
Masking in Fine-Grained Leakage Models:
Construction, Implementation and Verification

Gilles Barthe1,2, Marc Gourjon3,4, Benjamin Grégoire5, Maximilian Orlt6,
Clara Paglialonga6 and Lars Porth6

1 MPI-SP, Germany
2 IMDEA Software Institute, Spain gjbarthe@gmail.com

3 Hamburg University of Technology, Germany, firstname.lastname@tuhh.de
4 NXP Semiconductors, Germany

5 Inria, France, firstname.lastname@inria.fr
6 TU Darmstadt, Germany, firstname.lastname@tu-darmstadt.de

Abstract. We propose a new approach for building efficient, provably secure, and
practically hardened implementations of masked algorithms. Our approach is based
on a Domain Specific Language in which users can write efficient assembly imple-
mentations and fine-grained leakage models. The latter are then used as a basis for
formal verification, allowing for the first time formal guarantees for a broad range of
device-specific leakage effects not addressed by prior work. The practical benefits of
our approach are demonstrated through a case study of the PRESENT S-Box: we
develop a highly optimized and provably secure masked implementation, and show
through practical evaluation based on TVLA that our implementation is practically
resilient. Our approach significantly narrows the gap between formal verification of
masking and practical security.
Keywords: Side-channel resilience · Higher-order masking · Probing security · Verifi-
cation · Domain-Specific-Languages

1 Introduction
Physical measurements reveal information beyond the inputs and outputs of programs as
execution on physical devices emits information on intermediate computations steps. This
information, encoded in the noise, time, power or electromagnetic radiations, is known as
side-channel leakage and can be used to mount effective side-channel attacks.

The masking countermeasure splits secret data a into d shares (a0, . . . , ad−1) such that
it is easy to compute a from all shares but impossible from less than d shares [CJRR99,
ISW03]. This requires attacks to recover d shares instead of a single secret value. An
active line of research considers the construction of masked algorithms, denoted “gadgets”,
which compute some functionality on masked inputs while enforcing that secrets cannot
be recovered from less than d intermediate values. Construction of gadgets is particularly
difficult when considering side-channel leakage which allows to observe more than just the
intermediate computation steps [GMPO19]. Extended leakage models have been devised
to consider additional side-channel information in systematic manner [FGP+18, PR13,
DDF14,BGI+18].

Naturally, the question arises whether the masking countermeasure has been applied
correctly to a gadget and whether it actually improves security. There exist two main,
and fairly distinct, approaches to evaluate the effectiveness of the applied countermea-
sures: (I) Physical validation performing specific attacks or statistical tests on physical

mailto:gjbarthe@gmail.com
mailto:firstname.lastname@tuhh.de
mailto:firstname.lastname@inria.fr
mailto:firstname.lastname@tu-darmstadt.de

measurements [DSM17, DSV14, SM15, PV17, MOW17] and (II) Provable resilience based
on attacker and leakage models [CJRR99,ISW03,FGP+18,PR13,DDF19] and automated
verification [BBD+15,BBD+16,Cor18,EWS14]. We review the strengths and weaknesses
of both approaches.

The main benefit of reproducing attacks is the close correspondence to security; a
successful attack implies a real threat, an unsuccessful attack rules out a vulnerability
from exactly this attack under the specific evaluation parameters. The drawback is the
inherently limited attacker scope to only those attacks which have been performed and
the fact that exhaustive evaluation of all attacks remains untractable in most cases. Sta-
tistical evaluation allows to bound the retrievable side-channel information, the success
rate of retrieval, or to detect side-channel information leakage without considering actual
attacks [SM15,DSM17,DSV14]. Nonetheless, the evaluation remains specific to the input
data and measurement environment used during assessment. In both cases it is difficult
to decide at which point to stop the evaluation and to declare an implementation to be
secure. In addition, these methods have large computational requirements which imply
an increased wait time for the evaluation results. This prevents fast iterative development
cycles with repeated proposal of implementations and evaluation thereof. Vice versa;
the implementer has to carefully produce good implementations to avoid too frequent
evaluation, limiting creative freedom.

Provable resilience provides a rigorous approach for proving the resilience of masked
algorithms. The main benefit of this approach is that guarantees hold in all environments
which comply with the assumptions of the proof and that assessment ends when such a
proof is found. Inherent to all formal security notions for side-channel is (I) a formal
leakage model which defines the side-channel characteristics considered in the proof and
(II) an attacker model. The leakage model defines which side-channel information leak-
ages (observations) are accessible to the attacker during execution of a masked program
whereas the formal attacker model defines the capabilities of the attacker exploiting this
information, e.g. how many side-channel measurements an attacker can perform.

Threshold probing security is arguably the most established approach for provable re-
silience. In this approach, execution leaks the value of intermediate computations, and
the attacker can observe at most t side-channel leakages during an execution of a program
masked with d > t shares. The notion of threshold probing security proves perfect re-
silience against adversaries observing at most t leakages but cannot provide assurance for
attackers which potentially observe more. Programs enjoy security against practical at-
tackers w.r.t. the chosen notion if the side-channel model accurately captures the device’s
leakage characteristics. The main benefit of probing security is that it can be used to
rule out classes of attacks entirely, in difference to physical evaluation such as Test Vector
Leakage Assessment (TVLA) [SM16]. Variations of threshold probing security such as the
t–Non-interference (t–NI) and t–Strong-Non-interference (t–SNI) refinements exist which
are easier to evaluate (check) or guarantee additional properties [BBD+16].

A further benefit of provable resilience, and in particular of threshold probing security,
is that it is amenable to automated verification. The main benefit of automated verifi-
cation is that it delegates the formal analysis to a computer program and manages the
combinatorial explosion that arises when analyzing complex gadgets at high orders.

The main critique of formal security notions for side-channel security is related to the
large gap between formal model and behavior in practice, resulting in security assurance
that are sometimes hard to interpret as recently shown by Gao et al. [GMPO19]. In par-
ticular, implementations of verified threshold probing secure algorithms frequently enjoy
much less practical side-channel resilience as precisely analyzed by Balasch et al. [BGG+14]
and [GMPO19]. The advantage of physical evaluation is preeminent in that the increasing
diversity of discovered side-channel leakage effects is not entirely considered by existing
verification frameworks. One of the reasons being that the considered leakage effects are

1

inherently integrated into the tool and therefore prevent flexible and fine-grained model-
ing. In the current setting, to consider new leakage with distinct behavior it is required
to modify the tool’s implementation. But the diversity of power side-channel leakage
encountered in practice is expected to grow as long as new execution platforms are devel-
oped [PV17,BGG+14,CGD18,MOW17,SSB+19,Ves14].

1.1 Our Work
In this paper, we illustrate that automated verification can deliver provably resilient and
practically hardened masked implementations with low overhead.

Fine-Grained Modeling of Leakage We define a Domain Specific Language (DSL), de-
noted IL, for modeling assembly implementations and specifying fine-grained leakage mod-
els. The dual nature of IL has significant benefits. First, it empowers implementers to
capture real leakage behavior in the form of device-specific leakage models, which ulti-
mately ensure that the purported formal resilience guarantees are in close correspondence
with practical behavior. Second, it supports efficient assembly level implementations of
masked algorithms, and bypasses thorny issues with secure compilation. Third, it forms
the basis of a generic automated verification framework in which assembly implementa-
tions can be analyzed generically, without the need to commit to a fixed or pre-existing
leakage model. Specifically, we present a tool that takes as input an implementation and
checks whether the implementation is secure w.r.t., the security notion associated with the
leakage models given with the implementation. This stands in sharp contrast with prior
work on automated verification, which commits to one or a fixed set of leakage models.

Optimized Hardening of Masking The combination of fine-grained leakage models and
reliable verification enables the construction of masked implementations which exhibit no
detectable leakage in physical assessment, known as “hardened masking” or “hardening” of
masked implementations. We demonstrate several improvements in constructing hardened
gadgets and a hardened PRESENT S-Box at 1st and 2nd order which exhibit no detectable
leakage beyond one million measurements in TVLA. We provide generic optimization
strategies which reduce the overhead from hardening by executing the code of a secure
composition of gadgets in an altered order instead of introducing overhead by inserting
additional instructions as countermeasure. The resulting overhead reduction of almost
73% for the first order implementation and of 63% for the second order shows a need to
consider composition strategies in addition to established secure composition results. Our
contributions outperform the “lazy strategy” [BGG+14] of doubling the number of shares
in masking instead of performing hardening; the security order can be increased without
detrimental impact on performance as our optimized 2nd order hardened PRESENT S-Box
is as fast as a non-optimized 1st order hardened PRESENT S-Box, effectively increasing
the security order “for free”.

1.2 Related Work
For the sake of clarity, we organize related work by areas:

Provable Resilience Provable resilience of masked implementations was initiated by
Chari et al. [CJRR99], and later continued by Ishai, Sahai and Wagner (ISW) [ISW03] and
many others. As of today, provable resilience remains a thriving area of research, partially
summarized in [KR19], with multiple very active sub-areas. One such relevant area is the
study of leakage models, involving the definition and comparison of new models, including
the noisy leakage model, the random probing model, the threshold probing model with

2

glitches [PR13,DDF14,BGI+18]. Leakage effects were for the first time summarized in a
general model by the Robust Probing model [FGP+18]. Later, De Meyer et al. in [DBR19],
introduce their concept of glitch immunity and unify security concepts such as (Strong)
Non-Interference in an information theoretic manner. In comparison to these works, our
DSL offers a much higher flexibility in terms of leakages, since it allows to take into
account a broader class of leakages, and consequently more realistic scenarios. Another
relevant area tackles the problem of composing secure gadgets; a prominent new develop-
ment is the introduction of strong non-interference, which achieves desirable composition
properties that cannot be obtained under the standard notion of threshold probing se-
curity [BBD+16]. Belaid, Goudarzi et Rivain present an elegant alternative approach to
solve the problem of composition; however their approach is based on the assumption
that only ISW gadgets are used [BGR18]. The formal analysis of composability in ex-
tended leakage models started to receive more attention with the analysis of Faust et al.
in [FGP+18], which formalized the physical leakages of glitches, transitions and couplings
with the concept of extended-probes and proved the ISW multiplication scheme to be
probing secure against glitches in two cycles. Later, Cassiers et al. in [CGLS20] proposed
the concept of Hardware Private Circuits, which formalizes compositional probing security
against glitches, and presented gadgets securely composable at arbitrary orders against
glitches. Our work augments the t–NI and t–SNI notions to capture resilience and compo-
sition in any fine-grained model which can be expressed using our DSL and in the presence
of stateful execution, as required for provably secure compilers such as MaskComp and
Tornado [BBD+16,BDM+20]. The research area of optimization of hardened masking did
not receive much attention in the literature, for the best of our knowledge.

Automated Verification Proving resilience of masked implementations at high orders
incurs a significant combinatorial cost, making the task error-prone, even for relatively
simple gadgets. Moss et al. [MOPT12] were the first to show how this issue can be managed
using program analysis. Although their work is focused on first-order implementations, it
has triggered a spate of works, many of which accomodate high orders [BRNI13,EWS14,
BBD+15,Cor18,ZGSW18,BGI+18]. MaskVerif [BBD+15,BBC+19], which we use in our
work, is arguably one of the most advanced tools, and is able to verify different notions of
security, including t–NI and t–SNI at higher orders, for different models, including ISW,
ISW with transitions, and ISW with glitches. Furthermore, the latest version of MaskVerif
captures multiple side-channel effects for hardware platforms, which are configurable by
the user. However, the input language of MaskVerif lacks the expressiveness of IL, making
it difficult to capture the rich class of potential leakage in software implementations.

Modeling Side-Channel Behavior Side-channel behavior is also expressed for analysis
purposes other than provable resilience. Papagiannopoulos and Veshchikov construct
models of platform specific side-channel effects they discover in practice [PV17]. Their
tool ASCOLD prevents combinations of shares in the considered leakage effects, which
are hard-coded into the tool. Most importantly, they show that implementations enjoy
improved practical security when no shares are combined in their leakage model, which is
reminiscent of first order probing security in extended leakage models. Our contributions
allow users to provide fine-grained leakage specifications in IL to verify widely established
formal security notions at higher orders.

ELMO [MOW17], MAPS [CGD18] and SILK [Ves14] intend to simulate physical mea-
surements based on detailed models. The tools assume fixed leakage effects but allow
customization by the user in form of valuation functions. This degree of detail is relevant
for simulating good physical measurements but not necessary for our information theo-
retic notions of security. The authors of MAPS distinguish effects which are beyond what
is captured in ELMO’s fixed set of combinations and show the need to remain unbiased

3

towards leakage specifications when developing tools for side-channel resilience evaluation.
Most notably, ELMO is able to accurately simulate measurements from models inferred
in an almost automated manner and is now being used in works attempting to automate
the construction of hardened implementations [SSB+19].

2 Expressing Side-Channel Leakage
Verification of side-channel resilience requires suitable representation of the implementa-
tion under assessment. This representation must express a program’s functional semantic
and information observable per side-channel. It is well known that the leakage behavior
of execution platforms differs and this diversity must be expressible to gain meaningful
security assurance from verification.

2.1 A Domain Specific Language with Explicit Leakage
Already at CHES 2013 Bayrak et al. [BRNI13] point out the difficulty of expressing
arbitrary side-channel leakage behavior yet providing a “good interface” to users willing
to specify device-specific side-channel characteristics. The reason can be related to the
fundamental approach of implicitly augmenting the underlying language’s operators with
side-channel. In such setting, the addition of two variables c ← a + b; implicitly models
information observable by an adversary, but what is leaked (e.g. a, b, or a + b) must
be encoded in the language semantics (i.e., the meaning of ← and +) and thus prevents
flexible adoption of leakage characteristics.

The concept of “explicit leakage” is an alternative as it requires to explicitly state
what side-channel information is emitted. We present a Domain Specific Language (DSL)
adopting the concept; the language’s constructs do not capture side-channel behavior (i.e.,
their execution provides no observable side-channel information), except for a dedicated
statement “leak” which can be understood as providing specific information to an adver-
sary. The given example can now be stated as c ← a + b; leak {a + b} ;, which has two
important benefits: First, verification and representation of programs can be decoupled
to become two independent tasks. Second, specification of side-channel behavior becomes
more flexible in that a diverse set of complex side-channels can be expressed and altered
without effort.

Our DSL, named “IL” for “intermediate language” has specific features to support
representation of low-level software. A Backus Normal Form representation is given in
Figure 1. Its building blocks are states χ, expressions e, commands c of multiple state-
ments i and global declarations g of variables and macros with local variables x1, . . . , xk.

χ ::= x | x[e] | 〈e〉
e ::= χ | n ∈ Z | l | o (e1, . . . , ej)
i ::= χ← e | leak {e1, . . . , ej} | m (e1, . . . , ej)

| label l | goto e
| if e then c else c | while e do c

c ::= i∗
g ::= var x | macro m (x1, . . . , xj) x1, . . . , xk {c}

Figure 1: Simplified syntax of the intermediate language where n ranges on integers, x on
variables, m on macro identifiers, o on operations and l on label identifiers.

A state element χ is either a variable x, an array x with an indexing expression e,
or a location in memory 〈e〉. Memory is distinguished to allow specifications of disjoint
memory regions which eases formal verification. Expressions are built from state elements

4

χ, constant integers n, unique labels l, and operators o applied to expressions. Infix ab-
breviations for logical “and” ⊗, “exclusive-or” ⊕, addition + and right shift� are used in
the following. Allowed statements i are assignments χ← e, explicit leaks leak {e1, . . . , ej}
of one or more expressions and call to a previously defined macro m(e1, . . . , ej) where m
is the name of the macro. Statements for if conditionals and while loops are supported
as well. Labels l are needed to represent the execution of microcontrollers (MCUs) which
is based on the address of an instruction. They are defined by a dedicated statement,
enabling execution to proceed at the instruction subsequent to this label. Static jumps to
unique labels and indirect jumps based on expressions of labels are supported to represent
control-flow.

In a nutshell, executable implementations consist of an unstructured list of hardware
instructions where each instruction is located at a specific address and execution steps
over addresses. We represent implementations as a list of label definitions and macro
calls: every instruction is represented by an IL label corresponding to the address of this
instruction and a macro call representing the hardware instruction and its operands. A
line of Assembly code “0x16E: ADDS R0 R1” becomes almost identical IL code: label
0x16E; ADDS(R0, R1) ;, where adds is a call to the model of the “ADDS” instruction.

The DSL allows to express fine-grained leakage models specifying the semantic and
side-channel behavior of assembly instructions. In this light, verifying side-channel re-
silience of implementations involves three steps: (I) modeling behavior of instructions,
(II) representing an implementation using such a model and (III) analyzing or verifying
the representation (Section 3).

We stress the significant benefit: verification and representation become separate con-
cerns, i.e., automated verification is now defined over the semantic of our DSL and the
separate leakage model of step (I) can be freely modified or exchanged without altering
the work-flow in stages (II) and (III). In particular, our tool, named “scVerif” allows the
user to provide such a leakage specification in conjunction with an implementation for
verification of side-channel resilience.

2.2 Modeling Instruction Semantics

The DSL allows to construct models which are specific to the device executing an imple-
mentation by attaching device specific side-channel behavior. This is especially important
for the Arm and RISC-V Instruction Set Architectures (ISAs) since these are implemented
in various MCUs which execute instructions differently, potentially giving rise to distinct
side-channel information. The instruction semantic must be modeled since some leakage
effects depend not only on intermediate state but also on the order of execution (e.g. con-
trol flow). In the following, we show construction of models for Arm Cortex M0+ (CM0+)
instructions which are augmented with leakage in Section 2.3. The DSL enables construc-
tion of leakage models for other architectures or programming languages as well.

IL enables to express architecture flags, carry bits, unsigned/signed operations, cast
between data types, bit operations, control flow, etc. in close correspondence to ISA
specifications. The instructions of the CM0+ ISA operate on a set of globally accessible
registers and flags, denoted architecture state. They can be modeled as global variables
in IL: var R0; var R1; . . . var PC; var apsrc; (carry flag) var apsrv; (overflow flag)
var apsrz; (zero flag) var apsrn; (negative flag).

Addition is used in the adds instruction and instructions operating on pointers such
as ldr (load) and str (store). Expressing the semantic of addition with carry requires
casting 32 bit values to unsigned, respective signed values and comparing the results
of addition to assign the carry and overflow flags correctly. The IL model of adds is
expressed in Algorithm 1, closely following the Arm ISA specification [ARM18] with six

5

Algorithm 1 Low-level model of addition with carry and instruction for addition.
1: macro AddWithCarry (x, y, carry, result, carryOut, overflow)
2: var unsignedSum, var signedSum {
3: signedSum← (uint) x + (uint) y + (uint) carry;
4: unsignedSum← (int) x + (int) y + (int) carry;
5: result← (w32) unsignedSum;
6: carryOut← ¬ ((uint) result = unsignedSum) ;
7: overflow← ¬ ((int) result = signedSum) ;
8: }
9: macro ADDS (rd, rn) { ▷ model of rd← rd + rn

10: AddWithCarry(rd, rn, 0, rd, apsrc, apsrv) ;
11: apsrz← rd = 0;
12: apsrn← (rd� 31) = 1;
13: if rd 'n pc then
14: goto rd;
15: end if
16: }

parameters for inputs, output, carry and overflow flags1. unsignedSum and signedSum
are local values. The adds instruction is modeled by calling the macro and expressing the
side-effect on global flags. A special case of addition to pc requires to issue a branch to
the resulting address (represented as label). The operator 'n is used to compare whether
the parameter rd is equal to the register with name pc and conditionally issue a branch.

Sampling randomness, e.g. in the form of queries to random number generators, can
be expressed by reading from a tape of pre-sampled randomness in global state.

2.3 Modeling Leakage
We augment the instruction models with a representation of power side-channels spe-
cific to threshold probing security. For this security notion it is sufficient to model the
dependencies of leakages, which is much simpler and more portable than modeling the
constituting function defining the actual value observable by an adversary. Specifying mul-
tiple expressions within a single leak{e1, e2, . . .} statement allows the threshold probing
attacker to observe multiple values (expressions) at the cost of a single probe. On hard-
ware this is known from the “glitch” leakage effect which allows to observe multiple values
at once [FGP+18]. The leak statement allows generic specification of such multi-variate
leakage both for side-channel leakage effects but also as worst-case specifications of ob-
servations. In particular, a program which is resilient w.r.t. leak{e1, e2} is necessarily
resilient w.r.t. any function f(a, b) in leak{f(e1, e2)} but not vice versa.

The adds instruction is augmented with leakage, which is representative for ands
(logical conjunction) and eors (exclusive disjunction) as they behave similar in our model.
Observable leakage arises from computing the sum and can be modeled by the statement
leak {rd + rn} ;. Transition leakage as in the robust probing model of [FGP+18] is modeled
in a worst case manner: instead of the Hamming-Distance there are two values leaked at
the cost of a single probe: leak {rd, rd + rn} ;, covering any exotic combination as e.g.
observed in [GMPO19,MOW17]. The order of execution matters, thus this leakage must
be added at the top of the function, before assigning rd2. For better clarity we expose
these two leakage effects as macros. The resulting specification of adds can be found in
Algorithm 2.

1Called macros are substituted in-place and modify input parameters instead of returning values.
2The order in which leak statements are placed does not matter since leaks have no semantic side-effect.

6

Definition 1 (Computation Leakage Effect). The computation leakage effect produces
an observation on the value resulting from the evaluation of expression e.

1: macro EmitComputationLeak (e) {
2: leak {e} ;
3: }

Definition 2 (Transition Leakage Effect). The transition leakage effect provides an ob-
servation on state x and the value e which is to be assigned.

1: macro EmitTransitionLeak (x, e) {
2: leak {x, e} ;
3: }

Algorithm 2 Leakage model of adds instruction.
1: macro LEAKYADDS (rd, rn) {
2: EmitComputationLeak(rd + rn) ;
3: EmitTransitionLeak(rd, rd + rn) ;
4: EmitRevenantLeak(opA, rd) ;
5: EmitRevenantLeak(opB, rn) ;
6: ADDS(rd, rn) ;
7: }

Power side-channels encountered in practice sometimes depend on previously executed
instructions. Corre et al. describe a leakage effect, named “operand leakage”, which leaks
a combination of current and previous operands of two instructions (e.g. parameters to
adds) [CGD18]. A similar effect on memory accesses was observed by Papagiannopoulos
and Veshchikov, denoted as “memory remnant” in [PV17]. The explicit leak statement
enables modeling of such cross-instruction leakage effects by introducing additional state
elements χ, denoted as “leakage state”. In general, leakage effects which depend on one
value p from past execution and one value c from current instruction can be modeled by
placing p in global state opA during the first instruction and emitting a leak of global state
and current value in leak {opA, p} in the latter instruction. The operand and memory
remnant leakage effects always emit leakage and update leakage state jointly. We put
forward a systematization under the name “revenant leakage”, leaning its name to the
(unexpected) comeback of sensitive data from past execution steps and, in the figurative
sense, haunting the living cryptographer during construction of secure masking. The
leakage effect is modeled in Definition 3 and applied to the adds instruction in Algorithm 2.
The definition can easily be modified such that the state change is conditional to a user-
defined predicate or the leakage is extended to a history of more than one instruction.

Definition 3 (Revenant Leakage Effect). The “revenant” leakage effect releases a tran-
sition leakage prior to updating some leakage state x← p.

1: macro EmitRevenantLeak (x, p) {
2: leak {x, p} ;
3: x← p;
4: }

The leakage effects are applied in instruction models by calling EmitRevenantLeak
with the distinct leakage state used for caching the value (e.g. opA) and the value leaking
in combination, e.g. the first operand to an addition.

The overall leakage model for a simplified ISA is depicted in Algorithm 3, it corresponds
to the model used for CM0+ Assembly3. In our model the leakage state elements are

3The full model is provided in combination with our tool scVerif [too20]

7

Algorithm 3 Simplified power side-channel leakage model for CM0+ instructions.
1: var R0; var R1; . . . var R12; var PC; ▷ Global registers
2: var opA; var opB; var opR; var opW; ▷ Global leakage state
3: macro XOR (rd, rn) {
4: leak {opA, rd, opB, rn} ; ▷ combination of revenants
5: EmitTransitionLeak(rd, rd⊕ rn) ;
6: EmitRevenantLeak(opA, rd) ;
7: EmitRevenantLeak(opB, rn) ;
8: rd← rd⊕ rn;
9: }

10: macro AND (rd, rn) {
11: leak {opA, rd, opB, rn} ; ▷ combination of revenants
12: EmitTransitionLeak(rd, rd⊗ rn) ;
13: EmitRevenantLeak(opA, rd) ;
14: EmitRevenantLeak(opB, rn) ;
15: rd← rd⊗ rn;
16: }
17: macro LOAD (rd, rn, i) {
18: leak {opA, rn, opB, i} ; ▷ Manual multivariate leakage
19: EmitRevenantLeak(opA, rn) ; ▷ mixed mapping
20: EmitRevenantLeak(opB, rd) ; ▷ note: destination register propagated
21: EmitRevenantLeak(opR, 〈rn, i〉) ;
22: EmitTransitionLeak(rd, 〈rn, i〉) ;
23: rd← 〈rn, i〉 ;
24: }
25: macro STORE (rd, rn, i) {
26: leak {opA, rn, opB, i} ; ▷ Manual multivariate leakage
27: EmitRevenantLeak(opA, rn) ; ▷ mixed mapping
28: EmitRevenantLeak(opB, rd) ; ▷ mixed mapping
29: EmitRevenantLeak(opW, rd) ; ▷ note: individual state
30: 〈rn, i〉 ← rd;
31: }

denoted by opA, opB, opR, opW to model four distinct revenant effects for the 1st and 2nd

operand of computation as well as for load and store separately. Some effects have been
refined to match the behavior encountered in practice, which diverges in the mapping of
operands and an unexpected propagation of the destination register in load instructions.

In [PV17] the “neighboring” leakage is reported, but we did not observe it on CM0+
MCUs during our case-study. The effect represents a coupling between registers, probably
related to the special architecture of the “ATMega163”, highlighting the need of device-
specific leakage models. Neighboring leakage can be modeled by using the 'n operator
as shown in Definition 4.

Definition 4 (Neighboring Leakage Effect). The neighboring leakage effect causes a leak
of an unrelated register RN when register RM is accessed.

1: macro EmitNeighborLeak (e) {
2: if e 'n RM then
3: leak {RN, RM} ;
4: end if
5: }

The DSL in combination with the concept of explicit leakage enables to model all

8

leakage effects known to us such that verification of threshold probing security becomes
aware of these additional leakages. Our effect definitions can serve as building block to
construct models such as our model in Algorithm 3 but can be freely modified to model
behavior not yet publicly known. In particular, the expressiveness of modeling appears
not to be limited except in that further computation operations o might need to be added
to our small DSL.

3 Stateful (S)NI and Automated Verification
In this section, we lay the foundations for proving security of IL implementations. We first
define security notions for IL gadgets: following a recent trend [BBD+16], we consider two
notions: non-interference (NI) and strong non-interference (SNI), which achieve different
composability properties. Then, we present an effective method for verifying whether an
IL gadget satisfies one of these notions.

3.1 Security Definitions
We first start with a brief explanation of the need for a new security definition. At
a high level, security of stateful computations requires dealing with residual effects on
state. Indeed, when a gadget is executed on the processor, it does not only return the
computed output but it additionally leaves “residue” in registers, memory, or leakage state.
Code subsequently executed might produce leakages combining these residues with output
shares, breaking secure composability. As an example, let us consider the composition of
a stateful refreshing gadget with a stateful multiplication scheme: Refr

(
Mult(x, y)

)
. In the

case of non-stateful gadgets, if Mult is t–NI and Refr is t–SNI, such a composition is t–SNI.
However, if the gadgets are stateful this is not necessarily anymore the case. We give a
concrete example: Consider a modified ISW multiplication such that it is t–SNI even with
the leakages defined in the previous chapter, the output state sout of the multiplication,
in combination with the revenant leakage effect in the load of Algorithm 3 can be used
to retrieve information about the secret as follows: After the multiplication one register
could contain the last output share of the multiplication gadget and the gadget is still
secure. If the refreshing first loads the first output share of the multiplication in the same
register, the revenant effect emits an observation containing both values (the first and
last output share of the multiplication) in a single probe. Thus the last probes can be
used to get the remaining output shares of the multiplication, and the composition is
clearly vulnerable.

We first introduce the notion of gadget, on which our security definitions are based.
Informally, gadgets are IL macros with security annotations.

Definition 5 (Gadget). A gadget is an IL macro with security annotations:

• a security environment, mapping inputs and outputs to a security level: secret (H)
or public (L),

• a memory typing, mapping memory locations to a security level: secret (H), public
(L), random (R),

• share declarations, consisting of tuples of inputs and outputs. We adopt the con-
vention that all tuples are of the same size, and disjoint, and that all inputs and
outputs must belong to a share declaration.

We now state two main notions of security. The first notion is an elaboration of the
usual notion of non-interference, and is stated relative to a public input state sin and
public output state sout. The definition is split in two parts: the first part captures

9

that the gadget does not leak, and the second part captures that the gadget respects the
security annotations.

Definition 6 (Stateful t–NI). A gadget with input state sin and output state sout is
stateful t-Non-Interfering (t–NI) if every set of t observations can be simulated by using at
most t shares of each input and any number of values from the input state sin. Moreover,
any number of observations on the output state sout can be simulated without using any
input share, but using any number of values from the input state sin.

The second notion is an elaboration of strong non-interference. Following standard
practice, we dinstinguish between internal observations (i.e., observations that differ from
outputs) and output observations.

Definition 7 (Stateful t–SNI). A gadget with input state sin and output state sout is
stateful t-Strong-Non-Interfering (t–SNI), if every set of t1 observations on the internal
observations, t2 observations on the output values such that t1 + t2 ≤ t, combined with
any number of observations on the output state sout, can be simulated by using at most
t1 shares of each input and any number of values from the input state sin.

Both definitions require that gadgets have a fixed number of shares. This assumption
is made here for the simplicity of presentation but is not required by our tool.

Finally, we note that there exists other notions of security. One such notion is called
probing security. We do not define this notion formally here, but note that for stateful
gadgets t–SNI implies probing security, provided the masked inputs are mutually indepen-
dent families of shares, and the input state is probabilistic independent of masked inputs
and internal randomness.

We validate our notions of security through a proof that they are composable — Sec-
tion 4 introduces new and optimized composition theorems. The general composition
results hold for stateful t–NI, respective stateful t–SNI, because the notions ensure similar
properties as their non-stateful counterparts.

Proposition 1. Let G1(·, ·) and G2(·) be two stateful gadgets as in Figure 2. Assuming G2
is stateful t–SNI and G1 is stateful t–NI, then the composition G2(G1(·), ·) is stateful t–SNI.

Proof. Let s1
in and s1

out be respectively the state input and state output of G1 and s2
in

and s2
out respectively the state input and state output of G2. We prove in the following

that the composition G2(G1(·), ·) is stateful t–SNI.
Let Ω = (I,O) be the set of observations on the whole composition, where Ii are the

observations on the internal computation of Gi, I = I1 ∪ I2 with |I| = |I1 ∪ I2| ≤ t1
and |I|+ |O| ≤ t.

Since G2 is stateful t–SNI and |I2∪O| ≤ t, then there exist observation sets S2
1 and S2

2
such that |S2

1 | ≤ |I2|, |S2
2 | ≤ |I2| and all the observations on internal and output values

combined with any number of observations on the output state s2
out can be simulated by

using any number of values from the input state s2
in and the shares of each input with

index respectively in S2
1 and S2

2 .
Since G1 is stateful t–NI, |I1 ∪ S2

1 | ≤ |I1 ∪ I2| ≤ t and s1
out = s2

in, then there exists an
observation set S1 such that |S1| ≤ |I1| + |S2

1 | and all the observations on internal and
output values combined with any number of observations on the output state s2

out can be
simulated by using any number of values from the input state s1

in and the shares of the
input with index in S1.

Now, composing the simulators that we have for the two gadgets G1 and G2, all the
observations on internal and output values of the circuit combined with any number of
observations on the output state can be simulated from |S1| ≤ |I1|+ |S2

1 | ≤ |I1|+ |I2| ≤ t1
shares of the first input and |S2

2 | ≤ |I2| shares of the second input and any number of values
from the input state s1

in. Therefore we conclude that the circuit is stateful t–SNI.

10

G1

t–NI
S1

G2

t–SNI

S2
1

S2
2

Figure 2: Example of composition

3.2 Automated Verification
In this section, we consider the problem of formally verifying that an IL program is secure
at order t, for t ≥ 1. The obvious angle for attacking this problem is to extend existing
formal verification approaches to IL. However, there are two important caveats. First,
some verification approaches make specific assumptions on the programs—e.g. [BGR18]
assumes that gadgets are built from ISW core gadgets. Such assumptions are reasonable
for more theoretical models, but are difficult to transpose to a more practical model; be-
sides they defeat the purpose of our approach, which is to provide programmers with a
flexible environment to build verified implementations. Second, adapting formal verifica-
tion algorithms to IL is a very significant engineering endeavour. Therefore we follow an
alternative method: we define a transformation T that maps IL programs into a fragment
that coincides with the core language of MaskVerif, and reuse the verification algorithm of
MaskVerif for checking the transformed program. The transformation is explained below,
and satisfies correctness and precision. Specifically, the transformation T is correct: if
T (P) is secure at order t then P is secure at order t (where security is either t–NI or t–SNI
of t). The transformation T is also precise: if P is secure at order t and T (P) is defined
then T (P) is secure at order t. Thus, the sole concern with the approach is the partial
nature of the transformation T . While our approach rejects legitimate programs, it works
well on a broad range of examples.

Target language and high-level algorithm The core language of MaskVerif is a subset
of IL:

χ ::= x | x[n] e ::= χ | n | o (e1, . . . , ej)
i ::= s← e | leak {e1, . . . , ej} c ::= i∗

The main differences between IL and MaskVerif is that the latter does not have memory
accesses, macros and control-flow instructions and limits array accesses to constant indices.
Our program transformation proceeds in two steps: first, all macros are inlined; then the
expanded program is partially evaluated.

Partial evaluation The partial evaluator takes as input an IL program and a public
initial state and returns another IL program. The output program is equivalent to the
original program w.r.t. functionality and leakage, under some mild assumptions about
initial memory layout, explained below.

Our partial evaluator manipulates abstract values and tuples of abstract values, and
abstract memories. An abstract value ϑ can be either a base value corresponding to
concrete base values like Boolean b or integer n, a label l that represent abstract code
pointers and are used for indirect jumps, and abstract pointers 〈x, n〉. The latter are an
abstract representation of a real pointer. Formally, the syntax of values is defined by:

ϑ ::= b | n | l | 〈x, n〉 | ⊥ v ::= ϑ | [ϑ; . . . ; ϑ]

Initially the abstract memory is split into different (disjoint) regions modeled by fresh
arrays with maximal offset that do not exist in the original program. Those regions is

11

what we call the memory layout. A base value 〈x, n〉 represents a pointer to the memory
region x with the offset n (an integer). This encoding is helpful to deal with pointer
arithmetic. The following code gives an example of region declarations:

region mem w32 a[0:1]
region mem w32 b[0:1]
region mem w32 c[0:1]
region mem w32 rnd[0:0]
region mem w32 stack[-4:-1]

It means that the initial memory is split into 5 distinct region a, b, c, rnd, stack,
where a is an array of size 2 with index 0 and 1. Remark that the initial assumption is not
checked (and cannot be checked by the tool). Then another part of the memory layout
provides some initialisation for registers (IL variables):

init r0 <rnd, 0>
init r1 <c, 0>
init r2 <a, 0>
init r3 <b, 0>
init sp <stack, 0>

In particular, this specifies that initially the register r0 is a pointer to the region rnd.
Some extra information is also provided to indicate which regions initially contain random
values, or correspond to input/output shares.

The partial evaluator is parameterized by a state 〈p, c, µ, ρ, ec〉, where p is the original
IL program, c is the current command, µ a mapping from p’s variables to their abstract
value, ρ a mapping from variable corresponding to memory region to their abstract value,
and ec is the sequence of commands that have been partially executed. The partial evalu-
ator iteratively propagates values, removes branching instructions, and replaces memory
accesses by variable accesses (or constant array accesses). Figure 3 provides some selected
rules for the partial evaluator. A complete description of the partial evaluator will appear
in the full version.

For expressions, the partial evaluator computes the value ϑ of e in µ and ρ (which
can be ⊥) and an expression e′ where memory/array accesses are replaced by variables/-
constant array accesses, i.e. [[e]]ρµ = (ϑ, e′). If the expression is of the form o(e1, . . . , en)
where all the arguments are partially evaluated, the resulting expression is the operator
applied to the resulting expressions e′

i of the ei and the resulting value is the partial evalu-
ation of õ(ϑ1, . . . , ϑn) where õ check is the ϑi are concrete values in that case it computes
the concrete value else it return ⊥ (the partial evaluator sometime uses more powerful
simplification rules like 0+̃ϑ⇝ ϑ).

If the expression is a variable, the partial evaluator simply returns the value stored in
µ and the variable itself. The case is similar for array accesses, first the index expression is
evaluated and the resulting value should be an integer n, the resulting expression is simple
x[n] and the resulting value is the value stored in µ(x) at position n (the partial evaluator
checks that n is in the bound of the array). For memory access 〈e〉 the partial evaluation
of e should lead to an abstract pointer 〈x, ofs〉, in this case the resulting expression is
x[ofs] and the value is ρ(x)[ofs].

For assignment, the partial evaluator evaluates the left side of the assignment χ as an
expression, leading to a refined “left side” expression χ′, the right part of the assignment
e is also partially evaluated leading to (ϑ, e′) the partially evaluated assignment is χ′ ← e′

and the mapping µ and ρ are updated accordly with the value ϑ. For leak instructions, the
partial evaluator simply propagates known information into the command. For control-
flow instructions, the partial evaluator tries to resolve the control-flow and eliminates the
instruction. For goto statements, the partial evaluator tries to resolve the next instruction
to be executed, and eliminates the instruction.

12

[[ei]]ρµ = (ϑi, e′
i)

[[o(e1, . . . , en)]]ρµ = (õ(ϑ1, . . . , ϑn), o(e′
1, . . . , e′

n)) [[x]]ρµ = (µ(x), x)

[[e]]ρµ = (n, e′)
[[x[e]]]ρµ = (µ(x)[n], x[n])

[[e]]ρµ = (〈x, ofs〉, e′)
[[〈e〉]]ρµ = (ρ(x)[ofs], x[ofs])

i = χ← e i′ = χ′ ← e′ [[χ]]ρµ = (ϑ′, χ′) [[e]]ρµ = (ϑ, e′) (µ, ρ){χ′ ← ϑ} = (µ′, ρ′)
〈p, i; c, µ, ρ, ec〉⇝ 〈p, c, µ′, ρ′, ec; i′〉

[[ei]]ρµ = (ϑi, e′
i)

leak {e1, . . . , ej}⇝ leak
{

e′
1, . . . , e′

j

} i = goto e [[e]]ρµ = (l, e′) pl = c′

〈p, i; c, µ, ρ, ec〉⇝ 〈p, c′, µ, ρ, ec〉

i = if e ct cf [[e]]ρµ = (b, e′)
〈p, i; c, µ, ρ, ec〉⇝ 〈p, cb; c, µ, ρ, ec〉

i = while e cw i′ = (if e cw; i); c

〈p, i; c, µ, ρ, ec〉⇝ 〈p, i′, µ, ρ, ec〉

Figure 3: Partial evaluation of expressions and programs

The transformation is sound.

Proposition 2 (Informal). Let P and P ′ be an IL gadget and the corresponding MaskVerif
gadget output by the partial evaluator. For every initial state s satisfying the memory
layout assumptions, the global leakage of P w.r.t. s and a set of inputs is equal to the
global leakage of P ′ w.r.t. the same inputs.

We briefly comment on proving Proposition 2. In order to provide a formal proof,
a formal semantics of gadgets is needed. Our treatment so far has intentionally been
left informal. However, the behavior of gadgets can be made precise using programming
language semantics. We briefly explain how. Specifically, the execution of gadgets can be
modelled by a small-step semantics that captures one-step execution between states. This
semantics is mostly standard, except for the leak statements which generate observations.
Using the small-step semantics, one can model global leakage as a function that takes
as input initial values for the inputs and an initial state and produces a sequence of
observations, a list of outputs and a final state. Last, we transform global leakage into a
probabilistic function by sampling all inputs tagged with the security type R independently
and uniformly from their underlying set. This yields a function that takes as input initial
values for the inputs and an initial partial state (restricted to the non-random values), a
list of observations selected by the adversary and returns a joint distribution over tuples
of values, where each tuple corresponds to an observation selected by the adversary.

3.3 Implementation

We have implemented the partial evaluator as a front-end to MaskVerif, named “scVerif”.
Users can write leakage models, annotations and programs in IL or provide programs in
Assembly code. If the output program lies in the MaskVerif fragment, then verification
starts with user specified parameters such as security order or which property to verify.
Else, the program is rejected. The tool also applies to bit- and n-sliced implementations
and provides additional automation for temporal accumulation of probes to represent
capacitance in physical measurement. Sharesclicing is not yet supported as the scheme is
questioned in [GMPO19] and fundamentally insecure in our CM0+ models. However, few
additional transformations allow to extend our work to these implementations.

13

4 Representative Proofs of Efficient Masking
We describe the construction and optimization of gadgets that do not exhibit vulnerable
leakage at any order t ≤ d − 1, where d is the number of shares. That is, we harden
masked implementations to be secure at the optimal order t = d − 1 in fine-grained
leakage models, opposed to the “lazy” strategy of masking in a basic model at higher
orders with the intention to achieve practical security at lower orders t < d−1 [BGG+14].

Creating a secure gadget is an iterative process which involves three tasks: (a) un-
derstanding and modeling the actual leakage behavior (b) constructing an (efficient) im-
plementation which is secure in the fine-grained model (c) optionally performing physical
evaluation of side-channel resilience to assess the quality of the model for the specific target
platform. Protecting an implementation against side-channel effects mandates insertion
of instructions to circumvent vulnerable combination of masked secrets.

4.1 Hardened Masking
In this section, we discuss the development of gadgets which enjoy security in any fine-
grained leakage model. We design gadgets first in the simplified IL model depicted in
Algorithm 3. Designing in IL is more flexible than assembly since shortcuts such as
leakage free operations and abstract countermeasures are available. Once the gadget is
hardened the gadget is implemented in assembly and verified again, which is to a large
degree trivial but requires to substitute abstract countermeasures by concrete instructions.

Each gadget takes as input one or two values a and b, respectively encoded in (a0, . . . , ad−1)
and (b0, . . . , bd−1), and gives as output the shares (c0, . . . , cd−1), encoding a value c. By
convention, inputs and outputs are stored in memory to allow construction of implemen-
tations at higher orders. Our gadgets, provided in the Supplementary material, use the
registers R0, R1, R2, and R3 as memory addresses pointing to inputs, outputs and ran-
dom values stored in memory. The registers R4, R5, R6, and R7 are used to perform the
elementary operations. Registers beyond R7 are used rarely.

A gadget which is correctly masked in the basic leakage model, i.e., secure against
computation leakage (Definition 1), can be secured by purging the architecture and leakage
state at selected locations within the code4. The reason is simple: every leak must be
defined over elements of the state and removing sensitive data from these elements prior
the instruction causing such leak mitigates the ability to observe the sensitive data.

We distinguish “scrubbing” countermeasures, which purge architecture state, and
“clearing” countermeasures, which remove values residing in leakage state. Two macros
serve as abstract countermeasures, scrub(R0) and clear(opA) assign some value which
is independent of secrets to R0, respectively opA. On assembly level these need to be sub-
stituted by available instructions. Clearing opA or opB is mostly done by ANDS(R0, R0) ;
since R0 is a public memory address. Purging opR (respective opW) requires to execute
LOAD (respectively STORE) instruction reading (writing) a public value from mem-
ory, but the side-effects of both instructions require additional care. Sometimes multiple
countermeasures can be combined in assembly.

Moreover we approach the problem of securing a composition against the leakage effects
introduced in Section 2.1 by ensuring that all the registers involved in the computation of a
gadget are completely cleaned before the composition with the next gadget. This, indeed,
easily guarantees the requirements of stateful t–SNI in Definition 7. We use fclear as
abstract placeholder for the macro run after each gadget to clear the state sout. Additional
clearings are needed between intermediate computations in the gadgets; these macros are
represented as cleari, where the index distinguishes between the different macros in the
gadget since each variety of leakage needs a different countermeasure.

4All t–NI and t–SNI algorithms enjoy this property since computation leakage is inherent to masking.

14

Finally, randomness is employed in order to randomize part of the computation, espe-
cially in the case of non-linear gadgets, where otherwise with one probe the attacker could
get the knowledge of several shares of the inputs. We indicate with rnd a value picked
uniformly at random from F32

2 , prior to execution.
For giving an intuition of our strategy, we depict in Algorithm 4 and Algorithm 5

respectively an addition and a multiplication scheme at 1st order of security. Some other
examples of stateful t–SNI addition, multiplication and refreshing schemes for different
orders can be found in section A of the Supplementary material. They have all been
verified to be stateful t–SNI with the use of our new tool. Some algorithms are clearly
inspired by schemes already existing in the literature, as the ISW multiplication [ISW03]
and the schemes in [BBP+16]. We analyze the S-Box of Present and provide a stateful
t–NI secure Algorithm for first and second order in Appendix C. Stateful t–SNI Security
can be achieved by refreshing the output with a secure stateful t–SNI Refresh gadget. For
reasons of simplicity, we divided the S-Box into three functions and designed stateful t–NI
secure Gadgets accordingly. Considering that all three Gadgets only have one fan-in and
fan-out, the composition is also stateful t–NI secure.

Algorithm 4 Addition scheme, 1st order stateful t–NI
Input: a = (a0, a1), b = (b0, b1)
Output: c = (c0, c1), such that (c0 = a0 + b0), (c1 = a1 + b1)

1: load(R4, R1, 0); ▷ Load a0 into register r4
2: load(R5, R2, 0); ▷ Load b0 into register r5
3: xor(R4, R5); ▷ after XOR r4 contains a0 + b0
4: store(R4, R0, 0); ▷ Store the value of r4 as output share c0
5: clear(opW) ;
6: load(R5, R1, 1); ▷ Load a1 into register r5
7: load(R6, R2, 1); ▷ Load b1 into register r6
8: xor(R5, R6); ▷ after XOR r5 contains a1 + b1
9: store(R5, R0, 1); ▷ Store the value of r5 as output share c1

10: scrub(R4); scrub(R5); scrub(R6);
11: clear(opA) ; clear(opB) ; clear(opR) ; clear(opW) ;

The methodology just described, despite being easy to apply, can be expensive, as
it requires an extensive use of clearings, especially for guaranteeing secure composition.
However, a couple of strategies can be adopted in order to overcome this drawback and
optimize the use of clearings. We describe such optimization strategies in the following.

4.2 Optimized Composition of Linear Gadgets
The first scenario of optimization is the case when linear gadgets are composed to each
other. We refer to this situation as linear composition. We exploit the fact that linear
gadgets never combine multiple shares of an input and thus independent computation are
performed on each input share, denoted “share-wise”. We modify the order in which the
operation are usually performed, in such a way that initially all the operations of the first
shares are applied, then all the ones on the second shares, and so on.

More formally, let a, b, c be d-shared encodings (ai)i∈[d], (bi)i∈[d], (ci)i∈[d] and let
F(a, b) := (F0(a0, b0), clear0, . . . ,Fd−1(ad−1, bd−1), cleard−1, fclear) be a share-wise
simulatable linear gadget with, e.g. Fi(ai, bi) outputs ai ⊕ bi as described in Figure 4
(left) and clear are the leakage countermeasures between each share-wise computation
as explained in Section 4.1. In the following we consider a composition F(F(a, b), c) and
present a technique to optimize the efficiency of both gadgets. Instead of performing first

15

Algorithm 5 Multiplication scheme, 1st order stateful t–SNI
Input: a = (a0, a1), b = (b0, b1)
Output: c = (c0, c1), such that (c0 = a0b0 + rnd0 + a0b1), (c1 = a1b1 + rnd0 + a1b0)

1: load(R4, R2, 0);
2: load(R5, R1, 0);
3: and(R4, R5); ▷ after AND r4 contains a0b0
4: load(R6, R3, 0);
5: xor(R6, R4); ▷ after XOR r6 contains a0b0 + rnd0
6: load(R7, R2, 1);
7: and(R5, R7); ▷ after AND r4 contains a0b1
8: xor(R5, R6); ▷ after XOR r5 contains a0b1 + a0b0 + rnd0
9: store(R5, R0, 0); ▷ Store the value of r5 as output share c0

10: clear(opW) ; scrub(R4); scrub(R6);
11: load(R4, R1, 1);
12: and(R7, R4); ▷ after AND r7 contains b1a1
13: load(R6, R3, 0);
14: xor(R6, R7); ▷ after XOR r7 contains b1a1 + rnd0
15: load(R5, R2, 0);
16: and(R5, R4); ▷ after AND r5 contains b0a1
17: xor(R6, R5); ▷ after XOR r6 contains b0a1 + b1a1 + rnd0
18: store(R6, R0, 1); ▷ Store the value of r6 as output share c1
19: scrub(R4); scrub(R5); scrub(R6); scrub(R7);
20: clear(opA) ; clear(opB) ; clear(opR) ; clear(opW) ;

the inner function F(a, b) =: m and then the outer function F(m, c) =: o, we perform

F̂(a, b, c) =
((
F̂i(ai, bi, ci), cleari

)
i∈[d], fclear

)
with F̂i(ai, bi, ci) = Fi(Fi(ai, bi), ci). In other words, we change the order of computation
to m0, o0, . . . , md−1, od−1, rather than m0, . . . , md−1, o0, . . . , od−1.

This method allows us to save on the number of clear, load, and store operations.
In a normal execution, the output m of the first gadget needs to be stored in memory, just
to be loaded during the execution of the second gadget. With the optimized execution,
instead, we do not need to have such loads and stores, since the two gadgets are
performed at the same time. Additionally, by considering the composition as a unique
gadget, we can save on the clearings that would be otherwise needed after the first gadget
to ensure the stateful t–SNI. We provide a security proof for F̂(a, b, c) in Proposition 3
and a concrete application of Proposition 3 to Algorithm 4 in the Supplementary material.

Proposition 3. The optimized gadget F̂(a, b, c) as described above, is stateful-t–NI.

Proof. We show that all observations in the gadget depend on at most one share of each
input. Since the attacker can perform at most n − 1 observations, this implies that any
combination of its observations is independent of at least one share of each input. More
precisely, the computation of the ith output of F̂(a, b, c) only depends on the ith shares
of a, b or c. Hence the observations in each iteration only leak information about the ith

share since we clear the state after the computation of each output share. Therefore any
combination of t ≤ d− 1 observations is dependent on at most t shares of each input, and
any set t observations is simulatable with at most t shares of each input bundle.

16

⊕
⊕

m

a b c

o

⊗ ⊗
a b c

•

o(1)o(2)

Figure 4: Examples of linear composition (left) and non-linear composition (right)

a

b

c

d

⊗⊕ ⊗⊕

⊗⊕
⊗⊕

⊗⊕ ⊗⊕

⊗⊕
⊗⊕

G G

Figure 5: The Non-Linear Layer of the Present S-Box

4.3 Optimized Composition of Gadgets with Independent Inputs
The second scenario that we take into account is the one described in Figure 4 (right),
where two non-linear gadgets, e.g. two multiplication algorithms, sharing one of the inputs
are performed. We refer in the following to this situation as non-linear composition. In
this case, it is possible to reduce the number of loadings and clearings, by re-using the
shares in common, once loaded into the registers and replacing the intermediate clearings
of a gadget by independent computations of another gadget.

The optimization technique described to save clearings also holds for two gadgets with
independent inputs. The intermediate clearings in a gadget ensure that two computations
on two different shares of the same secret do not leak together. Since this clearing is
only a computation independent of the secret, the clearing can be replaced by a useful
computation of another gadget.

With our tool, we have proven that the merge of stateful t–SNI multiplications, given
in Appendix A of the Supplementary material, is also stateful t–SNI. Since we only
need the more efficient special optimization for the PRESENT S-Box, we focus on two
multiplications with shared input. In total, we save 59% cycles for second order. Overhead
from clearings and scrubs reduces by 75%, the amount of loads and stores by 47%.

4.4 Case study: Masking the PRESENT S-Box
The impact of our methodology is estimated by masking a large circuit, the PRESENT
block cipher, at 1st and 2nd order with the basic rules for composability (Section 3) and the
introduced optimizations (Section 4.2 and 4.3). The structure of the S-Box of PRESENT
allows the adoption of the optimization techniques, both in the linear and in the non-
linear composition. Based on [CFE16], the S-Box consists of two share-wise functions
and one non-linear function. The non-linear part is depicted in Figure 5. A complete
description of the S-Box is provided in the Supplementary material.

Our masked implementation of the PRESENT S-Box, using the trivial solution for
composability, is provided in the Supplementary material. Algorithm 12 in Appendix C
depicts the masked S-Box, where the subroutines calcA in Algorithm 14, calcB in

17

Algorithm 15 and calcG in Algorithm 16 are first order NI gadgets. The optimized version
of it, instead, employs our optimization techniques which are given in the subroutines
calcA_opt, calcB_opt and calcG_opt, respectively in Algorithms 17, 18 and 19.
Our focus is the optimization of computational overhead arising from hardening masked
implementations. The optimizations reduce the use of randomness in case of probabilistic
clearings and scrubs. Furthermore, the tool can verify that manual choices of randomness
reuse in large implementations are secure [FPS17].

Our 1st and 2nd order PRESENT S-Box require 7, respective 26 words of entropy, the
implementation is given in Algorithm 13. With the help of the tool the requirements can
be reduced to 3, respective 18 words of entropy.

As metric to measure the improvements of our optimization techniques, we take the
amount of basic operations used in the implementations, as shown in Figure 1. From
this comparison, we can see that both implementations use almost the same amount of
core operations (xor and and), since the two versions implement the same algorithm.
More precisely, the non-optimized version requires two xor operations less, thanks to the
parallel calculation of all output values in calcG_opt, where b · d needs to be added
to a′ and d′. On the other hand, since in the non-optimized version more intermediate
values need to be stored and loaded inside the functions, while in the optimized version it
is only needed to store intermediate values between the functions, the number of stores
and loads employed is lower, producing an improvement in terms of operation count.
Additionally, the amount of loads is reduced further in the optimized version by loading
every input share once per output share. This holds with the exception of the limited
amount of registers, requiring to load a1 and d1 twice for the second output share and b0
and b1 only are needed to load once in the whole gadget.

In Table 1 the efficiency of our approach is depicted as the ratio between the operation
needed for the calculation and the overhead caused by clearings in both the normally
composed and the optimized versions of the PRESENT S-Box. The comparison shows an
efficiency improvement of almost 73% for 1st order and of 63% for 2nd order.

In these regards, we underline how the aforementioned optimization is possible thanks
to the use of our new tool. The latter, indeed, allows us to first prove the security of
combination of stateful gadgets, i.e., the optimized compositions discussed above, and
then to verify their security in the biggest context of the S-Box, which would otherwise
be too exhaustive to prove by pen and paper.

Table 1: Operation and cycle count of normally composed and optimized PRESENT
S-Box

1st order 2nd order
composition optimized opt

comp composition optimized opt
comp

LOAD 115 60 0.52 251 136 0.54
AND 24 24 1 54 54 1
XOR 57 59 1.054 133 142 1.07
STORE 72 48 0.67 93 48 0.52
scrub() 95 16 0.17 211 53 0.25
clear(opA) 35 12 0.34 67 20 0.3
clear(opB) 130 43 0.33 314 80 0.25
clear(opR) 130 26 0.2 260 73 0.28
clear(opW) 56 4 0.07 93 10 0.11
cycles 1097 440 0.4 2173 883 0.41

18

Table 2: Density of PRESENT S-Box, i.e., the ration between clearings and opera-
tion count

1st order 2nd order
Normal composition Optimization Normal composition Optimization

#clearings
#operations 1.66 0.45 1.78 0.62

4.5 Resilience in Practice
The question whether proofs in fine-grained leakage models connect to resilience in practice
was left open so far.

The connection between threshold probing security and resilience in practice is straight-
forward: the formal property that no combination of t (modeled) observations provides
benefit to an attacker can directly be transposed to the physical setting where no com-
bination of t measurement samples should provide valuable information on secrets. A
threshold probing proof is thus representative whenever the specified leakage model con-
tains all information derivable from measurement samples, i.e., the model is sufficiently
complete. Our work enables verification in leakage models with the mandated precision.

The assurance of representative proofs is important in that it provides a lower bound
on the attack complexity since at least t pieces of information have to be recovered and
this difficulty is exponential in t when sufficient noise is present [PR13]. Our systematic
approach allows to get the most out of masking by achieving the optimal resilience at
security order t = d− 1 in practice, which is important for efficient implementations.

The question of evaluating the quality of a model is still unanswered for this new kind
of specification which expresses data dependency only. Leakage certification is an estab-
lished approach to systematically validate the quality of leakage models but requires more
detail than needed for probing security since the constituting function for each measure-
ment sample must be modeled [DSM17, DSV14]. Leakage detection is a good candidate
due to direct connection to probing security and the way models are shared across im-
plementations. Representative proofs of threshold probing security correspond to the
hypothesis that the distribution of every combination of t leakage observations is indepen-
dent of secrets. Leakage detection methods such as TVLA assess exactly this hypothesis
in comparing the distribution of measurement samples taken during execution on a fixed
secret with execution on random secrets [SM15]. Informally, TVLA evaluates whether the
observable leakage of computation on secrets can be distinguished from leakage generated
by random inputs, which should be indistinguishable for secure implementations.

The quality of our model is evaluated by constructing multiple implementations in
this shared model and applying physical leakage detection independently on each imple-
mentation. We stress that in this assessment strategy the model becomes stronger the
more verified implementations are evaluated using leakage detection, which is a significant
benefit of systematic hardening in general. Our model is (empirically) qualitative since
all implementations are leakage free at their optimal order in physical leakage detection
assessment at a minimum of one million traces5.

The power consumption of two CM0+ MCUs (“FRDM-KL82Z”, “STM32L073RZ”) is
each measured with an oscilloscope sampling the current consumption via an inductive
current probe at 2.5 GS/s, a bandwidth of 500 MHz and 8bit quantification. The MCUs
are clocked at 4 MHz and every 125 samples are averaged resulting in 5 samples per
cycle. Each execution is averaged over four repeated executions to further reduce the
noise, resulting in an assessment with very little noise. Sets of one million measurements

5The IL and Assembly code for stateful-t–SNI and and refresh, the stateful-t–NI xor, copy and
negation gadgets, stateful-t–NI compositions thereof, the optimized stateful-t–NI PRESENT S-Box, all
masked at 1st and 2nd order, as well as the full leakage model are provided at https://github.com/
scverif/gadgets

19

https://github.com/scverif/gadgets
https://github.com/scverif/gadgets

each are compared in random vs. fixed Welch t-test, alpha certainty of 0.0001. Significant
leakage is detected when the t-statistics are larger than the non-adopted threshold of 4.5.

Our 1st order PRESENT S-Box is free of significant leakage on both MCUs, as seen
in Figure 6. The need for device-specific models is easily depicted by the fact that our
practically resilient and formally secure code emits detectable leakage when executed on
the distinct Arm Cortex M4F (CM4F) architecture, namely the “STM32F407”, as seen
in Appendix D, Figure 7.

0 250 500 750 1000 1250 1500 1750 2000
sample point

0

1

2

3

4

5

t-
st

at
ist

ic

STML073
KL82Z

Figure 6: Physical leakage detection t-statistics of optimized 1st order PRESENT S-Box
assessment, x axis represents sample points.

To show the applicability of our model at higher order we evaluate our 2nd order
PRESENT S-Box in 2nd order multivariate TVLA on the KL82Z by processing the mea-
surements such that every pair of sample points is combined and evaluated, the results are
shown in Appendix D, Figure 7. The combinatorial blow-up requires hundreds of CPU
hours to evaluate the S-Box, compared to few seconds when using scVerif.

The model sufficiently represents power side-channel leakage for uni-variate (first order)
and multi-variate (higher-order) attacks up to one million traces and as such threshold
probing security proofs in this particular model appear representative. In general, the
combination of probing security and TVLA evaluation is beneficial as strict verification of
many implementations depends on a single, shared specification of leakage behavior while
physical evaluation strengthens the shared specification by assessing in different contexts.
Re-using models in the form of shared libraries allows to reduce the risk of specification
errors as well, thus we provide our model as open-source [too20]. Moreover, our approach
allows to verify concrete implementations at higher orders of security with predictable
resilience in practice, scaling beyond the computational bound of multivariate TVLA.

5 Conclusion
In this paper, we show how automated verification can deliver provably resilient and
practically hardened masked implementations with low overhead.

Our DSL allows to construct fine-grained models of side-channel behavior which can
be adopted flexibly to specific contexts. For the first time, this approach allows to verify
formal notions of side-channel resilience in user-provided models at higher orders. The
combination of representative leakage models and formal verification enables to rule out
entire classes of practical side-channel attacks backed by provable security statements.

New generic optimization strategies are introduced to reduce the overhead mandated
by additional countermeasures for security in fine-grained leakage models. The optimiza-
tions are applied to a masked PRESENT S-Box and validated to be leak free up to a

20

high number of traces in physical leakage assessment despite the high efficiency of the
constructions. Moreover, the optimized and hardened constructions show that practical
resilience and efficiency can go hand in hand, motivating further research.

Our tool scVerif serves as front-end to MaskVerif but the presented concept to model
side-channel behavior explicitly is likely adoptable to verification of other security notions
such as noisy or random probing security, given that sufficient information such as signal-
to-noise ratio or occurrence probabilities are encoded in the model. This could allow to
bound the success rate of attacks at order t > d in combination with the powerful but
bounded assurance from probing security for t ≤ d.

Acknowledgements
Clara Paglialonga and Maximilian Orlt are partially funded by the VeriSec project 16KIS0634
from the Federal Ministry of Education and Research (BMBF) and the Hessen State
Ministry for Higher Education, Research and the Arts within their joint support of
the National Research Center for Applied Cybersecurity ATHENE, and by the Emmy
Noether Program FA 1320/1-1. Marc Gourjon is partially funded by the VeriSec project
16KIS0601K from BMBF.

References
[ARM18] ARM Limited. Arm v6-m architecture reference manual. Technical report,

ARM Limited, 2018. ARM DDI 0419E (ID070218).

[BBC+19] Gilles Barthe, Sonia Belaïd, Gaëtan Cassiers, Pierre-Alain Fouque, Benjamin
Grégoire, and François-Xavier Standaert. maskVerif: Automated verification
of higher-order masking in presence of physical defaults. In ESORICS 2019 ,
Part I, Lecture Notes in Computer Science, pages 300–318. Springer, Heidelberg,
Germany, 2019.

[BBD+15] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, and Pierre-Yves Strub. Verified proofs of higher-order masking.
In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I,
volume 9056 of Lecture Notes in Computer Science, pages 457–485. Springer,
Heidelberg, Germany, 2015.

[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-
interference and type-directed higher-order masking. In Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors,
ACM CCS 16, pages 116–129. ACM Press, 2016.

[BBP+16] Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff,
Adrian Thillard, and Damien Vergnaud. Randomness complexity of private
circuits for multiplication. In Marc Fischlin and Jean-Sébastien Coron, edi-
tors, EUROCRYPT 2016, Part II, volume 9666 of Lecture Notes in Computer
Science, pages 616–648. Springer, Heidelberg, Germany, 2016.

[BDM+20] Sonia Belaïd, Pierre-Évariste Dagand, Darius Mercadier, Matthieu Rivain,
and Raphaël Wintersdorff. Tornado: Automatic generation of probing-secure
masked bitsliced implementations. In Anne Canteaut and Yuval Ishai, edi-
tors, Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Za-
greb, Croatia, May 10-14, 2020, Proceedings, Part III, volume 12107 of Lecture
Notes in Computer Science, pages 311–341. Springer, 2020.

21

[BGG+14] Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and
François-Xavier Standaert. On the cost of lazy engineering for masked soft-
ware implementations. In Marc Joye and Amir Moradi, editors, CARDIS 2014,
volume 8968 of Lecture Notes in Computer Science, pages 64–81. Springer, 2014.

[BGI+18] Roderick Bloem, Hannes Groß, Rinat Iusupov, Bettina Könighofer, Stefan Man-
gard, and Johannes Winter. Formal verification of masked hardware implemen-
tations in the presence of glitches. In Jesper Buus Nielsen and Vincent Rijmen,
editors, EUROCRYPT 2018, Part II, volume 10821 of Lecture Notes in Com-
puter Science, pages 321–353. Springer, Heidelberg, Germany, 2018.

[BGR18] Sonia Belaïd, Dahmun Goudarzi, and Matthieu Rivain. Tight private circuits:
Achieving probing security with the least refreshing. In ASIACRYPT 2018,
Part II, Lecture Notes in Computer Science, pages 343–372. Springer, Heidel-
berg, Germany, 2018.

[BRNI13] Ali Galip Bayrak, Francesco Regazzoni, David Novo, and Paolo Ienne. Sleuth:
Automated verification of software power analysis countermeasures. In Guido
Bertoni and Jean-Sébastien Coron, editors, CHES 2013, volume 8086 of Lecture
Notes in Computer Science, pages 293–310. Springer, Heidelberg, Germany,
2013.

[CFE16] Cong Chen, Mohammad Farmani, and Thomas Eisenbarth. A tale of two shares:
Why two-share threshold implementation seems worthwhile - and why it is not.
In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I,
volume 10031 of Lecture Notes in Computer Science, pages 819–843. Springer,
Heidelberg, Germany, 2016.

[CGD18] Yann Le Corre, Johann Großschädl, and Daniel Dinu. Micro-architectural power
simulator for leakage assessment of cryptographic software on ARM cortex-M3
processors. Lecture Notes in Computer Science, pages 82–98, 2018.

[CGLS20] Gaëtan Cassiers, Benjamin Grégoire, Itamar Levi, and François-Xavier Stan-
daert. Hardware private circuits: From trivial composition to full verification.
Cryptology ePrint Archive, Report 2020/185, 2020. https://eprint.iacr.
org/2020/185.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. To-
wards sound approaches to counteract power-analysis attacks. In Michael J.
Wiener, editor, CRYPTO’99, volume 1666 of Lecture Notes in Computer Sci-
ence, pages 398–412. Springer, Heidelberg, Germany, crypto99month 1999.

[Cor18] Jean-Sébastien Coron. Formal verification of side-channel countermeasures via
elementary circuit transformations. In ACNS 18, Lecture Notes in Computer
Science, pages 65–82. Springer, Heidelberg, Germany, 2018.

[DBR19] Lauren De Meyer, Begül Bilgin, and Oscar Reparaz. Consolidating security
notions in hardware masking. TCHES, 2019(3):119–147, 2019. https://tches.
iacr.org/index.php/TCHES/article/view/8291.

[DDF14] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage
models: From probing attacks to noisy leakage. In Phong Q. Nguyen and
Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of Lecture Notes
in Computer Science, pages 423–440. Springer, Heidelberg, Germany, 2014.

22

https://eprint.iacr.org/2020/185
https://eprint.iacr.org/2020/185
https://tches.iacr.org/index.php/TCHES/article/view/8291
https://tches.iacr.org/index.php/TCHES/article/view/8291

[DDF19] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leak-
age models: From probing attacks to noisy leakage. Journal of Cryptology,
32(1):151–177, January 2019.

[DSM17] François Durvaux, François-Xavier Standaert, and Santos Merino Del Pozo.
Towards easy leakage certification: extended version. 7(2):129–147, June 2017.

[DSV14] François Durvaux, François-Xavier Standaert, and Nicolas Veyrat-Charvillon.
How to certify the leakage of a chip? In Phong Q. Nguyen and Elisabeth Os-
wald, editors, EUROCRYPT 2014, volume 8441 of Lecture Notes in Computer
Science, pages 459–476. Springer, Heidelberg, Germany, 2014.

[EWS14] Hassan Eldib, Chao Wang, and Patrick Schaumont. Formal verification of
software countermeasures against side-channel attacks. ACM Trans. Softw. Eng.
Methodol., 24(2):11:1–11:24, 2014.

[FGP+18] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga,
and François-Xavier Standaert. Composable masking schemes in the presence
of physical defaults & the robust probing model. TCHES, 2018(3):89–120, 2018.
https://tches.iacr.org/index.php/TCHES/article/view/7270.

[FPS17] Sebastian Faust, Clara Paglialonga, and Tobias Schneider. Amortizing ran-
domness complexity in private circuits. In Tsuyoshi Takagi and Thomas Peyrin,
editors, ASIACRYPT 2017, Part I, volume 10624 of Lecture Notes in Computer
Science, pages 781–810. Springer, Heidelberg, Germany, asiacrypt17month
2017.

[GMPO19] Si Gao, Ben Marshall, Dan Page, and Elisabeth Oswald. Share-slicing: Friend
or foe? TCHES, 2020(1):152–174, 2019. https://tches.iacr.org/index.
php/TCHES/article/view/8396.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hard-
ware against probing attacks. In Dan Boneh, editor, CRYPTO 2003, volume
2729 of Lecture Notes in Computer Science, pages 463–481. Springer, Heidel-
berg, Germany, 2003.

[KR19] Yael Tauman Kalai and Leonid Reyzin. A survey of leakage-resilient cryptogra-
phy. In Providing Sound Foundations for Cryptography: On the Work of Shafi
Goldwasser and Silvio Micali, pages 727–794. 2019.

[MOPT12] Andrew Moss, Elisabeth Oswald, Dan Page, and Michael Tunstall. Com-
piler assisted masking. In Emmanuel Prouff and Patrick Schaumont, editors,
CHES 2012, volume 7428 of Lecture Notes in Computer Science, pages 58–75.
Springer, Heidelberg, Germany, ches12month 2012.

[MOW17] David McCann, Elisabeth Oswald, and Carolyn Whitnall. Towards practical
tools for side channel aware software engineering: ’grey box’ modelling for in-
struction leakages. pages 199–216, 2017.

[PR13] Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks:
A formal security proof. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of Lecture Notes in Computer Science, pages
142–159. Springer, Heidelberg, Germany, eurocrypt13month 2013.

[PV17] Kostas Papagiannopoulos and Nikita Veshchikov. Mind the gap: Towards secure
1st-order masking in software. Lecture Notes in Computer Science, pages 282–
297, 2017.

23

https://tches.iacr.org/index.php/TCHES/article/view/7270
https://tches.iacr.org/index.php/TCHES/article/view/8396
https://tches.iacr.org/index.php/TCHES/article/view/8396

[SM15] Tobias Schneider and Amir Moradi. Leakage assessment methodology - A clear
roadmap for side-channel evaluations. In Tim Güneysu and Helena Handschuh,
editors, CHES 2015, volume 9293 of Lecture Notes in Computer Science, pages
495–513. Springer, Heidelberg, Germany, 2015.

[SM16] Tobias Schneider and Amir Moradi. Leakage assessment methodology - ex-
tended version. 6(2):85–99, June 2016.

[SSB+19] Madura A Shelton, Niels Samwel, Lejla Batina, Francesco Regazzoni, Markus
Wagner, and Yuval Yarom. Rosita: Towards automatic elimination of power-
analysis leakage in ciphers. Cryptology ePrint Archive, Report 2019/1445, 2019.
https://eprint.iacr.org/2019/1445.

[too20] Open source publication of complete leakage model and the verification tool.
GitHub, 2020. https://github.com/scverif/scverif, https://github.
com/scverif/gadgets.

[Ves14] Nikita Veshchikov. SILK: high level of abstraction leakage simulator for side
channel analysis. In Mila Dalla Preda and Jeffrey Todd McDonald, editors,
PPREW@ACSAC 2014, pages 3:1–3:11. ACM, 2014.

[ZGSW18] Jun Zhang, Pengfei Gao, Fu Song, and Chao Wang. Scinfer: Refinement-
based verification of software countermeasures against side-channel attacks. In
Computer-Aided Verification, 2018.

24

https://eprint.iacr.org/2019/1445
https://github.com/scverif/scverif
https://github.com/scverif/gadgets
https://github.com/scverif/gadgets

Supplementary material

A Basic algorithms
A.1 Addition gadgets

Algorithm 6 SECXOR: Addition scheme at 2nd order of security
Input: a = (a0, a1, a2), b = (b0, b1, b2)
Output: c = (c0, c1, c2), such that

c0 = a0 + b0

c1 = a1 + b1

c2 = a2 + b2

1: load(R4, R1, 0);
2: load(R5, R2, 0);
3: xor(R4, R5);
4: store(R4, R0, 0);
5: clear(opB) ;
6: clear(opW) ;
7: load(R6, R1, 1);
8: load(R7, R2, 1);
9: xor(R7, R6);

10: store(R7, R0, 1);
11: clear(opB) ;
12: clear(opW) ;

13: scrub(R6);
14: load(R5, R1, 2);
15: load(R6, R2, 2);
16: xor(R5, R6);
17: store(R5, R0, 2);
18: scrub(R4);
19: scrub(R5);
20: scrub(R6);
21: clear(opA) ;
22: clear(opB) ;
23: clear(opR) ;
24: clear(opW) ;

Algorithm 7 Addition scheme at nth order of security
Input: a = (a0, ..., an), b = (b0, ..., bn)
Output: c = (c0, ..., cn), such that

ci = ai + bi, 0 ≤ i ≤ n

1: for (i = 0 to n) do
2: load(R4, R1, i);
3: load(R5, R2, i);
4: xor(R4, R5);
5: store(R4, R0, i);
6: clear(opW) ;
7: scrub(R4);
8: scrub(R5);
9: end for

10: clear(opA) ;
11: clear(opB) ;
12: clear(opR) ;

25

A.2 Multiplication gadgets

Algorithm 8 SECMULT: Multiplication scheme at 2nd order of security
Input: a = (a0, a1, a2), b = (b0, b1, b2)
Output: c = (c0, c1, c2), such that

c0 = a0b0 + rnd0 + a0b1 + rnd1 + a1b0

c1 = a1b1 + rnd1 + a1b2 + rnd2 + a2b1

c0 = a2b2 + rnd2 + a2b0 + rnd0 + a0b2

1: load(R5, R1, 0);
2: load(R4, R2, 0);
3: and(R4, R5);
4: load(R6, R3, 0);
5: xor(R6, R4);
6: clear(opB) ;
7: load(R7, R2, 1);
8: and(R7, R5);
9: xor(R6, R7);

10: scrub(R4);
11: load(R4, R1, 1);
12: load(R5, R2, 0);
13: clear(opB) ;
14: and(R4, R5);
15: xor(R6, R4);
16: clear(opA) ;
17: scrub(R5);
18: load(R5, R3, 1);
19: xor(R6, R5);
20: store(R6, R0, 0);
21: clear(opW) ;
22: scrub(R4);
23: scrub(R5);
24: scrub(R7);
25: load(R5, R1, 1);
26: load(R4, R2, 1);

27: and(R4, R5);
28: load(R6, R3, 1);
29: xor(R6, R4);
30: clear(opB) ;
31: load(R7, R2, 2);
32: and(R7, R5);
33: xor(R6, R7);
34: scrub(R4);
35: load(R4, R1, 2);
36: load(R5, R2, 1);
37: clear(opB) ;
38: and(R4, R5);
39: xor(R6, R4);
40: clear(opA) ;
41: scrub(R5);
42: load(R5, R3, 2);
43: xor(R6, R5);
44: store(R6, R0, 1);
45: clear(opW) ;
46: scrub(R4);
47: scrub(R5);
48: scrub(R7);
49: load(R5, R1, 2);
50: load(R4, R2, 2);
51: and(R4, R5);
52: load(R6, R3, 2);

53: xor(R6, R4);
54: clear(opB) ;
55: load(R7, R2, 0);
56: and(R7, R5);
57: xor(R6, R7);
58: scrub(R4);
59: load(R4, R1, 0);
60: load(R5, R2, 2);
61: clear(opB) ;
62: and(R4, R5);
63: xor(R6, R4);
64: clear(opA) ;
65: scrub(R5);
66: load(R5, R3, 0);
67: xor(R6, R5);
68: store(R6, R0, 2);
69: scrub(R4);
70: scrub(R5);
71: scrub(R6);
72: scrub(R7);
73: clear(opA) ;
74: clear(opB) ;
75: clear(opR) ;
76: clear(opW) ;

26

A.3 Refreshing gadgets

Algorithm 9 FIRSTREF: Refreshing scheme at 1st order of security
Input: a = (a0, a1)
Output: c = (c0, c1), such that

c0 = a0 + rnd0

c1 = a1 + rnd0

1: load(R4, R1, 0); ▷ Load a0 into register r4
2: load(R5, R3, 0); ▷ Load rnd0 into register r5
3: xor(R4, R5); ▷ after XOR r4 contains a0 + rnd0
4: store(R4, R0, 0); ▷ Store the value of r4 as output share c0
5: clear(opW) ;
6: load(R6, R1, 1); ▷ Load a1 into register r6
7: xor(R6, R5); ▷ after XOR r4 contains a1 + rnd0
8: store(R4, R0, 1); ▷ Store the value of r4 as output share c1
9: scrub(R4);

10: scrub(R5);
11: scrub(R6);
12: clear(opA) ;
13: clear(opB) ;
14: clear(opR) ;
15: clear(opW) ;

Algorithm 10 SECREF: Refreshing scheme at 2nd order of security
Input: a = (a0, a1, a2)
Output: c = (c0, c1, c2), such that

c0 = a0 + rnd0

c1 = a1 + rnd1

c2 = a2 + rnd0 + rnd1

1: load(R4, R3, 0);
2: load(R6, R1, 0);
3: clear(opR) ;
4: load(R5, R3, 1);
5: xor(R6, R4);
6: store(R6, R0, 0);
7: clear(opW) ;
8: scrub(R6);
9: load(R7, R1, 1);

10: clear(opA) ;
11: xor(R7, R5);
12: store(R7, R0, 1);
13: clear(opW) ;
14: clear(opB) ;

15: xor(R4, R5);
16: scrub(R5);
17: clear(opB) ;
18: load(R5, R1, 2);
19: xor(R5, R4);
20: store(R5, R0, 2);
21: scrub(R4);
22: scrub(R5);
23: scrub(R6);
24: scrub(R7);
25: clear(opA) ;
26: clear(opB) ;
27: clear(opR) ;
28: clear(opW) ;

27

B Optimization with Proposition 3
In Algorithm 11, we give the concrete construction of how Proposition 3 is applied to the standard xor given
in Algorithm 7. We point out that we analyzed the worst-case scenario in Proposition 2, and in Algorithm 11,
a complete clear is not needed between the computation of each output share. Table 3 illustrates that all
observations never depend on two different shares of the same input and t–NI security holds with the same
arguments as in the proof.

Algorithm 11 Optimized addition scheme at nth order of security
Input: a = (a0, ..., an), b = (b0, ..., bn) and c = (c0, ..., cn)
Output: d = (d0, ..., dn), such that

di = ai + bi + ci, 0 ≤ i ≤ n

1: for (i = 0 to n) do
2: load(R5, R2, i);
3: load(R4, R1, i);
4: xor(R4, R5);
5: load(R5, R3, i);
6: xor(R4, R5);
7: store(R4, R0, i);
8: clear(opW) ;
9: scrub(R4);

10: end for
11: scrub(R5);
12: clear(opA) ;
13: clear(opB) ;
14: clear(opR) ;

Table 3: Observations captured in the ith loop iteration of Algorithm 11
Leakage effect line 2 line 3 line 4 line 5 line 6 line 7
Computation - - (ai + bi) (ai + bi + ci)

Transition (ci−1, bi) (pub, ai) (ai, bi, ai + bi) (bi, ci) (ai + bi, ci, ai + bi + ci)

Revenant (bi, ci−1) (bi, ai) (pub, ai)
(bi, bi),
(bi, ci)

(bi, ci)
(pub, ai + bi + qci),

(ci, ai + bi + ci)

28

C PRESENT Sbox

The PRESENT S-box S of the first order implementation, based on [CFE16], is expressed in the following
way:

S(x) = A(G(G(B(x))))

with the affine functions A and B:

A(x) =

1 0 1 0
0 1 0 0
1 0 0 0
1 0 1 1

 x⊕

0
1
0
1

 B(x) =

1 1 0 0
0 1 1 0
0 0 1 0
0 1 0 1

 x⊕

0
0
0
1

and the function G : {0, 1}4 7→ {0, 1}4

G(a, b, c, d) = (a′, b′, c′, d′)
a′ = a + bc + bd

b′ = d + ab

c′ = b

d′ = c + bd

C.1 first order

Algorithm 12 PRESENT s-Box at 1st order of se-
curity
Input: x = (x0, x1)
Output: y = (y0, y1), such that

y0 ⊕ y1 = A(G(G(B(x0 ⊕ x1))))

1: calcB();
2: calcG();
3: calcG();
4: calcA();

Algorithm 13 optimized PRESENT s-Box at 1st

order of security
Input: x = (x0, x1)
Output: y = (y0, y1), such that

y0 ⊕ y1 = A(G(G(B(x0 ⊕ x1))))

1: calcB_opt();
2: calcG_opt();
3: calcG_opt();
4: calcA_opt();

Algorithm 14 calcA: function A of the PRESENT s-Box at 1st order of security
Input: x = (x0, x1)
Output: y = (y0, y1), such that

y0 ⊕ y1 = A(x0 ⊕ x1)

1: firstxor(x0, x2, y0);
2: firstxorone(x1, y1);
3: firststore(x0, y2);
4: firstxor(x0, x2, y3);
5: firstxor(y3, x3, y3);
6: firstxorone(y3, y3);

29

Algorithm 15 calcB: function B of the PRESENT s-Box at 1st order of security
Input: x = (x0), (x1)
Output: y = (y0, y1), such that

y0 ⊕ y1 = B(x0 ⊕ x1)

1: firstxor(x1, x3, y3);
2: firstxorone(y3, y3);
3: firststore(x2, y2);
4: firstxor(x1, x2, y1);
5: firstref(y1, R3, 0, y1);
6: firstxor(x0, x1, y0);

Algorithm 16 calcG: function G of the PRESENT s-Box at 1st order of security
Input: x = (x0, x1)
Output: y = (y0, y1), such that

y0 ⊕ y1 = G((x0 ⊕ x1))

1: firstmult(bin, din, R3, dout);
2: firstmult(bin, cin, R3, aout);
3: firstxor(aout, ain, aout);
4: firstxor(aout, dout, aout);
5: firstxor(cin, dout, dout);
6: firstmult(ain, bin, R3, bout);
7: firstxor(bout, din, bout);
8: firststore(bin, cout);

30

Algorithm 17 calcA_opt: optimized function A of the PRESENT s-Box at 1st order of security
Input: x = (x0, x1)
Output: y = (y0, y1), such that

y0 ⊕ y1 = A(x0 ⊕ x1)

1: load(R4, R1, 0); ▷ Load a0 into register r4
2: store(R4, R0, 4); ▷ Store the value of r4 as output share c′

0
3: load(R5, R1, 4);
4: xor(R5, R4); ▷ after XOR r5 contains c0 + a0
5: store(R5, R0, 0); ▷ Store the value of r5 as output share a′

0
6: xor(R5, 0xFFFFFFFF); ▷ after XOR r5 contains c0 + a0 + 1
7: load(R6, R1, 6);
8: xor(R5, R6); ▷ after XOR r5 contains c0 + a0 + 1 + d0
9: store(R5, R0, 6); ▷ Store the value of r5 as output share d′

0
10: load(R5, R1, 2);
11: xor(R5, 0xFFFFFFFF); ▷ after XOR r5 contains b0 + 1
12: store(R5, R0, 2); ▷ Store the value of r5 as output share b′

0
13: load(R5, R1, 1); ▷ Load a1 into register r5
14: store(R5, R0, 5); ▷ Store the value of r5 as output share c′

1
15: load(R4, R1, 7);
16: xor(R4, R4); ▷ after XOR r4 contains c1 + a1
17: store(R4, R0, 1); ▷ Store the value of r4 as output share a′

1
18: load(R5, R1, 7);
19: xor(R4, R5); ▷ after XOR r4 contains c1 + a1 + d1
20: store(R4, R0, 7); ▷ Store the value of r4 as output share d′

1
21: load(R5, R1, 3); ▷ Load b1 into register r5
22: store(R5, R0, 3); ▷ Store the value of r5 as output share b′

1
23: scrub(R4);
24: scrub(R5);
25: scrub(R6);
26: clear(opA) ;
27: clear(opB) ;
28: clear(opR) ;
29: clear(opW) ;

31

Algorithm 18 calcB_opt: optimized function B of the PRESENT s-Box at 1st order of security
Input: x = (x0, x1)
Output: y = (y0, y1), such that

y0 ⊕ y1 = B(x0 ⊕ x1)

1: load(R4, R1, 2);
2: load(R5, R1, 6);
3: xor(R5, R4);
4: xor(R5, 0xFFFFFFFF);
5: store(R5, R0, 6);
6: load(R6, R1, 0);
7: xor(R6, R4);
8: store(R6, R0, 0);
9: load(R5, R1, 4);

10: xor(R4, R5);
11: load(R6, R3, 2);
12: xor(R4, R6);
13: store(R4, R0, 2);
14: store(R5, R0, 4);
15: load(R4, R1, 3);
16: load(R5, R1, 7);
17: xor(R5, R4);
18: store(R5, R0, 7);
19: load(R6, R1, 1);
20: xor(R6, R4);
21: store(R6, R0, 1);
22: load(R5, R1, 7);
23: xor(R4, R5);
24: load(R6, R3, 2);
25: xor(R4, R6);
26: store(R4, R0, 3);
27: store(R5, R0, 5);
28: scrub(R4);
29: scrub(R5);
30: scrub(R6);
31: clear(opA) ;
32: clear(opB) ;
33: clear(opR) ;
34: clear(opW) ;

32

Algorithm 19 calcG_opt: optimized function G of the PRESENT s-Box at 1st order of security
Input: x = (x0, x1)
Output: y = (y0, y1), such that

y0 ⊕ y1 = G(x0 ⊕ x1)

1: load(R4, R1, 2);
2: load(R6, R1, 5);
3: and(R6, R4);
4: load(R5, R1, 6);
5: and(R5, R4);
6: xor(R6, R5);
7: load(R7, R3, 0);
8: xor(R6, R7);
9: load(R7, R3, 1);

10: xor(R5, R7);
11: load(R7, R1, 4);
12: xor(R5, R7);
13: and(R7, R4);
14: xor(R6, R7);
15: load(R7, R1, 7);
16: and(R7, R4);
17: xor(R5, R7);
18: store(R5, R0, 6);
19: clear(opR) ;
20: load(R5, ain, 0);
21: xor(R6, R5);
22: and(R5, R4);
23: clear(opA) ;
24: xor(R6, R7);
25: store(R6, R0, 0);
26: load(R6, R1, 6);
27: clear(opB) ;
28: xor(R5, R6);
29: store(R4, R0, 4);
30: clear(opR) ;
31: load(R7, R1, 1);
32: and(R4, R7);
33: load(R7, R3, 2);
34: clear(opB) ;
35: xor(R5, R7);
36: clear(opB) ;
37: clear(opA) ;
38: xor(R5, R4);
39: store(R5, R0, 2);
40: load(R7, R1, 3);
41: load(R5, R1, 4);
42: and(R5, R7);
43: and(R6, R7);
44: xor(R5, R6);

45: load(R4, R3, 0);
46: clear(opB) ;
47: xor(R5, R4);
48: load(R4, R3, 1);
49: xor(R6, R4);
50: load(R4, R1, 5);
51: xor(R6, R4);
52: and(R4, R7);
53: xor(R5, R4);
54: load(R4, R1, 7);
55: and(R4, R7);
56: xor(R6, R4);
57: store(R6, R0, 7);
58: load(R6, R1, 1);
59: xor(R5, R6);
60: and(R6, R7);
61: clear(opA) ;
62: xor(R5, R4);
63: store(R5, R0, 1);
64: load(R5, R1, 7);
65: clear(opB) ;
66: xor(R6, R5);
67: store(R7, R0, 5);
68: scrub(R4);
69: clear(opR) ;
70: load(R4, ain, 0);
71: clear(opB) ;
72: and(R7, R4);
73: load(R4, R3, 2);
74: clear(opB) ;
75: xor(R6, R4);
76: clear(opB) ;
77: clear(opA) ;
78: xor(R5, R4);
79: store(R5, R0, 3);
80: scrub(R5);
81: scrub(R6);
82: scrub(R4);
83: scrub(R7);
84: clear(opR) ;
85: clear(opW) ;
86: clear(opA) ;
87: clear(opB) ;

33

C.2 second order

Algorithm 20 calcA_opt: optimized function A of the PRESENT s-Box at 2nd order of security
Input: x = (x0, x1, x2)
Output: y = (y0, y1, y2), such that

y0 ⊕ y1 ⊕ y2 = A(x0 ⊕ x1 ⊕ x2)

1: load(R4, R1, 0);
2: store(R4, R0, 6);
3: load(R5, R1, 6);
4: xor(R5, R4);
5: store(R5, R0, 0);
6: xor(R5, 0xFFFFFFFF);
7: load(R6, R1, 9);
8: xor(R5, R6);
9: store(R5, R0, 9);

10: load(R5, R1, 3);
11: xor(R5, 0xFFFFFFFF);
12: store(R5, R0, 3);
13: load(R5, R1, 1);
14: store(R5, R0, 7);
15: clear(opB) ;
16: load(R4, R1, 7);
17: clear(opB) ;
18: xor(R4, R5);
19: store(R4, R0, 1);
20: load(R5, R1, 10);
21: xor(R4, R5);
22: store(R4, R0, 10);

23: load(R5, R1, 4);
24: store(R5, R0, 4);
25: load(R5, R1, 2);
26: store(R5, R0, 8);
27: clear(opB) ;
28: load(R4, R1, 8);
29: clear(opB) ;
30: xor(R4, R5);
31: store(R4, R0, 2);
32: load(R5, R1, 11);
33: xor(R4, R5);
34: store(R4, R0, 11);
35: load(R5, R1, 5);
36: store(R5, R0, 5);
37: scrub(R4);
38: scrub(R5);
39: scrub(R6);
40: clear(opA) ;
41: clear(opB) ;
42: clear(opR) ;
43: clear(opW) ;

34

Algorithm 21 calcB_opt: optimized function B of the Present s-Box at 2nd order of security
Input: x = (x0, x1, x2)
Output: y = (y0, y1, y2), such that

y0 ⊕ y1 ⊕ y2 = B(x0 ⊕ x1 ⊕ x2)

1: load(R4, R1, 3);
2: load(R5, R1, 9);
3: xor(R5, R4);
4: xor(R5, 0xFFFFFFFF);
5: load(R6, R3, 0);
6: xor(R5, R6);
7: store(R5, R0, 9);
8: load(R6, R1, 0);
9: xor(R6, R4);

10: load(R5, R3, 2);
11: xor(R6, R5);
12: store(R6, R0, 0);
13: load(R5, R1, 6);
14: xor(R4, R5);
15: load(R6, R3, 4);
16: xor(R4, R6);
17: store(R4, R0, 3);
18: load(R6, R3, 6);
19: xor(R5, R6);
20: store(R5, R0, 6);
21: scrub(R4);
22: scrub(R5);
23: scrub(R6);
24: clear(opA) ;
25: clear(opB) ;
26: clear(opR) ;
27: clear(opW) ;
28: load(R4, R1, 4);
29: load(R5, R1, 10);
30: xor(R5, R4);
31: load(R6, R3, 1);
32: xor(R5, R6);
33: store(R5, R0, 10);
34: load(R6, R1, 1);
35: xor(R6, R4);
36: load(R5, R3, 3);
37: xor(R6, R5);

38: store(R6, R0, 1);
39: load(R5, R1, 7);
40: xor(R4, R5);
41: load(R6, R3, 5);
42: xor(R4, R6);
43: store(R4, R0, 4);
44: load(R6, R3, 7);
45: xor(R5, R6);
46: store(R5, R0, 7);
47: scrub(R4);
48: scrub(R5);
49: scrub(R6);
50: clear(opA) ;
51: clear(opB) ;
52: clear(opR) ;
53: clear(opW) ;
54: load(R4, R1, 5);
55: load(R5, R1, 11);
56: xor(R5, R4);
57: scrub(R6);
58: load(R6, R3, 0);
59: clear(opR) ;
60: load(R7, R3, 1);
61: clear(opB) ;
62: xor(R6, R7);
63: clear(opA) ;
64: clear(opB) ;
65: xor(R5, R6);
66: store(R5, R0, 11);
67: load(R6, R1, 2);
68: xor(R6, R4);
69: scrub(R5);
70: load(R5, R3, 2);
71: clear(opR) ;
72: load(R7, R3, 3);
73: clear(opB) ;
74: xor(R5, R7);

75: clear(opA) ;
76: clear(opB) ;
77: xor(R6, R5);
78: store(R6, R0, 2);
79: load(R5, R1, 8);
80: clear(opB) ;
81: xor(R4, R5);
82: scrub(R6);
83: load(R6, R3, 4);
84: clear(opR) ;
85: load(R7, R3, 5);
86: clear(opB) ;
87: xor(R6, R7);
88: clear(opA) ;
89: clear(opB) ;
90: xor(R4, R6);
91: store(R4, R0, 5);
92: scrub(R6);
93: load(R6, R3, 6);
94: clear(opR) ;
95: load(R7, R3, 7);
96: clear(opB) ;
97: xor(R6, R7);
98: clear(opA) ;
99: clear(opB) ;
100: xor(R5, R6);
101: store(R5, R0, 8);
102: scrub(R4);
103: scrub(R5);
104: scrub(R6);
105: scrub(R7);
106: clear(opA) ;
107: clear(opB) ;
108: clear(opR) ;
109: clear(opW) ;

35

Algorithm 22 calcG_opt: optimized function G of PRESENT s-Box at 2nd order of security
Input: x = (x0, x1, x2)
Output: y = (y0, y1, y2), such that

y0 ⊕ y1 ⊕ y2 = G(x0 ⊕ x1 ⊕ x2)

1: load(R4, R1, 3);
2: load(R5, R1, 10);
3: load(R6, R1, 5);
4: load(R7, R1, 1);
5: and(R5, R4);
6: and(R6, R4);
7: and(R7, R4);
8: xor(R6, R5);
9: load(R0, R3, 0);

10: xor(R5, R0);
11: load(R0, R3, 3);
12: xor(R6, R0);
13: load(R0, R3, 6);
14: xor(R7, R0);
15: load(R0, R1, 0);
16: xor(R6, R0);
17: and(R0, R4);
18: xor(R7, R0);
19: load(R0, R1, 6);
20: xor(R5, R0);
21: and(R0, R4);
22: xor(R6, R0);
23: load(R0, R1, 9);
24: xor(R7, R0);
25: and(R0, R4);
26: xor(R5, R0);
27: xor(R6, R0);
28: scrub(R0);
29: clear(opR) ;
30: load(R0, R3, 1);
31: clear(opA) ;
32: clear(opB) ;
33: xor(R5, R0);
34: load(R0, R3, 4);
35: xor(R6, R0);
36: load(R0, R3, 7);
37: xor(R7, R0);
38: load(R0, R1, 2);
39: and(R0, R4);
40: xor(R7, R0);
41: load(R0, R1, 8);
42: and(R0, R4);
43: xor(R6, R0);
44: load(R0, R1, 11);
45: and(R0, R4);

46: xor(R5, R0);
47: xor(R6, R0);
48: store(R6, R0, 0);
49: store(R7, R0, 3);
50: store(R4, R0, 6);
51: store(R5, R0, 9);
52: scrub(R0);
53: scrub(R5);
54: scrub(R6);
55: scrub(R4);
56: scrub(R7);
57: clear(opA) ;
58: clear(opB) ;
59: clear(opR) ;
60: clear(opW) ;
61: load(R4, R1, 4);
62: load(R5, R1, 11);
63: load(R6, R1, 8);
64: load(R7, R1, 2);
65: and(R5, R4);
66: and(R6, R4);
67: and(R7, R4);
68: xor(R6, R5);
69: load(R0, R3, 1);
70: xor(R5, R0);
71: load(R0, R3, 4);
72: xor(R6, R0);
73: load(R0, R3, 7);
74: xor(R7, R0);
75: load(R0, R1, 1);
76: xor(R6, R0);
77: and(R0, R4);
78: xor(R7, R0);
79: load(R0, R1, 5);
80: xor(R5, R0);
81: and(R0, R4);
82: xor(R6, R0);
83: load(R0, R1, 10);
84: xor(R7, R0);
85: and(R0, R4);
86: xor(R5, R0);
87: xor(R6, R0);
88: scrub(R0);
89: clear(opR) ;
90: load(R0, R3, 2);

91: clear(opB) ;
92: clear(opA) ;
93: xor(R5, R0);
94: load(R0, R3, 5);
95: xor(R6, R0);
96: load(R0, R3, 8);
97: xor(R7, R0);
98: load(R0, R1, 0);
99: and(R0, R4);
100: xor(R7, R0);
101: load(R0, R1, 6);
102: and(R0, R4);
103: xor(R6, R0);
104: load(R0, R1, 9);
105: and(R0, R4);
106: xor(R5, R0);
107: xor(R6, R0);
108: store(R6, R0, 1);
109: store(R7, R0, 4);
110: store(R4, R0, 7);
111: store(R5, R0, 10);
112: scrub(R0);
113: scrub(R5);
114: scrub(R6);
115: scrub(R4);
116: scrub(R7);
117: clear(opA) ;
118: clear(opB) ;
119: clear(opR) ;
120: clear(opW) ;
121: load(R4, R1, 5);
122: load(R5, R1, 9);
123: load(R6, R1, 6);
124: load(R7, R1, 0);
125: and(R5, R4);
126: and(R6, R4);
127: and(R7, R4);
128: xor(R6, R5);
129: load(R0, R3, 2);
130: xor(R5, R0);
131: load(R0, R3, 5);
132: xor(R6, R0);
133: load(R0, R3, 8);
134: xor(R7, R0);
135: load(R0, R1, 2);

136: xor(R6, R0);
137: and(R0, R4);
138: xor(R7, R0);
139: load(R0, R1, 8);
140: xor(R5, R0);
141: and(R0, R4);
142: xor(R6, R0);
143: load(R0, R1, 11);
144: xor(R7, R0);
145: and(R0, R4);
146: xor(R5, R0);
147: xor(R6, R0);
148: scrub(R0);
149: clear(opR) ;
150: load(R0, R3, 0);
151: clear(opB) ;
152: clear(opA) ;
153: xor(R5, R0);
154: load(R0, R3, 3);
155: xor(R6, R0);
156: load(R0, R3, 6);
157: xor(R7, R0);
158: load(R0, R1, 1);
159: and(R0, R4);
160: xor(R7, R0);
161: load(R0, R1, 5);
162: and(R0, R4);
163: xor(R6, R0);
164: load(R0, R1, 10);
165: and(R0, R4);
166: xor(R5, R0);
167: xor(R6, R0);
168: store(R6, R0, 2);
169: store(R7, R0, 5);
170: store(R4, R0, 8);
171: store(R5, R0, 11);
172: scrub(R0);
173: scrub(R5);
174: scrub(R6);
175: scrub(R4);
176: scrub(R7);
177: clear(opA) ;
178: clear(opB) ;
179: clear(opR) ;
180: clear(opW) ;

36

D TVLA report

Figure 7: Bivariate TVLA of the optimized 2nd order PRESENT S-Box executed on the KL82Z microcon-
troller. No significant leakage is detected for every pair of sample points on the x and y axis as the values
are far below the threshold of 4.5.

0 100 200 300 400 500 600 700 800
sample point

0

1

2

3

4

5

t-
st

at
ist

ic

STMF407, 20k Traces
STMF407, 4k Traces

Figure 8: Physical leakage is detected when the optimized 1st order PRESENT S-Box is executed on an
Arm Cortex M4F microcontroller despite being secure in our model for CM0+ and leakage free on two
CM0+ microcontrollers. The x axis represents sample points. A distinct fine-grained leakage model is
needed for this processor as there are clear signs of leakage at low number of traces. The three-stage pipeline
and three-address arithmetic logic unit of the CM4F are likely causing distinct leakage behavior, amenable
to future, fine-grained leakage models.

37

	Introduction
	Our Work
	Related Work

	Expressing Side-Channel Leakage
	A Domain Specific Language with Explicit Leakage
	Modeling Instruction Semantics
	Modeling Leakage

	Stateful (S)NI and Automated Verification
	Security Definitions
	Automated Verification
	Implementation

	Representative Proofs of Efficient Masking
	Hardened Masking
	Optimized Composition of Linear Gadgets
	Optimized Composition of Gadgets with Independent Inputs
	Case study: Masking the PRESENT S-Box
	Resilience in Practice

	Conclusion
	Basic algorithms
	Addition gadgets
	Multiplication gadgets
	Refreshing gadgets

	Optimization with Proposition 3
	PRESENT Sbox
	first order
	second order

	TVLA report

