
CENCPP∗ – Beyond-birthday-secure Encryption

from Public Permutations

Arghya Bhattacharjee1, Avijit Dutta2, Eik List3 and Mridul Nandi1

1 Indian Statistical Institute, Kolkata, India
bhattacharjeearghya29(at)gmail.com,

mridul.nandi(at)gmail.com,
2 Institute of Advancing Intelligence, TCG-CREST, Kolkata, India

avirocks.dutta13(at)gmail.com,
3 Bauhaus-Universität Weimar, Weimar, Germany

<firstname>.<lastname>(at)uni-weimar.de

Abstract. Public permutations have been established as valuable primitives since the
absence of a key schedule compared to block ciphers alleviates cryptanalysis. While
many permutation-based authentication and encryption schemes have been proposed
in the past decade, the birthday bound in terms of the primitive’s block length n
has been mostly accepted as the standard security goal. Thus, remarkably little
research has been conducted yet on permutation-based modes with higher security
guarantees. Only recently at CRYPTO’19, Chen et al. showed two constructions
with higher security based on the sum of two public permutations. Their work has
sparked increased interest in this direction by the community. However, since their
proposals were domain-preserving, the question of encryption schemes with beyond-
birthday-bound security was left open.
This work tries to address this gap by proposing CENCPP

∗, a nonce-based encryption
scheme from public permutations. Our proposal is a variant of Iwata’s block-cipher-
based mode CENC that we adapt for public permutations, thereby generalizing Chen
et al.’s Sum-of-Even-Mansour construction to a mode with variable output lengths.
Like CENC, our proposal enjoys a comfortable rate-security trade-off that needs w+1
calls to the primitive for w primitive outputs. We show a tight security level for up
to O(22n/3/w2) primitive calls. While w ≥ 1 can be arbitrary, two independent
keys suffice; moreover, although we propose CENCPP

∗ first in a generic setting with
w + 1 independent permutations, we show that only log2(w + 1) bits of the input for
domain separation suffice to obtain a single-permutation variant that still maintains
a security level of up to O(22n/3/w4) queries.

Keywords: Symmetric-key cryptography · permutation · provable security.

1 Introduction

Permutation-based cryptography has been established as an important branch of sym-
metric-key cryptography during the 2010s decade since they avoid the task of designing
and analyzing a secure key schedule. After the selection of Keccak as SHA-3 standard
[NIS15], permutations have found their way into manyfold applications beyond hashing,
such as encryption (e.g., [GJMN16]), authentication (e.g. [MMH+14]), or authenticated
encryption (e.g. [AJN14, BDP+16, DEMS16]).

The security of many block-cipher-based modes such as GCM [MV04] or OCB3 [KR11]
is limited by the birthday bound of the primitive’s state size (usually indicated by n

2 CENCPP∗ – Beyond-birthday-secure Encryption from Public Permutations

bits). This limitation renders the privacy guarantees void when some internal collision
occurs, which happens with non-negligible probability after O(2n/2) blocks have been
processed under the same key. While this level of security is often sufficient, it can
become problematic for settings that need primitives with small block lengths [BL16], or
for applications that employ large amounts of data.
In the domain of block ciphers, the community has consequently proposed various modes
with higher guarantees over the previous decades, e.g., CENC [Iwa06] or the Sum of GCM
[IM16], just to name examples. Moreover, the usage of tweakable block ciphers (TBCs)
[LRW02], that take a tweak as an additional public input, has allowed the construction
of modes with enhanced security guarantees. For example, the modes ΘCB3 [KR11] or
OTR [Min14] can overcome the birthday bound with appropriate primitives. As a result,
a series of research introduced highly secure encryption modes [PS16], MACs [IMPS17,
Nai15], and AE schemes [BGIM19, PS16] based upon them.

For permutation-based modes, the birthday-bound limitation is usually tolerated, e.g.
in [BDH+17, GJMN16]. This lack of security and efficiency has been compensated by
using permutations with larger state sizes. Moreover, well-known generic attacks render
it difficult to succumb the birthday bound when the primitive is public due, e.g. [DDKS13,
DKS12]. Many approaches tried to increase the security by multiple calls to the primi-
tive, e.g., with multi-round Even-Mansour constructions [CLL+14, CLM19, CS14, CS15].
Cogliati et al. [CDK+18] studied the security of (wide) TBCs based on SPNs with public
permutations and linear or nonlinear tweaking and mixing layers. They showed 2n/3-bit
security for two rounds with nonlinear mixing layers.
Though, permutation-based modes do not have to be limited in general. Often, it is
argued that the mere size of the underlying permutation renders birthday attacks infeasible
– a valid and pragmatic argument. Equally pragmatically, yet, the state size of current
permutations poses considerable costs either to implementation size, area, or performance.
Thus, efficient permutation-based modes with higher security seem attractive, be it with
some restrictions such as the need for multiple keys.
At CRYPTO’19, Chen et al. [CLM19] proposed two permutation-based PRFs, the Sum-of-
Even-Mansour constructions (SoEM) and Sum-of-Key-alternating-Ciphers (SoKAC), with
proofs for up to O(22n/3) queries. The single primitive variant was revisited by [Nan20]
and [CNTY20]. Moreover, [CNTY20] proposed PDM-MAC; [DN20] introduced nEHtMp,
both 2n/3-bit-secure PRFs with n-bit outputs from public permutations. Still, their con-
structions map only fixed-length inputs to fixed-length outputs, which left the question
of designing a variable-length encryption scheme with similar security open.

This work proposes CENCPP∗[w], a mode from n-bit permutations with O(22n/3/w2) se-
curity where w is a small user-chosen integer. Our proposal is a straight-forward adaption
of Iwata’s CENC mode [Iwa06]. This represents a trade-off, where w can be chosen to be
below the usual number of round keys e.g. for the AES [NIS01] or Deoxys-BC [JNP14]. It
can be instantiated directly with usual permutations such as Keccak-f and requires only
two independent keys. While our generic proposal of CENCPP∗[w] considers (w + 1) inde-
pendent permutations, we suggest a variant that needs only a single public permutation
while sacrificing only log2(w + 1) bits of the input space for separating domains. That is,
we derive domain-separated single-primitive variants of SoEM and CENCPP∗, that we call
DS-SoEM and DS-CENCPP∗[w], and show their security. We show that two independent
keys are sufficient and necessary for our security guarantees by providing distinguishers for
all constructions in O(2n/2) if single keys or simpler key-scheduling approaches would be
taken. Moreover, we describe distinguishers in O(22n/3) queries to note that the security
is effectively tight except the logarithmic factor in w. We compare our proposals with
public-permutation-based beyond-birthday-secure PRFs from the literature in Figure 1.

Arghya Bhattacharjee, Avijit Dutta, Eik List and Mridul Nandi 3

Bits

Construction #
P

ri
m

.

#
K

ey
s

IF N
o
n

ce

R
a
te

In Out S
ec

.

PDM-MAC [CNTY20] 1 1 – – 1/2 n n 2n
3

SoKAC22 [CLM19] 2 2 • – 1/2 n n 2n
3

SoEM22 [CLM19] 2 2 • – 1/2 n n 2n
3

DS-SoEM [Sect. 6] 1 2 • – n−d
2n

n− d n 2n
3

nEHtMp [DN20] 2 2 • • 1/2 ∗ n 2n
3

CENCPP
∗ [Sect. 3] w+1 2 • • w

w+1
∗ ∗ 2n

3
− log(w2)

DS-CENCPP
∗ [Sect. 6] 1 2 • • w(n−d)

(w+1)n
∗ ∗ 2n

3
− log(w4)

Figure 1: Left: Comparison with existing PRFs from public permutations with beyond-birthday-
bound security. Prim. = primitives, IF = inverse-free, n = state size, w = word parameter, d =
domain size, sec. = security, •/– = yes/no. Right: Security of XORPP

∗[w] for varying w.

The remainder is structured as follows: Section 2 recalls preliminaries before Section 3
defines CENCPP∗. We employ two different keys for security and show that it is necessary
to combine the keys for most primitive calls. We show that simpler key scheduling would
lead to a birthday-bound distinguisher in Section 4. Next, the security of the generic
CENCPP∗ is analyzed in Section 5. In Section 6, we propose domain-separated variants of
SoEM and CENCPP∗, called DS-SoEM and DS-CENCPP∗. We provide a design rationale
and distinguishers on weaker variants in Section 7. We analyze the security of DS-SoEM

and DS-CENCPP∗ in Section 8 and 9 respectively. Section 10 concludes.

2 Preliminaries

In general, we will use lowercase letters x, y for indices and integers, uppercase letters
X, Y for binary strings and functions, calligraphic uppercase letters X ,Y for sets and
spaces. We write F2 for the finite field of characteristic 2 and Fn

2 for an n-element vector
of elements in F2, or bit strings. We will use Fn

2 and {0, 1}n interchangeably in this paper.
X ‖ Y denotes the concatenation of binary strings X and Y , and X ⊕ Y for their bitwise
XOR, that is, addition in F2. We indicate the length of X in bits by |X | and write Xi

for the i-th block. We denote by X և X that X is chosen uniformly at random from the
set X . We define Func(X ,Y) for the set of all functions F : X → Y, Perm(X) for the set

of all permutations π : X → X , and P̃erm(T ,X) for the set of tweakable permutations

π̃ : T × X → X over X with tweak space T . We define by X1, . . . , Xj
x←− X an injective

splitting of a string X into blocks of x-bit such that X = X1 ‖ · · · ‖Xj, |Xi| = x for
1 ≤ i ≤ j − 1, and |Xj| ≤ x. For positive integer m, we use X≤m =def

⋃m
i=0 X i. By 〈X〉n,

we denote the encoding of an integer X into an n-bit string, e.g., 〈135〉8 = (10000111)2.
For any n-bit string X = (X [n − 1] . . . X [1]X [0]) and non-negative integer x ≤ n, let
lsbx(X) and msbx(X) denote the functions that return the x least significant and most
significant bits of X , respectively. We omit writing n if clear from the context. For q ∈ N,
we define [q] =def {1, . . . , q} and [0..q] =def {0, . . . , q}. Given a vector space V ⊆ F of a
field F, and an element α ∈ K, we define the space α · V =def {α · V : V ∈ V}. We write
αV or α · V when the operation is clear from the context. Moreover, given two spaces
V ,W ⊂ F, we define by V +W =def {V ∈ V , W ∈ W : V + W}, where addition is in F.

A distinguisher D is an efficient Turing machine that interacts with a set of oracles
that are black boxes to D. We write ∆D

(
O1;O2

)
for the advantage of D to distinguish

between O1 and O2. All probabilities are defined over the random coins of the oracles

4 CENCPP∗ – Beyond-birthday-secure Encryption from Public Permutations

and those of D if any. AdvX
F (q, σ)

def
= maxD{AdvX

F (D)} denotes the maximal advantage
over all X-distinguishers D on F that ask ≤ q queries of ≤ σ blocks in total to its oracles.
W.l.o.g., we assume that D never asks queries to which it already knows the answer.
We consider information-theoretic distinguishers D, whose resources are bounded only
in terms of their maximal numbers of queries and blocks that they can ask to their
available oracles. One can derive computation-theoretic counterparts in a straight-forward
manner. We parametrize our distinguishers, where we use qc for the number of queries
to a construction and σ to the total number of blocks to the construction. For analysis
constructions based on public permutations π0, . . . , πw in the ideal-permutation model,
we further use qp for the number of queries to the primitive oracles.

PRF security refers to the maximal advantage of distinguishing the outputs of a scheme
from random bits of the expected length. For primitives and schemes in general, we will
often use the set K = Fn

2 for keys, B = Fn
2 for message blocks, N = Fν

2 for nonces, and
D = F

µ
2 for counters, where n, ν, µ are small integers. Given two non-empty sets or spaces

X ,Y, let F : K × X → Y be a function, ρ և Func(X ,Y) and K և K be a secret key.

Then, the PRF advantage of D is defined as AdvPRF

FK
(D)

def
= ∆D (FK ; ρ).

A nonce-based encryption scheme Π = (E ,D) is a tuple of algorithms for encryption
and decryption with signatures E : K ×N × F∗

2 → F∗
2 and D : K ×N × F∗

2 → F∗
2, where

N denotes a nonce space. The nonce N ∈ N must not repeat over all encryption queries.
Distinguishers that obey this requirement are called nonce-respecting. We assume that Π
is correct, i.e., for all K, N, M ∈ K ×N × F∗

2, it holds that DK(N, EK(N, M)) = M .
Let K և K and ρ : N × F∗

2 → F∗
2 be a function that, on input (N, M), computes

C ← EK(N, M) for random K և K and outputs C′
և F

|C|
2 . The nE-security of a

nonce-respecting distinguisher D is defined as AdvnE

ΠK
(D)

def
= ∆D (EK ; ρ).

In the ideal-permutation model, the distinguisher has one or multiple additional oracles
π± that provides access to the public permutation π in for- and backward directions. This
work studies the security notions such as PRF and nE security in the ideal-permutation
model. We write Π[π] and E [π], D[π], etc. to indicate that Π is based on a primitive π.

The H-coefficient technique is a proof method by Patarin [Pat08, Pat10] that was
modernized by Chen and Steinberger [CS14]. A distinguisher D interacts with oracles O
and obtains outputs from a real world Oreal or an ideal world Oideal. The results of its
interaction are collected in a transcript τ . The oracles can sample random coins before
the experiment (often a key or an ideal primitive that is sampled beforehand), and are
then deterministic [CS14]. We choose two random variables Θreal for the distribution
of transcripts in the real world and correspondingly Θideal for that in the ideal world,
respectively. A transcript τ is attainable if D can observe τ with non-zero probability in
the ideal world. The fundamental Lemma of the H-coefficients technique, whose proof can
be found e.g., in [CS14, Pat08], states that we can split the set of all attainable transcripts
into two disjoint sets GoodT and BadT and bound the distinguishing advantage as:

Lemma 1 ([Pat08]). Assume, there exist ǫ1, ǫ2 ≥ 0 s. t. for any transcript τ ∈ GoodT,

it holds Pr[Θreal=τ]
Pr[Θideal=τ] ≥ 1− ǫ1 and Pr [Θideal ∈ BadT] ≤ ǫ2. Then, for all distinguishers D,

it holds that ∆D (Oreal;Oideal) ≤ ǫ1 + ǫ2.

The technique has been generalized by Hoang and Tessaro [HT16] in their expectation
method, which allowed us to derive the fundamental lemma as a corollary.

Arghya Bhattacharjee, Avijit Dutta, Eik List and Mridul Nandi 5

M

π1 π2

K1 K2

K1 K2

U X

V Y

C

Figure 3: The construction SoEM22 by Chen et al. [CLM19].

Lemma 2 (Sum-capture Lemma [CLL+14]). Let n, q ∈ N s. t. 9n ≤ q ≤ 2n−1. Let
T = {T 1, . . . , T q} ⊆ Fn

2 s. t. the values T i for i ∈ [q] are with-replacement samples from
Fn

2 . Let X ,Y ⊂ Fn
2 be arbitrary and S =def {(T, X, Y) ∈ T ×X ×Y : T = X ⊕Y }. Then,

Pr

[
|S| ≥ q|X ||Y|

2n
+ 3
√

nq|X ||Y|
]
≤ 2

2n
,

where the randomness is defined over T .

Lemma 3. Let A2×2 = (aij) ∈ {0, 1}n be a non-singular matrix. For any b1, b2 ∈ {0, 1}n

Pr
[
K0, K1 և {0, 1}n : A · (K0, K1)⊤ = (b1, b2)⊤

]
= 2−2n .

Proof. Since A is non-singular, A−1 exists. Therefore, K0 = A−1
1 · [b1 b2]⊤ and K1 =

A−1
2 · [b1 b2]⊤, where A−1

1 and A−1
2 are the first and second row of A−1 respectively.

Since, K0, K1 are uniform random variables over {0, 1}n, the result follows.

3 The CENCPP∗ Mode

This section defines a generic CENC construction that we call CENCPP∗. Standing on
the shoulders of existing constructions, we start with the necessary details of SoEM and
CENC.

3.1 SoEM

At CRYPTO’19, Chen et al. [CLM19] proposed SoEM (Sum of Even-Mansour construc-
tions) and SoKAC (Sum of Key-alternating Ciphers). Both designs represent fixed-length
PRFs which they provided analyses for up to O(22n/3) queries for both. An improved
analysis that showed subtleties of the proof of SoKAC 21 was presented later in [Nan20].
The former sums the results of two single-round Even-Mansour ciphers; the latter is a
variant of Encrypted Davies-Meyer [MN17a] from public instead of keyed primitives.
Chen et al. parametrized their constructions as SoEMλκ and SoKACλκ, where λ denoted
the number of permutations, and κ the number of keys. Figure 3 illustrates SoEM22, which
will be relevant in this work. Both modes need two calls to the independent permutations.
Moreover, SoEM demanded two independent keys. Chen et al. studied SoEM12 with a
single permutation: π(M ⊕K1)⊕K1⊕π(M ⊕K2)⊕K2, and SoKAC12 as π(π(M ⊕K1)⊕
K2)⊕K1 ⊕ π(M ⊕K1)⊕K2, and showed distinguishers with O(2n/2) queries for both.

3.2 CENC

CENC is a nonce-based block-cipher-based mode that generalizes the sum of permutations
by Iwata [Iwa06]. It uses the nonce concatenated with a counter as block-cipher input,

6 CENCPP∗ – Beyond-birthday-secure Encryption from Public Permutations

N ‖ 〈0〉

K0 ⊕K1

π0

X1,0

U1,0

V1,0

N ‖ 〈0〉

2K0 ⊕ 22K1

π1

M1

C1

X1,0

U1,1

V1,1

N ‖ 〈0〉

22K0 ⊕ 24K1

π2

M2

C2

X1,0

U1,2

V1,2

N ‖ 〈1〉

K0 ⊕K1

π0

X2,0

U2,0

V2,0

N ‖ 〈1〉

2K0 ⊕ 22K1

π1

M3

C3

X2,0

U2,1

V2,1

N ‖ 〈1〉

22K0 ⊕ 24K1

π2

M4

C4

X2,0

U2,2

V2,2

Figure 4: Encryption of a four-block message M = (M1, . . ., M4) with CENCPP
∗[(π0, π1, π2),

2]K0,K1
. The final chunk is truncated if its length is less than 2n bits. N is a nonce, K0 and K1

are independent secret keys and π0, π1, and π2 independent permutations.

splits each sequence of w message blocks into chunks, and processes them by XORP.
In XORP, the message M is split into w blocks of n bits, for a small positive integer w.
Let n, ν, µ be integers such that n = ν + µ and w + 1 ≤ 2µ. Let E : K × Fn

2 → Fn
2 be a

block cipher, and let N = Fν
2 be a nonce space. The remaining µ input bits are used for

a counter. Let K ∈ K be a secret key and N ∈ N be a nonce. Then, XORP[EK , w](N, s)
computes a key stream S1 ‖ . . . ‖Sw as

Si
def
= EK(N ‖ 〈s〉µ)⊕ EK(N ‖ 〈s + i〉µ), for i ∈ [w] .

Thus, it makes w + 1 block-cipher calls with pairwise distinct inputs, where EK(X ‖ 〈s〉µ)
with the starting value s of the counter is XORed to each of the other blocks. XORP[EK , w]
can be simply used as a length-restricted encryption scheme by XORing its output to a
message M of |M | ≤ n · w bits. The final chunk is simply truncated to the length of the
final message block. We slightly adapt the definition by [Iwa06, IMV16] to

XORP[EK , w] : N × F
µ
2 → (F2)n·w,

where XORP[EK , w](N, i) uses N ‖ 〈i〉µ, N ‖ 〈i + 1〉µ, . . . as inputs to EK .
CENC concatenates several instances of XORP[EK , w] with pair-wise distinct inputs. Let

M ∈ F∗
2 be a message s. t. (M1 ‖ . . . ‖Mm)

n←−M . Let ℓ = ⌈m/w⌉ denote the number of
chunks. It must hold that ℓ · (w + 1) < 2µ. Then

CENC[EK , w](N, M)
def
= msb|M|

(
‖ ℓ−1

i=0 XORP[EK , w] (N, i · (w + 1))
)
⊕M.

3.3 CENCPP∗

In the following, we adapt CENC to the public-permutation setting. Let A = (aij) be a
(w + 1)× 2 dimensional matrix such that each of its element aij are n-bit binary strings.
Let π0, . . ., πw ∈ Perm(Fn

2) be permutations, and let K0, K1 ∈ Fn
2 be independent secret

keys. We define π

def
= (π0, . . . , πw) as shorthand form. Furthermore, D ⊆ F

µ
2 be a set of

domains, s. t. n = ν + µ. For brevity, we define a key vector K = (K0, K1). We combine
both keys K0 and K1 for the individual permutations as (ai,0 ·K0)⊕ (ai,1 ·K1) to generate
the i-th round key K ′

i, for all i ∈ [0..w]. In matrix notation, we write this as follows:

A ·K =




a0,0 a0,1

a1,0 a1,1

.

aw,0 aw,1



·
[

K0

K1

]
=




K ′
0

K ′
1

...

K ′
w




.

Arghya Bhattacharjee, Avijit Dutta, Eik List and Mridul Nandi 7

Algorithm 1 Definition of CENCPP∗.

101: function CENCPP
∗[π, w, A].EK(N, M)

102: (M1, . . . , Mm)
n
←−M

103: ℓ← ⌈m/w⌉
104: for i← 0..ℓ − 1 do

105: j ← i · w
106: (Sj+1 ‖ · · · ‖Sj+w)
107: ← XORPP

∗[π, w, A]K(N ‖ 〈i〉µ)
108: for k ← j + 1..j + w do

109: Ck ← msb|Mk|(Sk)⊕Mk

110: return (C1 ‖ · · · ‖Cm)

201: function CENCPP
∗[π, w, A].DK(N, C)

202: return CENCPP
∗[π, w, A].EK(N, C)

301: function XORPP
∗[π, w, A]K(M)

302: (K0, K1)← K

303: (π0, . . . , πw)← π

304: U0 ←M ⊕ (a0,0K0 ⊕ a0,1K1)
305: X0 ← π0(U0)⊕ (K0 ⊕K1)
306: for j ← 1..w do

307: Lj ← (aj,0 ·K0)⊕ (aj,1 ·K1)
308: Uj ←M ⊕ Lj

309: Xj ← πj(Uj)⊕ Lj

310: Cj ← Xj ⊕X0

311: return (C1 ‖ · · · ‖Cw)

We call A the key-scheduling matrix. We adapt XORP to XORPP∗ to note that it is based
on the XOR of public permutations. For a key-scheduling matrix A of dimension (w+1)×
2, we define XORPP∗ [π, w, A] : (Fn

2)2×Fn
2 → (Fn

2)w, instantiated with w+1 permutations
π0, . . . , πw, a key space (Fn

2)2 and the key-scheduling matrix A. We write XORPP∗ as
short for XORPP∗ [π, w, A] when w, key-scheduling matrix A and the permutations π are
clear from the context. Given that the permutations are independent, CENCPP∗ uses the
same input (N ‖ 〈i〉µ) for each permutation in one call of XORPP∗. We define encryption
and decryption of the nonce-based mode CENCPP∗ as given in Algorithm 1.

3.4 Discussion

Further constructions with beyond-birthday security from public permutations are nat-
urally possible. However, our proposal CENCPP∗ seems very efficient. Instantiating CENC

with a two-round Even-Mansour construction could be a generic approach that can provide
roughly the security of the primitive, i.e. 2n/3 bits, and would employ ⌈2 w+1

w ⌉ calls to the
permutation for w message blocks. In their proposal of AES-PRF, Mennink and Neves in-
creased the performance of their construction [MN17b] by instantiating it with five-round
AES. However, its security margin is thin [DIS+18], so that improved cryptanalysis could
endanger it in the close future.

More related works exist in the secret-permutation setting. Cogliati and Seurin [CS18]
showed that a variant of EDM with a single keyed permutation – that is EK(EK(M)⊕M)
– possesses roughly O(22n/3) security. The work by Guo et al. [GSWG19] followed this
direction, showing O(22n/3/n) security for the single-permutation variants of EDM and
its dual EDMD– EK(EK(M))⊕ EK(M). Moreover, they proved a similar security result
also for the sum from a single permutation and its inverse, SUMPIP: EK(M) ⊕ E−1

K (M).
This reminds of the Decrypted Wegman-Carter Davies-Meyer construction [DDNY18] that
would also possess a security bound of O(22n/3) but limited the input space 2n/3 bits.
SUMPIP could retain beyond-birthday-bound security with public permutations, i.e.

π(M ⊕K1)⊕K1 ⊕ π−1(M ⊕K2)⊕K2

could be secure beyond O(2n/2) queries when using a public primitive π. However, such an
instantiation would need both en- and decryption of the primitive, which is less practical
than a construction that only needs a single direction. Plus, for CENCPP∗, we are unaware
of how this instantiation would help since it needs at least three independent permutations.
We leave the security of modes similar to SUMPIP as an open question.

8 CENCPP∗ – Beyond-birthday-secure Encryption from Public Permutations

M

K0

K0

π0

X0

U0

V0

M

K1

K1

π1

C1

X0

U1

V1

X1

M

αK1

αK1

π2

C2

X0

U2

V2

X2

· · ·

M

αw−1K1

αw−1K1

πw

Cw

X0

Uw

Vw

Xw

M

π1 π2

K αK

K αK

U X

V Y

C

Figure 5: Example of using a weak key schedule for XORPP
∗ (left) and SoEM

′ (right).

4 Birthday-bound Distinguisher on CENCPP∗

To derive the i-th round key K ′
i of CENCPP∗, we have K ′

i = (ai,0 ·K0)⊕ (ai,1 ·K1) for all
i ∈ [0..w], where A = (aij) ∈ {0, 1}n is the key-scheduling matrix of dimension (w +1)×2
and K0, K1 are two independent n-bit keys. Using SoEM as a base, it is tempting to
use a key scheduling of K0, K1, αK1, α2K1, . . . , which omits the addition of K0 for all
subsequent permutation calls. In matrix form, this key scheduling would produce

[
1 0 0 · · · 0

0 1 α · · · αw−1

]⊤

︸ ︷︷ ︸
A⊤

·
[

K0

K1

]
.

While the latter appears much simpler, after transposing its matrix form to w + 1 rows, it
contains dependent rows. Let those two rows be Ai and Aj in the key-scheduling matrix
A such that they are linearly dependent, i.e., Ai = αAj for some non-zero α ∈ {0, 1}n.
Then, we have K ′

i = αK ′
j for some α ∈ {0, 1}n \ {0n}. We use the idea of canceling

the two outputs that use dependent keys and reduce the distinguishing problem to that
for single-key SoEM. Since the steps are not intuitive, we illustrate the birthday-bound
distinguisher of CENCPP∗ in the following. First, we show that we can reduce the security
of CENCPP∗ to the security of SoEM with the key usage of (K ′

i, αK ′
i) for some non-zero

α ∈ {0, 1}n when Ai and Aj rows of A are linearly dependent. We denote this variant of

SoEM as SoEM′ def
= SoEM[πi, πj]K′

i
,αK′

i
.

4.1 Reduction to SoEM′

Suppose, D is an information-theoretic distinguisher on SoEM′ and τ = {K} ∪ τp ∪ τc

is a transcript, consisting of the key, the primitive-query transcript τp with qp primitive
queries and their corresponding responses (U i, V i) to π1 and (Xk, Y k) to π2 each, as well as
the construction-query transcript τc with qc construction queries and their corresponding
responses (M j , Cj). After the interaction, D is given τ , including the key K և F2n , and
sees C = W ⊕Z where W =def π1(M ⊕K)⊕K and Z =def π2(M ⊕ (α ·K))⊕ (α ·K). In
comparison, a distinguisher D′ on CENCPP∗ [π0, πi, πj]K0,K1

with key schedule as above
can compute Ci ⊕ Cj = (Xi ⊕X0)⊕ (Xj ⊕X0) = W ⊕ Z = C. Thus,

AdvPRF

CENCPP∗(D′) ≥ AdvPRF

SoEM′(D) ,

where D and D′ ask the same number of construction queries qc and primitive queries qp

to each of the primitives. Note that the distinguisher D′ knows the values of i and j from
the knowledge of the key-scheduling algorithm.

Arghya Bhattacharjee, Avijit Dutta, Eik List and Mridul Nandi 9

4.2 Birthday-bound Attack on SoEM′

Let U and V be two subspaces of F2n . Then, for every α ∈ F2n , U + V =def {u + v|u ∈
U , v ∈ V} and α ·V =def {α ·v|v ∈ V} are also subspaces. We write 0 and 1 for the neutral
elements of addition and multiplication, respectively. If {x1, x2, · · · , xn/2} is a basis of V ,
then {α · x1, α · x2, · · · , α · xn/2} is also a basis of α · V , where α 6= 0.

Fact 1. Let U and V are two subspaces of F2n . If their intersection contains only the
zero element U ∩ V = {0}, we say that U and V have zero intersection. If both have zero
intersection, it holds that dim(U +V) = dim(U) + dim(V). Equivalently, one can say that
the basis elements of U and V are linearly independent.

Theorem 1. Let α 6∈ {0, 1}. For every 1 ≤ i ≤ n/2, there exists a subspace V ⊆ F2n

with dim(V) = i such that V and α · V have zero intersection. In particular, there is a
subspace V of dimension n/2 such that V + α · V = F2n .

Proof. We prove Theorem 1 by induction on i. For i = 1, the statement is obvious by
choosing non-zero x1. For 1 ≤ i < n/2, suppose, we have picked x1, x2, · · · , xi such
that all elements from {x1, x2, · · · , xi, α ·x1, α ·x2, · · ·α ·xi} are linearly independent. Let
Si =def span({x1, x2, · · · , xi, α·x1, α·x2, · · · , α·xi}), i.e., its span. Moreover, we define Ti

as short form of Ti =def Si∪
(
α−1 · Si

)
∪
(
(1 + α)−1 · Si

)
. It holds that |Ti| ≤ 3 ·2n−2 < 2n.

When we choose a new element xi+1 6∈ Ti, it follows from the definition of Ti that xi+1,
α·xi+1 and (1+α)·xi+1 are not in Si. Hence, {x1, x2, · · · , xi+1, α·x1, α·x2, · · · , α·xi+1} are
linearly independent, which concludes the proof. Note that such a basis can be constructed
efficiently element by element.

Distinguisher on SoEM′. Next, we demonstrate a distinguisher on SoEM′. Given the
observation above, we can first construct a vector space X of dimension n/2 such that
X + (1 + α) · X = F2n . Let M = (1 + α)−1 · X . So,M+X = F2n and hence there exists
X ∈ X and M ∈M with M + X = α ·K. Let U = α−1 · X . Then

U = α−1 · (1 + α) · M = (1 + α−1) ·M .

Thus, M + K = α−1 ·X + (1 + α−1) ·M ∈ U and there exists M ∈M, U ∈ U , and X ∈ X
such that M ⊕ U = K and M ⊕X = αK.
Let π1(U) = V and π2(X) = Y . Then, C = SoEM′(M) = (1 ⊕ α) ·K ⊕ V ⊕ Y . We use
shorthand notations V ⊕c, Y ⊕c and C⊕c to denote π1(U⊕c), π2(X⊕c) and SoEM′(M ⊕c)
respectively for some non-zero c ∈ {0, 1}n. It is easy to see that for any c, it holds that

C⊕c = (1⊕ α) ·K ⊕ V ⊕c ⊕ Y ⊕c

and hence C ⊕ C⊕c = (V ⊕ V ⊕c)⊕ (Y ⊕ Y ⊕c). We use this observation to complete our
attack. Suppose that c and d are two distinct constants outside of U , X , and M. Then,
the distinguisher can proceed as follows:

1. It queries all values Ui ∈ U , Ui ⊕ c and Ui ⊕ d to its primitive oracle π1, and stores
them together with the corresponding responses Vi, V ⊕c

i and V ⊕d
i .

2. Similarly, it queries all values Xi ∈ X , Xi ⊕ c and Xi ⊕ d to its primitive oracle π2,
and stores them together with the corresponding responses Yi, Y ⊕c

i and Y ⊕d
i .

3. Moreover, it queries all values Mi ∈ M, Mi⊕c and Mi⊕d to its construction oracle,
and stores them together with the corresponding responses Ci, C⊕c

i and C⊕d
i .

4. After making all queries as described above, it looks for triple (i, j, k) such that the
following two equalities hold:

10 CENCPP∗ – Beyond-birthday-secure Encryption from Public Permutations

4.1 Ci ⊕ C⊕c
i = (Vj ⊕ V ⊕c

j)⊕ (Yk ⊕ Y ⊕c
k).

4.2 Ci ⊕ C⊕d
i = (Vj ⊕ V ⊕d

j)⊕ (Yk ⊕ Y ⊕d
k).

5. If there exists such triple (i, j, k), it outputs real, and random otherwise.

5 Security Analysis of CENCPP∗

This section studies the nE security of CENCPP∗. Prior, we briefly revisit that of CENC.

5.1 Recalling the Security of CENC

The security of XORP: In [Iwa06], Iwata showed that CENC[w] is secure for up to
22n/3/w message blocks as long as EK is a secure block cipher. At Dagstuhl’07 [Iwa07],
he added an attack that needed 2n/w queries, and showed O(2n/w) security if the total
number of primitive calls remained below σ < 2n/2. He conjectured that CENC may be se-
cure for up to 2n/w blocks. In [IMV16], Iwata et al. confirmed that conjecture by a simple
corollary from Patarin. We briefly recall their conclusion. In [Pat10, Theorem 6], Patarin
showed the indistinguishability for the sum of multiple independent secret permutations.
[IMV16] adapted this bound to address the security of XORP:

AdvPRF

XORP[EK,w] ≤
w2q

2n
+ AdvPRP

EK
((w + 1)q, t). (1)

Theorem 3 in [IMV16] conjectured for m being a multiple of w:

AdvnE

CENC[EK ,w](q, m, t) ≤ mwq

2n
+ AdvPRP

EK

(
w + 1

w
mq, t

)
.

Thus, CENC provided a convenient trade-off of w + 1 calls per w message blocks with
security for up to 2n/w calls to EK . The proof sketch by [IMV16] reduced the security of
CENC to the proof of the sum of two permutations. At that time, the latter analysis relied
on recursive arguments of Patarin’s Mirror Theory that were subject to controversies. The
work by Bhattacharya and Nandi [BN18] proved similar security for the generalized sum
of permutations and CENC using the χ2 method [DHT17].

5.2 The Security of CENCPP∗

In the following, let n, w be positive integers, π0, . . . , πw և Perm(Fn
2) be independent

public permutations, K0, K1 և K be independent secret keys and A be the (w + 1)× 2
dimensional key-scheduling matrix such that each entry is an n-bit binary string. We write
K = (K0, K1) and π = (π0, . . . , πw) for brevity. Again, we conduct a two-step analysis,
where we consider (1) the PRF security of XORPP∗ [π, w, A] and (2) the PRF security
of CENCPP∗[π, w, A]. For the simplicity of the notation, we write XORPP∗ [π, w, A] as
XORPP∗ and CENCPP∗[π, w, A] as CENCPP∗.

Theorem 2. It holds that AdvnE

CENCPP∗(qp, qc, σ) ≤ AdvPRF

XORPP∗

(
qp, m

w qc, σ
)
.

Proof. The proof follows a similar argumentation as that of CENC in [IMV16]. For a
maximal number of message chunks ℓ = ⌈σ/w⌉, CENCPP∗[π, w, A]K consists of the ap-
plication of ℓ instances of XORPP∗ [π, w, A]K. We can replace XORPP∗ [π, w]K by a
random function ρ at the cost of

AdvPRF

XORPP∗

(
qp,

m

w
qc, σ

)
.

Since the resulting construction is indistinguishable from random bits, Theorem 2 follows.

Arghya Bhattacharjee, Avijit Dutta, Eik List and Mridul Nandi 11

Theorem 3. Let A be a (w + 1)× 2 dimensional matrix such that each of its elements
are n-bit binary strings and each of its rows are pairwise linearly independent. Let qc +
(w + 1)qp ≤ 2n−w and qc ≥ 9n. It holds that

AdvPRF

XORPP∗(qp, qc, σ) ≤ (w + 1)2q2
pqc

22n
+

(w + 1)3qpqc

22n
+

(w + 1)3q2
pq2

c

23n
+

2qc(qp + qc)w+1

2n(w+1)
+

(w + 1)2

2n
+

(w + 1)2qp
√

3nqc

2n
.

Proof of Theorem 3. The analysis extends and adapts that by Chen et al. to more per-
mutations. In the real world, D has access to a construction oracle. It can ask at most
qc tuples of nonces and messages and will receive the corresponding ciphertexts. In the
ideal world, the construction queries are answered by random bits of the expected length.
Moreover, in both worlds, D has access to primitive oracles O0, . . . , Ow that it can ask
queries U i

j or V i
j to and obtains V i

j ← πj(U i
j) or U i

j ← π−1
j (V i

j) for i ∈ [qp] and j ∈ [0..w],
respectively. We say that it asks at most qp queries to each.
We partition τ into τ = τc∪τ0∪ . . .∪τw, where each partial transcript captures the queries
and responses from a particular oracle. The construction transcript contains the keys, the
queries to and responses from the construction oracle: τc = {(K0, K1), (M1, C1), . . .,
(M qc , Cqc)}. The primitive transcripts τj = {(U1

j , V 1
j), . . ., (U

qp

j , V
qp

j)} contain exactly
the queries to and responses from permutation πj . We assume that τ does not contain
duplicate elements. The keys K0, K1 are given to the distinguisher after its interaction but
before it outputs its decision bit. In both worlds, they are sampled uniformly at random.
With their help, the adversary can compute the inputs Û j

i and outputs V̂ j
i of permutations

i ∈ [0..w] and queries j ∈ [qc]. We partition the set of all attainable transcripts into two
disjoint sets of GoodT and BadT that represent good and bad transcripts. We say
that τ ∈ BadT iff any of the bad events holds and τ ∈ GoodT otherwise. We define sets
Sα,β =def {(i, j, k) : V̂ i

α⊕ V̂ i
β = V j

α⊕V k
β } for i ∈ [qc], j, k ∈ [qp], and distinct α < β ∈ [0..w].

Let θ = q2
pqc/2n + qp

√
3nqc be the threshold from Lemma 2.

Bad Events. We extend the three bad events from [CLM19]. Recall that U i
j is the input

of the i-th primitive query to the primitive πj that is answered by V i
j and vice versa; Û i

j

the input of the i-th query that would go to πj in the real construction and produce V̂ i
j .

• bad1: There exists a construction query index j ∈ [qc], primitive query indices i, k ∈
[qp], and distinct permutation indices α, β ∈ [0..w] s. t. (Û j

α = U i
α) ∧ (Û j

β = Uk
β).

• bad2: There exist distinct α, β ∈ [0..w] s. t. |Sα,β | ≥ θ.

• bad3: There exists a construction query index j ∈ [qc], primitive query indices i, k ∈
[qp], and distinct permutation indices α, β ∈ [0..w] s. t. (Û j

α = U i
α) ∧ (V̂ j

β = V k
β).

• bad4: There exists a construction query index j ∈ [qc], a primitive query index i ∈
[qp], and permutation indices α, β, γ ∈ [0..w] with β 6= γ s. t. (Û j

α = U i
α)∧(V̂ j

β = V̂ j
γ).

• bad5: There exist distinct construction query indices j, k ∈ [qc], a primitive query

index i ∈ [qp], and permutation indices α, β, γ ∈ [0..w] s. t. (Û j
α = U i

α) ∧ (Ûk
γ = Uk

γ)

∧ (V̂ j
β = V̂ k

β).

The probability that a transcript in the ideal world is bad is at most

Pr [Θideal ∈ BadT] ≤
2∑

i=1

Pr[badi] + Pr[bad3|¬bad2] +
5∑

i=4

Pr[badi] .

12 CENCPP∗ – Beyond-birthday-secure Encryption from Public Permutations

Lemma 4. Let qc + (w + 1)qp ≤ 2n−w. It holds that

Pr [Θideal ∈ BadT] ≤ (w + 1)2q2
pqc

22n
+

(w + 1)3qpqc

22n
+

(w + 1)2

2n
+

(w + 1)3q2
p

(
qc

2

)

23n
+

(w + 1)2qp
√

3nqc

2n
.

Proof. In the following, we study the probabilities of the individual bad events.

bad1. This event considers the collisions between two construction-query inputs and two
primitive-query inputs. For this event, it must hold that

M j ⊕ (aα,0 ·K0 ⊕ aα,1 ·K1) = U i
α and M j ⊕ (aβ,0 ·K0 ⊕ aβ,1 ·K1) = Uk

β ,

with [ai,0 ai,1] as the i-th row of the key-scheduling matrix. The equations can be seen as

A′ ·K =

[
aα,0 aα,1

aβ,0 aβ,1

]
·
[

K0

K1

]
=

[
M j ⊕ U i

α

M j ⊕ Uk
β

]

Since all rows of A are pairwise linearly independent, A′ is non-singular. Moreover, K0

and K1 are uniform random variables over {0, 1}n. Thus, we can apply Lemma 3 and the
probability of this event for a fixed choice of indices is 2−2n. Over all indices, we obtain

Pr[bad1] =
∑

j∈[qc]

∑

i∈[qp]

∑

k∈[qp]

∑

0≤α<β≤w

Pr
[
Û j

α = U i
α ∧ Û j

β = Uk
β

]
≤
(

w+1
2

)
q2

pqc

22n
.

bad2. For fixed α, β, the probability of this event is given by Lemma 2. Over the union
bound of all combinations of α and β, we obtain that

∑

0≤α<β≤w

Pr [|Sα,β | ≥ θ] ≤ 2
(

w+1
2

)

2n
.

bad3. Similar as bad1, bad3 considers a collision between a construction- and a primitive-
query input as well as between a construction- and primitive-query output. It needs

M j ⊕ (aα,0 ·K0 ⊕ aα,1 ·K1) = U i
α and X̂j

β ⊕ (aβ,0 ·K0 ⊕ aβ,1 ·K1) = V k
β ,

where [aibi] is the i-th row of the key-scheduling matrix. The first equation reveals V̂ j
α =

V i
α, which yields X̂j

α and thus X̂j
0 = Cj

α ⊕ X̂j
α. Then, D can deduce X̂j

β for all β 6= α.

A′ ·K =

[
aα,0 aα,1

aβ,0 aβ,1

]
·
[

K0

K1

]
=

[
M j ⊕ U i

α

X̂j
β ⊕ Uk

β

]

Since A′ is non-singular (a similar logic as in the bound of bad1) and K0 and K1 are
uniform random variables over {0, 1}n, we can apply Lemma 3 and the probability of this
event for a fixed choice of indices comes out to be 2−2n. Since bad2 does not hold, there
are at most θ such tuples. Over all indices, we obtain that Pr[bad3|¬bad2] is at most

∑

j∈[qc]

∑

i∈[qp]

∑

k∈[qp]

∑

0≤α<β≤w

Pr
[
Û j

α = U i
α ∧ V̂ j

β = V k
β

]
≤
(

w+1
2

)
q2

pqc

22n
+

(
w+1

2

)
qp
√

3nqc

2n
.

Arghya Bhattacharjee, Avijit Dutta, Eik List and Mridul Nandi 13

bad4. A construction-query input collides with a primitive-query input, which allows
deriving V̂ j

α that reveals all further permutation outputs for the j-th construction query.
One of them collides with another construction-query output. The probability is at most
2−2n since {α, β, γ} contain at least two independent indices. W.l.o.g., assume β 6= α. Cj

α

and Cj
β are chosen independently uniformly at random from Fn

2 . We obtain

Pr[bad4] =
∑

j∈[qc]

∑

i∈[qp]

∑

α∈[0..w]

∑

0≤β<γ≤w

Pr
[
Û j

α = U i
α ∧ V̂ j

β = V̂ j
γ

]
≤ (w + 1)

(
w+1

2

)
qpqc

22n
.

bad5. Here, the permutation inputs of two distinct construction queries collide with a
primitive-query input each. Both input collisions allow us to find a candidate of V̂ j

α and V̂ k
γ

that reveals all further permutation outputs for both construction queries. Next, an output
collides between the construction-query outputs. The probability for the collisions with
the primitive-query inputs is 2−2n since Cj

α and Ck
γ are chosen independently uniformly

at random from Fn
2 . The probability of V̂ j

β = V̂ k
β is again 2−n. Thus, Pr[bad5] is at most

∑

1≤j<k≤qc

∑

i∈[qp]

∑

ℓ∈[qp]

∑

α,β,γ∈[0..w]

Pr
[
Û j

α = U i
α ∧ V̂ j

β = V̂ k
β ∧ Ûk

γ = U ℓ
γ

]
≤

(w + 1)3q2
p

(
qc

2

)

23n
.

The bound in Lemma 4 follows.

Good Transcripts. It remains to study the interpolation probabilities of good transcripts.

Lemma 5. It holds that

Pr[Θreal = τ]

Pr[Θideal = τ]
≥ 1− 2qc(qp + qc)w+1

2n(w+1)
.

Proof. Let Allreal(τ) denote the set of all oracles in the real world, and Allideal(τ) the
set of all oracles in the ideal world that produce τ ∈ GoodT. Let Compreal(τ) denote
the fraction of oracles in the real world that are compatible with τ and Compideal(τ) the
corresponding fraction in the ideal world. It holds that

Pr [Θreal = τ]

Pr [Θideal = τ]
=
|Compreal(τ)| · |Allideal(τ)|
|Compideal(τ)| · |Allreal(τ)| .

We can easily bound the number for three out of four terms: |Allreal(τ)| = (2n)2 · (2n!)w+1

since there exist (2n)2 keys and 2n! possible ways for each of the w + 1 independent per-
mutations πι. The same argument holds in the ideal world |Allideal(τ)| = (2n)2 · (2n!)w+1 ·
(2wn)2n

, combined with (2wn)2n

random functions for construction queries’ answers. More-
over, |Compideal(τ)| = (2wn)2n−qc ·∏w

i=0(2n − qp)! compatible oracles exist in the ideal
world, where (2wn)2n−qc are the oracles that produce the correct construction-query out-
puts for the 2n − qc remaining non-queried inputs, and for all permutations, there exist
(2n − qp)! compatible primitives each.
It remains to find |Compreal(τ)|. Like Chen et al., we regroup the queries from the tran-
script parts. We generalize their claim [CLM19] to cover all w + 1 permutations:

Claim. Given τ ∈ GoodT, no construction query (M j , Cj) ∈ τc collides with more than
one primitive query (U i

α, V i
α) for some α ∈ [0..w].

We regroup the queries from τc, τ0, . . . , τw to τnew
c , τnew

0 , . . . , τnew
w . The new transcript

sets are initialized by their corresponding old parts, and reordered as follows:
If there exist j ∈ [qc], i ∈ [qp], and α ∈ [0..w] such that Û j

α = U i
α, then (M j , Cj

α) is removed

from τnew
c and (Uβ , Vβ) = (Û j

β, V̂ j
β) is added to τnew

β , for all β ∈ [0..w] with β 6= α.

14 CENCPP∗ – Beyond-birthday-secure Encryption from Public Permutations

Given qc constructions queries and qp queries to each of the permutations in the original
transcript, the numbers of queries moved from τc into the primitive partial transcripts τi

is denoted by si. The number of queries in the new construction transcript is denoted by
q′ = qc −

∑w
i=0 si. In the following, for a given transcript τnew

0 of q′ elements, it remains
to count the number of permutations (π) that are compatible with the transcript. The
set of occurred (i.e., prohibited) outputs of πα are denoted by V out

α . For j = [0..q′− 1], let

λj+1
def
=
∣∣∣
{

(V 1
0 , . . . , V j+1

0 , . . . , V 1
w , . . . , V j+1

w)
}∣∣∣ (2)

be the number of solutions that satisfy

(1) {(V 1
0 , . . . , V j

0 , . . . , V 1
w , . . . , V j

w)} satisfy the conditions recursively,

(2) For all i ∈ [1..w], it holds that

V j+1
0 ⊕ V j+1

1 = Cj+1
i ⊕ (K0 ⊕K1)⊕ (2iK0 ⊕ 22iK1) .V j+1

0 ⊕ V j+1
w (3)

(3) For all i ∈ [0..w], it holds that V α+1
i 6∈ {V 1

i , . . . , V α
i } ∪ V out

i .

Then, the goal is to define a recursive expression for λα+1 from λα such that a lower
bound can be found for the expression λα+1/λα. It holds that

|Compreal(τ)| = λq′ · (2n − (qp + s0 + q′))! · · · · · (2n − (qp + sw + q′))! · (2n)w·qc ,

where the second term represents the number of permutations compatible with π0 and
the rightmost term contains the number of permutations compatible with πw. We obtain

Pr[Θreal = τ]

Pr[Θideal = τ]
=

λq′ ·∏w
i=0(2n − (qp + si + q′))!

((2n − qp)!)w+1
. (4)

Let B(1,2) denote the set of solutions that comply with only Conditions (1) and (2), without
considering Conditions (3.0) through (3.w). Moreover, let B(3.ι:i) denote the set of solu-
tions compatible with Conditions (1) and (2), but not with (3.ι : i), for i = 1, . . . , α+|V out

ι |.
From the inclusion-exclusion principle, it follows that

λα+1 =
∣∣B(1,2)

∣∣−

∣∣∣∣∣∣

α+|V out

0
|⋃

i=1

B(3.0:i)

∣∣∣∣∣∣
∪ · · · ∪

∣∣∣∣∣∣

α+|V out

0
|⋃

i=1

|B(3.w:i)|

∣∣∣∣∣∣

≥
∣∣B(1,2)

∣∣−

∣∣∣∣∣∣

α+|V out

0
|∑

i=1

|B(3.0:i)|

∣∣∣∣∣∣
− · · · −

∣∣∣∣∣∣

α+|V out

0
|∑

i=1

|B(3.w:i)|

∣∣∣∣∣∣

+

α+|V out

0
|∑

i=1

α+|V out

1
|∑

i′=1

∣∣B(3.0:i) ∩ B(3.1:i′)

∣∣+ · · ·+
α+|V out

0
|∑

i=1

α+|V out

1
|∑

i′=1

∣∣B(3.(w−1):i) ∩ B(3.w:i′)

∣∣

≥ 2n · λα −
α+|V out

0
|∑

i=1

λα − · · · −
α+|V out

w |∑

i=1

λα.

It follows that λα+1 ≥ 2n · λα − (α + qp + s0) · λα − . . .− (α + qp + sw) · λα. Therefore,

λα+1

λα
≥ 2n − (w + 1)α− (w + 1)qp −

w∑

i=0

si

with λ0 = 1. It follows from Equation (4) that

(4) =

s0−1∏

j=0

2n

2n − qp − j
· . . . ·

sw−1∏

j=0

2n

2n − qp − j
·

q′−1∏

i=0

λα+1

λα
· (2n)w

∏w
j=0(2n − qp − i− sj)

Arghya Bhattacharjee, Avijit Dutta, Eik List and Mridul Nandi 15

Algorithm 2 Definition of CENCPP.

101: function CENCPP[π, w].EK(N, M)

102: (M1, . . . , Mm)
n
←−M

103: ℓ← ⌈m/w⌉
104: for i← 0..ℓ − 1 do

105: j ← i · w
106: (Sj+1 ‖ · · · ‖Sj+w)
107: ← XORPP

∗ [π, w]K(N ‖ 〈i〉µ)
108: for k ← j + 1..j + w do

109: Ck ← msb|Mk|(Sk)⊕Mk

110: return (C1 ‖ · · · ‖Cm)

201: function CENCPP[π, w].DK(N, C)
202: return CENCPP[π, w].EK(N, C)

301: function XORPP[π, w]K(M)
302: (K0, K1)← K

303: (π0, . . . , πw)← π

304: U0 ←M ⊕ (K0 ⊕K1)
305: X0 ← π0(U0)⊕ (K0 ⊕K1)
306: for j ← 1..w do

307: Lj ← (2j ·K0)⊕ (22j ·K1)
308: Uj ←M ⊕ Lj

309: Xj ← πj(Uj)⊕ Lj

310: Cj ← Xj ⊕X0

311: return (C1 ‖ · · · ‖Cw)

≥
q′−1∏

i=0

(2n − (w + 1)α− (w + 1)qp −
∑w

j=0 sj)
∏w

j=0(2n − qp − i− sj)
· 2nw

≥
q′−1∏

i=0

(
1−

∏w
j=0(qp + i + sj)

∏w
j=0(2n − qp − i− sj)

)
≥

q′−1∏

i=0

(
1−

∏w
j=0(qp + q′ + sj)

∏w
j=0(2n − qp − q′ − sj)

)

≥
q′−1∏

i=0

(
1−

∏w
j=0(qp + q′ + sj)

(2n − qp − q′ − sj)w+1

)
≥
(

1− (qp + q)w+1

(2n − qp − q′ − sj)w+1

)q′

≥ 1− 2q′(qp + q)w+1

2n(w+1)
≥ 1− 2qc(qp + qc)

w+1

2n(w+1)
,

using the fact that qp + q′ + sj ≪ 2n−w. The bound in Lemma 5 follows.

Our claim in Theorem 3 follows from Lemma 1, 4, and 5.

5.3 CENCPP: An Instantiation of CENCPP∗

A natural instantiation of CENCPP∗ can be realized by instantiating the key-scheduling
matrix A of dimension (w + 1)× 2 of XORPP∗ as follows:

L⊤ ·K =

[
1 α1 α2 · · · αw

1 α2 α4 · · · α2w

]⊤

·
[

K0

K1

]
,

where the elements are in F2n , and α ∈ F2n is a primitive element, which is often α = 2,
that is the polynomial x1 for practical values of F2n . p(x) is an irreducible modulus
polynomial in F2n . Note that any two rows of the above matrix L are linearly independent.
We refer to the instantiation of XORPP∗ with matrix L as XORPP. We define the concrete
nonce- and public-permutation-based encryption scheme CENCPP in Algorithm 2. Since
any two rows in the key-scheduling matrix of CENCPP are linearly independent, the
security of CENCPP follows from Theorems 2, and 3.

6 Domain-separated Variants

DS-SoEM is a sum of Even-Mansour constructions that uses (n− d)-bit message inputs
and fixes d bits to encode domains that are distinct for each permutation. Let π ∈
Perm(Fn

2) and K = (K0, K1) ∈ (F2n)2. We define DS-SoEM[π]K0,K1
: (F2n)2×F

n−d
2 → Fn

2

16 CENCPP∗ – Beyond-birthday-secure Encryption from Public Permutations

Algorithm 3 Definition of DS-CENCPP∗, DS-XORPP∗, and DS-SoEM.

101: function DS-CENCPP
∗[π, w].EK(N, M)

102: (M1, . . . , Mm)
n
←−M

103: ℓ← ⌈m/w⌉
104: for i← 0..ℓ − 1 do

105: j ← i · w
106: (Sj+1 ‖ · · · ‖Sj+w)
107: ← DS-XORPP

∗[π, w]K(N ‖ 〈i〉µ)
108: for k← j + 1..j + w do

109: Ck ← Sk ⊕Mk

110: return msb|M|(C1 ‖ · · · ‖Cm)

201: function DS-CENCPP
∗[π, w].DK(N, C)

202: return DS-CENCPP
∗[π, w].EK(N, C)

301: function DS-XORPP
∗[π, w]K(M)

302: (K0, K1)← K

303: U0 ← (M ⊕msbn−d(K0 ⊕K1)) ‖ 〈0〉d
304: X0 ← π(U0)⊕ (K0 ⊕K1)
305: for j ← 1..w do

306: Lj ← (2j ·K0)⊕ (22j ·K1)
307: Uj ← (M ⊕msbn−d(Lj)) ‖ 〈j〉d
308: Xj ← π(Uj)⊕ Lj

309: Cj ← Xj ⊕X0

310: return (C1 ‖ · · · ‖Cw)

401: function DS-SoEM[π, w]K(M)
402: (K0, K1)← K

403: U ← (msbn−d(K0)⊕M) ‖ 〈0〉d
404: X ← (msbn−d(K1)⊕M) ‖ 〈1〉d
405: V ← π(U)⊕K0

406: Y ← π(X)⊕K1

407: return V ⊕ Y

M

π π

0 1K0 K1

K0 K1

m
sb

b

m
sb

b

U X

V Y

C

(a) DS-SoEM[π]K0,K1
.

M

K0 ⊕K1

0m
sb

b

π

X0

U0

V0

M

2K0 ⊕ 22K1

1m
sb

b
π

C1

X0

U1

V1

X1

M

22K0 ⊕ 24K1

2m
sb

b

π

C2

X0

U2

V2

X2

(b) DS-XORPP
∗[π, w]K0,K1

.

Figure 6: The domain-separated constructions, here with DS-XORPP
∗[π, 2]. The trapezoids

represent truncation of the key masks at the input to their b = n− d most significant bits.

to compute DS-SoEM[π]K0,K1
(M), as listed in Algorithm 3. Note that we use (n− d) bits

of the key in forward direction only, i.e., the domain is not masked. For DS-SoEM, a
single bit (i.e. d = 1) suffices to set a zero bit for the call to the left and a one bit for the
domain input to the right permutation. An illustration is given in Figure 6a.

DS-XORPP∗. We can define DS-XORPP∗[π, w] similarly. Here, d ≥ ⌈log2(w + 1)⌉ bits
are necessary to separate the domains. Let again K =def (K0, K1) ∈ (F2n)2. We define
DS-XORPP∗[π, w] : (F2n)2×Fn−d

2 → (Fn
2)w as given in Algorithm 3 and shown in Figure 6b.

The input domain is M ∈ F
n−d
2 . Again, we use (n−d) bits of the key in forward direction

only, i.e., the domain is not masked.

DS-CENCPP∗ is then defined naturally. Let N =def F
ν+µ
2 be a nonce space such that

ν + µ = n − d. Let N ∈ N be a nonce and M ∈ F∗
2 be a message. Let again K =def

(K0, K1) ∈ (F2n)2 and π ∈ Perm(Fn
2). Then, the encryption and decryption algorithms E

and D of DS-CENCPP∗[π, w]K(N, M) are provided in Algorithm 3.

Arghya Bhattacharjee, Avijit Dutta, Eik List and Mridul Nandi 17

7 Distinguishers on DS-SoEM and DS-XORPP∗

This section provides a distinguisher on DS-SoEM that matches our security bound and
distinguishers on variants that mask also the domain and use only a single key. Thus,
they show that our bound is tight (up to a logarithmic factor) and explain our designs.

The existing distinguisher from [CLM19, Proposition 2] on SoEM12 (one permutation,
two independent keys) needed 3 · 2n/2 queries:

1. For i← 1..2n/2, query M i = (〈i〉n/2 ‖ 0n/2) to get Ci, and M∗i = M i⊕ 1 to get C∗i.

2. For j←1..2n/2, query M ′j = (0n/2‖〈j〉n/2) to get C′j , and M ′∗j
=M ′j⊕1 for C′∗j

.

After 3 · 2n/2 queries, there exists one tuple (M i, M∗i, M ′j , M ′∗j
) such that M i ⊕M ′j =

M∗i ⊕M ′∗j
= K0 ⊕K1, which can be seen if Ci = C′j and C∗i = C′∗j

. Note that the

fourth set of queries M ′∗j
is not new, but can be taken from the other sets. For SoEM, the

distinguisher exploited that one can find two queries M and M ′ such that their inputs to
the left and right permutation are swapped. For DS-SoEM, this distinguisher does not

apply since the domain separation prevents that the permutation inputs can be swapped.

A working distinguisher can be constructed with significant advantage and 6c · 22n/3

queries, for small constant c ≥ 1. Let q = c · 22n/3.

1. For j ← 1..q, query a random M j without replacement, get Cj . Moreover, query
M∗j = M j ⊕ 〈1〉n to get C∗j and store (Cj , C∗j).

2. For i ← 1..q, sample ui ∈ Fn−d
2 without replacement, query U i = (ui ‖ 〈0〉d) to π,

and obtain V i. Query U∗i = U i ⊕ 10n−1 to π to obtain V ∗i and store (V i, V ∗i).

3. For k ← 1..q, sample xk ∈ F
n−d
2 without replacement, query Xk = (xk ‖ 〈1〉d) to

π, and get Y k. Query X∗k = Xk ⊕ 10n−1 to π to get Y ∗k and store (Y k, Y ∗k).

With high probability, there exists a tuple (M j, U i, Xk) such that

((M j ⊕msbn−d(K0)) ‖ 〈0〉d) = U i and ((M j ⊕msbn−d(K1)) ‖ 〈1〉d) = Xk .

If this is the case, check if

((M∗j ⊕msbn−d(K0) ‖ 〈0〉d) = U∗i and ((M∗j ⊕msbn−d(K1)) ‖ 〈1〉d) = X∗k

also holds. If yes, return real; return random otherwise.

Why not also mask the domain? If the keys K0 and K1 would be XORed also to the
domains, it could hold for DS-SoEM that lsbd(K0)⊕ 〈0〉d = lsbd(K1)⊕ 〈1〉d . Similarly, it
could hold for DS-XORPP∗ for any distinct pair i, j ∈ [0..w] that

lsbd(2iK0 ⊕ 22iK1)⊕ 〈i〉d = lsbd(2jK0 ⊕ 22jK1))⊕ 〈j〉d

This would counter the distinct domains. While the distinguisher from [CLM19, Proposi-
tion 2] would still be inapplicable, a slide attack (cf. [DKS12, DDKS13]) could become.
In the following, we consider a variant of DS-SoEM[π] with the permutation inputs

U i ← (M i ‖ 〈0〉d)⊕K0 and X i ← (M i ‖ 〈1〉d)⊕K1.

Let K0, K1 և Fn
2 , d = 1, and lsbd(K0) ⊕ lsbd(K1) = 1, i.e., their least significant d bits

differ, which holds with probability 0.5. Let c ∈ F
n−d
2 be a non-zero constant. Then:

18 CENCPP∗ – Beyond-birthday-secure Encryption from Public Permutations

1. For i← 1..2n/2, sample M i = (〈i〉n/2 ‖ 0n/2−d), obtain Ci and store it.

2. Derive M∗i = M i ⊕ c, and obtain its corresponding ciphertext C∗i.

3. Similarly, for j ← 1..2n/2−d, sample M j = (0n/2 ‖ 〈j〉n/2−d), obtain Cj and store it.

4. Derive M∗j = M j ⊕ c, and obtain its corresponding ciphertext C∗j .

5. If ∃i 6= j such that Ci = Cj and C∗i = C∗j , return real; return random otherwise.

Then, there exists a pair s. t. M i ⊕M j = msbn−d(K0 ⊕K1). It follows that U i = Xj

and U j = X i, from which Ci = Cj follows. A similar argument holds for C∗i = C∗j .

A distinguisher on a single-key variant shows that the tempting approach of using
a single-key domain-separated variant of DS-SoEM does not offer sufficient security in
practice. Since the domain differs in both permutation calls, this would ensure distinct
inputs on both sides of each query. However, this construction would possess only n/2-bit
PRF security. In the following, we sketch a distinguisher, where we assume that both keys
K0 and K1 are replaced by a single key K. We further assume d < n/2 for simplicity.

1. For i ← 1..2n/2, sample M i = (〈i〉n/2 ‖ 0n/2−d) to obtain Ci and store them. To

each M i, associate a plaintext M ′i = M i ⊕ (10n−1−d) and its output C′i.

2. For j ← 1..2n/2−d, ask for the primitive encryption of U j = (〈0〉n/2 ‖ 〈i〉n/2−d ‖
〈0〉d) to obtain V j . Query U ′j = U j ⊕ (10n−1) to obtain V ′j .

3. Similarly, for j ← 1..2n/2−d, ask for the primitive encryption of Xj = (〈0〉n/2 ‖
〈i〉n/2−d ‖ 〈1〉d) to obtain Y j . Query X ′j = Xj ⊕ (10n−1) to obtain Y ′j .

4. If there exists one tuple i, j s. t. Ci = V j ⊕ Y j and C′i = V ′j ⊕ Y ′j , output real
and output random otherwise.

With probability one, there will be one collision for the real construction, whereas the
probability of the 2n-bit event is negligible in the ideal world.

8 Security Analysis of DS-SoEM

We consider DS-SoEM[π]K with d ∈ [n − 1], with π և Perm(Fn
2), K0, K1 և Fn

2 , and
K = (K0, K1).

Theorem 4. Let D be a distinguisher with at most qc construction queries and qp prim-
itive queries each to π±(· ‖ 〈0〉d) and π±(· ‖ 〈1〉d). Let qc + 2qp < 2n−3 and qc, qp > 9n.

Then, AdvPRF

DS-SoEM[π]K
(D) is upper bounded by

(6 · 2d + 22d)qcq2
p

22n
+

22dqcq2
p

23n
+

qc + 2 + 4qp
√

3nqc

2n
+

2qc(2qc + 2qp)2

22n
.

Proof. Again, we follow the footsteps by Chen et al.; this time, we partition the transcript
τ into τ = τc∪τ0∪τ1, where τc = {(K0, K1), (M1, C1), . . . , (M qc , Cqc)} is the transcript of
construction queries. We define two primitive transcripts: τ0 and τ1; τ0 = {(U1

j , V 1
j), . . .,

(U
qp

j , V
qp

j)} contains exactly the queries to and responses from permutation π for which it

holds that lsbd(U i) = 〈0〉d. Similarly, τ1 = {(U j
1 , V j

1), . . ., (U j
qp

, V j
qp

)} contains exactly the

queries to and responses from permutation π for which lsbd(U i) = 〈1〉d holds. We denote
the permutation inputs of construction queries, for j ∈ [qc] as

Û j def
= (M j ⊕msbn−d(K0)) ‖ 〈0〉d and X̂j def

= (M j ⊕msbn−d(K1)) ‖ 〈1〉d

Arghya Bhattacharjee, Avijit Dutta, Eik List and Mridul Nandi 19

and their outputs as V̂ j and Ŷ j . We also use the notations of Û j
0 = Û j , Û j

1 = X̂j,

V̂ j
0 = V̂ j , and V̂ j

1 = Ŷ j . Let S =def {(i, j, k) : Ci ⊕K0 ⊕K1 = V j
0 ⊕ V k

1 } for i ∈ [qc] and
j, k ∈ [qp]. Let θ = q2

pqc/2n + qp
√

3nqc be the threshold from Lemma 2.

Bad Events. We define the following bad events:

• bad1: There exists a construction query index j and two primitive query indices i
and k such that (Û j

0 = U i
0) ∧ (Û j

1 = Uk
1).

• bad2: It holds that |S| ≥ θ.

• bad3: There exists a construction query index j and two primitive query indices i
and k such that (Û j

0 = U i
0) ∧ (V̂ j

1 = V k
1).

• bad4: There exists a construction query index j and two primitive query indices i
and k such that (Û j

1 = U i
1) ∧ (V̂ j

0 = V k
0).

• bad5: There exists a construction query index j and two primitive query indices i
and k such that (Û j

0 = U i
0) ∧ (V̂ j

1 = V k
0).

• bad6: There exists a construction query index j and two primitive query indices i
and k such that (Û j

1 = U i
1) ∧ (V̂ j

0 = V k
1).

• bad7: There exist two distinct construction query indices j and k and two distinct
primitive query indices i and ℓ such that (Û j

0 = U i
0) ∧ (Ûk

0 = U ℓ
0) ∧ (V̂ j

1 = V̂ k
1).

• bad8: There exist two distinct construction query indices j and k and two distinct
primitive query indices i and ℓ such that (Û j

1 = U i
1) ∧ (Ûk

1 = U ℓ
1) ∧ (V̂ j

0 = V̂ k
0).

• bad9: There exist two distinct construction query indices j and k and two distinct
primitive query indices i and ℓ such that (Û j

0 = U i
0) ∧ (Ûk

1 = U ℓ
1) ∧ (V̂ j

1 = V̂ k
0).

• bad10: There exists a construction query index j such that Cj = K0 ⊕K1.

Lemma 6. Let qc + 2qp < 2n−3. It holds that

Pr [Θideal ∈ BadT] ≤ (6 · 2d + 22d)qcq2
p

22n
+

22dqcq2
p

23n
+

qc + 2

2n
+

4qp
√

3nqc

2n
. (5)

The proof is given in Appendix A.

Good Transcripts. It remains to consider good attainable transcripts.

Lemma 7. It holds that

Pr[Θreal = τ]

Pr[Θideal = τ]
≥ 1− 2qc(2qp + 2qc)

2

22n
. (6)

We note that this part is almost exactly as part of good transcripts in the proof of
SoEM22 by Chen et al. [CLM19]. Moreover, similar results for secret permutations
have been derived at several places, for example, by Jha and Nandi [JN18] and Datta et
al. [DDN+17]. The proof is given in Appendix B.
Our claim in Theorem 4 follows from Lemma 1, 6, and 7.

20 CENCPP∗ – Beyond-birthday-secure Encryption from Public Permutations

9 Security Analysis of DS-CENCPP∗

We also studied the nE security of DS-CENCPP∗. As before, let π և Perm(Fn
2) and

K0, . . . , Kw և K be independent secret keys; we write K = (K0, . . . , Kw) for brevity.
Again, we conducted a two-step analysis, where we consider (1) the PRF security of
DS-XORPP∗[π, w] and (2) the PRF security of DS-CENCPP∗[π, w].

Theorem 5. It holds: AdvnE

DS-CENCPP∗[π,w]K
(qp, qc, σ) ≤ AdvPRF

DS-XORPP∗[π,w]K

(
qp, m

w qc, σ
)
.

The proof follows a similar argumentation as that of CENCPP∗.

Theorem 6. Let v =def w + 1, qc + vqp ≤ 2n−w, and qp, qc > 9n. It holds that

AdvPRF

DS-XORPP∗[π,w]K
(qp, qc, σ) is upper bounded by

(
v222d + v22d + v32d

)
qcq2

p + v32dqcqp

22n
+

v422dq2
c q2

p

23n
+

v2qc

2n
+

3v2q3
c + 6v3q2

c qp + 4v4qcq2
p

22n
+

(w + 1)2 + (w + 1)2qp
√

3nqc

2n
.

Proof. Again, we employ the proof strategy from XORPP∗. Here, the adversary can
query qp primitive queries to each domain-separated primitive π±(· ‖ 〈i〉d). We define sets

Sα,β,γ =def {(i, j, k) : Ci
α ⊕ (1 + 2α)K0 ⊕ (1 + 22α)K1 = V j

β ⊕ V k
γ } for i ∈ [qc], j, k ∈ [qp],

α ∈ [w] and β, γ ∈ [0..w]. Let θ = q2
pqc/2n + qp

√
3nqc be the threshold from Lemma 2.

Bad Events. We study the following bad events:

• bad1: There exists a construction query index j ∈ [qc], two primitive query indices

i, k ∈ [qp] and distinct permutation indices α, β ∈ [0..w] s. t. (Û j
α = U i

α)∧(Û j
β = Uk

β).

• bad2: There exist α ∈ [w] and distinct β, γ ∈ [0..w] such that |Sα,β,γ | ≥ θ.

• bad3: There exists a construction query index j ∈ [qc], two primitive query indices

i, k ∈ [qp] and permutation indices α, β ∈ [0..w] such that (Û j
α = U i

α) ∧ (V̂ j
β = V k

β).

• bad4: There exists a construction query index j ∈ [qc], two primitive query indices
i, k ∈ [qp] and distinct permutation indices α, β ∈ [0..w] as well as any γ ∈ [0..w]

with β 6= γ such that (Û j
α = U i

α) ∧ (V̂ j
β = V k

γ).

• bad5: There exists a construction query index j and a primitive query index i and
k and distinct permutation indices α, β ∈ [0..w] as well as any γ ∈ [0..w] with β 6= γ

such that (Û j
α = U i

α) ∧ (V̂ j
β = V̂ j

γ).

• bad6: There exist distinct construction query indices j, ℓ and primitive query indices
i and k as well as distinct permutation indices α, β ∈ [0..w] and any γ, δ ∈ [0..w]

such that (Û j
α = U i

α) ∧ (Û j
γ = U i

γ) ∧ (V̂ j
β = V̂ ℓ

δ).

• bad7: There exists a construction query index j and a permutation index α ∈ [w]
such that Cj

α = (K0 ⊕K1)⊕ (2αK0 ⊕ 22αK1).

Our claim in Theorem 6 follows from Lemmas 1, 8, and 9.

Lemma 8. Let v =def w + 1 and qc + v · qp < 2n−3. Then, Pr [Θideal ∈ BadT] is upper
bounded by

(
v222d + v22d + v32d

)
qcq2

p + v32dqcqp

22n
+

v422dq2
c q2

p

23n
+

v2qc + v3 + v3qp
√

3nqc

2n
.

Arghya Bhattacharjee, Avijit Dutta, Eik List and Mridul Nandi 21

The proof is provided in Appendix C.

Lemma 9. Let v =def w + 1 It holds that

Pr[Θreal = τ]

Pr[Θideal = τ]
≥ 1− 3v2q3

c + 6v3q2
c qp + 4v4qcq2

p

22n
.

The proof is given in Appendix D.

10 Conclusion

This work has proposed a variant of CENC from public permutations, CENCPP∗. It is
straightforward to obtain a nonce-based encryption scheme or in form of its underlying
component XORPP∗, a fixed-input-length variable-output-length PRF with security of up
to O(22n/3/w2) queries. Our result can be combined with a beyond-birthday-secure MAC
from public permutations to obtain an authenticated encryption scheme. The doubling-
based key schedule ensures pairwise independent keys for all pairs of permutation inputs in
XORPP∗ and DS-XORPP∗. Although the key masks can be cached, for values of w ≤ 2, the
choice of keys can be improved in terms of computations. For w = 1, XORPP∗ degenerates
to the SoEM construction and can simply use (K0, K1) for the permutation calls. For
w = 2, XORPP∗ can use (K0, K0 ⊕ K1, K1) for the calls to the permutations to ensure
independent keys without the need for doubling. We see the recent summation-truncation-
hybrid by Gunsing and Mennink [GM20] to be similar to the sum of permutation, although
it is based on secret permutations. Adapting it to beyond-birthday-bound security with
public permutations seems very interesting related future work.

Acknowledgments. Eik List has been supported by DFG Grant LU 608/9-1.

References

[AJN14] Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. NORX: Par-
allel and Scalable AEAD. In Miroslaw Kutyłowski and Jaideep Vaidya, edi-
tors, ESORICS II, volume 8713 of LNCS, pages 19–36. Springer, 2014.

[BDH+17] Guido Bertoni, Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Ass-
che, and Ronny Van Keer. Farfalle: parallel permutation-based cryptography.
IACR Trans. Symmetric Cryptol., 2017(4):1–38, 2017.

[BDP+16] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles van Assche, and Ronny
van Keer. Ketje v2. 2016. Submission to the CAESAR competition
http://competitions.cr.yp.to/caesar-submissions.html.

[BGIM19] Zhenzhen Bao, Jian Guo, Tetsu Iwata, and Kazuhiko Minematsu. ZOCB and
ZOTR: Tweakable Blockcipher Modes for Authenticated Encryption with Full
Absorption. IACR Trans. Symmetric Cryptol., 2019(2):1–54, 2019.

[BL16] Karthikeyan Bhargavan and Gaëtan Leurent. On the Practical (In-)Security
of 64-bit Block Ciphers: Collision Attacks on HTTP over TLS and OpenVPN.
In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi, editors, ACM CCS, pages 456–467. ACM, 2016.

[BN18] Srimanta Bhattacharya and Mridul Nandi. Revisiting Variable Output
Length XOR Pseudorandom Function. IACR Trans. Symmetric Cryptol.,
2018(1):314–335, 2018.

22 CENCPP∗ – Beyond-birthday-secure Encryption from Public Permutations

[CDK+18] Benoît Cogliati, Yevgeniy Dodis, Jonathan Katz, Jooyoung Lee, John P. Stein-
berger, Aishwarya Thiruvengadam, and Zhe Zhang. Provable Security of
(Tweakable) Block Ciphers Based on Substitution-Permutation Networks. In
Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO I, volume 10991
of LNCS, pages 722–753. Springer, 2018.

[CLL+14] Shan Chen, Rodolphe Lampe, Jooyoung Lee, Yannick Seurin, and John P.
Steinberger. Minimizing the Two-Round Even-Mansour Cipher. In Juan A.
Garay and Rosario Gennaro, editors, CRYPTO I, volume 8616 of LNCS,
pages 39–56. Springer, 2014.

[CLM19] Yu Long Chen, Eran Lambooij, and Bart Mennink. How to Build Pseudoran-
dom Functions from Public Random Permutations. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO I, volume 11692 of LNCS, pages
266–293. Springer, 2019.

[CNTY20] Avik Chakraborti, Mridul Nandi, Suprita Talnikar, and Kan Yasuda. On the
Composition of Single-Keyed Tweakable Even-Mansour for Achieving BBB
Security. IACR Trans. Symmetric Cryptol., 2020(2):1–39, 2020.

[CS14] Shan Chen and John P. Steinberger. Tight Security Bounds for Key-
Alternating Ciphers. In Phong Q. Nguyen and Elisabeth Oswald, editors,
EUROCRYPT, volume 8441 of LNCS, pages 327–350. Springer, 2014. Full
version at https://eprint.iacr.org/2013/222.

[CS15] Benoît Cogliati and Yannick Seurin. Beyond-Birthday-Bound Security for
Tweakable Even-Mansour Ciphers with Linear Tweak and Key Mixing. In
Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT II, volume 9453 of
LNCS, pages 134–158. Springer, 2015.

[CS18] Benoît Cogliati and Yannick Seurin. Analysis of the single-permutation en-
crypted Davies-Meyer construction. Des. Codes Cryptogr., 86(12):2703–2723,
2018.

[DDKS13] Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. Key Recovery
Attacks on 3-round Even-Mansour, 8-step LED-128, and Full AES2. In Kazue
Sako and Palash Sarkar, editors, ASIACRYPT I, volume 8269 of LNCS, pages
337–356. Springer, 2013.

[DDN+17] Nilanjan Datta, Avijit Dutta, Mridul Nandi, Goutam Paul, and Liting Zhang.
Single Key Variant of PMAC_Plus. IACR Trans. Symmetric Cryptol.,
2017(4):268–305, 2017.

[DDNY18] Nilanjan Datta, Avijit Dutta, Mridul Nandi, and Kan Yasuda. Encrypt or
Decrypt? To Make a Single-Key Beyond Birthday Secure Nonce-Based MAC.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO I, volume
10991 of LNCS, pages 631–661. Springer, 2018.

[DEMS16] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2 Submission to the CAESAR Competition. September 15 2016.
Submission to the CAESAR competition http://competitions.cr.yp.to/caesar-
submissions.html.

[DHT17] Wei Dai, Viet Tung Hoang, and Stefano Tessaro. Information-Theoretic In-
distinguishability via the Chi-Squared Method. In Jonathan Katz and Hovav
Shacham, editors, CRYPTO Part III, volume 10403 of LNCS, pages 497–523.
Springer, 2017. Full version at http://eprint.iacr.org/2017/537, latest version
20170616:190106.

Arghya Bhattacharjee, Avijit Dutta, Eik List and Mridul Nandi 23

[DIS+18] Patrick Derbez, Tetsu Iwata, Ling Sun, Siwei Sun, Yosuke Todo, Haoyang
Wang, and Meiqin Wang. Cryptanalysis of AES-PRF and Its Dual. IACR
Trans. Symmetric Cryptol., 2018(2):161–191, 2018.

[DKS12] Orr Dunkelman, Nathan Keller, and Adi Shamir. Minimalism in Cryptogra-
phy: The Even-Mansour Scheme Revisited. In David Pointcheval and Thomas
Johansson, editors, EUROCRYPT, volume 7237 of LNCS, pages 336–354.
Springer, 2012.

[DN20] Avijit Dutta and Mridul Nandi. BBB Secure Nonce Based MAC Using Pub-
lic Permutations. In Abderrahmane Nitaj and Amr M. Youssef, editors,
AFRICACRYPT, volume 12174 of LNCS, pages 172–191. Springer, 2020.

[GJMN16] Robert Granger, Philipp Jovanovic, Bart Mennink, and Samuel Neves. Im-
proved Masking for Tweakable Blockciphers with Applications to Authenti-
cated Encryption. In Marc Fischlin and Jean-Sébastien Coron, editors, EU-
ROCRYPT I, volume 9665 of LNCS, pages 263–293. Springer, 2016.

[GM20] Aldo Gunsing and Bart Mennink. The Summation-Truncation Hybrid:
Reusing Discarded Bits for Free. In Daniele Micciancio and Thomas Risten-
part, editors, CRYPTO I, volume 12170 of LNCS, pages 187–217. Springer,
2020.

[GSWG19] Chun Guo, Yaobin Shen, Lei Wang, and Dawu Gu. Beyond-birthday secure
domain-preserving PRFs from a single permutation. Des. Codes Cryptogr.,
87(6):1297–1322, 2019.

[HT16] Viet Tung Hoang and Stefano Tessaro. Key-Alternating Ciphers and Key-
Length Extension: Exact Bounds and Multi-user Security. In Matthew Rob-
shaw and Jonathan Katz, editors, CRYPTO I, volume 9814 of LNCS, pages
3–32. Springer, 2016.

[IM16] Tetsu Iwata and Kazuhiko Minematsu. Stronger Security Variants of GCM-
SIV. IACR Trans. Symmetric Cryptol., 2016(1):134–157, 2016.

[IMPS17] Tetsu Iwata, Kazuhiko Minematsu, Thomas Peyrin, and Yannick Seurin.
ZMAC: A Fast Tweakable Block Cipher Mode for Highly Secure Message
Authentication. In Jonathan Katz and Hovav Shacham, editors, CRYPTO,
Part III, volume 10403 of LNCS, pages 34–65. Springer, 2017. Full version at
https://eprint.iacr.org/2017/535.

[IMV16] Tetsu Iwata, Bart Mennink, and Damian Vizár. CENC is Optimally Secure.
IACR Cryptology ePrint Archive, 2016:1087, 2016.

[Iwa06] Tetsu Iwata. New Blockcipher Modes of Operation with Beyond the Birthday
Bound Security. In Matthew J. B. Robshaw, editor, FSE, volume 4047 of
LNCS, pages 310–327. Springer, 2006.

[Iwa07] Tetsu Iwata. Tightness of the Security Bound of CENC. In Eli Biham,
Helena Handschuh, Stefan Lucks, and Vincent Rijmen, editors, Symmet-
ric Cryptography, volume 07021 of Dagstuhl Seminar Proceedings. Interna-
tionales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss
Dagstuhl, Germany, 2007.

[JN18] Ashwin Jha and Mridul Nandi. A Survey on Applications of H-Technique:
Revisiting Security Analysis of PRP and PRF. 2018.

24 CENCPP∗ – Beyond-birthday-secure Encryption from Public Permutations

[JNP14] Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. Tweaks and Keys for Block
Ciphers: The TWEAKEY Framework. In Palash Sarkar and Tetsu Iwata,
editors, ASIACRYPT II, volume 8874 of LNCS, pages 274–288. Springer,
2014.

[KR11] Ted Krovetz and Phillip Rogaway. The Software Performance of
Authenticated-Encryption Modes. In Antoine Joux, editor, FSE, volume 6733
of LNCS, pages 306–327. Springer, 2011.

[LRW02] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable Block Ciphers.
In Moti Yung, editor, CRYPTO, volume 2442 of LNCS, pages 31–46. Springer,
2002.

[Min14] Kazuhiko Minematsu. Parallelizable Rate-1 Authenticated Encryption from
Pseudorandom Functions. In Phong Q. Nguyen and Elisabeth Oswald, editors,
EUROCRYPT, volume 8441 of LNCS, pages 275–292. Springer, 2014. Full
version at https://eprint.iacr.org/2013/628.pdf.

[MMH+14] Nicky Mouha, Bart Mennink, Anthony Van Herrewege, Dai Watanabe, Bart
Preneel, and Ingrid Verbauwhede. Chaskey: An Efficient MAC Algorithm for
32-bit Microcontrollers. In Antoine Joux and Amr M. Youssef, editors, SAC,
volume 8781 of LNCS, pages 306–323. Springer, 2014.

[MN17a] Bart Mennink and Samuel Neves. Encrypted Davies-Meyer and Its Dual:
Towards Optimal Security Using Mirror Theory. In Jonathan Katz and Hovav
Shacham, editors, CRYPTO, Part III, volume 10403 of LNCS, pages 556–583.
Springer, 2017. Full version at https://eprint.iacr.org/2017/473.

[MN17b] Bart Mennink and Samuel Neves. Optimal PRFs from Blockcipher Designs.
IACR Trans. Symmetric Cryptol., 2017(3):228–252, 2017.

[MV04] David A. McGrew and John Viega. The Security and Performance of the
Galois/Counter Mode (GCM) of Operation. In Anne Canteaut and Kapalee
Viswanathan, editors, INDOCRYPT, volume 3348 of LNCS, pages 343–355.
Springer, 2004.

[Nai15] Yusuke Naito. Full PRF-Secure Message Authentication Code Based on
Tweakable Block Cipher. In Man Ho Au and Atsuko Miyaji, editors, ProvSec,
volume 9451 of LNCS, pages 167–182. Springer, 2015.

[Nan20] Mridul Nandi. Mind the Composition: Birthday Bound Attacks on
EWCDMD and SoKAC21. In Anne Canteaut and Yuval Ishai, editors, EU-
ROCRYPT, LNCS. Springer, 2020. To appear.

[NIS01] NIST. Advanced Encryption Standard (AES). Federal Information Processing
Standards (FIPS) Publication, 197, Nov 26 2001.

[NIS15] NIST. SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions. Federal Information Processing Standards (FIPS) Publication, 202,
2015.

[Pat08] Jacques Patarin. The "Coefficients H" Technique. In Roberto Maria Avanzi,
Liam Keliher, and Francesco Sica, editors, SAC, volume 5381 of LNCS, pages
328–345. Springer, 2008.

[Pat10] Jacques Patarin. Introduction to Mirror Theory: Analysis of Systems of Lin-
ear Equalities and Linear Non Equalities for Cryptography. IACR Cryptology
ePrint Archive, 2010:287, 2010.

Arghya Bhattacharjee, Avijit Dutta, Eik List and Mridul Nandi 25

[PS16] Thomas Peyrin and Yannick Seurin. Counter-in-Tweak: Authenticated En-
cryption Modes for Tweakable Block Ciphers. In Matthew Robshaw and
Jonathan Katz, editors, CRYPTO I, volume 9814 of LNCS, pages 33–63.
Springer, 2016.

A Analysis of Bad Transcripts of DS-SoEM

We restate the lemma to aid the reader.

Lemma 6. Let qc + 2qp < 2n−3. It holds that

Pr [Θideal ∈ BadT] ≤ (6 · 2d + 22d)qcq2
p

22n
+

22dqcq2
p

23n
+

qc + 2

2n
+

4qp
√

3nqc

2n
. (7)

Proof. The event bad1 considers the probability of two input collisions of one construction
and two primitive queries. Thus, the probability can be upper bounded by

Pr[bad1] =
∑

j∈[qc]

∑

i∈[qp]

∑

k∈[qp]

Pr
[
Û j

0 = U i
0 ∧ Û j

1 = Uk
1

]
≤ qcq2

p

22(n−d)
.

The probability of bad2 is upper bounded by Lemma 2:

Pr[bad2] = Pr [|Sα,β | ≥ θ] ≤ 2

2n
.

The events bad3 and bad4 consider an input and an output collision:

Pr[bad3|¬bad2] =
∑

j∈[qc]

∑

i∈[qp]

∑

k∈[qp]

Pr
[
Û j

0 = U i
0 ∧ V̂ j

1 = V k
1

]

≤ qcq
2
p

2n+(n−d)
+

qp
√

3nqc

2n
.

The probability Pr[bad4|¬bad2] can be upper bounded by a similar argument.
Events bad5 and bad6 study an input collision between a construction and a primitive
query, that leads to a conflict of the other output for that construction query. The
probabilities can be upper bounded by

Pr[bad5|¬bad2] =
∑

j∈[qc]

∑

i∈[qp]

∑

k∈[qp]

Pr
[
Û j

0 = U i
0 ∧ V̂ j

1 = V k
0

]

≤ qcq2
p

(2n − 1)(2n−d)
+

qp
√

3nqc

2n
.

The bound of Pr[bad6|¬bad2] is again analogous.
The event bad7 requires two separate input collisions between a construction query and
a primitive query each and the output collisions between their other permutation-calls
outputs. This probability can be upper bounded by

Pr[bad7] ≤
∑

1≤j<k≤qc

∑

1≤i<ℓ≤qp

Pr
[
Û j

0 = U i
0 ∧ Ûk

1 = U ℓ
0 ∧ V̂ j

1 = V̂ k
1

]
≤
(

qc

2

)(
qp

2

)

22(n−d)2n
.

The probabilities of bad8 and bad9 can be bounded in a similar manner. The probability
of the latter is

Pr[bad9]≤
∑

1≤j<k≤qc

∑

i∈[qp]

∑

ℓ∈[qp]

Pr
[
Û j

0 = U i
0 ∧ Ûk

1 = U ℓ
0 ∧ V̂ j

1 = V̂ k
0

]
≤

(
qc

2

)
q2

p

22(n−d)2n
.

26 CENCPP∗ – Beyond-birthday-secure Encryption from Public Permutations

Note that events such as

(Û j
0 = U i

0) ∧ (Ûk
0 = U ℓ

0) ∧ (V̂ j
0 = V̂ k

0)

can not occur since we assume that D does not ask trivial queries. Thus, the distinct
construction queries j 6= k prevent that Û j

0 = Ûk
0 would hold, which implies that V̂ j

0 6= V̂ k
0 .

A similar argument holds for

(Û j
1 = U i

1) ∧ (Ûk
1 = U ℓ

1) ∧ (V̂ j
1 = V̂ k

1) .

Finally, bad10 represents the event that a construction query obtains equal outputs from
both permutation calls, while the inputs are always distinct. Thus, V j⊕Y j = Cj⊕K0⊕K1

can never be zero for the real construction. The probability is upper bounded by

Pr[bad10] =
∑

j∈[qc]

Pr
[
V̂ j

0 = V̂ j
1

]
≤ qc

2n
.

The bound in Lemma 6 follows from

2∑

i=1

Pr [badi] +

6∑

i=3

Pr [badi|¬bad2] +

10∑

i=7

Pr [badi] .

B Analysis of Good Transcripts of DS-SoEM

We restate the lemma to aid the reader.

Lemma 7. It holds that

Pr[Θreal = τ]

Pr[Θideal = τ]
≥ 1− 2qc(2qp + 2qc)

2

22n
. (8)

Proof. Again, we can write

Pr[Θreal = τ]

Pr[Θideal = τ]
=
|Compreal(τ)| · |Allideal(τ)|
|Compideal(τ)| · |Allreal(τ)| .

Three out of four terms are again easy to bound:

|Allreal(τ)| = 22n · (2n)!

since there exist 22n keys and 2n! independent permutations π. A similar argument
holds in the ideal world, combined with (2n)2n

random functions for the answers to the
construction queries:

|Allideal(τ)| = 22n · (2n)! · (2n)2n

Moreover, we can bound

|Compideal(τ)| = (2n)2n−qc · (2n − 2qp)!

compatible oracles exist in the ideal world: there exist (2n)2n−qc oracles that produce
the correct construction-query outputs for the 2n − qc remaining non-queried inputs, and
(2n − 2qp)! compatible permutations π. So, we obtain

Pr[Θreal = τ]

Pr[Θideal = τ]
≥ |Compreal(τ)| · 22n · (2n)! · (2n)2n

(2n)2n−qc · (2n − 2qp)! · 22n · (2n)!
=
|Compreal(τ)| · (2n)qc

(2n − 2qp)!
.

It remains to determine |Compreal(τ)|. We reuse the claim by Chen et al.:

Arghya Bhattacharjee, Avijit Dutta, Eik List and Mridul Nandi 27

Claim. For a good transcript, τ ∈ GoodT, any construction query (M j , Cj) ∈ τc collides
with at most one primitive query (U i

α, V i
α) for some α ∈ {0, 1}, but never with multiple

primitive queries.

We regroup the queries from τc, τ0, and τ1 to τnew
c , τnew

0 , and τnew
1 . The new transcript

sets are initialized by their corresponding old parts, and reordered:

• If there exists an i such that Û j
0 = U i

0, then (M j, Cj) is removed from τnew
c and

(U i
1, V i

1) = (Û j
1 , V̂ j

1) is added to τnew
1 .

• If there exists an i such that Û j
1 = U i

1, then (M j, Cj) is removed from τnew
c and

(U i
0, V i

0) = (Û j
0 , V̂ j

0) is added to τnew
0 .

Given qc constructions queries and qp queries in τ0 and τ1 each, we denote the number
of queries moved from τc into the primitive transcript τ0 and τ1 by s0 and s1. We define
s = s0 + s1 for brevity.
The number of queries in the new construction transcript is denoted by q′ = qc−s. In the
following, for a given transcript τnew

p , it remains to count the number of permutations π
that are compatible with the transcript. The set of occurred (i.e., prohibited) outputs V0

(for some U0 with lsbd(U0) = 0) and V1 (for some U1 with lsbd(U1) = 1) of π are denoted
by V out

0 and V out
1 , respectively. For α = 0, . . . , q′ − 1, let

λα+1
def
=
∣∣{(V 1

0 , . . . , V α+1
0 , V 1

1 , . . . , V α+1
1)

}∣∣ (9)

be the number of solutions that satisfy

(1)
{

(V 1
0 , . . . , V α

0 , V 1
1 , . . . , V α

1)
}

satisfy the conditions recursively,

(2) It holds that

V α+1
0 ⊕ V α+1

1 = Cα+1 ⊕K0 ⊕K1. (10)

(3.0) It holds that V α+1
0 6∈ {V 1

0 , . . . , V α
0 , V 1

1 , . . . , V α
1 } ∪ V out

0 ∪ V out
1 .

(3.1) It holds that V α+1
1 6∈ {V 1

0 , . . . , V α
0 , V 1

1 , . . . , V α
1 } ∪ V out

0 ∪ V out
1 .

Then, the goal is to define a recursive expression for λα+1 from λα such that a lower
bound can be found for the expression λα+1/λα. It holds that

|Compreal(τ)| = λq′ · (2n − (q1 + q2 + 2q′))! .

We obtain

Pr[Θreal = τ]

Pr[Θideal = τ]
=

λq′ · (2n − (q1 + q2 + 2q′))! · (2n)qc

(2n − 2qp)!
. (11)

Let B(1,2) denote the set of solutions that comply with only Conditions (1) and (2), without
considering Condition (3). Moreover, let B(3.0:i) denote the set of solutions compatible
with Conditions (1) and (2), but not with (3.0 : i) and define B(3.1:i) in the natural manner.
From the inclusion-exclusion principle, it follows that

λα+1 =
∣∣B(1,2)

∣∣−

∣∣∣∣∣∣

α+|V out

0
|+|V out

1
|⋃

i=1

B(3.0:i) ∪
α+|V out

0
|+|V out

1
|⋃

i=1

|B(3.1:i)|

∣∣∣∣∣∣

≥
∣∣B(1,2)

∣∣−




α+|V out

0
|+|V out

1
|∑

i=1

∣∣B(3.0:i)

∣∣

−




α+|V out

0
|+|V out

1
|∑

i=1

∣∣B(3.1:i)

∣∣



28 CENCPP∗ – Beyond-birthday-secure Encryption from Public Permutations

+




α+|V out

0
|+|V out

1
|∑

i=1

α+|V out

0
|+|V out

1
|∑

i′=1

∣∣B(3.0:i) ∩ B(3.1:i′)

∣∣



≥
∣∣B(1,2)

∣∣−




α+|V out

0
|+|V out

1
|∑

i=1

∣∣B(3.0:i)

∣∣

−




α+|V out

0
|+|V out

1
|∑

i=1

∣∣B(3.1:i)

∣∣



≥ 2n · λα −
α+|V out

0
|+|V out

1
|∑

i=1

λα −
α+|V out

0
|+|V out

1
|∑

i=1

λα.

So, it follows that

λα+1 ≥ 2n · λα − (α + q1 + q2) · λα − (α + q1 + q2) · λα

= 2n · λα − 2(α + q1 + q2) · λα.

Therefore,

λα+1

λα
≥ 2n − 2α− 2q1 − 2q2 ≥ 1 ,

with λ0 = 1. It follows from Equation (11) that

(11) =

s0+s1−1∏

j=0

2n

2n − 2qp − j
·

q′−1∏

i=0

λi+1

λi
· 2n

(2n − q1 − q2 − i)(2n − q1 − q2 − q′ − i)

≥
q′−1∏

i=0

(2n − 2i− 2q1 − 2q2) · 2n

(2n − q1 − q2 − i)(2n − q1 − q2 − q′ − i)

≥
q′−1∏

i=0

(
1− (q1 + q2 + q′ + i)(q1 + q2 + i)− 2nq′

(2n − q1 − q2 − i)(2n − q1 − q2 − q′ − i)

)

≥
q′−1∏

i=0

(
1− (q1 + q2 + q′ + i)(q1 + q2 + i)

(2n − q1 − q2 − q′)(2n − q1 − q2 − q′ − q′)

)

≥
q′−1∏

i=0

(
1− (q1 + q2 + 2q′)2

(2n − q1 − q2 − 2q′)2

)

≥
(

1− (q1 + q2 + 2q′)2

(2n − q1 − q2 − 2q′)2

)q′

≥ 1− q′(q1 + q2 + 2q′)2

(2n − q1 − q2 − 2q′)2

≥ 1− 2q′(q1 + q2 + 2q′)2

22n
≥ 1− 2qc(2qp + 2qc)

2

22n
,

where we used that qp + qc ≪ 2n−3.

C Analysis of Bad Transcripts of DS-XORPP∗

We restate the lemma to aid the reader.

Lemma 8. Let v =def w + 1 and qc + v · qp < 2n−3. It holds that

Pr [Θideal ∈ BadT] ≤
(
v222d + v22d + v32d

)
qcq2

p + v32dqcqp

22n
+

Arghya Bhattacharjee, Avijit Dutta, Eik List and Mridul Nandi 29

v422dq2
c q2

p

23n
+

v2qc + v3 + v3qp
√

3nqc

2n
.

Proof. Again, we can go through the bad events. The first event bad1 considers the
probability of two input collisions of a construction and two primitive queries. Thus, the
probability can be upper bounded by

Pr[bad1] =
∑

j∈[qc]

∑

i∈[qp]

∑

k∈[qp]

∑

0≤α<β≤w

Pr
[
Û j

α = U i
α ∧ Û j

β = Uk
β

]
≤
(

w+1
2

)
qcq2

p

22(n−d)
.

The event bad2 considers the probability of a sum set with too many elements. For fixed
α, β, γ, the probability of this event is given by Lemma 2. Over the union bound of all
combinations of α and β, we obtain that

Pr[bad2] =
∑

α∈[w]

∑

0≤β<γ≤w

Pr [|Sα,β,γ | ≥ θ] ≤ 2w ·
(

w+1
2

)

2n
.

The event bad3 considers an input and an output collision. Given that bad2 does not hold,
we have

Pr[bad3|¬bad2] ≤
∑

j∈[qc]

∑

i∈[qp]

∑

k∈[qp]

∑

α,β∈[0..w]

Pr
[
Û j

α = U i
α ∧ V̂ j

β = V k
β

]

≤ (w + 1)2qcq2
p

2n+(n−d)
+

(w + 1)3qp
√

3nqc

2n
.

The bound of bad4 considers an output collision between V̂ j
β = V k

γ for any primitive query
output. Given that bad2 does not hold, we have

Pr[bad4|¬bad2] ≤
∑

j∈[qc]

∑

i∈[qp]

∑

k∈[qp]

∑

α∈[0..w]

∑

0≤β<γ≤w

Pr
[
Û j

α = U i
α ∧ V̂ j

β = V k
γ

]

≤
(w + 1)3qcq

2
p

2n+(n−d)
+

(w + 1)3qp
√

3nqc

2n
.

The event bad5 studies an input collision between a construction and a primitive query,
that leads to a conflict of the other output for that construction query. The probability
can be upper bounded by

Pr[bad5] ≤
∑

j∈[qc]

∑

i∈[qp]

∑

α∈[0..w]

∑

0≤β<γ≤w

Pr
[
Û j

α = U i
α ∧ V̂ j

β = V̂ j
γ

]

≤ (w + 1)
(

w+1
2

)
qcqp

2n+(n−d)
.

The event bad6 requires first two separate input collisions between a construction query
and a primitive query each, and the output collisions between their other permutation-calls
outputs. This probability can be upper bounded by

Pr[bad6] ≤
∑

1≤j<k≤qc

∑

i∈[qp]

∑

ℓ∈[qp]

∑

α,β,γ,δ∈[0..w]

Pr
[
Û j

α = U i
α ∧ Ûk

γ = U ℓ
γ ∧ V̂ j

β = V̂ j
δ

]

≤
(w + 1)4

(
qc

2

)
q2

p

22(n−d)2n
.

Finally, bad7 represents the event that a construction query obtains equal outputs from
both permutation calls, while the inputs are always distinct. Thus, V̂ j

α ⊕ V̂ j
β = Cj

α ⊕

30 CENCPP∗ – Beyond-birthday-secure Encryption from Public Permutations

Cj
β ⊕ (2αK0⊕ 22αK1)⊕ (2βK0⊕ 22βK1) can never be zero for the real construction. The

probability is upper bounded by

Pr[bad7] ≤
∑

j∈[qc]

∑

0≤α<β≤w

Pr
[
V̂ j

α = V̂ j
β

]
≤
(

w+1
2

)
qc

2n
.

The bound in Lemma 6 follows from the sum of probabilities of the individual bad events.

D Analysis of Good Transcripts of DS-XORPP∗

It remains to consider the interpolation probability of good attainable transcripts. Again,
we restate the lemma to aid the reader.

Lemma 9. Let v =def w + 1 It holds that

Pr[Θreal = τ]

Pr[Θideal = τ]
≥ 1− 3v2q3

c + 6v3q2
c qp + 4v4qcq2

p

22n
.

Proof. Given τ ∈ GoodT, we compute the probability of its occurrences in both worlds.
Let Allreal(τ) denote the set of all oracles in the real world, and Allideal(τ) the set of all
oracles in the ideal world. Let Compreal(τ) denote the fraction of oracles in the real world
that are compatible with τ and Compideal(τ) the corresponding fraction in the ideal world.
It holds that

Pr[Θreal = τ]

Pr[Θideal = τ]
=
|Compreal(τ)| · |Allideal(τ)|
|Compideal(τ)| · |Allreal(τ)| .

We can easily bound three out of four terms:

|Allreal(τ)| = (2n)w+1 · (2n)!

since there exist (2n)w+1 keys and 2n! possible permutations. The same argument holds
in the ideal world

|Allideal(τ)| = (2n)w+1 · (2n!)w+1 · (2wn)2n

,

combined with (2wn)2n

random functions for the answers to the construction queries.
Moreover,

|Compideal(τ)| = (2wn)2n−qc · (2n − (w + 1) · qp)!

compatible oracles exist in the ideal world, where (2wn)2n−qc are the oracles that produce
the correct construction-query outputs for the 2n − qc remaining non-queried inputs, and
for all permutations, there exist (2n − (w + 1)qp)! compatible primitives each.
It remains to determine |Compreal(τ)|. Chen et al. regrouped the queries from the tran-
script parts. We generalize their claim [CLM19] to the following to cover all w + 1 permu-
tations:

Claim. For a good transcript, τ ∈ GoodT, any construction query (M j , Cj
α) ∈ τc collides

with at most one primitive query (U i
α, V i

α) for some α ∈ [0..w], but never with multiple
primitive queries.

We regroup the queries from τc, τ0, . . . , τw to τnew
c , τnew

0 , . . . , τnew
w . The new transcript

sets are initialized by their corresponding old parts, and reordered as follows:

Arghya Bhattacharjee, Avijit Dutta, Eik List and Mridul Nandi 31

If there exist j ∈ [qc], i ∈ [qp], and α ∈ [0..w] such that Û j
α = U i

α, then (M j , Cj
α) is removed

from τnew
c and (Uβ , Vβ) = (Û j

β, V̂ j
β) is added to τnew

β , for all β ∈ [0..w] with β 6= α.
Given qc constructions queries and qp primitive queries to each of the permutations
π(· ‖ 〈i〉d), for i ∈ [0..w] in the original transcript, the numbers of queries moved from
τc into the primitive partial transcripts τi is denoted by si. The number of queries in
the new construction transcript is denoted by q′ = qc −

∑w
i=0 si. Moreover, we define

qi = qp + si, for all 0 ≤ i ≤ w. In the following, for a given transcript τnew
0 of q′ ele-

ments, it remains to count the number of permutations π that are compatible with the
transcript. The set of occurred (i.e., prohibited) outputs of π±(· ‖ 〈ι〉d) are denoted by
V out

ι , for 0 ≤ ι ≤ w. For α = 0, . . . , q′ − 1, let

λα+1
def
=
∣∣{(V 1

0 , . . . , V α+1
0 , . . . , V 1

w , . . . , V α+1
w)

}∣∣ (12)

be the number of solutions that satisfy

(1)
{

(V 1
0 , . . . , V α

0 , . . . , V 1
w , . . . , V α

w)
}

satisfy the conditions recursively,

(2) It holds that

V α+1
0 ⊕ V α+1

1 = Cα+1
1 ⊕K0 ⊕K1

...

V α+1
0 ⊕ V α+1

w = Cα+1
w ⊕K0 ⊕Kw. (13)

(3.0) It holds that V α+1
0 6∈ {V 1

0 , . . . , V α
0 } ∪ V out

0 ∪ · · · ∪ V out
w .

• . . .

(3.w) It holds that V α+1
w 6∈ {V 1

w , . . . , V α
w } ∪ V out

0 ∪ · · · ∪ V out
w .

Then, the goal is to define a recursive expression for λα+1 from λα such that a lower
bound can be found for the expression λα+1/λα. It holds that

|Compreal(τ)| = λq′ ·
(

2n −
(

w∑

i=0

qi + (w + 1)q′

))
!

We obtain

Pr[Θreal = τ]

Pr[Θideal = τ]
=

λq′ · (2n − (
∑w

i=0 qi + (w + 1)q′))!

(2n − (w + 1)qp)!
· (2n)w·qc . (14)

Let B(1,2) denote the set of solutions that comply with only Conditions (1) and (2),
without considering Conditions (3.0) through (3.w). Moreover, let B(3.ι:i) denote the
set of solutions compatible with Conditions (1) and (2), but not with (3.ι : i), for
i = 1, . . . , α +

∑w
k=0 |V out

k |. From inclusion-exclusion, it follows that

λα+1 =
∣∣B(1,2)

∣∣−

∣∣∣∣∣∣

α+|V out

0
|+···+|V out

w⋃

i=1

B(3.0:i)

∣∣∣∣∣∣
∪ · · · ∪

∣∣∣∣∣∣

α+|V out

0
|+···+|V out

w⋃

i=1

|B(3.w:i)|

∣∣∣∣∣∣

≥
∣∣B(1,2)

∣∣−

∣∣∣∣∣∣

α+|V out

0
|+···+|V out

w∑

i=1

|B(3.0:i)|

∣∣∣∣∣∣
− · · · −

∣∣∣∣∣∣

α+|V out

0
|+···+|V out

w∑

i=1

|B(3.w:i)|

∣∣∣∣∣∣

+

α+|V out

0
|∑

i=1

α+|V out

1
|∑

i′=1

∣∣B(3.0:i) ∩ B(3.1:i′)

∣∣+ · · ·

32 CENCPP∗ – Beyond-birthday-secure Encryption from Public Permutations

+

α+|V out

0
|+···+|V out

w |∑

i=1

α+|V out

0
|+···+|V out

w |∑

i′=1

∣∣B(3.(w−1):i) ∩ B(3.w:i′)

∣∣

≥ 2n · λα −
α+|V out

0
|+···+|V out

w |∑

i=1

λα − · · · −
α+|V out

0
|+···+|V out

w |∑

i=1

λα .

So, it follows that

λα+1 ≥ 2n · λα − (α + qp + s0) · λα − . . .− (α + qp + sw) · λα.

Therefore,

λα+1

λα
≥ 2n − (w + 1)α− (w + 1)qp − (w + 1)

w∑

i=0

si

= 2n − (w + 1)α− (w + 1)
w∑

i=0

qi

with λ0 = 1. It follows from Equation (14) that

(14) =

w·s−1∏

j=0

2n

2n − (w + 1)qp − j
·

q′−1∏

j=0

λα+1

λα
· (2n)w

∏w
i=0(2n −∑w

k=0 qk − iq′ − j)

≥
q′−1∏

j=0

(2n − (w + 1)j − (w + 1)
∑w

i=0 qi)(2
n)w

∏w
i=0(2n −∑w

k=0 qk − iq′ − j)
.

We use qsum =def
∑w

k=0 qk. Then

q′−1∏

j=0

(2n − (w + 1)(q′ + qsum)(2n)w

∏w
i=0(2n − (qsum + q′))

≥
q′−1∏

j=0

(2n − (w + 1)(q′ + qsum)(2n)w

(2n − (qsum + q′))w+1
. (15)

It holds that

1

(2n − (qsum + q′))w+1

=
1

(2n)w+1 −
(

w+1
1

)
(2n)w(qsum + q′) +

(
w+1

2

)
(2n)w−1(qsum + q′)2 − . . .

≥ 1

(2n)w+1 −
(

w+1
1

)
(2n)w(qsum + q′) +

(
w+1

2

)
(2n)w−1(qsum + q′)2

.

For the sake of format, we define a helping variable

z
def
= (2n)w+1 − (2n)w(w + 1)(q′ + qsum) +

(
w + 1

2

)
(2n)w−1(qsum + q′)2−

(
w + 1

2

)
(2n)w−1(qsum + q′)2 .

It follows that

(15) ≥
(

z

(2n)w+1 −
(

w+1
1

)
(2n)w(qsum + q′) +

(
w+1

2

)
(2n)w−1(qsum + q′)2

)q′

Arghya Bhattacharjee, Avijit Dutta, Eik List and Mridul Nandi 33

≥
(

1−
(

w+1
2

)
(2n)w−1(qsum + q′)2

(2n)w+1 −
(

w+1
1

)
(2n)w(qsum + q′) +

(
w+1

2

)
(2n)w−1(qsum + q′)2

)q′

≥ 1−
(

w+1
2

)
(2n)w−1(qsum + q′)2 · q′

(2n)w+1 −
(

w+1
1

)
(2n)w(qsum + q′) +

(
w+1

2

)
(2n)w−1(qsum + q′)2

≥ 1− 2
(

w+1
2

)
(qsum + q′)2 · q′

(2n)2

≥ 1− (w + 1)2(q′3 + q′2qsum + q′q2
sum)

22n
.

Since q′ + qsum = s · w + q′ + (w + 1)qp and s ≤ qp, it follows that q′ + qsum ≤ qc + 2wqp:

1− (w + 1)2(q3
c + q2

c (qc + 2wqp) + qc(qc + 2wqp)2

22n

≥ 1− (w + 1)2(q3
c + q3

c + 2w · q2
c qp + q3

c + 4w · q2
c qp + 4w2 · qcq2

p)

22n

≥ 1− 3(w + 1)2q3
c + 6(w + 1)3q2

c qp + 4(w + 1)4qcq2
p

22n
. (16)

	Introduction
	Preliminaries
	The CENCPP* Mode
	SoEM
	CENC
	CENCPP*
	Discussion

	Birthday-bound Distinguisher on CENCPP*
	Reduction to SoEM'
	Birthday-bound Attack on SoEM'

	Security Analysis of CENCPP*
	Recalling the Security of CENC
	The Security of CENCPP*
	CENCPP: An Instantiation of CENCPP*

	Domain-separated Variants
	Distinguishers on DS-SoEM and DS-XORPP*
	Security Analysis of DS-SoEM
	Security Analysis of DS-CENCPP*
	Conclusion
	Analysis of Bad Transcripts of DS-SoEM
	Analysis of Good Transcripts of DS-SoEM
	Analysis of Bad Transcripts of DS-XORPP*
	Analysis of Good Transcripts of DS-XORPP*

