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Abstract

A weak pseudorandom function F : K × X → Y is said to be ring key-homomorphic if, given F (k1, x) and
F (k2, x), there are efficient algorithms to compute F (k1 ⊕ k2, x) and F (k1 ⊗ k2, x) where⊕ and⊗ are the addition
and multiplication operations in the ring K, respectively. In this work, we initiate the study of ring key-homomorphic
weak PRFs (RKHwPRFs). In particular, we show that the following primitives can be constructed from any RKHwPRF:

• Multiparty non-interactive key exchange (NIKE) for an arbitrary number of parties.

• Indistinguishability obfuscation for all circuits inNC1.

Our proofs are in the standard model, and the proof for our iO scheme is program-independent. Our iO scheme can
also be bootstrapped to all polynomial-size circuits using standard techniques. We also consider restricted versions of
RKHwPRFs that are structurally weaker than a classic RKHwPRF but suffice for all our constructions. We show how
to instantiate these restricted RKHwPRFs from various multilinear maps and associated assumptions. Our framework
gives several new results, such as:

• The first iO scheme that relies only on SXDH over any asymmetric multilinear map without additional assump-
tions.

• The first iO scheme that relies only on DLIN (or more generally Matrix-DDH) over any (even symmetric)
multilinear map without additional assumptions.

• The first iO scheme that relies on SXDH over the multilinear map presented by Ma and Zhandry (TCC’18) (the
authors only presented a NIKE protocol in their paper). To our knowledge, this candidate multilinear map has
not been successfully cryptanalyzed, and the SXDH assumption plausibly holds over it.

Our analysis of RKHwPRFs in a sense completes the work initiated by Alamati et al. (EUROCRYPT’19) on
building cryptosystems from generic Minicrypt primitives with structure. With our results, almost all of the major
known cryptosystems can be built from a weak PRF with either a group or ring homomorphism over either the input
space or the key space. Thus, a major contribution of this work is advancing the study of the relationship between
structure and cryptography.
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1 Introduction
A long-standing line of work in the research of theoretical cryptography has been to build cryptosystems with

more functionalities from more structured mathematical assumptions. A major initial development in this direction
was the invention of public-key encryption (PKE) [RSA78, DH76]. Many years later, the development of pairing-
based cryptography allowed for more exciting constructions such as identity-based encryption [BF01] and three-party
noninteractive key exchange [Jou00], both of which were not known from previously studied assumptions. While
pairing-based cryptography needed stronger assumptions than previously known PKE schemes, the absence of classical
attacks over the past (almost) twenty years since the introduction of these assumptions has seemingly justified their
usage [MSS16].

Soon after pairing-based cryptography was developed, Regev introduced a new lattice-based assumption called
learning with errors (LWE) in his seminal paper [Reg05]. This enabled realizing even richer cryptographic functionalities.
Most notably, Gentry’s candidate construction of fully-homomorphic encryption (FHE) [Gen09] brought exciting new
possibilities for secure computation on the cloud. Follow-up works [BV11, Bra12, GSW13] introduced new techniques
that not only improved this construction, but also allowed us to build other interesting cryptographic functionalities.

In 2013, Garg, Gentry, and Halevi proposed the first candidate multilinear map construction [GGH13a] which
gained a lot of attention of the cryptographic community. Soon after, Garg et al. [GGH+13b] showed how to build
indistinguishability obfuscation (iO) [BGI+01] from multilinear maps. This was particularly notable since obfuscation
seemed to be the holy grail in terms of theoretical cryptographic functionality: virtually everything one might want to
build in a cryptosystem is possible with iO (and some other mild assumptions): functional encryption [GGH+13b],
multi-party noninteractive key exchange [BZ14], and much more [SW14, GGHR14, HSW14, BP15].

All of these applications spurred a huge interest in building graded encodings1 and iO from more standard
assumptions and using more efficient constructions. In a short time, other candidate graded encoding schemes [CLT13,
GGH15] and even direct iO constructions [Zim15, AB15] were proposed. Unfortunately, several of these candidate
constructions were cryptanalized, starting with the work of Cheon et al. [CHL+15] on the cryptanalysis of the multilinear
map defined in [CLT13]. More attacks on iO constructions followed [MSZ16, HJ16, CLLT16], breaking all of the
original graded encoding schemes.

Naturally, people attempted to improve existing constructions to be immune to these attacks [CLT15, BMSZ15,
GMM+16], but many of these improved constructions were also shown to be vulnerable to attacks [MSZ16, CGH17].
As far as we know, there is only one currently unbroken published multilinear map [MZ18] and it is not known to imply
iO.2

A series of relatively recent works [Lin16, LV16, LT17, AS17] showed how to reduce the degree of multilinearity
needed in a multilinear map in order to build iO using novel techniques such as local PRGs. In fact, in [LT17], the authors
showed a construction from bilinear maps and 2-blockwise local PRGs, which seemingly paved the way for a secure iO
construction. However, Lombardi and Vaikuntanathan [LV17] and Barak et al. [BBKK18] independently showed that
2-blockwise local PRGs could never be constructed securely, unfortunately implying that such iO constructions are not
secure.

More recent works [Agr19, AM18, AJL+19, JLMS19] have used a number of interesting and novel new techniques,
including using perturbation resilient generators.3 While these constructions provide many new insights, they are still
based on less studied assumptions, and we would like to achieve the “holy grail” of constructing iO from standard
cryptographic assumptions. Indeed, the fact that more recent, novel iO assumptions such as (most) multilinear maps
and 2-blockwise local PRGs have been broken has caused some consternation in the wider cryptographic community
about the plausibility of iO. Bishop et al. summarized this sentiment in [BKM+19].

In this paper, we study iO in a way that differs from the traditional approach of directly proposing more assumptions
and constructions (although we certainly agree that this traditional approach has plenty of merit). While others have
related iO to primitives such as functional encryption [AJ15, BV15] and constraint-hiding constrained PRFs [CC17,
BKM17], our approach is motivated by questions such as: what sort of mathematical structure is seemingly sufficient

1Graded encodings are generalizations of multilinear maps.
2Martin Albrecht and Alex Davidson have created a website on attacks related to graded encodings and iO constructions [Alb19]. Although it is

not completely up to date, we refer the reader to this website for more information on concrete iO constructions and attacks.
3We refer the reader to [HB15] for a survey of multilinear maps and iO.
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for realizing iO? It is our hope that studying the complexity of iO can help us to either build or rule out constructions of
iO from certain assumptions. Due to the promise that iO offers in terms of cryptographic applications, we think this is a
very worthwhile goal in theoretical cryptography.

1.1 Structure and Cryptography
It has long been assumed by many in the cryptographic community that there is some kind of relationship between
mathematical structure and public-key cryptography. Barak [Bar17] has frequently ruminated on this topic. Very recently,
this was formalized in a work by Alamati et al. [AMPR19] that focused on the relationship between mathematical
structure and cryptographic functionality.

In [AMPR19], the authors showed that applying input homomorphisms to simple primitives in Minicrypt like weak
PRFs allows us to build many primitives in Cryptomania. For instance, a simple group input-homomorphic weak
pseudorandom function (IHwPRF) can be used to build most of the cryptosystems that we know how to build from the
DDH assumption, and a ring input-homomorphic weak PRF, with some restrictions, is equivalent to FHE. The authors
do consider structured functions that are equivalent to bilinear/multilinear maps in the form of “`-composable input
homomorphic functions,” but their definitions are unsatisfactory since they almost mimic multilinear maps.

In a follow-up work [AMP19], Alamati et al. considered simple primitives with structured secrets. While
this work has some novel insights on key homomorphisms [NPR99, BLMR13] over simple primitives, it does not
consider higher-order applications like multilinear maps or iO. So despite all of the recent work studying mathematical
structure in cryptography, there is very little to show on iO and related primitives like multi-party non-interactive key
exchange (NIKE). This is despite the fact that, in our opinion, iO is the most important primitive for which we need to
study the required mathematical structure, because a good formalization of the structure required for iO would hopefully
allows us more insights on the security of constructions (or, perhaps more pessimistically, negative results).

So the question remains: can we come up with simple, structured primitives that imply iO, thus providing more
insight on the kind of assumptions (or mathematical structure) that are seemingly sufficient to realize iO?

1.2 Our Contributions
We answer this question in the affirmative. We define new, simple primitives called ring key-homomorphic weak pseudo-
random functions (RKHwPRF) and ring-embedded homomorphic sysnthesizers (RHS). Ring-embedded homomorphic
synthesizers are, informally, a substantially weaker form of RKHwPRF where an adversary doesn’t get to see the input
values to the weak PRF (we define these primitives formally later in the paper). We show how to build iO from a generic
RHS (even in the presence of some structural restrictions), and also show that any graded encoding or multilinear
map that satisfies some basic assumptions can be used to build a (restricted) RHS. Along the way we discover several
different interesting observations on the relationship between ring structure and cryptographic primitives. We outline
this in the rest of this section. We refer to Figure 1 for a (simplified) overview of our results.

Definitions. We begin the technical content of our paper by defining several new primitives, including ring key-
homomorphic weak PRFs and ring homomorphic synthesizers.

As an example, we informally say that a weak PRF is ring key-homomorphic if, for some weak PRF F : K×X → Y
such that both the keyspace (K,⊕,⊗) and the output space (Y,�,�) are rings with efficiently computable ring
operations, the following hold:

F (k1, x)� F (k2, x) = F (k1 ⊕ k2, x) ,

F (k1, x)� F (k2, x) = F (k1 ⊗ k2, x) .

We refer to the above definition as a “classic” ring key-homomorphic weak PRF. We can further generalize this
definition to cover a number of additional situations. All of our constructions accommodate approximate (or bounded)
homomorphisms like in lattice-based assumptions. We can also handle cases (like in graded encodings or asymmetric
multilinear maps) where we have “slots” for elements, and the elements must be multiplied in a certain order. In
addition, our constructions allow for what we call “partial” RKHwPRFs where we sacrifice determinism and use some
randomness in order to ensure security.
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Figure 1: Implications of symmetric primitives with ring homomorphism

Furthermore, our constructions and definitions work for the case where the output space is a ring embedding:
namely, the output space itself does not have an efficient multiplication algorithm and instead multiplication is carried
out by some other algorithm. For instance, bilinear groups are examples of ring embeddings. We fully explain these
definitions in more detail later in the paper.

Our definitions can also be extended in the context of pseudorandom synthesizers. Recall that, informally, a
pseudorandom synthesizer is a two-input function S (·, ·) parameterized by two sets X andW such that on random
inputs (x1, ...., xm) ∈ Xm and (w1, ..., wn) ∈ Wn, the matrix M defined using all mn values of S such that
S (xi, wj) = Mij is indistinguishable from random. Synthesizers were introduced by Naor and Reingold in [NR95],
where they proved that any secure pseudorandom synthesizer could be used to build a PRF with logarithmic depth in
terms of the number of synthesizer evaluations.

We extend these definitions of synthesizers to require that a ring homomorphism hold over one of the coordinates of
the synthesizer; in other words, for any x ∈ X and any w,w′ ∈ W , we have

S (x,w)� S (x,w′) = S (x,w ⊕ w′) ,

S (x,w)� S (x,w′) = S (x,w ⊗ w′) .

Our definition of ring-embedded homomorphic synthesizer (RHS) weakens these requirements even further by
requiring that the homomorphism holds only with respect to addition, and that multiplication can be efficiently done
only on the output space of the synthesizer; in other words, we do not actually require the multiplicative homomorphism.
It is straightforward to see that a ring-embedded homomorphic synthesizer is implied by any ring-homomorphic
synthesizer as defined above, which in turn is implied by any ring key-homomorphic weak PRF (RKHwPRF). We can
further generalize RHSs in the same ways we generalize RKHwPRFs. We refer the reader to Section 3 for the formal
definitions.

Multi-Party NIKE from RHS. Our first result is a construction of multi-party noninteractive key exchange from a
ring-embedded homomorphic synthesizer. As we have suggested already, our construction also immediately implies a
construction from a RKHwPRF. We elaborate more on this result in our technical overview, Section 2.

Building iO from RHS. Our second result is a construction of iO (for NC1) from a ring-embedded homomorphic
synthesizer. More concretely, we show how to build an input-activated iO from any RHS, which in turn implies standard
iO due to [GLSW15]. Our construction is inspired by the [GLSW15] construction. To prove security, we only rely on
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the security of the RHS and do not need any other assumptions, except if we want to extend past NC1 functions; in the
latter case, we also need FHE [GGH+13b].

Our iO construction is built from a program-independent assumption (the security of the RHS) and is in the standard
model.1 We do not restrict the adversary to any specific kind of attacks.

We develop many new techniques for dealing with noncommutative rings in our construction and proof. Our
techniques depart significantly from those used in existing iO constructions based on multilinear maps/graded encodings,
since these constructions are typically based on hardness assumptions over commutative rings. We believe that these
techniques are of independent interest and would hopefully enable building other cryptoprimitives over generic rings.

iO from SXDH on Multilinear Maps. Gentry et al. show that a generic multilinear map that satisfies the multilinear
subgroup elimination assumption implies iO in their seminal work [GLSW15].

In our work, we show that a generic multilinear map that satisfies the SXDH assumption implies a “slotted”
RKHwPRF, which implies an iO construction. Thus, we show that multilinear maps where SXDH holds can be used to
build iO, generalizing the result of [GLSW15] to a wider class of multilinear maps. To our knowledge, previous work
that built iO from multilinear maps assuming SXDH [Lin17, LT17] required other assumptions, such as blockwise-local
PRGs and subexponentially secure LWE.

iO from Matrix DDH on Multilinear Maps. Most iO constructions rely on asymmetric multilinear maps that
inherently impose certain restrictions on the ability to pair elements from different groups. In this work, we propose
new techniques to build iO from relatively mild assumptions over any multilinear map (including symmetric ones).

More concretely, we show that any multilinear map where DLIN (and more generally the matrix DDH family of
assumptions [EHK+13]) holds can be used to build a slotted partial RKHwPRF. To our knowledge, this implies the first
construction of iO from any multilinear map assuming only DLIN (or matrix-DDH) without any additional assumptions.

iO from “The MMap Strikes Back” Multilinear Map. In [MZ18], Ma and Zhandry propose a candidate multilinear
map construction based on repeated instances of the [CLT13] multilinear map construction. To our knowledge, this
paper contains the only published multilinear map which has not been successfully cryptanalyzed.2 However, the
construction is substantially less structured than previous graded encodings, and Ma and Zhandry are only able to
construct NIKE using their multilinear map–they leave iO as an open problem.

In this work, we show how to build a slotted “partial” RKHwPRF based on the multilinear map construction in
“The MMap Strikes Back.” Assuming SXDH holds over this multilinear map (which, as far as we know, is unbroken so
far), we can construct a secure slotted partial RKHwPRF, which is sufficient to realize a secure iO construction. To our
knowledge, this would be the only non-cryptanalyzed construction of iO from a multilinear map.

We think that this construction is an excellent example of the power of our techniques: the [MZ18] construction is
very unstructured, and previously existing methods for building iO from graded encodings require much more structure
than this construction has. However, the unstructured nature of (slotted, partial) RKHwPRFs allows us show that such a
graded encoding does, in fact, imply a (slotted, partical) RKHwPRF, which means we can get an iO construction.

Multilinear Map, iO, and RKHwPRF Equivalence. We have already discussed a multitude of papers that build
iO from multilinear maps. However, a recent line of work [AFH+16, FHHL18] has focused on the converse: namely,
showing how to build multilinear maps from iO. In particular, [FHHL18] constructs a multilinear map where the
multilinear DDH (MLDDH) assumption holds from iO.

In a more recent work, Alamati et al. [AMP20] showed how to build multilinear maps endowed with most of the
well-known (prime order) “source group” assumptions from subexponentially secure iO and some other (relatively)
standard assumptions. In particular, they showed how to build an SXDH-hard multilinear map with randomized
encodings. Since we show in this work that such a multilinear map implies a slotted partial RKHwPRF, it follows that,
assuming subexponential security and standard assumptions, a slotted partial RKHwPRF can be built from iO itself.

1As discussed in [GLSW15], the reduction from a program-independent assumption seems to inherently imply an exponential security loss.
2We note that there are maps like [BGMZ18] which have been cryptanalyzed [CCH+19] but, to our knowledge, not necessarily broken in all

possible parameter regimes.
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This implies that, modulo subexponential security and standard assumptions, (slotted partial) RKHwPRFs are
in a sense “iO-complete”, and can be built from other primitives known to imply iO, e.g., compact functional
encryption [AJ15, BV15] and, from a more recent work, split FHE [BDGM20]. Thus, RKHwPRFs both imply and are
implied by a very wide range of (subexponentially secure) powerful primitives (note that subexponential security a
common requirement for reductions in this space, e.g., constructions of iO from compact FE [AJ15, BV15]).

Field-Homomorphic Synthesizers Are Impossible. Given the implication that a RHS is sufficient to realize iO,
it is natural to ask whether it is possible to have a stronger version of a RHS where the output space is a field with
efficiently computable field operations (we call such a primitive a field-embedded homomorphic synthesizer, or FHS in
short). We answer this question in negative by showing that there is no secure FHS. Since an FHS is implied by a field
key-homomorphic weak PRF (FKHwPRF), it follows that there is no secure FKHwPRF as well.

Previously, Maurer and Raub [MR07] showed that field-homomorphic one-way permutations were impossible, and
our work extends this result. Moreover, it seems unlikely that our attacks here can be extended to the ring case. In
particular, it is not known how to compute kernels or inverses over general rings, which makes our attack on fields
infeasible to trivially extend to rings. We refer the reader to [ADM06, Jag12, YYHK18] for discussions on the hardness
of computing inverses/kernels over generic rings and its implications.

It is easy to see that this negative result does not apply to multilinear maps since the number of multiplication
operations over the output space is apriori bounded by the degree of multilinearity and inverses are infeasible to compute
over the output space.

New Separation Results. Our findings have interesting implications in terms of separation results. Garg et al. [GMM17]
showed that certain powerful “all-or-nothing” primitives, e.g., witness encryption and FHE, cannot be used in a
black-box manner to construct iO. In this work, we show that ring-embedded homomorphic synthesizers (and ring
key-homomorphic weak PRFs) imply iO in a black-box manner, thereby ruling out black-box constructions of these
generic primitives with structure from witness encryption and FHE.

As a side note, in [AMPR19] the authors show that FHE implies ring input-homomorphic weak PRFs (RIHwPRFs)
with certain restrictions. Our results thus also rule out the possibility of building RHS (and RKHwPRFs) in a black-box
manner from such restricted RIHwPRFs.

Outline. The rest of the paper is organized as follows. Section 2 provides an overview of our techniques. Section 3
provides preliminary background material. Section 4 presents the construction and proof of multiparty NIKE from RHS.
Section 5 presents the construction of iaiO for NC1 from RHS. Section 6 introduces our subspace hiding assumption,
and Section 7 proves the security of our iaiO construction based on this assumption. Sections 8 and 9 prove the subspace
hiding assumption. Section 13 rules out the existence of field-homomorphic synthesizers. Sections 11 and 13 formally
define slotted RKHwPRFs and slotted partial RKHwPRFs, and show how to instantiate them from various multilinear
maps and associated assumptions. Finally, Section 14 presents conclusing remarks and open questions.

2 Technical Overview
In this section, we explain the intuition behind our constructions and proofs at a high level. We refer to the remainder of
the paper (where the formal definitions and proofs are located) as appropriate. We will generally write all of our results
in this section in terms of ring key-homomorphic weak PRFs (RKHwPRFs) in order to simplify our arguments, although
our results will also follow from a substantially weaker primitive, namely ring-embedded homomorphic synthesizers.

2.1 Definitions and Intuition
Recall that we informally say that a weak PRF is ring key-homomorphic if, for some weak PRF F : K ×X → Y with
both keyspace (K,⊕,⊗) and output space (Y,�,�) rings with efficiently computable ring operations, the following
hold:

F (k1, x)� F (k2, x) = F (k1 ⊕ k2, x) ,
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F (k1, x)� F (k2, x) = F (k1 ⊗ k2, x) .

We call this a classic RKHwPRF. We write our proofs and constructions using these classic RKHwPRFs. However,
in many cases, some of the underlying objects (say, graded encodings or multilinear maps) for which we want to
construct iO or NIKE do not quite fit into the framework of a classic RKHwPRF. To accomodate this, we consider more
generic versions of the definition of an RKHwPRF. We note that all of the proofs and constructions work in essentially
the same way for all versions of the definitions we provide here.

Slotted RKHwPRFs. Suppose we consider an asymmetric bilinear map where the symmetric external Diffie-Hellman
(SXDH) assumption holds. Let e : G1 ×G2 → GT be an asymmetric efficiently computable non-degenerate bilinear
map with “source groups” G1 and G2, and target group GT , where each group is order q (assumed prime). Also, let X
be a set of size q such that there exist efficiently computable “encoding functions”:

H1 : X → G1, H2 : X → G2, HT : X → GT ,

such that for any x ∈ X , we have
HT (x) = e(H1(x), H2(x)).

Note that we can create such functions by setting H1 and H2 to be efficiently computable bijections, and letting HT

be the bilinear map evaluation of their output.
Now, for i ∈ {1, 2, T}, define the function Fi : Zq ×X → Gi as:

Fi(k, x) = Hi(x)k.

Note that assuming SXDH holds (implying that DDH is hard over each individual source group G1 and G2, and
hence, over the target group GT ), we can state the following:

• If the “encoding functions” H1 and H2 are modeled as bijections, each Fi for i ∈ {1, 2, T} is a weak PRF.

• Each Fi for i ∈ {1, 2, T} is homomorphic with respect to addition. More concretely, for any k1, k2 ∈ Zq and for
any x ∈ X , we have:

Fi(k1 + k2, x) = Fi(k1, x) · Fi(k2, x).

This gives us a set of related group key-homomorphic weak PRFs. However, defining ring-homomorphism is tricky,
since none of G1, G2 and GT are necessarily equipped with efficiently computable multiplication operations (in fact,
for some of these groups, such an operation may not even be properly defined).

However, note that we can use the bilinear map e to “simulate” a single multiplication operation as follows: for any
k1, k2 ∈ Zq and for any x ∈ X , define the following operation:

F1(k1, x)� F2(k2, x) := e(F1(k1, x), F2(k2, x)).

It is easy to see that F1(k1, x) � F2(k2, x) = FT (k1 · k2, x). While such a construction does not formally meet
the definition of a “classic” RKHwPRF, it does give us something that seemingly provides the same functionality of
an RKHwPRF. We can thus view the ensemble {F1, F2, FT } as a 2-“slotted”-RKHwPRF, that supports unbounded
addition operations and a single multiplication operation, with the added restriction that a multiplication is only allowed
between elements from G1 (which constitutes “slot-1” of the output space) and G2 (which constitutes “slot-2” of the
output space), while no multiplications involving elements from GT (which constitutes “slot-2” of the output space) are
allowed.

Note that for the multiplicative homomorphism to hold in “slotted” RKHwPRFs, we need to ensure that we can
provide outputs on the same inputs across all slots (where each “slot” has a different key); in other words, a “slotted”
RKHwPRF resembles a collection of parallel-secure weak PRFs. We formalize slotted RKHsPRFs using notion of
“interval encodings” [MZ18]. In a nutshell, slotted RKHwPRFs are essentially classic RKHwPRFs with the following
restrictions:

1. The elements in the output space are divided into n singleton “slots” or intervals [i] for i ∈ [1, ..., n].
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2. The output space of any PRF in this family is not equipped with an efficient multiplication algorithm by itself.
Instead multiplication is “simulated” by using the graded encoding operation.

3. Elements in adjacent intervals [i, j], [j + 1, k] can be multiplied, getting a new element in the interval [i, k]. This
requires the use of a graded encoding multiplication operation.

4. Two elements in the same interval can be added together (as usual), but elements not in the same interval cannot
be added.

5. Unlike the standard notion of RKHwPRFs where one can perform unbounded many multiplication operations in
the output space, the number of allowed multiplications in the output space of n-“slotted”-RKHwPRFs is upper
bounded by (n− 1), where n is the degree of multilinearity of the underlying asymmetric multilinear map. Note
that the number of allowed additive operations is still unbounded.

We note that, like most other iO constructions using high-degree multilinear maps, we require that we can incre-
mentally evaluate multiplications on the multilinear maps, so our constructions would not work for any (hypothetical)
multilinear maps that only allow “one-shot” pairings of all n elements together to a final element in the target group. No-
tably, some constructions using low-degree multilinear maps and working through functional encryption [Lin17, AS17]
do not have this restriction and only require “one-shot” pairings.

Applications of Slotted RKHwPRFs. It turns that all of the constructions presented in this paper can be realized not
only from RKHwPRFs but also from n-“slotted”-RKHwPRFs, where the choice of parameter n would depend on the
corresponding construction. For example, in the construction of multiparty key-exchange, it suffices to set n = N − 1,
where N is the number of involved parties. Similarly, for our iO construction, it suffices to set n = L+N − 1, where
L is the depth of the permutation branching program corresponding to the circuit to be obfuscated and N is the number
of input variables.

Correctness and security of our RKHwPRF constructions hold immediately for slotted RKHwPRFs for (mainly)
one reason: the multiplications of ring elements in all of our constructions are done in a fixed order that is independent
of the input and set in advance. Fundamentally, for our constructions a slotted RKHwPRF is no different than a standard
one, but the more general construction lets us capture more instantiations.

In Section 11, we show that any asymmetric multilinear map of degree n where the SXDH assumption holds implies
a family of n-“slotted”-RKHwPRFs. Coupled with our iO construction from RKHwPRFs, this allows us to achieve iO
from a multilinear map where SXDH holds. The analysis is very similar to what we have discussed above for bilinear
maps.

Slotted Partial RKHwPRFs. In Section 12, we consider a variation of slotted RKHwPRFs to take into account
multilinear maps with “noisy” encodings [CLT13, MZ18]. We call this variation slotted “partial” RKHwPRFs, and show
how to instantiate it from any multilinear map with noisy encodings where the SXDH assumption holds. Our definitions
of slotted partial RKHwPRFs are similar in flavor to the definitions of “almost” key-homomorphic PRFs in [BLMR13],
albeit with an additional zero test.1 All of our constructions also follow from slotted “partial” RKHwPRFs.

In Section 12, we also show how to build slotted partial RKHwPRFs from either of the following assumptions:
(a) the SXDH assumption over the asymmetric multilinear map of Ma and Zhandry [MZ18], and (b) DLIN (or more
generally, matrix-DDH) over any (possibly symmetric) multilinear map. Below, we present some of the ideas behind
the second construction.

Let e : G× . . .×G→ GT be a symmetric N -linear map such that the matrix DDH assumption (with appropriate
dimension parameter m > N ) holds over the group G. To begin with, observe that the function F : Zm×mq ×Gm×m →
Gm×m defined as

F (K, gX) = gXK,

is a weak PRF. This weak PRF is additively key-homomorphic, but the non-commutativity of matrix multiplication
presents an obstacle to achieving multiplicative key-homomorphism via the pairing operation.

1Note that evaluating a classical/slotted RKHwPRF on any input using the key k = 0K trivially results in a zero output, which can be used as a
zero test. Since this is not the case when the homomorphism is partial, we need an explicit zero test.

8



In order to address this, we resort to designing a slotted weak PRF family with additional correlated randomness
between “adjacent” interval-slots. At a high level, for a given input x, a weak PRF in the slot [i, j] for i ≤ j ≤ 2 has the
following form:

Fi,j((K,φi,(j+1)), x) = g
A(x,i)KA−1

(x,(j+1)) ,

where φi,(j+1) is a specially structured random secret used to generate the random matrices Ax,i and Ax,j+1 in Zm×mq .
We refer the reader to Section 12 for the proof of weak pseudorandomness based on the matrix DDH assumption.

Note that in this formulation, we can exploit the common random terms between “adjacent” slots-pairs ([i, j], [j +
1, `]) to achieve multiplicative homomorphism, albeit over “part” of the secret key. Nonetheless, as we explain in
Section 12, such a slotted “partial” RKHwPRF suffices for our constructions.

2.2 Key Homomorphism and Subset Sum
The starting point of our work is the main technique from [AMP19], where the authors observe that “repeated” random
subset sums (i.e., subset sums computed over different sets of elements using the same random subset) over the output
space of a KHwPRF are indistinguishable from uniformly random elements. This may sound counterintuitive, but
follows from a relatively simple observation. Let F := K × X → Y be a KHwPRF where (K,⊕) and (Y,�) are
groups with efficient group operations. Suppose b is a random binary string of length n. Now consider the following
sum over the set of KHwPRF outputs, for randomly chosen keys ki and a random inputs xj , where if bi is one we
include the ith row in our sum, and if bi is zero, we do not:

b1 [ F (k1, x1) F (k1, x2) F (k1, x3) ... F (k1, xm) ]
b2 [ F (k2, x1) F (k2, x2) F (k2, x3) ... F (k2, xm) ]
... ... ... ... ... ... ...

� bn [ F (kn, x1) F (kn, x2) F (kn, x3) ... F (kn, xm) ]
F (k′, x1) F (k′, x2) F (k′, x3) ... F (k′, xm)

Note that if n > 3 log |K|, then k′ is distributed statistically close to random by the leftover hash lemma [IZ89]. This
means that the resulting sums–which are valid PRF outputs–are computationally indistinguishable from random even if
m >> n due to the security of the KHwPRF; in other words we can repeatedly subset sum using the same random
subset arbitrary (polynomially) many times and still produce pseudorandom group elements–assuming the binary vector
b is hidden, the whole ensemble of PRF outputs above will be indistinguishable from random. In addition, we note that,
since KHwPRF outputs are indistinguishable from random in the output space Y , the above arguments apply not just to
KHwPRF outputs but also randomly sampled elements in Y as well.

In [AMP19], the authors use this technique to show that KHwPRFs imply PKE and other asymmetric primitives
in Cryptomania, but that is the extent of their application. It turns out that if we generalize to RKHwPRFs, we can
considerably increase the power of this technique.

2.3 Ring Homomorphism and Subset Sum
Now suppose we modify our weak PRF F to be an RKHwPRF, with the keyspace (K,⊕,⊗) and output space (Y,�,�)
having efficiently computable ring operations. Suppose that we consider a matrix of wPRF outputs

Kx =

F (k1,1, x) F (k1,2, x) F (k1,3, x) ... F (k1,n, x)
F (k2,1, x) F (k2,2, x) F (k2,3, x) ... F (k2,n, x)

... ... ... ... ...
F (kn,1, x) F (kn,2, x) F (kn,3, x) ... F (kn,n, x)

where we have made Kx square. If we have some other matrix Sx ∈ Yn×n sampled in exactly the same way, then, by
the ring key-homomorphism, the product SxKx is well-behaved: the (i, j)th entry of SxKx is just F (k̃, x), where k̃ is
the (i, j)th entry of the products of the matrices of the corresponding keys of Sx and Kx respectively.
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We now illustrate a consequence of this observation. Suppose that we sample matrices S1
x, ...,S

m
x ∈ Yn×n with

independent keys as described above. Then the tuple


S1
x

S2
x

...
Smx

 ,


S1
x

S2
x

...
Smx

 [Kx]


is indistinguishable from random. This follows from a similar argument that was used to show that subset sums with
reused randomness are hard for KHwPRFs. We develop new techniques to be able to move from repeated subset sums
over groups to matrix multiplications over rings while retaining the pseudorandomness of the final elements. Concretely,
the intuition behind our proof techniques is as follows:

Step 1: Apply the leftover hash lemma to argue that the dot product of two random vectors over the keyspace of an
RKHwPRF results in a key that is statistically indistinguishable from random. This step is conceptually similar to the
first step in the previous proof, where we used the leftover hash lemma to argue that a single subset sum over a vector of
KHwPRF keys using a random subset results in a key that is statistically indistinguishable from random. In the ring
setting, we esentially shift from using subset sums to using general ring-linear sums, while still retaining the ability to
invoke the leftover hash lemma when required.

Step 2: Invoke the security of the RKHwPRF to expand from vector dot products to matrix products, while retaining
computational indistinguishability from random. Again, this step is conceptually similar to the second step in the
previous proof, where we invoked the security of the KHwPRF to go from a single subset sum to repeated subset sums,
while retaining computational indistinguishability from random.

Once again, due to the fact that our wPRF outputs must be indistinguishable from random, we can work with random
elements in the output ring Y rather than outputs of the RKHwPRF itself, and the output will still be indistinguishable
from random. In other words, we prove the following claim: for random matrices R ∈ Ym×n and T ∈ Yn×k, the tuple
(R,RT) is indistinguishable from random even if m >> n and k >> n. This turns out to be a very powerful technical
tool that we use extensively in all our constructions, including those based on the significantly weaker primitive, namely
ring-embedded homomorphic synthesizer.

Our techniques extend naturally in the context of “slotted” RKHwPRFs, even though the output space for the same
is not an explicit ring. We essentially simulate multiplication operations over the output space of a “slotted” RKHwPRF
using machinery provided by multilinear maps. Note that the key space for a “slotted” RKHwPRF is still a ring, which
allows us to invoke the leftover hash lemma for ring-linear sums over this space. Finally, we can invoke the weak
pseudorandomness properties of the RKHwPRF to argue that repeated wPRF evaluations using the same ring-linear
sum over the key space results in elements that are computationally indistinguishable from uniform.

2.4 Multiparty Noninteractive Key Exchange
Our first construction involves building noninteractive key exchange from RHS (in this overview, we will assume an
RKHwPRF for ease of exposition). This construction is relatively simple and relies on our new technique to show the
hardness of distinguishing simple matrix products over RKHwPRF output spaces from random. In this overview, we
will focus on the 3-party case instead of the N -party case for simplicity. The intuition for the N -party case follows
similarly.

Given an RKHwPRF F : K × X → Y , we first fix parameters m > 3 log|K| and n > 6m2 log(|Y|). Let
R = Mm(Y) denote the ring of all m by m square matrices over Y . We remark that log(|Rn×n|) is polynomial in the
security parameter, and hence elements ofRn×n can be represented using polynomially many bits.

Our public parameters for 3-party NIKE are going to be two matrices R(1) and R(2) sampled uniformly at random
fromRn×n, whereR is the matrix ring as defined above. Our proposed protocol works as follows:

Alice Bob Charlie
Sample SA ← Rn×n Sample SB ← Rn×n Sample SC ← Rn×n

Publish PA = SAR
(1) Publish P

(1)
B = R(1)SB Publish PC = R(2)SC

P
(2)
B = SBR

(2)
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The final shared secret is S := SAR
(1)SBR

(2)SC . Alice/Bob/Charlie can compute the final secret S as

S = SAR
(1)SBR

(2)SC = SAP
(1)
B PC (Alice)

= PASBPC (Bob)

= PAP
(2)
B SC (Charlie).

While the construction is relatively simple, the security proof is more involved (in particular, when generalizing to
an arbitrary number of parties). We need to show that the following tuples are indistinguishable from each other:(

R(1),R(2),SAR
(1),R(1)SB ,SBR

(2),R(2)SC ,SAR
(1)SBR

(2)SC

)
,(

R(1),R(2),SAR
(1),R(1)SB ,SBR

(2),R(2)SC ,U
)
,

where U is a uniformly sampled matrix inRn×n.
It follows from the assumption that F is an RKHwPRF that the tuples

(
R(1),SAR

(1)
)

and
(
R(1),TA

)
are

indistinguishable for some random matrix TA inRn×n. We can apply a similar line of argument to the term containing
SC as well. Thus, we can reduce our above assumption to distinguishing between the following tuples:(

R(1),R(2),TA,R
(1)SB ,SBR

(2),TC ,TASBTC

)
,(

R(1),R(2),TA,R
(1)SB ,SBR

(2),TC ,U
)
.

The difficult step in the proof involves implicitly showing that giving an adversary both R(1)SB and SBR
(2) does not

allow the adversary to learn “enough” about SB to distinguish the final term from random.
To do this, we exploit the fact that any uniformly random matrix (with large enough dimensions) in the output ring

of the KHwPRF is computationally indistinguishable from a tensor product of two uniformly random vectors in the
output ring of the KHwPRF. We introduce and prove certain statistical lemmas with respect to modules that, when
combined with the aforementioned observation, allow us to argue that the secret matrix SB is computationally hidden,
even given both R(1)SB and SBR

(2). The security of the overall protocol then follows from this argument. We refer
the reader to Section 4 for the detailed proof.

2.5 Indistinguishability Obfuscation

Our second (and main) contribution is a construction of iO forNC1 from any RKHwPRF. In Section 5, we in fact present
an iO construction from a substantially weaker primitive, namely ring-embedded homomorphic synthesizer (RHS).
However, for simplicity of exposition, we present the construction from RKHwPRFs here.

We use the framework of [GLSW15] in order to prove iO security, as this is one of the few constructions builds iO
from a program-independent assumption and in the standard model.1 More precisely, we build an input-activated iO
scheme and adopt the machinery from [GLSW15] which shows that an input-activated iO scheme implies a full iO
scheme.

In [GLSW15], the authors present an input-activated iO construction for NC1 from composite order multilinear
maps. More specifically, they base the security of their construction on an assumption called the multilinear subgroup
elimination assumption. While their construction introduces many novel ideas for proving the security of iO from a
program-independent assumption, their techniques are heavily tuned towards abelian groups. One of the key challenges
that we faced when trying to port their ideas to the setting of a generic primitive such as RKHwPRF is the lack of similar
useful properties, such as commutative multiplication and cyclic subgroups with explicit representation.2 Therefore,
even though at a very high level, our input-activated iO construction has certain similarities with that of [GLSW15], we
use substantially different techniques to achieve both correctness and security.

1Most of the other program independent, standard-model constructions build iO through functional encryption [Lin17, LT17].
2As the authors of [AMP19] pointed out, such explicit representations are not available in the output space of RKHwPRFs; otherwise an adversary

can break the security of the primitive by solving a system of modular equations.
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We construct input-activated iO from generic RKHwPRFs as follows: we introduce an assumption (based on a
generic primitive, namely RKHwPRF) that can be loosely described as a nonabelian, matrix analogy of the multilinear
subgroup elimination assumption. We prove that this assumption holds over the output ring R of any RKHwPRF. We
then show that such an assumption implies an input-activated iO scheme.

Construction Ideas and Challenges. Assume that any NC1 program is represented as an oblivious permutation
branching program P of width 5. Let P = {M`,0,M`,1}`∈[L], where L denotes the depth of P and each M`,b ∈
{0, 1}5×5 is a permutation matrix. The first step in our construction is to embed each program matrix M`,b into a matrix
M`,b of dimension m by m over the output ring R of the KHwPRF. We refer the reader to Section 5 for the details of
the embedding technique.

The next step is to randomize each ring-embedded matrix M`,b using a Kilian-style randomization technique [Kil88].
A natural approach (in line with existing constructions [GGH+13b]) is to generate a sequence of uniformly random
matrices {Y`}`∈[L] ← Rm×m and to use the a sequence of encodings {N`,b}`∈[L],b∈{0,1}, where

N`,b = Y−1` M`,bY`+1,

where YL+1 is assumed to be the identity matrix I. This would preserve the program’s functional behavior.
However, recall that we are working over the output ring R of an RKHwPRF. This essentially means that there is no

efficient algorithm to compute inverses in R, (or they might not even exist for most elements). Even worse, computing
matrix pseudoinverses over the ring R is hard, since an efficient algorithm for the same would translate into an attack
on the security of the RKHwPRF.

Some existing constructions based on generic graded encodings [BR14b] get around this issue by using the adjoint
matrix Z` = adj(Y`) instead of the inverse matrix Y−1` , where Z` is composed of determinants of minors of Y`.
However, these constructions use matrix encodings of constant dimensions, for which the adjoint matrices are efficiently
computable.

It turns out that in our construction, we must use large matrices (i.e., of dimension 3 log |R|) in order to be able to
use the leftover hash lemma. So it does not seem likely that the novel techniques of [BR14b] can be applied to our
construction. Therefore, for our iO construction, we have to develop an entirely new toolbox that deals with matrices of
ring elements.

A Simplified Version of Our Construction. We now show a step-by-step process for building up a simplified version
of our iO construction. In particular, we show how to build an input-activated iO scheme. Using [GLSW15], we can
leverage this into a full iO scheme for all functions in NC1. We define all of the relevant definitions and notions of
security in Section 3, while the detailed construction and proof of security are presented in Section 5 and Section 7.
Below, we describe a simplified version of our construction that captures many of the ideas that the full construction
builds on.

1. Permutation Branching Programs. We assume that any NC1 program is represented as an oblivious permuta-
tion branching program P of width 5. Let P = {M`,0,M`,1}`∈[L], where L denotes the depth of P and each
M`,b ∈ {0, 1}5×5 is a permutation matrix. Also, let x1, . . . , xN denote the input variables, and let φ : [L]→ [N ]
be a mapping such that for each ` ∈ [L], i = φ(`) indicates which variable xi controls the `th level branch.

2. Killian-Style Randomization. We uniformly sample additional permutation matricesZ1, . . . , ZL−1 ∈ {0, 1}5×5,
and define a new set of matrices {N`,b}`∈[L],b∈{0,1}, where N`,b = Z−1`−1M`,bZ`, where Z0 and ZL are both
set to be the identity permutation. Note that the set of all permutation matrices over {0, 1}5×5 form a group,
which implies that the aforementioned randomization technique information-theoretically hides the original set
of permutation matrices, while retaining the program behavior as is.

3. Ring-Embedding Permutation Matrices. We will now use the following strategy to embed a permutation
matrix into the output ring R of the homomorphic synthesizer S. Given a permutation matrix N`,b ∈ {0, 1}5, its
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ring-embedding N`,b is defined as a 5m× 5m matrix over the ring R of the form:

N`,b =

N`,b,1,1 . . . N`,b,1,5

...
. . .

...
N`,b,5,1 . . . N`,b,5,5

 ,
where for each w, v ∈ [5], N`,b,w,v ∈ Rm×m is as defined below:

N`,b,w,v =

{
0 if N`,b[w, v] = 0,

uniformly random otherwise.

4. Generating Guard Matrices. We generate a sequence of “guard” matrix-pairs {(L`,R`)}`∈[L] (over the ring
R underlying the homomorphic synthesizer) such that the following conditions hold:

• For each ` ∈ [L], the “left guard” L` is of dimension c1cm× c2m and the “right guard” R` is of dimension
c2m× c1m where c1, c2 are parameters such that c1 >> c2. Intuitively, each left guard will be very “tall
and skinny” matrix, while each right guard is a “short and fat” matrix.

• For each ` ∈ [L− 1], we have R`L`+1 = D` ∈ Rc2m×c2m, where D` is a “block-diagonal” matrix of the
form

D` = diag(D`,1,D`,2, . . . ,D`,c2m),

where for each j ∈ [c2m], D`,j is a square matrix of dimension m×m over the ring R. More formally,
suppose that for some ` ∈ [L− 1], the guard matrices R` and L`+1 have the following structure:

R` =

−− −− R`,1 −− −−
...

−− −− R`,c2m −− −−

 , L`+1 =


| |
| |

L`+1,1 · · · L`+1,c2m

| |
| |

 .
Then for each j, j′ ∈ [c2m], we have

R`,jL`,j′ =

{
D`,j if j = j′,

0 if j 6= j′.

We now show that such a sequence of matrix-pairs can be created efficiently. For each ` ∈ [L− 1] and parameter
m as described above, do the following:

(a) Sample uniform matrices A` ← Rc2m×(c1/2−c2)m and B` ← Rc2m×(c1/2−c2)m, and set

Y` =
[
A` J

]
, Z` =

 B`

J−1 (D−A`B`)

 ,
where D` is a uniformly sampled “block-diagonal” matrix Rc2m×c2m as described above, and J is an upper
triangular matrix in Rc2m×c2m with an efficiently computable inverse (we refer the reader to Section 5 for
the details of how such a matrix can be efficiently sampled).

(b) Sample a uniform square matrix X` ← R(c1/2)m×(c1/2)m and a uniform matrix U` ← Rc2m×(c1/2)m, and
set R` and L`+1 as:

R` =
[
U` U`X` + Y`

]
, L`+1 =

−X`Z`

Z`
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It easy to see that for each ` ∈ [L− 1], we have

R`L`+1 = −U`X`Z` + (U`X` + Y`)Z` = Y`Z` = D.

Note that we do not explicitly generate the “end-guard” matrices L1 and RL. For the moment, we assume that
these guard matrices are set to the identity matrix I over Rm×m.

5. The Construction. We are now ready to describe a simplified version of our iO construction. Given an oblivious
branching program of depth L, the obfuscation algorithm does the following:

(a) Step 1: Construct a sequence of ring-embedded permutation matrices of the form {N`,b}`∈[L],b∈{0,1} as
described above.

(b) Step 2: Generate a sequence of “guard” matrix-pairs {(L`,R`)}`∈[L] satisfying the constraints as described
above, for parameters c2 = 5 and c1 >> 5.

(c) Step 3: Generate a sequence of 2L “guarded” program matrix encodings {Ñ`,b}`∈[L],b∈{0,1}, where
Ñ`,b = L`N`,bR`.

6. Evaluation and Zero Testing. To efficiently evaluate the program on an input x = (x1, . . . , xN ), one can
compute the following “subset-product” of the “guarded” program matrix encodings: Q =

∏L
`=1 Ñ`,xφ(`) . It is

easy to see that the final product Q is matrix of dimension 5m× 5m. Suppose, Q = {Qw,v}w,v∈[5] where each
Qw,v has dimension m×m.

Also, let Q be the permutation matrix resulting from performing the same “subset-product” on the actual
permutation matrices in the clear, i.e., let Q =

∏L
`=1 M`,xφ(`) . The zero test procedure crucially uses the

following relation that holds with overwhelmingly large probability between each submatrix Qw,v and the
permutation matrix Q for any (w, v) ∈ [5]× [5]:

Qw,v = 0 if and only if Q[w, v] = 0.

The zero test will then choose a single non-diagonal entry (i, j). Note that this entry is non-zero whenever the
branching program outputs 0, i.e., whenever the matrix product Q is not the identity permutation matrix. Hence,
it suffices to check whether the corresponding submatrix Qi,j is zero.

Enforcing Consistency. We now augment the aforementioned construction to enforce input consistency. In other
words, for a variable xi that is associated with multiple levels of the program, the check should enforce that the same
value of xi is used at all of the associated levels. We handle this in our construction by making two main alterations to
the previous construction:

1. Generating Program-Carrying Matrices. Recall that in the previous construction, at each level ` ∈ [L] and
for each bit b ∈ {0, 1}, we had a ring-embedded permutation matrix N`,b of dimension 5m× 5m, structured as
follows:

N`,b =

N`,b,1,1 . . . N`,b,1,5

...
. . .

...
N`,b,5,1 . . . N`,b,5,5

 ,
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For each level ` ∈ [L] and for each bit b ∈ {0, 1}, we now construct a set of 5·5 block diagonal “program-carrying
matrices” {P`,b,w,v}w,v∈[5], each of dimension (2(L+N) + 1)m× (2(L+N) + 1)m, where each P`,b,w,v is
structured as:

N`,b,w,v

C(`,1),(b,0),(w,v)

C(`,1),(b,1),(w,v)

. . .
C(`,L+N),(b,0),(w,v)

C(`,L+N),(b,1),(w,v)


,

where for each ` ∈ [L], each `′ ∈ [L+N ], each b, b′ ∈ {0, 1} and each matrix position (w, v) ∈ [5]× [5], we
have

C(`,`′),(b,b′),(w,v) =

{
0 if (`′, b′) = (`, 1− b),
uniform in Rm×m otherwise.

2. Generating Enforcer Matrices. Next, for each variable index i ∈ [N ] and for each bit b ∈ {0, 1}, we construct
an additional set of block diagonal “enforcer matrices” Ei,b of dimension (2(L+N) + 1)m× (2(L+N) + 1)m,
structured as:

Ei,b =



Ti,b

C(i,1),(b,0)

C(i,1),(b,1)

. . .
C(i,L+N),(b,0)

C(i,L+N),(b,1)


,

where for each i ∈ [N ], each `′ ∈ [L+N ], and each b, b′ ∈ {0, 1}, we have Ti,b ← Rm×m, and

C(`,`′),(b,b′) =

{
0 if (i, b′) = (φ(`), b),

uniform in Rm×m otherwise,

where recall that φ : [L] → [N ] is a mapping such that for each ` ∈ [L], i = φ(`) indicates which variable xi
controls the `th level branch.

3. Guarding Program-Carrying And Enforcer Matrices. As before, we generate a sequence of “guard” matrix-
pairs. We now need 2(L+N) guard matrices in order to cover both the program-carrying and enforcer matrices.
More specifically, we generate a sequence of guard matrices {(L`,R`)}`∈[L+N ] satisfying the same constraints,
albeit for parameters c2 = 2(L+N) + 1 and c1 >> 2(L+N) + 1.

Note that one difference from the simple iO construction presented earlier is in how we generate the “end-guard”
matrices L1 and RL. In the simple construction, we assumed that these guard matrices were set to the identity
matrix I over Rm×m. For this construction, we structure them as multiple copies of the identity matrix “stacked”
horizontally (for L1) and vertically (for RL), respectively.

Finally, we output a sequence of (5 · 5 · 2L+ 2N) “guarded” matrix encodings:{
P̃`,b,w,v = L`P`,b,w,vR`

}
`∈[L+N ],b∈{0,1},w,v∈[5]

,

{
Ẽi,b = LL+iEi,bRL+i

}
i∈[N ],b∈{0,1}

.
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Evaluation and Zero-testing. To efficiently evaluate the program on an input x = (x1, . . . , xN ), one can compute
the following “subset-product” of the “guarded” program matrix encodings: Q =

∏L
`=1 P̃`,xφ(`) , where each P̃`,xφ(`)

may be viewed as a 5× 5 super-matrix of the corresponding program-carrying matrices {P̃`,xφ(`),w,v}w,v∈[5]. Suppose,
Q = {Qw,v}w,v∈[5].

The zero test chooses a single non-diagonal entry Q(w, v) and computes Q′ = Qw,v

∏N
i=1 ẼL+i,xi . Observe that

Q′ is a matrix of dimension m×m. At this point, the zero test simply checks if Q′ = 0.

Correctness. We first observe that the consistency-check sub-matrices do not contribute to the result. To see this,
observe the following:

1. For each (`, b), if b 6= xφ(`), then the consistency submatrices in the corresponding diagonal slot do not contribute
to the final product since there is a zero submatrix in this diagonal slot in the program carrying matrix P`,xφ(`),w,v
for every (w, v) ∈ [5]× [5].

2. For each (`, b), if b = xφ(`), then the consistency submatrices in the corresponding diagonal slot do not contribute
to the final product since there is a zero submatrix in this diagonal slot in the enforcer matrix EL+φ(`),xφ(`) .

Thus the only potential contributions to the value of Q′ come from the diagonal slots corresponding to the ring-
embedded permutation matrices. It is now easy to see that Q′ 6= 0 if and only if the plaintext matrix subset-product Q
has a non-zero entry in the position (i, j), indicating that the program P outputs 0 on input x.

Parallel Program Execution. The next challenge towards our eventual goal of building iaiO is to be able to evaluate
multiple oblivious branching programs in parallel on the same set of inputs (where each program has the same size
and the same level-to-input mapping, but potentially differs in the contents of their matrices). We refer the reader
to Section 5 for details on how to handle input activations for multiple programs being executed in parallel, and to
Section 7 for the detailed proof of security.

2.6 A New iO Construction from “The MMap Strikes Back”
In [MZ18], Ma and Zhandry proposed a candidate asymmetric multilinear map scheme (referred to as the MZ18 MMap
henceforth), that is based on the [CLT13] multilinear map, albeit with significant technical alterations to provably
subvert zeroizing attacks [CLLT17]. To our knowledge, the MZ18 MMap is the only published candidate multilinear
map that has not been publicly broken. In addition, the SXDH assumption plausibly holds for the MZ18 MMap.

We provide here a high-level overview of how the MZ18 MMap works . It encodes plaintexts from a ring R into
matrices, where each such matrix encoding is associated with an interval level [i, j] such that i ≤ j ≤ N (N being the
degree of the MMap). At a high level, two kinds of operations are defined over the MZ18 MMap encodings - addition
and multiplication. The addition operation is only defined between encodings that belong to the same interval-level
[i, j], while the multiplication operation is only defined between encodings at “adjacent” interval-levels, i.e., it is only
possible to multiply encodings at levels [i, j] and [j + 1, k] such that i, j, k ∈ [N ] and i ≤ j < k, and this results in an
encoding at the level [i, `]. Adding and multiplying encodings of plaintext elements a and b produces encodings of
(a+ b) and (a · b), respectively, albeit at potentially different interval-levels.

In Section 12, we prove that the MZ18 MMap implies a secure slotted partial RKHwPRF, under the assumption that
SXDH is hard over the MZ18 MMap encodings. This gives the first secure iO construction based on the MZ18 MMap.
Below, we provide some intuition into how the instantiation is achieved.

First of all, our definitions of slotted partial RKHwPRF families only require that weak PRF outputs from different
“slots” can only be multiplied in a fixed pre-determined order, which matches closely the “interval”-based restrictions
imposed on multiplications of encodings by the authors of [MZ18], and allows us to use these intervals as slots. In
addition, our definitions only require “partial” homomorphism, which accounts for the fact that the MZ18 MMap
encodings are randomized and use “noisy” encodings from the [CLT13] MMap. We also show how to adopt the MZ18
zero test into an appropriate zero test for the slotted partial RKHwPRF family it implies.
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Most importantly, though, our definitions and constructions are generic enough to encompass rings that are
noncommutative. The MZ18 MMap uses matrix-based encodings of plaintext elements and crucially relies on the
noncommutative nature of matrix multiplication to subvert zeriozing attacks; yet this has also made it difficult to
instantiate iO from the MZ18 MMap using known techniques that are designed to work over fields or small-dimensional
matrix rings, as opposed to generic matrix rings. Our key contribution is in developing techniques to work over matrix
rings with arbitrarily large dimensions.

2.7 Negative Results and Discussion
Impossibility of FHS. We prove that field-embedded homomorphic synthesizers (FHS) are impossible to realize.
This follows from two contradicting observations: first, that the subset sum indistinguishability we have been describing
so far should hold due to the definition of the FHS, and second, that it cannot, due to the fact that we can efficiently
compute inverses on the output field.

To see this, let R ∈ Y2n×n be a matrix sampled randomly from the output space of an FHS. We let R1,R2 ∈ Yn×n
be defined such that

R =

[
R1

R2

]
By what we have shown earlier and by the definition of an FHS, it is required that the tuple (R,RT) is indistinguishable
from random for a randomly sampled T← Yn×n. But since Y is a field, we can compute inverses (and pseudoinverses,
if necessary) over both elements of Y and matrices of elements of Y .

So given (R1,R1T) and (R2,R2T), we can compute R−11 and R−12 and check that

R−11 (R1T) = R−12 (R2T) .

On the other hand, this holds with negligible probability if R1T and R2T are replaced with truly random matrices.
Thus we build a distinguisher that breaks the security of any FHS. This rules out the existence of both field-homomorphic
synthesizers and field-homomorphic weak PRFs.

As we mentioned in the introduction, it does not seem likely that our attacks here can be extended to the ring case
because it is not known how to compute kernels or inverses over general rings [ADM06, Jag12, YYHK18].

Cryptography and Mathematical Structure. We highlight that our results make progress towards completing the
pathway from generic algebraically structured primitives to cryptographic applications that was originally initiated
in [AMPR19, AMP19]. Specifically, by realizing iO from an RKHwPRF it seems that most of the well-known
cryptographic primitives can be constructed in a generic manner from Minicrypt primitives endowed with additional
algebraic structure. Most of the primitives that these existing frameworks relating mathematical structure to cryptography
cannot handle seem to follow from assumptions that are even more structured than what we consider here.

Relationship to Generic/Idealized Models. A natural question to ask is what RKHwPRFs (or RHSs) offer in
comparison with generic multilinear map or graded encoding models, which are also used to construct iO and NIKE (an
analogous comparison would be KHwPRFs versus the generic group model [Sho97]). The generic/idealized models are
useful for the purposes of abstraction and even more importantly, to prove lower bounds/negative results [MMN16, Ps16].
However, while a generic multilinear map or graded encoding is inherently limited from an instantiation point of view,
it may be possible to securely instantiate an RKHwPRF. In other words, an RKHwPRF is a “standard-model” primitive,
unlike generic graded encodings/multilinear maps.

In the same vein, iO constructions in the generic/idealized models are inherently unable to obfuscate primitive-
dependent circuits since the “code” implementing a generic graded encoding/multilinear map is unavailable. By contrast,
an iO construction based on an RKHwPRF is able to obfuscate any program that uses the “code” implementing the
RKHwPRF itself. Moreover, cryptographic implications in the generic/idealized models can be too powerful; as a
concrete example, virtual black-box obfuscation is realizable in the generic graded encoding model [BR14b, BGK+14],
but not in the standard model [BGI+01].

Finally, RKHwPRFs are less structured than existing generic models: our constructions from RKHwPRFs work
over any rings. To our knowledge, all traditional generic graded encoding models [BR14b, BR14a] require at least one
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large cyclic group in the ring or field that they use for computation, along with its explicit representation. We hope that
relaxing such requirements might lead to new candidate constructions for iO/NIKE.

3 Preliminaries

3.1 Notation
For any positive integer n, we use [n] to denote the set {1, . . . , n}. For two positive integers m and n we denote the set
{m,m+ 1, . . . , n} by [m,n]. We use λ for the security parameter. We use the symbols ⊕ and ⊗ as ring operations
defined in the context. We assume that rings have multiplicative identity element. For a finite set S, we use s← S to
sample uniformly from the set S.

Let (R,⊕,⊗) be an arbitrary finite ring. We denote the additive/multiplicative identity of R by 0R/1R. We define
the multiplication of two matrices of ring elements in the natural way: for two arbitrary matrices

A = [aij ]{i∈[`],j∈[m]} ∈ R`×m , B = [bij ]{i∈[m],j∈[n]} ∈ Rm×n,

their product C = [cij ]{i∈[`],j∈[n]} = AB is defined as

cij = (ai,1 ⊗ b1,j)⊕ (ai,2 ⊗ b2,j)⊕ · · · ⊕ (ai,m ⊗ bm,j).

3.2 (Symmetric) Cryptographic Primitives

Weak Pseudorandom Functions. If G : X → Y is a function, let G$ denote a randomized oracle that, when invoked,
samples x← X uniformly and outputs (x,G(x)). A keyed function family is a function F : K ×X → Y such that K
is the key space and X,Y are input and output spaces, respectively. We may use the notation Fk(x) to denote F (k, x).
A weak pseudorandom function (wPRF) family is an efficiently computable (keyed) function family F such that for all
PPT adversaries A we have ∣∣∣Pr[AF

$
k = 1]− Pr[AU

$

= 1]
∣∣∣ ≤ negl(λ),

where k ← K, and U : X → Y is a truly random function. Roughly speaking, the security requirement is that given
access to polynomially many (random) input-output pairs of the form (xi, yi), no attacker can distinguish between the
real experiment where yi = Fk(xi) and the ideal experiment where yi = U(xi) for a truly random function U .

(Pseudorandom) Synthesizers. Let ` and m be (polynomially bounded) integers, and let S : X × Y → Z be an
efficiently computable function. Assume that x ← X` and y ∈ Y m are two uniformly chosen vectors, and let
Z ← Z`×m be a uniformly chosen matrix. We say that S is a pseudorandom synthesizer if for any probabilistic
polynomial time (PPT) attacker we have

[S(x,y)]
c
≈ Z,

where [S(x,y)] is an `×m matrix whose ijth entry is S(xi, yj).

3.3 Homomorphic Primitives
We endow weak PRFs and (pseudorandom) synthesizers with ring homomorphism. We remark that it is also possible
to define the notion of bounded homomorphism, similar to [AMPR19] and [AMP19] using a universal mapping that
handles a bounded number of homomorphism. See [AMPR19] and [AMP19] for more details.

Definition 3.1. (Ring Key-Homomorphic Weak PRF.) A weak PRF family F : K × X → Y is a Ring Key-
Komomorphic weak PRF (RKHwPRF) family if it satisfies the following two properties:

• (K,⊕,⊗) and (Y,�,�) are efficiently samplable (finite) rings with efficiently computable ring operations.

• For any x ∈ X the function F (·, x) : K → Y is a ring homomorphism, i.e., for any x ∈ X and k, k′ ∈ K we
have

F (k ⊕ k′, x) = F (k, x)� F (k′, x) , F (k ⊗ k′, x) = F (k, x)� F (k′, x) , F (1K , x) = 1Y .
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Definition 3.2. (Ring Input-Homomorphic Weak PRF.) A weak PRF family F : K × X → Y is a Ring Input-
Komomorphic weak PRF (RIHwPRF) family if it satisfies the following two properties:

• (X,⊕,⊗) and (Y,�,�) are efficiently samplable (finite) rings with efficiently computable ring operations.

• For any k ∈ K the function F (k, ·) : X → Y is a ring homomorphism, i.e., for any k ∈ K and x, x′ ∈ X we
have

F (k, x⊕ x′) = F (k, x)� F (k, x′) , F (k, x⊗ x′) = F (k, x)� F (k, x′) , F (k, 1X) = 1Y .

Definition 3.3. (Ring-Embedded Homomorphic Synthesizer.) A Ring-Embedded Homomorphic Synthesizer S :
X ×G→ R is a synthesizer that satisfies the following properties:

• (G,⊕) is an efficiently samplable (finite) group with efficiently computable group operation.

• (R,�,�) is an efficiently samplable (finite) ring with efficiently computable ring operations.

• For any x ∈ X the function S(x, ·) : G→ R is a group homomorphism, i.e., for any x ∈ X and r1, r2 ∈ R we
have

S(x, g1 ⊕ g2) = S(x, r1)� S(x, r2)

It is easy to see that a ring-embedded homomorphic synthesizer is implied by an RKHwPRF or an RIHwPRF (for
which the input space does not depend on the choice of the key).

3.4 Indistinguishability Obfuscation (iO)

Here we recall the definition of indistinguishability obfuscation (iO) from [BGI+01].

Definition 3.4. A PPT algorithm Obf is an indistinguishability obfuscator for a circuit family Cλ with input space
{0, 1}`(λ) if:

• Correctness: For every circuit C ∈ Cλ and every input x ∈ {0, 1}`(λ) we have:

Pr[C(x) = C ′(x) : C ′ ← Obf(C)] = 1,

where the probability is taken over the randomness of Obf algorithm.

• Security: For any PPT adversary A and for any two functionally equivalent circuits C1 ∈ Cλ and C2 ∈ Cλ such
that |C0| = |C1|, it holds that:

|Pr[A(λ,C0) = 1]− Pr[A(λ,C1) = 1]| ≤ negl(λ).

3.5 Input-Activated Obfuscation
In this part, we present a concise definition of an abstraction called input-activated obfuscation which is presented
in [GLSW15]. We refer the reader to [GLSW15] for more details.

Let P = {P1, . . . , P`} be a set of ` programs, where each program comes from a family Pλ. Let M be an n× `× 2
dimensional matrix (array) of binary elements, where Mi,j,β ∈ {0, 1} for i ∈ [n], j ∈ [`] and β ∈ {0, 1}. We also let
i/j/β to denote the row, column, and “slot” of the matrix M . For each column of M we define a boolean function
fj : {0, 1}n → {0, 1}, where the program Pj is active on the input iff fj(x) = 1. The function fj(x) is defined to 1
when Mi,j,xi = 1 for all i ∈ [n], and 0 otherwise.

An input-activated obfuscation is a pair of algorithms Create,Eval where:

• Create: The creation algorithm takes λ,M,P as input and creates an input-activated obfuscation T .

• Eval: The evaluation algorithm takes an input-activated obfuscation T and an input x ∈ {0, 1}n, and outputs a
bit.
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Correctness. Let Sx ⊆ [`] denote the set of all (column) indices j such that fj(x) = 1. The correctness requires that
if Sx 6= ∅ and Pj = Pj′ for all j, j′ ∈ Sx, then Eval(T, x) = Pj(x) for all j ∈ Sx.

Inter-column Security. This game is parameterized by λ,M,P , two column indices j, k, a row index i∗, and a slot
index β such that Mi∗,j,β = 1. We assume that program descriptions Pj and Pk are identical. We also assume that for
every row i 6= i∗ and slot γ = 1− β, if Mi,k,γ = 1 then Mi,j,γ = 1. (This means that the column j dominates column
k)

The game proceeds as follows. First, the challenger samples a bit b. If b = 0, it runs Create(λ,M,P ) to produce
T . If b = 1, it forms M ′ by copying M and flipping the (i∗, k, β)th entry. It then gives T to the adversary where
T is Create(λ,M ′, P ). The advantage of the adversary is defined to be the probability that it guesses the bit b. An
input-activated obfuscation satisfies inter-column security if the advantage of any PPT adversary in the mentioned game
is negligible.

Intra-column Security. This game is parameterized by λ,M,P , an index j such that exists a row i∗ where the
corresponding slots are both 0, and two alternate columns C0 and C1 such that the i∗ row has both slots equal to 0.

The game proceeds as follows. First, the challenger samples a bit b. If b = 0, it runs Create(λ,M,P ) to produce
T . If b = 1, it forms M ′ replacing jth column of M (in two slots) with C0 and C1 respectively. It then gives T to the
adversary where T is Create(λ,M ′, P ). The advantage of the adversary is defined to be the probability that it guesses
the bit b. An input-activated obfuscation satisfies intra-column security if the advantage of any PPT adversary in the
mentioned game is negligible.

Completely Inactive Program Security. This game is parameterized by λ,M,P , an alternate program P ∗, and an
index j such that jth column contains all zero entries in both slots.

The game proceeds as follows. First, the challenger samples a bit b. If b = 0, it runs Create(λ,M,P ) to produce
T . If b = 1, it forms P ′ by modifying P to replace the jth program with P ∗. It then gives T to the adversary where
T is Create(λ,M ′, P ′). The advantage of the adversary is defined to be the probability that it guesses the bit b. An
input-activated obfuscation satisfies completely inactive program security if the advantage of any PPT adversary in the
mentioned game is negligible.

Single-input Program Security. This game is parameterized by λ,M,P , an alternate program P ∗, and an index
j such that jth column of M corresponds to a point function fj where fj evaluates to 1 on a single input x∗, and
P ∗(x∗) = Pj(x

∗).
The game proceeds as follows. First, the challenger samples a bit b. If b = 0, it runs Create(λ,M,P ) to produce

T . If b = 1, it forms P ′ by modifying P to replace the jth program with P ∗. It then gives T to the adversary where
T is Create(λ,M ′, P ′). The advantage of the adversary is defined to be the probability that it guesses the bit b. An
input-activated obfuscation satisfies single-input program switching security if the advantage of any PPT adversary in
the mentioned game is negligible.

3.6 Leftover Hash Lemma
We consider the following lemmata which are related to the leftover hash lemma [IZ89], and its special cases over rings.

Lemma 3.5. Let X1 and X2 be two independent and identically distributed random variables with finite support S. If
Pr[X1 = X2] ≤ (1 + 4ε2)/|S|, then the statistical distance between the uniform distribution over S and X1 is at most
ε.

We remark that since the additive group of any ring is abelian, the following statement follows from uniformity (aka
regularity) of subset sum over finite (abelian) groups.

Lemma 3.6. Let R be a finite ring with additive/multiplicative identity 0R/1R, and let m > 3 log|R|. Assume that
r← Rm is a vector of uniformly chosen ring elements. For any (unbounded) adversary we have

(r, rts)
s
≈ (r,u),
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where u← Rm is an m-dimensional vector of uniformly chosen ring elements and s← {0R, 1R}m.

We also need the following simple statement. A proof can be found in [Mic02].

Lemma 3.7. Let R be a finite ring, and let r = (r1, . . . , rm) be an arbitrary vector in Rm. If u ← Rm, then the
distribution of utr (respectively, rtu) is uniform over the left (respectively, right) ideal in R generated by the set
(r1, . . . , rm).

4 Noninteractive Multiparty Key Exchange
In this section, we show a construction of noninteractive multiparty key exchange from a ring-embedded homomorphic
synthesizer. As we mentioned before, it is straightforward to show that a ring-homomorphic synthesizer is implied by
either any RIHwPRF (for which the input space does not depend on the choice of the key) or any RKHwPRF. First, we
mention a hardness assumption that is implied by ring-homomorphic synthesizers. The following theorem is adapting
the Theorem 1 of [AMP19] to ring-embedded homomorphic synthesizers.

Theorem 4.1. Let S : X × G → R be a ring-embedded homomorphic synthesizer, and let m = poly(λ) be an
(arbitrary) positive integer. Let d = poly(λ) be such that d > 3 log|G|. Let R ← Rm×d be matrix of ring elements
such that each entry ri,j (for i ∈ [m], j ∈ [d]) is drawn uniformly and independently from R. If s← {0R, 1R}d, then
for any PPT adversary we have

(R,Rs)
c
≈ (R,u)

where u← Rm is a vector of uniformly chosen ring elements from R.

Proof. The proof is almost identical to the proof of Theorem 1 of [AMP19], and we sketch an argument here. First, we
define a matrix M ∈ Rm×d as Mi,j = S(xi, gj), where xi ← X, gj ← G (for i ∈ [m], j ∈ [d]) are chosen uniformly
and independently. We also define the vector g as g = (g1, . . . , gd). Now, we show that (M,Ms)

c
≈ (R,u) where

R ∈ Rm×d (resp. u ∈ Rm) is a uniformly chosen matrix (resp., vector) of ring elements. Using the homomorphism of
S and by the leftover hash lemma over rings (Lemma 3.6) we can write

Ms =


S (x1,

⊕
s g)

S (x2,
⊕

s g)
...

S (xm,
⊕

s g)

 s
≈


S (x1, g

∗)
S (x2, g

∗)
...

S (xm, g
∗)

 ,

where g∗ ← G is uniformly chosen. By the pseudorandomness property of S, we have (M,Ms)
c
≈ (R,u). Observe

that since M
c
≈ R, a straightforward reduction implies that (M,Ms)

c
≈ (R,Rs). By triangle inequality, it follows that

(R,Rs)
c
≈ (R,u), as required.

Theorem 4.2. Let S : X ×G→ R be a ring-embedded homomorphic synthesizer, and let m = poly(λ) be a positive
integer such that m > 3 log|G|. Let Mm(R) be the matrix ring over R, i.e., the ring of m by m square matrices over
R. If F : Mm(R)×Mm(R)→ Mm(R) be the function defined by F (K,X) = X�K, then F is a weak PRF (and
hence a synthesizer). In addition, F satisfies (right) Mm(R)-module homomorphism over the key space, i.e., for any
K,K′,X ∈ Mm(R) we have

F (K�K′,X) = F (K,X)� F (K′,X) , F (K�K′,X) = F (K,X)�K′,

where (�,�) is addition and multiplication over Mm(R), respectively.

Proof. Observe that (right) Mm(R)-module homomorphism of F over the key space is easy to verify. We now prove
the weak pseudorandomness of F . Let Q = poly(λ) be any arbitrary positive integer. It is enough to show that

(A,AK)
c
≈ (A,U),
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where A← RQm×m and U← RQm×m. One can view (A,AK) as stacking up Q input-output pairs in the real (weak
PRF) game. By Theorem 4.1, we have

(A,As)
c
≈ (A,u),

where s ← {0R, 1R}m and u ← Rm. It is easy to see that if k ← Rm, then the distributions of k and s + k are
identical, where + denotes component-wise addition in Rm induced by R. It follows that

(A,Ak)
s
≈ (A,A(k + s))

c
≈ (A,Ak + u)

s
≈ (A,u′),

where u′ ← Rm. By applying a standard hybrid argument over the columns of AK, and using the fact that
(A,Ak)

c
≈ (A,u), it follows that

(A,AK)
c
≈ (A,U).

Noninteractive Three Party Key Exchange. Here we start with the simpler case of (noninteractive) three party key
exchange protocol from any ring-embedded homomorphic synthesizer. Later, we show how to construct a noninteractive
key exchange protocol for more than three parties, and we formally prove its security.

Given a ring-embedded homomorphic synthesizer S : X × G → R, we first fix parameters m > 3 log|G| and
n > 6m2 log(|R|). Let R = Mm(R) denote m by m square matrices over R. We remark that log(|Rn×n|) is
polynomial in the security parameter, and hence elements ofRn×n can be represented using polynomially many bits.

We also assume that R(1) ← Rn×n and R(2) ← Rn×n are two matrices of uniformly chosen ring elements, and
they are published as public parameters of the protocol. The protocol is described as follows:

• Alice generates her own (secret) randomness SA ← Rn×n, and publishes PA := SAR
(1).

• Bob chooses his randomness as SB ← Rn×n, and publishes (P
(1)
B ,P

(2)
B ) where

P
(1)
B := R(1)SB , P

(2)
B := SBR

(2).

• Charlies generates his randomness asRn×n, and publishes PC := R(2)SC .

• The final shared secret is S := SAR
(1)SBR

(2)SC . Alice/Bob/Charlie can compute the final secret S as

S = SAR
(1)SBR

(2)SC = SAP
(1)
B PC (Alice)

= PASBPC (Bob)

= PAP
(2)
B SC (Charlie).

We formally prove the secruity of mentioned key exchange protocol via the following theorem:

Theorem 4.3. Let S : X × G → R be a ring-embedded homomorphic synthesizer, and assume that m and n be
integers such that m > 3 log|G| and n > 6m2 log(|R|). Let R = Mm(R) denote m by m square matrices matrices
over R. If R(1) ← Rn×n and R(2) ← Rn×n are two matrices of uniformly chosen ring elements, for any PPT
adversary we have

(R(1),R(2),SAR
(1),R(1)SB ,SBR

(2),R(2)SC ,SAR
(1)SBR

(2)SC)
c
≈ (R(1),R(2),SAR

(1),R(1)SB ,SBR
(2),R(2)SC ,U)

where SA,SB ,SC ← Rn×n are uniformly chosen (secret) matrices, and U← Rn×n.

Before explaining the proof, we show a few auxiliary lemmata that will be crucial for proving the security of the
protocol.
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Lemma 4.4. Let R be a finite ring, and let m > 6 log |R|. For a vector r ∈ Rm, let LKer(r) be the set of all vectors
w ∈ Rm such that wtr = 0R. If u← Rm and r← Rm, we have

(r,u,vtu)
s
≈ (r,u, s),

where v← LKer(r) and s← R.

Proof. We split the vectors as u = (u1,u2), r = (r1, r2), v = (v1,v2) such that u2, r2, and v2 all live in R3 log(|R|).
By Lemma 3.6, it follows that if r2 is sampled uniformly, then (with overwhelming probability over the choice of r2)
the (left) ideal generated by components of r2 is R, since otherwise the (left) ideal generated by r2 would not cover
at least half of the elements in R (recall that any proper additive subgroup of R cannot contain more than half of the
elements of R). Moreover, if a is sampled uniformly from R3 log(|R|) then atr2 is (statistically close to) uniform over
R . It follows that

(r,v1,v2)
s
≈ (r,u′1,u

′
2),

where u′1 ← Rm−3 log(|R|) is sampled uniformly and independently, and u′2 ∈ R3 log (|R|) is sampled conditioned on
ut1r1 + ut2r2 = 0R. This means that to generate a (statistically close to) uniform vector v in LKer(r), one can sample
the first m− 3 log (|R|) components (which is v1) uniformly, and generate the rest of the components (which is v2)
conditioned on vt1r1 + vt2r2 = 0R. In particular, this implies that first m− 3 log(|R|) > 3 log(|R|) components of v
generate R. By applying Lemma 3.7 and using the fact that components of v1 (and hence components of v) generate R
with overwhelming probability, it follows that

(r,vtu)
s
≈ (r, s).

Now we compute the collision probability for two independent instances of (r,u,vtu) as

Pr[(r,u,vtu) = (r′,u′,v′
t
u′)] = Pr[vtu = v′

t
u′ | r = r′,u = u′] · Pr[r = r′,u = u′]

= Pr[ut(v − v′) = 0R] · |R|−2m

= Pr[utv = 0R] · |R|−2m ≤ (1 + negl) · |R|−2m−1,

where the inequality follows from (r,vtu)
s
≈ (r, s), and the last equality follows from the fact that distribution of

v − v′ is identical to that of v (because LKer(r) forms an additive group). By applying Lemma 3.5, it follows that

(r,u,vtu)
s
≈ (r,u, s),

as required.

We also need the following lemma. The proof is identical to the previous case.

Lemma 4.5. Let R be a finite ring, and let m > 6 log |R|. For a vector r ∈ Rm, let RKer(r) be the set of all vectors
w ∈ Rm such that rtw = 0R. If u← Rm and r← Rm, we have

(r,u,utv)
s
≈ (r,u, s),

where v← RKer(r) and s← Rm.

Lemma 4.6. Let R be a finite ring, and let m > 6 log |R|. If r, r′,u,u′ ← Rm be four uniformly chosen vectors, and
S← Rm×m be a uniformly chosen matrix of ring elements, we have

(r, r′, rtS,Sr′,u,u′,utSu′)
s
≈ (r, r′, rtS,Sr′,u,u′, s),

where s← R is a uniformly chosen single ring element.
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Proof. Let M ∈ Rm×m be a matrix such that each column of M is uniformly and independently chosen from RKer(r).
Similarly, let M′ ∈ Rm×m be matrix such that each row of M′ is uniformly and independently chosen from LKer(r′).
Clearly, we have rtM = 0 and Mr′ = 0. Observe that if S is a uniform matrix, then S and S + MM′ are statistically
indistinguishable, where + denotes the matrix addition induced by R. By replacing S with S + MM′, it is enough to
show that

(r, r′, rtS,Sr′,u,u′,utSu′ + utMM′u′)
s
≈ (r, r′, rtS,Sr′,u,u′, s).

Now consider the term utMM′u′. Since both M and M′ sampled independently from S, it suffices to prove that

(r, r′,u,u′,utMM′u′)
s
≈ (r, r′,u,u′, s).

By Lemma 4.5, and a simple (statistical) hybrid argument over the columns of M, it follows that

(r, r′,u,u′,utMM′u′)
s
≈ (r, r′,u,u′,vtM′u′),

where v← Rm is a uniform vector. Similarly, by Lemma 4.4 and using a hybrid argument over the rows of M′, we get

(r, r′,u,u′,vtM′u′)
s
≈ (r, r′,u,u′,vtv′),

where v′ ← Rm. Since v and v′ are uniform and independent of other terms, by Lemma 3.6 and Lemma 3.7 it follows
that

(r, r′,u,u′,vtv′)
s
≈ (r, r′,u,u′, s).

By triangle inequality, we conclude that

(r, r′, rtS,Sr′,u,u′,utSu′)
s
≈ (r, r′, rtS,Sr′,u,u′, s).

Now we prove the following lemma, which may be viewed as a weaker version of Theorem 4.3 where we used vectors
sA and sC (instead of matrices) as Alice’s and Charlie’s secrets, respectively.

Lemma 4.7. Let S : X × G → R be a ring-embedded homomorphic synthesizer, and assume that m and n be
integers such that m > 3 log|G| and n > 6m2 log(|R|). LetR = Mm(R) denote m by m square matrices over R. If
R(1) ← Rn×n and R(2) ← Rn×n are two matrices of uniformly chosen ring elements, for any PPT adversary we have

(R(1),R(2), stAR
(1),R(1)SB ,SBR

(2),R(2)sC , s
t
AR

(1)SBR
(2)sC)

c
≈ (R(1),R(2), stAR

(1),R(1)SB ,SBR
(2),R(2)sC , u),

where sA ← Rn,SB ← Rn×n, sC ← Rn, and u← R.

Proof. First, we define the following hybrids:

• H0: This corresponds to the “real” game, which is the tuple

(R(1),R(2), stAR
(1),R(1)SB ,SBR

(2),R(2)sC , s
t
AR

(1)SBR
(2)sC).

• H1 In this hybrid, we replace the vector stAR
(1) with a uniformly chosen vector ut1 ← Rn, i.e., the corresponding

tuple is
(R(1),R(2),ut1,R

(1)SB ,SBR
(2),R(2)SC ,u

t
1SBR

(2)sC).

• H2: In this hybrid, we replace R(2)sC with a uniformly chosen vector u2 ← Rn, i.e., the corresponding tuple is

(R(1),R(2),ut1,R
(1)SB ,SBR

(2),u2,u
t
1SBu2).

• H3: In this hybrid, we replace the term ut1SBu2 with a uniform element u← R, i.e., the corresponding tuple is

(R(1),R(2),u1,R
(1)SB ,SBR

(2),u2, u).
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• H4: In this hybrid, we replace ut1 with stAR
(1), i.e., the corresponding tuple is

(R(1),R(2), stAR
(1),R(1)SB ,SBR

(2),u2, u).

• H5: This corresponds to “ideal” game, and we replace u2 with R(2)sC . So the tuple is

(R(1),R(2), stAR
(1),R(1)SB ,SBR

(2),R(2)sC , u).

Now we show that consecutive hybrids are indistinguishable, which implies the security of key exchange protocol.

• H0
c
≈ H1: By applying Theorem 4.1 and 4.2, if R ← Rn×n and s ← Rn then we have (R, stR)

c
≈ (R,ut).

Assuming there is an attacker A that distinguishes H0 and H1, we construct an attacker B that distinguishes
(R, stR) and (R,ut). Given a pair of the form (R, rt) (where r is either stR or random), the reduction
(uniformly) samples R(2) ← Rn×n,SB ← Rn×n, sC ← Rn and sets R(1) := R. It then runs A on the
following tuple

(R(1),R(2), rt,R(1)SB ,SBR
(2),R(2)sC , r

tSBR
(2)sC).

Observe that if rt = stR, the tuple corresponds toH0. If rt is random, the tuple corresponds toH1. Hence, the
reduction perfectly simulates the consecutive hybrids. It follows thatH0

c
≈ H1.

• H1
c
≈ H2: This is similar to the proof ofH0

c
≈ H1.

• H2
c
≈ H3: For two vectors x ∈ Rn1 and y ∈ Rn2 , let F (x,y) be an n1 by n2 matrix whose ij’th entry is xiyj .

We remark that we use the same notation for row vectors as well, so clearly we have

F (x,y) = F (xt,yt) = F (xt,y) = F (x,yt).

By Theorem 4.2, we know that F (x,y) is computationally indistinguishable from a uniform matrix U ∈ Rn1×n2 .
Let x,y, r1, r2 ← Rn be four uniformly chosen vectors. Since statistical distance cannot be increased by applying
a (randomized) function, by Lemma 4.6 it follows that(

F (x, r), F (r′,y),u1, F (x, rtSB), F (SBr
′,y),u2,u

t
1SBu2

)
s
≈
(
F (x, r), F (r′,y),u1, F (x, rtSB), F (SBr

′,y),u2, u
)
.

UsingR-module homomorphism of F we get(
F (x, r), F (r′,y),u1, F (x, r)SB ,SBF (y, r′),u2,u

t
1SBu2

)
s
≈ (F (x, r), F (r′,y),u1, F (x, r)SB ,SBF (y, r′),u2, u) .

By Theorem 4.2, we know that (F (x, r), F (r′,y))
c
≈ (R(1),R(2)) where R(1),R(2) ← Rn×n. By plugging in

the corresponding terms, it follows that

(R(1),R(2),ut1,R
(1)SB ,SBR

(2),u2,u
t
1SBu2)

c
≈ (R(1),R(2),ut1,R

(1)SB ,SBR
(2),u2, u).

• H3
c
≈ H4: This is similar to the proof ofH0

c
≈ H1.

• H4
c
≈ H5: This is similar to the proof ofH0

c
≈ H1.

Proof of Theorem 4.3. The idea is similar to the proof ofH2
c
≈ H3 in the previous lemma. By Lemma 4.7, we know

that (
R(1),R(2), stAR

(1),R(1)SB ,SBR
(2),R(2)sC , s

t
AR

(1)SBR
(2)sC

)
c
≈
(
R(1),R(2), stAR

(1),R(1)SB ,SBR
(2),R(2)sC , u

)
.
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Let x← Rm be a uniform vector. Since F (stAR
(1),x) and F (x, u) can be computed in polynomial time, it follows

that (
R(1),R(2), F (x, stAR

(1)),R(1)SB ,SBR
(2),R(2)sC , F (x, stAR

(1)SBR
(2)sC)

)
c
≈
(
R(1),R(2), F (x, stAR

(1)),R(1)SB ,SBR
(2),R(2)sC , F (x, u)

)
.

UsingR-module homomorphism of F we get(
R(1),R(2), F (x, stA)R(1),R(1)SB ,SBR

(2),R(2)sC , F (x, stA)R(1)SBR
(2)sC

)
c
≈
(
R(1),R(2), F (x, stA)R(1),R(1)SB ,SBR

(2),R(2)sC , F (x, u)
)
.

By Theorem 4.2, we know that (F (stA,x), F (x, u))
c
≈ (SA,u

t) where SA ← Rn×n and u← Rn. By plugging in the
corresponding terms, it follows that(

R(1),R(2),SAR
(1),R(1)SB ,SBR

(2),R(2)sC ,SAR
(1)SBR

(2)sC

)
c
≈
(
R(1),R(2),SAR

(1),R(1)SB ,SBR
(2),R(2)sC ,u

)
.

By a similar argument if y← Rn, we have(
R(1),R(2),SAR

(1),R(1)SB ,SBR
(2),R(2)F (sC ,y),SAR

(1)SBR
(2)F (sC ,y)

)
c
≈
(
R(1),R(2),SAR

(1),R(1)SB ,SBR
(2),R(2)F (sC ,y), F (u,y)

)
.

By Theorem 4.2, we know that (F (sC ,y), F (u,y))
c
≈ (SC ,U) where SA ← Rn×n and U← Rn×n. By plugging in

the corresponding terms, it follows that

(R(1),R(2),SAR
(1),R(1)SB ,SBR

(2),R(2)SC ,SAR
(1)SBR

(2)SC)
c
≈ (R(1),R(2),SAR

(1),R(1)SB ,SBR
(2),R(2)SC ,U),

and the proof is complete.

Generalizing to Any Number of Parties. Now we describe a (noninteractive) k-party key exchange protocol for
any k. Similar to the three-party case, let S : X ×G→ R be a ring-embedded homomorphic synthesizer, and assume
that m and n be integers such that m > 3 log|G| and n > 6m2 log(|R|). Let R = Mm(R) denote m by m square
matrices matrices over R, and let R(1), . . . ,R(k−1) be k− 1 matrices that are uniformly chosen fromRn×n (published
as public parameters). The protocol is described as follows:

• Party 1 chooses its randomness S1 ← Rn×n, and publishes P1 = S1R
(1).

• Each party i (for 2 ≤ i ≤ k − 1) chooses its randomness Si ← Rn×n, and publishes (P
(1)
i ,P

(2)
i ) where

P
(1)
i = R(i−1)Si , P

(2)
i = SiR

(i).

• Party k chooses its randomness Sk ← Rn×n, and publishes Pk = R(k−1)Sk.

• The final shared secret is S = S1R
(1)S2R

(2) · · ·Sk−1R(k−1)Sk. Parties can compute the final secret S as

S = S1P
(1)
2 P

(1)
3 · · ·P

(1)
k−1Pk (Party 1)

= P1P
(2)
2 · · ·P2

i−1SiP
(1)
i+1 · · ·P

(1)
k−1Pk (Party i for 2 ≤ i ≤ k − 1)

= P1P
(2)
2 P

(2)
3 · · ·P

(2)
k−1Sk (Party k).
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The security proof for the aforementioned protocol is similar to the proof of 4.3, and we sketch an argument here.
Let the following matrices(

{Si}i∈[k], {R(i)}i∈[k−1],P1, {P(1)
i ,P

(2)
i }i∈[k−1],Pk, S

)
,

be defined as in the protocol. It is enough to show that(
{R(i)}i∈[k−1],P1, {P(1)

i ,P
(2)
i }i∈[2,k−1],Pk, S

)
c
≈
(
{R(i)}i∈[k−1],P1, {P(1)

i ,P
(2)
i }i∈[2,k−1],Pk,U

)
where U← Rn×n is a uniform matrix. The security proof is similar to the three party case, and we sketch an
argument here. First, observe that similar to the three-party case, it is sufficient to prove the following “inefficient”
version of the protocol(

{R(i)}i∈[k−1],P1, {P(1)
i ,P

(2)
i }i∈[2,k−1],R

(k−1)sk,S1R
(1) · · ·Sk−1R(k−1)sk

)
c
≈
(
{R(i)}i∈[k−1],P1, {P(1)

i ,P
(2)
i }i∈[2,k−1],R

(k−1)sk,u
)
,

where kth party used a vector (instead of a matrix) as its secret. To prove the latter, first we replace R(k−1)sk
with a uniform vector u′. We then replace R(k−1) with F (r,x) where r,x are uniform vectors in Rn. By
Theorem 4.2, we need to prove that(

{R(i)}i∈[k−2], F (r,x),P1, {P(1)
i ,P

(2)
i }i∈[2,k−1],u

′,S1R
(1) · · ·Sk−1u′

)
c
≈
(
{R(i)}i∈[k−2], F (r,x),P1, {P(1)

i ,P
(2)
i }i∈[2,k−1],u

′,u
)
,

and hence it is enough to show that(
{R(i)}i∈[1,k−2], r,P1, {P(1)

i ,P
(2)
i }i∈[,k−2],R

(k−2)Sk−1,Sk−1r,u
′,S1R

(1) · · ·R(k−2)Sk−1u
′
)

c
≈
(
{R(i)}i∈[1,k−2], r,P1, {P(1)

i ,P
(2)
i }i∈[,k−2],R

(k−2)Sk−1,Sk−1r,u
′,u
)
.

Observe that if Sk−1r was not present in the tuples above, then the computational indistinguishability of two
tuples would follow from security of (k−1)-party key exchange protocol. To get around this problem, we replace
R(k−2) with F (r′,y) where r′ and y are sampled uniformly and independently fromRn. We also replace Sk−1
with Sk−1 + M where M ∈ Rn×n is a matrix whose columns uniformly and independently sampled from
RKer(y). By Lemma 4.4, the term (Sk−1 + M)r will be uniform and independent of other components of the
tuple. On the other hand, Sk−1 and Sk−1 + M are statistically indistinguishable. It follows that(

{R(i)}i∈[1,k−2], r,P1, {P(1)
i ,P

(2)
i }i∈[,k−2],R

(k−2)Sk−1, û,u
′,S1R

(1) · · ·R(k−2)Sk−1u
′
)

c
≈
(
{R(i)}i∈[1,k−2], r,P1, {P(1)

i ,P
(2)
i }i∈[,k−2],R

(k−2)Sk−1, û,u
′,u
)
,

where û is uniform and independent of any other randomness. It is easy to see that the tuples above are
computationally indistinguishable based on the security of (k − 1)-party key exchange protocol. The rest of the
proof is almost identical to 3-party case, and hence we omit the details.

Remark 4.8. We remark that in the constructions and proofs above, we never used the fact that the output ring R
of the ring-embedded homomorphic synthesizer is commutative. The reader may note that for any nontrivial ring
R, the matrix ring Mn(R) for any n > 2 is noncommutative. Therefore, all the constructions inherently rely on
noncommutative matrix rings, and hence some of the known algorithms to solve a system of linear equations
over certain commutative rings are not applicable here.
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5 Input-Activated Indistinguishability Obfuscator

In this section, we show how to construct an indistinguishability obfuscator for NC1 from any ring-embedded
homomorphic synthesizer. Given a ring-embedded homomorphic synthesizer S : X ×G→ R, we fix appropriately
large parameter m. Let I and 0 denote the identity matrix and all-zero matrix of dimension m×m over the ring R,
respectively.

5.1 Core iO Construction

Permutation Branching Programs. Throughout this section, we assume that any NC1 program is represented as
an oblivious permutation branching program P of width 5. Let P = {M`,0,M`,1}`∈[L], where L denotes the depth
of P and each M`,b ∈ {0, 1}5×5 is a permutation matrix. Also, let x1, . . . , xN denote the input variables, and let
φ : [L] → [N ] be a mapping such that for each ` ∈ [L], i = φ(`) indicates which variable xi controls the `th level
branch.

Killian-Style Randomization. We uniformly randomly sample additional permutation matrices Z1, . . . , ZL−1 ∈
{0, 1}5×5, and define a new set of matrices {N`,b}`∈[L],b∈{0,1}, where

N`,b = Z−1`−1M`,bZ`,

where Z0 and ZL are both set to be the identity permutation. Note that the set of all permutation matrices over {0, 1}5×5
form a group, which has the following implications:

• Each permutation matrix Z` is efficiently invertible.

• Each resulting matrix N`,b is also a permutation matrix.

• The aforementioned randomization technique information-theoretically hides the original set of permutation
matrices, while retaining the program behavior as is.

Ring-Embedding Permutation Matrices. Throughout this section, we will use the following strategy to embed a
permutation matrix into the output ringR of the homomorphic synthesizer S. Given a permutation matrixN`,b ∈ {0, 1}5,
its ring-embedding N`,b is defined as a 5m× 5m matrix over the ring R of the form:

N`,b =

N`,b,1,1 . . . N`,b,1,5

...
. . .

...
N`,b,5,1 . . . N`,b,5,5

 ,
where for each w, v ∈ [5], N`,b,w,v ∈ Rm×m is as defined below:

N`,b,w,v =

{
0 if N`,b[w, v] = 0,

uniformly random otherwise.

Note that by Theorem 4.2, the set of such ring-embedded permutation matrices is closed over the ring R.

Generating Guard Matrices. We generate a sequence of “guard” matrix-pairs {(L`,R`)}`∈[L] (over the ring R
underlying the homomorphic synthesizer) such that the following conditions hold:

• For each ` ∈ [L], the “left guard” L` is of dimension c1cm × c2m and the “right guard” R` is of dimension
c2m × c1m where c1, c2 are constants such that c1 >> c2. Intuitively, each left guard will be very “tall and
skinny” matrix, while each right guard is a “short and fat matrix”.
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• For each ` ∈ [L− 1], we have
R`L`+1 = D` ∈ Rc2m×c2m,

where D` is a “block-diagonal” matrix of the form

D` =



D`,1

D`,2 0R

D`,3

. . .

0R
. . .

D`,c2m


,

where for each j ∈ [c2m], D`,j is a square matrix of dimension m×m over the ring R. More formally, suppose
that for some ` ∈ [L− 1], the guard matrices R` and L`+1 have the following structure:

R` =

−− −− R`,1 −− −−
...

−− −− R`,c2m −− −−

 , L`+1 =


| |
| |

L`+1,1 · · · L`+1,c2m

| |
| |

 .

Then for each j, j′ ∈ [c2m], we have

R`,jL`,j′ =

{
D`,j if j = j′,

0 if j 6= j′.

We now show that such a sequence of matrix-pairs can be created efficiently. For each ` ∈ [L− 1] and parameter m
as described above, do the following:

1. Sample uniform matrices A` ← Rc2m×(c1/2−c2)m and B` ← Rc2m×(c1/2−c2)m, and set

Y` =
[
A` J

]
, Z` =

 B`

J−1 (D−A`B`)

 ,
where D` is a uniformly sampled “block-diagonal” matrix Rc2m×c2m as described above, and J is an upper
triangular matrix in Rc2m×c2m with an efficiently computable inverse. More specifically, we have:

J =



1R 1R 1R . . . 1R
1R 1R . . . 1R

. . . . . .
...

0R
. . . 1R

1R

 , J−1 =



1R (−1)R 0R 0R . . . 0R
1R (−1)R 0R . . . 0R

. . . . . . . . .
...

. . . . . . 0R

0R
. . . (−1)R

1R


,

where (−1)R denotes the additive inverse of 1R over the ring R and 0R denotes an all-zero sub-matrix of
appropriate dimensions.
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2. Sample a uniform square matrix X` ← R(c1/2)m×(c1/2)m and a uniform matrix U` ← Rc2m×(c1/2)m, and set
R` and L`+1 as:

R` =
[
U` U`X` + Y`

]
, L`+1 =

−X`Z`

Z`


It easy to see that for each ` ∈ [L− 1], we have

R`L`+1 = −U`X`Z` + (U`X` + Y`)Z` = Y`Z` = A`B` + DD−1 (D−A`B`) = D.

Note that we do not explicitly generate the “end-guard” matrices L1 and RL. For the moment, we assume that these
guard matrices are set to the identity matrix I over Rm×m.

A Simple iO construction. We are now ready to describe a simple version of our iO construction. Given an oblivious
branching program of depth L, the obfuscation algorithm does the following :

1. Step-1: Construct a sequence of ring-embedded permutation matrices of the form {N`,b}`∈[L],b∈{0,1} as de-
scribed above.

2. Step-2: Generate a sequence of “guard” matrix-pairs {(L`,R`)}`∈[L] satisfying the constraints as described
above, for constants c2 = 5 and c1 >> 5.

3. Step-3: Generate a a sequence of 2L “guarded” program matrix encodings {Ñ`,b}`∈[L],b∈{0,1}, where

Ñ`,b = L`N`,bR`.

Evaluation and Zero-testing. To efficiently evaluate the program on an input x = (x1, . . . , xN ), one can compute
the following “subset-product” of the “guarded” program matrix encodings:

Q =

L∏
`=1

Ñ`,xφ(`) .

It is easy to see that the final product Q is matrix of dimension 5m× 5m. Suppose, Q is structured as follows:

Q =

Q1,1 . . . Q1,5

...
. . .

...
Q5,1 . . . Q5,5

 ,
Also, letQ be the permutation matrix resulting from performing the same “subset-product” on the actual permutation

matrices in the clear, i.e., let

Q =

L∏
`=1

M`,xφ(`) .

The zero test procedure crucially uses the following relation that holds with overwhelmingly large probability
between each submatrix Qw,v and the permutation matrix Q for any (w, v) ∈ [5]× [5]:

Qw,v = 0 if and only if Q[w, v] = 0.

The zero test will then choose a single non-diagonal entry (i, j). Note that this entry is non-zero whenever the
branching program outputs 0, i.e., whenever the matrix product Q is not the identity permutation matrix. Hence, it
suffices for the zero test to check whether the corresponding submatrix Qi,j is zero or non-zero.

This construction gives us the desired functionality. However, it is not secure since it does not ensure consistency.
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Enforcing Consistency. We now augment the aforementioned construction to enforce consistency. In other words,
for a variable xi that is associated with multiple levels of the program, the check should enforce that the same value of
xi is used at all the associated levels. We handle this in our construction by making two main alterations to the previous
construction:

1. We increase the number of matrix encodings used for the construction from 2L to 2L+ 2N . We refer to the first
set of 2L block diagonal matrices as “program-carrying matrices” and the next set of 2N block diagonal matrices
as “enforcer matrices”, following the nomenclature introduced in [GLSW15].

2. In addition to the ring-embedded program matrices, we incorporate ”consistency sub-matrices” into both sets of
encodings.

We now describe in details how each of these steps are executed:

1. Generating Program-Carrying Matrices. Recall that in the previous construction, at each level ` ∈ [L] and
for each bit b ∈ {0, 1}, we had a ring-embedded permutation matrix N`,b of dimension 5m× 5m, structured as
follows:

N`,b =

N`,b,1,1 . . . N`,b,1,5

...
. . .

...
N`,b,5,1 . . . N`,b,5,5

 ,
For each level ` ∈ [L] and for each bit b ∈ {0, 1}, we now construct a set of 5 ·5 block diagonal ‘program-carrying
matrices” {P`,b,w,v}w,v∈[5], each of dimension (2(L+N) + 1)m× (2(L+N) + 1)m, structured as:

P`,b,w,v =



N`,b,w,v

C(`,1),(b,0),(w,v)

C(`,1),(b,1),(w,v)

. . .
C(`,L+N),(b,0),(w,v)

C(`,L+N),(b,1),(w,v)


,

where for each ` ∈ [L], each `′ ∈ [L+N ], each b, b′ ∈ {0, 1} and each matrix position (w, v) ∈ [5]× [5], we
have

C(`,`′),(b,b′),(w,v) =

{
0 if (`′, b′) = (`, 1− b),
uniform in Rm×m otherwise.

.

2. Generating Enforcer Matrices. Next, for each variable index i ∈ [N ] and for each bit b ∈ {0, 1}, we construct
an additional block diagonal ‘enforcer matrices” Ei,b of dimension (2(L + N) + 1)m × (2(L + N) + 1)m,
structured as:

Ei,b =



Ti,b

C(i,1),(b,0)

C(i,1),(b,1)

. . .
C(i,L+N),(b,0)

C(i,L+N),(b,1)


,

where for each i ∈ [N ], each `′ ∈ [L+N ], and each b, b′ ∈ {0, 1}, we have Ti,b ← Rm×m, and

C(`,`′),(b,b′) =

{
0 if (i, b′) = (φ`, b),

uniform in Rm×m otherwise.
,

where recall that φ : [L] → [N ] is a mapping such that for each ` ∈ [L], i = φ(`) indicates which variable xi
controls the `th level branch.
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3. Guarding Program-Carrying And Enforcer Matrices. As before, we generate a sequence of “guard” matrix-
pairs. Notice that we now need 2(L + N) guard matrices in order to cover both the program-carrying and
enforcer matrices. More specifically, we generate a sequence of guard matrices {(L`,R`)}`∈[L+N ] satisfying the
constraints as described above, albeit for constants c2 = 2(L+N) + 1 and c1 >> 2(L+N) + 1.

Note that one difference from the simple iO construction presented earlier is in how we generate the “end-
guard” matrices L1 and RL. In the simple construction, we assumed that these guard matrices were set
to the identity matrix I over Rm×m. For this construction, we assume that L1 ∈ Rm×(2(L+N)+1)m and
RL ∈ R(2(L+N)+1)m×m are structured as follows:

L1 =
[
I I . . . I

]
, RL =


I
I
...
I

 .
Finally, we create a sequence of (5 · 5 · 2L+ 2N) “guarded” program matrix encodings of the form

{P̃`,b,w,v}`∈[L+N ],b∈{0,1},w∈[5],v∈[5], {Ẽi,b}`∈[L+N ],b∈{0,1},

where for each level ` ∈ [L], each bit b ∈ {0, 1} and each matrix position (w, v) ∈ [5]× [5], we have

Ñ`,b,w,v = L`P`,b,w,vR`,

and for each variable index i ∈ [N ] and for each bit b ∈ {0, 1}, we have

Ẽi,b = LL+iEi,bRL+i.

Evaluation and Zero-testing. To efficiently evaluate the program on an input x = (x1, . . . , xN ), one can compute
the following “subset-product” of the “guarded” program matrix encodings:

Q =

L∏
`=1

P̃`,xφ(`) ,

where each P̃`,xφ(`) may be viewed as a 5× 5 super-matrix of the corresponding program-carrying matrices

{P̃`,xφ(`),w,v}w,v∈[5].

Suppose, Q is structured as follows:

Q =

Q1,1 . . . Q1,5

...
. . .

...
Q5,1 . . . Q5,5

 ,
Also, letQ be the permutation matrix resulting from performing the same “subset-product” on the actual permutation

matrices in the clear, i.e., let

Q =

L∏
`=1

M`,xφ(`) .

As in the simple construction, the zero test will choose a single non-diagonal (i, j) so that it is non-zero as an entry
of the subset-product Q whenever the branching program outputs 0 (i.e. whenever the matrix product Q is not the
identity permutation matrix). It then performs an additional subset-product of the form

Q′ = Qi,j

N∏
i=1

ẼL+i,xi .

Observe that Q′ is a matrix of dimension m×m. At this point, the zero test simply checks if Q′ = 0. If yes, it outputs
1, else it outputs 0.
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Correctness. We first observe that the consistency-check sub-matrices do not contribute to the result. To see this,
observe the following:

1. For each (`, b), if b 6= xφ(`), then the consistency submatrices in the corresponding diagonal slot do not contribute
to the final product since there is a zero submatrix in this diagonal slot in the program carrying matrix P`,xφ(`),w,v
for every (w, v) ∈ [5]× [5].

2. For each (`, b), if b = xφ(`), then the consistency submatrices in the corresponding diagonal slot do not contribute
to the final product since there is a zero submatrix in this diagonal slot in the enforcer matrix EL+φ(`),xφ(`) .

Thus the only potential contributions to the value of Q′ come from the diagonal slots corresponding to the ring-
embedded permutation matrices. It is now easy to see that Q′ 6= 0 if and only if the plaintext matrix subset-product Q
has a non-zero entry in the position (i, j), indicating that the program P outputs 0 on input x.

5.2 Parallel iO Construction
The next challenge towards our eventual goal of building iaiO is to be able to evaluate multiple oblivious branching
programs in parallel on the same set of inputs (where each program has the same size and the same level-to-input
mapping, but potentially differs in the contents of their matrices). For the parallel iO construction, we borrow from
ideas presented in [GLSW15].

In [GLSW15], the authors present a strategy for executing multiple functionally equivalent programs in parallel by
embedding the corresponding permutation matrices from different programs in different subgroups of a multilinear map
and “aggregating” them into a single group element. In this section, we present a construction strategy that ports their
ideas into the setting of ring-homomorphic synthesizers.

At a high level, we create “aggregate” matrices, which are block-diagonal matrices that have ring-embedded
permutation matrices from different programs in different diagonal “slots”. The evaluation process remains the same as
in the core iO construction, namely, given an input, we compute the corresponding subset product of the aggregate
matrices depending on the input.

Recall that each aggregate matrix places permutation matrices from different programs in different diagonal “slots”.
This implies that any subset product of these aggregate matrices would be a block diagonal matrix, where each diagonal
“slot” contains the subset product of permutation matrices from the corresponding program. In other words, evaluation
results in an “aggregate evaluation matrix”, where each diagonal slot contains the evaluation of the corresponding
program on the same input.

Note that we ignore input-activations at the moment. In other words, we assume that every input activates every
program. It turns out that once we achieve an iO construction capable of evaluating multiple programs in parallel,
incorporating input activations into it follows immediately via a few simple tweaks.

Generating Aggregate Matrices. Let P1, . . . , PT be the oblivious branching programs of depth L that are to be
handled in parallel, where for each t ∈ [T ], we have

Pt = {Mt,`,0,Mt,`,1}`∈[L].

As before, we uniformly randomly sample additional permutation matrices Z1, . . . , ZL−1 ∈ {0, 1}5×5, and define
a new set of matrices {Nt,`,b}t∈[T ],`∈[L],b∈{0,1}, where

Nt,`,b = Z−1`−1Mt,`,bZ`,

where Z0 and ZL are both set to be the identity permutation.
Let the corresponding set of ring-embedded permutation matrices be denoted as {Nt,`,b}t∈[T ],`∈[L],b∈{0,1}, where

each Nt,`,b is structured as follows:

Nt,`,b =

Nt,`,b,1,1 . . . Nt,ell,b,1,5

...
. . .

...
Nt,`,b,5,1 . . . Nt,`,b,5,5

 .
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For each program index t ∈ [T ], each level ` ∈ [L] and each bit b ∈ {0, 1}, we construct an “aggregate”
block-diagonal matrix A`,b,w,v , structured as:

At,`,b =

N1,`,b,w,v

. . .
NT,`,b,w,v

 .
Generating Program-Carrying Matrices. As in the core iO construction, for each level ` ∈ [L] and for each bit
b ∈ {0, 1}, we now construct a set of 5 · 5 block diagonal ‘program-carrying matrices” {P′`,b,w,v}w,v∈[5], each of
dimension (2(L+N) + T )m× (2(L+N) + 1)m, structured as:

P′`,b,w,v =



A`,b,w,v

C(`,1),(b,0),(w,v)

C(`,1),(b,1),(w,v)

. . .
C(`,L+N),(b,0),(w,v)

C(`,L+N),(b,1),(w,v)


,

where, as in the core iO construction, for each ` ∈ [L], each `′ ∈ [L+N ], each b, b′ ∈ {0, 1} and each matrix position
(w, v) ∈ [5]× [5], we have

C(`,`′),(b,b′),(w,v) =

{
0 if (`′, b′) = (`, 1− b),
uniform in Rm×m otherwise.

.

Note that the only change from the core iO construction is that we now place the “aggregate matrix” A`,b,w,v at the top
left corner of each program-carrying matrix as opposed to just a single ring-embedded permutation matrix. As a sanity
check, observe that for the special case where the number of programs T = 1, a program-carrying matrix in the parallel
iO construction becomes identical to that in the core iO construction.

Generating Enforcer Matrices. Next, for each variable index i ∈ [N ] and for each bit b ∈ {0, 1}, we construct an
additional “enforcer matrix” E′i,b of dimension (2(L+N) + T )m× (2(L+N) + T )m, structured as:

E′i,b =



Ti,b

C(i,1),(b,0)

C(i,1),(b,1)

. . .
C(i,L+N),(b,0)

C(i,L+N),(b,1)


,

where, as in the core iO construction, for each i ∈ [N ], each `′ ∈ [L+N ], and each b, b′ ∈ {0, 1}, we have

C(`,`′),(b,b′) =

{
0 if (i, b′) = (φ(`), b),

uniform in Rm×m otherwise.
,

where recall that φ : [L]→ [N ] is a mapping such that for each ` ∈ [L], i = φ(`) indicates which variable xi controls
the `th level branch.

The only change from the core iO construction is in how we generate the matrix Ti,b. Note that in the core iO
construction, we have Ti,b sampled uniformly from Rm×m. In the parallel version of the construction, we instead
structure Ti,b as a block diagonal matrix in RTm×Tm, as described below:

Ti,b =

T1,i,b

. . .
TT,i,b

 ,
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where for each program index t ∈ [T ], the block matrix Tt,i,b is sampled uniformly from Rm×m. Once again, as a
sanity check, observe that for the special case where the number of programs T = 1, an enforcer matrix in the parallel
iO construction becomes identical to that in the core iO construction.

Generating Guarded Encodings. As in the core iO construction, we generate a sequence of guard matrices
{(L`,R`)}`∈[L+N ] satisfying the constraints as described above, albeit for constants c2 = 2(L+N) + T and c1 >>
2(L+N)+T . In particular, we generate “end-guard” matrices L1 ∈ Rm×(2(L+N)+T )m and RL ∈ R(2(L+N)+T )m×m

are structured as follows:

L1 =
[
I I . . . I

]
, RL =


I
I
...
I

 .
Next, we create a sequence of (5 · 5 · 2L+ 2N) “guarded” program matrix encodings of the form

{P̃`,b,w,v}`∈[L+N ],b∈{0,1},w∈[5],v∈[5], {Ẽi,b}i∈[N ],b∈{0,1},

where for each level ` ∈ [L], each bit b ∈ {0, 1} and each matrix position (w, v) ∈ [5]× [5], we have

P̃`,b,w,v = L`P
′
`,b,w,vR`,

and for each variable index i ∈ [N ] and for each bit b ∈ {0, 1}, we have

Ẽi,b = LL+iE
′
i,bRL+i.

Evaluation and Zero-testing. To efficiently evaluate the program on an input x = (x1, . . . , xN ), one can compute
the following “subset-product” of the “guarded” program matrix encodings:

Q =

L∏
`=1

P̃`,xφ(`) ,

where each P̃`,xφ(`) may be viewed as a 5× 5 super-matrix of the corresponding program-carrying matrices

{P̃`,xφ(`),w,v}w,v∈[5].

Suppose, Q is structured as follows:

Q =

Q1,1 . . . Q1,5

...
. . .

...
Q5,1 . . . Q5,5

 ,
Also, let Qt be the permutation matrix resulting from performing same “subset-product” on the actual permutation

matrices of program Pt in the clear, i.e., let

Qt =

L∏
`=1

Mt,`,xφ(`) .

As in the simple construction, the zero test will choose a single non-diagonal (i, j) so that it is non-zero as an entry
of the subset-product Q whenever the branching program outputs 0 (i.e. whenever the matrix product Q is not the
identity permutation matrix). It then performs an additional subset-product of the form

Q′ = Qi,j

N∏
i=1

ẼL+i,xi .

Observe that Q′ is a matrix of dimension m×m. At this point, the zero test simply checks if Q′ = 0. If yes, it outputs
1, else it outputs 0.
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Correctness. We first observe that the consistency-check sub-matrices do not contribute to the result. To see this,
observe the following:

1. For each (`, b), if b 6= xφ(`), then the consistency submatrices in the corresponding diagonal slot do not contribute
to the final product since there is a zero submatrix in this diagonal slot in the program carrying matrix P`,xφ(`),w,v
for every (w, v) ∈ [5]× [5].

2. For each (`, b), if b = xφ(`), then the consistency submatrices in the corresponding diagonal slot do not contribute
to the final product since there is a zero submatrix in this diagonal slot in the enforcer matrix EL+φ(`),xφ(`) .

Thus the only potential contributions to the value of Q′ come from the diagonal slots corresponding to the ring-
embedded permutation matrices. It is now easy to see that Q′ 6= 0 if and only if the plaintext matrix subset-product Qt
corresponding to some program Pt has a non-zero entry in the position (i, j), indicating that this program Pt outputs 0
on input x.

5.3 Incorporating Input-Activations: iaiO Construction
The previous iO construction may be viewed as an iaiO construction with the all-ones input activation matrix, i.e.,
where every input activates every program. In order to achieve full-fledged iaiO, we need to incorporate arbitrary input
activations into this construction. We do this by tweaking certain parts of the “enforcer matrices” in the previous iO
construction. The tweaks are based on ideas presented in the [GLSW15] paper.

Recall that in the parallel iO construction, for each variable index i ∈ [N ] and for each bit b ∈ {0, 1}, we generated
a block diagonal ‘enforcer matrix” E′i,b of dimension (2(L+N) + T )m× (2(L+N) + T )m, structured as:

E′i,b =



Ti,b

C(i,1),(b,0)

C(i,1),(b,1)

. . .
C(i,L+N),(b,0)

C(i,L+N),(b,1)


,

where, we structured Ti,b as a block diagonal matrix in RTm×Tm, as described below:

Ti,b =

T1,i,b

. . .
TT,i,b

 ,
where for each program index t ∈ [T ], the block matrix Tt,i,b was sampled uniformly from Rm×m.

In the full-fledged iaiO construction, we generate these enforcer matrices in exactly the same way, except for the
manner in which each Tt,i,b,w,v block matrix is generated. We generate each Tt,i,b block matrix depending on some
additional input activation information that the obfuscation algorithm takes as input.

More concretely, let G be the “activation matrix” of dimension N × T × 2, where each i ∈ [N ] is the “row”
corresponding to the input bits, each t ∈ [T ] is the “column” corresponding to the program number, and b ∈ {0, 1} is
the bit corresponding to activation on the particular input bit value. Now, for each i ∈ [N ], t ∈ [T ] and b ∈ {0, 1}, we
generate the matrix Tt,i,b as follows:

Tt,i,b =

{
0 if G[i, t, b] = 0,

uniform in Rm×m otherwise.
.
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Evaluation and Zero-testing. Evaluation and zero-testing for the iaiO construction is exactly the same as in the
parallel iO construction. Nonetheless, we repeat it here for the sake of completeness.

To efficiently evaluate the program on an input x = (x1, . . . , xN ), one can compute the following “subset-product”
of the “guarded” program matrix encodings:

Q =

L∏
`=1

P̃`,xφ(`) ,

where each P̃`,xφ(`) may be viewed as a 5× 5 super-matrix of the corresponding program-carrying matrices

{P̃`,xφ(`),w,v}w,v∈[5].

Suppose, Q is structured as follows:

Q =

Q1,1 . . . Q1,5

...
. . .

...
Q5,1 . . . Q5,5

 ,
Also, let Qt be the permutation matrix resulting from performing same “subset-product” on the actual permutation

matrices of program Pt in the clear, i.e., let

Qt =

L∏
`=1

Mt,`,xφ(`) .

As in the parallel iO construction, the zero test will choose a single non-diagonal (i, j) so that it is non-zero as an
entry of the subset-product Q whenever the branching program outputs 0 (i.e. whenever the matrix product Q is not the
identity permutation matrix). It then performs an additional subset-product of the form

Q′ = Qi,j

N∏
i=1

ẼL+i,xi .

Observe that Q′ is a matrix of dimension m×m. At this point, the zero test simply checks if Q′ = 0. If yes, it outputs
1, else it outputs 0.

Correctness. We first observe that the consistency-check sub-matrices do not contribute to the result. To see this,
observe the following:

1. For each (`, b), if b 6= xφ(`), then the consistency submatrices in the corresponding diagonal slot do not contribute
to the final product since there is a zero submatrix in this diagonal slot in the program carrying matrix P`,xφ(`),w,v
for every (w, v) ∈ [5]× [5].

2. For each (`, b), if b = xφ(`), then the consistency submatrices in the corresponding diagonal slot do not contribute
to the final product since there is a zero submatrix in this diagonal slot in the enforcer matrix EL+φ(`),xφ(`) .

Thus the only potential contributions to the value of Q′ come from the diagonal slots corresponding to the
ring-embedded permutation matrices.

Additionally, observe the following:

1. Suppose some program Pt is not activated by the input x. Then, the input-activation matrix G has a 0 in the slot
corresponding to xi on some row i ∈ [N ] and in column t. Then one of the included enforcing matrices will
prevent the program Pt from contributing to the final output.

2. Suppose instead that the program Pt is activated by the input x. Then, the input-activation matrix G has a 1
in the slot corresponding to xi on some row i ∈ [N ] and in column t. Hence, none of the included enforcing
matrices will prevent the program Pt from contributing to the final output.

It is now easy to see that Q′ 6= 0 if and only if the plaintext matrix subset-product Qt corresponding to some
activated program Pt has a non-zero entry in the position (i, j), indicating that this program Pt outputs 0 on input x.
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6 The Subspace Hiding Assumption

In this section we define our subspace hiding assumption. It can be viewed as analogous to the assumption
of [GLSW15] in spirit, although it is syntactically very different. Before formally describing the assumption, we
introduce certain notations used in describing the assumptions.

Diagonal Matrices. Consider a class of block diagonal matrices D ∈ R(n`)×(n`). We break down D into an ` by `
blockwise structure: in other words, we assume the D is composed of `2 square blocks of size n× n, which we denote
Di,j , and we assume that Di,j = 0 if i 6= j. We generally drop the double subscript and represent the diagonal entries
by Di. Graphically, this looks like

D =



D1

D2 0R

D3

. . .

0R
. . .

D`


,

We introduce some more notation around diagonal matrices which will allow us to simplify our presentation in this
section:

1. Di ∈ R(n`)×(n`) denotes a block diagonal matrix with the restriction that the ith diagonal block is zero.

2. Di,j ∈ R(n`)×(n`) denote a block diagonal matrix with the restriction that the ith and jth diagonal blocks are
zero.

3. D̃i ∈ R(n`)×(n`) denotes a block diagonal matrix with the restriction that all diagonal blocks except the ith

diagonal block are zero.

4. D̃i,j ∈ R(n`)×(n`) denotes a block diagonal matrix with the restriction that all diagonal blocks except the ith and
jth diagonal blocks are zero.

We will sometimes need to compress such diagonal matrices into rows and columns. We let I` denote the matrix
consisting of a tensor of the identity matrix in n dimensions with the `-dimensional all 1Rs vector. Correspondingly, we
let (I`)T be the transpose of I`. We use these matrices to extract the non-zero block diagonals of our diagonal matrices
into rows and columns, respectively.

The Guard Matrices. Let n, m and ` be integers such that n` << m. We use a set of matrices Li ∈ Rm×(n`) for
i ∈ [2, z], and Ri ∈ R(n`)×m for i ∈ [1, z − 1]. In addition, we consider submatrices of Li and Ri, respectively.
Let Li,j ∈ Rm×n be the submatrix of Li consisting of the (j − 1)n + 1th through the jnth columns of Li, and let
Ri,j ∈ Rn×m be the submatrix of Ri consisting of the (j − 1)n+ 1th through the jnth rows of Ri, and let Ri,j . In
other words, our matrices have the following structure:

Ri =


−− −− Ri,1 −− −−
−− −− Ri,2 −− −−

...
−− −− Ri,`−1 −− −−
−− −− Ri,` −− −−

 , Li =


| | | |
| | | |

Li,1 Li,2 · · · Li,`−1 L1,`

| | | |
| | | |
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Experiment ExptSubspace-Hiding
R,`,z,b :

1. The adversary A chooses two challenge-slots i∗0, i
∗
1 ∈ [`] and a challenge-index j∗ ∈ [z]. It provides

(i∗0, i
∗
1, j
∗) to the challenger.

2. The challenger provides the adversary with the following:

(a) Generators: For each j ∈ [z] and each i ∈ [`] \ {i∗1}: many samples of the form LjD̃iRj , where D̃i

is a randomly sampled matrix of the appropriate form as described above, except for when j = 1 and
j = z, where the samples are of the form I`D̃iR1 and LzD̃i(I`)T , respectively.

(b) Challenge-Relevant Elements: For each j ∈ [z]: many samples of the form LjD̃i∗0 ,i
∗
1Rj , where

D̃i∗0 ,i
∗
1 is a randomly sampled matrix of the appropriate form, except for when j = 1 and j = z, where

the samples are of the form I`D̃i∗0 ,i
∗
1R1 and LzD̃i∗0 ,i

∗
1 (I`)T , respectively.

(c) Special Challenge-Index Elements: Many samples of the form Lj∗D̃i∗1Rj∗ , where D̃i∗1 is a
randomly sampled matrix of the appropriate form, except for when j∗ = 1 or j∗ = z, where the
samples are of the form I`D̃i∗1R1 or LzD̃i∗1 (I`)T , respectively.

(d) The Challenge Element: A sample that is of one of the two following forms:

• Lj∗D̃i∗0Rj∗ if b = 0, or

• Lj∗D̃i∗0 ,i
∗
1Rj∗ if b = 1,

where D̃i∗0 and D̃i∗0 ,i
∗
1 are randomly sampled matrices of the appropriate form, except for when j∗ = 1,

where the sample is of one of the two following forms:

• I`D̃i∗0R1 if b = 0, or

• I`D̃i∗0 ,i
∗
1R1 if b = 1,

or when j∗ = z, where the sample is of one of the two following forms:

• LzD̃i∗0 (I`)T if b = 0, or

• LzD̃i∗0 ,i
∗
1 (I`)T if b = 1.

Figure 2: The Subspace Hiding Assumption
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Intuitively, Ri will be very “short and fat,” and Li will be very “tall and skinny.”
We additionally require the following properties of the Li and Ri matrices: for every j 6= j′, it must be the case that

Ri,j · Li+1,j′ = 0R

In other words, note that the product Ri,j ·Li+1 is required to have the form of a block diagonal matrix D as we defined
above.

The Subspace Hiding Assumptions. Equipped with the aforementioned notations, we now state the subspace hiding
assumption. For any ring R, any choice of parameters `, z and each b ∈ {0, 1}, let ExptSubspace-Hiding

R,`,z,b denote an
experiment between a challenger and an adversary A as defined in Figure 2.

Definition 6.1. (Subspace Hiding Assumption.) The subspace hiding assumption is said to hold over a ring R if for any
security parameter λ, any choice of parameters `, z = poly(λ) and for any PPT adversary A, the views of the adversary
A in the experiments ExptSubspace-Hiding

R,`,z,0 and ExptSubspace-Hiding
R,`,z,1 are computationally indistinguishable.

We also define a special case of this assumption, called the “baby” subspace hiding assumption, for a fixed choice
of parameter ` = 2.

Definition 6.2. (Baby Subspace Hiding Assumption.) The “baby” subspace hiding assumption is said to hold over a
ring R if for any security parameter λ, any choice of parameter z = poly(λ) and for any PPT adversary A, the views of
the adversary A in the experiments ExptSubspace-Hiding

R,2,z,0 and ExptSubspace-Hiding
R,2,z,1 are computationally indistinguishable.

The next sections are organized as follows:

• In Section 7 we prove the security of our iaiO construction based on the subspace hiding assumption as in
Definition 6.1.

• In Section 8, we extend the above result to the the subspace hiding assumption as in Definition 6.1.

• Finally, in Section 9, we prove that the baby subspace hiding assumption as in Definition 6.2 holds over any ring
R that is the output ring of a ring-embedded homomorphic synthesizer.

Putting these together, we show that the existence of ring-embedded homomorphic synthesizer implies the existence
of a secure iaiO scheme.

7 Proof of Security for Our iaiO Construction
In this section, we prove (a) inter-column security, (b) single-input program switching security, (c) completely inactive
program security, and (d) intra-column security of our iaiO construction, all based on the subspace hiding assumption
as in Definition 6.1. Refer Section 3 for the formal definitions of these security notions for any iaiO scheme.

7.1 Inter-Column Security
Lemma 7.1. Assuming that the subspace hiding assumption holds, our iaiO construction achieves inter-column
security.

Proof. Suppose that there exists some PPT attacker A which achieves non-negligible advantage in the inter-column
security game for some valid setting of activation matrix G, challenge program indices t∗0, t

∗
1 ∈ [T ], challenge variable

index i∗ ∈ [N ] and challenge bit b∗ ∈ {0, 1}. We will create a PPT algorithm B that achieves a non-negligible
advantage in breaking the subspace hiding assumption (parameterized in this case by the challenge-index j∗ = (L+ i∗)
and the challenge-slots (i∗0, i

∗
1) = (t∗0, t

∗
1)).
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Inputs to B. As described in Section 6,B receives as input several terms of the following kinds:

• Generators: For each ` ∈ [L+N ] and each j ∈ [2(L+N) + T ] \ {t∗1}: many samples of the form L`D̃jR`,
where D̃j is a randomly sampled matrix of the appropriate form, and the “end guards” L1 and RL+N are
specially structured, as described in Section 5.2.

• Challenge-Relevant Elements: For each ` ∈ [L+N ]: many samples of the form L`D̃t∗0 ,t
∗
1R`, where D̃t∗0 ,t

∗
1 is

a randomly sampled matrix of the appropriate form, and the “end guards” L1 and RL+N are specially structured
as mentioned before.

• Special Challenge-Index Elements: Many samples of the form L(L+i∗)D̃
t∗1R(L+i∗), where D̃t∗1 is a randomly

sampled matrix of the appropriate form.

• Challenge Elements: A sample that is either of the form L(L+i∗)D̃
t∗0R(L+i∗) or of the form L(L+i∗)D̃

t∗0 ,t
∗
1R(L+i∗),

where D̃t∗0 ,t
∗
1 and D̃t∗0 are randomly sampled matrices of the appropriate form.

We structure the rest of the proof as follows. For clarity of exposition, we first state what the challenger in the real
inter-column security game should generate should generate. We then state how the algorithm B simulates the same in
a manner that is either computationally or statistically indistinguishable from the real game.

Real World: Aggregate Matrices. Let P1, . . . , PT be the oblivious branching programs of depth L that are to be
handled in parallel, where for each t ∈ [T ], we have

Pt = {Mt,`,0,Mt,`,1}`∈[L].

The challenger in the real inter-column security game uniformly randomly samples additional permutation matrices
Z1, . . . , ZL−1 ∈ {0, 1}5×5, and defines a new set of matrices {Nt,`,b}t∈[T ],`∈[L],b∈{0,1}, where

Nt,`,b = Z−1`−1Mt,`,bZ`,

where Z0 and ZL are both set to be the identity permutation.
Let the corresponding set of ring-embedded permutation matrices be denoted as {Nt,`,b}t∈[T ],`∈[L],b∈{0,1}, where

each Nt,`,b is structured as follows:

Nt,`,b =

Nt,`,b,1,1 . . . Nt,`,b,1,5

...
. . .

...
Nt,`,b,5,1 . . . Nt,`,b,5,5

 .
For each program index t ∈ [T ], each level ` ∈ [L] and each bit b ∈ {0, 1}, the challenger in the real inter-column

security game generates an “aggregate” block-diagonal matrix A
t∗0 ,t
∗
1

`,b,w,v , structured as:

A
t∗0 ,t
∗
1

t,`,b =

N1,`,b,w,v

. . .
NT,`,b,w,v

 .
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Real World: Program-Carrying Matrices. Based on the above, for each level ` ∈ [L] and for each bit b ∈ {0, 1},
the challenger in the real inter-column security game generates a set of 5 · 5 block diagonal ‘program-carrying matrices”
{Pt

∗
0 ,t
∗
1

`,b,w,v}w,v∈[5], each of dimension (2(L+N) + T )m× (2(L+N) + 1)m, structured as:

P
t∗0 ,t
∗
1

`,b,w,v =



A
t∗0 ,t
∗
1

`,b,w,v

C(`,1),(b,0),(w,v)

C(`,1),(b,1),(w,v)

. . .
C(`,L+N),(b,0),(w,v)

C(`,L+N),(b,1),(w,v)


,

where, for each ` ∈ [L], each `′ ∈ [L+N ], each b, b′ ∈ {0, 1} and each matrix position (w, v) ∈ [5]× [5], we have

C(`,`′),(b,b′),(w,v) =

{
0 if (`′, b′) = (`, 1− b),
uniform in Rm×m otherwise.

.

Simulation: Program-Carrying Matrices. We now focus on howB simulates the “guarded” versions of the program-
carrying matrices using its own input elements. Note that for simulating the consistency check block submatrices, B
simply uses the generator elements that is receives as part if its input. When generating a random “guarded” block
submatrix in a given diagonal slot, it subset-sums sufficiently many instances of the corresponding generator matrices,
which results in the desired distribution by the leftover hash lemma. A zero “guarded” block submatrix in a given
diagonal slot, on the other hand, conceptually corresponds to subset-summing the appropriate generator elements with
an “all-zero” bit string, or equivalently, not summing any of these elements.

For simulating the block submatrices corresponding to the “aggregate matrix”, the natural stragey for B to adopt is
to appropriately subset-sum the generator elements of the form L`D̃tR` that is receives as part if its input. Note that
this strategy would work for all program indices other than the challenge program index t∗1, since B does not receive
any generator elements of the form L`D̃t∗1R` for any ` ∈ [L].

However, in this case, B leverages the fact that for the challenge program indices t∗0, t
∗
1 in the inter-column security

game, the corresponding programs Pt∗0 and Pt∗1 must have identical sets of permutation matrices at each level, and
hence identical sets of Killian-style randomized permutation matrices at each level. In other words, for Pt∗0 and Pt∗1 ,
B can use the same ring-embedded permutation matrix representations, which allows it to use the challenge-relevant

elements of the form L`D̃t∗0 ,t
∗
1R`.

To summarize, B uses the following strategy at each level ` ∈ [L] for simulating the block submatrices corresponding
to the “aggregate matrix”:

1. For simulating the block submatrices corresponding to any program index t ∈ [N ] \ {t∗0, t∗1}, B appropriately
subset-sums the generator elements of the form L`D̃tR` that it receives as input.

2. For simulating the block submatrices corresponding to the program indices t∗0, t
∗
1, B appropriately subset-sums

the challenge-relevant elements of the form L`D̃t∗0 ,t
∗
1R` that it receives as input.

It is easy to see that by the leftover hash lemma, B’s simulation is statistically indistinguishable from the real
inter-column security game.

Real World: Enforcer Matrices. For each variable index i ∈ [N ] and for each bit b ∈ {0, 1}, the challenger in the
real inter-column security game generates an additional “enforcer matrix” E

t∗0 ,t
∗
1

i,b of dimension (2(L+N) + T )m×
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(2(L+N) + T )m, structured as:

E
t∗0 ,t
∗
1

i,b =



Ti,b

C(i,1),(b,0)

C(i,1),(b,1)

. . .
C(i,L+N),(b,0)

C(i,L+N),(b,1)


,

where for each i ∈ [N ], each `′ ∈ [L+N ], and each b, b′ ∈ {0, 1}, we have

C(`,`′),(b,b′) =

{
0 if (i, b′) = (φ`, b),

uniform in Rm×m otherwise.
,

where recall that φ : [L]→ [N ] is a mapping such that for each ` ∈ [L], i = φ(`) indicates which variable xi controls
the `th level branch.

Simulation: Enforcer Matrices. We now focus on how B simulates the “guarded” versions of these enforcer matrices
using its own input elements. In the simulation, B structures the “activation-enforcer” matrix Ti,b as a block diagonal
matrix in RTm×Tm, as described below:

Ti,b =

T1,i,b

. . .
TT,i,b

 ,
where for each program index t ∈ [T ] \ {t∗0, t∗1}, the block matrix Tt,i,b is simulated so as to satisfy the following
distribution:

Tt,i,b =

{
0 if G[i, t, b] = 0,

uniform in Rm×m otherwise.
.

We begin by noting that by appropriately subset-summing over the generator elements received as input, B can simulate
“guarded” versions of all consistency sub-matrices and all block submatrices in the “activation-enforcer” matrix Ti,b,
except for the block submatrices corresponding to the diagonal slot t∗1. The reason B cannot simulate this submatrix is
that by definition of the subspace hiding assumption, it is not provided with the generator elements corresponding to the
diagonal slot t∗1.

Hence, the crux of the reduction lies in how B simulates “guarded” versions of the block sub-matrices Tt∗0 ,i,b

and Tt∗1 ,i,b
for different values of (i, b). This simulation is broken into several sub-cases depending on the values of

(i, b) ∈ [N ]× {0, 1}, as described below:

1. Case-1: i 6= i∗ and G[i, t∗0, b] = G[i, t∗1, b] = 0:

In this case, B simulates Tt∗0 ,i,b
and Tt∗1 ,i,b

as zero matrices in Rm×m.

2. Case-2: i 6= i∗, G[i, t∗0, b] = 1, G[i, t∗1, b] = 0:

In this case, B simulates Tt∗0 ,i,b
as a uniformly distributed matrix in Rm×m and Tt∗1 ,i,b

as the zero matrix in

Rm×m. To do this, it additionally subset-sums over generator matrices of the form LL+iD̃t∗0RL+i, which it is
provided with as input.
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3. Case-3: i 6= i∗, G[i, t∗0, b] = G[i, t∗1, b] = 1:

In this case, B simulates both Tt∗0 ,i,b
and Tt∗1 ,i,b

as uniformly distributed matrices in Rm×m. To do this, it

additionally subset-sums over the challenge-relevant matrices of the form LL+iD̃t∗0 ,t
∗
1RL+i, which it is provided

with as input.

4. Case-4: (i, b) = (i∗, 1− b∗), G[i, t∗0, b] = G[i, t∗1, b] = 0:

In this case, B simulates both Tt∗0 ,i,b
and Tt∗1 ,i,b

as the zero matrix in Rm×m.

5. Case-5: (i, b) = (i∗, 1− b∗), G[i, t∗0, b] = 1, G[i, t∗1, b] = 0:

In this case, B simulates Tt∗0 ,i,b
as a uniformly distributed matrix in Rm×m and Tt∗1 ,i,b

as the zero matrix in

Rm×m. To do this, it additionally subset-sums over generator matrices of the form Li∗+ND̃t∗0Ri∗+N , which it
is provided with as input.

6. Case-6: (i, b) = (i∗, 1− b∗), G[i, t∗0, b] = 0, G[i, t∗1, b] = 1:

In this case, B simulates Tt∗0 ,i,b
as the zero matrix in Rm×m and Tt∗1 ,i,b

as a uniformly distributed matrix
in Rm×m. To do this, it additionally subset-sums over the special challenge-index matrices of the form
Li∗+ND̃t∗1Ri∗+N , which it is provided with as input.

7. Case-7: (i, b) = (i∗, 1− b∗), G[i, t∗0, b] = G[i, t∗1, b] = 1:

In this case, B simulates both Tt∗0 ,i,b
and Tt∗1 ,i,b

as uniformly distributed matrices in Rm×m. To do this, it

additionally subset-sums over generator matrices of the form Li∗+ND̃t∗0Ri∗+N as well as the special challenge-
index matrices of the form Li∗+ND̃t∗1Ri∗+N , all of which it is provided with as input.

8. Case-8: (i, b) = (i∗, b∗):

In this case, we must have G[i∗, t∗0, b
∗] = 1. In this case, B uses the challenge term provided to it as input.

Putting Everything Together. Finally, observe the following:

1. If the challenge sample is of the form L(L+i∗)D̃
t∗0R(L+i∗), then Case-3 would correspond to the case where

G[i∗, t∗1, b
∗] = 0.

2. If the challenge sample is of the form L(L+i∗)D̃
t∗0 ,t
∗
1R(L+i∗), then Case-3 would correspond to the case where

G[i∗, t∗1, b
∗] = 1.

Thus B can leverage A′s non-negligible advantage in the inter-column security game to achieve a non-negligible
advantage in breaking the subspace hiding assumption. This completes the proof of inter-column security.

44



7.2 Single-Input Program Switching Security
Lemma 7.2. Assuming that the subspace hiding assumption holds, our iaiO construction achieves single-input program
switching security.

Proof. We will prove this via a hybrid argument that incrementally “erases” the branching program matrices not
corresponding to the single relevant input (referred to as x∗ = (x∗1, . . . , x

∗
N )) in the relevant slots using the subspace

hiding assumption. Once we have done this, we can argue information-theoretically to switch the programs and then
reverse the hybrid to insert the new matrices.

We define the following hybrid experiments:

1. Exp0 will denote the original program switching security game with the challenge bit set to 0 (here the original
challenge program Pt∗ is used in the t∗th slot of each “program-carrying” matrix.

2. For each ` ∈ [L], we define Exp` to be identical to Exp0, except for the first ` positions of each branching program,
where the corresponding program-carrying submatrices corresponding to Pt∗ for the bit values disagreeing with
the single relevant input x∗ = (x∗1, . . . , x

∗
N ) are set to the all-zero matrix in Rm×m.

Note that in ExpL, any pair of “program-carrying” matrices at a given level has exactly one non-zero ring-embedded
permutation matrix in each slot.

We first argue that for each ` ∈ [L], Exp` is indistinguishable from Exp`−1, under the subspace hiding assumption.
To see this, suppose there is some `∗ ∈ [L] such that some PPT attacker A distinguishes Exp`∗ from Exp`∗−1 with
non-negligible advantage for some valid setting of activation matrix G, challenge program index t∗ ∈ [T ], single
relevant input x∗ = (x∗1, . . . , x

∗
N ), and challenge bit b∗ ∈ {0, 1}. We use A to build a PPT algorithm B that breaks

the subspace hiding assumption (parameterized in this case by the challenge-index j∗ = `∗ and the challenge-slots
(i∗0, i

∗
1) = (t∗, T + 2`∗ + b∗)) with non-negligible advantage.

Inputs to B. As described in Section 6,B receives as input several terms of the following kinds:

• Generators: For each ` ∈ [L+N ] and each j ∈ [2(L+N) + T ] \ {t∗}: many samples of the form L`D̃jR`,
where D̃j is a randomly sampled matrix of the appropriate form, and the “end guards” L1 and RL+N are
specially structured, as described in Section 5.2.

• Challenge-Relevant Elements: For each ` ∈ [L+N ]: many samples of the form L`
˜Dt∗,(T+2`∗+b∗)R`, where

˜Dt∗,(T+2`∗+b∗) is a randomly sampled matrix of the appropriate form, and the “end guards” L1 and RL+N are
specially structured as mentioned before.

• Special Challenge-Index Elements: Many samples of the form L`∗D̃t∗R`∗ , where D̃t∗ is a randomly sampled
matrix of the appropriate form.

• Challenge Elements: A sample that is either of the form L`∗D̃t∗R`∗ or of the form L`∗
˜Dt∗,(T+2`∗+b∗)R`∗ ,

where ˜Dt∗,(T+2`∗+b∗) and D̃t∗ are randomly sampled matrices of the appropriate form.

Real World: Program-Carrying Matrices. For each level ` ∈ [L] and for each bit b ∈ {0, 1}, the challenger
in the real program switching security game generates a set of 5 · 5 block diagonal ‘program-carrying matrices”
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{P`,b,w,v}w,v∈[5], each of dimension (2(L+N) + T )m× (2(L+N) + 1)m, structured as:

P`,b,w,v =



A`,b,w,v

C(`,1),(b,0),(w,v)

C(`,1),(b,1),(w,v)

. . .
C(`,L+N),(b,0),(w,v)

C(`,L+N),(b,1),(w,v)


,

where for each ` ∈ [L], each `′ ∈ [L+N ], each b, b′ ∈ {0, 1} and each matrix position (w, v) ∈ [5]× [5], we have

C(`,`′),(b,b′),(w,v) =

{
0 if (`′, b′) = (`, 1− b),
uniform in Rm×m otherwise.

.

Simulation: Program-Carrying Matrices. In this simulation, for each program index t ∈ [T ], each level ` ∈ [L]
and each bit b ∈ {0, 1}, B simulates an “aggregate” block-diagonal matrix A`,b,w,v , structured as:

At,`,b =

N1,`,b,w,v

. . .
NT,`,b,w,v

 .
except for the block submatrix corresponding to the diagonal slot t∗. We explain later how the block submatrices
corresponding to the diagonal slot t∗ are handled.

We now describe how B “actually” simulates “guarded” versions of the aforementioned program-carrying matrices
using its own input elements. We begin by noting that by appropriately subset-summing over the generator elements
received as input, B can simulate “guarded” versions of all consistency sub-matrices and all block submatrices in the
“aggregate” block-diagonal matrix, except for the block submatrix corresponding to the diagonal slot t∗. The reason
B cannot simulate this submatrix is that by definition of the subspace hiding assumption, it is not provided with the
generator elements corresponding to the diagonal slot t∗.

Hence, the crux of the reduction lies in how B simulates the block matrix Nt∗,`,b,w,v for different values of
(`, b). This simulation is broken into several sub-cases depending on the values of (`, b) ∈ [L]× {0, 1}, as described
below (recall that φ : [L]→ [N ] is a mapping such that for each ` ∈ [L], i = φ(`) indicates which variable xi controls
the `th level branch.):

1. Case-1: ` 6= `∗ and b = x∗φ(`):

In this case, B should set Nt∗,`,b,w,v to either zero or uniformly random as per the original program and the
consistency check matrix C`,1−b,(w,v) to the zero matrix in Rm×m. In particular the consistency check matrix
C`∗,b∗,(w,v) is uniformly random. Hence, to simulate this, B can appropriately subset-sum over the following

input elements: (a) the challenge-relevant elements L` ˜Dt∗,(T+2`∗+b∗)R`, and (b) all other generator elements,

including the generator element L` ˜DT+2`∗+b∗R`.

2. Case-2: ` > `∗ and b = 1− x∗φ(`):

Note that even in this case, B should set Nt∗,`,b,w,v to either zero or uniformly random as per the original
program and the consistency check matrix C`,1−b,(w,v) to the zero matrix in Rm×m. In particular the consistency
check matrix C`∗,b∗,(w,v) is uniformly random. Hence, to simulate this, B can appropriately subset-sum over the

following input elements: (a) the challenge-relevant elements L` ˜Dt∗,(T+2`∗+b∗)R`, and (b) all other generator

elements, including the generator element L` ˜DT+2`∗+b∗R`.
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3. Case-3: ` < `∗ and b = 1− x∗φ(`):

In this case, B should set Nt∗,`,b,w,v to zero (as previous hybrids have eliminated this program matrix), while the
consistency check matrix C`∗,b∗,(w,v) should be uniformly random. Hence, to simulate this, it suffices for B to
appropriately subset-sum over only the generator elements it received as input, including the generator element

L` ˜DT+2`∗+b∗R`..

4. Case-4: ` = `∗ and b = 1− b∗:

In this case, B should set Nt∗,`,b,w,v to either zero or uniformly random as per the original program and the
consistency check matrix C`∗,b∗,(w,v) to the zero matrix in Rm×m. Hence, to simulate this, B can appropriately
subset-sum over the following input elements: (a) the “special” challenge-index elements L`∗D̃t∗R`∗ , and (b)

all generator elements excluding the generator element L` ˜DT+2`∗+b∗R`.

5. Case-5: ` = `∗ and b = b∗:

In this case, B uses the challenge term provided to it as input. Note that this is an acceptable simulation strategy
as B should set the consistency check matrix C`∗,b∗,(w,v) to uniformly random in this case.

At this point, observe the following:

1. If the challenge sample is of the form L`∗D̃t∗R`∗ , then so far, B has properly simulated “guarded” versions of
the program-carrying matrices as per Expt`∗ .

2. If the challenge sample is of the form L`∗
˜Dt∗,(T+2`∗+b∗)R`∗ , then so far, B has properly simulated “guarded”

versions of the program-carrying matrices as per Expt`∗−1.

Real World: Enforcer Matrices. For each variable index i ∈ [N ] and for each bit b ∈ {0, 1}, the challenger in the
real program switching security game generates an additional “enforcer matrix” Ei,b of dimension (2(L+N) +T )m×
(2(L+N) + T )m, structured as:

Ei,b =



Ti,b

C(i,1),(b,0)

C(i,1),(b,1)

. . .
C(i,L+N),(b,0)

C(i,L+N),(b,1)


,

where for each i ∈ [N ], each `′ ∈ [L+N ], and each b, b′ ∈ {0, 1}, we have

C(`,`′),(b,b′) =

{
0 if (i, b′) = (φ`, b),

uniform in Rm×m otherwise.
,

Simulation: Enforcer Matrices. In this simulation, B structures the “activation-enforcer” matrix Ti,b as a block
diagonal matrix in RTm×Tm, as described below:

Ti,b =

T1,i,b

. . .
TT,i,b

 ,
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where for each program index t ∈ [T ] \ {t∗}, the block matrix Tt,i,b is simulated as follows:

Tt,i,b =

{
0 if G[i, t, b] = 0,

uniform in Rm×m otherwise.
,

We explain later how the block submatrices corresponding to the challenge program index t∗ are handled.
We now describe how B “actually” simulates “guarded” versions of the aforementioned enforcer matrices using its

own input elements. We begin by noting that by appropriately subset-summing over the generator elements received as
input, B can simulate “guarded” versions of all consistency sub-matrices and all block submatrices in the “activation-
enforcer” matrix Ti,b, except for the block submatrix corresponding to the diagonal slot t∗. The reason B cannot
simulate this submatrix is that by definition of the subspace hiding assumption, it is not provided with the generator
elements corresponding to the diagonal slot t∗.

Hence, the crux of the reduction lies in how B simulates the enforcer block matrices Tt∗,i,b for different values of
(i, b). This simulation is broken into several sub-cases depending on the values of (i, b) ∈ [N ]× {0, 1}, as described
below:

1. Case-1: G[i, t∗, b] = 0:

In this case, B should set Tt∗,i,b to the zero matrix in Rm×m. Hence, to simulate this, it suffices for B to
appropriately subset-sum over only the generator elements it received as input, including the generator element

LL+i ˜DT+2`∗+b∗RL+i.

2. Case-2: G[i, t∗, b] = 1:

In this case, it must be that either φ(`∗) 6= i or b∗ 6= b. This is because, in column t∗ and row i of the
activation matrix G, there can be only one entry equal to 1 (since exactly one input is activated), and the entry
G[φ(`∗), t∗, 1− b∗] = 1 by definition of b∗. Hence, in these cases, B should set Tt∗,i,b to a uniformly distributed
matrix in Rm×m.

To simulate this, we claim that B can appropriately subset-sum over the following input elements: (a) the

challenge-relevant elements LL+i ˜Dt∗,(T+2`∗+b∗)RL+i, and (b) all generator elements including the generator

element LL+i ˜DT+2`∗+b∗RL+i.

To see that B uses a sound simulation strategy in Case-2, observe that in this case, it is not a problem if the
consistency check matrix C`∗,b∗ is set to a uniformly distributed matrix in Rm×m, as either φ(`∗) 6= i or b∗ 6= b. Recall
that in our parallel iO construction, for any enforcer matrix E′i,b, a consistency check submatrix C`,b′ should be set to a
uniformly distributed matrix in Rm×m if either φ(`) 6= i or b 6= b′.

Putting Everything Together. Finally, observe the following:

1. If the challenge sample is of the form L`∗D̃t∗R`∗ , then B has properly simulated “guarded” versions of the
program-carrying matrices and the enforcer matrices as per Expt`∗ .

2. If the challenge sample is of the form L`∗
˜Dt∗,(T+2`∗+b∗)R`∗ , then B has properly simulated “guarded” versions

of the program-carrying matrices and the enforcer matrices as per Expt`∗−1.

This establishes the computational indistinguishability of Expt`∗−1 Expt`∗ . The computational indistinguishability
of Expt0 and ExptL follows by a simple hybrid argument.

Next, we argue that the distribution of ExptL is statistically close to the distribution of another experiment Expt′L,
where the challenge program Pt∗ replaced by another program P ′t∗ of the same depth and input access pattern that
agrees with Pt∗ on the single activated input. This follows from the following lemma:
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Lemma 7.3. Let x = (x1, . . . , xN ) denote a single input to a matrix branching program P = {M`,b}`∈[L],b∈{0,1},
and suppose that we “erase” the subset of permutation matrices that do not correspond to the single input x, i.e., the
following set of permutation matrices is “erased”:

{M`,1−xφ(`)}`∈[L].

Then if Z1, . . . , ZL−1 ∈ {0, 1}5×5 are uniformly sampled permutation matrices, the distribution of the following set of
permutation matrices:

{N`,xφ(`) = Z−1`−1M`,xφ(`)Z`}`∈[L],

depends only on the output of the branching program P when evaluated on the single input x.

Given the aforementioned information-theoretic transition from ExptL to Expt′L, we can apply a similar sequence of
hybrid steps to “reverse-transition” computationally from Expt′L to Expt′0, by gradually restoring the deleted permutation
sub-matrices, albeit with respect to the challenge program P ′t∗ instead of Pt∗ .

This completes our proof of single-input program switching security.

7.3 Completely Inactive Program Security and Intra-Column Security
Lemma 7.4. Assuming that the subspace hiding assumption holds, our iaiO construction achieves completely inactive
program security.

Proof. Leveraging techniques introduced in [GLSW15], we can show that the proof of completely inactive program
security follows from the same hybrid arguments as used in the proof of single input switching security.

Note that in the completely inactive program security game, we “erase” the permutation sub-matrices corresponding
to the challenge program Pt∗ from all of the program-carrying matrices, and not just the matrices that do not correspond
to a specific input. Once we erase all of the sub-matrices, we can again “reverse-insert” permutation sub-matrices
corresponding to some other program P ′t∗ . We can use the same hybrid arguments as in the proof of single input
switching security to argue that each such transition is computationally indistinguishable

Note that unlike the proof of single input switching security, here we do not need the information-theoretic transition
argument from Killian, as we are able to erase all the matrices, leaving no distribution that needs to be matched between
the old program Pt∗ and the new program P ′t∗ .

Lemma 7.5. Assuming that the subspace hiding assumption holds, our iaiO construction achieves intra-column
security.

Proof. Here we can again leverage the techniques presented in [GLSW15] to show that intra-column security follows
from an iterative application of the arguments used in the proof of inter-column security.

8 From “Baby” Subspace Hiding Assumption To Full Assumption
In this section, we show that the baby subspace hiding assumption as in Definition 6.2 implies the general subspace
hiding assumption as in definition 6.1. More concretely, we state and prove the following lemma.

Lemma 8.1. Assuming that the baby subspace hiding assumption as in Definition 6.2 holds over a ring R, the general
subspace hiding assumption as in definition 6.1 holds over the same ring R.

Proof. To prove this lemma, we show that given a PPT algorithm A that breaks the general subspace hiding assumption
with non-negligible advantage, one can construct a PPT algorithm B that breaks the baby subspace hiding assumption
with non-negligible advantage. For ease of exposition, we first show the reduction for the special case where A
chooses challenge-slots (i∗0, i

∗
1) = (1, 2). We subsequently argue that the reduction works for any arbitrary choice of

challenge-slots.
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Inputs to B. As per Definition 6.2,B receives as input several terms of the following kinds (we assume without loss
of generality that B chooses i∗0 = 1 and i∗1 = 2):

• Generators: For each j ∈ [z]: many samples of the form LjD̃1Rj , where D̃1 is a randomly sampled matrix of
the appropriate form as described above, except for when j = 1 and j = z, where the samples are of the form
I2D̃1R1 and LzD̃1(I2)T , respectively.

• Challenge-Relevant Elements: For each j ∈ [z]: many samples of the form LjD̃1,2Rj , where D̃1,2 is a
randomly sampled matrix of the appropriate form, except for when j = 1 and j = z, where the samples are of
the form I2D̃1,2R1 and LzD̃1,2(I2)T , respectively.

• Special Challenge-Index Elements: Many samples of the form Lj∗D̃2Rj∗ , where D̃2 is a randomly sampled
matrix of the appropriate form, except for when j∗ = 1 or j∗ = z, where the samples are of the form I2D̃2R1 or
LzD̃2(I2)T , respectively.

• The Challenge Element: A sample that is of one of the two following forms:

– Lj∗D̃1Rj∗ if b = 0, or

– Lj∗D̃1,2Rj∗ if b = 1,

where D̃1 and D̃1,2 are randomly sampled matrices of the appropriate form, except for when j∗ = 1, where the
sample is of one of the two following forms:

– I2D̃1R1 if b = 0, or

– I2D̃1,2R1 if b = 1,

or when j∗ = z, where the sample is of one of the two following forms:

– LzD̃1(I2)T if b = 0, or

– LzD̃1,2(I2)T if b = 1.

Simulating Inputs to A. Observe that B essentially needs to simulate the terms to be provided to A that are not
already a part of its own challenge for the baby subspace assumption. Interestingly, these terms to be simulated are, by
definition, orthogonal to the terms thet B receives as part of its own challenge input. In other words, B needs to: (a)
“lift” its own inputs to be part of the general subspace assumption challenge, and (b) simulate the remaining terms in the
general subspace assumption challenge, which belong to orthogonal subspaces.

An Initial Attempt. Suppose the guard matrices {Lj ,Rj} in B’s challenge have dimensions m× 2n and 2n×m,
respectively. Note that B does not receive the actual guard matrices in the clear; they are embedded in the challenge
elements. B generates a fresh set of guard matrices {Lj,`−2,Rj,`−2} of dimensions m× (`− 2)n and (`− 2)n×m,
respectively, satisfying the same distributional and relationship requirements as in the subspace hiding assumption. The
reader may refer our iaiO construction in Section 5 for the details of how this may be done efficiently. Next, suppose
hypothetically, that B concatenated the guard matrices embedded in its challenge elements with the freshly simulated
set of guard matrices to produce a new set of guard matrices {L̃j,`, R̃j,`} as follows:

R̃j,` =

Rj 0R

0R Rj,`−2

 , L̃j,` =

Lj 0R

0R Lj,`−2

 .
Note that this is hypothetical since B is not actually provided with the set of guards {Lj ,Rj}. Additionally, the
newly constructed guard matrices are not distributed exactly as dictated by the subspace hiding assumption guards.
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Nonetheless, this hypothetical set of guards are useful in the sense that they allow us to showcase how B can simulate
the challenge to A by exploiting the orthogonality of various terms it receives as input and the fresh terms it needs to
simulate, albeit with some departures from the desired distribution. This is described subsequently.

1. Simulating Generators:

For each j ∈ [z] and each i ∈ [`] \ {2}, B needs to simulate many samples of the form L̃j,`D̃i
`R̃j,`, where D̃i

` is
a randomly sampled matrix of the appropriate form as described above (the subscript ` is used to indicate that it
is contains ` diagonal blocks), except for when j = 1 and j = z, where the samples are of the form I`D̃i

`R̃1,`

and L̃z,`D̃i
`(I

`)T , respectively. We divide the simulation strategy into the following cases:

(a) Case-1: i = 1:

Note that for each j ∈ [z], we have

L̃j,`D̃1
`R̃j,` =

LjD̃1Rj 0R

0R 0R

 ,
except for when j = 1 and j = z, where we have

I`D̃1
`R̃1,` =

[
I2D̃1R1 0R

]
, L̃z,`D̃1

`(I
`)T =

[
LzD̃1(I2)T

0R

]
.

So in this case, B can directly use the generators it receives as input for the simulation.

(b) Case-2: i 6= 1 and i 6= 2:

Note that for each j ∈ [z], we have

L̃j,`D̃i
`R̃j,` =

0R 0R

0R Lj,`−2D̃i
`−2Rj,`−2

 ,
except for when j = 1 and j = z, where we have

I`D̃i
`R̃1,` =

[
0R I`−2D̃iR1,`−2

]
, L̃z,`D̃i

`(I
`)T =

 0R

Lz,`−2D̃i(I`−2)T

 .
So in this case, B can sample the generators directly without using its own inputs.

2. Simulating Challenge-Relevant Elements.

For each j ∈ [z], B needs to simulate many samples of the form L̃j,`D̃
1,2
` R̃j,`, where D̃1,2

` is a randomly sampled
matrix of the appropriate form as described above (the subscript ` is used to indicate that it is contains ` diagonal

blocks), except for when j = 1 and j = z, where the samples are of the form I`D̃1,2
` R̃1,` and L̃z,`D̃

1,2
` (I`)T ,

respectively.

Again, note that for each j ∈ [z], we have

L̃j,`D̃
1,2
` R̃j,` =

LjD̃1,2Rj 0R

0R 0R

 ,
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except for when j = 1 and j = z, where we have

I`D̃1,2
` R̃1,` =

[
I2D̃1,2R1 0R

]
, L̃z,`D̃

1,2
` (I`)T =

LzD̃1,2(I2)T

0R

 .
So in this case, B can simulate using the challenge-relevant elements it receives as input.

3. Simulating Special Challenge-Index Elements:

B needs to simulate many samples of the form L̃j∗,`D̃2
`R̃j∗,`, where D̃i

` is a randomly sampled matrix of the
appropriate form as described above (the subscript ` is used to indicate that it is contains ` diagonal blocks),
except for when j∗ = 1 or j∗ = z, where the samples are of the form I`D̃2

`R̃1,` or L̃z,`D̃2
`(I

`)T , respectively.

Again, note that we have

L̃j∗,`D̃2
`R̃j∗,` =

Lj∗D̃2Rj∗ 0R

0R 0R

 ,
except for when j∗ = 1 or j∗ = z, where we have

I`D̃2
`R̃1,` =

[
I2D̃2R1 0R

]
, L̃z,`D̃2

`(I
`)T =

LzD̃2(I2)T

0R

 .
So even in this case, B can simulate using the special challenge-index elements it receives as input.

4. Simulating the Challenge Element:

Note that we have

L̃j∗,`D̃1
`R̃j∗,` =

Lj∗D̃1Rj∗ 0R

0R 0R

 , L̃j∗,`D̃
1,2
` R̃j∗,` =

Lj∗D̃1,2Rj∗ 0R

0R 0R

 ,
except for when j∗ = 1, where we have

I`D̃1
`R̃1,` =

[
I2D̃1R1 0R

]
, I`D̃1,2

` R̃1,` =
[
I2D̃1,2R1 0R

]
,

or when j∗ = z, where we have

L̃z,`D̃1
`(I

`)T =

LzD̃1(I2)T

0R

 , L̃z,`D̃
1,2
` (I`)T =

LzD̃1,2(I2)T

0R

 ,
Hence, B can forward its own challenge element to A.
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Re-randomizing the Guard Matrices. It remains to show how B can re-randomize the hypothetically created guards
to have the correct distribution as per the subspace hiding assumption, while retaining the ability to simulate as illustrated
above.

To do this, B uniformly samples an additional set of guard matrices {L̂j , R̂j} of dimensions m′×2m and 2m×m′,
respectively, for some m′ > 6m log |R| subject to the constraint that R̂j

ˆLj+1 = I (this is done via the exact same
procedure as used to sample the guard matrices in our iaiO construction). Next, B (hypothetically) creates a set of
“mega guards” as:

R∗j,` = R̃j,`R̂j , L∗j,` = L̂jL̃j,`.

First, note that each product of the form R∗j,`L
∗
j+1,` is distributed exactly the same as R̃j,`L̃j+1,`. So, if B takes all

of the aforementioned simulated terms with the incorrectly distributed guards and left and right multiplies them with
(where appropriate) with the L̂j and R̂j terms, respectively, then the overall relations remain the same.

It remains to show that the “mega guards” are distributed appropriately. Note that, by Lemma 3.7, we can write

R∗j,` =
[
Aj AjXj + Cj

]
, L∗j,` =

[
−XjBj

Bj

]
for uniformly random Aj , Xj , Bj and Cj , subject to the restriction that CjBj = I. By Corollary 10.3 it follows that
R∗j,` and R∗j,` are distributed indistinguishably from uniformly sampled random matrices with the desired product
distribution.

Handling Arbitrary Challenge-Slots. Finally, we consider the general case where the adversary A in the subspace
hiding experiment makes an arbitrary choice of challenge-slots (i∗0, i

∗
1) ∈ [`]× [`], as opposed to the specific choice

(i∗0, i
∗
1) = (1, 2). Note that the only difference is that in the general case, B needs to use its own challenge elements in

the slots (i∗0, i
∗
1) and not in the slots (1, 2). We show how this can be handled by B.

Suppose again the guard matrices {Lj ,Rj} in B’s challenge have dimensions m× 2n and 2n×m, respectively,
and suppose these are of the form

Rj =

[
−− Rj,1 −−
−− Rj,2 −−

]
, Lj =

 | |
Lj,1 Lj,2
| |

 ,
where the submatrices have dimensions m× n and n×m, respectively.

Note that B does not receive the actual guard matrices in the clear; they are embedded in the challenge elements. As
a first step, B changes its strategy of generating the new set of (improperly distributed) guard matrices {L̃j,`, R̃j,`}. In
particular, B generates three fresh sets of guard matrices (we assume without loss of generality that i∗1 > i∗0):

• {Lj,[1,i∗0 ],Rj,[1,i∗0 ]
} that have dimensions m× (i∗0 − 1)n and (i∗0 − 1)n×m, respectively,

• {Lj,[i∗0+1,i∗1−1],Rj,[i∗0+1,i∗1−1]} that have dimensions m× (i∗1 − i∗0 − 1)n and (i∗1 − i∗0 − 1)n×m, respectively,

• {Lj,[i∗1+1,`],Rj,[i∗1+1,`]} with dimensions m× (`− i∗1 − 1)n and (`− i∗1 − 1)n×m, respectively,

that all satisfy the same distributional and relationship requirements as in the subspace hiding assumption. Next,
hypothetically, B concatenates the guard matrices embedded in its challenge elements with the freshly simulated set of
guard matrices to produce a new set of block-diagonal guard matrices {L̃j,`, R̃j,`} as follows:

R̃j,` =



Rj,[1,i∗0 ]

Rj,1

Rj,[i∗0+1,i∗1−1]

Rj,2

Rj,[i∗1+1,`]


,
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and

L̃j,` =



Lj,[1,i∗0 ]

Lj,1

Lj,[i∗0+1,i∗1−1]

Lj,2

Lj,[i∗1+1,`]


.

Note that this is again hypothetical since B is not actually provided with the set of guards {(Lj,1,Rj,1), (Lj,2,Rj,2)}.
Additionally, the newly constructed guard matrices are not distributed exactly as dictated by the subspace hiding
assumption guards. Nonetheless, it serves to showcase how B can hypothetically “place” the guards in its own challenge
from the baby subspace hiding experiment into the challenge-slots chosen by the adversary A in the subspace hiding
experiment.

Next, it follows from arguments very similar to those presented for the specific case that this hypothetical set of
guards can be used by B to generate the challenge to A by exploiting the orthogonality of various terms it receives as
input and the fresh terms it needs to simulate, albeit with certain departures from the desired distribution. Finally, to
repair these departures, B can use the same trick as before to (hypothetically) re-randomize the guards, and thus make
sure that all the terms in the challenge to A are distributed as in the real subspace hiding experiment.

This completes the proof of Lemma 8.1.

Looking ahead to the next section, we prove in Lemma 9.1 that the baby subspace hiding assumption holds over the
output ring R of a ring homomorphic synthesizer. Putting together Lemma 9.1 and Lemma 8.1, we immediately get the
following lemma.

Lemma 8.2. The subspace hiding assumption as in Definition 6.1 holds over the output ring R of a ring homomorphic
synthesizer.

This completes the proof of the subspace hiding assumption.

9 Proof of Baby Subspace Hiding Assumption
In this section, we prove that the baby subspace hiding assumption as in Definition 6.2 holds over any ring R that is the
output ring of a ring-embedded homomorphic synthesizer.

9.1 Overview of Proof Strategy
Before presenting the formal proof, we provide some additional insight into the baby subspace hiding assumption and
the proof strategy for the same using an example. Consider an instance of the baby subspace assumption experiment
with ` = 2 and z = 4, and suppose that the adversaryA chooses the challenge-index j∗ = 3. Then the challenger needs
to provide A with terms of the following form (we use X generically to denote random submatrices of the appropriate
dimensions:):

1. Generators:

The challenger provides the adversary A with several generators of the following forms:
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G1 =
[
X 0R

]
·
[
−− R1,1 −−
−− R1,2 −−

]
, G2 =

 | |
L2,1 L2,2

| |

 · [X 0R
0R 0R

]
·
[
−− R2,1 −−
−− R2,2 −−

]
,

G3 =

 | |
L3,1 L3,2

| |

 · [X 0R
0R 0R

]
·
[
−− R3,1 −−
−− R3,2 −−

]
, G4 =

 | |
L4,1 L4,2

| |

 · [X
0R

]

2. Challenge-Relevant Elements.

The challenger provides the adversary A with several challenge-relevant elements of the following form (note
that in the baby subspace assumption experiment, the challenge-slot pair is (1, 2) by default):

H1 =
[
X X

]
·
[
−− R1,1 −−
−− R1,2 −−

]
, H2 =

 | |
L2,1 L2,2

| |

 · [X 0R
0R X

]
·
[
−− R2,1 −−
−− R2,2 −−

]
,

H3 =

 | |
L3,1 L3,2

| |

 · [X 0R
0R X

]
·
[
−− R3,1 −−
−− R3,2 −−

]
, H4 =

 | |
L4,1 L3,2

| |

 · [X
X

]

3. Special Challenge-Index Elements.

The challenger provides the adversaryAwith several special challenge-index elements of the following form (note
that for our example, the challenge-index j∗ = 3):

S =

 | |
L3,1 L3,2

| |

 · [0R 0R
0R X

]
·
[
−− R3,1 −−
−− R3,2 −−

]

4. Challenge Element.

Finally, the challenger provides the adversary A with a challenge element of the following form (depending on
the challenge-bit b):

C0 =

 | |
L3,1 L3,2

| |

 · [X 0R
0R 0R

]
·
[
−− R3,1 −−
−− R3,2 −−

]
or

C1 =

 | |
L3,1 L3,2

| |

 · [X 0R
0R X

]
·
[
−− R3,1 −−
−− R3,2 −−

]

Intuitively, this assumption is secure because all elements not corresponding to the challenge-index are either
random in the first and second slots or are random in the first slot and zero in the second slot. So all possible “legitimate”
multiplications that can be performed efficiently will never zero the first slot of the challenge element, allowing it to
mask the value of the second slot (where the challenge elements differ). Note that if there were an element that was
random in the second slot and zero in the first, the adversaryA could use it to trivially break security–but these elements
ar not provided. We illustrate this intuition some more using the aforementioned example.
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Distribution Requirements. Intuitively, we would like the terms provided by the challenger to the adversary A in
the baby subspace assumption experiment to be computationally indistinguishable from random, while being subject to
certain constraints, namely, some of them should multiply to zero by definition.

Suppose we (informally) label the elements provided by the challenger to the adversary A in the baby subspace
assumption experiment by type and index. We label the generators as G1, . . . ,Gz , the challenge-relevant elements as
H1, . . . ,Hz , the special challenge-index element as S and the final challenge element as C. Also, let the challenge-
index chosen by the adversary A be j∗. Note that the following relations must hold in our assumption for any j ∈ [j∗]
and any j′ ∈ [j∗ + 1, z], respectively:

Gj

 j∗−1∏
i=j+1

Hi

S = 0R , S

 j′−1∏
i=j∗+1

Hi

Gj′ = 0R.

The astute reader may observe at this point that these are the only relations that the adversary A can efficiently verify.
Thus, intuitively, we wish to establish that the terms provided by the challenger to the adversary A in the baby subspace
assumption experiment are computationally indistinguishable from a set of terms that are sampled uniformly from
distributions that additionally satisfy the aforementioned constraints.

Mapping to Guard Matrices. We now map the aforementioned idea onto the guard matrices embedded inside the
terms provided by the challenger to the adversaryA in the baby subspace assumption experiment. We revert back to our
previous example where we considered an instance of the baby subspace assumption experiment with ` = 2 and z = 4,
with the additional assumption that the adversary A chooses the challenge-index j∗ = 3. We again present the terms
provided by the challenger to the adversary A; but we additionally depict the following: we label the guard submatrices
that do not need to satisfy constraints (i.e., submatrices which are either zeroed out or for which additional orthogonal
terms are not provided to the adversary A) with the color blue. In other words, the terms look as follows:

1. Generators:

The challenger provides the adversary A with several generators of the following forms:

G1 =
[
X 0R

]
·
[
−− R1,1 −−
−− R1,2 −−

]
, G2 =

 | |
L2,1 L2,2

| |

 · [X 0R
0R 0R

]
·
[
−− R2,1 −−
−− R2,2 −−

]
,

G3 =

 | |
L3,1 L3,2

| |

 · [X 0R
0R 0R

]
·
[
−− R3,1 −−
−− R3,2 −−

]
, G4 =

 | |
L4,1 L4,2

| |

 · [X
0R

]

2. Challenge-Relevant Elements.

The challenger provides the adversary A with several challenge-relevant elements of the following form (note
that in the baby subspace assumption experiment, the challenge-slot pair is (1, 2) by default):

H1 =
[
X X

]
·
[
−− R1,1 −−
−− R1,2 −−

]
, H2 =

 | |
L2,1 L2,2

| |

 · [X 0R
0R X

]
·
[
−− R2,1 −−
−− R2,2 −−

]
,

H3 =

 | |
L3,1 L3,2

| |

 · [X 0R
0R X

]
·
[
−− R3,1 −−
−− R3,2 −−

]
, H4 =

 | |
L4,1 L4,2

| |

 · [X
X

]

56



3. Special Challenge-Index Elements.

The challenger provides the adversaryAwith several special challenge-index elements of the following form (note
that for our example, the challenge-index j∗ = 3):

S =

 | |
L3,1 L3,2

| |

 · [0R 0R
0R X

]
·
[
−− R3,1 −−
−− R3,2 −−

]

4. Challenge Element.

Finally, the challenger provides the adversary A with a challenge element of the following form (depending on
the challenge-bit b):

C0 =

 | |
L3,1 L3,2

| |

 · [X 0R
0R 0R

]
·
[
−− R3,1 −−
−− R3,2 −−

]
or

C1 =

 | |
L3,1 L3,2

| |

 · [X 0R
0R X

]
·
[
−− R3,1 −−
−− R3,2 −−

]

The important thing to note from the aforementioned illustration is the following: suppose that the challenger, in a
sequence of hybrid experiments, replaces the “blue” guard submatrices in the aformentioned depiction with uniformly
random submatrices of the same dimension. This does not violate any of the aforementioned constraints as these are
the submatrices for which additional orthogonal terms are not provided to the adversary A. Additionally, once all
the “blue” guard submatrices have been replaced with with uniformly random submatrices of the same dimension,
indistinguishability of the challenge element from a random matrix (independent of the challenge bit b) follows
immediately.

Proof Strategy. Based on this observation, our proof strategy for the baby subspace hiding assumption will be to
replace the “blue” guard submatrices in the aformentioned depiction with uniformly random submatrices of the same
dimension, via a sequence of hybrid experiments. The proof that each hybrid is indistinguishable from the previous
hybrid relies intuitively on the following observation: by invoking Theorem 4.2, we can prove that the following are
computationally indistinguishable whenever the ring R is the output ring of a ring homomorphic synthesizer: |

−− X0 −−
|

 and

 |Y0

|

 [X1

] [
−− Y1 −−

]
where X0,X1,Y0 and Y1 are uniform matrices of appropriate dimensions.

9.2 Formal Proof of Baby Subspace Hiding Assumption
Given the above intuition, we now present the formal proof of the baby subspace hiding assumption. We state and prove
the following lemma.

Lemma 9.1. The baby subspace hiding assumption as in Definition 6.2 holds over the output ring R of a ring
homomorphic synthesizer.

We prove this lemma via a sequence of hybrid experimentsH0 throughHz , as described below, where z = poly(λ)
parameterizes the baby subspace hiding assumption (we also assume in the remainder of the description that j∗ ∈ [z] is
the challenge-index chosen by the adversary A in the baby subspace hiding assumption experiment):
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1. H0: This experiment is identical to the baby subspace hiding assumption experiment.

2. Hj for j ∈ [j∗ − 1]: This experiment is identical to the previous experiment Hj−1 except for the manner in
which the challenger generates the guard matrices Rj and Lj+1. Suppose that in the experimentHj−1, the guard
matrices Rj and Lj+1 are generated as:

Rj =

[
−− Rj,1 −−
−− Rj,2 −−

]
, Lj+1 =

 | |
Lj+1,1 Lj+1,2

| |

 .
In the experiment Hj , the submatrices Rj,2 and Lj+1,1 are replaced by uniformly random matrices. More
concretely, in the experimentHj , we have

Rj =

[
−− Rj,1 −−
−− X1 −−

]
, Lj+1 =

 | |
X2 Lj+1,2

| |

 ,
where X1 and X2 are matrices of the appropriate dimensions with uniformly sampled entries from the ring R.

3. Hj for j ∈ [j∗, z − 1]: This experiment is identical to the previous experimentHj−1 except for the manner in
which the challenger generates the guard matrices Rz−(j−j∗)−1 and Lz−(j−j∗). Suppose that in the experiment
Hj−1, the guard matrices Rz−(j−j∗)−1 and Lz−(j−j∗) are generated as:

Rz−(j−j∗)−1 =

[
−− Rz−(j−j∗)−1,1 −−
−− Rz−(j−j∗)−1,2 −−

]
, Lz−(j−j∗) =

 | |
Lz−(j−j∗),1 Lz−(j−j∗),2

| |

 .
In the experiment Hj , the submatrices Rz−(j−j∗)−1,2 and Lz−(j−j∗),1 are replaced by uniformly random
matrices. More concretely, in the experimentHj , we have

Rz−(j−j∗)−1 =

[
−− Y1 −−
−− Rz−(j−j∗)−1,2 −−

]
, Lz−(j−j∗) =

 | |
Lz−(j−j∗),1 Y2

| |

 ,
where Y1 and Y2 are matrices of the appropriate dimensions with uniformly sampled entries from the ring R.

4. Hz : In this hybrid, the challenger does not generate the challenge element depending on the bit b. Instead, it
generates a uniform square matrix C and provides it to the adversary A, except when j∗ = 1 or j∗ = z, in which
cases, the challenger provides the adversary with either I`C, or C(I`)T , respectively.

Indistinguishability of Outer Hybrids. We state and prove the following lemma.

Lemma 9.2. If R is the output of a ring homomorphic synthesizer, then hybridH0 is computationally indistinguishable
from hybridH1.

Proof. We begin by focusing on the guard submatrix R1,2. Note that the only terms involving R1,2 are the challenge-
relevant terms, There are other terms that might reveal information on R1,2 (those terms that contain L2,1), but we shall
ignore them for now. Let H1 be a challenge-relevant term of the form

H1 =
[
X X

]
·
[
−− R1,1 −−
−− R1,2 −−

]
so if we can show that H1 is indistinguishable from random, then we are done.
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In lemma 10.4, we show that for any random matrices R1,1 ∈ Rn×2m, R1,2 ∈ Rn×2m, L2,1 ∈ R2m×n, and
L2,2 ∈ R2m×n, subject to the constraint that

R1,1L2,2 = 0R and R1,2L2,1 = 0R,

and uniformly random matrices X1,X2 ∈ Rn×n and Z ∈ Rn×2m, then the following two tuples are indistinguishable:

(R1,1,R1,2,L2,1,L2,2, (X1R1,1 + X2R1,2)) and (R1,1,R1,2,L2,1,L2,2,Z) .

Note that (X1R1,1 + X2R1,2) is the distribution of terms of the form H1 if R1,2 is distributed correctly, and Z is the
distribution of terms of the form H1 if R1,2 is distributed randomly (note that we are using the fact that multiplication
of a two random matrices is random, which follows from Theorem 4.2).

Given R1,1, R1,2, L2,1, L2,2 and terms of the form H1 that are either real or random, we can easily simulate all
of the remaining terms with the appropriate distribution. Note that if we have randomized R1,2, then L2,1 is now
completely independent of everything else and distributed randomly as desired. So, by invoking Lemma 10.4, we
complete the proof of Lemma 9.2.

We also state the following lemma, the proof of which follows from arguments very similar to those in the proof of
Lemma 9.2 and is hence not detailed.

Lemma 9.3. If R is the output of a ring homomorphic synthesizer, then hybridHz−2 is computationally indistinguish-
able from hybridHz−1.

Indistinguishability of Inner Hybrids. We now state and prove the following lemma.

Lemma 9.4. If R is the output of a ring homomorphic synthesizer, then for each j ∈ [2, j∗ − 1], hybrid Hj−1 is
computationally indistinguishable from hybridHj .

Proof. As before, let’s look closely at one guard submatrix in particular: namely, Rj,2. Note that the only terms
involving Rj,2 are the challenge-relevant terms. There are other terms that might reveal information on Rj,2 (those
terms that contain Lj+1,1), but we shall ignore them for now. Let Hj be a such a challenge-relevant term of the form

Hj =

 | |
Lj,1 Lj,2
| |

 · [X 0R
0R X

]
·
[
−− Rj,1 −−
−− Rj,2 −−

]

Now observe that in hybridHj−1, the submatrix Lj,1 has already been randomized (as well as its predecessor guard
submatrix Rj−1,1), so we may replace it with a random matrix Z without loss of generality. In other words, we have

Hj =

 | |
Z Lj,2
| |

 · [X 0R
0R X

]
·
[
−− Rj,1 −−
−− Rj,2 −−

]
,

or equivalently,
Hj = ZX1Rj,1 + Lj,2X2Rj,2,

where X1 and X2 are submatrices of appropriate dimensions with entries sampled uniformly from the ring R. Now
when we additionally replace the submatrix Rj,2 with a uniformly random submatrix Z′ of the same dimension, the
challenge-relevant term takes the form

Hj = ZX1Rj,1 + Lj,2X2Z
′.

In Lemma 10.5, we show that for random matrices of appropriate dimensions Rj−1,1 ∈ Rn×2m, Lj,2 ∈ R2m×n,
Rj,1 ∈ Rn×2m, Rj,2 ∈ Rn×2m, Lj+1,1 ∈ R2m×n, and Lj+1,2 ∈ R2m×n subject to the constraints that,

Rj−1,1Lj,2 = 0R and Rj,1Lj+1,2 = 0R and Rj,2Lj+1,1 = 0R,
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and for uniformly random matrices X1,X2 ∈ Rn×n, Z ∈ Rn×2m and Z′ ∈ Rn×2m, given the tuple of matrices

(Rj−1,1,Z,Lj,2,Rj,1,Rj,2,Lj+1,1,Lj+1,2) ,

the following terms are computationally indistinguishable:

(ZX1Rj,1 + Lj,2X2Rj,2) and (ZX1Rj,1 + Lj,2X2Z
′) .

Note that on the left is the distribution of terms of the form Hj if Rj,2 is distributed correctly (as in hybrid Hj−1),
and on the right is the distribution of terms of the form Hj if Rj,2 is substituted with a uniformly random submatrix
Z′ (as in hybridHj). Additionally, given the tuple of matrices as described above and terms of the form Hj , we can
easily simulate all of the remaining terms with the appropriate distribution. Finally, once we have randomized Rj,2,
then Lj+1,1 is now completely independent of everything else and distributed randomly as desired. So, by invoking
Lemma 10.5, we complete the proof of Lemma 9.4.

We also state the following lemma, the proof of which follows from arguments very similar to those in the proof of
Lemma 9.4 and is hence not detailed.

Lemma 9.5. If R is the output of a ring homomorphic synthesizer, then for each j ∈ [j∗ + 1, z − 1], hybridHj−1 is
computationally indistinguishable from hybridHj .

Indistinguishability ofHz−1 andHz . Finally, we state and prove the following lemma.

Lemma 9.6. If R is the output of a ring homomorphic synthesizer, then hybridHz−1 is computationally indistinguish-
able from hybridHz .

Proof. Note that in both the hybrids Hz−1 and Hz , all guard matrices {Lj ,Rj} that could be partially random-
ized (without impacting the output of their desired product distributions as mandated by the subspace hiding the
assumption) have, in fact, been partially randomized. The only difference between the hybridsHz−1 andHz is that the
challenge element to be provided to the adversary A is additionally randomized in the final hybridHz .

Recall that, in Hz−1 (and all the hybrids before it), the challenge elements have one of the two forms stated
below (depending on the challenge bit b):

C0 =

 | |
Lj∗,1 Lj∗,2
| |

 · [X 0R
0R 0R

]
·
[
−− Rj∗,1 −−
−− Rj∗,2 −−

]
or

C1 =

 | |
Lj∗,1 Lj∗,2
| |

 · [X 0R
0R X

]
·
[
−− Rj∗,1 −−
−− Rj∗,2 −−

]
Next, observe the following:

• The guard submatrix Lj∗,1 is randomized in hybridHj∗−1 and all subsequent hybrids.

• The guard submatrix Rj∗,1 is randomized in hybridHz−1 and all subsequent hybrids.

In other words, inHz−1, the challenge elements have one of the two forms stated below (depending on the challenge
bit b):

C0 =

 | |
Xj∗,1 Lj∗,2
| |

 · [X 0R
0R 0R

]
·
[
−− Yj∗,1 −−
−− Rj∗,2 −−

]
or

C1 =

 | |
Xj∗,1 Lj∗,2
| |

 · [X 0R
0R X

]
·
[
−− Yj∗,1 −−
−− Rj∗,2 −−

]
,
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or equivalently,
C0 = Xj∗,1X1Yj∗,1 or C1 = Xj∗,1X1Yj∗,1 + Lj∗,2X2Rj∗,2,

where Xj∗,1, Yj∗,1, X1 and X2 are uniformly random matrices. Now, observe that terms of the form

Xj∗,1X1Yj∗,1,

are computationally indistinguishable from random by Theorem 4.2 whenever X1 is uniformly random. This in
turn implies that the distribution of the challenge element in hybridHz−1 must be computationally indistinguishable
from random (independent of the challenge bit b), and hence, computationally indistinguishable from that in hybrid
Hz (independent of the challenge bit b). This completes the proof of Lemma 9.6.

Putting Everything Together. Finally, the proof of Lemma 9.1 follows by putting together, in sequence, the proofs
of Lemma 9.2, Lemma 9.4, Lemma 9.5, Lemma 9.3 and Lemma 9.6. This completes the proof of security of the baby
subspace hiding assumption as in Definition 6.2.

10 Some Useful Lemmata

Lemma 10.1. Let R be a finite ring, and let m,n be integers such that m = 2n and n > 3 log |R|. Assume that
v← Rm, and v∗ sampled uniformly conditioned on vtv∗ = 0R. If a← Rn,~b← Rn, and S← Rn×n then we have

(v,v∗)
s
≈ (w,w∗),

where wt = (at,atS) ∈ Rm and w∗ =

[
−Sb
b

]
∈ Rm.

Proof. We use the notation v = (v1,v2) and v∗ = (v∗1,v
∗
2) to denote the first and second half of v and v∗, respectively.

First, by applying Lemma 3.7 we know that (vt1,v
t
2)

s
≈ (at,atX). Now, in order to uniformly sample w∗ conditioned

on
atw∗1 + atSw∗2 = 0,

we can first sample a uniform b := w∗2 ← Rn, and then sample w∗1 condition on the equation above. By rearranging, it
follows that

atw∗1 = −atSb.

Now observe that given all the terms in the equation above except w∗1 , the distribution of w∗1 is Sb + k, where
Sb is distributed as mentioned above and k is a uniform vector from the set RKer(a).1 By applying Lemma 3.7 again,
it follows that (with overwhemling probability) for every k ∈ RKer(a) there exists a matrix S′ ∈ Rn×n such that
S′y = k. Therefore, we can say that the distribution of w∗1 is Sb + S′b = (S + S′)b, where the distribution of S′ is
induced by RKer(a). Since S is uniform and independent of S′, it follows that the distribution of w∗1 is statistically
close to Sy where S is uniformly distributed. It follows that

(vt,v∗)
s
≈ ((at,atS),

[
−Sb
b

]
),

and hence
(v,v∗)

s
≈ (w,w∗),

as required.
1Recall that RKer(a) is the set of all vectors t such that att = 0R.
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Corollary 10.2. Let R be a finite ring, and let m,n, ` be integers such that m = 2n, n > 3` log |R|, and m is an
integer multiple of `. Assume that V ← R`×m, and V∗ ∈ Rm×` sampled uniformly conditioned on VV∗ = 0. If
A← R`×n, B← Rn×`, and S← Rn×n then we have

(V,V∗)
s
≈ (W,W∗),

where W = [A | AS] ∈ R`×m and W∗ =

[
−SB
B

]
∈ Rm×`.

Proof. It follows by applying the previous lemma, and observing the fact that M`(R) (the set of square `× ` matrices
over R) forms a finite ring.

We also need the following corollary, which plays an essential role in proving that “guard matrices” are distributed
properly.

Corollary 10.3. Let R be a finite ring, and let m,n, ` be integers such that m = 2n, n > 3` log |R|, and m is an
integer multiple of `. Assume that V ← R`×m, and V∗ ∈ Rm×` sampled uniformly conditioned on VV∗ = MB
where M ∈ R`×m is an arbitrary matrix and B ← Rm×` is uniformly generated. If A ← R`×n, B ← Rn×`, and
S← Rn×n then we have

(V,V∗)
s
≈ (W,W∗),

where W = [A | AS + M] ∈ R`×m and W∗ =

[
−SB
B

]
∈ Rm×`.

Proof. This proof follows by the applying the previous corollary to the coset that is induced by the element MB. (One
can view the previous corollary as a special case of this one by setting M to be all-zero matrix.)

Lemma 10.4. Let m and n be integers such that m ≥ 6n log |R| where R is the output space of a ring-embedded
homomorphic synthesizer. Let the matrices R1 ∈ Rn×2m, and R2 ∈ Rn×2m L1 ∈ R2m×n, L2 ∈ R2m×n, be random
subject to the constraint that

R1L2 = 0 and R2L1 = 0

Suppose we sample two matrices X1,X2 ∈ Rn×n uniformly at random, and let Z ∈ Rn×2m be sampled uniformly at
random as well. We claim the following two tuples are indistinguishable:

(R1,R2,L1,L2, (X1R1 + X2R2)) and (R1,R2,L1,L2,Z)

Proof. To provide a better intuition, let’s start by visualizing what we want to prove. Suppose we have the following
matrices: [

−− R1 −−
]
,
[
−− R2 −−

]
,

 |L1

|

 ,
 |L2

|


We claim that, given two sets of orthogonal matrices of ring elements: R1, L2 and R2, L1, the following is indistin-
guishable from random for random X1, X2:

[
X1 X2

] [−− R1 −−
−− R2 −−

]
By Corollary 10.2, for random F ∈ Rm×m, G ∈ Rm×n, and H ∈ Rn×m, the set of matrices

A ∈ Rn×2m :=
[
G GF

]
, B ∈ R2m×n :=

[
−FH
H

]
are statistically indistinguishable from a randomly chosen pair of matrices(

A′ ∈ R2m×n,B′ ∈ Rn×2m
)

62



such that AB = 0. Given this, we can replace the matrices in our assumption with ones of this form.
Suppose we define uniformly random matrices R̃1 ∈ Rn×m, R̃2 ∈ Rn×m, L̃1 ∈ Rm×n, L̃2 ∈ Rm×n, U ∈

Rm×m, and V ∈ Rm×m and set:

R1 =
[
R̃1 R̃1U

]
, R2 =

[
R̃1 R̃2V

]
, L1 =

[
−VL̃1

L̃1

]
, L2 =

[
−UL̃2

L̃2

]

Then our lemma is exactly equivalent to distinguishing the following:([
R̃1, R̃1U

]
,
[
R̃2, R̃2V

]
,
[
−L̃1V, L̃1

]
,
[
−UL̃2, L̃2

]
, (X1R1 + X2R2)

)
and([

R̃1, R̃1U
]
,
[
R̃2, R̃2V

]
,
[
−L̃1V, L̃1

]
,
[
−UL̃2, L̃2

]
,Z
)

Now let’s work graphically. Note that

[
X1 X2

] [−− R1 −−
−− R2 −−

]
=
[
X1 X2

] [R̃1 UR̃1

R̃2 VR̃2

]
=

[
X1R̃1 + X2R̃2|| X1R̃1U + X2R̃2V

]
Let C ∈ Rn×m and D ∈ Rn×m be uniformly random matrices. By Theorem 4.2, we know that the following tuples
are indistinguishable: (

R̃1,X1R̃1

)
and

(
R̃1,C

)
(
R̃2,X2R̃2

)
and

(
R̃2,C

)
Using this indistinguishability, we can reduce the output of our assumption to[

C + D ||CU + DV
]

Note that [
C + D ||CU + DV

]
=
[
C + D || (C + D)U + D (V −U)

]
Since C and D are uniformly random, we have that, for some random E ∈ Rn×m, the above is identically distributed
to [

E |EU + D (V −U)
]

Since V and U are random, we know that, for some random W ∈ Rn×m, the above is identically distributed to[
E |EU + DW

]
We note that this is the case even if V and U are publicly known. Let K ∈ Rn×m be a uniformly random matrix, by
Theorem 4.2 it is easy to see that the following are indistinguishable from random

(W,DW) and (W,K)

This allows us to randomize the second term in the above matrix, completing the proof.

Lemma 10.5. Let m and n be integers such that m ≥ 6n log |R| where R is the output space of a ring-embedded
homomorphic synthesizer. Let the matrices R1,2 ∈ Rn×2m, L2,1 ∈ R2m×n, R2,1 ∈ Rn×2m, and R2,2 ∈ Rn×2m,
L3,1 ∈ R2m×n, and L3,2 ∈ R2m×n be random subject to the constraint that, for all relevant i:

Li,0Ri+1,1 = 0 and Li,1Ri+1,0 = 0
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Suppose we sample two matrices X1,X2 ∈ Rn×n uniformly at random, and let Z ∈ Rn×2m and Z′ ∈ Rn×2m be
sampled uniformly at random as well. We claim the following: given the terms

R1,2,L2,1,R2,1,R2,2,L3,1,L3,2,Z

the following tuples are indistinguishable:

(L2,1X1R2,1 + ZX2R2,2) and (L2,1X1Z
′ + ZX2R2,2)

Proof. Observe that essentially what we are trying to prove is that the following two products are indistinguishable
from each other:  | |

L2,1 Z
| |

[X1 0
0 X2

] [
−− R2,1 −−
−− R2,2 −−

]
and  | |

L2,1 Z
| |

[X1 0
0 X2

] [
−− Z′ −−
−− R2,2 −−

]
even when given all of the matrices in the assumption. Note that we are giving out all of the “guard” matrices in the
“real” product–L2,1, Z, R2,1 and R2,2–as well as matrices R1,2, L3,2, and L3,1, which are orthogonal to L2,1, R2,1,
and R2,2, respectively. Note that Z is totally random and that it is completely independent from all other terms (we are
not giving out anything orthogonal to it). This will be crucial for our proofs.

By Corollary 10.2, for random F ∈ Rm×m, G ∈ Rm×n, and H ∈ Rn×m, the set of matrices

A ∈ Rn×2m :=
[
G GF

]
, B ∈ R2m×n :=

[
−FH
H

]
are statistically indistinguishable from a randomly chosen pair of matrices(

A′ ∈ R2m×n,B′ ∈ Rn×2m
)

such that AB = 0. Given this, once again we can replace the matrices in our assumption with ones of this form.
As before, we define many tuples of orthogonal matrices Let R̃1,2 ∈ Rm×n, L̃2,1 ∈ Rn×m, R̃2,1 ∈ Rm×n,

L̃3,2 ∈ Rn×m,R̃2,2 ∈ Rm×n, L̃3,1 ∈ Rn×m, V1 ∈ Rm×m, U2 ∈ Rm×m, and V2 ∈ Rm×m be distributed uniformly
at random. We can define our original matrices in the following way:

R1,2 =
[
R̃1,2 R̃1,2V1

]
, L2,1 =

[
˜−V1L2,1

L̃2,1

]
, R2,1 =

[
R̃2,1 R̃2,1U2

]
, L3,2 =

[
−U2L̃3,2

L̃3,2

]
,

R2,2 =
[
R̃2,2 R̃2,2V2

]
, L3,1 =

[
−V2L̃3,1

L̃3,1

]
As a simplification, suppose we set Z = [Z1||Z2] for Z1,Z2 ∈ Rm×n. We can rewrite | |

L2,1 Z
| |

[X1 0
0 X2

] [
−− R2,1 −−
−− R2,2 −−

]
as 

| |
V1L̃2,1 Z1

| |
| |

L̃2,1 Z2

| |


[
X1 0
0 X2

] [
−− R̃2,1 −− −− R̃2,1U2 −−
−− R̃2,2 −− −− R̃2,2V2 −−

]
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=



| |
V1L̃2,1X1 Z1X2

| |
| |

L̃2,1X1 Z2X2

| |


[
−− R̃2,1 −− −− R̃2,1U2 −−
−− R̃2,2 −− −− R̃2,2V2 −−

]

Let C1 ∈ Rm×n, C2 ∈ Rm×n, and C3 ∈ Rm×n be uniformly random matrices. By Theorem 4.2, we know that the
following are indistinguishable from random:(

L̃2,1, L̃2,1

)
X1 and

(
L̃2,1,C1

)
(Z,ZX2) and

(
Z, [C2||C3]

T
)

We can rewrite the above product as
| |

V1C1 C2

| |
| |

C1 C3

| |


[
−− R̃2,1 −− −− R̃2,1U2 −−
−− R̃2,2 −− −− R̃2,2V2 −−

]

If we expand this matrix, we get[
V1C1R̃2,1 + C2R̃2,2 V1C1R̃2,1U2 + C2R̃2,2V2

C1R̃2,1 + C3R̃2,2 C1R̃2,1U2 + C3R̃2,2V2

]

Suppose we also assume the adversary knows V1, U2, and V2. Recall that matrices of the form[
I X
0 I

]
and

[
Y I
I 0

]
are invertible for any ring and for any X,Y. Now let’s consider the product[

I −V1

0 I

][
V1C1R̃2,1 + C2R̃2,2 V1C1R̃2,1U2 + C2R̃2,2V2

C1R̃2,1 + C3R̃2,2 C1R̃2,1U2 + C3R̃2,2V2

] [
I 0
−V2 I

]
If we can show that certain terms in this product are random, then it immediately follows that the terms in our original
matrix are indistinguishable from random since the operations are invertible and we are assuming that V1 and V2

are known to the adversary. Now, our goal is to show that U2 is indistinguishable from random. By working some
calculation, we get [

I −V1

0 I

][
V1C1R̃2,1 + C2R̃2,2 V1C1R̃2,1U2 + C2R̃2,2V2

C1R̃2,1 + C3R̃2,2 C1R̃2,1U2 + C3R̃2,2V2

]
=

[
C2R̃2,2 −V1C3R̃2,2 C2R̃2,2V2 −V1C3R̃2,2V2

C1R̃2,1 + C3R̃2,2 C1R̃2,1U2 + C3R̃2,2V2

]
and also that [

C2R̃2,2 −V1C3R̃2,2 C2R̃2,2V2 −V1C3R̃2,2V2

C1R̃2,1 + C3R̃2,2 C1R̃2,1U2 + C3R̃2,2V2

] [
−V2 I
I 0

]
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=

[
0 C2R̃2,2 −V1C3R̃2,2

C1R̃2,1U2 + C3R̃2,2V2 C1R̃2,1 + C3R̃2,2

]
Now we need to show that U2 is computationally hidden. Let E1 ∈ Rm×m, E2 ∈ Rm×m, and C3 ∈ Rm×m be
uniformly random matrices. By Theorem 4.2, we know that the following are indistinguishable from random:(

R̃2,1,C1R̃2,1

)
and

(
R̃2,1,E1

)
(
R̃2,2,C2R̃2,2

)
and

(
R̃2,2,E2

)
(
R̃2,2,C3R̃2,2

)
and

(
R̃2,2,E3

)
This allows us to reduce the previous matrix we were examining to[

0 E2 −V1E3

E1U2 + E3V2 E1 + E3

]
Note that E2 −V1E3 is distributed randomly given the rest of the terms since E2 is random and is not present in any
of the other terms. In order to finish the lemma, we need to show that the following two tuples are indistinguishable,
where Q ∈ Rm×m is a random matrix:

(U2,V2,E1U2 + E3V2,E1 + E3) and (U2,V2,E1Q + E3V2,E1 + E3)

Observe that even if E1 is known to the adversary, the latter tuple is random since (E1,E1Q) is indistinguishable from
random by Theorem 4.2. It is enough to show that the tuple

U2,V2,E1U2 + E3V2,E1 + E3

is indistinguishable from random. We can write F = E1 + E3 and then rewrite our tuple as

U2,V2,E1 (U2 −V2) + FV2,F

Since we have eliminated E3 from the above tuple, we may assume that F is uniformly random and hidden from
an adversary. Let G ∈ Rm×m be a uniformly random matrix. By Theorem 4.2, we know that the following are
indistinguishable from random:

(V2,FV2) and (V2,G)

Then our tuple is indistinguishable from

U2,V2,E1 (U2 −V2) + G,F

which is indistinguishable from random, completing the proof.

11 Slotted RKHwPRFs
In this section, we define a weaker flavor of RKHwPRF called a “slotted” RKHwPRF. We begin by defining a plain
slotted weak PRF with no algebraic structure.

Definition 11.1. (Slotted weak PRF.) An N -slotted weak PRF family is a set of weak PRF families {Fi,j : K ×X →
Yi,j}i,j∈[N ],i≤j that share the same key space and input space, but may have different output spaces.

Each unit interval [i, i] for i ∈ [N ] is referred to as a “slot”. Note that for a unit interval [i, i], we simply use the
notations Fi and Yi instead of Fi,i and Yi,i.

We now define variants of these primitive with algebraic structure.
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Definition 11.2. (Slotted RKHwPRF.) An N -slotted weak PRF family of the form {Fi,j : K ×X → Yi,j}i,j∈[N ],i≤j
is an N -slotted RKHwPRF family if it satisfies the following properties:

• (K,⊕,⊗) is an efficiently samplable (finite) ring with efficiently computable ring operations.

• For each i, j ∈ [N ] such that i ≤ j, we have the following:

– (Yi,j ,�) is an efficiently samplable (finite) group with efficiently computable group operations.

– For any x ∈ X the function Fi,j(·, x) : K → Yi,j is a group homomorphism, i.e., for any x ∈ X and
k, k′ ∈ K we have

F (k ⊕ k′, x) = F (k, x)� F (k′, x).

• For each i, j, ` ∈ [N ] such that i ≤ j < `, there exists an efficiently computable function φi,j,` : Yi,j ×Yj+1,` →
Yi,` such that for any x ∈ X and k, k′ ∈ K, we have

Fi,`(k ⊗ k′, x) = φi,j,`(Fi,j(k, x), Fj+1,`(k
′, x)).

11.1 Two-slotted-RKHwPRFs from Bilinear SXDH
Let e : G1 ×G2 → GT be an asymmetric efficiently computable non-degenerate bilinear map with “source groups” G1

and G2 , and “target group” GT with generator gT , where each group has order q (assumed prime). Also, let X be a set
of size q such that there exist efficiently computable “encoding functions”:

H1 : X → G1, H2 : X → G2, HT : X → GT ,

such that for any x ∈ X , we have
HT (x) = e(H1(x), H2(x)).

Now, define the functions F1 : Zq ×X → G1 and F2 : Zq ×X → G2 as:

F1(k, x) = H1(x)
k

, F2(k, x) = H2(x)
k
.

Similarly, define the function F1,2 : Zq ×X → GT as:

F1,2(k, x) = HT (x)k.

Assuming that bilinear SXDH holds (i.e., that the DDH assumption holds over each individual source group G1 and
G2, and hence, over the target group GT ), and assuming that the “encoding functions” H1 and H2 are permutations,
we can state the following:

• F1, F2 and F1,2 are weak PRFs.

• F1 and F2 are homomorphic with respect to addition. More concretely, for any k1, k2 ∈ Zq and for any x ∈ X ,
we have:

F1(k1 + k2, x) = F1(k1, x) · F1(k2, x) , F2(k1 + k2, x) = F2(k1, x) · F2(k2, x).

Similarly, F1,2 is also homomorphic with respect to addition. More concretely, for any k1, k2 ∈ Zq and for any
x ∈ X , we have:

F1,2(k1 + k2, x) = F1,2(k1, x) · F1,2(k2, x).

To see this observe that:

F1(k1 + k2, x) = H1(x)
k1+k2

= H1(x)
k1 ·H1(x)

k2

= F1(k1, x) · F1(k2, x).

The addtitive homomorphisms of F2 and F1,2 follow similarly.
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This gives us group key-homomorphic weak PRFs. However, defining ring-homomorphism is tricky, since none of
G1, G2 and GT are necessarily equipped with efficiently computable multiplication operations (in fact, for some of
these groups, such an operation may not even be properly defined).

However, note that we can use the bilinear map e to “simulate” a single multiplication operation as follows: for any
k1, k2 ∈ Zq and for any x ∈ X , define the following operation:

φ(F1(k1, x), F2(k2, x)) := e(F1(k1, x), F2(k2, x)).

It is easy to see the following:

φ(F1(k1, x), F2(k2, x)) = e(F1(k1, x), F2(k2, x))

= e
(
H1(x)k1 , H2(x)k2

)
= e (H1(x), H2(x))

k1·k2

= HT (x)k1·k2

= F1,2(k1 · k2, x).

It is now easy to see that the ensemble {F1, F2, FT } is a two-slotted RKHwPRF family by construction.

11.2 Multi-slotted-RKHwPRFs from SXDH
We now generalize the aforementioned framework to generic asymmetric multilinear map of arbitrary degree n equipped
with the SXDH assumption. We adopt the same definition of asymmetric multilinear maps presented in [GGH13a].
According to this definition, in asymmetric multilinear maps, the groups are indexed by integer vectors. Formally, a
standard asymmetric multilinear map consists of the following .

• Setup(1λ, 1N ,n): Takes as input a vector n ∈ ZN . Sets up an N -linear map by outputting a succinct description
of groups (G1,G2, · · · ,Gn) of prime order q (where q is a λ bit prime), along with the respective generators
gv ∈ Gv for 1 ≤ v ≤ n (comparison of vectors is defined component-wise). Further, let ei be the i-th standard
basis vector (with 1 at position i and 0 at each other position). In standard notation, Gei is the ith source group,
Gn is the target group, and the rest are the intermediate groups.

• ev1,v2(h1, h2): Takes as input h1 ∈ Gv1 and h2 ∈ Gv2 subject to the restriction that v1 + v2 <= n, and
outputs h3 ∈ Gv1+v2 such that

(h1 = gav1
, h2 = gbv2

)⇒ h3 = gabv1+v2

For simplicity, we omit the subscripts and simply refer to this multilinear map as e, which may be generalized to
multiple inputs as:

e(h1, . . . , h`) = e(h1, e(h2, . . . , h`)).

Now, analogous to the bilinear setting, let X be a set of size q and assume that there exists a family of encoding
functions {Hvi : X → Gvi}vi<=n such that for any vi,vj such that vi + vj <= n, the following relation holds:

Hvi+vj (x) = e(Hvi(x), Hvj (x)).

Note that this can be achieved via the following steps:

• For the i-th standard basis vector ei, choose a basis encoding function:

Hei : X → Gei .
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• For any vector v <= n such that v =
∑N
i=1 αi · ei, define

Hv := e(gα1
e1
, . . . , gαNeN ).

Next, for any any vector v <= n, define the function Fv : Zq ×X → Gv as:

Fv(k, x) = Hv(x)k.

Assuming that SXDH holds (i.e., that the DDH assumption holds over each group Gv) and assuming that each basis
encoding function Hei is a permutation, we can state the following:

• Each function Fv is a weak PRF.

• Each function Fv is homomorphic with respect to addition. More concretely, for any k1, k2 ∈ Zq and for any
x ∈ X , we have:

Fv(k1 + k2, x) = Fv(k1, x) · Fv(k2, x).

This gives us group key-homomorphic weak PRFs. Again, defining ring-homomorphism is tricky, since none of the
groups output by the setup algorithm are necessarily equipped with efficiently computable multiplication operations.
However, yet again, we can use the multilinear map e to “simulate” multiplication operations as follows: for any
k1, k2 ∈ Zq , for any x ∈ X , and for any any vi,vj such that vi + vj <= n, define the following operation:

φ(Fvi(k1, x), Fvj (k2, x)) := e(Fvi(k1, x), Fvj (k2, x)).

It is easy to see the following:

φ(Fvi(k1, x), Fvj (k2, x)) = e(Fvi(k1, x), Fvj (k2, x))

= e
(
Hvi(x)k1 , Hvj (x)k2

)
= e

(
Hvi(x), Hvj (x)

)k1·k2
= Hvi+vj (x)k1·k2

= Fvi+vj (k1 · k2, x).

Finally, we show how to concretely construct an N -slotted RKHwPRF family based on the aforementioned
discussion:

• For each i ∈ [N ], define F̃i (equivalently, F̃i,i) as F̃i := Fei
.

• For each i, j ∈ [N ] such that i < j, define F̃i,j := Fvi,j where vi,j =
∑j
`=i e`.

It is easy to see that the ensemble {F̃i,j}i,j∈[N ],i≤j is an N -slotted RKHwPRF family by construction.

11.3 Constructions from Slotted RKHwPRFs
We note that the key difference between classic and slotted RKHwPRFs is that the latter primitive is restricted in terms
of “multiplication.” Namely the multiplication operation is only defined between wPRF evaluations from “adjacent”
slots, and the maximum multiplicative depth is bounded by the number of slots, which is a parameter of the slotted
RKHwPRF family. However, these restrictions do not hinder our constructions from classic RKHwPRFs from a
functional point of view. We elaborate more on this below.
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Multiplying in Order. Our NIKE and iO constructions only require elements from the output ring of a classic
RKHwPRF (or more generally, an RHS) to be multiplied in a pre-determined order. For example, in our NIKE
construction, evaluating the final secret key requires the public/secret matrices of ring elements from various parties to
be multiplied in a specific pre-determined order (informally, in the order in which the parties are indexed).

The restriced order of multiplications is even more natural in the case of our iO construction. From a functional
point of view, evaluating a branching program using our iO construction requires the evaluator to multiply matrices of
ring elements in the order of the level/variable index that they correspond to (depending on whether the matrix is a
“program-carrying” matrix or an “enforcer” matrix). In addition, from a security point of view, we actually want to
restrict an adversary from being able to multiply these matrices out of order, in order to prevent mix-and-match/input
inconsistency attacks. This is the key rationale behind our design of “guard matrices” which, at a high level, enforce
the restriction that only matrices (or in some cases submatrices) corresponding to adjacent levels/consecutive input
variables can be meaningfully multiplied.

So, the lack of ability to multiply elements “out of order” certainly does not hurt us and may even help us in terms
of practical security.

Pre-Determined Multiplicative Depth. Both our NIKE and iO constructions have a pre-fixed multiplicative depth.
In the case of the NIKE construction, the multiplicative depth of the key derivation circuit is (N − 1), where N is
the number of parties participating in the protocol. In the case of the iO construction, the multiplicative depth of the
circuit evaluating an obfuscated program is bounded by c(L+N), where L is the depth of the permutation branching
program corresponding to the circuit to be obfuscated, N is the number of input variables and c is a fixed parameter of
the construction. In particular, for our iO construction, the multiplicative depth of the evaluation circuit is independent
of the actual circuit being obfuscated.

Sampling from Special Distributions. Our iO construction from classic RKHwPRF requires the ability to efficiently
sample matrices of ring elements from certain special distributions. For example, the obfuscation algorithm samples
guard matrices that are uniform subject to specific constraints; in particular, the products of certain guard submatrices
are required to be zero. In the slotted RKHwPRF setting, the output spaces of weak PRFs are not rings and hence do not
necessarily support efficient multiplication. This means we cannot sample such specially distributed matrices directly
from the output spaces.

However, we can easily get around this issue by sampling from the key space instead. Recall that the key space for
a slotted RKHwPRF is a ring, supports efficient multiplications, and is shared across all unit interval-levels. Hence,
we can sample from the key space of the slotted RKHwPRF in exactly the same way as from the output space of a
classic RKHwPRF. Next, we translate these sampled keys to the respective output spaces by evaluating the weak PRF at
each interval-level on the same uniform input x. By the ring-homomorphic properties of the slotted RKHwPRF, the
corresponding weak PRF outputs satisfy the desired distributions.

Overview of Construction Strategies. Based on the aforementioned observations, our constructions work from
slotted RKHwPRFs in the same way as they work from classic RKHwPRFs. For example, intuitively, the NIKE
construction for N parties can be instantiated from a (2N − 1)-slotted RKHwPRF, where the N “odd-indexed” slots are
used by each party to encode their secrets, and the “odd-indexed” are used for the public parameter matrices. In some
more detail, the secret Si for each party Pi would be a matrix of elements that belong to the unit interval [2i− 1, 2i− 1],
and each public parameter matrix Ri would be a matrix of elements that belong to the unit interval [2i, 2i]. The final
secret key would be a matrix of elements at the top-level interval [1, 2N − 1].

Similarly, the iO construction for permutation branching programs with depth L and N variables can be instantiated
from a (c(L+N))-slotted RKHwPRF, where c is a fixed parameter of the construction. Separate unit interval-slots
would be designated for each program-carrying and enforcing matrix, as well as for the guard matrices, such that
matrices in these slots can be sampled from appropriate distributions and multiplied in order by the obfuscation and
evaluation algorithms.

Finally, observe that just like a classic RKHwPRF, a slotted RKHwPRF is inherently equipped with a zero test;
evaluating a PRF at any interval-level [i, j] with the zero key is guaranteed to produce the zero lement corresponding
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to the interval-level [i, j]. Hence, the zero test for our iO construction from a slotted RKHwPRF would also work in
exactly the same way as the zero test for our iO construction from a classic RKHwPRF.

Arguing Security. Finally, the security arguments for our constructions from classic RKHwPRFs can be naturally
adopted to work for their counteparts built from slotted RKHwPRFs. We note that the key space for a slotted RKHwPRF
family is a ring (same as in a classic RKHwPRF), so the same (leftover hash lemma+weak pseudorandmoness) based
arguments for “repeated” subset sums and general linear sums also apply to the slotted RKHwPRF setting. At a high
level, an adversary against a slotted RKHwPRF has strictly lesser computational capabilities than an adversary against a
classic RKHwPRF (due to the restrictions on the multiplication operations), and hence all relevant hardness assumptions
naturally translate from the classic to the slotted setting.

12 Slotted Partial RKHwPRFs
In this section, we define another flavor of slotted RKHwPRF called a slotted partial RKHwPRF.

Definition 12.1. (Slotted Partial RKHwPRF.) An N -slotted partial RKHwPRF family is a collection of weak PRF
families {Fi,j : (K ×Ri,j)×X → Yi,j}i,j∈[N ],i≤j that satisfies the following properties:

• (K,⊕,⊗) is an efficiently samplable (finite) ring with efficiently computable ring operations.

• For each i, j ∈ [N ] such that i ≤ j, we have the following:

– (Yi,j ,�) is an efficiently samplable (finite) group with efficiently computable group operations.

– There exists an efficiently computable function ψi,j : Ri,j ×Ri,j → Ri,j such that for any x ∈ X , any
k, k′ ∈ K and any r, r′ ∈ Ri,j , we have

F ((k ⊕ k′, r′′), x) = F ((k, r), x)� F ((k′, r′), x),

where r′′ = ψi,j(r, r
′).

• For each i, j, ` ∈ [N ] such that i ≤ j < `, there exists:

1. an efficiently computable function φi,j,` : Yi,j × Yj+1,` → Yi,`, and

2. an efficiently computable function ψi,j,` : Ri,j ×Rj+1,` → Ri,`,

such that for any x ∈ X , any k, k′ ∈ K, any r ∈ Ri,j and any r′ ∈ Rj+1,` we have

Fi,`((k ⊗ k′, r′′), x) = φi,j,`(Fi,j((k, r), x), Fj+1,`((k
′, r′), x)),

where r′′ = ψi,j,`(r, r
′).

• There exists an efficiently computable function ZeroTest such that for x ∈ X and any r ∈ Ri,j , the following
holds with overwhelmingly large probability:

ZeroTest(F1,N ((k, r), x)) = 1 if and only if k = 0K,

where F1,N is referred to as the top-level PRF.

Remark 12.2. Note that the zero test does not appear as an explicit requirement in the definitions of classical/slotted
RKHwPRF presented earlier. This is because these primitives are inherently equipped with a zero test by virtue of their
exact ring-homomorphism properties. More concretely, evaluating a classical/slotted RKHwPRF on any input using the
key k = 0K trivially results in a zero output, which simply serves as the zero test. However, this is not guaranteed when
the homomorphism is only partial, in which case the zero test needs to be listed as an explicit requirement.
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12.1 Partial Slotted RKHwPRF from the MZ18 MMap
Ma and Zhandry [MZ18] proposed a candidate polynomial-degree multilinear map scheme (referred to as the MZ18
MMap henceforth), that builds on top of the candidate polynomial-degree multilinear map scheme of Coron et
al. [CLT13] (referred to as the CLT13 MMap henceforth). The MZ18 MMap construction is provably secure in the
weak multilinear map model under the branching program unannihilatability assumption of Garg et al. [GMM+16]. In
particular, it provably subverts many of the zeroizing attacks [CLLT17] proposed against the original CLT13 MMap
scheme.

In this section, we show that the MZ18 MMap implies a slotted partial RKHwPRF family. We begin with
a description of the MZ18 MMap construction. We subsequently show an explicit construction of slotted partial
RKHwPRF from the MZ18 MMap.

Overview of the MZ18 MMap. We provide an overview of the MZ18 MMap construction. The plaintext space
for the construction is a ring R = ZM (where M is not made public) with well-defined and efficiently computable
addition and multiplication operations. The construction maps plaintext elements onto encodings, where each encoding
is associated with a particular level. An MZ18 MMap of degree N = poly(λ) (where λ is the security parameter)
supports a total of N2 interval-levels of the form [i, j] such that i, j ∈ [N ] and i ≤ j. Each interval of the form [i, i] for
i ∈ [n] is referred to as a singleton/unit interval-level.

At a high level, two kinds of operations are defined over the MZ18 MMap encodings - addition and multiplication.
The addition operation is only defined between encodings that belong to the same interval-level [i, j], while the
multiplication operation is only defined over encodings at adjacent interval-levels, i.e., it is only possible to multiply
encodings at levels [i, j] and [j+ 1, k] such that i, j, k ∈ [N ] and i ≤ j < k. The addition and multiplication operations
define a partial ring homomorphism between the space of encodings and the ring of plaintext elements. Adding
encodings of plaintext elements a and b produces an encoding of (a+ b). Similarly, multiplication encodings of a and b
produces an encoding of (a · b).

Format of Encodings. Each encoding in the MZ18 MMap is a matrix, organized logically into NL columns. The
columns are further partitioned into N groups (numbered 1 through N ) consisting of L columns each. The columns in
each group are interleaved; for each i ∈ N , the ith group consists of the columns i, (i+N), (i+2N), . . . , (i+(L−1)N).
The unit interval-level [i, i] is essentially made up of the columns in the ith group. Each MZ18 encoding at the unit
interval-level [i, i] consists of L matrices of CLT13 encodings, one in each of the columns corresponding to the column
group i. More concretely, given a plaintext element a ∈ Zm, its overall meta-encoding at interval-level [i, i] is given
by the sequence of encodings (A

(i)
` )`∈[L] corresponding to the sequence of plaintext elements (a, 0, . . . , 0), where for

each ` ∈ [L], A(i)
` denotes the `th matrix in the encoding.

To construct A(i)
` , MZ18 uses a core diagonal matrix Ã

(i)
` of the form

Ã
(i)
` =



a`
v`

w`
ψ1I

. . .
ψi−1I

E
(i)
`

ψi+1I
. . .

ψNI


where:

• a` ∈ ZM is the plaintext element being encoded.
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• v` and w` are freshly sampled uniformly random elements from the plaintext space ZM with the purpose of
enforcing a requirement called non-shortcutting that is essential to the security proof for the MZ18 construction.
We refer the reader to [MZ18] for more details.

• Each block matrix of the form ψjI for j ∈ [N ] \ {i} is a random multiple of the identity matrix that simply
serves as a placeholder and is essentially unused.

• The block matrix E
(i)
` is an enforcer matrix with the purpose of preventing an adversary from arbitrarily mixing

and matching the matrices from different encodings. We again refer the reader to [MZ18] for more details on
how the enforcer matrix is constructed.

Kilian Randomization. A total of (NL+1) Kilian randomization matrices are generated, indexed as R0,R1, . . . ,RNL.
s. All encodings share the same Kilian matrices. Each Ã

(i)
` matrix at meta-level i is left- and right- multiplied by the

corresponding Kilian randomization matrices, giving the encoding

Ã′
(i)

= RN(`−1)+(i−1)Ã
(i)
` RN(`−1)+i.

The Final Encoding. Finally, the MZ18 encoding A
(i)
` is generated as

A
(i)
` = Enc-CLT(Ã′

(i)
, N(`− 1) + i),

where the function Enc-CLT takes as input a matrix containing elements in ZN and a level z, and outputs a matrix such
that each entry of the output matrix is a CLT13 encoding of the corresponding entry in the input matrix at the singleton
level-set {z}.

We avoid presenting the details of the CLT13 encoding algorithm; the reader may refer [CLT13, MZ18]. Instead, we
highlight certain properties of the CLT13 encoding that are essential to the construction of slotted partial RKHwPRFs
from the MZ18 MMap:

• There exists an efficiently computable addition operation over CLT13 encodings that belong to the same level-set.
The addition operation between encodings defines a group that is homomorphic to the additive group over the
plaintext space.

• There exists an efficiently computable multiplication operation over CLT13 encodings that belong to disjoint
level-sets. The resulting product is an encoding of the product of the underlying plaintext elements, albeit at the
level-set which is the union of the input level-sets.

We will subsequently see how these partial ring-homomorphic properties in the original CLT13 encoding are inherited
by the MZ18 MMap encoding. We also note that the interval-levels supported by the MZ18 encoding are essentially a
restriction of the level-sets supported by the CLT13 encoding, and this restriction plays a key role in preventing the
zeroizing attacks plaguing the original CLT13 MMap construction.

Operations over Encodings. We now describe the addition and multiplication operations over the MZ18 encodings.
Recall that given a plaintext element a ∈ Zm, its encoding is given by the sequence of encodings (A

(i)
` )`∈[L]

corresponding to the sequence of plaintext elements (a, 0, . . . , 0). Before describing the operations, we assume that the
following encodings are published at setup:

• Encodings of {1, 2, 4, . . . , 2ρ−1} at every interval-level [i, j] such that i, j ∈ [N ] and i ≤ j, where τ ′ is a
parameter that also depends on the plaintext ring ZM .

• τ ′-many uniformly random encodings of 0 at every interval-level [i, j] such that i, j ∈ [N ] and i ≤ j, where τ ′ is
a parameter that also depends on the plaintext ring ZM .

73



Addition. To add two encodings at the same unit interval-level [i, i], which are essentially two sequences of matrices
with entries in ZM , one lines up the sequences of matrices and adds the corresponding matrices component-wise. The
resulting sequence of matrices is taken as the encoding of the sum. Intuitively, this works because:

1. All encodings at the same level use the same pair of Kilian randomizers; hence adding these matrices also adds
the sequence of underlying plaintexts.

2. The enforcing matrices corresponding to the same level are generated in a manner that preserves their structure
across addition over ZM .

More concretely, if the input encodings have plaintext sequences (a1, 0, . . . , 0) and (a2, 0, . . . , 0), the result of addition
has plaintext sequence (a1 + a2, 0, . . . , 0).

Multiplication. To multiply two encodings at interval-levels [i, j] and [j+1, j′] for i, j, j′ ∈ [N ] such that i ≤ j < j′,
one proceeds as follows: for each ` ∈ [L], it multiplies the `th matrix from the first encoding with the `th matrix of the
second encoding, re-randomizes it by adding the resulting matrix to a random encoding of 0 at the level [i, j′], and sets
the resulting matrix to be the `th matrix of the output encoding. Again, intuitively, this works because:

1. For each ` ∈ [L], the `th matrices in the meta-encodings at the interval-levels [i, j] and [j + 1, j′] use the Kilian
randomizer pairs (RN(`−1)+(i−1),RN(`−1)+j) and (RN(`−1)+j ,RN(`−1)+(j′−1)), and hence multiplying these
results in a matrix with the the Kilian randomizer pair (RN(`−1)+(i−1),RN(`−1)+j′), as desired for the interval-
level [i, j′].

2. Multiplying the matrices also multiplies (component-wise) the sequence of underlying plaintexts. This follows
from the structure of the meta-encoding matrices.

3. For each ` ∈ [L], the pair of enforcing matrices (E
(i,j)
` ,E

(j+1,j′)
` ) corresponding to the interval-levels [i, j] and

[j + 1, j′] is structured in a manner such that their product matrix E(i,j′) = E
(i,j)
` E

(j+1,j′)
` is structured as an

enforcing matrix corresponding to the interval-level [i, j′] should be structured.

More concretely, if the input encodings have plaintext sequences (a1, 0, . . . , 0) and (a2, 0, . . . , 0), the result of multipli-
cation has plaintext sequence (a1 · a2, 0, . . . , 0).

Generating Encodings of Arbitrary Plaintexts. We now describe how to efficiently generate MZ18 encodings
corresponding to arbitrary plaintexts. Observe that we published at setup encodings of {1, 2, 4, . . . , 2ρ−1} at each unit
interval-level [i, i] for i ∈ [n], where ρ is a parameter that depends on the plaintext ring ZM . To encode a plaintext
a ∈ Z2ρ at a unit interval-level [i, i], one can then write the plaintext in base 2, and then sum the appropriate public
encodings of powers of 2. In [MZ18], the authors propose setting ρ = M × 2λ for a security parameter λ so that a
random a ∈ Z2ρ yields a plaintext element a′ = a mod M that is statistically close to random over the plaintext ring
ZM .

Re-randomizing Encodings. The MZ18 MMap construction also supports re-randomization. Recall that we pub-
lished (at setup) τ ′-many uniformly random encodings of 0 at every interval-level [i, j] such that i, j ∈ [N ] and i ≤ j.
In order to re-randomize any encoding at level [i, j], add to the encoding a subset-sum of the public encodings of 0
available at this level.

Top-Level Zero Test. For the topmost interval-level [1, N ], the MZ18 construction publishes (at setup) a special
pre-zero-test encoding that will have most of the structure of a valid top level encoding, except that it will not correctly
encode an actual plaintext element. Instead, it encodes the plaintext-sequence will be (0, 1, 1, . . . , 1), which differs
from a normal encoding where the plaintext-squences contain 0 at all but the first slot. The purpose of this encoding is
to be added to any top level encoding we seek to zero test. In other words, suppose that we have a top-level encoding of
zero, i.e., a top-level encoding of the plaintext-sequence (0, 0, . . . , 0). Then adding the pre-zero-test encoding converts
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it into a top-level encoding for the plaintext-sequence (0, 1, 1, . . . , 1). On the other hand, adding the pre-zero-test
encoding to a non-zero encoding, i.e., a top-level encoding of the plaintext-sequence (a, 0, . . . , 0) for a 6= 0, converts it
into a top-level encoding for the plaintext-sequence (a, 1, 1, . . . , 1).

The next step is to design a test that checks for the plaintext sequence (0, 1, 1, . . . , 1). To achieve this, the MZ18
construction also publishes (at setup) a pair of bookend encodings, which are CLT13 encodings of specially structured
vectors s and t such that

s =
[
1 1 0 F1 . . . FN

]
R0 , t = R−1NL



1
0
1
G1

...
GN


,

where the F andG vectors are structured to interact with the enforcing matrices in a manner that ensures that multiplying
a top-level encoding for the plaintext-sequence (a, 1, 1, . . . , 1) with the bookend encodings results in a CLT13 encoding
of the plaintext a. At this point, one can directly invoke the zero test procedure for the CLT13 MMap.

Formal Definition. Based on the description of the MZ18 MMap above, we formally represent the MZ18 MMap
construction as an ensemble of the following poly-time algorithms:

• Setup-MZ(1λ, N): Takes as input a security parameter λ and the number of levels L and outputs a public
parameter pp, which contains the following:

1. Sufficiently many encodings of powers of 2 at all interval levels.

2. Sufficiently many encodings of 0 and sufficiently many encodings of 1 at all interval-levels.

3. The pre-zero test encoding and the bookend encodings for the zero test.

• Enc-MZ(pp, a, (i, j); r): Takes as input the public parameter pp, a plaintext element a ∈ ZM , indices i, j ∈
[N ] such that i ≤ j and random coins r, and generates a sequence of randomized encodings (A

(i,j)
` )`∈[L]

corresponding to the interval-level [i, j].

• ReRand-MZ(pp, (A(i,j)
` )`∈[L], (i, j); r): Takes as input pp, a sequence of encodings (A

(i,j)
` )`∈[L] correspond-

ing to the interval-level [i, j] and random coins r, and generates (Â
(i,j)
` )`∈[L], which is a re-randomization of the

input encoding sequence at the same level [i, j].

• Add-MZ(pp, (A(i,j)
` )`∈[L], (B

(i,j)
` )`∈[L], (i, j); r): Takes as input pp, two sequences of encodings (A

(i,j)
` )`∈[L]

and (B
(i,j)
` )`∈[L] at the interval-level [i, j], and random coins r, and outputs (C

(i,j)
` )`∈[L], which represents the

sum of the input encodings at the same level [i, j].

• Mult-MZ(pp, (A(i,j)
` )`∈[L], (B

(j+1,j′)
` )`∈[L], (i, j, j

′); r): Takes as input pp, two sequences of encodings (A
(i,j)
` )`∈[L]

and (B
(j+1,j′)
` )`∈[L] at the interval-levels [i, j] and [j + 1, j′] respectively, and random coins r, and outputs

(C
(i,j′)
` )`∈[L] which represents the multiplication of the input encodings, albeit at the interval-level [i, j′].

• ZeroTest-MZ(pp, (A(1,N)
` )`∈[L]): Takes as input pp, a top-level encoding-sequence (A

(1,N)
` )`∈[L] and outputs

either 0 or 1.

We avoid formal descriptions of these functions, which essentially follow from the informal description presented
earlier. The readers may refer [MZ18] for the formal descriptions.
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Choosing the Computational Assumption. We now focus on choosing the appropriate computational assumption
over the MX18 MMap to build slotted partial RKHwPRFs. Note that the standard SXDH assumption in the context
of the MZ18 MMap construction implies that the following assumption is true: letting pp = Setup-MZ(1λ, N), the
following ensembles are computationally indistinguishable for any i, j ∈ [N ] auch that i ≤ j and any T = poly(λ):

(pp, {Enc-MZ(pp, at, (i, j); rt),Enc-MZ(pp, k · at, (i, j); rt)}t∈[T ])

≈c (pp, {Enc-MZ(pp, at, (i, j); rt),Enc-MZ(pp, bt, (i, j); rt)}t∈[T ]),

where k, a1, . . . , aT , b1, . . . , bT are uniformly sampled plaintext elements in ZM , and r1, . . . , rT are appropriately
distributed random coins for the MZ18 encoding algorithm.

However, since the MZ18 MMap uses “noisy” encodings, it does not support scalar multiplication with encodings.
In other words, there is no efficient algorithm to compute an MZ18 encoding of (k.a) at interval-level [i, j] given an
MZ18 encoding of a at interval-level [i, j]. As a result, this assumption is not immediately useful to construct weak
PRF families.

We overcome this difficulty by using the following alternative computational assumption called “shifted”-SXDH:
letting pp = Setup-MZ(1λ, N), the following ensembles are computationally indistinguishable for any index i ∈ [N ]
and any T = poly(λ):

(pp, {Enc-MZ(pp, at, (i, j); rt),Enc-MZ(pp, k · at, (i, j + 1); rt)}t∈[T ])

≈c (pp, {Enc-MZ(pp, at, (i, j); rt),Enc-MZ(pp, bt, (i, j + 1); rt)}t∈[T ]),

where k, a1, . . . , aT , b1, . . . , bT are uniformly sampled plaintext elements in ZM , and r1, . . . , rT are appropriately
distributed random coins for the MZ18 encoding algorithm.

Now observe the following: given an MZ18 encoding of a at interval-level [i, j], we can construct an MZ18
encoding of (k.a) at level [i, j + 1] via the following steps:

1. Step-1: Create an encoding of k at interval-level [j + 1, j + 1].

2. Step-2: Invoke the MZ18 multiplication algorithm on the encoding of a at interval-level [i, j] and the encoding
of k at interval-level [j + 1, j + 1].

In other words, by resorting to the “shifted”-SXDH assumption, we can construct a weak PRF family where each
function is efficiently computable, and the function output is “shifted” from the function input by a level. This allows us
to overcome the limitations arising out of using the original SXDH assumption. However, the following question arises:

Is the “shifted”-SXDH assumption stronger than the original SXDH assumption?

The answer is no: the “shifted”-SXDH assumption is, in fact, implied by the SXDH assumption. To see this, observe
that given an instance of the SXDH assumption, a PPT algorithm can easily simulate an instance of the “shifted”-SXDH
assumption using the multiplication algorithm over the MZ18 encodings, such that the latter is a valid “shifted”-SXDH
instance if and only if the former is a valid SXDH instance. In other words, we can still base the security of our
RKHwPRF family on the SXDH assumption.

Constructing Slotted Weak PRFs. Equipped with the aforementioned computational assumption, we now show
how to concretely construct a slotted weak PRF family from the MZ18 MMap. Let pp = Setup-MZ(1λ, 2N + 1). Let
X be a set of size M and assume that there exists a family of (randomized) hash functions {Hi,j}i,j∈[N ],i≤j such that
for any x ∈ X , for any i, j, j′ ∈ [N ] satisfying i ≤ j < j′, there exists appropriately distributed random coins r such
that the following relation holds:

Hi,j′(x) = Mult-MZ(pp, Hi,j(x), Hj+1,j′(x), r).

Note that this can be achieved via the following steps:
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• For each unit interval-level [i, i] such that i ∈ [N ], choose a (randomized) hash function Hi,i that maps a
uniformly random element x ∈ X to a level-[i, i] encoding for a uniformly random plaintext element a ∈ Zm.

• For any i, j, j′ ∈ [N ] satisfying i ≤ j < j′, define the (randomized) hash function:

Hi,j′(x) = Mult-MZ(Hi,j(x), Hj+1,j′(x), r),

where r represents appropriately distributed random coins.

We now show how to construct the slotted partial RKHwPRF family. For any i, j ∈ [N ] satisfying i ≤ j, define the
function Fi,j : (ZM ×Ri,j)×X → Yi,j as:

Fi,j((k, (r0, r1, r2)), x) = Mult-MZ(pp, H2i,2j(x; r0),Enc-MZ(pp, k, 2j + 1; r1), r2),

where r0, r1 and r2 represent appropriately distributed random coins for the hashing, MZ18 encoding and MZ18
multiplication algorithms, respectively. 1 It is easy to see the following: under the assumption that the SXDH assumption
holds (and hence the “shifted”-SXDH assumption holds), the function Fi,j corresponding to each valid interval-level
[i, j] is a weak PRF.

Partial Ring Homomorphism. We now demonstrate that the aforementioned slotted weak PRF family is in fact a
slotted weak RKHwPRF family. More concretely, we show this slotted weak PRF family is equipped with the following
properties: (a) additive homomorphism within interval-levels (b) partial multiplicative homomorphism across “adjacent”
interval levels, and (c) an efficient top-level zero test.

Additive Homomorphism. We define the following (randomized) addition operation:

Fi,j((k, r), x)� Fi,j((k
′, r′), x) := Add-MZ(pp, Fi,j((k, r), x), Fi,j((k

′, r′), x), r′′),

where r′′ represents appropriately distributed random coins for the MZ18 addition operation.
Observe that the output of Fi,j is always an MZ18 encoding sequence at the interval-level [2i, 2j + 1]. Hence, the

aforementioned multiplication operation is well-defined. Finally, additive homomorphism follows from the additive
homomorphism of the MZ18 encodings.

Partial Multiplicative Homomorphism. Next, we define the following (randomized) multiplication operation:

Fi,j((k, r), x)� Fj+1,j′((k
′, r′), x) := Mult-MZ(pp, Fi,j((k, r), x), Fj+1,j′((k

′, r′), x), r′′),

where r′′ represents appropriately distributed random coins for the MZ18 multiplication operation.
Again, observe that the output of Fi,j and Fj+1,j′ are MZ18 encoding sequences at the interval-levels [2i, 2j + 1]

and [2j + 2, 2j′ + 1], respectively. Hence, the aforementioned multiplication operation is well-defined, and results in
an encoding at the level [2i, 2j′ + 1], as desired. Additionally, partial multiplicative homomorphism follows from the
partial multiplicative homomorphism of the MZ18 encodings.

Top Level Zero-Test. We now describe the ZeroTest algorithm for the top-level PRF. Note that the output of our
top-level PRF F1,n is an MZ18 encoding sequence at the interval-levels [2, 2N + 1]. Hence, to zero-test, we use the
following steps:

1. Step-1: Multiply the output of the PRF F1,n with a publicly available encoding of 1 at the interval-level
[1, 1] (note that such an encoding is available as part of the public parameter pp) generated by the Setup-MZ
algorithm.

2. Step-2: Invoke the MZ18 zero test algorithm ZeroTest-MZ on the resulting encoding.

Correctness of the aforementioned zero test procedure follows from the partial multiplicative homomorphism of the
MZ18 encodings and the correcness of the MZ18 zero test algorithm.

1We implicitly assume that the MZ18 public parameter pp is part of the PRF family description.
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Is Level-Doubling Necessary? Our construction of slotted partial RKHwPRFs requires an MZ18 MMap instantiation
with approximately twice the number of levels. This arises from the need to prove weak pseudorandomness. Recall that
in the weak pseudorandomness security game, the adversary is allowed to see uniformly randomly sampled input-output
pairs. In case of the MZ18 MMap which has noisy encodings, it seems hard to construct a weak PRF family based
on the SXDH assumption, where each function satisfies inputs and outputs are encodings at the same level, while
also preserving partial ring homomorphism. Hence, we resorted to constructing a weak PRF family where the output
encodings are “shifted” from the input encodings by a single level. This doubles the overall number of levels required
for the construction.

However, it is possible to avoid this doubling requirement on the MZ18 MMap instantiation if we constructed a
slightly weaker primitive, namely a slotted partial ring-homomorphic synthesizer (RHS), which is in fact sufficient for
our target applications, namely NIKE and iO. In the synthesizer security game, the adversary is only allowed to see the
outputs of the synthesizer on uniformly random input pairs. Since the inputs are not made public, they need not be
encoded into separate levels; hence, an MZ18 MMap with the same number of levels as the slotted RHS family suffices.
This gives better concrete efficiency from the point of view of applications. In other words, level-doubling is not
necessary when using our techniques to build NIKE/iO from the MZ18 MMap; it more of a definitional requirement.

Nonetheless, we chose to present the slotted partial RKHwPRF construction since it is a natural weakening of
the classical RKHwPRF primitive defined in the main body of the paper, as well as the slotted RKHwPRF primitive
presented in the previous section. In particular, it serves as a natural adaptation of the slotted RKHwPRF primitive (which
can be built from classical graded encodings) in the context of noisy candidate MMaps, such as the MZ18 MMap. We
leave it as an interesting open question to build slotted partial RKHwPRFs from well-studied computational assumptions
over MZ18 MMaps (and other candidate nosiy MMaps) while avoiding the level-doubling requirements.

12.2 Partial Slotted RKHwPRF from Symmetric MMaps

In this section, we show that how to design partial slotted RKHwPRFs from symmetric multilinear maps. Note
that the SXDH assumption is trivially broken over symmetric multilinear maps; so we resort to using the more general
matrix DDH family of assumptions. We note that multilinear maps we use here do not need to be fully symmetric for
our construction to work. In fact, any multilinear map where the matrix-DDH assumption holds will work for this
construction, so this construction could be used for asymmetric multilinear maps. However, since SXDH clearly cannot
hold in asymmetric multilinear maps, we emphasize the application to symmetric multilinear maps below.

Let e : G×G× . . .×G→ GT be a symmetric efficiently computable non-degenerate N -linear map with “source
group” G and “target group” GT , where each group has order q (assumed prime), and let g ← G be a publicly available
uniformly sampled generator element for G.

Matrix DDH Assumption. Suppose that n,m = poly(λ) are arbitrarily large, subject to the restriction that n > m.
We recall the Un,m-matrix DDH (MDDH) Assumption assumption from [EHK+13] and present some useful associated
lemmas/corollaries.

Definition 12.3. (Un,m-MDDH Assumption.) The Un,m-MDDH assumption is said to hold over the group G of prime
order q if letting A← Zn×mq , k← Zmq and u← Znq , we have

(gA, gAk) ≈c (gA, gu),

where g ← G is a uniformly sampled generator element.

The following corollary also follows via a simple hybrid argument.

Corollary 12.4. Let L = poly(λ) and n = Lm. Assuming that the Un,m-MDDH assumption holds over the group G,
we have {

(gA` , gA`K)

}
`∈[L]

≈c (

{
gA` , gU`)

}
`∈[L]

,

where g ← G is a uniformly sampled generator element, K← Zm×mq , and for each ` ∈ [L], we have A`,U` ← Zm×mq .
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We also state and prove the following statistical indistinguishability lemma.

Lemma 12.5. For any N,L = poly(λ), we have
gA1K1,1A

−1
2 . . . gANK1,NA−1

N+1

...
. . .

...
gA1KL,1A

−1
2 . . . gANKL,NA−1

N+1

 ≈s

g
U1,1

1,1 . . . g
U1,N

N,N
...

. . .
...

g
UL,1

1,1 . . . g
UL,N

N,N


where g ← G is a uniformly sampled generator element, for each n ∈ [N + 1], we have Ai ← Zm×mq and for each
(`, i) ∈ [L]× [N ], we have K`,i,U`,i ← Zm×mq .

Proof. To see that this lemma is true, observe the following:
gA1K1,1A

−1
2 . . . gAN−1K1,N−1A

−1
N gANK1,NA−1

N+1

...
. . .

...
...

gA1KL,1A
−1
2 . . . gAN−1KL,N−1A

−1
N gANKL,NA−1

N+1

 ≈s

g
A1K1,1A

−1
2 . . . gAN−1K1,N−1A

−1
N gANU′1,N

...
. . .

...
gA1KL,1A

−1
2 . . . gAN−1KL,N−1A

−1
N gANU′L,N



≈s

g
A1K1,1A

−1
2 . . . gAN−1K1,N−1A

−1
N gU1,N

...
. . .

...
...

gA1KL,1A
−1
2 . . . gAN−1KL,N−1A

−1
N gUL,N


where for each ` ∈ [L], we have U`,N ,U

′
`,N ← Zm×mq .

The proof of Lemma 12.5 now follows from a simple hybrid argument, where in hybrid-i we apply the same set of
indistinguishable transformations as illustrated above to column (N − i+ 1) of the original matrix.

We now describe how to build a slotted partial RKHwPRF family from a symmetric multilinear map such that the
aforementioned MDDH assumption and the associated lemmas hold over it.

Notation. We first set up some notation. For each i ∈ [N ], we define a unit interval group: Gi,i := G and a unit
interval generator gi,i := g. For each i, j, ` ∈ [N ] such that i ≤ j < `, we define the map

ei,j,` : Gi,j ×Gj+1,` → Gi,`,

and the group element
gi,` := ei,j,`(gi,j , gj+1,`).

We also overload the notation e and use it instead of ei,j,` whenever the source and target groups are clear from the
context. It is easy to see that the “top-level” group G1,N is essentially the final group GT and the group element g1,N is
essentially a generator for GT .

The Slotted Function Family. Let m = poly(λ) be a parameter such that m > N , and let X be a set such that there
exists a weak PRF family

{Hi : Ki ×X → Zm×mq }i∈[N+1].

Note that we do not require these weak PRFs to be endowed with any algebraic structure. Finally, we define a family of
functions

{Fi,j : (Zm×mq ×Ki ×Kj+1)×X → Gi,j}i,j∈[N ],i≤j ,

where for any i, j ∈ [N ] satisfying i ≤ j, we have

Fi,j((K, (ki, kj+1)), x) = g
Hi(ki,x)·Ki,j ·(Hj+1(kj+1,x))

−1

i,j .
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Homomorphic Properties. It is easy to see the following:

1. For any i, j ∈ [N ] such that i ≤ j, for any x ∈ X , for a fixed (secret) choice of ki, kj+1 ∈ K and for any
K1,K2 ∈ Zm×mq , we have

Fi,j((K1 + K2, ki, kj+1), x) = Fi,j((K1, ki, kj+1), x) · Fi,j((K2, ki, kj+1), x).

To see this, observe the following:

Fi,j((K1, ki, kj+1), x) · Fi,j((K2, ki, kj+1), x)

= g
H(ki,x)·K1·(H(kj+1,x))

−1

i,j · gH(ki,x)·K2·(H(kj+1,x))
−1

i,j

= g
H(ki,x)·(K1+K2)·(H(kj+1,x))

−1

i,j

= Fi,j((K1 + K2, ki, kj+1), x).

2. For any i, j, ` ∈ [N ] such that i ≤ j < `, for any x ∈ X , for a fixed (secret) choice of ki, kj+1, k`+1 ∈ K and for
any K1,K2 ∈ Zm×mq , we have

Fi,`((K1 ·K2, ki, k`+1), x) = e(Fi,j((K1, ki, kj+1), x), Fj+1,`((K2, kj+1, k`+1), x)).

To see this, observe the following:

e(Fi,j((K1, ki, kj+1), x), Fj+1,`((K2, kj+1, k`+1), x))

= e

(
g
H(ki,x)·K1·(H(kj+1,x))

−1

i,j , g
H(kj+1,x)·K2(H(k`+1,x))

−1

j+1,`

)
= e(gi,j , gj+1,`)

H(ki,x)K1(H(kj+1,x))
−1·H(kj+1,x)·K2·(H(k`+1,x))

−1

= g
H(ki,x)·K1·K2·(H(k`+1,x))

−1

i,`

= Fi,`((K1 ·K2, ki, k`+1), x).

Top-Level Zero Test. It is easy to see that the aforementioned weak PRF family is inherently equipped with a top
level zero-test. More specifically, for any x ∈ X and any k1 ∈ K1 and any kN+1 ∈ KN+1, we have

F1,N ((0, (k1, kN+1)), x) = g01,N+1,

where 0 is the all-zero matrx in Zm×mq . Thus the weak PRF output on an all-zero subkey is nothing but a matrix whose
every entry is the identity element in G1,N , i.e., the target group GT . This immediately gives an efficiently computable
top-level zero test.

Weak PRF Security. We now prove that for any i, j ∈ [N ] such that i ≤ j, the function Fi,j is a weak PRF, under
the assumption that the Un,m-matrix DDH (MDDH) assumption holds over the source group G for sufficiently large
n,m = poly(λ), subject to the restriction that n > m > N . More formally, we state and prove the following lemma.

Lemma 12.6. For any i, j ∈ [N ] such that i ≤ j and any arbitrarily large L = poly(λ), assuming that:

• Un,m-matrix DDH (MDDH) assumption holds over the source group G for n = Lm, and

• Hi : Ki ×X → Zm×mq and Hj+1 : Kj+1 ×X → Zm×mq are weak PRFs,

and letting

{x` ← X}`∈[L] , (ki, kj+1)← (Ki ×Kj+1) , {K← Zm×mq }`∈[L] , {U`,`′ ← Zm×mq }`,`′∈[L],
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we haveFi,j((K1, (ki, kj+1)), x1) . . . Fi,j((KL, (ki, kj+1)), x1)
...

. . .
...

Fi,j((K1, (ki, kj+1)), xL) . . . Fi,j((KL, (kN , kN+1)), xL)

 ≈c

g
U1,1

i,j . . . g
U1,L

i,j
...

. . .
...

g
UL,1

i,j . . . g
UL,L

i,j


Proof. To begin with, we exploit the weak pseudorandomness of the functions Hi amd Hj+1 to argue that the following
holds: {

Hi(ki, x`), Hj+1(kj+1, x`)

}
`∈[L]

≈c
{
A`,0,A`,1

}
`∈[L]

,

where for ` ∈ [L], A`,0,A`,1 ← Zm×mq . This in turn gives us the following:

Fi,j((K1, (ki, kj+1)), x1) . . . Fi,j((KL, (ki, kj+1)), x1)
...

. . .
...

Fi,j((K1, (ki, kj+1)), xL) . . . Fi,j((KL, (kN , kN+1)), xL)

 ≈c

g
A1,0K1A

−1
1,1

i,j . . . g
A1,0KLA

−1
1,1

i,j
...

. . .
...

g
AL,0K1A

−1
L,1

i,j . . . g
AL,0KLA

−1
L,1

i,j


where for ` ∈ [L], A`,0,A`,1 ← Zm×mq . Next, we invoke Corollary 12.4 to argue the following:
g
A1,0K1A

−1
1,1

i,j g
A1,0K2A

−1
1,1

i,j . . . g
A1,0KLA

−1
1,1

i,j
...

...
. . .

...

g
AL,0K1A

−1
L,1

i,j g
AL,0K2A

−1
L,1

i,j . . . g
AL,0KLA

−1
L,1

i,j

 ≈c

g
U

(1)
1,0A

−1
1,1

i,j g
A1,0K2A

−1
1,1

i,j . . . g
A1,0KLA

−1
1,1

i,j
...

...
. . .

...

g
U

(L)
1,0 A

−1
L,1

i,j g
AL,0K2A

−1
L,1

i,j . . . g
AL,0KLA

−1
L,1

i,j

 ,
where for each ` ∈ [L], we have U

(`)
1,0 ← Zm×mq . Next, we have

g
U

(1)
1,0A

−1
1,1

i,j g
A1,0K2A

−1
1,1

i,j . . . g
A1,0KLA

−1
1,1

i,j
...

...
. . .

...

g
U

(L)
1,0 A−1

L,1

i,j g
AL,0K2A

−1
L,1

i,j . . . g
AL,0KLA

−1
L,1

i,j

 ≈s

g
U1,1

i,j g
A1,0K2A

−1
1,1

i,j . . . g
A1,0KLA

−1
1,1

i,j
...

...
. . .

...

g
UL,1

i,j g
AL,0K2A

−1
L,1

i,j . . . g
AL,0KLA

−1
L,1

i,j

 ,

where for each ` ∈ [L], we have U`,1 ← Zm×mq .

The proof of pseudorandomness now follows from a simple hybrid argument, where in hybrid-i we apply the same
set of indistinguishable transformations as illustrated above to column i of the original matrix.

Parallel Input Security. Note that unlike all our previous instantiations of slotted weak PRF families where the weak
PRF output at each unit interval level [i, i] is completely independent of the weak PRF output at any other interval level
[i′, i′], in this instantiation, the weak PRF output at each unit interval level [i, i] is is related to the weak PRF output at
the interval level [i+ 1, i+ 1] by the shared Hi+1 term in the exponent of the generator.

Hence, we prove an additional security property called parallel input security, which states that an ensemble of weak
PRF evaluations at each unit interval level on the same input x and using the same inter-level correlated randomness is
computationally indistinguishable from uniform. More formally, we state and prove the following lemma.

Lemma 12.7. For any N,L = poly(λ), assuming that {Hi : Ki × X → Zm×mq }i∈[N+1] is a weak PRF family and
letting

x← X , {ki ← Ki}i∈[N+1] , {K`,i,U`,i ← Zm×mq }`∈[L],i∈[N ],
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we haveF1,1((K1,1, (k1, k2)), x) . . . FN,N ((K1,N , (kN , kN+1)), x)
...

. . .
...

F1,1((KL,1, (k1, k2)), x) . . . FN,N ((KL,N , (kN , kN+1)), x)

 ≈c

g
U1,1

1,1 . . . g
U1,N

N,N
...

. . .
...

g
UL,1

1,1 . . . g
UL,N

N,N


where for each i ∈ [N ], gi,i = g such that g ← G is a uniformly sampled generator element.

Proof. First of all, we exploit the weak pseudorandomness of the function family {Hi : Ki ×X → Zm×mq }i∈[N+1] to
argue that the following holds: {

Hi(ki, x)

}
i∈[N+1]

≈c
{
Ai

}
i∈[N+1]

,

where for each i ∈ [N + 1], Ai ← Zm×mq . This in turn gives us the following:

F1,1((K1,1, (k1, k2)), x) . . . FN,N ((K1,N , (kN , kN+1)), x)
...

. . .
...

F1,1((KL,1, (k1, k2)), x) . . . FN,N ((KL,N , (kN , kN+1)), x)

 ≈c

g
A1K1,1A

−1
2

1,1 . . . g
ANK1,NA−1

N+1

N,N
...

. . .
...

g
A1KL,1A

−1
2

1,1 . . . g
ANKL,NA−1

N+1

N,N

 ,
where for each i ∈ [N + 1], Ai ← Zm×mq . Next, we invoke Lemma 12.5 to argue

gA1K1,1A
−1
2 . . . gANK1,NA−1

N+1

...
. . .

...
gA1KL,1A

−1
2 . . . gANKL,NA−1

N+1

 ≈s

g
U1,1

1,1 . . . g
U1,N

N,N
...

. . .
...

g
UL,1

1,1 . . . g
UL,N

N,N

 .
This completes the proof of parallel input security.

12.3 Constructions from Slotted Partial RKHwPRFs
Note that our constructions from classic RKHwPRFs also work from slotted partial RKHwPRFs. This follows from
arguments very similar to those presented in the context of slotted RKHwPRFs. The reader may refer Section 11.3
for a detailed discussion on why the imposition of slots and the corresponding restrictions on the multiplication
operations do not hinder our constructions from functioning correctly and securely. In this section, we focus on two key
difference between slotted RKHwPRFs and slotted RKHwPRFs, both of which are related to the partial nature of the
homomorphism in the latter primitive.

Zero Test. First, unlike slotted RKHwPRFs, a slotted partial RKHwPRF is not inherently equipped with a zero test.
The use of additional secret randomness during weak PRF evaluation, and the fact that this randomness does not respect
any form of group/ring-homomorphism, implies that evaluating the weak PRF using a zero key is not guaranteed to
produce the zero element in the corresponding output interval-level. We take this into account by listing a top-level zero
test as an explicit requirement in our definitions of slotted partial RKHwPRF (Definition 12.1). As far as instantiations
are concerned, the construction of slotted partial RKHwPRF from matrix-DDH over multilinear maps is naturally
equipped with a zero test due to the specific structure of the randomness used during weak PRF evaluation, while the
MZ18 MMap is equipped with its own zero test, which can be easily translated into an appropriate zero test for the
slotted partial RKHwPRF built from it.

Bounded Hommorphic Operations. Unlike a slotted RKHwPRF where the only restrictions are on the multiplicative
depth, a slotted partial RKHwPRF could also be bounded with respect to the number of homomorphic addition operations
it supports at any given interval-slot. This is especially relevant with respect to the MZ18 MMap, which builds on top
of “noisy” CLT13 encodings, and the noise grows with every additive operation between encodings.

82



We note however that both our NIKE and iO constructions also have a pre-fixed additive depth. In the case of
the NIKE construction, the additive depth of the key derivation circuit is O(Nm), where N is the number of parties
participating in the protocol and m = poly(λ) is a fixed matrix-dimension parameter. In the case of the iO construction,
the multiplicative depth of the circuit evaluating an obfuscated program is O((L+N)m), where L is the depth of the
permutation branching program corresponding to the circuit to be obfuscated, N is the number of input variables and
m = poly(λ) is a fixed matrix-dimension parameter of the construction. In particular, for our iO construction, the
additive depth of the evaluation circuit is independent of the actual circuit being obfuscated. Hence, as long as the
slotted partial RKHwPRF family is securely instantiated with appropriate parameters that supports the requisite number
of additively homomorphic operations for our constructions, both correctness and security of our constructions can be
ensured.

Rerandomization. Note that in our security proofs for the iO construction from classic RKHwPRFs, we require
the ability to create RKHwPRF outputs under fresh keys from a publicly available set of RKHwPRF outputs under
random keys. We do this by “subset-summing” over the publicly available RKHwPRF outputs, and then use the leftover
hash lemma to argue that the resulting RKHwPRF output is appropriately distributed under a key that is statistically
indistinguishable from random.

In the partial RKHwPRF setting, only “subset-summing” over the publicly available RKHwPRF outputs does
not necessarily suffice. This is because we need to make sure that the new weak PRF output is not only distributed
appropriately with respect to the underlying key, but also the additional underlying randomness. In other words, we need
an additional rerandomization algorithm that takes the output of “subset-summing” and re-randomizes it in a manner
that preserves both the distribution of the key and the additional randomness (at least in a manner that is computationally
indistinguishable from a “freshly created” weak PRF output). This is especially relevant with respect to the MZ18
MMap, which builds on top of “noisy” CLT13 encodings. In particular, “subset-summing” over MZ18 encodings does
not necessarily preserve the appropriate noise distribution in the resulting encoding.

However, we note that MZ18 MMap comes equipped with such a rerandomization algorithm. In our security proofs
for the MZ18 MMap-based constructions, we thus require only additional step: after “subset-summing” over the publicly
available encodings, we use the leftover hash lemma (as in the classic RKHwPRF setting) in conjunction with the
MZ18 rerandomization algorithm to make sure that the distribution of the freshly created encoding is computationally
indistinguishable from that of a “freshly created” encoding.

The issue of rerandomization does not arise in the slotted partial RKHwPRF construction from multilinear maps
where the matrix-DDH assumption holds, due to the special structure of its underlying randomness terms. Here, we can
simply “subset-sum” over existing weak PRF outputs and argue that the resulting RKHwPRF output is appropriately
distributed under a key that is statistically indistinguishable from random. The argument uses the leftover hash lemma
and follows exactly as in the classic RKHwPRF case.

13 Impossibility of Field(-embedded) Homomorphic Synthesizers
In this section, we show that there is no (secure) Field-embedded Homomorphic Synthesizer (FHS). Since a field-
embedded homomorphic synthesizer is trivially implied by a Field KHwPRF (or a Field-homomorphic Synthesizer), it
follows that there is no (secure) Field KHwPRF (or a Field-homomorphic Synthesizer) as well. First, we define the
notion of a field-embedded homomorphic synthesizer:

Definition 13.1. (Field-embedded Homomorphic Synthesizer.) A Field-embedded Homomorphic Synthesizer (FHS)
S : X ×G→ F is a synthesizer that satisfies the following properties:

• (G,⊕) is an efficiently samplable (finite) group with efficiently computable group operation.

• (F,�,�) is an efficiently samplable (finite) field with efficiently computable field operations.

• For any x ∈ X the function S(x, ·) : G→ F is a group homomorphism, i.e., for any x ∈ X and f1, f2 ∈ F we
have

S(x, g1 ⊕ g2) = S(x, f1)� S(x, f2)
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It is easy to see that a ring-embedded homomorphic synthesizer is implied by an RKHwPRF or an RIHwPRF (for
which the input space does not depend on the choice of the key).

Informally, a field-embedded homomorphic synthesizer is a stronger version of ring-embedded homomorphic
synthesizer which enables to efficiently compute the inverse in the output field. We now show that there is a (generic)
attack against any field-embedded homomorphic synthesizer.

Let S : X × F̄ → F be a field-embedded homomorphic synthesizer, and fix an integer m > 3 log |F̄ |. If
F← Fm×m and s← {0F , 1F }m, by Theorem 4.1 it follows that

(F,Fs)
c
≈ (F,u),

where u← Fm is a uniformly chosen vector of field elements. We define the set S as

S = {Fs : s ∈ {0F , 1F }}

Since |F | is superpolynomially large in λ (otherwise the attack is straightforward), it follows that

• F is a full-rank matrix with high probability.

• Pr[u ∈ S] ≤ negl(λ) where the probability is taken over the randomness of F and u.

Given a pair of the form (F, c) where either c = Fs or c is a uniform vector over Fm, the attacker solves the (linear)
equation Fx = c and checks whether the solution is binary. Notice that Gaussian elimination is possible since the field
operations (including inverse) can be efficiently done in F . If there exists a binary solution, the attacker outputs 1.
Otherwise, it outputs 0. It is easy to see that the advantage of the attacker in distinguishing (F,Fs) and (F,u) is close
to 1. Therefore, there is no (secure) field-embedded homomorphic synthesizer.

14 Conclusion and Future Work
In this paper, we showed how to build iO and multiparty NIKE from a ring-embedded homomorphic synthesizer. In
particular, our iO construction is secure in the standard model and from a program independent assumption. We think
that RHS (or RKHwPRF) is one of the simplest and most understandable primitives that is currently known to directly
imply iO. We also showed that asymmetric multilinear maps that satisfy certain properties imply RKHwPRF, which in
turn imply RHS.

Public Key Cryptography and Mathematical Structure. This work also mostly completes the line of work started
in [AMPR19] that suggests that public-key cryptographic primitives inherently follow from structured Minicrypt
primitives. With this work, we can show that all of the most common cryptosystems can, in fact, be built using a
structured Minicrypt primitive. The structure over a Minicrypt primitive also happens to be easy to state: either a group
or ring homomorphism over the input space or key space.

This bolsters the argument that it makes sense to base theoretical constructions of cryptosystems (i.e., constructions
that are focused on showing the existence of something rather than a practical implementation) on generic primitives
rather than concrete assumptions, since the generic primitives protect against specific assumptions being broken. We
defer to the work of [AMPR19] for a more eloquent argument of this point.

The intuition about structure and public-key cryptography in this work can also be applied to some primitives
that have not been studied before. For instance, threshold signatures using bilinear maps (e.g. as in [BLS01]-based
signatures) exploit the full structure of a field in order to use Shamir secret sharing [Sha79]. Lattice-based assumptions
typically are only (bounded) ring homomorphic (and not field homomorphic). This is perhaps a natural reason why
lattice-based threshold signature constructions [BGG+18] are seemingly harder to construct than those from bilinear
maps, and finding a way to build a field homomorphic primitive using lattices might be a plausible way to try build
efficient threshold signatures from lattices.
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Constructing an RKHwPRF. Currently, we know of no existing, provably secure constructions of an RKHwPRF
from standard assumptions. However, it is certainly worth it to briefly discuss some strategies for constructing an
RKHwPRF and why known techniques do not work. A very natural starting question that an ambitious researcher might
ask is the following: is it possible to use the highly structured primitives from [AMPR19] to build iO? This question is
particularly interesting because RIHwPRFs with certain properties are known to be implied by FHE, which is in turn
implied by standard LWE.

From [GMM17], we know that building iO from FHE is impossible in a certain black-box sense. This means that it
is unlikely that we can take a generic IHwPRF and use it to construct a KHwPRF. Concretely, [AMPR19] showed that
equipping weak PRFs with a ring homomorphism over the input space (RIHwPRF) with certain other requirements
yields a fully homomorphic encryption scheme. In addition, FHE also implies an RIHwPRF with certain properties. On
the other hand, our results here show that RKHwPRFs imply the powerful notion of indistinguishability obfuscation. So
we might ask, what are the qualitative differences between these two constructions? And what is the intuitive reason
why we cannot construct RKHwPRFs from RIHwPRFs? If we closely examine the construction of RIHwPRF from
FHE in [AMPR19], we see that the resulting RIHwPRFs have a substantial drawback that prevents us from building an
RKHwPRF: the output space of the RIHwPRF is dependent on the choice of the key.
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