𝜏ℎ
𝑗
+ Δ for ℎ𝑖 ,

then, C (𝑝) (𝜏ℎ−
𝑖

) is the prefix of C (𝑝) (𝑡∗) before block ℎ𝑖 , and, does
not contain the 𝑗-th honest block, contradicting the minimality of

𝑡∗. Therefore, ℎ𝑖 must be mined before time 𝜏ℎ
𝑗
+ Δ. Since the 𝑗-th

honest block is a loner, we further know that ℎ𝑖 must be mined

before time 𝜏ℎ
𝑗
, implying that ℎ𝑖 is the 𝑖-th honest block for some

𝑖 < 𝑗 . In this case, part of C (𝑝) (𝑡∗) after block ℎ𝑖 must lie entirely

in the tree T𝑖 (𝑡∗) rooted at ℎ𝑖 . Hence,

𝐿 (𝑝) (𝑡∗) ≤ 𝐿 (𝑝) (𝜏ℎ𝑖 ) + 𝐷𝑖 (𝑡∗) . (11)

However, we know that;

𝐷𝑖 (𝑡∗) < 𝐷ℎ (𝑡∗ − Δ) − 𝐷ℎ (𝜏ℎ𝑖 + Δ) ≤ 𝐿 (𝑝) (𝑡∗) − 𝐿 (𝑝) (𝜏ℎ𝑖 ) (12)

where the first inequality follows from the fact that 𝐹 𝑗 holds and

the second inequality follows from proposition 3.3. From this we

obtain that

𝐿 (𝑝) (𝜏ℎ𝑖 ) + 𝐷𝑖 (𝑡∗) < 𝐿 (𝑝) (𝑡∗) (13)

which is a contradiction since 𝐿 (𝑝) (𝑡∗) ≤ 𝐿 (𝑝) (𝜏ℎ
𝑖
) + 𝐷𝑖 (𝑡∗). This

concludes the proof.

□

Nakamoto blocks are defined for general longest chain protocols.

When applied to the Praos/SnowWhite protocols, the definition of

Nakamoto blocks is a weakening of the definition of pivots in [PS17].

Although [PS17] did not define pivots explicitly in terms of races,

one can re-interpret the definition as a race between the adversary

and a fictitious honest chain consisting of only loner honest blocks.

This fictitious chain can never occur in the actual system even when

no adversary blocks are made public, because there are other honest

blocks which are not loners but can make it into the main chain.

On the other hand, Nakamoto blocks are defined directly as a race

between the adversary and the fictitious honest chain which would

arise if there were no public adversary blocks. This is why the

definition of Nakamoto blocks leads to a tight characterization of

the security threshold in the Praos/SnowWhite protocols, matching

the private attack threshold, while the definition of pivots in [PS17]

cannot. (Theorem 4.2). This tightening is similar to the tightening

done in the recent work [KQR20] for the lock-step round-by-round

model.

4 SECURITY ANALYSIS
The goal of this section is to show that the private attack is the worst

attack for the three models defined in Section 2. More precisely, we

want to show that security threshold, i.e. the maximum adversary

power tolerable for any adversary strategy, is the same as that of

Nakamoto’s private attack. This is true for any total mining rate _

and for any Δ. (In fact, the threshold depends only on the product

_Δ.) We will use the notion of Nakamoto blocks to establish these

results.

4.1 Statement of results
Our goal is to generate a transaction ledger that satisfies persistence
and liveness as defined in [GKL15]. Together, persistence and live-

ness guarantee robust transaction ledger; honest transactions will

be adopted to the ledger and be immutable.

Definition 4.1 (from [GKL15]). A protocol Π maintains a robust

public transaction ledger if it organizes the ledger as a blockchain

of transactions and it satisfies the following two properties:

• (Persistence) Parameterized by 𝜏 ∈ R, if at a certain time a

transaction tx appears in a block which is mined more than

𝜏 time away from the mining time of the tip of the main

chain of an honest node (such transaction will be called

confirmed), then tx will be confirmed by all honest nodes

in the same position in the ledger.

• (Liveness) Parameterized by 𝑢 ∈ R, if a transaction tx is
received by all honest nodes for more than time 𝑢, then

all honest nodes will contain tx in the same place in the

ledger forever.

As discussed in the introduction, the condition for the private

attack on Nakamoto’s Proof-of-Work protocol to be successful is

_𝑎 > _
growth

(_ℎ,Δ) =
_ℎ

1 + _ℎΔ
(14)

in the fully decentralized regime. In terms of 𝛽 , the fraction of

adversary power, and _, the total block mining rate:

𝛽 >
1 − 𝛽

1 + (1 − 𝛽)_Δ (15)
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The parameter _Δ is the number of blocks generated per network

delay, and determines the latency and throughput of the blockchain.

If this condition is satisfied, then clearly the ledger does not have

persistency or liveness. Hence, the above condition can be inter-

preted as a tradeoff between latency/throughput and the security

(under private attack).

In the Praos/SnowWhite protocol, the honest growth rate is the

same as in the PoW system. Consider now the adversary blocks.

They are mined according to a Poisson process at rate _𝑎 . When

a block is mined, the adversary gets to append that block to all

the blocks in the current adversary chain (cf. Figure 4(b)). This

leads to an exponential increase in the number of adversary blocks.

However, the depth of that chain increases by exactly 1. Hence the

growth of the adversary chain is exactly the same as the advversary

chain under PoW. Hence, we get exactly the same private attack

threshold (15) in both the PoW and the Praos/SnowWhite PoS

protocols.

The theorem below shows that the the private attack threshold

yields the true security threshold for both classes of protocols.

Theorem 4.2. If

𝛽 <
1 − 𝛽

1 + (1 − 𝛽)_Δ (16)

then the Nakamoto PoW and the Ouroboros/SnowWhite PoS protocols
generate transaction ledgers such that each transaction tx6 satisfies
persistence (parameterized by 𝜏 = 𝜎) and liveness (parameterized
by 𝑢 = 𝜎) in Definition 4.1 with probability at least 1− 𝑒−Ω (𝜎1−Y ) , for
any Y > 0.

For the Chia Proof-of-Space model, the private attack is analyzed

in [CP19, FZ18]. The growth rate of the private adversary chain is

𝑒_𝑎 . (The magnification by a factor of 𝑒 is due to the Nothing-at-

Stake nature of the protocol; more on that in Section 4.4.). Hence

the condition for success for the private attack is:

𝑒_𝑎 >
_ℎ

1 + _ℎΔ
, (17)

in the fully decentralized setting. This implies the following condi-

tion on 𝛽 , the adversary fraction of space resources:

𝑒𝛽 >
1 − 𝛽

1 + (1 − 𝛽)_Δ (18)

For the Chia model, this threshold yields the true threshold as

well.

Theorem 4.3. If

𝑒𝛽 <
1 − 𝛽

1 + (1 − 𝛽)_Δ (19)

then the Chia Proof-of-Space protocol generate transaction ledgers
satisfying persistence (parameterized by 𝜏 = 𝜎) and liveness (pa-
rameterized by 𝑢 = 𝜎) in Definition 4.1 with probability at least
1 − 𝑒−Ω (𝜎1−Y ) , for any Y > 0.

6
In contrast to the theorems in [GKL15, PSS17], this theorem guarantees high proba-

bility persistence and liveness for each transaction rather than for the entire ledger.

This is because our model has an infinite time-horizon while their model has a finite

horizon, and guarantees for an infinite ledger is impossible. However, one can easily

translate our results to high probability results for an entire finite ledger over a time

horizon of duration polynomial in the security parameter 𝜎 using the union bound.

The security thresholds for the different models are plotted in

Figure 1, comparing to existing lower bounds in the literature.

4.2 Approach
To prove Theorems 4.2 and 4.3, we use the technique of Nakamoto

blocks developed in Section 3. Theorem 3.2 states that Nakamoto

blocks remain in the longest chain forever. The question is whether

they exist and appear frequently regardless of the adversary strat-

egy. If they do, then the protocol has liveness and persistency:

honest transactions can enter the ledger frequently through the

Nakamoto blocks, and once they enter, they remain at a fixed loca-

tion in the ledger. More formally, we have the following result.

Lemma 4.4. Define 𝐵𝑠,𝑠+𝑡 as the event that there is no Nakamoto
blocks in the time interval [𝑠, 𝑠 + 𝑡]. If

𝑃 (𝐵𝑠,𝑠+𝑡 ) < 𝑞𝑡 < 1 (20)

for some 𝑞𝑡 independent of 𝑠 and the adversary strategy, then the pro-
tocol generates transaction ledgers satisfying persistence (parameter-
ized by 𝜏 = 𝜎) and liveness (parameterized by𝑢 = 𝜎) in Definition 4.1
with probability at least 1 − 𝑞𝜎 .

The proof of Lemma 4.4 can be found in §D. This reduces the

problem to that of bounding the probability that there are no

Nakamoto blocks in a long duration. Here we follow a similar

style of reasoning as in the analysis of occurrence of pivots in the

Sleepy Consensus protocol [PS17]:

(1) Show that the probability that the 𝑗-th honest block is a

Nakamoto block is lower bounded by some 𝑝 > 0 for all

𝑗 and for all adversary strategy, in the parameter regime

when the private attack growth rate is less than the honest

chain growth rate.

(2) Bootstrap from (1) to bound the probability of the event

𝐵𝑠,𝑡 , an event of no occurrence of Nakamoto blocks for a

long time.

Intuitively, if (1) holds, then one would expect that the chance

that Nakamoto blocks do not occur over a long time is low, provided

that a block being Nakaomoto is close to independent of another

block being Nakamoto if the mining times of the two blocks are far

apart. We perform the bootstrapping by exploiting this fact for the

various models under consideration.

In [PS17], the bootstrapping yields a bound exp(−Ω(
√
𝑡)) on

𝑃 (𝐵𝑠,𝑠+𝑡 ). By recursively applying the bootstrapping procedure, we
are able to get a bound exp(−Ω(𝑡1−Y )) on 𝑃 (𝐵𝑠,𝑠+𝑡 ), for any Y > 0.

We apply this general analysis strategy to the three models in the

next two subsections.

4.3 Nakamoto PoW and Praos/SnowWhite PoS
Models

This subsection is dedicated to proving Theorem 4.2. We will show

that if

_𝑎 <
_ℎ

1 + _ℎΔ
, (21)

then Nakamoto blocks occur frequently and regularly under both

the PoW and the Praos/SnowWhite PoS models. Since the adversary

in the Praos/SnowWhite PoS model is stronger, it suffices for us to

prove the statement in that model.
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As outlined in the section above, to prove theorem 4.2, we need

to show that there exists constants 𝐴Y , 𝑎Y > 0 such that

𝑃 (𝐵𝑠,𝑠+𝑡 ) < 𝐴Y exp(−𝑎Y𝑡1−Y )
for all 𝑠, 𝑡 > 0. In this context, we first establish that the probability

of occurrence of a Nakamoto block is bounded away from 0.

Lemma 4.5. If

_𝑎 <
_ℎ

1 + Δ_ℎ
,

there exists a constant 𝑝 > 0 such that the probability that the 𝑗-th
honest block is a Nakamoto block is at least 𝑝 for all 𝑗 .

We present a proof sketch below:

First, in the Praos/SnowWhitemodel, each arrival of an adversary

block can increment the depth of each adversary tree by exactly one

although many copies of this block are mined. Hence, the adversary

trees growwith the same rate as the adversary’smining rate, namely

_𝑎 . Second, we observe that in the long run, the honest tree 𝑇ℎ
grows with rate _ℎ/(1+_ℎΔ). See Figure 3 for the relation between

adversary trees and the honest tree. Then, if _𝑎 < _ℎ/(1+_ℎΔ), the
gap between the depths of the honest tree and an adversary tree

is expected to increase over time. This implies that the adversary

trees built on blocks far from the tip of the honest tree will fall

behind and not be able to catch-up with the honest tree. Hence, in

order to analyze the probability that the 𝑗-th honest block ℎ 𝑗 is a

Nakamoto block for any 𝑗 , it is sufficient to focus on the adversary

trees that have been built on honest blocks immediately preceding

ℎ 𝑗 . However, as there is only a small number of honest blocks

immediately preceding ℎ 𝑗 , there is a non-zero probability that none

of the adversary trees built on them will be able to catch-up with

the honest tree. Hence, when _𝑎 < _ℎ/(1 + _ℎΔ), ℎ 𝑗 becomes a

Nakamoto block with non-zero probability for any 𝑗 .

The complete proof of Lemma 4.5 is given in §B.1 of the Appendix.

An alternative proof, based on connecting the event of being a

Nakamoto block to the event of a random walk never returning to

the starting point, is presented in B.2 of the Appendix.

We next obtain a bound on 𝑃 (𝐵𝑠,𝑠+𝑡 ).

Lemma 4.6. If

_𝑎 <
_ℎ

1 + Δ_ℎ
,

then for any Y > 0, there exists constants 𝑎Y , 𝐴Y > 0, and, 𝑎Y , 𝐴Y > 0

such that
𝑃 (𝐵𝑠,𝑠+𝑡 ) < 𝐴Y exp(−𝑎Y𝑡1−Y ) .

Proof of Lemma 4.6 is given in §B.3 of the Appendix. Then com-

bining Lemma 4.6 with Lemma 4.4 implies Theorem 4.2.

4.4 Chia Proof-of-Space Model
This subsection is dedicated to proving Theorem 4.3. We will show

that if

𝑒_𝑎 <
_ℎ

1 + _ℎΔ
, (22)

then Nakamoto blocks occur frequently and regularly under the

Chia Proof-of-Space model.

Since the occurrence of a Nakamoto block depends on whether

the adversary trees from the previous honest blocks can catch up

with the (fictitious) honest tree, we next turn to an analysis of

the growth rate of an adversary tree. Note that under assumption

M1 − Chia, adversary blocks are mined at rate _ independently at

each block of the mother tree T (𝑡). Hence, each adversary tree

T𝑖 (𝑡) grows statistically in the same way (and independent of each

other). Without loss of generality, let us focus on the adversary

tree T0 (𝑡), rooted at genesis, is the tree T (𝑡). The depth of the tree

T0 (𝑡) is 𝐷0 (𝑡) and defined as the maximum depth of its blocks. The

genesis block is always at depth 0 and hence T0 (0) has depth zero.

With the machinery of branching random walks, we can show

that the growth rate of depth of T0 (𝑡) is 𝑒_𝑎 while the total number

of adversary blocks in T0 (𝑡) grows exponentially with time 𝑡 . Hence,

compared to the Praos/SnowWhite model we just analyzed, the

growth rate of each adversary tree is magnified by a factor of 𝑒 .

Thus, the Nothing-at-Stake phenomenon is more significant in the

Chia model compared to the Praos/SnowWhite model, due to the

independence of mining opportunities at different blocks.

We will also need a tail bound on 𝐷0 (𝑡). While such estimates

can be read from [Shi15], we bring instead a quantitative statement

suited for our needs.

Lemma 4.7. For𝑚 ≥ 1,

𝑃 (𝐷0 (𝑡) ≥ 𝑚) ≤
(
𝑒_𝑎𝑡

𝑚

)𝑚
. (23)

Details on the analysis of T0 (𝑡) and the proof of Lemma 4.7 are

in §C.1 in the Appendix.

With Lemma 4.7, we show below that in the regime 𝑒_𝑎 <
_ℎ

1+_ℎΔ ,
Nakamoto blocks has a non-zero probability of occurrence.

Lemma 4.8. If

𝑒_𝑎 <
_ℎ

1 + _ℎΔ
,

then there is a 𝑝 > 0 such that that probability the 𝑗-th honest block
is a Nakamoto block is greater than 𝑝 for all 𝑗 .

The proof of this result can be found in §C.2.

Having established the fact that Nakamoto blocks occurs with

non-zero frequency, we can bootstrap on Lemma 4.8 to get a bound

on the probability that in a time interval [𝑠, 𝑠 + 𝑡], there are no

Nakamoto blocks, i.e. a bound on 𝑃 (𝐵𝑠,𝑠+𝑡 ).

Lemma 4.9. If

𝑒_𝑎 <
_ℎ

1 + _ℎΔ
,

then there exist constants 𝑎2, 𝐴2 so that for all 𝑠, 𝑡 ≥ 0,

𝑃 (𝐵𝑠,𝑠+𝑡 ) ≤ 𝐴2 exp(−𝑎2

√
𝑡) . (24)

The proof of this result can be found in §C.3. We can recursively

bootstrap and get even better bounds.

Lemma 4.10. If

𝑒_𝑎 <
_ℎ

1 + _ℎΔ
,

then for any Y > 0 there exist constants 𝑎Y , 𝐴Y so that for all 𝑠, 𝑡 ≥ 0,

𝑃 (𝐵𝑠,𝑠+𝑡 ) ≤ 𝐴Y exp(−𝑎Y𝑡1−Y ) . (25)

The proof of this result can be found in §C.4 in the Appendix.

Then combining Lemma 4.10 with Lemma 4.4 implies Theorem 4.3.
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5 DOES NAKAMOTO REALLY ALWAYS WIN?
We have shown that the threshold for the adversary power beyond

which the private attack succeeds is in fact the tight threshold for

the security of the three models M1-PoW, M1-PS and M1-Chia.
However, security threshold is a statistical concept. Can we say that

the private attack is the worst attack in a stronger, deterministic,

sense?

Indeed, it turns out that one can, with a slight strengthening

of the private attack, in a special case: the PoW model with net-

work delay Δ = 0. In this setting, we can indeed make a stronger

statement.

In the PoW model, any attack strategy 𝜋 consists of two com-

ponents: where to place each new adversary arrival and when to

release the adversary blocks. Consider a specific attack 𝜋SZ: the

Sompolinsky and Zohar’s strategy of private attack with pre-mining

[SZ16]. This attack focuses on a block 𝑏: it builds up a private chain

with the maximum lead over the public chain when block 𝑏 is

mined, and then starts a private attack from that lead. We have the

following result.

Theorem 5.1. Let 𝜏ℎ
1
, 𝜏ℎ

2
, . . . and 𝜏𝑎

1
, 𝜏𝑎

2
, . . . be a given sequence of

mining times of the honest and adversary blocks. Let 𝑏 be a specific
block. (i) Suppose 𝜋 violates the persistence of 𝑏 with parameter 𝑘 , i.e.
𝑏 leaves the longest chain after becoming 𝑘-deep. Then the 𝜋𝑆𝑍 attack
on 𝑏 also forces 𝑏 to leave the longest chain after becoming 𝑘-deep,
under the same mining times. (ii) Suppose 𝑏 is an honest block and 𝜋
violates liveness for the 𝑘 consecutive honest blocks starting with 𝑏,
i.e. none of the 𝑘 consecutive honest blocks starting with 𝑏 stay in the
longest chain indefinitely. Then the 𝜋𝑆𝑍 attack on 𝑏 also forces these 𝑘
consecutive honest blocks to leave the longest chain indefinitely under
the same mining times.

The proof of 5.1 is given in §E.1 of the Appendix, together with

a counter-example in the case of Δ > 0.

In contrast to the PoW setting, a beautiful example from [Shi19]

indicates that private attack is no longer the worst attack for every

sequence of arrival times under the Praos/SnowWhite model, even

for Δ = 0. Figure 5 explains this example, and exhibits the blocktree

partitioning for this example. With only 1/3 as many mining times

opportunities to 2/3 for the honest players, the protocol can lose

persistence. A private attack would not be able to accomplish the

same, because the adversary has less mining opportunities than the

honest nodes. This is somewhat surprising, given that the security

threshold is 1/2 for this model (at Δ = 0). This also suggests that al-

though the two settings, PoW and Praos/SnowWhite have identical

security thresholds, their "true" worst case behaviors, taken over all

mining time sequences, are different. The larger number of blocks

available to the adversary in the Praos/SnowWhite protocol does

have some effect in the true worst-case sense, and this allows the

mounting of a more serious attack than a private attack. However,

these are very atypical mining time sequences, and this difference

does not show up in the security threshold.

So perhaps Nakamoto almost always wins.

Figure 5: On the top is the blocktree for the example above.
Colors black and white represent adversary and honest
blocks respectively. The mining time of each block is stated
on it. On the bottom is the partition of the blocktree into
honest blocks and adversary chains, verifying that indeed
there are no Nakamoto blocks. The adversary mines two
blocks every third mining time and gets two copies of it.
By publishing the shallower block and keeping the deeper
block in private and having the honest nodes mine on the
shallower block, it can continue the balance attack indefi-
nitely. This attacks relies on a periodic arrival pattern of the
blocks. In a random environment, this pattern cannot hold
indefinitely and the attack is not sustainable. So randomness
saves Praos/SnowWhite.
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APPENDIX
A DEFINITIONS AND PRELIMINARY

LEMMAS FOR THE PROOFS
In this subsection, we define some important events which will

appear frequently in the analysis and provide some useful lemmas.

Let 𝛿ℎ
𝑖
= 𝜏ℎ

𝑖
− 𝜏ℎ

𝑖−1
and 𝛿𝑎

𝑖
= 𝜏𝑎

𝑖
− 𝜏𝑎

𝑖−1
denote the time intervals

for subsequent honest and adversary arrival events. Let 𝑑ℎ
𝑖
denote

the depth of the 𝑖-th honest block within 𝐷ℎ (𝑡). Define 𝑋𝑑 , 𝑑 > 0,

as the time it takes for 𝐷ℎ to reach depth 𝑑 after reaching depth

𝑑 − 1. In other words,𝑋𝑑 is the difference between the times 𝑡1 > 𝑡2,

where 𝑡1 is the minimum time 𝑡 such that 𝐷ℎ (𝑡) = 𝑑 , and, 𝑡2 is the

minimum time 𝑡 such that 𝐷ℎ (𝑡) = 𝑑 − 1.

Let𝑈 𝑗 be the event that the 𝑗-th honest block 𝑏 𝑗 is a loner, i.e.,

𝑈 𝑗 = {𝜏ℎ𝑗−1
< 𝜏ℎ𝑗 − Δ} ∩ {𝜏ℎ𝑗+1

> 𝜏ℎ𝑗 + Δ}.

Let 𝐹 𝑗 = 𝑈 𝑗 ∩ 𝐹 𝑗 be the event that 𝑏 𝑗 is a Nakamoto block. Then

we can define the following catch up event:

�̂�𝑖𝑘 = event that 𝐷𝑖 (𝜏ℎ𝑘 + Δ) ≥ 𝐷ℎ (𝜏ℎ𝑘−1
) − 𝐷ℎ (𝜏ℎ𝑖 + Δ), (26)

which is the event that the adversary launches a private attack

starting from 𝑏𝑖 and catches up the fictitious honest chain right

before 𝑏𝑘 is mined. The following lemma shows that event 𝐹 𝑗 can

be represented with �̂�𝑖𝑘 ’s.

Lemma A.1. For each 𝑗 ,

𝐹𝑐𝑗 = 𝐹𝑐𝑗 ∪𝑈 𝑐
𝑗 =

©«
⋃

(𝑖,𝑘) :0≤𝑖< 𝑗<𝑘

�̂�𝑖𝑘
ª®¬ ∪𝑈 𝑐

𝑗 . (27)

Proof.

𝑈 𝑗 ∩ 𝐸𝑖 𝑗

= 𝑈 𝑗 ∩ {𝐷𝑖 (𝑡) < 𝐷ℎ (𝑡 − Δ) − 𝐷ℎ (𝜏ℎ𝑖 + Δ) for all 𝑡 > 𝜏ℎ
𝑗
+ Δ}

= 𝑈 𝑗 ∩ {𝐷𝑖 (𝑡 + Δ) < 𝐷ℎ (𝑡) − 𝐷ℎ (𝜏ℎ𝑖 + Δ) for all 𝑡 > 𝜏ℎ
𝑗
}

= 𝑈 𝑗 ∩ {𝐷𝑖 (𝜏ℎ𝑘
− + Δ) < 𝐷ℎ (𝜏ℎ𝑘

−) − 𝐷ℎ (𝜏ℎ𝑖 + Δ) for all 𝑘 > 𝑗}

= 𝑈 𝑗 ∩ {𝐷𝑖 (𝜏ℎ𝑘 + Δ) < 𝐷ℎ (𝜏ℎ𝑘−1
) − 𝐷ℎ (𝜏ℎ𝑖 + Δ) for all 𝑘 > 𝑗}

Since 𝐹 𝑗 = 𝐹 𝑗 ∩𝑈 𝑗 =
⋂

0≤𝑖< 𝑗 𝐸𝑖 𝑗 ∩𝑈 𝑗 , by the definition of �̂�𝑖𝑘 we

have 𝐹 𝑗 =

(⋂
(𝑖,𝑘) :0≤𝑖< 𝑗<𝑘 �̂�

𝑐
𝑖𝑘

)
∩𝑈 𝑗 . Taking complement on both

side, we can conclude the proof.

Finally, define the parameter 𝑟 as follows:

𝑟 :=
_𝑎

_ℎ
(1 + Δ_ℎ),

for which 𝑟 < 1 holds whenever

_𝑎 <
_ℎ

1 + Δ_ℎ
.

□

B PROOFS FOR SECTION 4.3
Notations used in this section are defined in §A.

B.1 Proof for Lemma 4.5
The proof relies on the following propositions.

Proposition B.1. Let 𝑌𝑑 , 𝑑 ≥ 1, be i.i.d random variables, expo-
nentially distributed with rate _ℎ . Then, each random variable 𝑋𝑑
can be expressed as Δ + 𝑌𝑑 .

Proof. Let ℎ𝑖 be the first block that comes to some depth 𝑑 − 1

within Tℎ . Then, every honest block that arrives within the interval

[𝜏ℎ
𝑖
, 𝜏ℎ
𝑖
+ Δ] will be mapped to the same depth as ℎ𝑖 , i.e 𝑑 − 1.

Hence, Tℎ will reach depth 𝑑 only when an honest block arrives

after time 𝜏ℎ
𝑖
+Δ. Now, we know that the difference between 𝜏ℎ

𝑖
+Δ

and the arrival time of the first block after 𝜏ℎ
𝑖
+ Δ is exponentially

distributed with rate _ℎ due to the memoryless property of the

exponential distribution. This implies that for each depth 𝑑 , 𝑋𝑑 is

equal to Δ + 𝑌𝑑 for some random variable 𝑌𝑑 such that 𝑌𝑑 , 𝑑 ≥ 1,

are i.i.d and exponentially distributed with rate _ℎ . Then, 𝑋𝑑 are

also i.i.d random variables with mean

Δ + 1

_ℎ
.

□

Proposition B.2. For any constant 𝑎,

𝑃 (
𝑛+𝑎∑
𝑑=𝑎

𝑋𝑑 > 𝑛(Δ + 1

_ℎ
) (1 + 𝛿)) ≤ 𝑒−𝑛Ω (𝛿2 (1+Δ_ℎ)2)

Proposition B.2 is proven using a Chernoff bound analysis and

proposition B.1.

14



Proposition B.3. Probability that there are less than

𝑛
_𝑎 (1 − 𝛿)

_ℎ

adversary arrival events from time 𝜏ℎ
0
to 𝜏ℎ

𝑛+1
is upper bounded by;

𝑒
−𝑛Ω (𝛿2 _𝑎

_ℎ
)

Proposition B.3 is proven using the Poisson tail bounds.

Proposition B.4. Define 𝐵𝑛 as the event that there are at least 𝑛
adversary arrivals while 𝐷ℎ grows from depth 0 to 𝑛:

𝐵𝑛 = {
𝑛∑
𝑖=1

𝑋𝑖 ≥
𝑛∑
𝑖=0

𝛿𝑎𝑖 }

If

_𝑎 <
_ℎ

1 + _ℎΔ
,

then,
𝑃 (𝐵𝑛) ≤ 𝑒−𝐴0𝑛,

where,

𝐴0 = 𝑠Δ + ln( _𝑎_ℎ

(_ℎ − 𝑠) (_𝑎 + 𝑠) ) > 0

and,

𝑠 =
_ℎ − _𝑎

2

+
2 −

√
4 + Δ2 (_𝑎 + _ℎ)2

2Δ
.

Proof is by using Chernoff bound, and, optimizing for the value

of 𝑠 . It also uses proposition B.1.

We now proceed with the proof of lemma 4.5.

Proof. We first observe that (𝐹 𝑗 ∩ 𝑈 𝑗 )𝑐 = 𝐹𝑐
𝑗
∪ 𝑈 𝑐

𝑗
can be

expressed as the union of the following disjoint events: (i) ℎ 𝑗 is not

a loner. (ii) ℎ 𝑗 is a loner, and, 𝐹
𝑐
𝑗
happens:

𝑃 (𝐹𝑐𝑗 ) = 𝑃 (𝑈 𝑐
𝑗 ) + 𝑃 (𝐹𝑐𝑗 |𝑈 𝑗 )𝑃 (𝑈 𝑗 ) (28)

Now, since there exists a constant 𝑐1 such that 0 < 𝑐1 ≤ 𝑃 (𝑈 𝑗 ) for
any 𝑗 , to prove the lemma, it is sufficient to find an upper bound 𝑐2

on 𝑃 (𝐹𝑐
𝑗
|𝑈 𝑗 ) such that 𝑃 (𝐹𝑐

𝑗
|𝑈 𝑗 ) ≤ 𝑐2 < 1. Hence, from now on, we

assume that ℎ 𝑗 is a loner and given this fact, analyze the event 𝐹𝑐
𝑗
.

Note that the ‘catch-up’ event 𝐹𝑐
𝑗
implies the existence of a min-

imum time 𝑡 𝑗 ≥ 𝜏ℎ
𝑗
+ Δ such that there exists an adversary tree

T𝑖 extending from some honest block ℎ𝑖 , 𝑖 < 𝑗 , for which, the

following holds:

𝐷𝑖 (𝑡 𝑗 ) ≥ 𝐷ℎ (𝑡 𝑗 − Δ) − 𝐷ℎ (𝜏ℎ𝑖 + Δ).

Define 𝑙 𝑗 = 𝐷ℎ (𝜏ℎ𝑖 ) + 1, and, 𝑟 𝑗 = 𝐷ℎ (𝑡 𝑗 − Δ). Since 𝐷ℎ is mono-

tonically increasing and 𝑡 𝑗 ≥ 𝜏ℎ
𝑗
+ Δ, and, 𝐷 (𝜏ℎ

𝑖
) < 𝐷 (𝜏ℎ

𝑗
) as ℎ 𝑗 is

a loner; 𝑟 𝑗 = 𝐷ℎ (𝑡 𝑗 − Δ) ≥ 𝐷ℎ (𝜏ℎ𝑗 ) = 𝑑ℎ
𝑗
, and, 𝑙 𝑗 = 𝐷ℎ (𝜏ℎ𝑖 ) + 1 ≤

𝐷ℎ (𝜏ℎ𝑗 ) = 𝑑ℎ
𝑗
. Combining these facts, we infer that 𝑙 𝑗 ≤ 𝑑ℎ

𝑗
≤ 𝑟 𝑗 .

Consequently, at each depth within the interval [𝑙 𝑗 , 𝑟 𝑗 ], there exists
at least two blocks, at least one of which is an honest block in Tℎ
and one of which is an adversary block in T𝑖 .

We next focus on the depth interval [𝑙 𝑗 , 𝑟 𝑗 ], and, fix some con-

stant and large integer 𝐵. Let 𝐵1 and 𝐵2 be the disjoint events

that the ‘catch-up’ event happens before and after depth 𝑑ℎ
𝑗
+ 𝐵

respectively:

𝐵1 = {𝑟 𝑗 < 𝑑ℎ𝑗 + 𝐵}

𝐵2 = {𝑟 𝑗 ≥ 𝑑ℎ𝑗 + 𝐵}
Let 𝐵′

2
denote the event that there exists a time 𝑡 such that 𝐷𝑖 (𝑡) ≥

𝐷ℎ (𝑡 − Δ) − 𝐷ℎ (𝜏ℎ𝑖 + Δ) and 𝐷ℎ (𝑡 − Δ) ≥ 𝑑ℎ
𝑗
+ 𝐵 for this 𝑡 . Let

𝑟 ′
𝑗

:= 𝐷ℎ (𝑡 − Δ). Then, we observe that

𝐵′
2
∩ 𝐵𝑐

1
= 𝐵2

Using this, we can upper bound 𝑃 (𝐹𝑐
𝑗
|𝑈 𝑗 ) in the following way:

𝑃 (𝐹𝑐𝑗 |𝑈 𝑗 ) = 𝑃 (𝐵1) + 𝑃 (𝐵2) (29)

= 𝑃 (𝐵1) + 𝑃 (𝐵′
2
∩ 𝐵𝑐

1
) (30)

= 𝑃 (𝐵1) + 𝑃 (𝐵′
2
|𝐵𝑐

1
)𝑃 (𝐵𝑐

1
) (31)

= 𝑃 (𝐵1) + 𝑃 (𝐵′
2
|𝐵𝑐

1
) (1 − 𝑃 (𝐵1)) (32)

≤ 𝑃 (𝐵1) + 𝑃 (𝐵′
2
) (1 − 𝑃 (𝐵1)) (33)

Assume that 𝑃 (𝐵1) < 1 for all 𝑗 . We will later prove that this is

indeed true. Moreover, note that conditioning on 𝐵𝑐
1
decreases the

probability of the event 𝐵′
2
since, (i) 𝐵𝑐

1
requires T𝑖 to be behind Tℎ

while Tℎ increases through depths 𝑑ℎ
𝑗
to 𝑑ℎ

𝑗
+𝐵, (ii) Given any initial

depths forT𝑖 andTℎ , catch-up events are ergodic. Then, proving that
𝑃 (𝐹𝑐

𝑗
|𝑈 𝑗 ) ≤ 𝑐2 for some 𝑐2 < 1 reduces to proving that 𝑃 (𝐵′

2
) ≤ 𝑐4

for some 𝑐4 < 1 for a fixed 𝐵.

We next calculate an upper bound for 𝑃 (𝐵′
2
). For this purpose,

we first define 𝐵′
𝑎,𝑏

as the event that at least 𝑏 − 𝑎 adversary ar-

rival events have occurred during the time interval [∑𝑎
𝑛=0

𝑋𝑛 −
Δ,

∑𝑏
𝑛=0

𝑋𝑛+Δ]. Via the ergodicity of the processes𝑋𝑛 , using propo-
sition B.4, we can write the following upper bound for 𝑃 (𝐵′

𝑎,𝑏
) for

𝑏 − 𝑎 sufficiently large:

𝑃 (𝐵′
𝑎,𝑏

) = 𝑃 (
𝑏−𝑎∑
𝑛=0

𝑋𝑛 + 2Δ ≥
𝑏−𝑎∑
𝑛=0

𝛿𝑎𝑛 ) ≤ 𝐴1𝑒
−𝐴0 (𝑏−𝑎)

where𝐴1 is a constant that is a function of Δ, and,𝐴0 is the constant

given in proposition B.4. Now, 𝐵′
2
requires at least 𝑟 ′

𝑗
− 𝑙 𝑗 ≥ 𝐵

adversary blocks to be mined at the tip of T𝑖 from time 𝜏ℎ
𝑖
+ Δ

until some time 𝑡 − Δ, during which the depth of Tℎ , 𝐷ℎ , grows by

exactly 𝑟 ′
𝑗
− 𝑙 𝑗 . However, this is only possible if the adversary has

at least 𝑟 ′
𝑗
− 𝑙 𝑗 arrival events during this time interval. Hence, we

can express 𝐵′
2
as a subset of the union of the events 𝐵′

𝑎,𝑏
in the

following way:

𝐵′
2
⊆

⋃
𝑎<𝑑ℎ

𝑗
,𝑏≥𝑑ℎ

𝑗
+𝐵

𝐵′
𝑎,𝑏

Then, via union bound, its probability is upper bounded as shown

below:

𝑃 (𝐵′
2
) ≤

∑
0≤𝑎<𝑑ℎ

𝑗

∑
𝑏≥𝑑ℎ

𝑗
+𝐵

𝑃 (𝐵𝑎,𝑏 ) (34)

≤ 𝐴1𝑒
−𝐴0𝐵

∞∑
𝑎=0

∞∑
𝑏=0

𝑒−𝐴0 (𝑎+𝑏)
(35)

= 𝐴1

1

(1 − 𝑒−𝐴0 )2

𝑒−𝐴0𝐵
(36)

< 𝑐4 (37)

for sufficiently large 𝐵 and any 𝑗 . Here, any positive constant 𝑐4

smaller than 1 can be achieved by making 𝐵 large enough.
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Finally, for the𝐵 fixed above, we prove that there exists a constant

𝑐3 < 1 such that 𝑃 (𝐵1) ≤ 𝑐3 for all 𝑗 . Note that if 𝑙 𝑗 ≥ 𝑑ℎ
𝑗
− 𝐵, there

is a non-zero probability that no adversary block is mined from

time 𝜏ℎ
𝑖
to the time 𝐵ℎ reaches depth 𝑑ℎ

𝑗
+ 𝐵. Then there exists a

constant 𝑐31 < 1 such that 𝑃 (𝐵1 |𝑙 𝑗 ≥ 𝑑ℎ
𝑗
−𝐵) ≤ 𝑐31 for all 𝑗 . On the

other hand, if 𝑙 𝑗 < 𝑑ℎ
𝑗
− 𝐵, we know from the calculations above

that

𝑃 (𝐵1 |𝑙 𝑗 < 𝑑ℎ𝑗 − 𝐵) ≤ 𝐴1

1

(1 − 𝑒−𝐴0 )2

𝑒−𝐴0𝐵

for all 𝑗 . We further know that, for the large 𝐵 fixed above, there

exists a constant 𝑐4 < 1 such that this expression is below 𝑐4.

Consequently, for any 𝑗 ,

𝑃 (𝐵1) ≤ 𝑃 (𝑙 𝑗 ≥ 𝑑ℎ𝑗 − 𝐵)𝑐31 + (1 − 𝑃 (𝑙 𝑗 ≥ 𝑑ℎ𝑗 − 𝐵))𝑐4 (38)

≤ max(𝑐31, 𝑐4) = 𝑐3 < 1 (39)

Then, for any 𝑗 ,

𝑃 (𝐹𝑐𝑗 |𝑈 𝑗 ) ≤ 𝑐3 + 𝑐4 (1 − 𝑐3) < 1

This concludes the proof.

□

B.2 Alternative Proof of Lemma 4.5
This alternative proof is based on random walk theory.

Proof. We would like to lower bound the probability that the

𝑗-th honest block is a loner and 𝐹 𝑗 happens. Since the 𝑗-th honest

block is a loner with probability 𝑒−2_ℎΔ > 0 for all 𝑗 , the probability

that it is a Nakamoto block can be expressed as

𝑃 (𝐹 𝑗 | j-th honest block is a loner) · 𝑒−2_ℎΔ

Then, the proof is reduced to obtaining a lower bound on

𝑃 (𝐹 𝑗 | j-th honest block is a loner).

For this purpose, we assume that the 𝑗-th honest block is a loner,

and, proceed to obtain a lower bound on the probability of the event

𝐹 𝑗 :

For any adversary tree T𝑖 , 𝑖 < 𝑗 ;

𝐷𝑖 (𝑡) < 𝐷ℎ (𝑡 − Δ) − 𝐷ℎ (𝜏ℎ𝑖 + Δ)

for all times 𝑡 > 𝜏ℎ
𝑗
+ Δ, which is equivalent to

𝐷𝑖 (𝑡 + Δ) < 𝐷ℎ (𝑡) − 𝐷ℎ (𝜏ℎ𝑖 + Δ)

for all times 𝑡 > 𝜏ℎ
𝑗
.

Let 𝑈 𝑗 be the event that the 𝑗-th honest block is a loner. Let

𝐺 𝑗 be the event that no adversary block is mined within the time

period [𝜏ℎ
𝑗
, 𝜏ℎ

𝑗
+Δ]. Then, 𝑃 (𝐺 𝑗 ) = 𝑒−_𝑎Δ, and, we can lower bound

𝑃 (𝐹 𝑗 |𝑈 𝑗 ) in the following way:

𝑃 (𝐹 𝑗 |𝑈 𝑗 ) ≥ 𝑃 (𝐹 𝑗 ∩𝐺 𝑗 |𝑈 𝑗 ) = 𝑒−_𝑎Δ𝑃 (𝐹 𝑗 |𝑈 𝑗 ,𝐺 𝑗 )

Since the events 𝐺 𝑗 , 𝑗 = 1, 2, .. are shift invariant, the probability

𝑃 (𝐹 𝑗 |𝑈 𝑗 ,𝐺 𝑗 ) is equal to the probability of the following event 𝐹 𝑗 :

For any adversary tree T𝑖 , 𝑖 < 𝑗 ;

𝐷𝑖 (𝑡) < 𝐷ℎ (𝑡) − 𝐷ℎ (𝜏ℎ𝑖 + Δ)

for all times 𝑡 > 𝜏ℎ
𝑗
. Now, define 𝐷∗ (𝑡) as the depth of the deepest

adversary tree at time 𝑡 for 𝑡 ≥ 𝜏ℎ
𝑗
:

𝐷∗ (𝑡) := max

0≤𝑖< 𝑗
𝐷𝑖 (𝑡) + 𝐷ℎ (𝜏ℎ𝑖 + Δ)

Then, 𝐹 𝑗 basically represents the event that 𝐷∗
is behind 𝐷ℎ for all

times 𝑡 ≥ 𝜏ℎ
𝑗
.

We next express 𝐹 𝑗 in terms of the following events:

𝐸1 := {𝐷∗ (𝜏ℎ𝑗 ) < 𝐷ℎ (𝜏ℎ𝑗 )}
𝐸1 is the event that the tip of the deepest adversary tree, 𝐷∗

, is

behind the tip of the honest tree, 𝐷ℎ at the arrival time of the 𝑗-th

honest block.

𝐸2 is the event that 𝐷ℎ (𝑡) − 𝐷ℎ (𝜏ℎ𝑗 ) is greater than the number

of adversary arrivals during the time period [𝜏ℎ
𝑗
, 𝑡] for all 𝑡 , 𝑡 > 𝜏ℎ

𝑗
.

𝐸3 is the event that 𝐷ℎ (𝜏ℎ𝑗 ) − 𝐷ℎ (𝜏ℎ𝑖 + Δ) is greater than the

number of adversary arrivals during the time period [𝜏ℎ
𝑖
, 𝜏ℎ

𝑗
] for all

𝑖 , 0 ≤ 𝑖 < 𝑗 .

We can now express 𝐹 𝑗 in terms of 𝐸1 and 𝐸2:

𝐸1 ∩ 𝐸2 ⊆ 𝐹 𝑗

Moreover, when a new adversary block is mined, depth of any of

the trees T𝑖 , 𝑖 < 𝑗 , increases by at most 1. Hence, 𝐸3 implies that

none of the trees T𝑖 , 𝑖 < 𝑗 , has depth greater than or equal to𝐷ℎ (𝜏ℎ𝑗 )
at time 𝜏ℎ

𝑗
. Consequently,

𝐸3 ⊆ 𝐸1,

which further implies

𝐸3 ∩ 𝐸2 ⊆ 𝐹 𝑗

Observing that 𝐸3 and 𝐸2 are independent events, we can express

the probability of 𝐹 𝑗 as;

𝑃 (𝐹 𝑗 ) ≥ 𝑃 (𝐸3)𝑃 (𝐸2)

Now, define 𝐸 ′
2
as the event that 𝐷ℎ (𝑡 − Δ) − 𝐷ℎ (𝜏ℎ𝑗 ) is greater

than the number of adversary arrivals during the time period [𝜏ℎ
𝑗
, 𝑡]

for all 𝑡 , 𝑡 > 𝜏ℎ
𝑗
+ Δ. Let 𝐺 ′

𝑗
be the event that there is no adversary

arrival during the time interval [𝜏ℎ
𝑗
, 𝜏ℎ

𝑗
+ Δ]. Observe that again,

𝑃 (𝐺 ′
𝑗
) = 𝑒−_𝑎Δ, and, the events 𝐺 ′

𝑗
, 𝑗 = 1, 2, .. are shift invariant.

Hence, we can do a similar trick as was done for the probabilities

of 𝐹 𝑗 and 𝐺 𝑗 to obtain

𝑃 (𝐸 ′
2
) ≥ 𝑒−_𝑎Δ𝑃 (𝐸2) .

Since the increase times of 𝐷ℎ and the inter-arrival times of

adversary arrivals are i.i.d, the growth processes of 𝐷ℎ and the

number of adversary blocks are time reversible. Hence, probability

of 𝐸3 approaches that of 𝐸
′
2
from above as 𝑗 → ∞. Then, for all 𝑗 ,

we can write

𝑃 (𝐹 𝑗 ) ≥ 𝑃 (𝐸3)𝑃 (𝐸2) ≥ 𝑃 (𝐸 ′
2
)𝑃 (𝐸2) ≥ 𝑒−_𝑎Δ𝑃 (𝐸2)2

We now calculate the probability of the event 𝐸2. To aid us in

the calculation of 𝑃 (𝐸2), we construct a random walk 𝑆 [𝑛]. Here,
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the random walk is parametrized by the total number of adversary

arrivals and increases in 𝐷ℎ since time 𝜏ℎ
𝑗
. 𝑆 [𝑛] stands for the dif-

ference between the increase in 𝐷ℎ and the number of adversary

arrivals when there has been, in total, 𝑛 number of increases in

𝐷ℎ or adversary arrivals since time 𝜏ℎ
𝑗
. Notice that when Δ = 0,

𝐷ℎ increases by one whenever there is an honest arrival. Hence,

𝑆 [𝑛] simply counts the difference between the number of honest

and adversary arrivals when there are 𝑛 arrivals in total. In this

case, 𝑆 [𝑛] jumps up by 1 when there is an honest arrival, and, goes

down by 1 when there is an adversary arrival. Since the event that

whether the next arrival is honest or adversary is independent of

the past arrivals, 𝑆 [𝑛] is a random walk when Δ = 0.

On the other hand, when Δ > 0, we have to construct a slight

different random walk 𝑆 [𝑛] for the difference between the increase

in𝐷ℎ and the number of adversary arrivals due to the Δ dependence.

Although this random walk has non-intuitive distributions for the

jumps, we observe that

(1) Expectation of these jumps is positive as long as

_𝑎 <
_ℎ

1 + _ℎΔ

(2) Expectation of the absolute value of the jumps is finite.

Then, due to the Strong Law of Large Numbers, every state of this

random walk is transient, and, the random walk has a positive drift.

This implies that starting at 𝑆 [0] = 1, the probability of 𝑆 [𝑛] hitting
or falling below 0 is equal to some number 1 − 𝑐 , where 1 ≥ 𝑐 > 0.

Finally, observe that the probability of 𝑆 [𝑛] hitting or falling

below 0 is exactly the probability of the event 𝐸𝑐
2
. Hence, 𝑃 (𝐸2) =

𝑐 > 0. Combining this observation with previous findings yields

the following lower bound for 𝑃 (𝐹 𝑗 |𝑈 𝑗 ):

𝑃 (𝐹 𝑗 |𝑈 𝑗 ) ≥ 𝑒−_𝑎Δ𝑃 (𝐹 𝑗 |𝑈 𝑗 ,𝐺 𝑗 ) ≥ 𝑒−2_𝑎Δ𝑃 (𝐸2)2 = 𝑒−2_𝑎Δ𝑐2 = 𝑝 > 0

where 𝑝 > 0 does not depend on 𝑗 . This concludes the proof.

□

B.3 Proof of Lemma 4.6
We first state the following lemma which will be used in the proof

of Lemma 4.6. Recall that we have defined event �̂�𝑖𝑘 in §A as:

�̂�𝑖𝑘 = event that 𝐷𝑖 (𝜏ℎ𝑘 + Δ) ≥ 𝐷ℎ (𝜏ℎ𝑘−1
) − 𝐷ℎ (𝜏ℎ𝑖 + Δ) . (40)

Lemma B.5. There exists a constant 𝑐 > 0 such that

𝑃 (�̂�𝑖𝑘 ) ≤ 𝑒−𝑐 (𝑘−𝑖−1)

Proof. We know from proposition B.3 that there are more than

(1 − 𝛿) (𝑘 − 𝑖)_𝑎/_ℎ adversary arrival events in the time period

[𝜏ℎ
𝑖
, 𝜏ℎ
𝑘
+ Δ] except with probability 𝑒−Ω ( (𝑘−𝑖)𝛿2_𝑎/_ℎ)

. Moreover,

proposition B.4 states that

𝑃 (
𝑛∑
𝑖=1

𝑋𝑖 ≥
𝑛∑
𝑖=0

𝛿𝑎𝑖 ) ≤ 𝑒−𝐴0𝑛

for large 𝑛. Then, using the union bound, we observe that for any

fixed 𝛿 , probability of �̂�𝑖𝑘 when there are more than (1 − 𝛿) (𝑘 −

𝑖)_𝑎/_ℎ adversary arrival events in the time period [𝜏ℎ
𝑖
, 𝜏ℎ
𝑘
+ Δ] is

upper bounded by the following expression:

1

1 − 𝑒−𝐶1

𝑒−𝐶1 (𝑘−𝑖)

where

𝐶1 =
𝐴0 (1 − 𝛿)_𝑎

_ℎ
.

Hence,

𝑃 (�̂�𝑖𝑘 ) <
1

1 − 𝑒−𝐶1

𝑒−𝐶1 (𝑘−𝑖) + 𝑒
−Ω ( (𝑘−𝑖)𝛿2 _𝑎

_ℎ
) ≤ 𝐶2𝑒

−𝐶3 (𝑘−𝑖)

for any 𝑘, 𝑖 , 𝑘 > 𝑖 +1, and appropriately chosen constants𝐶2,𝐶3 > 0

as functions of the fixed 𝛿 . Finally, since 𝑃 (�̂�𝑖𝑘 ) decreases as 𝑘 − 𝑖

grows and is smaller than 1 for all 𝑘 > 𝑖 + 1, we obtain the desired

inequality for a sufficiently small 𝑐 ≤ 𝐶3.

□

We can now proceed with the main proof.

We divide the proof in to two steps. In the first step, we prove

for Y = 1/2. By Lemma A.1, we have

𝐹𝑐𝑗 = 𝐹𝑐𝑗 ∪𝑈 𝑐
𝑗 =

©«
⋃

(𝑖,𝑘) :𝑖< 𝑗<𝑘

�̂�𝑖𝑘
ª®¬ ∪𝑈 𝑐

𝑗 . (41)

Divide [𝑠, 𝑠 + 𝑡] into
√
𝑡 sub-intervals of length

√
𝑡 , so that the 𝑟 th

sub-interval is:

J𝑟 := [𝑠 + (𝑟 − 1)
√
𝑡, 𝑠 + 𝑟

√
𝑡] .

Now look at the first, fourth, seventh, etc sub-intervals, i.e. all

the 𝑟 = 1 mod 3 sub-intervals. Introduce the event that in the ℓ-th

1 mod 3th sub-interval, an adversary tree that is rooted at a honest

block arriving in that sub-interval or in the previous (0 mod 3)

sub-interval catches up with a honest block in that sub-interval or

in the next (2 mod 3) sub-interval. Formally,

𝐶ℓ =
⋂

𝑗 :𝜏ℎ
𝑗
∈J3ℓ+1

𝑈 𝑐
𝑗 ∪

©«
⋃

(𝑖,𝑘) :𝜏ℎ
𝑗
−
√
𝑡<𝜏ℎ

𝑖
<𝜏ℎ

𝑗
,𝜏ℎ
𝑗
<𝜏ℎ

𝑘
+Δ<𝜏ℎ

𝑗
+
√
𝑡

�̂�𝑖𝑘
ª®®¬ .

Note that for distinct ℓ , the events 𝐶ℓ ’s are independent. Also, we

have

𝑃 (𝐶ℓ ) ≤ 𝑃 (no arrival in J3ℓ+1) + 1 − 𝑝 < 1 (42)

for large enough 𝑡 , where 𝑝 is a uniform lower bound such that

𝑃 (𝐹 𝑗 ) ≥ 𝑝 for all 𝑗 provided by Lemma 4.5.

Introduce the atypical events:

𝐵 =
⋃

(𝑖,𝑘) :𝜏ℎ
𝑖
∈[𝑠,𝑠+𝑡 ] or 𝜏ℎ

𝑘
+Δ∈[𝑠,𝑠+𝑡 ],𝑖<𝑘,𝜏ℎ

𝑘
+Δ−𝜏ℎ

𝑖
>
√
𝑡

�̂�𝑖𝑘 ,

and

�̃� =
⋃

(𝑖,𝑘) :𝜏ℎ
𝑖
<𝑠,𝑠+𝑡<𝜏ℎ

𝑘
+Δ

�̂�𝑖𝑘 .
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The events 𝐵 and �̃� are the events that an adversary tree catches

up with an honest block far ahead. Then we have

𝑃 (𝐵𝑠,𝑠+𝑡 ) ≤ 𝑃 (
⋂

𝑗 :𝜏ℎ
𝑗
∈[𝑠,𝑠+𝑡 ]

𝑈 𝑐
𝑗 ) + 𝑃 (𝐵) + 𝑃 (�̃�) + 𝑃 (

√
𝑡/3⋂
ℓ=0

𝐶ℓ )

= 𝑃 (
⋂

𝑗 :𝜏ℎ
𝑗
∈[𝑠,𝑠+𝑡 ]

𝑈 𝑐
𝑗 ) + 𝑃 (𝐵) + 𝑃 (�̃�) + (𝑃 (𝐶ℓ ))

√
𝑡/3

≤ 𝑒−𝑐2𝑡 + 𝑃 (𝐵) + 𝑃 (�̃�) + (𝑃 (𝐶ℓ ))
√
𝑡

3 (43)

for some positive constant 𝑐2 when 𝑡 is large, where the equality is

due to independence. Next we will bound the atypical events 𝐵 and

�̃�. Consider the following events

𝐷1 = {#{𝑖 : 𝜏ℎ𝑖 ∈ (𝑠 −
√
𝑡 − Δ, 𝑠 + 𝑡 +

√
𝑡 + Δ)} > 2_ℎ𝑡}

𝐷2 = {∃𝑖, 𝑘 : 𝜏ℎ𝑖 ∈ (𝑠, 𝑠 + 𝑡), (𝑘 − 𝑖) <
√
𝑡

2_ℎ
, 𝜏ℎ
𝑘
− 𝜏ℎ𝑖 + Δ >

√
𝑡}

𝐷3 = {∃𝑖, 𝑘 : 𝜏ℎ
𝑘
+ Δ ∈ (𝑠, 𝑠 + 𝑡), (𝑘 − 𝑖) <

√
𝑡

2_ℎ
, 𝜏ℎ
𝑘
− 𝜏ℎ𝑖 + Δ >

√
𝑡}

In words, 𝐷1 is the event of atypically many honest arrivals in

(𝑠 −
√
𝑡 −Δ, 𝑠 + 𝑡 +

√
𝑡 +Δ) while 𝐷2 and 𝐷3 are the events that there

exists an interval of length

√
𝑡 with at least one endpoint inside

(𝑠, 𝑠 + 𝑡) with atypically small number of arrivals. Since the number

of honest arrivals in (𝑠, 𝑠 + 𝑡) is Poisson with parameter _ℎ𝑡 , we

have from the memoryless property of the Poisson process that

𝑃 (𝐷1) ≤ 𝑒−𝑐0𝑡
for some constant 𝑐0 = 𝑐0 (_𝑎, _ℎ) > 0when 𝑡 is large.

On the other hand, using the memoryless property and a union

bound, and decreasing 𝑐0 if needed, we have that 𝑃 (𝐷2) ≤ 𝑒−𝑐0

√
𝑡
.

Similarly, using time reversal, 𝑃 (𝐷3) ≤ 𝑒−𝑐0

√
𝑡
. Therefore, again

using the memoryless property of the Poisson process,

𝑃 (𝐵) ≤ 𝑃 (𝐷1 ∪ 𝐷2 ∪ 𝐷3) + 𝑃 (𝐵 ∩ 𝐷𝑐
1
∩ 𝐷𝑐

2
∩ 𝐷𝑐

3
)

≤ 𝑒−𝑐0𝑡 + 2𝑒−𝑐0

√
𝑡 +

2_ℎ𝑡∑
𝑖=1

∑
𝑘 :𝑘−𝑖>

√
𝑡/2_ℎ

𝑃 (�̂�𝑖𝑘 ) (44)

≤ 𝑒−𝑐3

√
𝑡 , (45)

for large 𝑡 , where 𝑐3 > 0 are constants that may depend on _𝑎, _ℎ
and the last inequality is due to Lemma B.5 . We next claim that

there exists a constant 𝛼 > 0 such that, for all 𝑡 large,

𝑃 (�̃�) ≤ 𝑒−𝛼𝑡 . (46)

Indeed, we have that

𝑃 (�̃�)

=
∑
𝑖<𝑘

∫ 𝑠

0

𝑃 (𝜏ℎ𝑖 ∈ 𝑑\ )𝑃 (�̂�𝑖𝑘 , 𝜏ℎ𝑘 − 𝜏ℎ𝑖 + Δ > 𝑠 + 𝑡 − \ )

≤
∑
𝑖

∫ 𝑠

0

𝑃 (𝜏ℎ𝑖 ∈ 𝑑\ )
∑
𝑘 :𝑘>𝑖

𝑃 (�̂�𝑖𝑘 )1/2𝑃 (𝜏ℎ
𝑘
− 𝜏ℎ𝑖 + Δ > 𝑠 + 𝑡 − \ )1/2 .

(47)

The tails of the Poisson distribution yield the existence of constants

𝑐, 𝑐 ′ > 0 so that

𝑃 (𝜏ℎ
𝑘
− 𝜏ℎ𝑖 + Δ > 𝑠 + 𝑡 − \ ) (48)

≤
{

1, (𝑘 − 𝑖) > 𝑐 (𝑠 + 𝑡 − \ − Δ)
𝑒−𝑐

′ (𝑠+𝑡−\−Δ) , (𝑘 − 𝑖) ≤ 𝑐 (𝑠 + 𝑡 − \ − Δ). (49)

Lemma B.5 and (48) yield that there exists a constant 𝛼 > 0 so that∑
𝑘 :𝑘>𝑖

𝑃 (�̂�𝑖,𝑘 )1/2𝑃 (𝜏ℎ
𝑘
−𝜏ℎ𝑖 > 𝑠+𝑡−\−Δ)1/2 ≤ 𝑒−2𝛼 (𝑠+𝑡−\−Δ) . (50)

Substituting this bound in (47) and using that

∑
𝑖 𝑃 (𝜏ℎ𝑖 ∈ 𝑑\ ) = 𝑑\

gives

𝑃 (�̃�) ≤
∑
𝑖

∫ 𝑠

0

𝑃 (𝜏ℎ𝑖 ∈ 𝑑\ )𝑒−2𝛼 (𝑠+𝑡−\−Δ)

≤
∫ 𝑠

0

𝑒−2𝛼 (𝑠+𝑡−\−Δ)𝑑\ ≤ 1

2𝛼
𝑒−2𝛼 (𝑡−Δ) ≤ 𝑒−𝛼𝑡 , (51)

for 𝑡 large, proving (46).

Combining (45), (51) and (43) concludes the proof of step 1.

In step two, we prove for any Y > 0 by recursively applying the

bootstrapping procedure in step 1. Assume the following statement

is true: for any \ ≥ 𝑚 there exist constants 𝑎\ , 𝐴\ so that for all

𝑠, 𝑡 ≥ 0,

𝑞 [𝑠, 𝑠 + 𝑡] ≤ 𝐴\ exp(−𝑎\ 𝑡1/\ ) . (52)

By step 1, it holds for𝑚 = 2.

Divide [𝑠, 𝑠 + 𝑡] into 𝑡
𝑚−1

2𝑚−1 sub-intervals of length 𝑡
𝑚

2𝑚−1 , so that

the 𝑟 th sub-interval is:

J𝑟 := [𝑠 + (𝑟 − 1)𝑡
𝑚

2𝑚−1 , 𝑠 + 𝑟𝑡
𝑚

2𝑚−1 ] .

Now look at the first, fourth, seventh, etc sub-intervals, i.e. all

the 𝑟 = 1 mod 3 sub-intervals. Introduce the event that in the ℓ-th

1 mod 3th sub-interval, an adversary tree that is rooted at a honest

block arriving in that sub-interval or in the previous (0 mod 3)

sub-interval catches up with a honest block in that sub-interval or

in the next (2 mod 3) sub-interval. Formally,

𝐶ℓ =
⋂

𝑗 :𝜏ℎ
𝑗
∈J3ℓ+1

𝑈 𝑐
𝑗 ∪

©«
⋃

(𝑖,𝑘) :𝜏ℎ
𝑗
−𝑡

𝑚
2𝑚−1 <𝜏ℎ

𝑖
<𝜏ℎ

𝑗
,𝜏ℎ
𝑗
<𝜏ℎ

𝑘
+Δ<𝜏ℎ

𝑗
+𝑡

𝑚
2𝑚−1

�̂�𝑖𝑘

ª®®®¬ .
Note that for distinct ℓ , the events 𝐶ℓ ’s are independent. Also by

(52), we have

𝑃 (𝐶ℓ ) ≤ 𝐴𝑚 exp(−𝑎𝑚𝑡1/(2𝑚−1) ). (53)

Introduce the atypical events:

𝐵 =
⋃

(𝑖,𝑘) :𝜏ℎ
𝑖
∈[𝑠,𝑠+𝑡 ] or 𝜏ℎ

𝑘
+Δ∈[𝑠,𝑠+𝑡 ],𝑖<𝑘,𝜏ℎ

𝑘
+Δ−𝜏ℎ

𝑖
>𝑡

𝑚
2𝑚−1

�̂�𝑖𝑘 ,

and

�̃� =
⋃

(𝑖,𝑘) :𝜏ℎ
𝑖
<𝑠,𝑠+𝑡<𝜏ℎ

𝑘
+Δ

�̂�𝑖𝑘 .

The events 𝐵 and �̃� are the events that an adversary tree catches

up with an honest block far ahead. Following the calculations in
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step 1, we have

𝑃 (𝐵) ≤ 𝑒−𝑐1𝑡
𝑚

2𝑚−1

(54)

𝑃 (�̃�) ≤ 𝑒−𝛼𝑡 , (55)

for large 𝑡 , where 𝑐1 and 𝛼 are some positive constant.

Then we have

𝑞 [𝑠, 𝑠 + 𝑡] ≤ 𝑃 (
⋂

𝑗 :𝜏ℎ
𝑗
∈[𝑠,𝑠+𝑡 ]

𝑈 𝑐
𝑗 ) + 𝑃 (𝐵) + 𝑃 (�̃�) + 𝑃 (

𝑡
𝑚−1

2𝑚−1 /3⋂
ℓ=0

𝐶ℓ )

= 𝑃 (
⋂

𝑗 :𝜏ℎ
𝑗
∈[𝑠,𝑠+𝑡 ]

𝑈 𝑐
𝑗 ) + 𝑃 (𝐵) + 𝑃 (�̃�) + (𝑃 (𝐶ℓ ))𝑡

𝑚−1

2𝑚−1 /3

≤ 𝑒−𝑐2𝑡 + 𝑒−𝑐𝑡
𝑚

2𝑚−1 + 𝑒−𝛼𝑡

+ (𝐴𝑚 exp(−𝑎𝑚𝑡1/(2𝑚−1) ))𝑡
𝑚−1

2𝑚−1 /3

≤ 𝐴′
𝑚 exp(−𝑎′𝑚𝑡

𝑚
2𝑚−1 ) (56)

for large 𝑡 , where 𝐴′
𝑚 and 𝑎′𝑚 are some positive constant.

So we know the statement in (52) holds for all \ ≥ 2𝑚−1

𝑚 . Start

with𝑚1 = 2, we have a recursion equation𝑚𝑘 =
2𝑚𝑘−1−1

𝑚𝑘−1

and we

know (52) holds for all \ ≥ 𝑚𝑘 . It is not hard to see that𝑚𝑘 = 𝑘+1

𝑘
and thus lim𝑘→∞𝑚𝑘 = 1, which concludes the lemma.

C PROOFS FOR SECTION 4.4
Notations used in this section are defined in §A.

C.1 The adversary tree via branching random
walks

We first give a description of the (dual of the) adversary tree in

terms of a Branching Random Walk (BRW). Such a representation

appears already in [Pit94, Drm09], but we use here the standard

language from, e.g., [Aïd13, Shi15].

Consider the collection of 𝑘 tuples of positive integers, I𝑘 =

{(𝑖1, . . . , 𝑖𝑘 )}, and set I = ∪𝑘>0
I𝑘 . We consider elements of I as

labelling the vertices of a rooted infinite tree, with I𝑘 labelling the

vertices at generation 𝑘 as follows: the vertex 𝑣 = (𝑖1, . . . , 𝑖𝑘 ) ∈ I𝑘
is the 𝑖𝑘 -th child of vertex (𝑖1, . . . , 𝑖𝑘−1

) at level 𝑘 − 1. An example

of labelling is given in Fig. 6. For such 𝑣 we also let 𝑣 𝑗 = (𝑖1, . . . , 𝑖 𝑗 ),
𝑗 = 1, . . . , 𝑘 , denote the ancestor of 𝑣 at level 𝑗 , with 𝑣𝑘 = 𝑣 . For

notation convenience, we set 𝑣0 = 0 as the root of the tree.

Figure 6: Labelling the vertices of a rooted infinite tree.

Next, let {E𝑣}𝑣∈I be an i.i.d. family of exponential random

variables of parameter _𝑎 . For 𝑣 = (𝑖1, . . . , 𝑖𝑘 ) ∈ I𝑘 , let W𝑣 =∑
𝑗≤𝑖𝑘 E (𝑖1,...,𝑖𝑘−1, 𝑗) and let 𝑆𝑣 =

∑
𝑗≤𝑘 W𝑣 𝑗 . This creates a labelled

tree, with the following interpretation: for 𝑣 = (𝑖1, . . . , 𝑖 𝑗 ), the𝑊𝑣 𝑗

are the waiting for 𝑣 𝑗 to appear, measured from the appearance

of 𝑣 𝑗−1
, and 𝑆𝑣 is the appearance time of 𝑣 . A moments thought

ought to convince the reader that the tree 𝑆𝑣 is a description of the

adversary tree, sorted by depth.

Let 𝑆∗
𝑘
= min𝑣∈I𝑘 𝑆𝑣 . Note that 𝑆

∗
𝑘
is the time of appearance of a

block at level 𝑘 and therefore we have

{𝐷0 (𝑡) ≤ 𝑘} = {𝑆∗
𝑘
≥ 𝑡}. (57)

𝑆∗
𝑘
is the minimum of a standard BRW. Introduce, for \ < 0, the

moment generating function

Λ(\ ) = log

∑
𝑣∈I1

𝐸 (𝑒\𝑆𝑣 ) = log

∞∑
𝑗=1

𝐸 (𝑒
∑𝑗

𝑖=1
\ E𝑖 )

= log

∞∑
𝑗=1

(𝐸 (𝑒\ E1 )) 𝑗 = log

𝐸 (𝑒\ E1 )
1 − 𝐸 (𝑒\ E1 )

.

Due to the exponential law of E1, 𝐸 (𝑒\ E1 ) = _𝑎
_𝑎−\ and therefore

Λ(\ ) = log(−_𝑎/\ ).
An important role is played by \∗ = −𝑒_𝑎 , for which Λ(\∗) = −1

and

sup

\<0

(
Λ(\ )
\

)
=

Λ(\∗)
\∗

=
1

_𝑎𝑒
=

1

|\∗ | .

Indeed, see e.g [Shi15, Theorem 1.3], we have the following.

Lemma C.1.

lim

𝑘→∞

𝑆∗
𝑘

𝑘
= sup

\<0

(
Λ(\ )
\

)
=

1

|\∗ | , 𝑎.𝑠 .

In fact, much more is known, see e.g. [HS09].

Lemma C.2. There exist explicit constants 𝑐1 > 𝑐2 > 0 so that the
sequence 𝑆∗

𝑘
− 𝑘/_𝑎𝑒 − 𝑐1 log𝑘 is tight, and

lim inf

𝑘→∞
𝑆∗
𝑘
− 𝑘/_𝑎𝑒 − 𝑐2 log𝑘 = ∞, 𝑎.𝑠 .

Note that Lemmas C.1, C.2 and (57) imply in particular that

𝐷0 (𝑡) ≤ 𝑒_𝑎𝑡 for all large 𝑡 , a.s., and also that

if 𝑒_𝑎 > _ℎ then 𝐷0 (𝑡) > _ℎ𝑡 for all large 𝑡 , a.s.. (58)

With all these preparations, we can give a simple proof for

Lemma 4.7.

Proof. We use a simple upper bound. Note that by (57),

𝑃 (𝐷0 (𝑡) ≥ 𝑚) = 𝑃 (𝑆∗𝑚 ≤ 𝑡) ≤
∑
𝑣∈I𝑚

𝑃 (𝑆𝑣 ≤ 𝑡). (59)

For 𝑣 = (𝑖1, . . . , 𝑖𝑘 ), set |𝑣 | = 𝑖1 + · · · + 𝑖𝑘 . Then, we have that 𝑆𝑣

has the same law as

∑ |𝑣 |
𝑗=1

E 𝑗 . Thus, by Chebycheff’s inequality, for

𝑣 ∈ I𝑚 ,

𝑃 (𝑆𝑣 ≤ 𝑡) ≤ 𝐸𝑒\𝑆𝑣𝑒−\𝑡 =
(

_𝑎

_𝑎 − \

) |𝑣 |
𝑒−\𝑡 . (60)
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But ∑
𝑣∈I𝑚

(
_𝑎

_𝑎 − \

) |𝑣 |
=

∑
𝑖1≥1,...,𝑖𝑚≥1

(
_𝑎

_𝑎 − \

)∑𝑚
𝑗=1

𝑖 𝑗

(61)

=

(∑
𝑖≥1

(
_𝑎

_𝑎 − \

)𝑖 )𝑚
=

(
− \

_𝑎

)−𝑚
. (62)

Combining (60), (61), we have

𝑃 (𝐷0 (𝑡) ≥ 𝑚) ≤
(
− \

_𝑎

)−𝑚
𝑒−\𝑡 ,

and optimizing over \ we have when \ = −𝑚/𝑡 ,

𝑃 (𝐷0 (𝑡) ≥ 𝑚) ≤
(
𝑒_𝑎𝑡

𝑚

)𝑚
.

□

C.2 Proof of Lemma 4.8
In this proof, let 𝑟ℎ :=

_ℎ
1+_ℎΔ .

The random processes of interest start from time 0. To look

at the system in stationarity, let us extend them to −∞ < 𝑡 <

∞. More specifically, define 𝜏ℎ−1
, 𝜏ℎ−2

, . . . such that together with

𝜏ℎ
0
, 𝜏ℎ

1
, . . . we have a double-sided infinite Poisson process of rate

_ℎ . Also, for each 𝑖 < 0, we define an independent copy of a random

adversary tree T𝑖 with the same distribution as T0. And we extend

the definition of Tℎ (𝑡) and 𝐷ℎ (𝑡) to 𝑡 < 0: the last honest block

mined at 𝜏ℎ−1
< 0 and all honest blocks mined within (𝜏ℎ−1

− Δ, 𝜏ℎ−1
)

appear in Tℎ (𝑡) at their respective mining times to form the level

−1, and the process repeats for level less than −1; let 𝐷ℎ (𝑡) be the
level of the last honest arrival before 𝑡 in Tℎ (𝑡), i.e., 𝐷ℎ (𝑡) = ℓ if

𝜏ℎ
𝑖
≤ 𝑡 < 𝜏ℎ

𝑖+1
and the 𝑖-th honest block appears at level ℓ of Tℎ (𝑡).

These extensions allow us to extend the definition of 𝐸𝑖 𝑗 to all

𝑖, 𝑗 , −∞ < 𝑖 < 𝑗 < ∞, and define 𝐸 𝑗 and 𝐸 𝑗 to be:

𝐸 𝑗 =
⋂
𝑖< 𝑗

𝐸𝑖 𝑗

and

𝐸 𝑗 = 𝐸 𝑗 ∩𝑈 𝑗 .

Note that 𝐸 𝑗 ⊂ 𝐹 𝑗 , so to prove that 𝐹 𝑗 has a probability bounded

away from 0 for all 𝑗 , all we need is to prove that 𝐸 𝑗 has a non-zero

probability.

Recall that we have defined the event �̂�𝑖𝑘 in §A as:

�̂�𝑖𝑘 = event that 𝐷𝑖 (
∑𝑘−1

𝑚=𝑖 𝑅𝑚 + Δ + 𝜏ℎ
𝑖
) ≥ 𝐷ℎ (𝜏ℎ𝑘−1

) − 𝐷ℎ (𝜏ℎ𝑖 + Δ) .
(63)

Following the idea in Lemma A.1, we have

𝐸 𝑗 ∩𝑈 𝑗 =
⋂
𝑖< 𝑗

𝐸𝑖 𝑗 ∩𝑈 𝑗 =
©«

⋂
𝑖< 𝑗<𝑘

�̂�𝑐
𝑖𝑘

ª®¬ ∩𝑈 𝑗 .

Hence 𝐸 𝑗 ∩𝑈 𝑗 has a time-invariant dependence on {Z𝑖 }, which
means that 𝑝 = 𝑃 (𝐸 𝑗 ) does not depend on 𝑗 . Then we can just focus

on 𝑃 (𝐸0). This is the last step to prove.

𝑃 (𝐸0) = 𝑃 (𝐸0 |𝑈0)𝑃 (𝑈0)
= 𝑃 (𝐸0 |𝑈0)𝑃 (𝑅0 > Δ)𝑃 (𝑅−1 > Δ)
= 𝑒−2_ℎΔ𝑃 (𝐸0 |𝑈0) .

It remains to show that 𝑃 (𝐸0 |𝑈0) > 0. We have

𝐸0 = event that 𝐷𝑖 (
𝑘−1∑
𝑚=𝑖

𝑅𝑚 + Δ + 𝜏ℎ𝑖 ) < 𝐷ℎ (𝜏ℎ𝑘−1
) − 𝐷ℎ (𝜏ℎ𝑖 + Δ)

for all 𝑘 > 0 and 𝑖 < 0,

then

𝐸𝑐
0
=

⋃
𝑘>0,𝑖<0

�̂�𝑖𝑘 . (64)

Let us fix a particular 𝑛 > 2_ℎΔ > 0, and define:

𝐺𝑛 = event that𝐷𝑚 (3𝑛/_ℎ + 𝜏ℎ𝑚) = 0

for𝑚 = −𝑛,−𝑛 + 1, . . . ,−1, 0, +1, . . . , 𝑛 − 1, 𝑛

Then

𝑃 (𝐸0 |𝑈0) ≥ 𝑃 (𝐸0 |𝑈0,𝐺𝑛)𝑃 (𝐺𝑛 |𝑈0)

=

(
1 − 𝑃 (∪𝑘>0,𝑖<0

�̂�𝑖𝑘 |𝑈0,𝐺𝑛)
)
𝑃 (𝐺𝑛 |𝑈0)

≥ ©«1 −
∑

𝑘>0,𝑖<0

𝑃 (�̂�𝑖𝑘 |𝑈0,𝐺𝑛)
ª®¬ 𝑃 (𝐺𝑛 |𝑈0)

≥ (1 − 𝑎𝑛 − 𝑏𝑛)𝑃 (𝐺𝑛 |𝑈0) (65)

where

𝑎𝑛 :=
∑

(𝑖,𝑘) :−𝑛≤𝑖<0<𝑘≤𝑛
𝑃 (�̂�𝑖𝑘 |𝑈0,𝐺𝑛) (66)

𝑏𝑛 :=
∑

(𝑖,𝑘) :𝑖<−𝑛 or 𝑘>𝑛

𝑃 (�̂�𝑖𝑘 |𝑈0,𝐺𝑛). (67)

Using (23), we can bound 𝑃 (�̂�𝑖𝑘 |𝑈0,𝐺𝑛). Consider two cases:

Case 1: −𝑛 ≤ 𝑖 < 0 < 𝑘 ≤ 𝑛:

𝑃 (�̂�𝑖𝑘 |𝑈0,𝐺𝑛) = 𝑃 (�̂�𝑖𝑘 |𝑈0,𝐺𝑛,

𝑘−1∑
𝑚=𝑖

𝑅𝑚 + Δ ≤ 3𝑛/_ℎ)

+ 𝑃 (
𝑘−1∑
𝑚=𝑖

𝑅𝑚 + Δ > 3𝑛/_ℎ |𝑈0,𝐺𝑛)

≤ 𝑃 (
𝑘−1∑
𝑚=𝑖

𝑅𝑚 + Δ > 3𝑛/_ℎ |𝑈0,𝐺𝑛)

≤ 𝑃 (
𝑘−1∑
𝑚=𝑖

𝑅𝑚 > 5𝑛/(2_ℎ) |𝑈0)

≤ 𝑃 (
𝑘−1∑
𝑚=𝑖

𝑅𝑚 > 5𝑛/(2_ℎ))/𝑃 (𝑈0)

≤ 𝐴1𝑒
−𝛼1𝑛

for some positive constants 𝐴1, 𝛼1 independent of 𝑛, 𝑘, 𝑖 . The last

inequality follows from the fact that 𝑅𝑖 ’s are iid exponential random

variables of mean 1/_ℎ . Summing these terms, we have:

𝑎𝑛 =
∑

(𝑖,𝑘) :−𝑛≤𝑖<0<𝑘≤𝑛
𝑃 (𝐵𝑖𝑘 |𝑈0,𝐺𝑛)

≤
∑

(𝑖,𝑘) :−𝑛≤𝑖<0<𝑘≤𝑛
𝐴1𝑒

−𝛼1𝑛
:= 𝑎𝑛,

which is bounded and moreover 𝑎𝑛 → 0 as 𝑛 → ∞.

Case 2: 𝑘 > 𝑛 or 𝑖 < −𝑛:
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For 0 < Y < 1, let us define event𝑊 Y
𝑖𝑘

to be:

𝑊 Y
𝑖𝑘

= event that 𝐷ℎ (𝜏ℎ𝑘−1
) − 𝐷ℎ (𝜏ℎ𝑖 + Δ) ≥ (1 − Y) 𝑟ℎ

_ℎ
(𝑘 − 𝑖 − 1) .

(68)

Then we have

𝑃 (�̂�𝑖𝑘 |𝑈0,𝐺𝑛) ≤ 𝑃 (�̂�𝑖𝑘 |𝑈0,𝐺𝑛,𝑊
Y
𝑖𝑘
) + 𝑃 (𝑊 Y

𝑖𝑘
𝑐 |𝑈0,𝐺𝑛) .

We first bound 𝑃 (𝑊 Y
𝑖𝑘
𝑐 |𝑈0,𝐺𝑛):

𝑃 (𝑊 Y
𝑖𝑘
𝑐 |𝑈0,𝐺𝑛) ≤ 𝑃 (𝑊 Y

𝑖𝑘
𝑐 |𝜏ℎ

𝑘−1
− 𝜏ℎ𝑖 − Δ >

𝑘 − 𝑖 − 1

(1 + Y)_ℎ
)

+ 𝑃 (𝜏ℎ
𝑘−1

− 𝜏ℎ𝑖 − Δ ≤ 𝑘 − 𝑖 − 1

(1 + Y)_ℎ
)

≤ 𝑃 (𝑊 Y
𝑖𝑘
𝑐 |𝜏ℎ

𝑘−1
− 𝜏ℎ𝑖 − Δ >

𝑘 − 𝑖 − 1

(1 + Y)_ℎ
)

+ 𝑒−Ω (Y2 (𝑘−𝑖−1))

≤ 𝑒−Ω (Y4 (𝑘−𝑖−1)) + 𝑒−Ω (Y2 (𝑘−𝑖−1))

≤ 𝐴2𝑒
−𝛼2 (𝑘−𝑖−1)

(69)

for some positive constants 𝐴2, 𝛼2 independent of 𝑛, 𝑘, 𝑖 , where the

second inequality follows from the Erlang tail bound and the third

inequality follows from Proposition B.2 .

Meanwhile, we have

𝑃 (�̂�𝑖𝑘 |𝑈0,𝐺𝑛,𝑊
Y
𝑖𝑘
)

≤ 𝑃 (𝐷𝑖 (
𝑘−1∑
𝑚=𝑖

𝑅𝑚 + Δ + 𝜏ℎ𝑖 ) ≥ (1 − Y) 𝑟ℎ
_ℎ

(𝑘 − 𝑖 − 1) |𝑈0,𝐺𝑛,𝑊
Y
𝑖𝑘
)

≤ 𝑃 (𝐷𝑖 (
𝑘−1∑
𝑚=𝑖

𝑅𝑚 + Δ + 𝜏ℎ𝑖 ) ≥ (1 − Y) 𝑟ℎ
_ℎ

(𝑘 − 𝑖 − 1)

|𝑈0,𝐺𝑛,𝑊
Y
𝑖𝑘
,

𝑘−1∑
𝑚=𝑖

𝑅𝑚 + Δ ≤ (𝑘 − 𝑖 − 1) 𝑟ℎ + _𝑎𝑒

2_𝑎𝑒

1

_ℎ
)

+ 𝑃 (
𝑘−1∑
𝑚=𝑖

𝑅𝑚 + Δ > (𝑘 − 𝑖 − 1) 𝑟ℎ + _𝑎𝑒

2_𝑎𝑒

1

_ℎ
|𝑈0,𝐺𝑛,𝑊

Y
𝑖𝑘
)

≤ 𝑃 (
𝑘−1∑
𝑚=𝑖

𝑅𝑚 + Δ > (𝑘 − 𝑖 − 1) 𝑟ℎ + _𝑎𝑒

2_𝑎𝑒

1

_ℎ
|𝑈0,𝐺𝑛,𝑊

Y
𝑖𝑘
)

+
(
𝑟ℎ + _𝑎𝑒

2(1 − Y)𝑟ℎ

) (1−Y) 𝑟ℎ
_ℎ

(𝑘−𝑖−1)

where the first term in the last inequality follows from (23), and the

second term can also be bounded:

𝑃 (
𝑘−1∑
𝑚=𝑖

𝑅𝑚 + Δ > (𝑘 − 𝑖 − 1) 𝑟ℎ + _𝑎𝑒

2_𝑎𝑒

1

_ℎ
|𝑈0,𝐺𝑛,𝑊

Y
𝑖𝑘
)

= 𝑃 (
𝑘−1∑
𝑚=𝑖

𝑅𝑚 + Δ > (𝑘 − 𝑖 − 1) 𝑟ℎ + _𝑎𝑒

2_𝑎𝑒

1

_ℎ
|𝑈0,𝑊

Y
𝑖𝑘
)

≤ 𝑃 (
𝑘−1∑
𝑚=𝑖

𝑅𝑚 + Δ > (𝑘 − 𝑖 − 1) 𝑟ℎ + _𝑎𝑒

2_𝑎𝑒

1

_ℎ
)/𝑃 (𝑈0,𝑊

Y
𝑖𝑘
)

≤ 𝐴3𝑒
−𝛼3 (𝑘−𝑖−1)

for some positive constants 𝐴3, 𝛼3 independent of 𝑛, 𝑘, 𝑖 . The last

inequality follows from the fact that (𝑟ℎ + _𝑎𝑒)/(2_𝑎𝑒) > 1 and

the 𝑅𝑖 ’s have mean 1/_ℎ , while 𝑃 (𝑈0,𝑊
Y
𝑖𝑘
) is a event with high

probability as we showed in (69).

Then we have

𝑃 (�̂�𝑖𝑘 |𝑈0,𝐺𝑛) ≤ 𝐴2𝑒
−𝛼2 (𝑘−𝑖−1) +

(
𝑟ℎ + _𝑎𝑒

2(1 − Y)𝑟ℎ

) (1−Y) 𝑟ℎ
_ℎ

(𝑘−𝑖−1)

+ 𝐴3𝑒
−𝛼3 (𝑘−𝑖−1) . (70)

Summing these terms, we have:

𝑏𝑛 =
∑

(𝑖,𝑘) :𝑖<−𝑛 or 𝑘>𝑛

𝑃 (�̂�𝑖𝑘 |𝑈0,𝐺𝑛)

≤
∑

(𝑖,𝑘) :𝑖<−𝑛 or 𝑘>𝑛

[𝐴2𝑒
−𝛼2 (𝑘−𝑖−1)

+
(
𝑟ℎ + _𝑎𝑒

2(1 − Y)𝑟ℎ

) (1−Y) 𝑟ℎ
_ℎ

(𝑘−𝑖−1)
+𝐴3𝑒

−𝛼3 (𝑘−𝑖−1) ]

:= ¯𝑏𝑛

which is bounded and moreover
¯𝑏𝑛 → 0 as 𝑛 → ∞ when we set Y

to be small enough such that
𝑟ℎ+_𝑎𝑒

2(1−Y)𝑟ℎ < 1.

Substituting these bounds in (65) we finally get:

𝑃 (𝐸0 |𝑈0) > [1 − (𝑎𝑛 + ¯𝑏𝑛)]𝑃 (𝐺𝑛 |𝑈0) (71)

By setting 𝑛 sufficiently large such that 𝑎𝑛 and
¯𝑏𝑛 are sufficiently

small, we conclude that 𝑃 (𝐸0) > 0.

C.3 Proof of Lemma 4.9
Recall that we have defined event �̂�𝑖𝑘 in §A as:

�̂�𝑖𝑘 = event that 𝐷𝑖 (
∑𝑘−1

𝑚=𝑖 𝑅𝑚 + Δ + 𝜏ℎ
𝑖
) ≥ 𝐷ℎ (𝜏ℎ𝑘−1

) − 𝐷ℎ (𝜏ℎ𝑖 + Δ).
Note that from Lemma 4.8 and similar to inequality (70), we have

𝑃 (�̂�𝑖𝑘 ) ≤ 𝑒−𝑐1 (𝑘−𝑖−1)
(72)

for some positive constants 𝑐1.

And by Lemma A.1, we have

𝐹𝑐𝑗 = 𝐹𝑐𝑗 ∪𝑈 𝑐
𝑗 =

©«
⋃

(𝑖,𝑘) :𝑖< 𝑗<𝑘

�̂�𝑖𝑘
ª®¬ ∪𝑈 𝑐

𝑗 . (73)

Divide [𝑠, 𝑠 + 𝑡] into
√
𝑡 sub-intervals of length

√
𝑡 , so that the 𝑟 th

sub-interval is:

J𝑟 := [𝑠 + (𝑟 − 1)
√
𝑡, 𝑠 + 𝑟

√
𝑡] .

Now look at the first, fourth, seventh, etc sub-intervals, i.e. all

the 𝑟 = 1 mod 3 sub-intervals. Introduce the event that in the ℓ-th

1 mod 3th sub-interval, an adversary tree that is rooted at a honest

block arriving in that sub-interval or in the previous (0 mod 3)

sub-interval catches up with a honest block in that sub-interval or

in the next (2 mod 3) sub-interval. Formally,

𝐶ℓ =
⋂

𝑗 :𝜏ℎ
𝑗
∈J3ℓ+1

𝑈 𝑐
𝑗 ∪

©«
⋃

(𝑖,𝑘) :𝜏ℎ
𝑗
−
√
𝑡<𝜏ℎ

𝑖
<𝜏ℎ

𝑗
,𝜏ℎ
𝑗
<𝜏ℎ

𝑘
+Δ<𝜏ℎ

𝑗
+
√
𝑡

�̂�𝑖𝑘
ª®®¬ .

Note that for distinct ℓ , the events 𝐶ℓ ’s are independent. Also, we

have

𝑃 (𝐶ℓ ) ≤ 𝑃 (no arrival in J3ℓ+1) + 1 − 𝑝 < 1 (74)
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for large enough 𝑡 , where 𝑝 is a uniform lower bound such that

𝑃 (𝐹 𝑗 ) ≥ 𝑝 for all 𝑗 provided by Lemma 4.8.

Introduce the atypical events:

𝐵 =
⋃

(𝑖,𝑘) :𝜏ℎ
𝑖
∈[𝑠,𝑠+𝑡 ] or 𝜏ℎ

𝑘
+Δ∈[𝑠,𝑠+𝑡 ],𝑖<𝑘,𝜏ℎ

𝑘
+Δ−𝜏ℎ

𝑖
>
√
𝑡

�̂�𝑖𝑘 ,

and

�̃� =
⋃

(𝑖,𝑘) :𝜏ℎ
𝑖
<𝑠,𝑠+𝑡<𝜏ℎ

𝑘
+Δ

�̂�𝑖𝑘 .

The events 𝐵 and �̃� are the events that an adversary tree catches

up with an honest block far ahead. Then we have

𝑃 (𝐵𝑠,𝑠+𝑡 ) ≤ 𝑃 (
⋂

𝑗 :𝜏ℎ
𝑗
∈[𝑠,𝑠+𝑡 ]

𝑈 𝑐
𝑗 ) + 𝑃 (𝐵) + 𝑃 (�̃�) + 𝑃 (

√
𝑡/3⋂
ℓ=0

𝐶ℓ )

= 𝑃 (
⋂

𝑗 :𝜏ℎ
𝑗
∈[𝑠,𝑠+𝑡 ]

𝑈 𝑐
𝑗 ) + 𝑃 (𝐵) + 𝑃 (�̃�) + (𝑃 (𝐶ℓ ))

√
𝑡/3

≤ 𝑒−𝑐2𝑡 + 𝑃 (𝐵) + 𝑃 (�̃�) + (𝑃 (𝐶ℓ ))
√
𝑡

3 (75)

for some positive constant 𝑐2 when 𝑡 is large, where the equality is

due to independence. Next we will bound the atypical events 𝐵 and

�̃�. Consider the following events

𝐷1 = {#{𝑖 : 𝜏ℎ𝑖 ∈ (𝑠 −
√
𝑡 − Δ, 𝑠 + 𝑡 +

√
𝑡 + Δ)} > 2_ℎ𝑡}

𝐷2 = {∃𝑖, 𝑘 : 𝜏ℎ𝑖 ∈ (𝑠, 𝑠 + 𝑡), (𝑘 − 𝑖) <
√
𝑡

2_ℎ
, 𝜏ℎ
𝑘
− 𝜏ℎ𝑖 + Δ >

√
𝑡}

𝐷3 = {∃𝑖, 𝑘 : 𝜏ℎ
𝑘
+ Δ ∈ (𝑠, 𝑠 + 𝑡), (𝑘 − 𝑖) <

√
𝑡

2_ℎ
, 𝜏ℎ
𝑘
− 𝜏ℎ𝑖 + Δ >

√
𝑡}

In words, 𝐷1 is the event of atypically many honest arrivals in

(𝑠 −
√
𝑡 −Δ, 𝑠 + 𝑡 +

√
𝑡 +Δ) while 𝐷2 and 𝐷3 are the events that there

exists an interval of length

√
𝑡 with at least one endpoint inside

(𝑠, 𝑠 + 𝑡) with atypically small number of arrivals. Since the number

of honest arrivals in (𝑠, 𝑠 + 𝑡) is Poisson with parameter _ℎ𝑡 , we

have from the memoryless property of the Poisson process that

𝑃 (𝐷1) ≤ 𝑒−𝑐0𝑡
for some constant 𝑐0 = 𝑐0 (_𝑎, _ℎ) > 0when 𝑡 is large.

On the other hand, using the memoryless property and a union

bound, and decreasing 𝑐0 if needed, we have that 𝑃 (𝐷2) ≤ 𝑒−𝑐0

√
𝑡
.

Similarly, using time reversal, 𝑃 (𝐷3) ≤ 𝑒−𝑐0

√
𝑡
. Therefore, again

using the memoryless property of the Poisson process,

𝑃 (𝐵) ≤ 𝑃 (𝐷1 ∪ 𝐷2 ∪ 𝐷3) + 𝑃 (𝐵 ∩ 𝐷𝑐
1
∩ 𝐷𝑐

2
∩ 𝐷𝑐

3
)

≤ 𝑒−𝑐0𝑡 + 2𝑒−𝑐0

√
𝑡 +

2_ℎ𝑡∑
𝑖=1

∑
𝑘 :𝑘−𝑖>

√
𝑡/2_ℎ

𝑃 (�̂�𝑖𝑘 ) (76)

≤ 𝑒−𝑐3

√
𝑡 , (77)

for large 𝑡 , where 𝑐3 > 0 are constants that may depend on _𝑎, _ℎ
and the last inequality is due to (72). We next claim that there exists

a constant 𝛼 > 0 such that, for all 𝑡 large,

𝑃 (�̃�) ≤ 𝑒−𝛼𝑡 . (78)

Indeed, we have that

𝑃 (�̃�)

=
∑
𝑖<𝑘

∫ 𝑠

0

𝑃 (𝜏ℎ𝑖 ∈ 𝑑\ )𝑃 (�̂�𝑖𝑘 , 𝜏ℎ𝑘 − 𝜏ℎ𝑖 + Δ > 𝑠 + 𝑡 − \ )

≤
∑
𝑖

∫ 𝑠

0

𝑃 (𝜏ℎ𝑖 ∈ 𝑑\ )
∑
𝑘 :𝑘>𝑖

𝑃 (�̂�𝑖𝑘 )1/2𝑃 (𝜏ℎ
𝑘
− 𝜏ℎ𝑖 + Δ > 𝑠 + 𝑡 − \ )1/2 .

(79)

The tails of the Poisson distribution yield the existence of constants

𝑐, 𝑐 ′ > 0 so that

𝑃 (𝜏ℎ
𝑘
− 𝜏ℎ𝑖 + Δ > 𝑠 + 𝑡 − \ ) (80)

≤
{

1, (𝑘 − 𝑖) > 𝑐 (𝑠 + 𝑡 − \ − Δ)
𝑒−𝑐

′ (𝑠+𝑡−\−Δ) , (𝑘 − 𝑖) ≤ 𝑐 (𝑠 + 𝑡 − \ − Δ). (81)

(72) and (80) yield that there exists a constant 𝛼 > 0 so that∑
𝑘 :𝑘>𝑖

𝑃 (�̂�𝑖,𝑘 )1/2𝑃 (𝜏ℎ
𝑘
−𝜏ℎ𝑖 > 𝑠+𝑡−\−Δ)1/2 ≤ 𝑒−2𝛼 (𝑠+𝑡−\−Δ) . (82)

Substituting this bound in (79) and using that

∑
𝑖 𝑃 (𝜏ℎ𝑖 ∈ 𝑑\ ) = 𝑑\

gives

𝑃 (�̃�) ≤
∑
𝑖

∫ 𝑠

0

𝑃 (𝜏ℎ𝑖 ∈ 𝑑\ )𝑒−2𝛼 (𝑠+𝑡−\−Δ)

≤
∫ 𝑠

0

𝑒−2𝛼 (𝑠+𝑡−\−Δ)𝑑\ ≤ 1

2𝛼
𝑒−2𝛼 (𝑡−Δ) ≤ 𝑒−𝛼𝑡 , (83)

for 𝑡 large, proving (78).

Combining (77), (83) and (75) yields (24).

C.4 Proof of Lemma 4.10
Assume the following statement is true: for any \ ≥ 𝑚 there exist

constants 𝑎\ , 𝐴\ so that for all 𝑠, 𝑡 ≥ 0,

𝑞 [𝑠, 𝑠 + 𝑡] ≤ 𝐴\ exp(−𝑎\ 𝑡1/\ ) . (84)

By Lemma 4.9, it holds for𝑚 = 2.

Divide [𝑠, 𝑠 + 𝑡] into 𝑡
𝑚−1

2𝑚−1 sub-intervals of length 𝑡
𝑚

2𝑚−1 , so that

the 𝑟 th sub-interval is:

J𝑟 := [𝑠 + (𝑟 − 1)𝑡
𝑚

2𝑚−1 , 𝑠 + 𝑟𝑡
𝑚

2𝑚−1 ] .

Now look at the first, fourth, seventh, etc sub-intervals, i.e. all

the 𝑟 = 1 mod 3 sub-intervals. Introduce the event that in the ℓ-th

1 mod 3th sub-interval, an adversary tree that is rooted at a honest

block arriving in that sub-interval or in the previous (0 mod 3)

sub-interval catches up with a honest block in that sub-interval or

in the next (2 mod 3) sub-interval. Formally,

𝐶ℓ =
⋂

𝑗 :𝜏ℎ
𝑗
∈J3ℓ+1

𝑈 𝑐
𝑗 ∪

©«
⋃

(𝑖,𝑘) :𝜏ℎ
𝑗
−𝑡

𝑚
2𝑚−1 <𝜏ℎ

𝑖
<𝜏ℎ

𝑗
,𝜏ℎ
𝑗
<𝜏ℎ

𝑘
+Δ<𝜏ℎ

𝑗
+𝑡

𝑚
2𝑚−1

�̂�𝑖𝑘

ª®®®¬ .
Note that for distinct ℓ , the events 𝐶ℓ ’s are independent. Also by

(84), we have

𝑃 (𝐶ℓ ) ≤ 𝐴𝑚 exp(−𝑎𝑚𝑡1/(2𝑚−1) ). (85)
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Introduce the atypical events:

𝐵 =
⋃

(𝑖,𝑘) :𝜏ℎ
𝑖
∈[𝑠,𝑠+𝑡 ] or 𝜏ℎ

𝑘
+Δ∈[𝑠,𝑠+𝑡 ],𝑖<𝑘,𝜏ℎ

𝑘
+Δ−𝜏ℎ

𝑖
>𝑡

𝑚
2𝑚−1

�̂�𝑖𝑘 ,

and

�̃� =
⋃

(𝑖,𝑘) :𝜏ℎ
𝑖
<𝑠,𝑠+𝑡<𝜏ℎ

𝑘
+Δ

�̂�𝑖𝑘 .

The events 𝐵 and �̃� are the events that an adversary tree catches

up with an honest block far ahead. Following the calculations in

Lemma 4.9, we have

𝑃 (𝐵) ≤ 𝑒−𝑐1𝑡
𝑚

2𝑚−1

(86)

𝑃 (�̃�) ≤ 𝑒−𝛼𝑡 , (87)

for large 𝑡 , where 𝑐1 and 𝛼 are some positive constant.

Then we have

𝑞 [𝑠, 𝑠 + 𝑡] ≤ 𝑃 (
⋂

𝑗 :𝜏ℎ
𝑗
∈[𝑠,𝑠+𝑡 ]

𝑈 𝑐
𝑗 ) + 𝑃 (𝐵) + 𝑃 (�̃�) + 𝑃 (

𝑡
𝑚−1

2𝑚−1 /3⋂
ℓ=0

𝐶ℓ )

= 𝑃 (
⋂

𝑗 :𝜏ℎ
𝑗
∈[𝑠,𝑠+𝑡 ]

𝑈 𝑐
𝑗 ) + 𝑃 (𝐵) + 𝑃 (�̃�) + (𝑃 (𝐶ℓ ))𝑡

𝑚−1

2𝑚−1 /3

≤ 𝑒−𝑐2𝑡 + 𝑒−𝑐𝑡
𝑚

2𝑚−1 + 𝑒−𝛼𝑡

+ (𝐴𝑚 exp(−𝑎𝑚𝑡1/(2𝑚−1) ))𝑡
𝑚−1

2𝑚−1 /3

≤ 𝐴′
𝑚 exp(−𝑎′𝑚𝑡

𝑚
2𝑚−1 ) (88)

for large 𝑡 , where 𝐴′
𝑚 and 𝑎′𝑚 are some positive constant.

So we know the statement in (84) holds for all \ ≥ 2𝑚−1

𝑚 . Start

with𝑚1 = 2, we have a recursion equation𝑚𝑘 =
2𝑚𝑘−1−1

𝑚𝑘−1

and we

know (84) holds for all \ ≥ 𝑚𝑘 . It is not hard to see that𝑚𝑘 = 𝑘+1

𝑘
and thus lim𝑘→∞𝑚𝑘 = 1, which concludes the lemma.

D PROOF OF PERSISTENCE AND LIVENESS
In this subsection, we will prove Lemma 4.4. Our goal is to generate

a transaction ledger that satisfies persistence and liveness as defined

in section 4.1. Together, persistence and liveness guarantees robust
transaction ledger [GKL15]; honest transactions will be adopted to

the ledger and be immutable.

Proof. We first prove persistence by contradiction. For a chain

C𝑡 with the last block mined at time 𝑡 , let C ⌈𝜎
𝑡 be the chain resulting

from pruning a chain C𝑡 up to 𝜎 , by removing the last blocks at the

end of the chain that were mined after time 𝑡 − 𝜎 . Note that C ⌈𝜎
is

a prefix of C, which we denote by C ⌈𝜎 ⪯ C.
Let C𝑡 denote the longest chain adopted by an honest node with

the last block mined at time 𝑡 . Suppose there exists a longest chain

C′
𝑡 adopted by some honest node with the last block mined at time

𝑡 ′ > 𝑡 and C ⌈𝜎
𝑡 ⪯̸ C𝑡 ′ . There are a number of honest blocks mined in

the time interval [𝑡−𝜎, 𝑡], each of which can be in C𝑡 , C𝑡 ′ , or neither.
We partition the set of honest blocks generated in that interval with

three sets: {H𝑡 ≜ {𝐻 𝑗 ∈ C𝑡 : 𝜏 𝑗 ∈ [𝑡 − 𝜎, 𝑡]},H𝑡 ′ ≜ {𝐻 𝑗 ∈ C𝑡 ′ :

𝜏 𝑗 ∈ [𝑡 − 𝜎, 𝑡]}, and Hrest ≜ {𝐻 𝑗 ∉ C𝑡 ∪ C𝑡 ′ : 𝜏 𝑗 ∈ [𝑡 − 𝜎, 𝑡]},
depending on which chain they belong to.

Then we claim that C ⌈𝜎
𝑡 ⪯̸ C𝑡 ′ implies that 𝐹𝑐

𝑗
holds for all 𝑗

such that 𝜏 𝑗 ∈ [𝑡 − 𝜎, 𝑡]. This in turn implies that 𝑃 (C ⌈𝜎
𝑡 ⪯̸ C𝑡 ′) ≤

𝑃 (∩𝑗 :𝜏 𝑗 ∈[𝑡−𝜎,𝑡 ]𝐹
𝑐
𝑗
). However, we know that the probability of this

happening is as low as 𝑞𝜎 . This follows from the following facts.

(𝑖) the honest blocks in C𝑡 does not make it to the longest chain at

time 𝑡 ′: 𝐻 𝑗 ∉ C𝑡 ′ for all 𝐻 𝑗 ∈ H𝑡 , which follows from C ⌈𝜎
𝑡 ⪯̸ C𝑡 ′ .

(𝑖𝑖) the honest blocks in C𝑡 ′ does not make it to the longest chain

C𝑡 at time 𝑡 : 𝐻 𝑗 ∉ C𝑡 for all 𝐻 𝑗 ∈ H𝑡 ′ , which also follows from

C ⌈𝜎
𝑡 ⪯̸ C𝑡 ′ . (𝑖𝑖𝑖) the rest of the honest blocks did not make it to

either of the above: 𝐻 𝑗 ∉ C𝑡 ∪ C𝑡 ′ for all 𝐻 𝑗 ∈ Hrest.

We next prove liveness. Assume a transaction tx is received by

all honest nodes at time 𝑡 , then we know that with probability at

least 1 −𝑞𝜎 , there exists one honest block 𝑏 𝑗 mined at time 𝜏ℎ
𝑗
with

𝜏ℎ
𝑗
∈ [𝑡, 𝑡 +𝜎] and event 𝐹 𝑗 occurs, i.e., the block 𝑏 𝑗 and its ancestor

blocks will be contained in any future longest chain. Therefore, tx
must be contained in block 𝑏 𝑗 or one ancestor block of 𝑏 𝑗 since

tx is seen by all honest nodes at time 𝑡 < 𝜏 𝑗 . In either way, tx is
stabilized forever. Thus, liveness holds. □

E PROOFS FOR SECTION 5
E.1 Proof of theorem 5.1
Before presenting the proof for theorem 5.1, which covers the Δ = 0

case, we first describe 𝜋𝑆𝑍 , Sompolinsky and Zohar’s strategy of

private attack with pre-mining, focusing on some block 𝑏. We know

that if 𝑏 = ℎ 𝑗 is an honest block with index 𝑗 , it will be mined at

the tip of the public longest chain C when Δ = 0. In this case, 𝜋𝑆𝑍
consists of two phases:

• Pre-mining phase: Starting from the genesis block, the

attacker starts mining blocks in private to build a private

chain. When the first honest block ℎ1 is mined on the gen-

esis block, the attacker does one of two things: i) If the

private chain is longer than the public chain at that mo-

ment, then the adversary continues mining on the private

chain; ii) if the private chain is shorter than the public

chain, the attacker abandons the private chain it has been

mining on and starts a new private chain on ℎ1 instead.

The attacker repeats this process with all honest blocks ℎ2,

ℎ3, . . . ℎ 𝑗−1.

• Private attack phase: After block ℎ 𝑗−1 is mined, the at-

tacker starts Nakamoto’s private attack from the current

private chain it is working on, whether it is off ℎ 𝑗−1 or

the one it has been working on before ℎ 𝑗−1 depending on

which is longer.

Note that it is possible for the adversary to attack one of its own

blocks. In this case, 𝑏 is placed at the tip of C, and, kept private
until an honest block ℎ 𝑗−1 is mined at the same depth as 𝑏. Then,

the adversary denotes the chain including 𝑏 as the longest chain for

all honest miners. Hence, we can treat 𝑏 as if it is an honest block

with index 𝑗 , and, the strategy proceeds as described above for all

other adversary blocks.

Having presented an algorithmic description for 𝜋𝑆𝑍 above, we

now identify certain features of 𝜋𝑆𝑍 , which will be used in the

proof of theorem 5.1:
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(1) All of the adversary blocks (except𝑏 when it is an adversary

block) mined after the genesis block are placed at distinct

depths in increasing order of their arrival times.

(2) If an adversary block (except 𝑏 when it is an adversary

block) arrives after an honest block ℎ𝑖 for 𝑖 < 𝑗 , it is placed

at a depth larger than the depth of ℎ𝑖 .

(3) None of the paths from adversary blocks to the genesis

includes block 𝑏.

(4) No adversary block (except 𝑏 when it is an adversary block)

is revealed until the attack is successful.

We now proceed with the proof:

Proof. We first prove part (i) of the theorem, namely the fact

that 𝜋𝑆𝑍 is the worst-attack for preventing persistence with pa-

rameter 𝑘 . Consider a sequence of mining times for the honest and

adversary blocks such that the persistence of 𝑏 with parameter 𝑘 is

violated by an adversary following some arbitrary attack strategy

𝜋 . Let 𝜏𝑏 be the mining time of block 𝑏. Define 𝑡 > 𝜏𝑏 as the first

time block 𝑏 disappears from the public longest chain C after it

becomes 𝑘 deep within C at some previous time. We will prove this

part of the theorem by showing that 𝜋𝑆𝑍 also succeeds in removing

𝑏 from C after it becomes 𝑘 deep, for the same sequence of block

mining times.

Let T be the blocktree built under 𝜋 , and, observe that the public

longest chain, C(𝑡), contains block 𝑏 at time 𝑡 . By our assumption,

we know that at time 𝑡 , there exists a parallel chain C′
with depth

greater than or equal to 𝐿(𝑡), depth of C at time 𝑡 , and, C′
does

not include 𝑏. Hence, it also does not include any of the blocks that

came to C after 𝑏. See Figure 7 for a visual example of the chains C
and C′

. Let ℎ𝑖 be the last honest block in C′
that is also on C. Such

a block ℎ𝑖 must exist; otherwise, these chains could not have grown

from the same genesis block. Then, ℎ𝑖 has depth smaller than the

depth of 𝑏. In this context, let 𝑑ℎ
𝑖
and 𝑑𝑏 , 𝑑

ℎ
𝑖
< 𝑑𝑏 , denote the depths

of ℎ𝑖 and 𝑏 respectively. Define 𝐻 as the number of honest blocks

mined in the time interval (𝜏ℎ
𝑖
, 𝑡], and, observe that all of these

honest blocks lay in the depth interval (𝑑ℎ
𝑖
, 𝐿(𝑡)] of the blocktree

T (𝑡) as there cannot be honest blocks at depths larger than 𝐿(𝑡) at
time 𝑡 .

Next, consider the portion of T (𝑡) deeper than 𝑑ℎ
𝑖
. Let 𝑑 :=

𝐿(𝑡) −𝑑ℎ
𝑖
, and, define𝐴 as the number of adversary blocks mined in

the time interval (𝜏ℎ
𝑖
, 𝑡]. Note that since C and C′

both include ℎ𝑖 ,

the adversary blocks that are within these chains and have depths

greater than 𝑑ℎ
𝑖
, should have been mined after time 𝜏ℎ

𝑖
. Now, as

there can be at most one honest block at every depth due to Δ = 0;

𝐻 ≤ 𝑑 . Moreover, at each depth after 𝑑ℎ
𝑖
, either C and C′

have two

distinct blocks, or, they share the same block, which by definition

is an adversary block. Hence, the number of the adversary blocks

that are within these chains and have depths greater than 𝑑ℎ
𝑖
is at

least 𝑑 , which implies 𝐴 ≥ 𝑑 . Hence,

𝐴 ≥ 𝑑 ≥ 𝐻.

Finally, we know from the definition of persistence that block 𝑏 has

been at least 𝑘 deep in C before time 𝑡 , and, there are 𝑑𝑏 −𝑑ℎ𝑖 blocks

of distinct depths from ℎ𝑖 to 𝑏. Consequently, 𝑑 ≥ (𝑘−1) + (𝑑𝑏 −𝑑ℎ𝑖 ).
Figure 7 displays the interplay between these parameters in the

context of an example attack.

Figure 7: Chains C and C′ for an arbitrary attack 𝜋 . In this
example, 𝑘 = 6, 𝐻 = 6, and, 𝐴 = 9. 𝑑𝑏 − 𝑑ℎ

𝑖
= 3, and, the

attack succeeds at time 𝑡 , at which 𝑏 is exactly 6 blocks deep
in the chain C. Hence, in this example, 𝑑 is exactly equal to
(𝑘 − 1) + (𝑑𝑏 − 𝑑ℎ

𝑖
) = 5 + 3 = 8

Figure 8: C∗ and the private adversary chain under 𝜋𝑆𝑍 im-
posed on the same mining times as in Figure 7. Again, 𝑘 = 6,
𝐻 = 6, and, 𝐴 = 9. Adversary has a private chain at depth
𝐴 + 𝑑ℎ∗

𝑖
= 9 + 𝑑ℎ∗

𝑖
> (𝑘 − 1) + 𝑑∗

𝑏
= 5 + 𝑑∗

𝑏
at time 𝑡 . Note that

at time 𝑡 , 𝑏 is not 𝑘 = 6 blocks deep yet. However, the attack
will succeed after 𝑏 is 6 blocks deep in the chain C∗ since the
adversary already has a chain that is at depth greater than
𝑑∗
𝑏
+ (𝑘 − 1) = 𝑑∗

𝑏
+ 5.

We now consider an adversary that follows strategy 𝜋𝑆𝑍 . Again,

letT ∗
be the blocktree built under 𝜋𝑆𝑍 , and, define𝑑

ℎ∗
𝑖

and𝑑∗
𝑏
as the

depths of the blocks ℎ𝑖 and 𝑏 within T ∗
. Let C∗

denote the public

longest chain under strategy 𝜋𝑆𝑍 . See Figure 8 for a visual example

of the 𝜋𝑆𝑍 attack. We next make the following observations using

the properties of 𝜋𝑆𝑍 : Via property (2) of 𝜋𝑆𝑍 , every adversary

block mined after time 𝜏ℎ
𝑖
is placed at a depth higher than 𝑑ℎ∗

𝑖
.

Via property (1), every one of these adversary blocks mined after

time 𝜏ℎ
𝑖
is placed at a distinct depth. Hence, at time 𝑡 , the deepest

adversary block has depth at least 𝑑ℎ∗
𝑖

+𝐴. Via property (3), the path
from this deepest adversary block to the genesis does not include 𝑏.

Consequently, at time 𝑡 , the adversary following 𝜋𝑆𝑍 , has a private

chain that does not include 𝑏 and is at depth at least 𝑑ℎ∗
𝑖

+𝐴.

Finally, we observe via property (4) of 𝜋𝑆𝑍 that C∗
contains no

adversary blocks (except 𝑏 when it is an adversary block). Then, at

time 𝑡 > 𝜏𝑏 , C∗
contains𝑏, and, it is exactly at depth 𝐿∗ (𝑡) = 𝑑ℎ∗

𝑖
+𝐻

as Δ = 0. Finally, to prove that the adversary succeeds under 𝜋𝑆𝑍 ,

we consider the following two cases:

• 𝑏 is at least 𝑘-deep in C∗
at time 𝑡 , i.e 𝐿∗ (𝑡) ≥ (𝑘 − 1) + 𝑑∗

𝑏
.

However, since the adversary has a private chain that does

not include 𝑏 and has depth at least 𝑑ℎ∗
𝑖

+𝐴 ≥ 𝑑ℎ∗
𝑖

+ 𝐻 =

𝐿∗ (𝑡), the attack is successful.
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• 𝑏 is not 𝑘-deep yet, i.e 𝐿∗ (𝑡) < (𝑘 − 1) + 𝑑∗
𝑏
. (Figure 8

corresponds to this case.) However, the adversary has a

private chain that does not include 𝑏 and is at depth at

least,

𝑑ℎ∗𝑖 +𝐴 ≥ 𝑑ℎ∗𝑖 + 𝑑 ≥ (𝑘 − 1) + 𝑑𝑏 + 𝑑ℎ∗𝑖 − 𝑑ℎ𝑖 .

Moreover, as C∗
does not contain any adversary blocks

under 𝜋𝑆𝑍 (except 𝑏), 𝑑𝑏 −𝑑ℎ𝑖 ≥ 𝑑∗
𝑏
−𝑑ℎ∗

𝑖
. Hence, 𝑑ℎ∗

𝑖
+𝐴 ≥

(𝑘 − 1) +𝑑∗
𝑏
, implying that the adversary would eventually

succeed once 𝑏 becomes 𝑘-deep in C∗
.

This concludes the proof of part (i) of the theorem.

Second, we prove part (ii) of the theorem, namely the fact that

𝜋𝑆𝑍 is the worst-attack for preventing liveness with parameter 𝑘 .

Consider a sequence of mining times for the honest and adversary

blocks such that the liveness of the 𝑘 consecutive honest blocks

starting with 𝑏 is violated by an adversary following some arbitrary

attack strategy 𝜋 . Since 𝑏 is an honest block by assumption, let

𝑏 = ℎ 𝑗 without loss of generality. For each of the 𝑘 consecutive

honest blocks ℎ𝑚 ,𝑚 = 𝑗, .., 𝑗 + 𝑘 − 1; define 𝑡𝑚 ≥ 𝜏ℎ𝑚 as the first

time block ℎ𝑚 disappeared from the public longest chain C. Let 𝑡∗
denote the maximum of 𝑡𝑚 ,𝑚 = 𝑗, .., 𝑗 + 𝑘 − 1. We will prove this

part of the theorem by showing that 𝜋𝑆𝑍 also succeeds in removing

each ℎ𝑚 ,𝑚 = 𝑗, .., 𝑗 +𝑘−1 from C by time 𝑡∗, for the same sequence

of block mining times.

Let T be the blocktree built under 𝜋 , and, observe that at time

𝑡𝑚 , (i) C(𝑡𝑚) contains the block ℎ𝑚 , (ii) there exists a parallel chain

C𝑚 with depth greater than or equal to 𝐿(𝑡𝑚), depth of C at time

𝑡𝑚 , and, C𝑚 does not include ℎ𝑚 . See Figure 9 for a visual example

of the attack 𝜋 . Let 𝑒 (𝑚) be the index of the last honest block in

C𝑚 that is also on C. Such a block must exist for each𝑚; otherwise,

the chains C𝑚 could not have grown from the same genesis block.

Let 𝑑∗ denote the minimum depth of the honest blocks ℎ𝑒 (𝑚) :

𝑑∗ = min

𝑚=𝑗,.., 𝑗+𝑘−1

(𝑑ℎ
𝑒 (𝑚) ) < 𝑑ℎ𝑗

Let 𝑒∗ denote the index of the honest block at depth 𝑑∗. Define 𝐻
as the number of honest blocks mined in the time interval (𝜏ℎ

𝑒∗ , 𝑡
∗],

and, observe that all of these honest blocks lay in the depth interval

(𝑑∗, 𝐿(𝑡∗)] as there cannot be honest blocks at depths larger than
𝐿(𝑡∗) at time 𝑡∗.

Next, consider the portion of T (𝑡∗) deeper than 𝑑∗. Let 𝑑 :=

𝐿(𝑡∗) − 𝑑∗, and, define 𝐴 as the number of adversary blocks mined

in the time interval (𝜏ℎ
𝑒∗ , 𝑡

∗]. Note that all of the adversary blocks

within the chains C𝑚 (𝑡∗),𝑚 = 𝑗, .., 𝑗 + 𝑘 − 1, and C(𝑡∗) at time 𝑡∗

that lay in the depth interval (𝑑∗, 𝐿(𝑡∗)], should have been mined

after time 𝜏ℎ
𝑒∗ . Hence, these adversary blocks constitute a subset of

the adversary blocks mined in the time interval (𝜏ℎ
𝑒∗ , 𝑡

∗]. As there
can be at most one honest block at every depth as Δ = 0, 𝑑 ≥ 𝐻 .

Moreover, at each depth after 𝑑∗ = 𝑑ℎ
𝑒∗ , for any given𝑚, either C

and C𝑚 have two distinct blocks, or, they share the same block,

which by definition is an adversary block. Hence, the number of

the adversary blocks within the chains C𝑚 (𝑡∗),𝑚 = 𝑗, .., 𝑗 + 𝑘 − 1,

and C(𝑡∗) at time 𝑡∗ that lay in the depth interval (𝑑∗, 𝐿(𝑡∗)], is at
least 𝑑 , implying that 𝐴 ≥ 𝑑 . Hence,

𝐴 ≥ 𝑑 ≥ 𝐻.

Figure 9: Chains C, C𝑗 , C𝑗+1, and, C𝑗+2 for a sample attack 𝜋 .
In this example, 𝑘 = 3, 𝑑 = 7, 𝐻 = 6, and 𝐴 = 8. Chains C𝑗+1

and C𝑗+2 are the same, thus, ℎ𝑒 ( 𝑗+1) is the same honest block
as ℎ𝑒 ( 𝑗+2) , and 𝑡 𝑗+1 = 𝑡 𝑗+2. Note that 𝑡∗ = 𝑡 𝑗+1 = 𝑡 𝑗+2 since
C𝑗+1 = C𝑗+2 is the last chain to catch up with C. Similarly,
𝑒∗ = 𝑒 ( 𝑗 + 1) = 𝑒 ( 𝑗 + 2), and, 𝑑∗ = 𝑑ℎ

𝑒 ( 𝑗+1) = 𝑑ℎ
𝑒 ( 𝑗+2) , as ℎ𝑒 ( 𝑗+1) =

ℎ𝑒 ( 𝑗+2) has depth smaller than ℎ𝑒 ( 𝑗) .

Figure 9 displays the interplay between these parameters in the

context of an example attack.

We now consider an adversary that follows strategy 𝜋𝑆𝑍 . Again,

let T ∗
be the blocktree built under 𝜋𝑆𝑍 , and, define 𝑑

ℎ∗
𝑒∗ as the depth

of the block ℎ𝑒∗ within T ∗
. See Figure 10 for a visual example of

the 𝜋𝑆𝑍 attack. We next make the following observations using

the properties of 𝜋𝑆𝑍 : Via property (4) of 𝜋𝑆𝑍 , C∗
contains no

adversary blocks at time 𝑡∗. Hence, at time 𝑡∗ ≥ 𝜏ℎ
𝑗+𝑘−1

, C∗
contains

ℎ𝑚 , 𝑚 = 𝑗, .., 𝑗 + 𝑘 − 1 in a consecutive order, and, its depth is

𝐿∗ (𝑡∗) = 𝑑ℎ∗
𝑒∗ + 𝐻 . Via property (2), every adversary block mined

after time 𝜏ℎ
𝑒∗ is placed at a depth higher than 𝑑ℎ∗

𝑒∗ . Via property (1),

every adversary block mined after time 𝜏ℎ
𝑒∗ is placed at a distinct

depth. Hence, at time 𝑡∗, the deepest adversary block has depth at

least 𝑑ℎ∗
𝑒∗ +𝐴. Via property (3), the path from this deepest adversary

block to the genesis does not include ℎ 𝑗 . Hence, it does not include

any of the honest blocks ℎ𝑚 ,𝑚 = 𝑗, .., 𝑗 + 𝑘 − 1, that builds on ℎ 𝑗 .

Consequently, by time 𝑡∗, the adversary following 𝜋𝑆𝑍 , has a private
chain that does not include any of the blocks ℎ𝑚 ,𝑚 = 𝑗, .., 𝑗 +𝑘 − 1,

and, is at depth at least 𝑑ℎ∗
𝑒∗ +𝐴.

Finally, we have seen above that at time 𝑡∗, the public longest
chain𝐶∗ (𝑡∗) contains all of the blocks ℎ𝑚 ,𝑚 = 𝑗, .., 𝑗 +𝑘−1 and has

depth 𝐿∗ (𝑡∗) = 𝑑ℎ∗
𝑒∗ + 𝐻 , whereas there exists a private adversary

chain that does not include the blocks ℎ𝑚 ,𝑚 = 𝑗, .., 𝑗 + 𝑘 − 1, and,

is at depth at least

𝑑ℎ∗𝑒∗ +𝐴 ≥ 𝑑ℎ∗𝑒∗ + 𝐻 = 𝐿∗ (𝑡∗) .
Consequently, by broadcasting this private chain at time 𝑡∗, the
adversary can prevent liveness for the 𝑘 consecutive honest blocks

ℎ 𝑗 to ℎ 𝑗+𝑘−1
. This concludes the proof of part (ii) of the theorem.

□

Theorem 5.1 shows that when Δ = 0, there exists an attack

strategy, 𝜋𝑆𝑍 , such that if any attack 𝜋 succeeds in preventing per-

sistence for a block 𝑏 in the PoW model, this strategy also succeeds.

Does such an attack strategy exist when Δ > 0 in the PoW model?

Is private attack still the worst attack for every sequence of mining

times when Δ > 0? Unfortunately, the answer is no: When Δ > 0,
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Figure 10: C∗ and the private adversary chain under 𝜋𝑆𝑍 im-
posed on the same mining times as in Figure 9. Again, 𝑘 = 3,
𝑑 = 7, 𝐻 = 6, and, 𝐴 = 8. Adversary has a private chain at
depth 𝐴 + 𝑑ℎ∗

𝑒∗ = 8 + 𝑑ℎ∗
𝑒∗ > 𝐿∗ (𝑡∗) = 𝐻 + 𝑑ℎ∗

𝑒∗ = 6 + 𝑑ℎ∗
𝑒∗ at time 𝑡∗,

and, the public longest chain C∗ contains all of the attacked
blocks ℎ 𝑗 , ℎ 𝑗+1 and ℎ 𝑗+2 at time 𝑡∗.

there does not exist a sample path worst attack. This is shown by

the following lemma:

Lemma E.1. Consider attacks for preventing the persistence, with
some parameter 𝑘 , of some block ℎ 𝑗 , and, define the worst attack as
the strategy 𝜋∗ satsifying the following condition: If some strategy
𝜋 ≠ 𝜋∗ succeeds under a sequence of mining times, then 𝜋∗ also
succeeds under the same sequence except on a measure-zero set of
sequences. Then, when Δ > 0, and, _𝑎 < _ℎ/(1 + Δ_ℎ), there does
not exist a worst attack.

Proof. Proof is by contradiction. First, let 𝑆1 be the set of mining

time sequences for the blocks preceding ℎ 𝑗 such that ℎ 𝑗−1 is a loner,

no adversary block is mined during the time interval [𝜏ℎ
𝑗−1

, 𝜏ℎ
𝑗
], and,

for any 𝑖 , 0 ≤ 𝑖 < 𝑗 − 1, 𝐷ℎ (𝜏ℎ𝑗−1
− Δ) − 𝐷ℎ (𝜏ℎ𝑖 + Δ) is greater than

the number of adversary arrivals during the time period [𝜏ℎ
𝑖
, 𝜏ℎ

𝑗−1
].

(𝐷ℎ was defined previously in section 3.2.) Note that since this is a

necessary condition for ℎ 𝑗−1 to be a Nakamoto block, and, ℎ 𝑗−1 is a

Nakamoto block with positive probability when _𝑎 < _ℎ/(1+Δ_ℎ),
there exists a constant 𝑐 > 0 such that 𝑃 (𝑆1) ≥ 𝑐 for all 𝑗 .

Second, consider the following set of mining times for the next

three blocks that arrive after ℎ 𝑗 :

• Let 𝑏, ℎ 𝑗+1, and 𝑏 ′ denote these blocks in order of their

mining times.

• 𝑏 is an adversary block and ℎ 𝑗+1 is an honest block.

• Mining time of 𝑏 satisfies the following equation:

𝜏ℎ𝑗 < 𝜏𝑏 < 𝜏ℎ𝑗 + Δ.

• 𝑏 ′ is mined after time 𝜏ℎ
𝑗+1

+ Δ.

Now, depending on the mining time of 𝜏ℎ
𝑗+1

, we have two different

sets of mining time sequences, 𝑆2 and 𝑆 ′
2
. The condition on ℎ 𝑗+1

which differentiates these two sets is given below:

• 𝑆2: 𝜏𝑏 < 𝜏ℎ
𝑗+1

< 𝜏ℎ
𝑗
+ Δ

• 𝑆 ′
2
: 𝜏ℎ

𝑗
+ Δ < 𝜏ℎ

𝑗+1

Wenext consider the sets 𝑆1x𝑆2 and 𝑆1x𝑆
′
2
. For the sake of simplicity,

let’s call any arbitrary sequence from 𝑆1x𝑆2, sequence 1, and, any
arbitrary sequence from 𝑆1x𝑆

′
2
, sequence 2.

Figure 11: Blocktree for actions 1 and 2 under the sequences
1 and 2. Optimal actions for each sequence are marked with
a tick.

Now, for the sake of contradiction, assume that there exists

a worst attack 𝜋∗ that aims to prevent the persistence of block

ℎ 𝑗 . Consider an arbitrary sequence of mining times from the set

𝑆1x𝑆2 ∪ 𝑆1x𝑆
′
2
. Via the definition of the set 𝑆1, no matter what 𝜋∗

does, the deepest adversary block at time 𝜏ℎ
𝑗−1

has depth smaller

than 𝑑ℎ
𝑗−1

. Then, to prevent the persistence of ℎ 𝑗 , 𝜋
∗
builds two

parallel chains starting at block ℎ 𝑗−1, only one of which contains

ℎ 𝑗 . Let C be the chain containing ℎ 𝑗 and let C′
be the other parallel

chain. It also delays the broadcast of block ℎ 𝑗 by Δ so that if ℎ 𝑗+1 is

mined within Δ time of ℎ 𝑗 , it is placed within the chain C′
, at the

same depth as ℎ 𝑗 . However, when block 𝑏 is mined, there are two

distinct actions that 𝜋∗ might follow:

(1) Action 1: Choose ℎ 𝑗 as 𝑏’s parent. Keep 𝑏 private until at

least time 𝜏ℎ
𝑗+1

+ Δ.

(2) Action 2: Choose ℎ 𝑗−1 as 𝑏’s parent.

(Note that a worst attack will not mine 𝑏 on a block preceding ℎ 𝑗−1.)

See Figure 11 for the effects of these actions on the blocktree under

the sequences 1 and 2.

Now, assume that 𝜋∗ follows action 1. Then, under sequence 1,

the optimal behavior for 𝜋∗ is to broadcast ℎ 𝑗+1 before ℎ 𝑗 becomes

public at time 𝜏ℎ
𝑗
+ Δ, and, to prompt the honest miners to keep

mining on ℎ 𝑗+1. Then, C′
becomes the public longest chain, and,

the adversary can balance the chains C and C′
in the future using

the private block 𝑏. However, if 𝜋∗ follows action 2, then, under

sequence 1, C would not be leading C′
via the private block, thus,

making it harder for the adversary to maintain a balance between

these two chains in the future. Hence, under sequence 1, for any

sequence of mining times for the blocks after ℎ 𝑗+1, if 𝜋
∗
following

action 2 prevents the persistence of block ℎ 𝑗 , so does 𝜋∗ following
action 1. On the other hand, there exists a set 𝑆3 of mining time

sequences for the blocks after ℎ 𝑗+1 such that 𝑃 (𝑆3) > 0, and, under

the sequences in 𝑆3, following action 1 prevents the persistence of

block ℎ 𝑗 whereas following action 2 does not. Since 𝑃 (𝑆1) ≥ 𝑐 > 0

for all 𝑗 , the set 𝑆1x𝑆2x𝑆3 has positive probability. Consequently, the

worst attack 𝜋∗ does not follow action 2, implying that it follows

action 1.
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Next, observe that under sequence 2, ℎ 𝑗+1 comes to a higher

depth than ℎ 𝑗 . Hence, the optimal action for 𝜋∗ under sequence
2 is to follow action 2 as it enables the adversary to extend C′

by

one block using 𝑏. Action 1, on the other hand, does not help the

adversary in its endeavor to maintain two parallel chains from block

ℎ 𝑗−1 as demonstrated by Figure 11. Then, under sequence 2, for any

sequence of mining times for the blocks after ℎ 𝑗+1, if 𝜋
∗
following

action 1 prevents the persistence of block ℎ 𝑗 , so does 𝜋∗ following
action 2. On the other hand, there exists a set 𝑆 ′

3
of mining time

sequences for the blocks after ℎ 𝑗+1 such that 𝑃 (𝑆 ′
3
) > 0, and, under

the sequences in 𝑆 ′
3
, following action 2 prevents the persistence of

block ℎ 𝑗 whereas following action 1 does not. Since 𝑃 (𝑆1) ≥ 𝑐 > 0

for all 𝑗 , the set 𝑆1x𝑆
′
2
x𝑆 ′

3
has positive probability. Consequently, the

worst attack 𝜋∗ does not follow action 1, implying that it follows

action 2. However, this is a contradiction as the worst attack 𝜋∗

can choose only one of the actions 1 and 2. Hence, there does not

exist a worst attack 𝜋∗.
□

Finally, via the lemma E.1, we observe that, for any given attack

strategy 𝜋 , there exists a set of mining time sequences with positive

probability (which can be very small) under which 𝜋 is dominated

by some other attack strategy. However, it is important to note that

if we fix Δ to be some finite value and 𝜋 to be the private attack,

probability of such atypical sets of mining time sequences go to

zero as the parameter for persistence, 𝑘 , goes to infinity. This is

because, as we have seen in the previous sections, the private attack

is the worst attack in terms of achieving the security threshold.
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