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Abstract

We show how to construct new multilinear maps from subexponentially secure indistinguishability obfuscation
(iO) and (relatively) standard assumptions. In particular, we show how to construct multilinear maps with arbitrary
predetermined degree of multilinearity where each of the following assumptions hold: SXDH, joint-SXDH, exponent-
DDH and all other assumptions implied by them (including k-party-DDH, k-Lin and its variants). Our constructions
almost identically achieve the full functionality of the “dream version” definition of multilinear maps as defined in the
initial work of Garg et al. (Eurocrypt’13). Our work substantially extends a previous line of works including that of
Albrecht et al. (TCC’16) and Farshim et al. (PKC’18), which showed how to build multilinear maps endowed with
weaker assumptions (such as multilinear DDH and other related assumptions) from iO.

A number of recent works have shown how to build iO from multilinear maps endowed with hardness assumptions;
one example would be the work of Lin and Tessaro (Crypto’17) which shows how to construct iO from subexponentially
secure SXDH-hard multilinear maps and some (subexponentially secure) plausible assumptions. Coupled with any
one of these constructions, our results here can be seen as formally proving the equivalence of iO and multilinear
maps/graded encodings (modulo subexponential reductions and other relatively standard assumptions) for the first
time.
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1 Introduction

Indistinguishability obfuscation (iO) [BGI+01] is a powerful primitive that offers enormous potential in terms of
cryptographic constructions. In fact, almost every cryptographic primitive can be built from iO (and some other
mild assumptions). This includes many strong primitives such as functional encryption [GGH+13b], multi-party
noninteractive key exchange [BZ14], and much more [SW14, GGHR14, HSW14, BP15]. Due to its many applications,
iO has been given its own “complexity world” called obfustopia [GPSZ17].

Unfortunately, cryptographers have struggled to come up with secure candidate constructions for iO based on
standard assumptions. Garg et al. [GGH+13b] proposed the first candidate construction of iO based on the construction
of a graded encoding (a generalization of multilinear maps) due to Garg, Gentry, and Halevi [GGH13a]. This spurred a
huge interest in building new multilinear maps/graded encodings, and several other candidate schemes [CLT13, GGH15,
Zim15, AB15] were proposed subsequently.

However, many of these candidate constructions were cryptanalized, starting with the work of Cheon et al. [CHL+15]
on the cryptanalysis of the multilinear map defined in [CLT13]. More attacks on multilinear maps and their implied iO
constructions followed [MSZ16, HJ16, CLLT16], breaking all of the original multilinear map schemes. Subsequent
attempts to “immunize” the existing constructions against these attacks [CLT15, BMSZ15, GMM+16] were also shown
to be vulnerable [MSZ16, CGH17]. To our knowledge, there is only one currently published multilinear map that has
not been attacked [MZ18], and it is has only recently been shown to imply iO [AMP20].1

The multitude of attacks against multilinear maps convinced the cryptographic community to focus on alternative
ways of constructing iO. One such approach that received considerable attention was building iO based on functional
encryption (FE). The authors of [AJ15, BV15] showed that subexponentially secure single-key compact FE (in
conjunction with some other standard assumptions) implies iO. They also showed how to construct single-key compact
FE from many-key FE. These works, together with some previous works [GGH+13b, Wat15] that showed how to build
many-key FE from iO and standard assumptions, established an equivalence between (subexponentially secure) compact
FE and iO (modulo certain plausible assumptions).

This naturally led to a proliferation of attempts to realize compact FE (and thus iO). A series of works [Lin16,
LV16, LT17, AS17] showed how to realize compact FE based on low-degree multilinear maps and additional novel
techniques such as local PRGs. In fact, in [LT17], the authors showed a construction of compact FE from bilinear maps
and 2-blockwise local PRGs, which seemingly paved the way for a secure iO construction from standard assumptions.
However, Lombardi and Vaikuntanathan [LV17] and Barak et al. [BBKK18] independently showed that 2-blockwise
local PRGs could never be constructed securely, implying that such iO constructions cannot be securely instantiated.2

Most of the recent works on iO [Agr19, AM18, AJL+19, JLMS19] have continued down the compact FE road
based on newer assumptions such as perturbation resilient generators.3 A recent result of Brakerski et al. [BDGM20]
shows how to build iO from a new primitive called split FHE. Unfortunately, many of these new assumptions are not
yet well-understood. In fact, some of these recent results have already been cryptanalyzed [AP20].

1.1 Multilinear Maps and iO
The reported attacks on multilinear maps/graded encodings, together with the equivalence results between compact FE
and iO, have meant that multilinear maps/graded encodings have received considerably less attention in recent years. A
natural question to ask is: are multilinear maps (endowed with certain hardness assumptions), in fact, stronger than iO;
in other words, is secure iO is more likely to exist than secure multilinear maps/graded encodings?

In this paper, we revisit this question. Based on existing cryptographic constructions and known attacks, the
answer seems to be “yes,” at least for multilinear maps that are powerful enough to imply iO. Roughly speaking,
multilinear maps can be divided into two broad classes depending on the nature of the hardness assumption that they are
endowed with: multilinear maps with hardness assumptions over the source groups, and multilinear maps with hardness
assumptions over the target groups.

1Throughout this paper, we use multilinear maps and graded encodings interchangeably. Unless otherwise specified, multilinear maps refer to
“graded” multilinear maps and not “one-shot” multilinear maps.

2More generally, [LT17] showed a construction of iO from k-linear maps and k-blockwise local PRGs (plus some standard assumptions). The
scheme is not known to be broken for k ≥ 3.

3We refer the reader to [HB15] for a survey of multilinear maps and iO.

2



“Source” and “Target” Group Assumptions. Suppose we consider an asymmetric multilinear map e : G1 × . . .×
G` → GT where each group is of order q. Examples of hardness assumptions over the “source group” include
the SXDH assumption, which informally states that for each group Gi, given some generator gi ∈ Gi, it is hard to
distinguish between the tuples

(
gi, g

a
i , g

b
i , g

ab
i

)
and

(
gi, g

a
i , g

b
i , g

c
i

)
, where a, b, c ∈ Zq are chosen uniformly at random.1

Next, let’s consider a symmetric multilinear map e : G` → GT where both G and GT are of order q. An
example of an assumption in the target group would be the multilinear DDH assumption, which informally states
that, given a generator g ∈ G and `+ 1 group elements ga1 , . . . ga` , ga`+1 which are encodings of random elements
a1, . . . , a`, a`+1 ∈ Zq, the term e (g, . . . , g)

a1...a`a`+1 is computationally indistinguishable from a uniformly random
element in GT .

There are no known constructions of iO based on multilinear map endowed with only a target group assumption.
This may be explained as follows: typically iO constructions based on multilinear maps involve encoding elements in
the source groups. As a result, the security proofs explicitly require indistinguishability assumptions over the source
groups. In other words, assumptions over the target groups are typically insufficient when arguing security of such iO
constructions.

Building iO from Multilinear Maps. We already know how to build iO from many “source group” hardness
assumptions over multilinear maps/graded encodings. Gentry et al. [GLSW15] showed how to build iO from a
multilinear map where the multilinear subgroup decision assumption holds over the source group. Very recently,
Alamati et. al [AMP20] generalized [GLSW15] to show that multilinear maps with minimal assumptions (such as
SXDH or matrix-DDH [EHK+13]) imply iO.

Unfortunately, the above constructions need to assume subexponential hardness of the underlying multilinear maps
in order to achieve iO, but this seems somewhat inherent and hard to avoid. We refer the reader to [GLSW15] for a
detailed discussion on this issue.

Building Multilinear Maps from iO. On the other hand, only a few works have tried to build multilinear maps from
iO. The first result in this direction was the construction of a self-bilinear map with auxiliary information [YYHK14].
While this enabled applications like multiparty noninteractive key exchange (NIKE), the authors did not consider
decisional assumptions that could potentially imply iO.

Subsequently, the authors of [AFH+16] showed how to construct from iO (and some other reasonably standard
assumptions) a “one-shot” (i.e., not graded) multilinear map where the multilinear DDH assumption holds. The authors
of [FHHL18] further modified the construction in [AFH+16] to build a graded multilinear map where the MDDH
assumption held. Unfortunately, we note that the multilinear DDH assumption is a “target group” assumption, and we
do not know how to build iO from such assumptions.

So the state of the art is currently the following: we know how to build multilinear maps/graded encodings endowed
with target group assumptions from iO and (relatively) standard assumptions. But we only know how to build iO from
multilinear maps/graded encodings with certain source group assumptions. This apparently suggests that multilinear
maps with such source group assumptions are plausibly strictly stronger than iO.

Further Difficulties and diO. There also seem to be many strong barriers for building multilinear maps with “source
group” assumptions from iO. For instance, suppose that we want to build an asymmetric multilinear map endowed
with the SXDH assumption. This would require us to publish circuits CA and CM that add and multiply encodings of
elements. Assume for the moment that we only want to publish a “one-shot” zero-test circuit CZ that computes whether
or not a level-` product is zero.

A natural approach might be to use obfuscation to try to hide secret information inside the circuits CA, CM and
CZ that would make it possible to process the encodings appropriately. However, we have the following difficulty:
what if the adversary performs a sequence of addition and multiplication operations involving the SXDH challenge
terms that results in a zero-encoding when the SXDH is “real”, and a non-zero-encoding when the SXDH challenge is
“random”? The zero-test circuit must behave differently on the resultant encoding in these two cases. Hence, standard
iO is seemingly insufficient here since the obfuscated programs do not have identical outputs on known inputs.

1Note that SXDH can only be valid in an asymmetric multilinear map.
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If we want to obfuscate programs that are not functionally equivalent on certain inputs, then we seemingly require
the stronger notion of differing inputs obfuscation [ABG+13] (diO). Unfortunately, there are some impossibility results
on diO for general circuits [BSW16, GGHW17], and only few instances of diO for certain restricted class of circuits
are known to be secure based on regular iO [BCP14]. So any iO-based construction of a multilinear map scheme with a
plausible source group assumption seemingly needs to bypass diO lower bounds, which appears nontrivial.

Other Work. There has been some other work that attempts to unify the notions of multilinear maps. In [PS15],
Paneth and Sahai introduced the notion of polynomial jigsaw puzzles, which are an abstraction of multilinear maps.
They show that iO is unconditionally equivalent to polynomial jigsaw puzzles. Unfortunately, in hindsight it is unclear
whether polynomial jigsaw puzzles accurately model multilinear maps with source group assumptions.

For instance, the authors of [AS15] show a black-box separation of iO from collision-resistant hash func-
tions (CRHFs). On the other hand, any multilinear map where SXDH holds implies a simple CRHF [Dam88] in one of
the source groups. So any construction of multilinear maps from iO seemingly requires additional assumptions.

In this paper, we ask the following fundamental question, the answer to which would have many implications for future
work on iO and related primitives:

Are multilinear maps with useful source group assumptions stronger than iO? Or are they (up to subexponential
security reductions and modulo certain standard assumptions) equivalent primitives?

1.2 Our Contributions
In this paper we answer this question by showing, perhaps surprisingly, that subexponentially secure iO in conjunction
with some other standard assumptions implies multilinear maps endowed with most of the well-known (prime order)
source group assumptions. More precisely, suppose that the following cryptographic primitives exist:

• A probabilistic iO [CLTV15] scheme (implied by subexponentially secure standard iO and subexponentially
secure puncturable PRFs in NC1).

• Fully homomorphic encryption (FHE) with message space Zq for some (large) prime q.

• A dual-mode, simulation-extractable non-interactive zero knowledge argument system (e.g. Groth-Sahai [GS08]).

• A language L for which the membership problem is hard and whose “yes” instances have unique witnesses (such
a language is implied by any DDH-hard group).

Given these primitives and some additional assumptions (specified below), we show how to build the following
multilinear maps/graded encodings:

• An asymmetric multilinear map that is SXDH-hard, assuming additionally the existence of any DDH-hard group
G of prime order q.

• An asymmetric multilinear map that is joint-SXDH-hard, assuming additionally the existence of any DDH-hard
group of prime order q.

• An asymmetric multilinear map that is exponent-DDH-hard, assuming additionally the existence of any exponent-
DDH-hard group of prime order q.

• A symmetric multilinear map with degree of multilinearity ` that is (` + 1)-exponent-DDH-hard, assuming
additionally the existence of any power-DDH-hard group of prime order q.

On the Ingredients. We note that all of the aforementioned ingredients for our constructions, with the exception
of piO, may be considered reasonably standard cryptoprimitives. In addition, the variant of piO needed for our
constructions can be built from any “regular” iO scheme and puncturable PRF in NC1 with subexponential security
using the tools from [CLTV15]. We also note that this set of assumptions is a subset of those required by [FHHL18].
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Other Source Group Assumptions. The EDDH assumption implies a whole host of other source group assumptions,
including k-party-DDH, Casc, SCasc, k-Lin, k-ILin, and, of course, multilinear DDH. Hence, our constructions
immediately imply multilinear map schemes where these other assumptions hold as well. We refer the reader
to [EHK+13] for the details of these assumptions and their inter-relationships.

Supported Features. Our multilinear maps almost identically the full “dream version” of features that are defined
and discussed in [GGH13a] and thus should be usable in any application of multilinear maps. The only feature that our
constructions do not achieve is deterministic encodings, which would otherwise enable “classic/ideal” multilinear map
functionality.

1.3 Implications and Discussion
Our work has a number of interesting implications to iO and multilinear maps that we discuss below.

iO and Multilinear Maps. Coupled with existing work (e.g. [LT17] and the recent work of [AMP20]), our work
shows that multilinear maps and iO are equivalent up to subexponential security reductions and modulo certain
reasonably standard assumptions. This means that iO is tied as tightly to multilinear maps as it is to compact
FE (building iO from compact FE also, to our knowledge, requires subexponential security).

This observation could be interpreted in one of two ways. On the one hand, it could be thought of as a positive
development for multilinear maps with useful source group assumptions (since we can now build many of them from
iO). On the other hand, it could be thought of as a negative development for iO (since candidate constructions of
multilinear maps have mostly been broken).

Most importantly, however, we hope that our findings lead to more insights on constructing both multilinear
maps/graded encodings and iO, whether it be of the form of new constructions or impossibility results.

iO and Homomorphic Primitives. Our result also has interesting implications with respect to the relationship be-
tween iO and a generic primitive endowed with algebraic structure, namely a ring key-homomorphic weak PRF (RKHw-
PRF). The authors of [AMP20] showed that a “slotted” RKHwPRF (a slight weakening of a “classic” RKHwPRF) im-
plies input-activated iO, which in turn implies standard iO under certain subexponential security assumptions [GLSW15].
They also showed that any multilinear map endowed with simple source group assumptions (e.g., SXDH) implies a
slotted RKHwPRF.

Coupled with these results, our findings in this paper establish that, modulo certain subexponential security
assumptions, iO is equivalent to slotted RKHwPRFs. In other words, RKHwPRFs are, in some sense, obfustopia-
complete.

Bootstrapping Multilinear Maps. An interesting aspect of our work is that it paves the way for “bootstrapping”
low-degree multilinear maps into multilinear maps with arbitrarily large degree endowed with similar hardness
assumptions (albeit under subexponential security assumptions). For instance, the authors of [LT17] showed that
assuming 3-blockwise local PRGs and some other relatively standard primitives, SXDH-hard trilinear maps imply
iO. Under subexponential security assumptions, our work would then allow such an SXDH-hard trilinear map to be
“bootstrapped” into an SXDH-hard multilinear map of any (predetermined) degree via iO. In fact, we can “bootstrap”
to multilinear maps endowed with potentially stronger assumptions such as joint-SXDH and 2-exponent-DDH. This
provides yet another motivation for building low-degree multilinear maps from standard assumptions.

Open Questions. Our work gives rise to many interesting open problems. For example, it is not immediately
clear as to how our techniques could be extended to build multilinear maps endowed with composite-order group
assumptions (e.g., the multilinear subgroup hiding assumption as defined in [GLSW15]). This leaves open the question
of whether or not iO implies multilinear maps endowed with such assumptions.

We also leave it open to investigate if iO implies multilinear maps that are endowed with useful hardness assumptions
as well as unbounded degree of multilinearity. The self-bilinear map from [YYHK14] does not seem to support hardness
assumptions of the nature considered in this work (we refer the reader to [YYHK14] for detailed discussions). A
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plausible approach could be to try and build a “classic” RKHwPRF as defined in [AMP20] from iO (at the moment,
iO is only known to imply a weaker “slotted” version of RKHwPRF). A classic RKHwPRF bears resemblance to a
multilinear map/multilinear map with unbounded degree of multilinearity; however, our current techniques do not
suffice to build it from iO.

1.4 Paper Outline
The remainder of the paper is arranged as follows. Section 2 presents an overview of our techniques. Section 3
presents preliminary background material. Section 4 presents our construction and security proof for the SXDH-hard
and joint-SXDH hard asymmetric multilinear maps. Section 5 presents our construction and security proof for the
exponent-DDH hard asymmetric multilinear map. Finally, Section 6 presents our construction and security proof for the
exponent-DDH hard symmetric multilinear map.

2 Technical Overview
In this section we give an overview of our multilinear maps/graded encoding constructions and some of the key ideas
that we use. The starting point of our construction is the works of [AFH+16] and [FHHL18]. Since [FHHL18] is a
generalization of [AFH+16], we will typically refer to it when discussing the ideas present in both works.

We will use our construction of an asymmetric multilinear map where the SXDH assumption holds as a working
example throughout most of this overview, as it is the simplest of our constructions. We assume some basic understanding
of multilinear maps/graded encodings in order to be understood. The reader may refer Section 3 for some preliminary
background on multilinear maps and other cryptographic primitives.

2.1 Construction Overview
We provide a high-level overview of our construction of SXDH-hard asymmetric multilinear map (MMap)/graded
encoding from iO and other cryptographic assumptions.

Encoding Structure. Each encoding in our construction consists of two FHE ciphertexts that are encryptions of the
underlyig plaintext element α ∈ Zq under different public-key/secret-key pairs (the double encryption is a necessary
component of the proof as explained later), a description of the “level” ` of the encoding, and a NIZK proof π that the
encoding has been computed correctly. We can express this as:

Encode (α) =
(
FHE.Encpk0 (α) ,FHE.Encpk1 (α) , `, π

)
.

It is important to note that, like previous work, our representation of α will not be unique. Depending on what
assumption we want to prove, we will a “slotted” represent of α for our encodings. For our construction of SXDH-hard
asymeetric MMap, we will encode α as a four-tuple of the form (α0, α1, α2, α2) with the restriction that, for some
fixed a, b, c ∈ Zq ,

α = α0 + a · α1 + b · α2 + c · α3.

The reader may observe this representation is structurally similar to a DDH tuple. For our “real” construction of an
SXDH-hard MMap, we will only use the α0 component to encode elements. However, we will use the full slotted
representation in certain hybrid arguments in the proof of SXDH.

Addition, Inversion and Multiplication. For addition and inversion of encodings at the same level, as well as for
multiplying encodings at appropriate levels, we generate probabilistic-iO (piO) obfuscations of circuits that broadly
adhere to the following strategy:

• Verify the proof π to make sure the encoding is constructed correctly (if not, abort).

• Use the FHE secret keys to decrypt the ciphertexts.

• Perform the desired operation and create a valid encoding of the output at the appropriate level.
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Extraction and Zero-Test. For extraction, we generate we generate a piO obfuscation of a circuit that works as
follows:

• Verify the proof π to make sure the encoding is constructed correctly (if not, abort).

• Use the FHE secret keys to decrypt the ciphertexts and recover α.

• Output gα where g ∈ G is the generator of a DDH-hard group of order q

Given the aforementioned extraction circuit, zero-test follows trivially. Note that we can extract and zero-test encodings
at every level – an essential feature of the “dream” version of MMaps defined in [GGH13a].

Comparison with Previous Works. We present a high-level comparison of our construction with those in [AFH+16]
and [FHHL18]. The key difference between our construction and these previous works is in how we choose to encode
a plaintext element α ∈ Zq. In [AFH+16], the authors encode each plaintext element α as a linear function, which
inherently limits their functionality to a “one-shot” MMap. The authors of [FHHL18] generalize this representation to
univariate polynomials of fixed degree, which allows them to achieve a graded MMap construction.

Our encoding strategy here can be seen as a further generalization, where we allow a larger class of functions.
While most of our encoding strategies could be modeled as multivariate polynomials, we opt for the aforementioned
representation for ease of exposition. We would like to point out that this generalization plays a crucial rule in achieving
MMap constructions with stronger (source group) assumptions, as compared to the previous works.

2.2 Proof Overview
We now present a high-level overview of the proof strategy for our SXDH-hard MMap construction. The proof can be
broadly divided into three steps: (a) transforming the encodings in the SXDH challenge from one representation to
another such that these are computationally indistinguishable, (b) embedding a DDH challenge (over the group G) into
the transformed encodings, and (c) switching the encodings back to the original representation. The idea behind step
(b) is as follows: when the DDH instance over the group G is real (respectively, random), the transformed encodings
constitute a real (respectively, random) SXDH instance over the MMap. We expand more on these steps below.

Indistinguishability of Encodings. The cornerstone of steps (a) and (c) in the proof strategy mentioned above is
indistinguishability of encodings. Recall that in our SXDH-hard MMap construction, we encode α as a tuple of the
form (α0, α1, α2, α3) with the restriction that for some fixed a, b, c ∈ Zq ,

α = α0 + a · α1 + b · α2 + c · α3.

Now consider two possible ways of representing α. In the first case, we encode α using only α0, while the remaining
slots are unused (this is actually what is done in the real construction). In the second case, we represent α in a manner
that additionally uses one or more of the remaining slots. Indistinguishability of encodings requires that given an
encoding of α, a computationally bounded adversary cannot infer which of the two representations was used. Below,
we present a high-level explanation for why our construction achieves this security notion.

One of the key tools that we invoke in our argument here is probabilistic iO (piO) security [CLTV15]. Recall that
piO is an extension of regular iO that allows obfuscating randomized circuits/programs. Informally, piO security states
that it should be hard to distinguish between the obfuscations of any two circuits whose output distributions at each
input are computationally indistinguishable (possibly in the presence of some auxiliary input).

Now observe that given an encoding of α, a possible source from which the adversary could try and infer information
about the representation of α is the pair of FHE ciphertexts in the encoding. By standard CPA-security, the ciphertexts
in isolation do not leak information about the representation; however, recall that the piO circuits for the various MMap
operations are hardwired with the corresponding FHE decryption keys sk0 and sk1. Hence it is not immediately obvious
how we can argue that the FHE ciphertexts hide the representation of α.
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Key Switching. We use a key-switching trick as follows: for each operation op ∈ {Add,Mult, Inv,Ext}, we define a
pair of auxiliary circuits Ĉop,0 and Ĉop,1. The first circuit is hardwired with only the first decryption key sk0, while
the second circuit is hardwired with only the second decryption key sk1. We use a hybrid argument where we switch
from the original circuits for these operations (which embeds both sk0 and sk1) to one of the aforementioned auxiliary
circuits (say, Ĉop,0). We use the simulation-extractability of the dual-mode NIZK to argue that the output distributions
of the original and auxiliary circuits are computationally indistinguishable. This in turn allows us to invoke piO security.

At this point, we can invoke CPA security of FHE to switch the representation of α underlying the first FHE ciphertext
in the encoding. Similarly, in a subsequent hybrid that uses Ĉop,1 instead of Ĉop,0, we switch the representation of α
underlying the second FHE ciphertext as well.

One remaining issue is that in some intermediate hybrid(s), the two FHE ciphertexts use different representations of
α. We invoke the perfect zero-knowledge property of the NIZK in the hiding mode in conjunction with a language
L with hard membership, to argue that a computationally bounded adversary cannot distinguish such a “malformed”
encoding from a “real” encoding (where the representation of α underlying both FHE ciphertexts is identical).

Embedding DDH Challenges. We now describe the idea behind step (b) of the proof strategy mentioned above,
namely embedding a DDH challenge in the SXDH challenge encodings. Recall that the SXDH assumption requires
that the following indistinguishability holds for any level:

(Encode (α0) ,Encode (α1) ,Encode (α0 · α1))
c
≈ (Encode (α0) ,Encode (α1) ,Encode (α

∗)),

where α0, α1, α
∗ ← Zq . Now, letting a = α0, b = α1 and c = α0 · α1 or c = α∗ depending on whether the challenge

is real or random (where a, b and c are as discussed above), one can use any one of the following representations for the
challenge encodings:

((a, 0, 0, 0) , (b, 0, 0, 0) , (c, 0, 0, 0)) or ((0, 1, 0, 0) , (0, 0, 1, 0) , (0, 0, 0, 1)) .

In addition, by indistinguishability of encodings, an SXDH adversary should not be able to infer which of the
aforementioned representations is used for the challenge encodings.

Now, consider a hybrid in which the challenge encodings use the second representation, and suppose that we are
given a DDH tuple over the group G which is either of the form (gα0 , gα1 , gα0·α1) or of the form (gα0 , gα1 , gα

∗
).

Suppose for the moment that we could hypothetically set a = α0, b = α1 and c = α0 · α1 or c = α∗ depending on
whether the DDH challenge is real or random. Now observe the following: when the DDH challenge is real (respectively,
random), the challenge encodings constitute a real (respectively, random) SXDH instance.

Oblique Embedding. The aforementioned embedding technique does not work directly since the secret exponents α0,
α1 and α∗ in the DDH challenge are not known the reduction. To get around this issue, we use an oblique embedding
technique that only uses the group elements available as part of the DDH challenge.

Addition and Inversion. To begin with, observe that addition and inversion of encodings do not require the knowledge of
the constants a, b and c. In particular, given an encoding of x = (x0, x1, x2, x3) and y = (y0, y1, y2, y3), the reduction
can exploit the homomorphic properties of the encryption scheme to compute encodings of the following:

x+ y = (x0 + y0, x1 + y1, x2 + y2, x3 + y3) , −x = (−x0,−x1,−x2,−x3).

Multiplication. Multiplication of encodings requires some more care. To begin with, observe that given an encoding of
x = (x0, x1, x2, x3) and an encoding of y = (y0, 0, 0, 0) (i.e., the encoding of y uses a representation as in the real
scheme), the reduction can exploit the homomorphic properties of the encryption scheme to compute an encoding of
the following product:

x · y = (x0 · y0, x1 · y1, x2 · y2, x3 · y3).
This still does not require the knowledge of the constants a, b and c.

On the other hand, if the encoding of y also uses the second representation (i.e., all slots can be used to encode the
plaintext element), then evaluating the cross-product terms would require knowledge of the constants. We address this
issue as follows.
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First, we use the simulation-extractability of the NIZK in the binding mode to enforce that any challenge encoding
created by the adversary would have to follow the representation used in the real scheme (i.e., only the first slot is used
to encode the plaintext element). At the same time, we use the zero-knowledge property of the NIZK in the hiding
mode to allow only the SXDH challenge encodings created by the reduction to use the second representation (i.e., all
slots can be used to encode the plaintext element). By mode indistinguishability of NIZK, this ensures that the reduction
never has to multiply two encodings such that both of them use the second representation (note that here we exploit the
fact that the MMap is asymmetric).

Extraction and Zero-Testing. Finally, the reduction handles extraction as follows: it embeds the DDH challenge inside
the extraction circuit. Given an encoding of x = (x0, x1, x2, x3), the extraction circuit outputs

g∗ = gx0+a·x1+b·x2+c·x3 = gx0 · ga·x1 · gb·x2 · gc·x3 ,

where a = α0, b = α1 and c = α0 · α1 or c = α∗ depending on whether the DDH challenge is real or random. Finally,
zero-testing follows trivially from extraction.

We would like to point out that the aforementioned oblique embedding strategy is the essential component that allows
us to prove stronger assumptions over our MMap constructions as compared to the previous works [AFH+16, FHHL18].

2.3 Putting It All Together
We now outline how to put together the indistinguishability of encodings with the oblique group embedding strategy for
the overall proof of SXDH. Informally, the proof proceeds through a sequence of hybrids as follows:

• The first hybrid resembles the real scheme. In particular, the SXDH adversary is provided with a set of challenge
encodings that follow the representation used in the real scheme (i.e., only the first slot is used to encode the
plaintext element).

• Next, via a sequence of hybrids, the SXDH challenge encodings are switched to follow the second representation
discussed above (i.e., all slots are used to encode the plaintext element).

• In the next hybrid, the reduction obliquely embeds a real DDH challenge into the SXDH challenge encodings as
discussed above.

• In the next hybrid, the embedded DDH challenge is switched from real to random. This implicitly switches the
SXDH challenge from real to random.

• Finally, via a sequence of hybrids, the SXDH challenge encodings are switched back to the representation used in
the real scheme (i.e., only the first slot is used to encode the plaintext element).

A key observation with respect to the aforementioned proof strategy is that the only step where we potentially
change the input/output behavior of the obfuscated circuits is the step where we switch from the real DDH tuple to
the random DDH tuple. Note that in this step, we do not change the circuits themselves, and hence we do not need to
invoke any form of obfuscation security to argue indistinguishability. This is what allows us to circumvent the initially
perceived requirement of different-inputs iO and to relax our requirement to only piO. We refer the reader to the main
body of the paper for a more formal description of the hybrids and detailed proofs of computational indistinguishability.

2.4 Other Graded Encodings
The discussion above only focused on our construction of an asymmetric MMap/graded encoding where the SXDH
assumption holds. Our other constructions of asymmetric MMaps (where the joint SXDH and the 2-exponent-
DDH assumptions hold) fit in the same overall proof framework. In fact, this proof framework can be viewed as a
generic tool that allows us to achieve asymmetric MMaps with most of the well-known (prime order) source group
assumptions [EHK+13].

Note that a technical requirement in the proof framework outlined above is that the adversary is restricted from
multiplying challenge encodings (or encodings derived from challenge encodings). This ensures that the reduction
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is not required to handle cross-product terms when obliquely embedding a hard problem instance into the challenge
encodings. This restriction no longer applies when we want to construct a symmetric MMap endowed with hardness
assumptions. At a high level, we get around this issue by strengthening the hardness assumption on the group G used in
the construction.

Recall that the (`+ 1)-EDDH assumption over a degree-` symmetric MMap requires that the following indistin-
guishability holds for any level:(

Encode (α) ,Encode(α`+1)
) c
≈
(
Encode (α) ,Encode (α∗)

)
,

where α, α∗ ← Zq. Since the adversary can pair challenge encodings at the same level, we resort to obliquely
embedding an instance of a hardness assumption that would allow the reduction to simulate all possible cross-product
terms resulting from such pairings. More specifically, we assume that the reduction is provided with a challenge set of
group elements of one of the following forms:(

g, gα, gα
2

, . . . , gα
(`+1)(`+2)/2

)
or

(
g,
{
gα

i·(α∗)j}
i+j∈[`]

)
,

where g ← G and α, α∗ ← Zq. We refer to this indistinguishability assumption as the “strong”-(` + 1)-EDDH
assumption over the group G. In the main body of the paper, we prove that this assumption is implied by the
power-DDH assumption over the group G.

3 Preliminaries
We recall the definition of a dual-mode NIZK proof system. We adopt the notation from [CKWZ13].

Definition 3.1. A tuple of three algorithms (G,P, V ) is said to be noninteractive proof system for a language L ∈ NP
if it satisfies the following properties:

• Completeness: For any x ∈ L and any witness w for x we have

Pr[crs← G(1λ);π ← P (crs, x, w) : V (crs, x, π) = 1] = 1.

• Soundness: For any attacker A, if crs← G(1λ) and (x, π)← A(crs) then

Pr[V (crs, x, π) = 1 ∧ x /∈ L] ≤ negl .

Definition 3.2. A noninteractive proof system (G,P, V ) is said to be dual-mode NIZK if there are efficient simulators
S and S with the following properties:

• Indistinguishability of modes: If crs0 ← G(1λ) and (crs1, st)← S(1λ) then crs0
c
≈ crs1.

• Simulation in ZK mode: For any A if (crs1, st)← S(1λ) and (x,w)← A(crs, st) then

Pr[π ← P (crs, x, w) : A(π) = 1]− Pr[π ← S(st, x) : A(π) = 1] = 0.

Here we mention the definition of fully homomorphic encryption for bits. The following definition naturally
generalizes to an arbitrary message space (say Zq). We remark that in the following definition we assume that the
evaluation key is included as part of the public key.

Definition 3.3. A fully homomorphic encryption (FHE) scheme (for bits) is a tuple of four algorithms (Gen,Enc,Dec,Eval)
such that the tuple (Gen,Enc,Dec) is a CPA-secure PKE scheme and the evaluation algorithm Eval satisfies homomor-
phism and compactness properties as defined below:

• CPA security: If (pk, sk)← Gen(1λ) then for any messages m0 and m1 we have

Enc(pk,m0)
c
≈ Enc(pk,m1).
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• Homomorphism: For any (boolean) function f : {0, 1}` → {0, 1} and any sequence of ` messages m1, . . . ,m`

if (pk, sk)← Gen(1λ) and ci ← Enc(pk,mi) then

Pr[Dec(sk,Eval(pk, c1, . . . c`)) 6= f(m1, . . . ,m`)] ≤ negl .

• Compactness: There exists a polynomial p(λ) such that the output of Eval has p(λ) bits, and p(λ) is independent
of size of f and the number of inputs.

We provide the definition of language family with hard membership property.

Definition 3.4. A language family with hard membership is a tuple of three algorithms (Gen,Sam,R) with the
following syntax:

• Gen: On input 1λ outputs some public parameter pp.

• Sam: On input pp and a bit b ∈ {0, 1}, it uniformly samples a YES/NO instance of of the language depending
on the bit b.

• R: On inputs (pp, x, w) outputs a bit which denotes whether x belongs to the language or not.

We require the following properties:

• Correctness: For any pp← Gen(1λ) and any x← Sam(1) (respectively x← Sam(1)), there exists (respectively,
does not exist) a witness w such that R(pp, x, w) = 1 (respectively, R(pp, x, w) = 0).

• Security: If x0 ← Sam(0) and x1 ← Sam(1) then x0
c
≈ x1.

• Uniqueness: For any pp ← Gen(1λ), any x ← Sam(1), and any pair of witnesses w and w′ if R(pp, x, w) =
R(pp, x, w′) = 1 then w = w′.

We recall the definition of indistinguishability obfuscation (iO) from [BGI+01].

Definition 3.5. A PPT algorithm Obf is an indistinguishability obfuscator for a circuit family Cλ with input space
{0, 1}`(λ) if:

• Correctness: For every circuit C ∈ Cλ and every input x ∈ {0, 1}`(λ) we have:

Pr[C(x) = C ′(x) : C ′ ← Obf(C)] = 1,

where the probability is taken over the randomness of Obf algorithm.

• Security: For any PPT attacker A and for any two functionally equivalent circuits C0 ∈ Cλ and C1 ∈ Cλ such
that |C0| = |C1|, it holds that:

|Pr[A(λ,C0) = 1]− Pr[A(λ,C1) = 1]| ≤ negl(λ).

We recall the definition of piO for a class of samplers from [CLTV15].

Definition 3.6. We say that piO is an indistinguishability obfuscator for a class of samplers S over the (randomized)
circuit family C if is satisfies the following properties:

• On input a circuit C and security parameter λ, outputs a deterministic circuit C of size poly(|C|, λ).

• For every PPT attacker A, every circuit C, and string str, consider the following experiments:

– Exp0A(C, str): A participates in an unbounded number of iterations, and in iteration i, A chooses an xi; if
xi is equal to any of the previously chosen input xj (for j < i) abort. Otherwise, A gets C(xi; ri) using
fresh randomness ri. Finally, A outputs a bit b.
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– Exp1A(C, str): Let C = piO(C; r). Run A as in the previous experiment except that in each iteration,
provide A with C(xi).
We require that for any PPT attacker A, every circuit C, and and every polynomial-length string str it holds
that

∣∣Pr[AExp0 = 1]− Pr[AExp1 = 1]
∣∣ ≤ negl.

– For every PPT attacker A and every sampler S ∈ S, if (C0, C1, str)← S we have∣∣Pr[A(C0, C1, piO(C0), str) = 1]− Pr[A(C0, C1, piO(C0), str) = 1]
∣∣ ≤ negl .

Symmetric MMap. Let R be a ring and let 0R be the zero element for the ring.

Definition 3.7. (Symmetric Multilinear Map.) A symmetric multilinear map (MMap) consists of the following
polynomial-time algorithms:

• Setup(1λ, 1N ): Takes as input the security parameter λ and the degree of multilinearity N , and outputs a public
parameter pp.

• Encode(pp, a, i) : Takes as input the public parameter pp, a plaintext element a ∈ R and a level i ∈ [0, N ], and
outputs the encoding [a]i.

• Add(pp, [a]i, [b]i): Takes as input the public parameter pp and two encodings [a]i and [b]i corresponding to a
valid level i ∈ [0, N ], and outputs either the encoding [a+ b]i or ⊥ (in case one or more of the input encodings
are invalid).

• Inv(pp, [a]i): Takes as input the public parameter pp and an encoding [a]i corresponding to a valid level
i ∈ [0, N ], and outputs either the encoding [(−1)R · a]i or ⊥ (in case the input encoding is invalid).

• Mult(pp, [a]i1 , [b]i2): Takes as input the public parameter pp and two encodings [a]i1 and [b]i2 such that
i1 + i2 ≤ N , and outputs either the encoding [a.b]i1+i2 or ⊥ (in case one or more of the input encodings are
invalid).

• Ext(pp, [a]i): Takes as input the public parameter pp and an encoding [a]i corresponding to a valid level i, and
outputs either s ∈ {0, 1}λ or ⊥ (in case the input encoding is invalid).

• ZeroTest(pp, [a]i): Takes as input the public parameter pp and an encoding [a]i corresponding to a valid level i,
and outputs b ∈ {0, 1,⊥}, where:

– 1 indicates that a = 0R.

– 0 indicates that a 6= 0R.

– ⊥ indicates that the encoding is invalid.

Remark 3.8. Note that equality-checking of encodings at any valid level follows implicitly from the addition, inversion
and zero-test operations at the same level.

Asymmetric MMap. Let R be a ring and let 0R be the zero element for the ring. Also let 0 and n be the all-zeroes
and all-ones vectors of length N , respectively. A vector i ∈ Zn is said to represent “valid level” if 0 ≤ i ≤ n, where
comparison of vectors is performed component-wise.

Definition 3.9. (Asymmetric Multilinear Map.) An asymmetric multilinear map (MMap) consists of the following
polynomial-time algorithms:

• Setup(1λ, 1N ): Takes as input the security parameter λ and the degree of multilinearity N , and outputs a public
parameter pp.

• Encode(pp, a, i) : Takes as input the public parameter pp, a plaintext element a ∈ R and a valid level-vector i,
and outputs the encoding [a]i.
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• Add(pp, [a]i, [b]i): Takes as input the public parameter pp and two encodings [a]i and [b]i corresponding to a
valid level-vector i, and outputs either the encoding [a+ b]i or ⊥ (in case one or more of the input encodings are
invalid).

• Inv(pp, [a]i): Takes as input the public parameter pp and an encoding [a]i corresponding to a valid level-vector i,
and outputs either the encoding [(−1)R · a]i or ⊥ (in case the input encoding is invalid).

• Mult(pp, [a]i1 , [b]i2): Takes as input the public parameter pp and two encodings [a]i1 and [b]i2 such that i1+ i2 ≤
n, and outputs either the encoding [a.b]i1+i2 or ⊥ (in case one or more of the input encodings are invalid).

• Ext(pp, [a]i): Takes as input the public parameter pp and an encoding [a]i corresponding to a valid level-vector i,
and outputs either s ∈ {0, 1}λ or ⊥ (in case the input encoding is invalid).

• ZeroTest(pp, [a]i): Takes as input the public parameter pp and an encoding [a]i corresponding to a valid
level-vector i, and outputs b ∈ {0, 1,⊥}, where:

– 1 indicates that a = 0R.
– 0 indicates that a 6= 0R.
– ⊥ indicates that the encoding is invalid.

Remark 3.10. Again, note that equality-checking of encodings at any valid level follows implicitly from the addition,
inversion and zero-test operations at the same level.

Comparison with “Dream Version” Definitions. Note that our definition of symmetric/asymmetric multilinear
maps almost identically achieves the full “dream version” of features that are defined and discussed in [GGH13a] and
thus should be usable in any application of multilinear maps. The only technical difference is that we permit sampling
an encoding for a specific plaintext value a ∈ R, while the authors of [GGH13a] provide an algorithm to sample a
random a← R along with its encoding.

4 Constructing an SXDH-Hard Asymmetric MMap
In this section, we show a how to construct an SXDH-hard asymmetric MMap. Recall that the SXDH assumption over
a degree-N asymmetric MMap requires that the following indistinguishability holds for any level-vector i such that
0 < i ≤ n: (

[α0]i, [α1]i, [α0 · α1]i

)
c
≈

(
[α0]i, [α1]i, [α

∗]i

)
,

where α0, α1, α
∗ ← Zq .

We show how to construct an SXDH-hard asymmetric MMap given the following cryptoprimitives:

• A probabilistic-iO scheme piO = (piO.Obf, piOEval).

• A fully-homomorphic encryption scheme FHE = (FHE.Gen,FHE.Enc,FHE.Dec,FHE.Eval) such that the
message space is Zq for some prime q = poly(λ) (λ being the security parameter).

• A simulation-extractable NIZK argument system NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify).

• A pair of sets (X ,L) such that L ⊂ X and:

1. Given x ∈ X it is computationally hard to decide if x ∈ L.
2. For each y ∈ L, there exists a unique witness wity for the statement y ∈ L.

We define a relation RL as follows: (y,wity) ∈ RL if and only if wity is a witness for the statement y ∈ L.

• A pairing-free DDH-hard group G of prime order q, where DDDH,G denotes the distribution of all valid DDH
samples over the group G.
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4.1 Encodings
Level-Zero Encodings. In our construction, level-0 encodings are treated slightly different from encodings at other
“non-zero” levels. In particular, our level-0 encodings are equipped with their own set of algorithms for encoding,
manipulation, extraction and zero-testing. We informally mention these for the sake of completeness.

The level-0 encoding of a plaintext element a ∈ Zq is a itself. Adding/multiplying two level-0 encodings
(equivalently, additively inverting a level-0 encoding) is simply done via addition/multiplication (equivalently, additive
inversion) in Zq . Multiplying a level-0 encoding with any other encoding at some level i should result in an encoding at
level-i. This is implemented with a shift-and-add algorithm built on top of the standard encoding addition algorithm
described subsequently in Section 4.2. Finally, extracting a level-0 encoding a ∈ Zq outputs ga, where g is a fixed
generator for the group G. As will be clear later, this is consistent with the extraction algorithm for any other level i.
Zero-testing follows trivially.

We omit formal descriptions of operations for level-0 encodings to ease notation and focus on the more interesting
cases at “non-zero” encoding levels.

Level-i Encodings. We now describe the procedure of encoding a plaintext element at any level i such that 0 < i ≤ n.
An encoding of a plaintext element a ∈ Zq at level-vector i is a tuple of the form: (ct0, ct1, i, π), where:

• ct0 and ct1 are FHE encryptions of the tuple (a, 0, 0, 0, i) under the public key-secret key pairs (pk0, sk0) and
(pk1, sk1) respectively.

• π is a NIZK proof for the statement st = (pk0,pk1, ct0, ct1, i, y ∈ X ) under the NP language L described in
Figure 1, where y ∈ X is available as part of the public parameter for our MMap scheme.

Note that the additional zero entries encrypted in each encoding appear redundant, but will be useful later in the
proof of security.

Language L:

Statement: The statement st is as follows: st = (pk0, pk1, ct0, ct1, i, y ∈ X )

Witness: The witness has one of the following three forms:

1. wit = (sk0, sk1)

2. wit = (m, r0, r1)

3. wit = wity

Relation: R(st,wit) = 1 if and only if:

• Either wit = (sk0, sk1) and we have:

1. (pk0, sk0), (pk1, sk1) ∈ KFHE.

2. FHE.Dec(sk0, ct0) = FHE.Dec(sk1, ct1) = (m, 0, 0, 0, i) for some m ∈ Zq .

• Or wit = (m, r0, r1) and we have:

1. m ∈ Zq .

2. For each b ∈ {0, 1}, FHE.Enc(pkb, (m, 0, 0, 0, i); rb) = ctb.

• Or wit = wity and we have: (y,wity) ∈ RL.

Figure 1: LetKFHE be the set of all valid key pairs under the FHE scheme. We define an NP language L as in the figure above. For simplicity, L parameterized by N –
the number of levels for our MMap scheme.
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4.2 Addition of Encodings
We now describe the procedure for adding two encodings. Suppose we have two encodings at the same level i of the
form:

(ct1,0, ct1,1, i, π1), (ct2,0, ct2,1, i, π2).

Conceptually, we add these two encodings by exploiting the fully-homomorphic nature of the encryption scheme. More
concretely, we homomorphically evaluate the circuit CAdd,FHE (described in Figure 2) on the corresponding ciphertext
components of the two input encodings to generate the ciphertext components for the output encoding. We also generate
a proof for the validity of the resulting encoding using the tuple of secret keys (sk0, sk1) as witness.

Inputs: A tuple of the form (({a1,`}`∈[0,3], i1), (({a2,`}`∈[0,3], i2)), where for each ` ∈ [0, 3], we have a1,`, a2,` ∈ Zq .

Computation: Proceed as follows:

1. If i1 6= i2 or i1 ≤ 0 or i1 > n, output ⊥ .

2. Else, output ({a1,` + a2,`}`∈[0,3], i1).

Figure 2: Circuit CAdd,FHE

For technical reasons that are relevant to the proof of security, we check: (a) the validity of the proofs π1 and π2
for the language L that are provided as part of the input encodings, and (b) the “consistency” of the FHE ciphertexts
that are provided as part of the input encodings, i.e., whether the ciphertexts encrypt the same underlying plaintext,
and whether the plaintext is formatted as per the specifications of the scheme. While “validity” is publicly verifiable,
verifying “consistency” requires knowledge of the secret keys sk0 and sk1.

Figure 3 details the operation of the encoding-addition circuit CAdd,MMap. Of course, it embeds multiple secrets,
including the secret keys sk0 and sk1, as well as the extraction trapdoor text for the NIZK. Hence, the circuit is not
made public as is; we only make available an obfuscated version of the circuit obtained by running the evaluation
algorithm of the probabilistic iO scheme piO on it.

We emphasize that when the element y ∈ X is a non-member for the language L, then under a binding crs, the “If”
condition in step 4 of CAdd,MMap is never satisfied. This follows from the perfect extractability guarantee of the NIZK
proof system. However, the condition may be satisfied during some hybrid in the proof of security, under a hiding crs
when the element y ∈ X is a member for the language L.

4.3 Inversion of Encodings
We now describe the procedure for additively inverting an encoding. Suppose we have an encoding at the level i of
the form: (ct0, ct1, i, π). Again, conceptually, we additively invert this encoding by exploiting the fully-homomorphic
nature of the encryption scheme. More concretely, we homomorphically evaluate the circuit CInv,FHE (described in
Figure 4) on the corresponding ciphertext components of the input encoding to generate the ciphertext components for
the output encoding. We also generate a proof for the validity of the resulting encoding using the tuple of secret keys
(sk0, sk1) as witness.

Similar to the addition procedure, for technical reasons that are relevant to the proof of security, we check the validity
and consistency of the input encodings. Figure 5 details the operation of the encoding-inversion circuit CInv,MMap. Since
it embeds the same set of secrets as the addition circuit, the circuit CInv,MMap is not made public as is; we only make
available an obfuscated version of the circuit obtained by running the evaluation algorithm of the probabilistic iO
scheme piO on it.

Finally, we emphasize that when the element y ∈ X is a non-member for the language L, then under a binding crs,
the “If” condition in step 4 of CAdd,MMap is never satisfied. This follows from the perfect extractability guarantee of
the NIZK proof system. However, the condition may be satisfied during some hybrid in the proof of security, under a
hiding crs when the element y ∈ X is a member for the language L.
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Encoding Addition Circuit: CAdd,MMap

Inputs: A tuple of the form: ((ct1,0, ct1,1, i, π1), (ct2,0, ct2,1, i, π2), y ∈ X ), where the proofs π1 and π2 are over the language L.

Outputs: Either a tuple of the form (ct∗0 , ct∗1 , i, π
∗), or⊥.

Computation: Proceed as follows:

1. If any of the following is true:

(a) NIZK.Verify(crs, (pk0, pk1, ct1,0, ct1,1, i, y ∈ X ), π1) = 0.

(b) NIZK.Verify(crs, (pk0, pk1, ct2,0, ct2,1, i, y ∈ X ), π2) = 0.

then output⊥.

2. Recover the following:

({a1,0,`}`∈[0,3], i1,0) = FHE.Dec(sk0, ct1,0) , ({a1,1,`}`∈[0,3], i1,1) = FHE.Dec(sk1, ct1,1),

({a2,0,`}`∈[0,3], i2,0) = FHE.Dec(sk0, ct2,0) , ({a2,1,`}`∈[0,3], i2,1) = FHE.Dec(sk1, ct2,1).

3. Compute the following:

ct∗0 = FHE.Eval(pk0, ct1,0, ct2,0,CAdd,FHE) , ct∗1 = FHE.Eval(pk1, ct1,1, ct2,1,CAdd,FHE).

4. If any of the following is true:

(a) a1,0,0 6= a1,1,0 or a2,0,0 6= a2,1,0.

(b) There exists some (t, b, `) ∈ {1, 2} × {0, 1} × {1, 2, 3} such that at,b,` 6= 0.

(c) There exists some (t, b) ∈ {1, 2} × {0, 1} such that it,b 6= i.

then proceed as follows:

(a) Extract wity = NIZK.Ext(text, (pk0, pk1, ct1,0, ct1,1, i, y), π1).

(b) If RL(wity, y) = 0, output⊥.

(c) Else, generate π∗ ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, y),wity).

5. Else, generate π∗ ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, y), (sk0, sk1)).

6. Output (ct∗0 , ct∗1 , i, π
∗).

Figure 3: Let crs ← NIZK.Setup(1λ). We now assume that crs is in binding mode. Let NIZK.Ext be the extraction algorithm for NIZK. Let text be the extraction
trapdoor corresponding to crs. Additionally, let (pk0, sk0), (pk1, sk1) ← FHE.Gen(1λ). We define a probabilistic circuit CAdd,MMap (which has text and the key
pairs (pk0, sk0) and (pk1, sk1) hard-wired into it) as above.

Inputs: A tuple of the form ((a0, a1, a2, a3, i)) where for each ` ∈ [0, 3], we have a` ∈ Zq .

Computation: If i ≤ 0 or i > N , output ⊥ else output (−a0,−a1,−a2,−a3, i).

Figure 4: Circuit CInv,FHE

4.4 Multiplication of Encodings
We now describe the procedure for multiplying two encodings at levels i1 and i2, respectively such that i1 + i2 ≤ n.
Suppose we have two encodings of the form:

(ct1,0, ct1,1, i1, π1), (ct2,0, ct2,1, i2, π2).

Conceptually, we multiply these two encodings by again exploiting the fully-homomorphic nature of the encryption
scheme. More concretely, we homomorphically evaluate the circuit CMult,FHE (described in Figure 6) on the correspond-
ing ciphertext components of the two input encodings to generate the ciphertext components for the output encoding.
We also generate a proof for the validity of the resulting encoding using the tuple of secret keys (sk0, sk1) as witness.

Similar to the addition and inversion procedures, for technical reasons that are relevant to the proof of security, we
check the validity and consistency of the input encodings. Figure 7 details the operation of the encoding-multiplication
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Encoding Inversion Circuit: CInv,MMap

Inputs: A tuple of the form: ({ct0, ct1, i, π, y ∈ X ), where the proof π is over the language L.

Outputs: Either a tuple of the form (ct∗0 , ct∗1 , i, π
∗), or⊥.

Computation: Proceed as follows:

1. If NIZK.Verify(crs, (pk0, pk1, ct0, ct1, i, y), π) = 0, then output⊥.

2. Recover the following:
({a0,`}`∈[0,3], i0) = FHE.Dec(sk0, ct0) , ({a1,`}`∈[0,3], i1) = FHE.Dec(sk1, ct1).

3. Compute the following:
ct∗0 = FHE.Eval(pk0, ct0,CInv,FHE) , ct∗1 = FHE.Eval(pk1, ct1,CInv,FHE).

4. If any of the following is true:

(a) a0,0 6= a0,1.

(b) There exists some (b, `) ∈ {0, 1} × {1, 2, 3} such that ab,` 6= 0.

(c) There exists some b ∈ {0, 1} such that ib 6= i.

then proceed as follows:

(a) Extract wity = NIZK.Ext(text, (pk0, pk1, ct0, ct1, i, y), π).

(b) If RL(wity, y) = 0, output⊥.

(c) Else, generate π∗ ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, y),wity).

5. Else, generate π∗ ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, y), (sk0, sk1)).

6. Output (ct∗0 , ct∗1 , i, π
∗).

Figure 5: Let crs ← NIZK.Setup(1λ). We now assume that crs is in binding mode. Let NIZK.Ext be the extraction algorithm for NIZK. Let text be the extraction
trapdoor corresponding to crs. Additionally, let (pk0, sk0), (pk1, sk1) ← FHE.Gen(1λ). We define a probabilistic circuit CInv,MMap (which has text and the key
pairs (pk0, sk0) and (pk1, sk1) hard-wired into it) as above.

Inputs: A tuple of the form (({a1,`}`∈[0,3], i1), (({a2,`}`∈[0,3], i2)), where for each ` ∈ [0, 3], we have a1,`, a2,` ∈ Zq .

Computation: Proceed as follows:

• If i1 ≤ 0 or i2 ≤ 0 or i1 + i2 > n, output ⊥.

• Else if (a1,1, a1,2, a1,3) = (0, 0, 0) then output (({a1,0 · a2,`}`∈[0,3], i1, j2)).
• Else if (a2,1, a2,2, a2,3) = (0, 0, 0) then output (({a2,0 · a1,`}`∈[0,3], i1, j2)).
• Else output ⊥.

Figure 6: Circuit CMult,FHE

circuit CMult,MMap. Once again, it embeds multiple secrets, including the secret keys sk0 and sk1, as well as the
extraction trapdoor text for the NIZK. Hence, the circuit is not made public as is; we only make available an obfuscated
version of the circuit obtained by running the evaluation algorithm of the probabilistic iO scheme piO on it.

We emphasize that when the element y ∈ X is a non-member for the language L, then under a binding crs, the “If”
condition in step 4 of CMult,MMap is never satisfied. This follows from the perfect extractability guarantee of the NIZK
proof system. However, the condition may be satisfied during some hybrid in the proof of security, under a hiding crs
when the element y ∈ X is a member for the language L.

This in turn guarantees that when the element y ∈ X is a non-member for the language L, then under a binding crs,
no encoding (even adversarially generated) can have “auxiliary” FHE ciphertexts encrypting other than the plaintext
element 0. Hence, during multiplication, we do not need to worry about computing and adding “cross-product” terms
across the input ciphertexts.

17



Encoding Multiplication Circuit: CMult,MMap

Inputs: A tuple of the form: ((ct1,0, ct1,1, i1, π1), (ct2,0, ct2,1, i2, π2), y ∈ X ), where the proofs π1 and π2 are over the language L.

Outputs: Either a tuple of the form (ct∗0 , ct∗1 , i1 + i2, π
∗), or⊥.

Computation: Proceed as follows:

1. If any of the following is true:

(a) NIZK.Verify(crs, (pk0, pk1, ct1,0, ct1,1, i1, y ∈ X ), π1) = 0.

(b) NIZK.Verify(crs, (pk0, pk1, ct2,0, ct2,1, i2, y ∈ X ), π2) = 0.

then output⊥.

2. Recover the following:

({a1,0,`}`∈[0,3], i1,0) = FHE.Dec(sk0, ct1,0) , ({a1,1,`}`∈[0,3], i1,1) = FHE.Dec(sk1, ct1,1),

({a2,0,`}`∈[0,3], i2,0) = FHE.Dec(sk0, ct2,0) , ({a2,1,`}`∈[0,3], i2,1) = FHE.Dec(sk1, ct2,1).

3. Compute the following:

ct∗0 = FHE.Eval(pk0, ct1,0, ct2,0,CMult,FHE) , ct∗1 = FHE.Eval(pk1, ct1,1, ct2,1,CMult,FHE).

4. If any of the following is true:

(a) a1,0,0 6= a1,1,0 or a2,0,0 6= a2,1,0.

(b) There exists some (t, b, `) ∈ {1, 2} × {0, 1} × {1, 2, 3} such that at,b,` 6= 0.

(c) There exists some b ∈ {0, 1} such that i1,b 6= i1 or i2,b 6= i2.

then proceed as follows:

(a) Extract wity = NIZK.Ext(text, (pk0, pk1, ct1,0, ct1,1, i, y), π1).

(b) If RL(wity, y) = 0, output⊥.

(c) Else, generate π∗ ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i1 + i2, y),wity).

5. Else, generate π∗ ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i1 + i2, y), (sk0, sk1)).

6. Output (ct∗0 , ct∗1 , i1 + i2, π
∗).

Figure 7: Let crs ← NIZK.Setup(1λ). We now assume that crs is in binding mode. Let NIZK.Ext be the extraction algorithm for NIZK. Let text be the extraction
trapdoor corresponding to crs. Additionally, let (pk0, sk0), (pk1, sk1) ← FHE.Gen(1λ). We define a probabilistic circuit CMult,MMap (which has text and the key
pairs (pk0, sk0) and (pk1, sk1) hard-wired into it) as in above.

4.5 Extraction and Zero-Testing
Extraction. We now describe the procedure for extracting a canonical string from an encoding at any given level-
vector. Suppose we have an encodings at the level i of the form: ({ct`,b}`∈{0,1,2,3},b∈{0,1}, i, π). The straightforward
way of doing this is to decrypt the corresponding ciphertexts using sk0 and sk1, and outputting g∗ = ga0,0 = ga1,0 ,
where g is a fixed group element embedded inside the extraction circuit. However, for technical reasons relevant to the
proof of security, we sightly depart from this straightforward process.

More concretely, our extraction circuit embeds a four-tuple of group elements (g, h, g′, h′), uses sk0 to recover a0,`
for each ` ∈ {0, 1, 2, 3}, and computes

g∗ = ga0,0 · ha0,1 · (g′)a0,2 · (h′)a0,3 .

It is easy to see that when the encodings are honestly generated, i.e., when the “auxiliary” terms in the plaintext are all
0, this is functionally equivalent to the simpler extraction strategy described above. However, if one or more of the
“auxiliary” plaintext terms is non-zero, the two processes are no longer equivalent. As it turns out, we exploit this fact in
the proof of security.

Again, for technical reasons that are relevant to the proof of security, we also use the secret keys sk0 and sk1, as
well as the NIZK extraction trapdoor text, to check: (a) the validity of the proofs π1 and π2 for the language L that are
provided as part of the input encodings, and (b) the “consistency” of the FHE ciphertexts that are provided as part of the
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Extraction Circuit: CExt,MMap

Inputs: A tuple of the form: ((ct0, ct1, i, π), y ∈ X ), where the proof π is over the language L.

Outputs: Either a group element g∗ or⊥.

Computation: Proceed as follows:

1. If NIZK.Verify(crs, (pk0, pk1, ct0, ct1, i, y), π) = 0, then output⊥.

2. Recover the following:
({a0,`}`∈[0,3], i0) = FHE.Dec(sk0, ct0) , ({a1,`}`∈[0,3], i1) = FHE.Dec(sk1, ct1).

3. Compute g∗ = ga0,0 .ha0,1 .(g′)a0,2 .(h′)a0,3 .

4. If any of the following is true:

(a) a0,0 6= a0,1.

(b) There exists some (b, `) ∈ {0, 1} × {1, 2, 3} such that ab,` 6= 0.

(c) There exists some b ∈ {0, 1} such that ib 6= i.

then proceed as follows:

(a) Extract wity = NIZK.Ext(text, (pk0, pk1, ct0, ct1, i, y), π).

(b) If RL(wity, y) = 0, output⊥.

5. Else, output g∗.

Figure 8: Let crs ← NIZK.Setup(1λ). We now assume that crs is in binding mode. Let NIZK.Ext be the extraction algorithm for NIZK. Let text be the extraction
trapdoor corresponding to crs. Additionally, let (pk0, sk0), (pk1, sk1) ← FHE.Gen(1λ), and let g, h, g′, h′ ∈ G be arbitrary group elements. We define a
deterministic circuit CExt,MMap (which has text, the key pairs (pk0, sk0) and (pk1, sk1) and the collection of group elements (g, h, g′, h′) hard-wired into it) as
above.

input encodings, i.e., whether the “auxiliary” set of plaintext elements are all zero and whether both ciphertexts encrypt
the same level.

Figure 8 details the operation of the extraction circuit CExt,MMap. As before, the circuit CExt,MMap is not made public
as is; we only make available an obfuscated version of the circuit obtained by running the evaluation algorithm of the
probabilistic iO scheme piO on it.

Finally, we emphasize that when the element y ∈ X is a non-member for the language L, then under a binding crs,
the “If” condition in step 4 of CExt,MMap is never satisfied. This follows from the perfect extractability guarantee of
the NIZK proof system. However, the condition may be satisfied during some hybrid in the proof of security, under a
hiding crs when the element y ∈ X is a member for the language L.

Zero-Testing Encodings. Given the aforementioned extraction procedure, zero-testing an encoding at any given level
is trivial. We simply apply the extraction procedure to the encoding, and check if the extracted group element g∗ is
equal to g0 for any g ∈ G.

4.6 The Overall Construction
We are now ready to formally summarize our construction of an SXDH-hard MMap.

• Setup(1λ, N): On input the security parameter λ and the degree of multilinearity N , do the following:

1. Sample (in binding mode) (crs, text)← NIZK.Setup(1λ).

2. Sample (pk0, sk0), (pk1, sk1)← FHE.Gen(1λ).

3. Sample a non-member instance y ← X \ L.

4. Compute CAdd,piO = piO.Obf(CAdd,MMap), where CAdd,MMap is as defined in Figure 3.

5. Compute CInv,piO = piO.Obf(CInv,MMap), where CInv,MMap is as defined in Figure 5.

6. Compute CMult,piO = piO.Obf(CMult,MMap), where CMult,MMap is as defined in Figure 7.
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7. Compute CExt,piO = piO.Obf(CExt,MMap), where CExt,MMap is as defined in Figure 8.

8. Output the public parameter pp, where

pp =

(
crs,pk0,pk1,CAdd,piO,CInv,piO,CMult,piO,CExt,piO, y

)
.

• Encode(pp, a, [i]) : On input the public parameter pp, a plaintext element a ∈ Zq and i ∈ [N ] such that
i ≤ j ≤ N , proceed as follows:

1. Generate the following ciphertexts:

ct0 = FHE.Enc(pk0, (a, 0, 0, 0, i); r0) , ct1 ← FHE.Enc(pk1, (a, 0, 0, 0, i); r1),

where r0 and r1 denote uniformly sampled random coins.

2. Generate the following proof:
π ← NIZK.Prove(crs, st,wit),

where the statement st and the witness wit correspond to the NP language L (as defined in Figure 1) and are
given as:

st = (pk0,pk1, ct0, ct1, i, y) , wit = (a, r0, r1).

3. Finally, output the encoding
[a][i] := (ct0, ct1, i, π).

• Add(pp, [a1][i], [a2][i]): On input the public parameter pp and a pair of encodings

[a1][i] = (ct1,0, ct1,1, i, π1) , [a2][i] = (ct2,0, ct2,1, i, π2),

output the encoding [a1 + a2][i] = (ct∗0, ct∗1, i, π∗), where

(ct∗0, ct∗1, i, π
∗) = piOEval(CAdd,piO, ((ct1,0, ct1,1, i, π1), (ct2,0, ct2,1, i, π2), y)).

• Inv(pp, [a][i]): On input the public parameter pp and an encoding [[a][i] = (ct0, ct1, i, π), output the encoding
[−a][i] = (ct∗0, ct∗1, i, π∗), where

(ct∗0, ct∗1, i, π
∗) = piOEval(CInv,piO, (ct0, ct1, i, π, y)).

• Mult(pp, [a1][i], [a2][i2]): On input the public parameter pp and a pair of encodings

[a1][i] = (ct1,0, ct1,1, i, π1), , [a2][i2] = (ct2,0, ct2,1, i2, π2),

output the encoding [a1.a2][i1+i2] = (ct∗0, ct∗1, i1 + i2, π
∗), where

(ct∗0, ct∗1, i1 + i2, π
∗) = piOEval(CMult,MMap, ((ct1,0, ct1,1, i, π1), (ct2,0, ct2,1, i2, π2), y)).

• Ext(pp, [a][i]): On input the public parameter pp and an encoding [a][i] = (ct0, ct1, i, π), output g∗ =
piOEval(CExt,piO, ((ct0, ct1, i, π), y)).

• ZeroTest(pp, [a][i]): On input the public parameter pp and an encoding [a][i] = (ct0, ct1, i, π), output b∗, where

b∗ =


⊥ if piOEval(CExt,piO, ((ct0, ct1, i, π), y)) = ⊥,
1 if piOEval(CExt,piO, ((ct0, ct1, i, π), y)) = g0 for any group element g ∈ G,
0 otherwise.
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4.7 Proof of SXDH
We state and prove the following theorem:

Theorem 4.1. Our MMap construction is SXDH-hard assuming: (a) that deciding subset membership with respect to
L ⊂ X is computationally hard, (b) that NIZK satisfies crs-indistinguishability, perfect simulation-extractability under
a binding crs and perfect zero-knowledge under a hiding crs, (c) that piO satisfies probabilistic-iO security, (d) that
FHE is IND-CPA secure, and (e) that the group G is DDH-hard.

We prove hardness of SXDH over our proposed MMap construction via a sequence of hybrids, summarized in
Table 1. The crux of the proof lies in switching the plaintexts underlying the challenge encodings in the SXDH game to
a special form such that:

• The challenge encodings constitute a valid SXDH instance over the MMap when the extraction circuit embeds a
valid DDH tuple over the group G.

• The challenge encodings constitute a random invalid SXDH instance over the MMap when the extraction circuit
embeds a random invalid DDH tuple over the group G.

We then show that these two cases are indistinguishable based on a sequence of hybrids, where each pair of consecutive
hybrids is indistinguishable based on the computational security properties of the underlying cryptoprimitives and the
hardness of DDH over the group G.

Table 1: Overview of hybrids for proof of SXDH

Hybrid crs y Cφ,MMap knows CExt,MMap (g, h, g′, h′) Challenge FHE Ciphertexts (Set-1) Challenge FHE Ciphertexts (Set-2) Comments
for φ ∈ {Add, Inv,Mult} knows is of the form are encryptions of are encryptions of

0 binding /∈ L (sk0, sk1, t) (sk0, sk1, t) (g, gγ0 , gγ1 , gγ
∗
) (α0, 0, 0, 0) (α0, 0, 0, 0) —

(α1, 0, 0, 0) (α1, 0, 0, 0)
(α0 · α1, 0, 0, 0) (α0 · α1, 0, 0, 0)

1 hiding ∈ L — sk1 (g, gγ0 , gγ1 , gγ0·γ1) (α0, 0, 0, 0) (α0, 0, 0, 0) NIZK security
(α1, 0, 0, 0) (α1, 0, 0, 0) + subspace-membership hardness

(α0 · α1, 0, 0, 0) (α0 · α1, 0, 0, 0) + piO security

2 hiding ∈ L — sk1 (g, gγ0 , gγ1 , gγ0·γ1) ((α0 − µ0 · γ0), µ0, 0, 0) (α0, 0, 0, 0) FHE IND-CPA security

((α1 − µ1 · γ1), 0, µ1, 0, 0) (α1, 0, 0, 0)

((α0 − µ0 · γ0) · (α1 − µ1 · γ1), (α1 · µ0), (α0 · µ1),−(µ0 · µ1)) (α0 · α1, 0, 0, 0)

3 hiding ∈ L — sk0 (g, gγ0 , gγ1 , gγ0·γ1) ((α0 − µ0 · γ0), µ0, 0, 0) (α0, 0, 0, 0) NIZK security
((α1 − µ1 · γ1), 0, µ1, 0, 0) (α1, 0, 0, 0) + piO security

((α0 − µ0 · γ0) · (α1 − µ1 · γ1), (α1 · µ0), (α0 · µ1),−(µ0 · µ1)) (α0 · α1, 0, 0, 0)

4 hiding ∈ L — sk0 (g, gγ0 , gγ1 , gγ0·γ1) ((α0 − µ0 · γ0), µ0, 0, 0) ((α0 − µ0 · γ0), µ0, 0, 0) FHE IND-CPA security

((α1 − µ1 · γ1), 0, µ1, 0, 0) ((α1 − µ1 · γ1), 0, µ1, 0, 0)

((α0 − µ0 · γ0) · (α1 − µ1 · γ1), (α1 · µ0), (α0 · µ1),−(µ0 · µ1)) ((α0 − µ0 · γ0) · (α1 − µ1 · γ1), (α1 · µ0), (α0 · µ1),−(µ0 · µ1))

5 hiding ∈ L — sk0 (g, gγ0 , gγ1 , gγ
∗
) ((α0 − µ0 · γ0), µ0, 0, 0) ((α0 − µ0 · γ0), µ0, 0, 0) DDH

((α1 − µ1 · γ1), 0, µ1, 0, 0) ((α1 − µ1 · γ1), 0, µ1, 0, 0)
((α0 − µ0 · γ0) · (α1 − µ1 · γ1), (α1 · µ0), (α0 · µ1),−(µ0 · µ1)) ((α0 − µ0 · γ0) · (α1 − µ1 · γ1), (α1 · µ0), (α0 · µ1),−(µ0 · µ1))

6 hiding ∈ L — sk0 (g, gγ0 , gγ1 , gγ
∗
) ((α0 − µ0 · γ0), µ0, 0, 0) (α0, 0, 0, 0) FHE IND-CPA security

((α1 − µ1 · γ1), 0, µ1, 0, 0) (α1, 0, 0, 0)

((α0 − µ0 · γ0) · (α1 − µ1 · γ1), (α1 · µ0), (α0 · µ1),−(µ0 · µ1)) ((α0 · α1 + µ0 · µ1 · (γ0 · γ1 − γ∗)), 0, 0, 0)

7 hiding ∈ L — sk1 (g, gγ0 , gγ1 , gγ
∗
) ((α0 − µ0 · γ0), µ0, 0, 0) (α0, 0, 0, 0) NIZK security

((α1 − µ1 · γ1), 0, µ1, 0, 0) (α1, 0, 0, 0) + piO security
((α0 − µ0 · γ0) · (α1 − µ1 · γ1), (α1 · µ0), (α0 · µ1),−(µ0 · µ1)) ((α0 · α1 + µ0 · µ1 · (γ0 · γ1 − γ∗)), 0, 0, 0)

8 hiding ∈ L — sk1 (g, gγ0 , gγ1 , gγ
∗
) (α0, 0, 0, 0) (α0, 0, 0, 0) FHE IND-CPA security

(α1, 0, 0, 0) (α1, 0, 0, 0)

((α0 · α1 + µ0 · µ1 · (γ0 · γ1 − γ∗)), 0, 0, 0) ((α0 · α1 + µ0 · µ1 · (γ0 · γ1 − γ∗)), 0, 0, 0)

9 binding /∈ L (g, gγ0 , gγ1 , gγ
∗
) (sk0, sk1, t) (sk0, sk1, t) (α0, 0, 0, 0) (α0, 0, 0, 0) NIZK security

(α1, 0, 0, 0) (α1, 0, 0, 0) + subspace-membership hardness
((α0 · α1 + µ0 · µ1 · (γ0 · γ1 − γ∗)), 0, 0, 0) ((α0 · α1 + µ0 · µ1 · (γ0 · γ1 − γ∗)), 0, 0, 0) + piO security

4.7.1 Description of the Hybrids

We begin by describing the proof hybrids in details.
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Hybrid-0. In this hybrid, the public parameter pp is generated as in the real scheme. As part of the SXDH challenge,
the adversary is provided with encodings of α0, α1 (uniformly random in Zq) and α0 · α1, generated as per the real
encoding algorithm corresponding to some challenge level i (may be adversarially chosen).

Hybrid-1. In this hybrid, we change the public parameter pp as follows:

1. Switch crs for the NIZK proof system to hiding mode from binding mode.

2. Switch y ∈ X from a uniform non-member instance to a uniform member instance for the language L with
witness wity .

3. Compute CAdd,piO = piO.Obf(ĈAdd,MMap), where ĈAdd,MMap is as described in Figure 9.

4. Compute CInv,piO = piO.Obf(ĈInv,MMap), where ĈInv,MMap is as described in Figure 10.

5. Compute CMult,piO = piO.Obf(ĈMult,MMap), where ĈMult,MMap is as described in Figure 11.

6. Compute CExt,piO = piO.Obf(ĈExt,MMap,1,0), where ĈExt,MMap,1,0 is as described in Figure 12.

Inputs: A tuple of the form: ((ct1,0, ct1,1, i, π1), (ct2,0, ct2,1, i, π2), y ∈ X ), where the proofs π1 and π2 are over the language L.

Outputs: Either a tuple of the form (ct∗0 , ct∗1 , i, π
∗), or⊥.

Computation: Proceed as follows:

1. If any of the following is true:

(a) NIZK.Verify(crs, (pk0, pk1, ct1,0, ct1,1, i, y ∈ X ), π1) = 0.

(b) NIZK.Verify(crs, (pk0, pk1, ct2,0, ct2,1, i, y ∈ X ), π2) = 0.

then output⊥.

2. // Decryption omitted — avoids dependency on sk0 and sk1.

3. Compute the following:

ct∗0 = FHE.Eval(pk0, ct1,0, ct2,0,CAdd,FHE) , ct∗1 = FHE.Eval(pk1, ct1,1, ct2,1,CAdd,FHE).

4. // If check omitted — avoids dependency on sk0 and sk1.
Proceed as follows:

(a) // Extraction omitted — avoids dependency on extraction trapdoor t.

(b) // Check omitted.

(c) Generate π∗ ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, y),wity).

5. // Proof generation omitted — avoids dependency on sk0 and sk1.

6. Output (ct∗0 , ct∗1 , i, π
∗).

Figure 9: Let crs ← NIZK.Setup(1λ) be in hiding mode. Additionally, let (pk0, sk0), (pk1, sk1) ← FHE.Gen(1λ). Also, for y ∈ L, let wity be a membership-
witness such that (y,wity) ∈ RL. We define a probabilistic circuit ĈAdd,MMap (which has only the public keys pk0 and pk1 hard-wired into it) as above.

Hybrid-2. In this hybrid, we change the challenge encodings. Suppose that the DDH instance (g, h, g′, h′) in the
extraction circuit ĈExt,MMap,1,0 is distributed as:

(g, h, g′, h′) = (g, gγ0 , gγ1 , gγ0·γ1).

We switch the plaintext underlying the first FHE ciphertext in each challenge encoding as follows (where µ0 and µ1 are
sampled uniformly from Z∗q):

(α0, 0, 0, 0, i) → ((α0 − µ0 · γ0), µ0, 0, 0, i)

(α1, 0, 0, 0, i) → ((α1 − µ1 · γ1), 0, µ1, 0, 0, i)

(α0 · α1, 0, 0, 0, i) → ((α0 − µ0 · γ0) · (α1 − µ1 · γ1), (α1 · µ0), (α0 · µ1),−(µ0 · µ1), i)
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Inputs: A tuple of the form: ({ct0, ct1, i, π, y ∈ X ), where the proof π is over the language L.

Outputs: Either a tuple of the form (ct∗0 , ct∗1 , i, π
∗), or⊥.

Computation: Proceed as follows:

1. If NIZK.Verify(crs, (pk0, pk1, ct0, ct1, i, y), π) = 0, then outut⊥.

2. // Decryption omitted — avoids dependency on sk0 and sk1.

3. Compute the following:
ct∗0 = FHE.Eval(pk0, ct0,CInv,FHE) , ct∗1 = FHE.Eval(pk1, ct1,CInv,FHE).

4. // If check omitted — avoids dependency on sk0 and sk1.
Proceed as follows:

(a) // Extraction omitted — avoids dependency on extraction trapdoor t.

(b) // Check omitted.

(c) Generate π∗ ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, y),wity).

5. // Proof generation omitted — avoids dependency on sk0 and sk1.

6. Output (ct∗0 , ct∗1 , i, π
∗).

Figure 10: Next, Let crs ← NIZK.Setup(1λ) be in hiding mode. Additionally, let (pk0, sk0), (pk1, sk1) ← FHE.Gen(1λ). Also, for y ∈ L, let wity be a
membership-witness such that (y,wity) ∈ RL. We define a probabilistic circuit ĈInv,MMap (which has only the public keys pk0 and pk1 hard-wired into it) as above

Inputs: A tuple of the form: ((ct1,0, ct1,1, i1, π1), (ct2,0, ct2,1, i2, π2), y ∈ X ), where the proofs π1 and π2 are over the language L.

Outputs: Either a tuple of the form (ct∗0 , ct∗1 , i, k, π
∗), or⊥.

Computation: Proceed as follows:

1. If any of the following is true:

(a) NIZK.Verify(crs, (pk0, pk1, ct1,0, ct1,1, i1, y ∈ X ), π1) = 0.

(b) NIZK.Verify(crs, (pk0, pk1, ct2,0, ct2,1, i2, y ∈ X ), π2) = 0.

then output⊥.

2. // Decryption omitted — avoids dependency on sk0 and sk1.

3. Compute the following:

ct∗0 = FHE.Eval(pk0, ct1,0, ct2,0,CMult,FHE) , ct∗1 = FHE.Eval(pk1, ct1,1, ct2,1,CMult,FHE).

4. // If check omitted — avoids dependency on sk0 and sk1.
Proceed as follows:

(a) // Extraction omitted — avoids dependency on extraction trapdoor t.

(b) // Check omitted.

(c) Generate π∗ ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i1 + i2, y),wity).

5. // Proof generation omitted — avoids dependency on sk0 and sk1.

6. Output (ct∗0 , ct∗1 , i1 + i2, π
∗).

Figure 11: Let crs← NIZK.Setup(1λ) be in hiding mode. Additionally, let (pk0, sk0), (pk1, sk1)← FHE.Gen(1λ). Also, for y ∈ L, let wity be a membership-
witness such that (y,wity) ∈ RL. For each b∗ ∈ {0, 1}, we define a probabilistic circuit ĈMult,MMap (which has only the public keys pk0 and pk1 hard-wired into it)
as above.

Hybrid-3. In this hybrid, we change the public parameter pp as follows: compute CExt,piO = piO.Obf(ĈExt,MMap,0,0),
where ĈExt,MMap,0,0 is as defined in Figure 12.
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Inputs: A tuple of the form: ((ct0, ct1, i, π), y ∈ X ), where the proof π is over the language L.

Outputs: Either a group element g∗ or⊥.

Computation: Proceed as follows:

1. If NIZK.Verify(crs, (pk0, pk1, ct0, ct1, i, y), π) = 0, then output⊥.

2. Recover the following: ({aβ,`}`∈[0,3], iβ) = FHE.Dec(skβ , ctβ).

// Decryption using sk1−β omitted.

3. Compute g∗ = gaβ,0 · haβ,1 · (g′)aβ,2 · (h′)aβ,3 .

4. // If clause omitted — avoids dependency on sk1−β and extraction trapdoor t.

5. Output g∗.

Figure 12: Let crs← NIZK.Setup(1λ) be in hiding mode and let (pk0, sk0), (pk1, sk1)← FHE.Gen(1λ). Also, let g, h, g′, h′ ∈ G be group elements that are
distributed as perDDDH,G if β′ = 0 and uniformly randomly sampled if β′ = 1, subject to the restriction that the tuple always uses the same base element g. For each
β, β′ ∈ {0, 1}, we define a deterministic circuit ĈExt,MMap,β,β′ (which has the public keys pk0 and pk1, the secret key skβ and the collection of group elements
(g, h, g′, h′) hard-wired into it) as in Figure 12 above.

Hybrid-4. In this hybrid, we change the challenge encodings. Again, suppose that the DDH instance (g, h, g′, h′) in
the extraction circuit ĈExt,MMap,0,0 is distributed as:

(g, h, g′, h′) = (g, gγ0 , gγ1 , gγ0·γ1).

Switch the plaintext underlying the second FHE ciphertext in each challenge encoding as follows (where µ0 and µ1 are
sampled uniformly from Z∗q):

(α0, 0, 0, 0, i) → ((α0 − µ0 · γ0), µ0, 0, 0, i)

(α1, 0, 0, 0, i) → ((α1 − µ1 · γ1), 0, µ1, 0, 0, i)

(α0 · α1, 0, 0, 0, i) → ((α0 − µ0 · γ0) · (α1 − µ1 · γ1), (α1 · µ0), (α0 · µ1),−(µ0 · µ1), i)

Hybrid-5. In this hybrid, we change the public parameter pp as follows: compute CExt,piO = piO.Obf(ĈExt,MMap,0,1),
where ĈExt,MMap,0,1 is as defined in Figure 12. Note that the only difference between the extraction circuits ĈExt,MMap,0,0

and ĈExt,MMap,0,1 is that the former embeds a valid DDH tuple over the group G while the latter embeds a uniformly
random four-tuple of group elements over the group G.

Hybrid-6. In this hybrid, we change the challenge encodings. Recall that in hybrid-5, (g, h, g′, h′) in the extraction
circuit ĈExt,MMap,0,1 is distributed as:

(g, h, g′, h′) = (g, gγ0 , gγ1 , gγ
∗
).

Switch back the plaintext underlying the second FHE ciphertext in each challenge encoding as follows (where µ0 and
µ1 are sampled uniformly from Z∗q):

((α0 − µ0 · γ0), µ0, 0, 0, i) → (α0, 0, 0, 0, i)

((α1 − µ1 · γ1), 0, µ1, 0, 0, i) → (α1, 0, 0, 0, i)

((α0 − µ0 · γ0) · (α1 − µ1 · γ1), (α1 · µ0), (α0 · µ1),−(µ0 · µ1), i) → ((α0 · α1 + µ0 · µ1 · (γ0 · γ1 − γ∗)), 0, 0, 0, i)

Hybrid-7. In this hybrid, we change the public parameter pp as follows: compute CExt,piO = piO.Obf(ĈExt,MMap,1,1),
where ĈExt,MMap,1,1 is as defined in Figure 12.
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Hybrid-8. In this hybrid, we change the challenge encodings. Recall that in hybrid-7, (g, h, g′, h′) in the extraction
circuit ĈExt,MMap,1,1 is distributed as:

(g, h, g′, h′) = (g, gγ0 , gγ1 , gγ
∗
).

Switch back the plaintext underlying the first FHE ciphertext in each challenge encoding as follows (where µ0 and µ1

are sampled uniformly from Z∗q):

((α0 − µ0 · γ0), µ0, 0, 0, i) → (α0, 0, 0, 0, i)

((α1 − µ1 · γ1), 0, µ1, 0, 0, i) → (α1, 0, 0, 0, i)

((α0 − µ0 · γ0) · (α1 − µ1 · γ1), (α1 · µ0), (α0 · µ1),−(µ0 · µ1), i) → ((α0 · α1 + µ0 · µ1 · (γ0 · γ1 − γ∗)), 0, 0, 0, i)

Hybrid-9. In this hybrid, we change the public parameter pp as follows:

1. Switch crs for the NIZK proof system to binding mode, as in the real scheme

2. Switch y ∈ X to a uniform non-member instance, as in the real scheme.

3. Compute CAdd,piO = piO.Obf(CAdd,MMap), as in the real scheme.

4. Compute CInv,piO = piO.Obf(CInv,MMap), as in the real scheme.

5. Compute CMult,piO = piO.Obf(CMult,MMap), as in the real scheme.

6. Compute CExt,piO = piO.Obf(CExt,MMap), as in the real scheme.

Finally, Hybrid-9 is identical to the game where the adversary is given a random invalid SXDH instance generated as
per the real scheme.

4.7.2 Indistinguishability of the Hybrids

We now formally prove that each pair of consecutive hybrids is computationally indistinguishable from each other.

Lemma 4.2. Hybrid-1 is computationally indistinguishable from Hybrid-0 assuming: (a) that deciding subset mem-
bership with respect to L ⊂ X is computationally hard, (b) that NIZK satisfies crs-indistinguishability, perfect
simulation-extractability under a binding crs and perfect zero-knowledge under a hiding crs, and (c) that piO satisfies
probabilistic-iO security.

Proof. We prove this via a sequence of four sub-hybrids:

1. In the first sub-hybrid, we switch y ∈ X from a uniform non-member instance to a uniform member instance for
the language L with witness wity. This is obviously indistinguishable from the Hybrid-0 based on the hardness
of deciding membership in L.

2. In the second sub-hybrid, we hardwire the witness wity into the addition circuit CAdd,MMap, the inversion circuit
CInv,MMap, the multiplication circuit CMult,MMap and the extraction circuit CExt,MMap. We also remove the NIZK
extraction trapdoor text from each of these circuits.

We claim that this change does not change the functionality of CAdd,MMap, CInv,MMap, CMult,MMap and CExt,MMap at
all. We remind the reader that L has unique witnesses membership witnesses. Hence, any witness wit′y for y ∈ L
extracted by the any of these circuits using the extraction trapdoor in Hybrid-0 must be equal to the hardwired
witness wity in Hybrid-1. Since crs is binding, extraction always succeeds in Hybrid-0.
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Hence, assuming that NIZK is perfectly simulation-extractable (under a binding crs) and that piO satisfies
probabilistic-iO security, the second sub-hybrid is computationally indistinguishable from the first sub-hybrid.

3. In the third sub-hybrid, we switch the crs for the NIZK proof system to hiding mode from binding mode. This
is again obviously indistinguishable from the second sub-hybrid based on the crs-indistinguishability property of
NIZK.

4. In the fourth sub-hybrid, we switch CAdd,MMap, CInv,MMap, CMult,MMap and CExt,MMap to ĈAdd,MMap, ĈInv,MMap,
ĈMult,MMap and ĈExt,MMap,1,0, respectively. The first three circuits now use neither sk0 nor sk1, while the trans-
formed extraction circuit ĈExt,MMap,1,0only uses the secret key sk1.

Once again, these modifications do not alter the output distributions of the aforementioned circuits. In particular,
the only potential changes made are to the distributions of the proofs that use wity as witness. However, by the
perfect zero-knowledge property of the proof system (under a hiding crs), the distributions of the resulting proofs
remain identical.

Hence, assuming that NIZK is perfectly zero-knowledge (under a hiding crs) and that piO satisfies probabilistic-
iO security, the fourth sub-hybrid is computationally indistinguishable from the third sub-hybrid.

Finally, it is easy to see that the fourth sub-hybrid is identical to Hybrid-1.

This completes the proof of computational indistinguishability of hybrids 0 and 1.

Lemma 4.3. Hybrid-2 is computationally indistinguishable from Hybrid-1 assuming that FHE is IND-CPA secure with
respect to the public key-secret key pair (pk0, sk0).

Proof. Consider a PPT distinguisher B2 against the IND-CPA security of FHE with respect to the key pair (pk0, sk0).
B2 simulates the challenger in Hybrid-1 and interacts with the SXDH adversary A. More specifically, B2 sets up the
public parameters for the MMap exactly as the challenger does in Hybrid-1. In particular, it samples an additional
key pair (pk1, sk1) for the FHE scheme, and uses it to generate the piO obfuscated circuits for addition, inversion,
multiplication and extraction over encodings. Note that it does not have not access to sk0, but this is not a hindrance as
sk0 is not embedded in any of the aforementioned circuits in Hybrid-1.

Next, when generating the challenge encodings, it creates the following sets of plaintext-pairs for the FHE scheme:

Set-0 Set-1
(α0, 0, 0, 0, i) ((α0 − µ0 · γ0), µ0, 0, 0, i)

(α1, 0, 0, 0, i) ((α1 − µ1 · γ1), 0, µ1, 0, 0, i)

(α0 · α1, 0, 0, 0, i) ((α0 − µ0 · γ0) · (α1 − µ1 · γ1), (α1 · µ0), (α0 · µ1),−(µ0 · µ1), i)

where α0, α1, µ0, µ1, γ0 and γ1 are distributed exactly as in Hybrids 1 and 2. Next, B2 proceeds as follows:

1. For generating the first set of FHE ciphertexts in the challenge encodings, it forwards each pair of plaintexts
as described above to the challenger in the FHE CPA-security experiment, and receives an encryption of the
messages from Set-b for some unknown bit b under the key pair (pk0, sk0).

2. For generating the second set of FHE ciphertexts in the challenge encodings, it encrypts the messages from Set-0
under the key pair (pk1, sk1).
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B2 then generates a simulated NIZK proof π for each challenge encoding using the simulation crs and simulation
trapdoor tS of the NIZK proof system (guaranteed by the zero-knowledge property). Finally, it forwards to the adversary
A the challenge encodings consisting of the FHE ciphertexts as created above and the simulated NIZK proofs.

Eventually, A outputs a bit b′. B2 outputs b′ as a guess for the bit b used by the challenger in the FHE CPA-security
experiment.

Note that when b = 0, B2 perfectly simulates Hybrid-1 and when b = 1, B2 perfectly simulates Hybrid-2. This
completes the proof of indistinguishability of hybrids 1 and 2.

Lemma 4.4. Hybrid-3 is computationally indistinguishable from Hybrid-2 assuming: (a) that NIZK satisfies crs-
indistinguishability, perfect simulation-extractability under a binding crs and perfect zero-knowledge under a hiding
crs, and (b) that piO satisfies probabilistic-iO security.

Proof. We prove this via a sequence of three sub-hybrids:

1. In the first sub-hybrid, we switch the crs for the NIZK proof system to binding mode from hiding mode. This is
obviously indistinguishable from Hybrid-2 based on the crs-indistinguishability property of NIZK.

2. In the second sub-hybrid, we switch the obfuscated circuit CExt,piO in the public parameter from an obfuscation
of ĈExt,MMap,1,0 to an obfuscation of ĈExt,MMap,0,0 (where both circuits are as defined in Figure 12).

3. In the third sub-hybrid, we switch back the crs for the NIZK proof system to hiding mode from binding mode.
This is again obviously indistinguishable from the second sub-hybrid based on the crs-indistinguishability prop-
erty of NIZK. Also, the third sub-hybrid is identical to Hybrid-3.

It remains to prove that the second sub-hybrid is computationally indistinguishable from the first sub-hybrid. We
prove this below based on piO security.

Consider a PPT distinguisher B3 against the security of piO. B3 simulates the challenger in Hybrid-2 and interacts
with the SXDH adversaryA. More specifically, B3 sets up the public parameters for the MMap exactly as the challenger
does in Hybrid-2, except for the manner in which CExt,piO is simulated as part of the public parameter.

Concretely, B3 forwards the fake extraction circuits ĈExt,MMap,1,0 and ĈExt,MMap,0,0 (where both circuits are as
defined in Figure 12) to the challenger in the game against the security of piO, and receives an obfuscation of the circuit
ĈExt,MMap,b,0 for some unknown bit b. It uses this to simulate CExt,piO in the public parameter.

Eventually A outputs a bit b′. B3 outputs b′ as a guess for the bit b used by the challenger in the piO security
experiment.

We note that ĈExt,MMap,1,0 and ĈExt,MMap,0,0 are functionally equivalent circuits with the same output distribution
on all possible encodings. First of all, since the NIZK proof system is in binding mode and is perfectly simulation-
extractable, and y is a uniform non-member, any adversarially generated encoding produces the same output when
extracted from, irrespective of whether ĈExt,MMap,1,0 or ĈExt,MMap,0,0 is used. Finally, the extraction outputs on the
challenge encodings (and any encodings derived from the challenge encodings) are, by design, equal for either extraction
circuit.

Thus when b = 0, B3 perfectly simulates the first sub-hybrid and when b = 1, B3 perfectly simulates the second
hybrid. This completes the proof of computational indistinguishability of the first and second sub-hybrids, and hence
the overall indistinguishability of hybrids 2 and 3.
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Lemma 4.5. Hybrid-4 is computationally indistinguishable from Hybrid-3 assuming that FHE is IND-CPA secure with
respect to the public key-secret key pair (pk1, sk1).

Proof. Consider a PPT distinguisher B4 against the IND-CPA security of FHE with respect to the key pair (pk1, sk1).
B4 simulates the challenger in Hybrid-3 and interacts with the SXDH adversary A. More specifically, B4 sets up the
public parameters for the MMap exactly as the challenger does in Hybrid-3. In particular, it samples an additional
key pair (pk0, sk0) for the FHE scheme, and uses it to generate the piO obfuscated circuits for addition, inversion,
multiplication and extraction over encodings. Note that it does not have not access to sk1, but this is not a hindrance as
sk1 is not embedded in any of the aforementioned circuits in Hybrid-3.

Next, when generating the challenge encodings, B4 creates the following sets of plaintext-pairs for the FHE scheme:

Set-0 Set-1
(α0, 0, 0, 0, i) ((α0 − µ0 · γ0), µ0, 0, 0, i)

(α1, 0, 0, 0, i) ((α1 − µ1 · γ1), 0, µ1, 0, 0, i)

(α0 · α1, 0, 0, 0, i) ((α0 − µ0 · γ0) · (α1 − µ1 · γ1), (α1 · µ0), (α0 · µ1),−(µ0 · µ1), i)

where α0, α1, µ0, µ1, γ0 and γ1 are distributed exactly as in Hybrids 3 and 4. Next, B4 proceeds as follows:

1. For generating the first set of FHE ciphertexts in the challenge encodings, it encrypts the messages from Set-0
under the key pair (pk0, sk0).

2. For generating the second set of FHE ciphertexts in the challenge encodings, it forwards each pair of plaintexts
as described above to the challenger in the FHE CPA-security experiment, and receives an encryption of the
messages from Set-b for some unknown bit b under the key pair (pk1, sk1).

B4 then generates a simulated NIZK proof π for each challenge encoding using the simulation crs and simulation
trapdoor tS of the NIZK proof system (guaranteed by the zero-knowledge property). Finally, it forwards to the adversary
A the challenge encodings consisting of the FHE ciphertexts as created above and the simulated NIZK proofs.

Eventually, A outputs a bit b′. B4 outputs b′ as a guess for the bit b used by the challenger in the FHE CPA-security
experiment.

Note that when b = 0, B4 perfectly simulates Hybrid-3 and when b = 1, B2 perfectly simulates Hybrid-4. This
completes the proof of indistinguishability of hybrids 3 and 4.

Lemma 4.6. Hybrid-5 is computationally indistinguishable from Hybrid-4 assuming that the DDH assumption holds
over the group G.

Proof. Note that the only difference between hybrids 4 and 5 is the manner in which the obfuscated extraction circuit
CExt,piO is generated as part of the public parameter.

In Hybrid-4, CExt,piO is an obfuscation of the circuit ĈExt,MMap,0,0, while in Hybrid-5, CExt,piO is an obfuscation of
the circuit ĈExt,MMap,0,1 (where both circuits are as defined in Figure 12).

Now, observe that the only difference between the extraction circuits ĈExt,MMap,0,0 and ĈExt,MMap,0,1 is that the
former embeds a valid DDH tuple over the group G while the latter embeds a uniformly random four-tuple of group
elements over the group G.

It immediately follows that Hybrid-5 is computationally indistinguishable from Hybrid-4 assuming that the DDH
assumption holds over the group G.
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Lemma 4.7. Hybrid-6 is computationally indistinguishable from Hybrid-5 assuming that FHE is IND-CPA secure with
respect to the public key-secret key pair (pk1, sk1).

Proof. Consider a PPT distinguisher B6 against the IND-CPA security of FHE with respect to the key pair (pk1, sk1).
B6 simulates the challenger in Hybrid-5 and interacts with the SXDH adversary A. More specifically, B6 sets up the
public parameters for the MMap exactly as the challenger does in Hybrid-5. In particular, it samples an additional
key pair (pk0, sk0) for the FHE scheme, and uses it to generate the piO obfuscated circuits for addition, inversion,
multiplication and extraction over encodings. Note that it does not have not access to sk1, but this is not a hindrance as
sk1 is not embedded in any of the aforementioned circuits in Hybrid-5.

Next, when generating the challenge encodings, B6 creates the following sets of plaintext-pairs for the FHE scheme:

Set-0 Set-1
((α0 − µ0 · γ0), µ0, 0, 0, i) (α0, 0, 0, 0, i)

((α1 − µ1 · γ1), 0, µ1, 0, 0, i) (α1, 0, 0, 0, i)

((α0 − µ0 · γ0) · (α1 − µ1 · γ1), (α1 · µ0), (α0 · µ1),−(µ0 · µ1), i) ((α0 · α1 + µ0 · µ1 · (γ0 · γ1 − γ∗)), 0, 0, 0, i)

where α0, α1, µ0, µ1, γ0, γ1 and γ∗ are distributed exactly as in Hybrids 5 and 6. Next, B6 proceeds as follows:

1. For generating the first set of FHE ciphertexts in the challenge encodings, it encrypts the messages from Set-0
under the key pair (pk0, sk0).

2. For generating the second set of FHE ciphertexts in the challenge encodings, it forwards each pair of plaintexts
as described above to the challenger in the FHE CPA-security experiment, and receives an encryption of the
messages from Set-b for some unknown bit b under the key pair (pk1, sk1).

B6 then generates a simulated NIZK proof π for each challenge encoding using the simulation crs and simulation
trapdoor tS of the NIZK proof system (guaranteed by the zero-knowledge property). Finally, it forwards to the adversary
A the challenge encodings consisting of the FHE ciphertexts as created above and the simulated NIZK proofs.

Eventually, A outputs a bit b′. B6 outputs b′ as a guess for the bit b used by the challenger in the FHE CPA-security
experiment.

Note that when b = 0, B6 perfectly simulates Hybrid-5 and when b = 1, B6 perfectly simulates Hybrid-6. This
completes the proof of indistinguishability of hybrids 5 and 6.

Lemma 4.8. Hybrid-7 is computationally indistinguishable from Hybrid-6 assuming: (a) that NIZK satisfies crs-
indistinguishability, perfect simulation-extractability under a binding crs and perfect zero-knowledge under a hiding
crs, and (b) that piO satisfies probabilistic-iO security.

Proof. We prove this via a sequence of three sub-hybrids:

1. In the first sub-hybrid, we switch the crs for the NIZK proof system to binding mode from hiding mode. This is
obviously indistinguishable from Hybrid-6 based on the crs-indistinguishability property of NIZK.

2. In the second sub-hybrid, we switch the obfuscated circuit CExt,piO in the public parameter from an obfuscation
of ĈExt,MMap,0,1 to an obfuscation of ĈExt,MMap,1,1 (where both circuits are as defined in Figure 12).
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3. In the third sub-hybrid, we switch back the crs for the NIZK proof system to hiding mode from binding mode.
This is again obviously indistinguishable from the second sub-hybrid based on the crs-indistinguishability prop-
erty of NIZK. Also, the third sub-hybrid is identical to Hybrid-7.

It remains to prove that the second sub-hybrid is computationally indistinguishable from the first sub-hybrid. We
prove this below based on piO security.

Consider a PPT distinguisher B7 against the security of piO. B7 simulates the challenger in Hybrid-6 and interacts
with the SXDH adversaryA. More specifically, B7 sets up the public parameters for the MMap exactly as the challenger
does in Hybrid-6, except for the manner in which CExt,piO is simulated as part of the public parameter.

Concretely, B7 forwards the fake extraction circuits ĈExt,MMap,0,1 and ĈExt,MMap,1,1 (where both circuits are as
defined in Figure 12) to the challenger in the game against the security of piO, and receives an obfuscation of the circuit
ĈExt,MMap,b,1 for some unknown bit b. It uses this to simulate CExt,piO in the public parameter.

Eventually A outputs a bit b′. B3 outputs b′ as a guess for the bit b used by the challenger in the piO security
experiment.

We note that ĈExt,MMap,0,1 and ĈExt,MMap,1,1 are functionally equivalent circuits with the same output distribution
on all possible encodings. First of all, since the NIZK proof system is in binding mode and is perfectly simulation-
extractable, any adversarially generated encoding produces the same output when extracted from, irrespective of whether
ĈExt,MMap,0,1 or ĈExt,MMap,1,1 is used. Finally, the extraction outputs on the challenge encodings (and any encodings
derived from the challenge encodings) are, by design, equal for either extraction circuit.

Thus when b = 0, B7 perfectly simulates the first sub-hybrid and when b = 1, B7 perfectly simulates the second
hybrid. This completes the proof of computational indistinguishability of the first and second sub-hybrids, and hence
the overall indistinguishability of hybrids 6 and 7.

Lemma 4.9. Hybrid-8 is computationally indistinguishable from Hybrid-7 assuming that FHE is IND-CPA secure with
respect to the public key-secret key pair (pk0, sk0).

Proof. Consider a PPT distinguisher B8 against the IND-CPA security of FHE with respect to the key pair (pk0, sk0).
B8 simulates the challenger in Hybrid-1 and interacts with the SXDH adversary A. More specifically, B8 sets up the
public parameters for the MMap exactly as the challenger does in Hybrid-1. In particular, it samples an additional
key pair (pk1, sk1) for the FHE scheme, and uses it to generate the piO obfuscated circuits for addition, inversion,
multiplication and extraction over encodings. Note that it does not have not access to sk0, but this is not a hindrance as
sk0 is not embedded in any of the aforementioned circuits in Hybrid-1.

Next, when generating the challenge encodings, it creates the following sets of plaintext-pairs for the FHE scheme:

Set-0 Set-1
((α0 − µ0 · γ0), µ0, 0, 0, i) (α0, 0, 0, 0, i)

((α1 − µ1 · γ1), 0, µ1, 0, 0, i) (α1, 0, 0, 0, i)

((α0 − µ0 · γ0) · (α1 − µ1 · γ1), (α1 · µ0), (α0 · µ1),−(µ0 · µ1), i) ((α0 · α1 + µ0 · µ1 · (γ0 · γ1 − γ∗)), 0, 0, 0, i)

where α0, α1, µ0, µ1, γ0 and γ1 are distributed exactly as in Hybrids 1 and 2. Next, B8 proceeds as follows:

1. For generating the first set of FHE ciphertexts in the challenge encodings, it forwards each pair of plaintexts
as described above to the challenger in the FHE CPA-security experiment, and receives an encryption of the
messages from Set-b for some unknown bit b under the key pair (pk0, sk0).

30



2. For generating the second set of FHE ciphertexts in the challenge encodings, it encrypts the messages from Set-0
under the key pair (pk1, sk1).

B8 then generates a simulated NIZK proof π for each challenge encoding using the simulation crs and simulation
trapdoor tS of the NIZK proof system (guaranteed by the zero-knowledge property). Finally, it forwards to the adversary
A the challenge encodings consisting of the FHE ciphertexts as created above and the simulated NIZK proofs.

Eventually, A outputs a bit b′. B8 outputs b′ as a guess for the bit b used by the challenger in the FHE CPA-security
experiment.

Note that when b = 0, B8 perfectly simulates Hybrid-7 and when b = 1, B8 perfectly simulates Hybrid-8. This
completes the proof of indistinguishability of hybrids 7 and 8.

Lemma 4.10. Hybrid-9 is computationally indistinguishable from Hybrid-8 assuming: (a) that deciding subset mem-
bership with respect to L ⊂ X is computationally hard, (b) that NIZK satisfies crs-indistinguishability, perfect
simulation-extractability under a binding crs and perfect zero-knowledge under a hiding crs, and (c) that piO satisfies
probabilistic-iO security.

The proof of this lemma follows via exactly the same set of hybrids used in the proof of Lemma 4.2, albeit in the
reerse direction. The proofs of indistinguishability for each pair consecutive sub-hybrids still follow via the same set of
arguments, and are hence not detailed.

This completes the proof of Theorem 4.1.

4.8 Proof of Joint-SXDH
For any T = poly(λ), let {it}t∈[T ] be a set of arbitrary valid level-vectors it such that no two level-vectors in the set
are pairing compatible. In other words, suppose that for each t0, t1 ∈ [T ], it0 + it1 > n. The T -joint-SXDH assumption
over a degree-N asymmetric MMap requires that the following indistinguishability holds:{(

[α0]it , [α1]it , [α0 · α1]it

)}
t∈[T ]

c
≈

{(
[α0]it , [α1]it , [α

∗]it

)}
t∈[T ]

,

where α0, α1, α
∗ ← Zq .

In this subsection, we show how to extend our SXDH proof strategy to prove hardness of joint-SXDH over our proposed
MMap construction via a sequence of hybrids, summarized in Table 2. Formally, we state and prove the following
theorem:

Theorem 4.11. Our MMap construction is joint-SXDH-hard assuming: (a) that deciding subset membership with re-
spect to L ⊂ X is computationally hard, (b) that NIZK satisfies crs-indistinguishability, perfect simulation-extractability
under a binding crs and perfect zero-knowledge under a hiding crs, (c) that piO satisfies probabilistic-iO security, (d)
that FHE is IND-CPA secure, and (e) that the group G is DDH-hard.

Hybrid-0. In this hybrid, the public parameter pp is generated as in the real scheme and the adversary is provided
with a valid joint-SXDH instance of the form:{(

[α0]it , [α1]it , [α0 · α1]it

)}
t∈[T ]

,

where each encoding is generated as per the real encoding algorithm.
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Table 2: Overview of hybrids for proof of joint-SXDH.

Hybrid crs y Cφ,MMap knows CExt,MMap (g, h, g′, h′) First FHE Ciphertexts Second FHE Ciphertexts Comments
for φ ∈ {Add, Inv,Mult} knows is of the form are encryptions of are encryptions of

0 binding /∈ L (sk0, sk1, t) (sk0, sk1, t) (g, gγ0 , gγ1 , gγ
∗
) (α0, 0, 0, 0) (α0, 0, 0, 0) —

(α1, 0, 0, 0) (α1, 0, 0, 0)
(α0 · α1, 0, 0, 0) (α0 · α1, 0, 0, 0)

1 hiding ∈ L — sk1 (g, gγ0 , gγ1 , gγ0·γ1) (α0, 0, 0, 0) (α0, 0, 0, 0) NIZK security
(α1, 0, 0, 0) (α1, 0, 0, 0) + subspace-membership hardness

(α0 · α1, 0, 0, 0) (α0 · α1, 0, 0, 0) + piO security

2-t hiding ∈ L — sk1 (g, gγ0 , gγ1 , gγ0·γ1) ((α0 − µ0 · γ0), µ0, 0, 0) (α0, 0, 0, 0) FHE IND-CPA security

for t ∈ [T ] ((α1 − µ1 · γ1), 0, µ1, 0, 0) (α1, 0, 0, 0)

((α0 − µ0 · γ0) · (α1 − µ1 · γ1), (α1 · µ0), (α0 · µ1),−(µ0 · µ1)) (α0 · α1, 0, 0, 0)

3 hiding ∈ L — sk0 (g, gγ0 , gγ1 , gγ0·γ1) ((α0 − µ0 · γ0), µ0, 0, 0) (α0, 0, 0, 0) NIZK security
((α1 − µ1 · γ1), 0, µ1, 0, 0) (α1, 0, 0, 0) + piO security

((α0 − µ0 · γ0) · (α1 − µ1 · γ1), (α1 · µ0), (α0 · µ1),−(µ0 · µ1)) (α0 · α1, 0, 0, 0)

4-t hiding ∈ L — sk0 (g, gγ0 , gγ1 , gγ0·γ1) ((α0 − µ0 · γ0), µ0, 0, 0) ((α0 − µ0 · γ0), µ0, 0, 0) FHE IND-CPA security

for t ∈ [T ] ((α1 − µ1 · γ1), 0, µ1, 0, 0) ((α1 − µ1 · γ1), 0, µ1, 0, 0)

((α0 − µ0 · γ0) · (α1 − µ1 · γ1), (α1 · µ0), (α0 · µ1),−(µ0 · µ1)) ((α0 − µ0 · γ0) · (α1 − µ1 · γ1), (α1 · µ0), (α0 · µ1),−(µ0 · µ1))

5 hiding ∈ L — sk0 (g, gγ0 , gγ1 , gγ
∗
) ((α0 − µ0 · γ0), µ0, 0, 0) ((α0 − µ0 · γ0), µ0, 0, 0) DDH

((α1 − µ1 · γ1), 0, µ1, 0, 0) ((α1 − µ1 · γ1), 0, µ1, 0, 0)
((α0 − µ0 · γ0) · (α1 − µ1 · γ1), (α1 · µ0), (α0 · µ1),−(µ0 · µ1)) ((α0 − µ0 · γ0) · (α1 − µ1 · γ1), (α1 · µ0), (α0 · µ1),−(µ0 · µ1))

6-t hiding ∈ L — sk0 (g, gγ0 , gγ1 , gγ
∗
) ((α0 − µ0 · γ0), µ0, 0, 0) (α0, 0, 0, 0) FHE IND-CPA security

for t ∈ [T ] ((α1 − µ1 · γ1), 0, µ1, 0, 0) (α1, 0, 0, 0)

((α0 − µ0 · γ0) · (α1 − µ1 · γ1), (α1 · µ0), (α0 · µ1),−(µ0 · µ1)) ((α0 · α1 + µ0 · µ1 · (γ0 · γ1 − γ∗)), 0, 0, 0)

7 hiding ∈ L — sk1 (g, gγ0 , gγ1 , gγ
∗
) ((α0 − µ0 · γ0), µ0, 0, 0) (α0, 0, 0, 0) NIZK security

((α1 − µ1 · γ1), 0, µ1, 0, 0) (α1, 0, 0, 0) + piO security
((α0 − µ0 · γ0) · (α1 − µ1 · γ1), (α1 · µ0), (α0 · µ1),−(µ0 · µ1)) ((α0 · α1 + µ0 · µ1 · (γ0 · γ1 − γ∗)), 0, 0, 0)

8-t hiding ∈ L — sk1 (g, gγ0 , gγ1 , gγ
∗
) (α0, 0, 0, 0) (α0, 0, 0, 0) FHE IND-CPA security

for t ∈ [T ] (α1, 0, 0, 0) (α1, 0, 0, 0)

((α0 · α1 + µ0 · µ1 · (γ0 · γ1 − γ∗)), 0, 0, 0) ((α0 · α1 + µ0 · µ1 · (γ0 · γ1 − γ∗)), 0, 0, 0)

9 binding /∈ L (g, gγ0 , gγ1 , gγ
∗
) (sk0, sk1, t) (sk0, sk1, t) (α0, 0, 0, 0) (α0, 0, 0, 0) NIZK security

(α1, 0, 0, 0) (α1, 0, 0, 0) + subspace-membership hardness
((α0 · α1 + µ0 · µ1 · (γ0 · γ1 − γ∗)), 0, 0, 0) ((α0 · α1 + µ0 · µ1 · (γ0 · γ1 − γ∗)), 0, 0, 0) + piO security

Hybrid-1. In this hybrid, we change the public parameter pp as follows:

1. Switch crs for the NIZK proof system to hiding mode from binding mode.

2. Switch y ∈ X from a uniform non-member instance to a uniform member instance for the language L with
witness wity .

3. Compute CAdd,piO = piO.Obf(ĈAdd,MMap), where ĈAdd,MMap is as described in Figure 9.

4. Compute CInv,piO = piO.Obf(ĈInv,MMap), where ĈInv,MMap is as described in Figure 10.

5. Compute CMult,piO = piO.Obf(ĈMult,MMap), where ĈMult,MMap is as described in Figure 11.

6. Compute CExt,piO = piO.Obf(ĈExt,MMap,1,0), where ĈExt,MMap,1,0 is as described in Figure 12.

Lemma 4.12. Hybrid-1 is computationally indistinguishable from Hybrid-0 assuming: (a) that deciding subset mem-
bership with respect to L ⊂ X is computationally hard, (b) that NIZK satisfies crs-indistinguishability, perfect
simulation-extractability under a binding crs and perfect zero-knowledge under a hiding crs, and (c) that piO satisfies
probabilistic-iO security.

The proof of this lemma is identical to the proof of Lemma 4.2.

Hybrid-2-t. For each t ∈ [0, T ], Hybrid 2− t changes the tth set of challenge encodings (Hybrid-2− 0 is identical to
Hybrid-1). Suppose that the DDH instance (g, h, g′, h′) in the extraction circuit ĈExt,MMap,1,0 is distributed as:

(g, h, g′, h′) = (g, gγ0 , gγ1 , gγ0·γ1).
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Switch the plaintext underlying the first FHE ciphertext in the tth set of challenge encodings as follows (where µ0 and
µ1 are sampled uniformly from Z∗q):

(α0, 0, 0, 0, i) → ((α0 − µ0 · γ0), µ0, 0, 0, i)

(α1, 0, 0, 0, i) → ((α1 − µ1 · γ1), 0, µ1, 0, 0, i)

(α0 · α1, 0, 0, 0, i) → ((α0 − µ0 · γ0) · (α1 − µ1 · γ1), (α1 · µ0), (α0 · µ1),−(µ0 · µ1), i)

Lemma 4.13. For each t ∈ [T ], Hybrid-2− t is computationally indistinguishable from Hybrid-2− (t− 1) assuming
that FHE is IND-CPA secure with respect to the public key-secret key pair (pk0, sk0).

The proof of this lemma is identical to the proof of Lemma 4.3.

Hybrid-3. In this hybrid, we change the public parameter pp as follows: compute CExt,piO = piO.Obf(ĈExt,MMap,0,0),
where ĈExt,MMap,0,0 is as defined in Figure 12.

Lemma 4.14. Hybrid-3 is computationally indistinguishable from Hybrid-2-T assuming: (a) that NIZK satisfies
crs-indistinguishability, perfect simulation-extractability under a binding crs and perfect zero-knowledge under a hiding
crs, and (b) that piO satisfies probabilistic-iO security.

The proof of this lemma is identical to the proof of Lemma 4.4.

Hybrid-4-t. For each t ∈ [0, T ], Hybrid 4− t changes the tth set of challenge encodings (Hybrid-4− 0 is identical to
Hybrid-3). Again, suppose that the DDH instance (g, h, g′, h′) in the extraction circuit ĈExt,MMap,0,0 is distributed as:

(g, h, g′, h′) = (g, gγ0 , gγ1 , gγ0·γ1).

Switch the plaintext underlying the second FHE ciphertext in the tth set of challenge encodings as follows (where µ0

and µ1 are sampled uniformly from Z∗q):

(α0, 0, 0, 0, i) → ((α0 − µ0 · γ0), µ0, 0, 0, i)

(α1, 0, 0, 0, i) → ((α1 − µ1 · γ1), 0, µ1, 0, 0, i)

(α0 · α1, 0, 0, 0, i) → ((α0 − µ0 · γ0) · (α1 − µ1 · γ1), (α1 · µ0), (α0 · µ1),−(µ0 · µ1), i)

Lemma 4.15. For each t ∈ [T ], Hybrid-4− t is computationally indistinguishable from Hybrid-4− (t− 1) assuming
that FHE is IND-CPA secure with respect to the public key-secret key pair (pk1, sk1).

The proof of this lemma is identical to the proof of Lemma 4.5.

Hybrid-5. In this hybrid, we change the public parameter pp as follows: compute CExt,piO = piO.Obf(ĈExt,MMap,0,1),
where ĈExt,MMap,0,1 is as defined in Figure 12. Note that the only difference between the extraction circuits ĈExt,MMap,0,0

and ĈExt,MMap,0,1 is that the former embeds a valid DDH tuple over the group G while the latter embeds a uniformly
random four-tuple of group elements over the group G.

Lemma 4.16. Hybrid-5 is computationally indistinguishable from Hybrid-4 assuming that the DDH assumption holds
over the group G.

The proof of this lemma is identical to the proof of Lemma 4.6.
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Hybrid-6-t. For each t ∈ [0, T ], Hybrid 6− t changes the tth set of challenge encodings (Hybrid-6− 0 is identical to
Hybrid-5). Recall that in hybrid-5, (g, h, g′, h′) in the extraction circuit ĈExt,MMap,0,1 is distributed as:

(g, h, g′, h′) = (g, gγ0 , gγ1 , gγ
∗
).

Switch back the plaintext underlying the second FHE ciphertext in the tth set of challenge encodings as follows (where
µ0 and µ1 are sampled uniformly from Z∗q):

((α0 − µ0 · γ0), µ0, 0, 0, i) → (α0, 0, 0, 0, i)

((α1 − µ1 · γ1), 0, µ1, 0, 0, i) → (α1, 0, 0, 0, i)

((α0 − µ0 · γ0) · (α1 − µ1 · γ1), (α1 · µ0), (α0 · µ1),−(µ0 · µ1), i) → ((α0 · α1 + µ0 · µ1 · (γ0 · γ1 − γ∗)), 0, 0, 0, i)

Lemma 4.17. For each t ∈ [T ], Hybrid-6− t is computationally indistinguishable from Hybrid-6− (t− 1) assuming
that FHE is IND-CPA secure with respect to the public key-secret key pair (pk1, sk1).

The proof of this lemma is identical to the proof of Lemma 4.7.

Hybrid-7. In this hybrid, we change the public parameter pp as follows: compute CExt,piO = piO.Obf(ĈExt,MMap,1,1),
where ĈExt,MMap,1,1 is as defined in Figure 12.

Lemma 4.18. Hybrid-7 is computationally indistinguishable from Hybrid-6 assuming: (a) that NIZK satisfies crs-
indistinguishability, perfect simulation-extractability under a binding crs and perfect zero-knowledge under a hiding
crs, and (b) that piO satisfies probabilistic-iO security.

The proof of this lemma is identical to the proof of Lemma 4.8.

Hybrid-8-t. For each t ∈ [0, T ], Hybrid 8− t changes the tth set of challenge encodings (Hybrid-8− 0 is identical to
Hybrid-7). Recall that in hybrid-7, (g, h, g′, h′) in the extraction circuit ĈExt,MMap,1,1 is distributed as:

(g, h, g′, h′) = (g, gγ0 , gγ1 , gγ
∗
).

Switch back the plaintext underlying the first FHE ciphertext in the tth set of challenge encodings as follows (where µ0

and µ1 are sampled uniformly from Z∗q):

((α0 − µ0 · γ0), µ0, 0, 0, i) → (α0, 0, 0, 0, i)

((α1 − µ1 · γ1), 0, µ1, 0, 0, i) → (α1, 0, 0, 0, i)

((α0 − µ0 · γ0) · (α1 − µ1 · γ1), (α1 · µ0), (α0 · µ1),−(µ0 · µ1), i) → ((α0 · α1 + µ0 · µ1 · (γ0 · γ1 − γ∗)), 0, 0, 0, i)

Lemma 4.19. For each t ∈ [T ], Hybrid-8− t is computationally indistinguishable from Hybrid-8− (t− 1) assuming
that FHE is IND-CPA secure with respect to the public key-secret key pair (pk0, sk0).

The proof of this lemma is identical to the proof of Lemma 4.9.

Hybrid-9. In this hybrid, we change the public parameter pp as follows:

1. Switch crs for the NIZK proof system to binding mode, as in the real scheme

2. Switch y ∈ X to a uniform non-member instance, as in the real scheme.

3. Compute CAdd,piO = piO.Obf(CAdd,MMap), as in the real scheme.

4. Compute CInv,piO = piO.Obf(CInv,MMap), as in the real scheme.
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5. Compute CMult,piO = piO.Obf(CMult,MMap), as in the real scheme.

6. Compute CExt,piO = piO.Obf(CExt,MMap), as in the real scheme.

Lemma 4.20. Hybrid-9 is computationally indistinguishable from Hybrid-8 assuming: (a) that deciding subset mem-
bership with respect to L ⊂ X is computationally hard, (b) that NIZK satisfies crs-indistinguishability, perfect
simulation-extractability under a binding crs and perfect zero-knowledge under a hiding crs, and (c) that piO satisfies
probabilistic-iO security.

The proof of this lemma is identical to the proof of Lemma 4.10.

Finally, Hybrid-9 is identical to the game where the adversary is given a random invalid SXDH instance generated as
per the real scheme. This completes the proof of Theorem 4.11.

5 Constructing a Squared-DDH-Hard Asymmetric MMap
It is easy to extend the approach used for our MMap construction in Section 4 to construct a squared-DDH (SDDH)-hard
asymmetric MMap. Recall that the SDDH assumption over a degree-N asymmetric MMap requires that the following
indistinguishability holds for any level-vector i such that 0 < i ≤ n:(

[α]i, [α
2]i

)
c
≈

(
[α]i, [α

∗]i

)
,

where α, α∗ ← Zq. The SDDH assumption is essentially identical to the 2-exponent-DDH (EDDH) assumption. It
implies the SXDH assumption (the converse is not known to be true).

In this section, we show how to construct an SDDH-hard asymmetric MMap using essentially the same set of
cryptoprimitives as used by our SXDH-hard MMap construction, except for the group G, which we now require to be
SDDH-hard as opposed to just DDH-hard. More concretely, the construction relies on the following cryptoprimitives:

• A probabilistic-iO scheme piO = (piO.Obf, piOEval).

• A fully-homomorphic encryption scheme FHE = (FHE.Gen,FHE.Enc,FHE.Dec,FHE.Eval) such that the
message space is Zq for some prime q = poly(λ) (λ being the security parameter).

• A simulation-extractable non-interactive NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify).

• A pair of sets (X ,L) such that L ⊂ X and:

1. Given x ∈ X it is computationally hard to decide if x ∈ L.
2. For each y ∈ L, there exists a unique witness wity for the statement y ∈ L.

We define a relation RL as follows: (y,wity) ∈ RL if and only if wity is a witness for the statement y ∈ L.

• A pairing-free SDDH-hard group G of prime order q, where DSDDH,G denotes the distribution of all valid SDDH
samples over the group G.

At a high level, the key change from the SXDH-hard MMap construction is that each FHE ciphertext ctb in a
given encoding encrypts a three-tuple (ab,0, ab,1, ab,2) instead of a four-tuple, and the extraction circuit now embeds a
three-tuple of group elements (g, h, h′) instead of a four-tuple of group elements.

The crux of the proof lies in switching the plaintexts underlying the challenge encodings in the SDDH game to a
form where the challenge encoding is a valid SDDH instance over the MMap when the extraction circuit embeds a
valid SDDH tuple over the group G, while the challenge encoding is a random invalid SDDH instance over the MMap
when the extraction circuit embeds a random invalid SDDH tuple over the group G. We then show via a sequence of
hybrids that these two cases are indistinguishable based on a sequence of hybrids that exploit the computational security
properties of the underlying cryptoprimitives and the hardness of SDDH over the group G.

For the sake of completeness, we present the detailed construction below. In particular, we focus on the structure
of the encodings, and the circuits for addition, inversion, multiplication and extraction over encodings. Note that our
construction can be easily generalized to achieve `-EDDH-hard asymmetric MMaps for any ` ≥ 3.
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5.1 Encodings
Level-Zero Encodings. As in the previous construction, level-0 encodings are treated slightly different from encod-
ings at other “non-zero” levels. In particular, our level-0 encodings are equipped with their own set of algorithms for
encoding, manipulation, extraction and zero-testing. We informally mention these for the sake of completeness.

The level-0 encoding of a plaintext element a ∈ Zq is a itself. Adding/multiplying two level-0 encodings
(equivalently, additively inverting a level-0 encoding) is simply done via addition/multiplication (equivalently, additive
inversion) in Zq . Multiplying a level-0 encoding with any other encoding at some level i should result in an encoding at
level-i. This is implemented with a shift-and-add algorithm built on top of the standard encoding addition algorithm
described subsequently in Section 5.2. Finally, extracting a level-0 encoding a ∈ Zq outputs ga, where g is a fixed
generator for the group G. As will be clear later, this is consistent with the extraction algorithm for any other level i.
Zero-testing follows trivially.

We omit formal descriptions of operations for level-0 encodings to ease notation and focus on the more interesting
cases at “non-zero” encoding levels.

Level-i Encodings. We now describe the procedure of encoding a plaintext element at any level i such that 0 < i ≤ n.
An encoding of a plaintext element a ∈ Zq at level-vector i is a tuple of the form: (ct0, ct1, i, π), where:

• ct0 and ct1 are FHE encryptions of the tuple (a, 0, 0, i) under the public key-secret key pairs (pk0, sk0) and
(pk1, sk1) respectively.

• π is a NIZK proof for the statement st = (pk0,pk1, ct0, ct1, i, y ∈ X ) under the NP language L described in
Figure 13, where y ∈ X is available as part of the public parameter for our MMap scheme.

Note that the additional zero entries encrypted in each encoding appear redundant, but will be useful later in the
proof of security.

Language L:

Statement: The statement st is as follows: st = (pk0, pk1, ct0, ct1, i, y ∈ X )

Witness: The witness has one of the following three forms:

1. wit = (sk0, sk1)

2. wit = (m, r0, r1)

3. wit = wity

Relation: R(st,wit) = 1 if and only if:

• Either wit = (sk0, sk1) and we have:

1. (pk0, sk0), (pk1, sk1) ∈ KFHE.

2. FHE.Dec(sk0, ct0) = FHE.Dec(sk1, ct1) = (m, 0, 0, i) for some m ∈ Zq .

• Or wit = (m, r0, r1) and we have:

1. m ∈ Zq .

2. For each b ∈ {0, 1}, FHE.Enc(pkb, (m, 0, 0, i); rb) = ctb.

• Or wit = wity and we have: (y,wity) ∈ RL.

Figure 13: LetKFHE be the set of all valid key pairs under the FHE scheme. We define an NP language L as in the figure above. For simplicity, L parameterized by N
– the number of levels for our MMap scheme.

36



5.2 Addition of Encodings
We now describe the procedure for adding two encodings. Suppose we have two encodings at the same level i of the
form:

(ct1,0, ct1,1, i, π1), (ct2,0, ct2,1, i, π2).

Conceptually, we add these two encodings by exploiting the fully-homomorphic nature of the encryption scheme. More
concretely, we homomorphically evaluate the circuit CAdd,FHE (described in Figure 14) on the corresponding ciphertext
components of the two input encodings to generate the ciphertext components for the output encoding. We also generate
a proof for the validity of the resulting encoding using the tuple of secret keys (sk0, sk1) as witness.

Inputs: A tuple of the form (({a1,`}`∈[0,2], i1), (({a2,`}`∈[0,2], i2)), where for each ` ∈ [0, 2], we have a1,`, a2,` ∈ Zq .

Computation: Proceed as follows:

1. If i1 6= i2 or i1 ≤ 0 or i1 > n, output ⊥ .

2. Else, output ({a1,` + a2,`}`∈[0,2], i1).

Figure 14: Circuit CAdd,FHE

For technical reasons that are relevant to the proof of security, we check: (a) the validity of the proofs π1 and π2 for
the language L that are provided as part of the input encodings, and (b) the “consistency” of the FHE ciphertexts that
are provided as part of the input encodings, i.e., whether the ciphertexts encrypt the same underlying plaintext, and
whether the plaintext is formatted as per the specifications of the scheme.

Figure 15 details the operation of the encoding-addition circuit CAdd,MMap.
As in the previous construction, the addition embeds multiple secrets, including the secret keys sk0 and sk1, as

well as the extraction trapdoor t for the NIZK. Hence, the circuit is not made public as is; we only make available an
obfuscated version of the circuit obtained by running the evaluation algorithm of the probabilistic iO scheme piO on it.

We emphasize that when the element y ∈ X is a non-member for the language L, then under a binding crs, the “If”
condition in step 4 of CAdd,MMap is never satisfied. This follows from the perfect extractability guarantee of the NIZK
proof system. However, the condition may be satisfied during some hybrid in the proof of security, under a hiding crs
when the element y ∈ X is a member for the language L.

5.3 Inversion of Encodings
We now describe the procedure for additively inverting an encoding. Suppose we have an encoding at the level i of
the form: (ct0, ct1, i, π). Again, conceptually, we additively invert this encoding by exploiting the fully-homomorphic
nature of the encryption scheme. More concretely, we homomorphically evaluate the circuit CInv,FHE (described in
Figure 16) on the corresponding ciphertext components of the input encoding to generate the ciphertext components for
the output encoding. We also generate a proof for the validity of the resulting encoding using the tuple of secret keys
(sk0, sk1) as witness.

Similar to the addition procedure, for technical reasons that are relevant to the proof of security, we check the
validity and consistency of the input encodings. Figure 17 details the operation of the encoding-inversion circuit
CInv,MMap. Agsin, since it embeds the same set of secrets as the addition circuit, the circuit CInv,MMap is not made public
as is; we only make available an obfuscated version of the circuit obtained by running the evaluation algorithm of the
probabilistic iO scheme piO on it.

We again emphasize that when the element y ∈ X is a non-member for the language L, then under a binding crs,
the “If” condition in step 4 of CAdd,MMap is never satisfied. This follows from the perfect extractability guarantee of
the NIZK proof system. However, the condition may be satisfied during some hybrid in the proof of security, under a
hiding crs when the element y ∈ X is a member for the language L.
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Encoding Addition Circuit: CAdd,MMap

Inputs: A tuple of the form: ((ct1,0, ct1,1, i, π1), (ct2,0, ct2,1, i, π2), y ∈ X ), where the proofs π1 and π2 are over the language L.

Outputs: Either a tuple of the form (ct∗0 , ct∗1 , i, π
∗), or⊥.

Computation: Proceed as follows:

1. If any of the following is true:

(a) NIZK.Verify(crs, (pk0, pk1, ct1,0, ct1,1, i, y ∈ X ), π1) = 0.

(b) NIZK.Verify(crs, (pk0, pk1, ct2,0, ct2,1, i, y ∈ X ), π2) = 0.

then output⊥.

2. Recover the following:

({a1,0,`}`∈[0,2], i1,0) = FHE.Dec(sk0, ct1,0) , ({a1,1,`}`∈[0,2], i1,1) = FHE.Dec(sk1, ct1,1),

({a2,0,`}`∈[0,2], i2,0) = FHE.Dec(sk0, ct2,0) , ({a2,1,`}`∈[0,2], i2,1) = FHE.Dec(sk1, ct2,1).

3. Compute the following:

ct∗0 = FHE.Eval(pk0, ct1,0, ct2,0,CAdd,FHE) , ct∗1 = FHE.Eval(pk1, ct1,1, ct2,1,CAdd,FHE).

4. If any of the following is true:

(a) a1,0,0 6= a1,1,0 or a2,0,0 6= a2,1,0.

(b) There exists some (t, b, `) ∈ {1, 2} × {0, 1} × {1, 2} such that at,b,` 6= 0.

(c) There exists some (t, b) ∈ {1, 2} × {0, 1} such that it,b 6= i.

then proceed as follows:

(a) Extract wity = NIZK.Ext(t, (pk0, pk1, ct1,0, ct1,1, i, y), π1).

(b) If RL(wity, y) = 0, output⊥.

(c) Else, generate π∗ ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, y),wity).

5. Else, generate π∗ ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, y), (sk0, sk1)).

6. Output (ct∗0 , ct∗1 , i, π
∗).

Figure 15: Let crs ← NIZK.Setup(1λ). We now assume that crs is in binding mode. Let NIZK.Ext be the extraction algorithm for NIZK. Let t be the extraction
trapdoor corresponding to crs. Additionally, let (pk0, sk0), (pk1, sk1)← FHE.Gen(1λ). We define a probabilistic circuit CAdd,MMap (which has t and the key pairs
(pk0, sk0) and (pk1, sk1) hard-wired into it) as above.

Inputs: A tuple of the form ((a0, a1, a2, i)) where for each ` ∈ [0, 2], we have a` ∈ Zq .

Computation: If i ≤ 0 or i > N , output ⊥ else output (−a0,−a1,−a2, i).

Figure 16: Circuit CInv,FHE

5.4 Multiplication of Encodings
We now describe the procedure for multiplying two encodings at levels i1 and i2, respectively such that i1 + i2 ≤ n.
Suppose we have two encodings of the form:

(ct1,0, ct1,1, i1, π1), (ct2,0, ct2,1, i2, π2).

Conceptually, we multiply these two encodings by again exploiting the fully-homomorphic nature of the encryption
scheme. More concretely, we homomorphically evaluate the circuit CMult,FHE (described in Figure 18) on the cor-
responding ciphertext components of the two input encodings to generate the ciphertext components for the output
encoding. We also generate a proof for the validity of the resulting encoding using the tuple of secret keys (sk0, sk1) as
witness.

Similar to the addition and inversion procedures, for technical reasons that are relevant to the proof of security, we
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Encoding Inversion Circuit: CInv,MMap

Inputs: A tuple of the form: ({ct0, ct1, i, π, y ∈ X ), where the proof π is over the language L.

Outputs: Either a tuple of the form (ct∗0 , ct∗1 , i, π
∗), or⊥.

Computation: Proceed as follows:

1. If NIZK.Verify(crs, (pk0, pk1, ct0, ct1, i, y), π) = 0, then output⊥.

2. Recover the following:
({a0,`}`∈[0,2], i0) = FHE.Dec(sk0, ct0) , ({a1,`}`∈[0,2], i1) = FHE.Dec(sk1, ct1).

3. Compute the following:
ct∗0 = FHE.Eval(pk0, ct0,CInv,FHE) , ct∗1 = FHE.Eval(pk1, ct1,CInv,FHE).

4. If any of the following is true:

(a) a0,0 6= a0,1.

(b) There exists some (b, `) ∈ {0, 1} × {1, 2} such that ab,` 6= 0.

(c) There exists some b ∈ {0, 1} such that ib 6= i.

then proceed as follows:

(a) Extract wity = NIZK.Ext(t, (pk0, pk1, ct0, ct1, i, y), π).

(b) If RL(wity, y) = 0, output⊥.

(c) Else, generate π∗ ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, y),wity).

5. Else, generate π∗ ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, y), (sk0, sk1)).

6. Output (ct∗0 , ct∗1 , i, π
∗).

Figure 17: Let crs ← NIZK.Setup(1λ). We now assume that crs is in binding mode. Let NIZK.Ext be the extraction algorithm for NIZK. Let t be the extraction
trapdoor corresponding to crs. Additionally, let (pk0, sk0), (pk1, sk1) ← FHE.Gen(1λ). We define a probabilistic circuit CInv,MMap (which has t and the key pairs
(pk0, sk0) and (pk1, sk1) hard-wired into it) as above.

Inputs: A tuple of the form (({a1,`}`∈[0,2], i1), (({a2,`}`∈[0,2], i2)), where for each ` ∈ [0, 2], we have a1,`, a2,` ∈ Zq .

Computation: Proceed as follows:

• If i1 ≤ 0 or i2 ≤ 0 or i1 + i2 > n, output ⊥.

• Else if (a1,1, a1,2) = (0, 0) then output (({a1,0 · a2,`}`∈[0,2], i1, j2)).
• Else if (a2,1, a2,2) = (0, 0) then output (({a2,0 · a1,`}`∈[0,2], i1, j2)).
• Else output ⊥.

Figure 18: Circuit CMult,FHE

check the validity and consistency of the input encodings. Figure 19 details the operation of the encoding-multiplication
circuit CMult,MMap.

As in the previous construction, the multiplication circuit embeds multiple secrets, including the secret keys sk0
and sk1, as well as the extraction trapdoor t for the NIZK. Hence, the circuit is not made public as is; we only make
available an obfuscated version of the circuit obtained by running the evaluation algorithm of the probabilistic iO
scheme piO on it.

We emphasize that when the element y ∈ X is a non-member for the language L, then under a binding crs, the “If”
condition in step 4 of CMult,MMap is never satisfied. This follows from the perfect extractability guarantee of the NIZK
proof system. However, the condition may be satisfied during some hybrid in the proof of security, under a hiding crs
when the element y ∈ X is a member for the language L.
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Encoding Multiplication Circuit: CMult,MMap

Inputs: A tuple of the form: ((ct1,0, ct1,1, i1, π1), (ct2,0, ct2,1, i2, π2), y ∈ X ), where the proofs π1 and π2 are over the language L.

Outputs: Either a tuple of the form (ct∗0 , ct∗1 , i1 + i2, π
∗), or⊥.

Computation: Proceed as follows:

1. If any of the following is true:

(a) NIZK.Verify(crs, (pk0, pk1, ct1,0, ct1,1, i1, y ∈ X ), π1) = 0.

(b) NIZK.Verify(crs, (pk0, pk1, ct2,0, ct2,1, i2, y ∈ X ), π2) = 0.

then output⊥.

2. Recover the following:

({a1,0,`}`∈[0,2], i1,0) = FHE.Dec(sk0, ct1,0) , ({a1,1,`}`∈[0,2], i1,1) = FHE.Dec(sk1, ct1,1),

({a2,0,`}`∈[0,2], i2,0) = FHE.Dec(sk0, ct2,0) , ({a2,1,`}`∈[0,2], i2,1) = FHE.Dec(sk1, ct2,1).

3. Compute the following:

ct∗0 = FHE.Eval(pk0, ct1,0, ct2,0,CMult,FHE) , ct∗1 = FHE.Eval(pk1, ct1,1, ct2,1,CMult,FHE).

4. If any of the following is true:

(a) a1,0,0 6= a1,1,0 or a2,0,0 6= a2,1,0.

(b) There exists some (t, b, `) ∈ {1, 2} × {0, 1} × {1, 2} such that at,b,` 6= 0.

(c) There exists some b ∈ {0, 1} such that i1,b 6= i1 or i2,b 6= i2.

then proceed as follows:

(a) Extract wity = NIZK.Ext(t, (pk0, pk1, ct1,0, ct1,1, i, y), π1).

(b) If RL(wity, y) = 0, output⊥.

(c) Else, generate π∗ ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i1 + i2, y),wity).

5. Else, generate π∗ ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i1 + i2, y), (sk0, sk1)).

6. Output (ct∗0 , ct∗1 , i1 + i2, π
∗).

Figure 19: Let crs ← NIZK.Setup(1λ). We now assume that crs is in binding mode. Let NIZK.Ext be the extraction algorithm for NIZK. Let t be the extraction
trapdoor corresponding to crs. Additionally, let (pk0, sk0), (pk1, sk1)← FHE.Gen(1λ). We define a probabilistic circuit CMult,MMap (which has t and the key pairs
(pk0, sk0) and (pk1, sk1) hard-wired into it) as in above.

5.5 Extraction and Zero-Testing
Extraction. We now describe the procedure for extracting a canonical string from an encoding at any given level-
vector. Suppose we have an encodings at the level i of the form: ({ct`,b}`∈{0,1,2},b∈{0,1}, i, π). The straightforward
way of doing this is to decrypt the corresponding ciphertexts using sk0 and sk1, and outputting g∗ = ga0,0 = ga1,0 ,
where g is a fixed group element embedded inside the extraction circuit. However, for technical reasons relevant to the
proof of security, we sightly depart from this straightforward process.

More concretely, our extraction circuit embeds a three-tuple of group elements (g, h, h′), uses sk0 to recover a0,`
for each ` ∈ {0, 1, 2}, and computes

g∗ = ga0,0 · ha0,1 · (h′)a0,2 .

It is easy to see that when the encodings are honestly generated, i.e., when the “auxiliary” terms in the plaintext are all
0, this is functionally equivalent to the simpler extraction strategy described above. However, if one or more of the
“auxiliary” plaintext terms is non-zero, the two processes are no longer equivalent. As it turns out, we exploit this fact in
the proof of security.

Again, for technical reasons that are relevant to the proof of security, we also use the secret keys sk0 and sk1, as
well as the NIZK extraction trapdoor t, to check: (a) the validity of the proofs π1 and π2 for the language L that are
provided as part of the input encodings, and (b) the “consistency” of the FHE ciphertexts that are provided as part of the
input encodings, i.e., whether the “auxiliary” set of plaintext elements are all zero and whether both ciphertexts encrypt
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Extraction Circuit: CExt,MMap

Inputs: A tuple of the form: ((ct0, ct1, i, π), y ∈ X ), where the proof π is over the language L.

Outputs: Either a group element g∗ or⊥.

Computation: Proceed as follows:

1. If NIZK.Verify(crs, (pk0, pk1, ct0, ct1, i, y), π) = 0, then output⊥.

2. Recover the following:
({a0,`}`∈[0,2], i0) = FHE.Dec(sk0, ct0) , ({a1,`}`∈[0,2], i1) = FHE.Dec(sk1, ct1).

3. Compute g∗ = ga0,0 · ha0,1 · (h′)a0,2 .

4. If any of the following is true:

(a) a0,0 6= a0,1.

(b) There exists some (b, `) ∈ {0, 1} × {1, 2} such that ab,` 6= 0.

(c) There exists some b ∈ {0, 1} such that ib 6= i.

then proceed as follows:

(a) Extract wity = NIZK.Ext(t, (pk0, pk1, ct0, ct1, i, y), π).

(b) If RL(wity, y) = 0, output⊥.

5. Else, output g∗.

Figure 20: Let crs ← NIZK.Setup(1λ). We now assume that crs is in binding mode. Let NIZK.Ext be the extraction algorithm for NIZK. Let t be the extraction
trapdoor corresponding to crs. Additionally, let (pk0, sk0), (pk1, sk1)← FHE.Gen(1λ), and let g, h, h′ ∈ G be arbitrary group elements. We define a deterministic
circuit CExt,MMap (which has t, the key pairs (pk0, sk0) and (pk1, sk1) and the collection of group elements (g, h, h′) hard-wired into it) as above.

the same level.
Figure 20 details the extraction circuit CExt,MMap. The circuit is not made public as is; we only make available an

obfuscated version of the circuit obtained by running the evaluation algorithm of the probabilistic iO scheme piO on it.
Finally, we emphasize that when the element y ∈ X is a non-member for the language L, then under a binding crs,

the “If” condition in step 4 of CExt,MMap is never satisfied. This follows from the perfect extractability guarantee of
the NIZK proof system. However, the condition may be satisfied during some hybrid in the proof of security, under a
hiding crs when the element y ∈ X is a member for the language L.

Zero-Testing Encodings. Given the aforementioned extraction procedure, zero-testing an encoding at any given level
is trivial. We simply apply the extraction procedure to the encoding, and check if the extracted group element g∗ is
equal to g0 for any g ∈ G.

5.6 The Overall Construction
We are now ready to formally summarize our construction of an SDDH-hard MMap.

• Setup(1λ, N): On input the security parameter λ and the degree of multilinearity N , do the following:

1. Sample (in binding mode) (crs, t)← NIZK.Setup(1λ).

2. Sample (pk0, sk0), (pk1, sk1)← FHE.Gen(1λ).

3. Sample a non-member instance y ← X \ L.

4. Compute CAdd,piO = piO.Obf(CAdd,MMap), where CAdd,MMap is as defined in Figure 15.

5. Compute CInv,piO = piO.Obf(CInv,MMap), where CInv,MMap is as defined in Figure 17.

6. Compute CMult,piO = piO.Obf(CMult,MMap), where CMult,MMap is as defined in Figure 19.

7. Compute CExt,piO = piO.Obf(CExt,MMap), where CExt,MMap is as defined in Figure 20.
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8. Output the public parameter pp, where

pp =

(
crs,pk0,pk1,CAdd,piO,CInv,piO,CMult,piO,CExt,piO, y

)
.

• Encode(pp, a, [i]) : On input the public parameter pp, a plaintext element a ∈ Zq and i ∈ [N ] such that
i ≤ j ≤ N , proceed as follows:

1. Generate the following ciphertexts:

ct0 = FHE.Enc(pk0, (a, 0, 0, i); r0) , ct1 ← FHE.Enc(pk1, (a, 0, 0, i); r1),

where r0 and r1 denote uniformly sampled random coins.

2. Generate the following proof:
π ← NIZK.Prove(crs, st,wit),

where the statement st and the witness wit correspond to the NP language L (as defined in Figure 13) and
are given as:

st = (pk0,pk1, ct0, ct1, i, y) , wit = (a, r0, r1).

3. Finally, output the encoding
[a][i] := (ct0, ct1, i, π).

• Add(pp, [a1][i], [a2][i]): On input the public parameter pp and a pair of encodings

[a1][i] = (ct1,0, ct1,1, i, π1) , [a2][i] = (ct2,0, ct2,1, i, π2),

output the encoding [a1 + a2][i] = (ct∗0, ct∗1, i, π∗), where

(ct∗0, ct∗1, i, π
∗) = piOEval(CAdd,MMap, ((ct1,0, ct1,1, i, π1), (ct2,0, ct2,1, i, π2), y)).

• Inv(pp, [a][i]): On input the public parameter pp and an encoding [[a][i] = (ct0, ct1, i, π), output the encoding
[−a][i] = (ct∗0, ct∗1, i, π∗), where

(ct∗0, ct∗1, i, π
∗) = piOEval(CInv,MMap, (ct0, ct1, i, π, y)).

• Mult(pp, [a1][i], [a2][i2]): On input the public parameter pp and a pair of encodings

[a1][i] = (ct1,0, ct1,1, i, π1), , [a2][i2] = (ct2,0, ct2,1, i2, π2),

output the encoding [a1.a2][i1+i2] = (ct∗0, ct∗1, i1 + i2, π
∗), where

(ct∗0, ct∗1, i1 + i2, π
∗) = piOEval(CMult,MMap, ((ct1,0, ct1,1, i, π1), (ct2,0, ct2,1, i2, π2), y)).

• Ext(pp, [a][i]): On input the public parameter pp and an encoding [a][i] = (ct0, ct1, i, π), output g∗ =
piOEval(CExt,MMap, ((ct0, ct1, i, π), y)).

• ZeroTest(pp, [a][i]): On input the public parameter pp and an encoding [a][i] = (ct0, ct1, i, π), output b∗, where

b∗ =


⊥ if piOEval(CExt,MMap, ((ct0, ct1, i, π), y)) = ⊥,
1 if piOEval(CExt,MMap, ((ct0, ct1, i, π), y)) = g0 for any group element g ∈ G,
0 otherwise.
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5.7 Proof of SDDH
We state and prove the following theorem:

Theorem 5.1. Our MMap construction is SDDH-hard assuming: (a) that deciding subset membership with respect to
L ⊂ X is computationally hard, (b) that NIZK satisfies crs-indistinguishability, perfect simulation-extractability under
a binding crs and perfect zero-knowledge under a hiding crs, (c) that piO satisfies probabilistic-iO security, (d) that
FHE is IND-CPA secure, and (e) that the group G is SDDH-hard.

We prove hardness of SDDH over our proposed MMap construction via a sequence of hybrids, summarized in
Table 3. The crux of the proof lies in switching the plaintexts underlying the challenge encodings in the SDDH game to
a special form such that:

• The challenge encodings constitute a valid SDDH instance over the MMap whenever the extraction circuit
embeds a valid SDDH tuple over the group G.

• The challenge encodings constitute a random invalid SDDH instance over the MMap whenever the extraction
circuit embeds a random invalid SDDH tuple over the group G.

We then show via a sequence of hybrids that these two cases are indistinguishable based on a sequence of hybrids that
exploit the computational security properties of the underlying cryptoprimitives and the hardness of SDDH over the
group G. Table 3 presents an overview of the changes made to the circuits and/or the challenge encodings across the
various hybrids. This is very similar to the proof strategy for our SXDH-hard MMap construction, and hence the details
are avoided.

Hybrid-0. In this hybrid, the public parameter pp is generated as in the real scheme. As part of the SDDH challenge,
the adversary is provided with encodings of α0, α1 (uniformly random in Zq) and α0 · α1, generated as per the real
encoding algorithm corresponding to some challenge level i (may be adversarially chosen).

Hybrid-1. In this hybrid, we change the public parameter pp as follows:

1. Switch crs for the NIZK proof system to hiding mode from binding mode.

2. Switch y ∈ X from a uniform non-member instance to a uniform member instance for the language L with
witness wity .

3. Compute CAdd,piO = piO.Obf(ĈAdd,MMap), where ĈAdd,MMap is as described in Figure 21.

4. Compute CInv,piO = piO.Obf(ĈInv,MMap), where ĈInv,MMap is as described in Figure 22.

5. Compute CMult,piO = piO.Obf(ĈMult,MMap), where ĈMult,MMap is as described in Figure 23.

6. Compute CExt,piO = piO.Obf(ĈExt,MMap,1,0), where ĈExt,MMap,1,0 is as described in Figure 24.

Lemma 5.2. Hybrid-1 is computationally indistinguishable from Hybrid-0 assuming: (a) that deciding subset mem-
bership with respect to L ⊂ X is computationally hard, (b) that NIZK satisfies crs-indistinguishability, perfect
simulation-extractability under a binding crs and perfect zero-knowledge under a hiding crs, and (c) that piO satisfies
probabilistic-iO security.

The proof of this lemma is very similar to the proof of Lemma 4.2 and is hence not detailed.
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Table 3: Overview of hybrids for proof of SDDH

Hybrid crs y Cφ,MMap knows CExt,MMap (g, h, h′) Challenge FHE Ciphertexts (Set-1) Challenge FHE Ciphertexts (Set-2) Comments
for φ ∈ {Add, Inv,Mult} knows is of the form are encryptions of are encryptions of

0 binding /∈ L (sk0, sk1, t) (sk0, sk1, t) (g, gγ , gγ
∗
) (α, 0, 0) (α, 0, 0) —

(α2, 0, 0) (α2, 0, 0)

1 hiding ∈ L — sk1 (g, gγ , gγ
2

) (α, 0, 0) (α, 0, 0) NIZK security
(α2, 0, 0) (α2, 0, 0) + subspace-membership hardness

+ piO security

2 hiding ∈ L — sk1 (g, gγ , gγ
2

) ((α− µ · γ), µ, 0) (α, 0, 0) FHE IND-CPA security

((α− µ · γ)2, (2 · α · µ),−(µ)2) (α2, 0, 0)

3 hiding ∈ L — sk0 (g, gγ , gγ
2

) ((α− µ · γ), µ, 0) (α, 0, 0) NIZK security
((α− µ · γ)2, (2 · α · µ),−(µ)2) (α2, 0, 0) + piO security

4 hiding ∈ L — sk0 (g, gγ , gγ
2

) ((α− µ · γ), µ, 0) ((α− µ · γ), µ, 0) FHE IND-CPA security

((α− µ · γ)2, (2 · α · µ),−(µ)2) ((α− µ · γ)2, (2 · α · µ),−(µ)2)

5 hiding ∈ L — sk0 (g, gγ , gγ
∗
) ((α− µ · γ), µ, 0) ((α− µ · γ), µ, 0) SDDH

((α− µ · γ)2, (2 · α · µ),−(µ)2) ((α− µ · γ)2, (2 · α · µ),−(µ)2)

6 hiding ∈ L — sk0 (g, gγ , gγ
∗
) ((α− µ · γ), µ, 0) (α, 0, 0) FHE IND-CPA security

((α− µ · γ)2, (2 · α · µ),−(µ)2) ((α2 + µ2 · (γ2 − γ∗)), 0, 0)

7 hiding ∈ L — sk1 (g, gγ , gγ
∗
) ((α− µ · γ), µ, 0) (α, 0, 0) NIZK security

((α− µ · γ)2, (2 · α · µ),−(µ)2) ((α2 + µ2 · (γ2 − γ∗)), 0, 0) + piO security

8 hiding ∈ L — sk1 (g, gγ , gγ
∗
) (α, 0, 0) (α, 0, 0) FHE IND-CPA security

((α2 + µ2 · (γ2 − γ∗)), 0, 0) ((α2 + µ2 · (γ2 − γ∗)), 0, 0)

9 binding /∈ L (g, gγ , gγ
∗
) (sk0, sk1, t) (sk0, sk1, t) (α, 0, 0) (α, 0, 0) NIZK security

((α2 + µ2 · (γ2 − γ∗)), 0, 0) ((α2 + µ2 · (γ2 − γ∗)), 0, 0) + subspace-membership hardness
+ piO security

Hybrid-2. In this hybrid, we change the challenge encodings. Suppose that the SDDH instance (g, h, h′) in the
extraction circuit ĈExt,MMap,1,0 is distributed as:

(g, h, h′) = (g, gγ , gγ
2

).

We switch the plaintext underlying the first FHE ciphertext in each challenge encoding as follows (where µ0 and µ1 are
sampled uniformly from Z∗q):

(α, 0, 0, i) → ((α− µ · γ), µ, 0, i)
(α2, 0, 0, i) → ((α− µ · γ)2, (2 · α · µ),−(µ)2, i)

Lemma 5.3. Hybrid-2 is computationally indistinguishable from Hybrid-1 assuming that FHE is IND-CPA secure with
respect to the public key-secret key pair (pk0, sk0).

The proof of this lemma is very similar to the proof of Lemma 4.3 and is hence not detailed.

Hybrid-3. In this hybrid, we change the public parameter pp as follows: compute CExt,piO = piO.Obf(ĈExt,MMap,0,0),
where ĈExt,MMap,0,0 is as defined in Figure 24.
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Inputs: A tuple of the form: ((ct1,0, ct1,1, i, π1), (ct2,0, ct2,1, i, π2), y ∈ X ), where the proofs π1 and π2 are over the language L.

Outputs: Either a tuple of the form (ct∗0 , ct∗1 , i, π
∗), or⊥.

Computation: Proceed as follows:

1. If any of the following is true:

(a) NIZK.Verify(crs, (pk0, pk1, ct1,0, ct1,1, i, y ∈ X ), π1) = 0.

(b) NIZK.Verify(crs, (pk0, pk1, ct2,0, ct2,1, i, y ∈ X ), π2) = 0.

then output⊥.

2. // Decryption omitted — avoids dependency on sk0 and sk1.

3. Compute the following:

ct∗0 = FHE.Eval(pk0, ct1,0, ct2,0,CAdd,FHE) , ct∗1 = FHE.Eval(pk1, ct1,1, ct2,1,CAdd,FHE).

4. // If check omitted — avoids dependency on sk0 and sk1.
Proceed as follows:

(a) // Extraction omitted — avoids dependency on extraction trapdoor t.

(b) // Check omitted.

(c) Generate π∗ ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, y),wity).

5. // Proof generation omitted — avoids dependency on sk0 and sk1.

6. Output (ct∗0 , ct∗1 , i, π
∗).

Figure 21: Let crs← NIZK.Setup(1λ) be in hiding mode. Additionally, let (pk0, sk0), (pk1, sk1)← FHE.Gen(1λ). Also, for y ∈ L, let wity be a membership-
witness such that (y,wity) ∈ RL. We define a probabilistic circuit ĈAdd,MMap (which has only the public keys pk0 and pk1 hard-wired into it) as above.

Inputs: A tuple of the form: ({ct0, ct1, i, π, y ∈ X ), where the proof π is over the language L.

Outputs: Either a tuple of the form (ct∗0 , ct∗1 , i, π
∗), or⊥.

Computation: Proceed as follows:

1. If NIZK.Verify(crs, (pk0, pk1, ct0, ct1, i, y), π) = 0, then outut⊥.

2. // Decryption omitted — avoids dependency on sk0 and sk1.

3. Compute the following:
ct∗0 = FHE.Eval(pk0, ct0,CInv,FHE) , ct∗1 = FHE.Eval(pk1, ct1,CInv,FHE).

4. // If check omitted — avoids dependency on sk0 and sk1.
Proceed as follows:

(a) // Extraction omitted — avoids dependency on extraction trapdoor t.

(b) // Check omitted.

(c) Generate π∗ ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, y),wity).

5. // Proof generation omitted — avoids dependency on sk0 and sk1.

6. Output (ct∗0 , ct∗1 , i, π
∗).

Figure 22: Next, Let crs ← NIZK.Setup(1λ) be in hiding mode. Additionally, let (pk0, sk0), (pk1, sk1) ← FHE.Gen(1λ). Also, for y ∈ L, let wity be a
membership-witness such that (y,wity) ∈ RL. We define a probabilistic circuit ĈInv,MMap (which has only the public keys pk0 and pk1 hard-wired into it) as above

Lemma 5.4. Hybrid-3 is computationally indistinguishable from Hybrid-2 assuming: (a) that NIZK satisfies crs-
indistinguishability, perfect simulation-extractability under a binding crs and perfect zero-knowledge under a hiding
crs, and (b) that piO satisfies probabilistic-iO security.

The proof of this lemma is very similar to the proof of Lemma 4.4 and is hence not detailed.
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Inputs: A tuple of the form: ((ct1,0, ct1,1, i1, π1), (ct2,0, ct2,1, i2, π2), y ∈ X ), where the proofs π1 and π2 are over the language L.

Outputs: Either a tuple of the form (ct∗0 , ct∗1 , i, k, π
∗), or⊥.

Computation: Proceed as follows:

1. If any of the following is true:

(a) NIZK.Verify(crs, (pk0, pk1, ct1,0, ct1,1, i1, y ∈ X ), π1) = 0.

(b) NIZK.Verify(crs, (pk0, pk1, ct2,0, ct2,1, i2, y ∈ X ), π2) = 0.

then output⊥.

2. // Decryption omitted — avoids dependency on sk0 and sk1.

3. Compute the following:

ct∗0 = FHE.Eval(pk0, ct1,0, ct2,0,CMult,FHE) , ct∗1 = FHE.Eval(pk1, ct1,1, ct2,1,CMult,FHE).

4. // If check omitted — avoids dependency on sk0 and sk1.
Proceed as follows:

(a) // Extraction omitted — avoids dependency on extraction trapdoor t.

(b) // Check omitted.

(c) Generate π∗ ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i1 + i2, y),wity).

5. // Proof generation omitted — avoids dependency on sk0 and sk1.

6. Output (ct∗0 , ct∗1 , i1 + i2, π
∗).

Figure 23: Let crs← NIZK.Setup(1λ) be in hiding mode. Additionally, let (pk0, sk0), (pk1, sk1)← FHE.Gen(1λ). Also, for y ∈ L, let wity be a membership-
witness such that (y,wity) ∈ RL. For each b∗ ∈ {0, 1}, we define a probabilistic circuit ĈMult,MMap (which has only the public keys pk0 and pk1 hard-wired into it)
as above.

Inputs: A tuple of the form: ((ct0, ct1, i, π), y ∈ X ), where the proof π is over the language L.

Outputs: Either a group element g∗ or⊥.

Computation: Proceed as follows:

1. If NIZK.Verify(crs, (pk0, pk1, ct0, ct1, i, y), π) = 0, then output⊥.

2. Recover the following: ({aβ,`}`∈[0,3], iβ) = FHE.Dec(skβ , ctβ).

// Decryption using sk1−β omitted.

3. Compute g∗ = gaβ,0 · haβ,1 · (h′)aβ,2 .

4. // If clause omitted — avoids dependency on sk1−β and extraction trapdoor t.

5. Output g∗.

Figure 24: Let crs ← NIZK.Setup(1λ) be in hiding mode and let (pk0, sk0), (pk1, sk1) ← FHE.Gen(1λ). Also, let g, h, h′ ∈ G be group elements that are
distributed as perDSDDH,G if β′ = 0 and uniformly randomly sampled if β′ = 1, subject to the restriction that the tuple always uses the same base element g. For each
β, β′ ∈ {0, 1}, we define a deterministic circuit ĈExt,MMap,β,β′ (which has the public keys pk0 and pk1, the secret key skβ and the collection of group elements
(g, h, h′) hard-wired into it) as in Figure 24 above.

Hybrid-4. In this hybrid, we change the challenge encodings. Again, suppose that the SDDH instance (g, h, h′) in
the extraction circuit ĈExt,MMap,0,0 is distributed as:

(g, h, h′) = (g, gγ , gγ
2

).

Switch the plaintext underlying the second FHE ciphertext in each challenge encoding as follows (where µ0 and µ1 are
sampled uniformly from Z∗q):

(α, 0, 0, i) → ((α− µ · γ), µ, 0, i)
(α2, 0, 0, i) → ((α− µ · γ)2, (2 · α · µ),−(µ)2, i)
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Lemma 5.5. Hybrid-4 is computationally indistinguishable from Hybrid-3 assuming that FHE is IND-CPA secure with
respect to the public key-secret key pair (pk1, sk1).

The proof of this lemma is very similar to the proof of Lemma 4.5 and is hence not detailed.

Hybrid-5. In this hybrid, we change the public parameter pp as follows: compute CExt,piO = piO.Obf(ĈExt,MMap,0,1),
where ĈExt,MMap,0,1 is as defined in Figure 24.

Lemma 5.6. Hybrid-5 is computationally indistinguishable from Hybrid-4 assuming that the SDDH assumption holds
over the group G.

Proof. Note that the only difference between hybrids 4 and 5 is the manner in which the obfuscated extraction circuit
CExt,piO is generated as part of the public parameter.

In Hybrid-4, CExt,piO is an obfuscation of the circuit ĈExt,MMap,0,0, while in Hybrid-5, CExt,piO is an obfuscation of
the circuit ĈExt,MMap,0,1 (where both circuits are as defined in Figure 12).

Now, observe that the only difference between the extraction circuits ĈExt,MMap,0,0 and ĈExt,MMap,0,1 is that the
former embeds a valid SDDH tuple over the group G while the latter embeds a uniformly random three-tuple of group
elements over the group G.

It immediately follows that Hybrid-5 is computationally indistinguishable from Hybrid-4 assuming that the SDDH
assumption holds over the group G.

Hybrid-6. In this hybrid, we change the challenge encodings. Recall that in hybrid-5, (g, h, h′) in the extraction
circuit ĈExt,MMap,0,1 is distributed as:

(g, h, h′) = (g, gγ , gγ
∗
).

Switch back the plaintext underlying the second FHE ciphertext in each challenge encoding as follows (where µ0 and
µ1 are sampled uniformly from Z∗q):

((α− µ · γ), µ, 0, i) → (α, 0, 0, i)

((α− µ · γ)2, (2 · α · µ),−(µ)2, i) → ((α2 + µ2 · (γ2 − γ∗)), 0, 0, i)

Lemma 5.7. Hybrid-6 is computationally indistinguishable from Hybrid-5 assuming that FHE is IND-CPA secure with
respect to the public key-secret key pair (pk1, sk1).

The proof of this lemma is very similar to the proof of Lemma 4.7 and is hence not detailed.

Hybrid-7. In this hybrid, we change the public parameter pp as follows: compute CExt,piO = piO.Obf(ĈExt,MMap,1,1),
where ĈExt,MMap,1,1 is as defined in Figure 24.

Lemma 5.8. Hybrid-7 is computationally indistinguishable from Hybrid-6 assuming: (a) that NIZK satisfies crs-
indistinguishability, perfect simulation-extractability under a binding crs and perfect zero-knowledge under a hiding
crs, and (b) that piO satisfies probabilistic-iO security.

The proof of this lemma is very similar to the proof of Lemma 4.8 and is hence not detailed.
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Hybrid-8. In this hybrid, we change the challenge encodings. Recall that in hybrid-7, (g, h, h′) in the extraction
circuit ĈExt,MMap,1,1 is distributed as:

(g, h, h′) = (g, gγ , gγ
∗
).

Switch back the plaintext underlying the first FHE ciphertext in each challenge encoding as follows (where µ0 and µ1

are sampled uniformly from Z∗q):

((α− µ · γ), µ, 0, i) → (α, 0, 0, i)

((α− µ · γ)2, (2 · α · µ),−(µ)2, i) → ((α2 + µ2 · (γ2 − γ∗)), 0, 0, i)

Lemma 5.9. Hybrid-8 is computationally indistinguishable from Hybrid-7 assuming that FHE is IND-CPA secure with
respect to the public key-secret key pair (pk0, sk0).

The proof of this lemma is very similar to the proof of Lemma 4.9 and is hence not detailed.

Hybrid-9. In this hybrid, we change the public parameter pp as follows:

1. Switch crs for the NIZK proof system to binding mode, as in the real scheme

2. Switch y ∈ X to a uniform non-member instance, as in the real scheme.

3. Compute CAdd,piO = piO.Obf(CAdd,MMap), as in the real scheme.

4. Compute CInv,piO = piO.Obf(CInv,MMap), as in the real scheme.

5. Compute CMult,piO = piO.Obf(CMult,MMap), as in the real scheme.

6. Compute CExt,piO = piO.Obf(CExt,MMap), as in the real scheme.

Lemma 5.10. Hybrid-9 is computationally indistinguishable from Hybrid-8 assuming: (a) that deciding subset mem-
bership with respect to L ⊂ X is computationally hard, (b) that NIZK satisfies crs-indistinguishability, perfect
simulation-extractability under a binding crs and perfect zero-knowledge under a hiding crs, and (c) that piO satisfies
probabilistic-iO security.

The proof of this lemma is very similar to the proof of Lemma 4.10 and is hence not detailed.

Finally, Hybrid-9 is statistically indistinguishable from the game where the adversary is given a random invalid SDDH
instance generated as per the real scheme. This completes the proof of Theorem 5.1.

6 Constructing an EDDH-Hard Symmetric MMap
We now show how to extend the approach used for our asymmetric MMap constructions in Sections 4 and 5 to construct
an exponent-DDH (EDDH)-hard symmetric MMap. The key challenge when extending our approach to the symmetric
MMap setting is to take into account the fact that the adversary can multiply encodings at the same level. We provide
some more intuition below.

Recall that the (N + 1)-EDDH assumption over a degree-N symmetric MMap requires that the following indistin-
guishability holds for any level i ∈ [N ]:(

[α]i, [α
N+1]i

)
c
≈

(
[α]i, [α

∗]i

)
,

where α, α∗ ← Zq . Note that the description of the assumption captures only a pair of encodings that an (N+1)-EDDH
adversary sees. However, in the symmetric MMap setting, the adversary can actually create (via multiplication) all
encodings of one of the following forms:
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•
{[
α`+(N+1)`′

]}
(`+`′)∈[0,N ]

when provided with a valid (N + 1)-EDDH instance.

•
{[
α` · (α∗)`′

]}
(`+`′)∈[0,N ]

when provided with a random invalid (N + 1)-EDDH instance.

This in turn implies that when we prove (N + 1)-EDDH over our symmetric MMap construction, the challenger
should be able to simulate the encodings for each of the aforementioned “cross-product” terms. Note that this issue is
not encountered in the asymmetric setting, where the adversary is inherently restricted from multiplying a challenge
encoding with itself or other challenge encodings at the same level.

We get around this issue as follows: our symmetric MMap construction uses a pairing-free group G of prime order
q, such that letting g ← G and γ, δ ← Z∗q , the following indistinguishability holds for any N = poly(λ) (λ being the
security parameter): ({

gγ
`+(N+1)`′

}
(`+`′)∈[0,N ]

)
c
≈

({
gγ

`·δ`
′
}

(`+`′)∈[0,N ]

)
.

We let Dstrong−(N+1)−EDDH,G and D′strong−(N+1)−EDDH,G denote the left and right distributions in the aforementioned
expression.

We refer to this indistinguishability assumption as the “strong”-(N + 1)-EDDH assumption over the group G. We
show later that the “strong”-(N + 1)-EDDH assumption for N ≥ 2 is implied by the DDH assumption.

Note that this assumption contains all the “cross-terms” that the challenger would need to simulate for the adversary
in the (N + 1)-EDDH game with respect to the MMap. Intuitively, this is what allows our proof of (N + 1)-EDDH to
go through. We expand more on this subsequently.

To summarize, we show a how to construct an (N + 1)-EDDH-hard symmetric MMap given the following cryptoprimi-
tives:

• A probabilistic-iO scheme piO = (piO.Obf, piOEval).

• A fully-homomorphic encryption scheme FHE = (FHE.Gen,FHE.Enc,FHE.Dec,FHE.Eval) such that the
message space is Zq for some prime q = poly(λ) (λ being the security parameter).

• A simulation-extractable NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify).

• A pair of sets (X ,L) such that L ⊂ X and:

1. Given x ∈ X it is computationally hard to decide if x ∈ L.

2. For each y ∈ L, there exists a unique witness wity for the statement y ∈ L.

We define a relation RL as follows: (y,wity) ∈ RL if and only if wity is a witness for the statement y ∈ L.

• A strong-(N + 1)-EDDH-hard pairing-free group G.

6.1 Encodings
Level-Zero Encodings. As in the previous constructions, level-zero encodings are treated slightly different from
encodings at other “non-zero” levels. In particular, our level-zero encodings are equipped with their own set of
algorithms for encoding, manipulation, extraction and zero-testing. We informally mention these for the sake of
completeness.

The level-zero encoding of a plaintext element a ∈ Zq is a itself. Adding/multiplying two level-zero encodings
(equivalently, additively inverting a level-zero encoding) is simply done via addition/multiplication (equivalently,
additive inversion) in Zq . Multiplying a level-zero encoding with any other encoding at some level i should result in an
encoding at level-i. This is implemented with a shift-and-add algorithm built on top of the standard encoding addition
algorithm described subsequently in Section 6.2. Finally, extracting a level-zero encoding a ∈ Zq outputs ga, where g
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is a fixed generator for the group G. As will be clear later, this is consistent with the extraction algorithm for any other
level i. Zero-testing follows trivially.

We again omit formal descriptions of operations for level-0 encodings to ease notation and focus on the more
interesting cases at higher encoding levels.

Level-i Encodings. We now describe the procedure of encoding a plaintext element at any interval level. An encoding
of a plaintext element a ∈ Zq at level i ≤ N is a tuple of the form: (ct0, ct1, i, π), where:

• ct0 and ct1 are FHE encryptions of the tuple(
{a`,`′}(`+`′)∈[0,N ], i

)
,

under the public key-secret key pairs (pk0, sk0) and (pk1, sk1) respectively, subject to the restriction that for
each (`, `′) 6= (0, 0), we have a`,`′ = 0.

• π is a NIZK proof for the statement st = (pk0,pk1, ct0, ct1, i, y ∈ X ) under the NP language L described in
Figure 25, where y ∈ X is available as part of the public parameter for our MMap scheme.

Note that the additional zero entries encrypted in each encoding appear redundant, but will be useful later in the
proof of security.

Language L:

Statement: The statement st is as follows: st = (pk0, pk1, ct0, ct1, i, y ∈ X )

Witness: The witness has one of the following three forms:

1. wit = (sk0, sk1)

2. wit = (m, r0, r1)

3. wit = wity

Relation: R(st,wit) = 1 if and only if:

• Either wit = (sk0, sk1) and we have:

1. (pk0, sk0), (pk1, sk1) ∈ KFHE.

2. FHE.Dec(sk0, ct0) = FHE.Dec(sk1, ct1) =

(
m, {a`,`′}(`+`′)∈[0,N], i

)
for some m ∈ Zq , such that a`,`′ = 0 for each (`, `′) 6=

(0, 0).

• Or wit = (m, r0, r1) and we have:

1. m ∈ Zq .

2. For each b ∈ {0, 1}, we have ctb = FHE.Enc

(
pkb,

(
m, {a`,`′}(`+`′)∈[0,N], i

)
; rb

)
, such that a`,`′ = 0 for each (`, `′) 6= (0, 0).

• Or wit = wity and we have: (y,wity) ∈ RL.

Figure 25: LetKFHE be the set of all valid key pairs under the FHE scheme. We define an NP language L as in the figure above. For simplicity, L parameterized by N
– the number of levels for our MMap scheme.

6.2 Addition of Encodings
We now describe the procedure for adding two encodings at the same level. Suppose we have two encodings at the
same level i of the form:

(ct1,0, ct1,1, i, π1), (ct2,0, ct2,1, i, π2).
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Conceptually, we add these two encodings by exploiting the fully-homomorphic nature of the encryption scheme. More
concretely, we homomorphically evaluate the circuit CAdd,FHE (described in Figure 26) on the corresponding ciphertext
components of the two input encodings to generate the ciphertext components for the output encoding. We also generate
a proof for the validity of the resulting encoding using the tuple of secret keys (sk0, sk1) as witness.

Inputs: A tuple of the form (({a`,`′,1}(`+`′)∈[0,N ], i1), ({a`,`′,2}(`+`′)∈[0,N ], i2)).

Computation: Proceed as follows:

1. If i1 6= i2, output ⊥ .

2. Else, output ({a`,`′,1 + a`,`′,2}(`+`′)∈[0,N ], i1).

Figure 26: Circuit CAdd,FHE

For technical reasons that are relevant to the proof of security, we check: (a) the validity of the proofs π1 and π2
for the language L that are provided as part of the input encodings, and (b) the “consistency” of the FHE ciphertexts
that are provided as part of the input encodings, i.e., whether the ciphertexts encrypt the same underlying plaintext,
and whether the plaintext is formatted as per the specifications of the scheme. While “validity” is publicly verifiable,
verifying “consistency” required knowledge of the secret keys sk0 and sk1.

Figure 27 details the operation of the encoding-addition circuit CAdd,MMap. Of course, it embeds multiple secrets,
including the secret keys sk0 and sk1, as well as the extraction trapdoor t for the NIZK. Hence, the circuit is not made
public as is; we only make available an obfuscated version of the circuit obtained by running the evaluation algorithm
of the probabilistic iO scheme piO on it.

We emphasize that when the element y ∈ X is a non-member for the language L, then under a binding crs, the “If”
condition in step 4 of CAdd,MMap is never satisfied. This follows from the perfect extractability guarantee of the NIZK
proof system. However, the condition may be satisfied during some hybrid in the proof of security, under a hiding crs
when the element y ∈ X is a member for the language L.

6.3 Inversion of Encodings
We now describe the procedure for additively inverting an encoding at any given level. Suppose we have an encoding
at the level i of the form: (ct0, ct1, i, π). Again, conceptually, we additively invert this encoding by exploiting the
fully-homomorphic nature of the encryption scheme. More concretely, we homomorphically evaluate the circuit
CInv,FHE (described in Figure 28) on the corresponding ciphertext components of the input encoding to generate the
ciphertext components for the output encoding. We also generate a proof for the validity of the resulting encoding using
the tuple of secret keys (sk0, sk1) as witness.

Similar to the addition procedure, for technical reasons that are relevant to the proof of security, we check the
validity and consistency of the input encodings. Figure 29 details the operation of the encoding-inversion circuit
CInv,MMap. Since it embeds the same set of secrets as the addition circuit, the circuit CInv,MMap is not made public as
is; we only make available an obfuscated version of the circuit obtained by running the evaluation algorithm of the
probabilistic iO scheme piO on it.

Finally, we emphasize that when the element y ∈ X is a non-member for the language L, then under a binding crs,
the “If” condition in step 4 of CAdd,MMap is never satisfied. This follows from the perfect extractability guarantee of
the NIZK proof system. However, the condition may be satisfied during some hybrid in the proof of security, under a
hiding crs when the element y ∈ X is a member for the language L.

6.4 Multiplication of Encodings
We now describe the procedure for multiplying two encodings at levels i1 and i2 such that i1 + i2 ≤ N :

(ct1,0, ct1,1, i1, π1), (ct2,0, ct2,1, i2, π2).
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Encoding Addition Circuit: CAdd,MMap

Inputs: A tuple of the form: ((ct1,0, ct1,1, i, π1), (ct2,0, ct2,1, i, π2), y ∈ X ), where the proofs π1 and π2 are over the language L.

Outputs: Either a tuple of the form (ct∗0 , ct∗1 , i, π
∗), or⊥.

Computation: Proceed as follows:

1. If any of the following is true:

(a) NIZK.Verify(crs, (pk0, pk1, ct1,0, ct1,1, i, y ∈ X ), π1) = 0.

(b) NIZK.Verify(crs, (pk0, pk1, ct2,0, ct2,1, i, y ∈ X ), π2) = 0.

then output⊥.

2. Recover the following:

({a`,`′,1,0}(`+`′)∈[0,N], i1,0) = FHE.Dec(sk0, ct1,0), ({a`,`′,1,1}(`+`′)∈[0,N], i1,1) = FHE.Dec(sk1, ct1,1),

({a`,`′,2,0}(`+`′)∈[0,N], i2,0) = FHE.Dec(sk0, ct2,0), ({a`,`′,2,1}(`+`′)∈[0,N], i2,1) = FHE.Dec(sk1, ct2,1).

3. Compute the following:

ct∗0 = FHE.Eval(pk0, ct1,0, ct2,0,CAdd,FHE) , ct∗1 = FHE.Eval(pk1, ct1,1, ct2,1,CAdd,FHE).

4. If any of the following is true:

(a) a0,0,1,0 6= a0,0,1,1 or a0,0,2,0 6= a0,0,2,1.

(b) There exists some (`, `′) 6= (0, 0) and some (t, b) ∈ {1, 2} × {0, 1} such that a`,`′,t,b 6= 0.

(c) There exists some (t, b) ∈ {1, 2} × {0, 1} such that it,b 6= i.

then proceed as follows:

(a) Extract wity = NIZK.Ext(t, (pk0, pk1, ct1,0, ct1,1, i, y), π1).

(b) If RL(wity, y) = 0, output⊥.

(c) Else, generate π∗ ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, y),wity).

5. Else, generate π∗ ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, y), (sk0, sk1)).

6. Output (ct∗0 , ct∗1 , i, π
∗).

Figure 27: Let crs ← NIZK.Setup(1λ). We now assume that crs is in binding mode. Let NIZK.Ext be the extraction algorithm for NIZK. Let t be the extraction
trapdoor corresponding to crs. Additionally, let (pk0, sk0), (pk1, sk1)← FHE.Gen(1λ). We define a probabilistic circuit CAdd,MMap (which has t and the key pairs
(pk0, sk0) and (pk1, sk1) hard-wired into it) as above.

Inputs: A tuple of the form (a, {a`,`′}(`+`′)∈[0,N ], i).

Computation: If i > N , output ⊥ else output ({−a`,`′}(`+`′)∈[0,N ], i).

Figure 28: Circuit CInv,FHE

Conceptually, we multiply these two encodings by again exploiting the fully-homomorphic nature of the encryption
scheme. More concretely, we homomorphically evaluate the circuit CMult,FHE (described in Figure 30) on the cor-
responding ciphertext components of the two input encodings to generate the ciphertext components for the output
encoding. We also generate a proof for the validity of the resulting encoding using the tuple of secret keys (sk0, sk1) as
witness.

Similar to the addition and inversion procedures, for technical reasons that are relevant to the proof of security, we
check the validity and consistency of the input encodings. Figure 7 details the operation of the encoding-multiplication
circuit CMult,MMap. Once again, it embeds multiple secrets, including the secret keys sk0 and sk1, as well as the
extraction trapdoor t for the NIZK. Hence, the circuit is not made public as is; we only make available an obfuscated
version of the circuit obtained by running the evaluation algorithm of the probabilistic iO scheme piO on it.

We emphasize that when the element y ∈ X is a non-member for the language L, then under a binding crs, the “If”
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Encoding Inversion Circuit: CInv,MMap

Inputs: A tuple of the form: (ct0, ct1, i, π, y ∈ X ), where the proof π is over the language L.

Outputs: Either a tuple of the form (ct∗0 , ct∗1 , i, π
∗), or⊥.

Computation: Proceed as follows:

1. If NIZK.Verify(crs, (pk0, pk1, ct0, ct1, i, y), π) = 0, then output⊥.

2. Recover the following:

({a`,`′,0}(`+`′)∈[0,N], i0) = FHE.Dec(sk0, ct0) , ({a`,`′,1}(`+`′)∈[0,N], i1) = FHE.Dec(sk1, ct1).

3. Compute the following:
ct∗0 = FHE.Eval(pk0, ct0,CInv,FHE) , ct∗1 = FHE.Eval(pk1, ct1,CInv,FHE).

4. If any of the following is true:

(a) a0,0,0 6= a0,0,1.

(b) There exists some (`, `′) 6= (0, 0) and some b ∈ {0, 1} such that a`,`′,b 6= 0.

(c) There exists some b ∈ {0, 1} such that ib 6= i.

then proceed as follows:

(a) Extract wity = NIZK.Ext(t, (pk0, pk1, ct0, ct1, i, y), π).

(b) If RL(wity, y) = 0, output⊥.

(c) Else, generate π∗ ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, y),wity).

5. Else, generate π∗ ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, y), (sk0, sk1)).

6. Output (ct∗0 , ct∗1 , i, π
∗).

Figure 29: Let crs ← NIZK.Setup(1λ). We now assume that crs is in binding mode. Let NIZK.Ext be the extraction algorithm for NIZK. Let t be the extraction
trapdoor corresponding to crs. Additionally, let (pk0, sk0), (pk1, sk1) ← FHE.Gen(1λ). We define a probabilistic circuit CInv,MMap (which has t and the key pairs
(pk0, sk0) and (pk1, sk1) hard-wired into it) as above.

Inputs: A tuple of the form (({a`,`′,1}(`+`′)∈[0,N ], i1), ({a`,`′,2}(`+`′)∈[0,N ], i2)).

Computation: If i1 + i2 > N , output ⊥. Else, output ({a∗`,`′}(`+`′)∈[0,N ], (i1 + i2)), where

a∗`,`′ =
∑

`1+`2=`

`′1+`′2=`′

a`1,`′1,1 · a`2,`′2,2.

Figure 30: Circuit CMult,FHE

condition in step 4 of CMult,MMap is never satisfied. This follows from the perfect extractability guarantee of the NIZK
proof system. However, the condition may be satisfied during some hybrid in the proof of security, under a hiding crs
when the element y ∈ X is a member for the language L.

This in turn guarantees that when the element y ∈ X is a non-member for the language L, then under a binding crs,
no encoding (even adversarially generated) can have “auxiliary” FHE ciphertexts encrypting other than the plaintext
element 0. Hence, during multiplication, we do not need to worry about computing and adding “cross-product” terms
across the input ciphertexts.

6.5 Extraction and Zero-Testing
Extraction. We now describe the procedure for extracting a canonical string from an encoding at any given level-
vector. Suppose we have an encodings at the level i of the form: (ct0, ct1, i, π). The straightforward way of extracting a
canonical representation is to decrypt the corresponding ciphertexts using sk0 and sk1, and outputting g∗ = ga0,0,0 =
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Encoding Multiplication Circuit: CMult,MMap

Inputs: A tuple of the form: ((ct1,0, ct1,1, i1, π1), (ct2,0, ct2,1, i2, π2), y ∈ X ), where the proofs π1 and π2 are over the language L.

Outputs: Either a tuple of the form (ct∗0 , ct∗1 , (i1 + i2), π
∗), or⊥.

Computation: Proceed as follows:

1. If any of the following is true:

(a) NIZK.Verify(crs, (pk0, pk1, ct1,0, ct1,1, i1, y ∈ X ), π1) = 0.

(b) NIZK.Verify(crs, (pk0, pk1, ct2,0, ct2,1, i2, y ∈ X ), π2) = 0.

then output⊥.

2. Recover the following:

({a`,`′,1,0}(`+`′)∈[0,N], i1,0) = FHE.Dec(sk0, ct1,0), ({a`,`′,1,1}(`+`′)∈[0,N], i1,1) = FHE.Dec(sk1, ct1,1),

({a`,`′,2,0}(`+`′)∈[0,N], i2,0) = FHE.Dec(sk0, ct2,0), ({a`,`′,2,1}(`+`′)∈[0,N], i2,1) = FHE.Dec(sk1, ct2,1).

3. Compute the following:

ct∗0 = FHE.Eval(pk0, ct1,0, ct2,0,CMult,FHE) , ct∗1 = FHE.Eval(pk1, ct1,1, ct2,1,CMult,FHE).

4. If any of the following is true:

(a) a0,0,1,0 6= a0,0,1,1 or a0,0,2,0 6= a0,0,2,1.

(b) There exists some (`, `′) 6= (0, 0) and some (t, b) ∈ {1, 2} × {0, 1} such that a`,`′,t,b 6= 0.

(c) There exists some b ∈ {0, 1} such that i1,b 6= i1 or i2,b 6= i2.

then proceed as follows:

(a) Extract wity = NIZK.Ext(t, (pk0, pk1, ct1,0, ct1,1, i, y), π1).

(b) If RL(wity, y) = 0, output⊥.

(c) Else, generate π∗ ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , (i1 + i2), y),wity).

5. Else, generate π∗ ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , (i1 + i2), y), (sk0, sk1)).

6. Output (ct∗0 , ct∗1 , (i1 + i2), π
∗).

Figure 31: Let crs ← NIZK.Setup(1λ). We now assume that crs is in binding mode. Let NIZK.Ext be the extraction algorithm for NIZK. Let t be the extraction
trapdoor corresponding to crs. Additionally, let (pk0, sk0), (pk1, sk1)← FHE.Gen(1λ). We define a probabilistic circuit CMult,MMap (which has t and the key pairs
(pk0, sk0) and (pk1, sk1) hard-wired into it) as in above.

ga0,0,1 , where g is a fixed group element embedded inside the extraction circuit. However, for technical reasons relevant
to the proof of security, we sightly depart from this straightforward process.

More concretely, our extraction circuit embeds a tuple of the form ({g`,`′}(`+`′)∈[0,N ]), where each element of the
tuple is a group element in the group G. The circuit then computes

({a`,`′,0}(`+`′)∈[0,N ], i0) = FHE.Dec(sk0, ct0),

and outputs a group element g∗, where
g∗ =

∏
(`+`′)∈[0,N ]

(g`,`′)
a`,`′,0 .

It is easy to see that when the “auxiliary” terms in the underlying plaintext are all 0, this is functionally equivalent to the
simpler extraction strategy described above. However, if one or more of the “auxiliary” plaintext terms is non-zero, the
two processes are no longer equivalent. As it turns out, we exploit this fact in the proof of security.

Again, for technical reasons that are relevant to the proof of security, we also use the secret keys sk0 and sk1, as
well as the NIZK extraction trapdoor t, to check: (a) the validity of the proofs π1 and π2 for the language L that are
provided as part of the input encodings, and (b) the “consistency” of the FHE ciphertexts that are provided as part of the
input encodings, i.e., whether the “auxiliary” set of plaintext elements are all zero and whether both ciphertexts encrypt
the same level.
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Extraction Circuit: CExt,MMap

Inputs: A tuple of the form:
(
(ct0, ct1, i, π), y ∈ X

)
, where the proof π is over the language L.

Outputs: Either a group element g∗ or⊥.

Computation: Proceed as follows:

1. If NIZK.Verify(crs, (pk0, pk1, ct0, ct1, i, y), π) = 0, then output⊥.

2. Recover the following:

({a`,`′,0}(`+`′)∈[0,N], i0) = FHE.Dec(sk0, ct0) , ({a`,`′,1}(`+`′)∈[0,N], i1) = FHE.Dec(sk1, ct1).

3. Compute g∗ =
∏

(`+`′)∈[0,N]
(g`,`′ )

a
`,`′,0 .

4. If any of the following is true:

(a) a0,0,0 6= a0,0,1.

(b) There exists some (`, `′) 6= (0, 0) and some b ∈ {0, 1} such that a`,`′,b 6= 0.

(c) There exists some b ∈ {0, 1} such that ib 6= i.

then proceed as follows:

(a) Extract wity = NIZK.Ext(t, (pk0, pk1, ct0, ct1, i, y), π).

(b) If RL(wity, y) = 0, output⊥.

5. Else, output g∗.

Figure 32: Let crs ← NIZK.Setup(1λ). We now assume that crs is in binding mode. Let NIZK.Ext be the extraction algorithm for NIZK. Let t be the extraction
trapdoor corresponding to crs. Additionally, let (pk0, sk0), (pk1, sk1) ← FHE.Gen(1λ), and let {g`,`′}(`+`′)∈[0,N] be a set of arbitrary group elements over
the group G. We define a deterministic circuit CExt,MMap (which has t, the key pairs (pk0, sk0) and (pk1, sk1), and the set of group elements {g`,`′}(`+`′)∈[0,N]
hard-wired into it) as above.

Figure 32 details the operation of the extraction circuit CExt,MMap. As before, the circuit CExt,MMap is not made
public as is; we only make available an obfuscated version of the circuit obtained by running the evaluation algorithm
of the probabilistic iO scheme piO on it.

Finally, we emphasize that when the element y ∈ X is a non-member for the language L, then under a binding crs,
the “If” condition in step 4 of CExt,MMap is never satisfied. This follows from the perfect extractability guarantee of
the NIZK proof system. However, the condition may be satisfied during some hybrid in the proof of security, under a
hiding crs when the element y ∈ X is a member for the language L.

Zero-Testing Encodings. Given the aforementioned extraction procedure, zero-testing an encoding at any given level
is trivial. We simply apply the extraction procedure to the encoding, and check if the extracted group element g∗ is
equal to g0 for any g ∈ G.

6.6 The Overall Construction
We are now ready to formally summarize our construction of an (N + 1)-EDDH-hard symmetric MMap.

• Setup(1λ, N): On input the security parameter λ and the degree of multilinearity N , do the following:

1. Sample (in binding mode) (crs, t)← NIZK.Setup(1λ).

2. Sample (pk0, sk0), (pk1, sk1)← FHE.Gen(1λ).

3. Sample a non-member instance y ← X \ L.

4. Compute CAdd,piO = piO.Obf(CAdd,MMap), where CAdd,MMap is as defined in Figure 3.

5. Compute CInv,piO = piO.Obf(CInv,MMap), where CInv,MMap is as defined in Figure 5.
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6. Compute CMult,piO = piO.Obf(CMult,MMap), where CMult,MMap is as defined in Figure 7.

7. Compute CExt,piO = piO.Obf(CExt,MMap), where CExt,MMap is as defined in Figure 8.

8. Output the public parameter pp, where

pp =

(
crs,pk0,pk1,CAdd,piO,CInv,piO,CMult,piO,CExt,piO, {g`,`′}(`+`′)∈[0,N ], y

)
.

• Encode(pp, a, i) : On input the public parameter pp, a plaintext element a ∈ Zq and i ∈ [N ], proceed as follows:

1. Set a0,0 = a.

2. For each (`, `′) 6= (0, 0) such that (`+ `′) ∈ [0, N ], set a`,`′ = 0.

3. Generate the following ciphertexts:

ct0 = FHE.Enc(pk0, {a`,`′}(`+`′)∈[0,N ]; r0) , ct1 ← FHE.Enc(pk1, {a`,`′}(`+`′)∈[0,N ]; r1),

where r0 and r1 denote uniformly sampled random coins.

4. Generate the following proof:
π ← NIZK.Prove(crs, st,wit),

where the statement st and the witness wit correspond to the NP language L (as defined in Figure 25) and
are given as:

st = (pk0,pk1, ct0, ct1, i, y) , wit = (a, r0, r1).

5. Finally, output the encoding
[a]i := (ct0, ct1, i, π).

• Add(pp, [a1]i, [a2]i): On input the public parameter pp and a pair of encodings

[a1]i = (ct1,0, ct1,1, i, π1) , [a2]i = (ct2,0, ct2,1, i, π2),

output the encoding [a1 + a2]i = (ct∗0, ct∗1, i, π∗), where

(ct∗0, ct∗1, i, π
∗) = piOEval(CAdd,MMap, ((ct1,0, ct1,1, i, π1), (ct2,0, ct2,1, i, π2), y)).

• Inv(pp, [a]i): On input the public parameter pp and an encoding [[a]i = (ct0, ct1, i, π), output the encoding
[−a]i = (ct∗0, ct∗1, i, π∗), where

(ct∗0, ct∗1, i, π
∗) = piOEval(CInv,MMap, (ct0, ct1, i, π, y)).

• Mult(pp, [a1]i, [a2]j): On input the public parameter pp and a pair of encodings

[a1]i1 = (ct1,0, ct1,1, i, π1), , [a2]i2 = (ct2,0, ct2,1, j + 1, k, π2),

such that (i1 + i2) ≤ N , output the encoding [a1.a2]i1+i2 = (ct∗0, ct∗1, (i1 + i2), π
∗), where

(ct∗0, ct∗1, (i1 + i2), π
∗) = piOEval(CMult,MMap, ((ct1,0, ct1,1, i, π1), (ct2,0, ct2,1, j + 1, k, π2), y)).

• Ext(pp, [a]i): On input the public parameter pp and an encoding [a]i = (ct0, ct1, i, π), output b ∈ {0, 1,⊥},
where

b = piOEval

(
CExt,MMap, ((ct0, ct1, i, π), {g`,`′}(`+`′)∈[0,N ], y)

)
.
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6.7 Proof of (N + 1)-EDDH
Recall that the (N + 1)-EDDH assumption over a degree-N symmetric MMap requires that the following distribution
ensembles are computationally indistinguishable from random for any level i ∈ [N ]:(

[α]i, [α
N+1]i

)
≈c

(
[α]i, [α

∗]i

)
,

where α, α∗ ← Zq . For simplicity, we prove here the version of the assumption where α and α∗ are sampled uniformly
from Z∗q (which is statistically indistinguishable from the case where α and α∗ are sampled uniformly from Zq whenever
q = 2ω(log λ)).

We state and prove the following theorem:

Theorem 6.1. Our symmetric MMap construction for degree-N is (N + 1)-EDDH-hard assuming: (a) that deciding
subset membership with respect to L ⊂ X is computationally hard, (b) that NIZK satisfies crs-indistinguishability,
perfect simulation-extractability under a binding crs and perfect zero-knowledge under a hiding crs, (c) that piO satisfies
probabilistic-iO security, (d) that FHE is IND-CPA secure, and (e) that the group G is “strong” (N + 1)-EDDH-hard.

The proof again proceeds via a sequence of hybrids summarized in Table 4. As was the case for our asymmetric
MMap constructions, the crux of the proof lies in switching the plaintexts underlying the challenge encodings in the
(N + 1)-EDDH game to a special form such that:

• The challenge encodings constitute a valid (N + 1)-EDDH instance over the MMap when the extraction circuit
embeds a valid “strong” (N + 1)-EDDH tuple over the group G.

• The challenge encodings constitute a random invalid (N+1)-EDDH instance over the MMap when the extraction
circuit embeds a random invalid “strong” (N + 1)-EDDH tuple over the group G.

We then show that these two cases are indistinguishable based on a sequence of hybrids, where each pair of consecutive
hybrids is indistinguishable based on the computational security properties of the underlying cryptoprimitives and the
hardness of strong (N + 1)-EDDH over the group G.

Hybrid-0. In this hybrid, the public parameter pp is generated as in the real MMap scheme described above. As part
of the (N + 1)-EDDH challenge, the challenger provides the adversary with encodings of α (uniformly random in Z∗q)
and αN+1, generated as per the real encoding algorithm corresponding to challenge interval i (may be adversarially
chosen).

Hybrid-1. In this hybrid, we change the public parameter pp provided to the adversary as follows:

1. Switch crs for the NIZK proof system to hiding mode from binding mode.

2. Switch y ∈ X from a uniform non-member instance to a uniform member instance for the language L with
witness wity .

3. Compute CAdd,piO = piO.Obf(ĈAdd,MMap), where ĈAdd,MMap is as described in Figure 33.

4. Compute CInv,piO = piO.Obf(ĈInv,MMap), where ĈInv,MMap is as described in Figure 34.

5. Compute CMult,piO = piO.Obf(ĈMult,MMap), where ĈMult,MMap is as described in Figure 35.

6. Compute CExt,piO = piO.Obf(ĈExt,MMap,1), where ĈExt,MMap,1 is as described in Figure 36.

Lemma 6.2. Hybrid-1 is computationally indistinguishable from Hybrid-0 assuming: (a) that deciding subset mem-
bership with respect to L ⊂ X is computationally hard, (b) that NIZK satisfies crs-indistinguishability, perfect
simulation-extractability under a binding crs and perfect zero-knowledge under a hiding crs, and (c) that piO satisfies
probabilistic-iO security.
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Table 4: Overview of hybrids for proof of (N + 1)-EDDH

Hybrid crs y Cφ,MMap knows CExt,MMap {g`,`′} Challenge FHE Ciphertexts (Set-1) Challenge FHE Ciphertexts (Set-2) Comments
for φ ∈ {Add, Inv,Mult} knows is of the form are encryptions of are encryptions of

0 binding /∈ L (sk0, sk1, t) (sk0, sk1, t)
{
gγ

`·δ`
′
}

(α, 0, 0, 0, . . . , 0) (α, 0, 0, 0, . . . , 0) —

(αN+1, 0, 0, 0, . . . , 0) (αN+1, 0, 0, 0, . . . , 0)

1 hiding ∈ L — sk1

{
gγ

`+(N+1)`′
}

(α, 0, 0, 0, . . . , 0) (α, 0, 0, 0, . . . , 0) NIZK security

(αN+1, 0, 0, 0, . . . , 0) (αN+1, 0, 0, 0, . . . , 0) + subspace-membership hardness
+ piO security

2 hiding ∈ L — sk1

{
gγ

`+(N+1)`′
}

(0, α · γ−1, 0, 0, . . . , 0) (α, 0, 0, 0, . . . , 0) FHE IND-CPA security

(0, 0, (α · γ−1)N+1, 0, . . . , 0) (αN+1, 0, 0, 0, . . . , 0)

3 hiding ∈ L — sk0

{
gγ

`+(N+1)`′
}

(0, α · γ−1, 0, 0, . . . , 0) (α, 0, 0, 0, . . . , 0) NIZK security

(0, 0, (α · γ−1)N+1, 0, . . . , 0) (αN+1, 0, 0, 0, . . . , 0) + piO security

4 hiding ∈ L — sk0

{
gγ

`+(N+1)`′
}

(0, α · γ−1, 0, 0, . . . , 0) (0, α · γ−1, 0, 0, . . . , 0) FHE IND-CPA security

(0, 0, (α · γ−1)N+1, 0, . . . , 0) (0, 0, (α · γ−1)N+1, 0, . . . , 0)

5 hiding ∈ L — sk0

{
gγ

`·δ`
′
}

(0, α · γ−1, 0, 0, . . . , 0) (0, α · γ−1, 0, 0, . . . , 0) strong (N + 1)-EDDH

(0, 0, (α · γ−1)N+1, 0, . . . , 0) (0, 0, (α · γ−1)N+1, 0, . . . , 0)

6 hiding ∈ L — sk0

{
gγ

`·δ`
′
}

(0, α · γ−1, 0, 0, . . . , 0) (α, 0, 0, 0, . . . , 0) FHE IND-CPA security

(0, 0, (α · γ−1)N+1, 0, . . . , 0) ((α · γ−1)N+1 · δ, 0, 0, 0, . . . , 0)

7 hiding ∈ L — sk1

{
gγ

`·δ`
′
}

(0, α · γ−1, 0, 0, . . . , 0) (α, 0, 0, 0, . . . , 0) NIZK security

(0, 0, (α · γ−1)N+1, 0, . . . , 0) ((α · γ−1)N+1 · δ, 0, 0, 0, . . . , 0) + piO security

8 hiding ∈ L — sk1

{
gγ

`·δ`
′
}

(α, 0, 0, 0, . . . , 0) (α, 0, 0, 0, . . . , 0) FHE IND-CPA security

((α · γ−1)N+1 · δ, 0, 0, 0, . . . , 0) ((α · γ−1)N+1 · δ, 0, 0, 0, . . . , 0)

9 binding /∈ L
{
gγ

`·δ`
′
}

(sk0, sk1, t) (sk0, sk1, t) (α, 0, 0, 0, . . . , 0) (α, 0, 0, 0, . . . , 0) NIZK security

((α · γ−1)N+1 · δ, 0, 0, 0, . . . , 0) ((α · γ−1)N+1 · δ, 0, 0, 0, . . . , 0) + piO security

The proof of this lemma is very similar to the proof of Lemma 4.2 and is hence not detailed.

Note 6.3. In the remaining hybrid descriptions, we assume (for ease of representation) that the plaintext underlying
each FHE ciphertext in an encoding is arranged as (a0,0, a1,0, a0,1, a2,0, a1,1, a0,2, . . . , a0,N , i).

Hybrid-2. In this hybrid, we change the manner in which the (N + 1)-EDDH challenge encodings are generated.
Suppose that the set of group elements {g`,`′}(`+`′)∈[0,N ] embedded in the extraction circuit ĈExt,MMap,1,0 is distributed
as:

{g`,`′}(`+`′)∈[0,N ] =

{
gγ

`+(N+1)`′
}

(`+`′)∈[0,N ]

.

We switch the plaintext underlying the first FHE ciphertext in each challenge encoding as follows:

(α, 0, 0, 0, . . . , 0, i) → (0, (α · γ−1), 0, 0, . . . , 0, i)

(αN+1, 0, 0, 0, . . . , 0, i) → (0, 0, (α · γ−1)N+1, 0, . . . , 0, i)
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Inputs: A tuple of the form: ((ct1,0, ct1,1, i, π1), (ct2,0, ct2,1, i, π2), y ∈ X ), where the proofs π1 and π2 are over the language L.

Outputs: Either a tuple of the form (ct∗0 , ct∗1 , i, π
∗), or⊥.

Computation: Proceed as follows:

1. If any of the following is true:

(a) NIZK.Verify(crs, (pk0, pk1, ct1,0, ct1,1, i, y ∈ X ), π1) = 0.

(b) NIZK.Verify(crs, (pk0, pk1, ct2,0, ct2,1, i, y ∈ X ), π2) = 0.

then output⊥.

2. // Decryption omitted — avoids dependency on sk0 and sk1.

3. Compute the following:

ct∗0 = FHE.Eval(pk0, ct1,0, ct2,0,CAdd,FHE) , ct∗1 = FHE.Eval(pk1, ct1,1, ct2,1,CAdd,FHE).

4. // If check omitted — avoids dependency on sk0 and sk1.
Proceed as follows:

(a) // Extraction omitted — avoids dependency on extraction trapdoor t.

(b) // Check omitted.

(c) Generate π∗ ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, y),wity).

5. // Proof generation omitted — avoids dependency on sk0 and sk1.

6. Output (ct∗0 , ct∗1 , i, π
∗).

Figure 33: Let crs← NIZK.Setup(1λ) be in hiding mode. Additionally, let (pk0, sk0), (pk1, sk1)← FHE.Gen(1λ). Also, for y ∈ L, let wity be a membership-
witness such that (y,wity) ∈ RL. We define a probabilistic circuit ĈAdd,MMap (which has only the public keys pk0 and pk1 hard-wired into it) as above.

A tuple of the form: (ct0, ct1, i, π, y ∈ X ), where the proof π is over the language L.

Outputs: Either a tuple of the form (ct∗0 , ct∗1 , i, π
∗), or⊥.

Computation: Proceed as follows:

1. If NIZK.Verify(crs, (pk0, pk1, ct0, ct1, i, y), π) = 0, then outut⊥.

2. // Decryption omitted — avoids dependency on sk0 and sk1.

3. Compute the following:
ct∗0 = FHE.Eval(pk0, ct0,CInv,FHE) , ct∗1 = FHE.Eval(pk1, ct1,CInv,FHE).

4. // If check omitted — avoids dependency on sk0 and sk1.
Proceed as follows:

(a) // Extraction omitted — avoids dependency on extraction trapdoor t.

(b) // Check omitted.

(c) Generate π∗ ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, y),wity).

5. // Proof generation omitted — avoids dependency on sk0 and sk1.

6. Output (ct∗0 , ct∗1 , i, π
∗).

Figure 34: Next, Let crs ← NIZK.Setup(1λ) be in hiding mode. Additionally, let (pk0, sk0), (pk1, sk1) ← FHE.Gen(1λ). Also, for y ∈ L, let wity be a
membership-witness such that (y,wity) ∈ RL. We define a probabilistic circuit ĈInv,MMap (which has only the public keys pk0 and pk1 hard-wired into it) as above

Lemma 6.4. Hybrid-2 is computationally indistinguishable from Hybrid-1 assuming that FHE is IND-CPA secure with
respect to the public key-secret key pair (pk0, sk0).

The proof of this lemma is very similar to the proof of Lemma 4.3 and is hence not detailed.

Hybrid-3. In this hybrid, we change the public parameter pp as follows: compute CExt,piO = piO.Obf(ĈExt,MMap,0,0),
where ĈExt,MMap,0,0 is as defined in Figure 36.
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Inputs: A tuple of the form: ((ct1,0, ct1,1, i1, π1), (ct2,0, ct2,1, i2, π2), y ∈ X ), where the proofs π1 and π2 are over the language L.

Outputs: Either a tuple of the form (ct∗0 , ct∗1 , (i1 + i2), π
∗), or⊥.

Computation: Proceed as follows:

1. If any of the following is true:

(a) NIZK.Verify(crs, (pk0, pk1, ct1,0, ct1,1, i, y ∈ X ), π1) = 0.

(b) NIZK.Verify(crs, (pk0, pk1, ct2,0, ct2,1, i, y ∈ X ), π2) = 0.

then output⊥.

2. // Decryption omitted — avoids dependency on sk0 and sk1.

3. Compute the following:

ct∗0 = FHE.Eval(pk0, ct1,0, ct2,0,CMult,FHE) , ct∗1 = FHE.Eval(pk1, ct1,1, ct2,1,CMult,FHE).

4. // If check omitted — avoids dependency on sk0 and sk1.
Proceed as follows:

(a) // Extraction omitted — avoids dependency on extraction trapdoor t.

(b) // Check omitted.

(c) Generate π∗ ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, k, y),wity).

5. // Proof generation omitted — avoids dependency on sk0 and sk1.

6. Output (ct∗0 , ct∗1 , i, k, π
∗).

Figure 35: Let crs← NIZK.Setup(1λ) be in hiding mode. Additionally, let (pk0, sk0), (pk1, sk1)← FHE.Gen(1λ). Also, for y ∈ L, let wity be a membership-
witness such that (y,wity) ∈ RL. For each b∗ ∈ {0, 1}, we define a probabilistic circuit ĈMult,MMap (which has only the public keys pk0 and pk1 hard-wired into it)
as above.

Inputs: A tuple of the form:
(
(ct0, ct1, i, π), y ∈ X

)
, where the proof π is over the language L.

Outputs: Either a group element g∗ or⊥.

Computation: Proceed as follows:

1. If NIZK.Verify(crs, (pk0, pk1, ct0, ct1, i, y), π) = 0, then output⊥.

2.

3. Recover the following: ({aβ,`}`∈[0,3], iβ , jβ) = FHE.Dec(skβ , ctβ).

// Decryption using sk1−β omitted.

4. Compute g∗ = gaβ,0 .haβ,1 .(g′)aβ,2 .(h′)aβ,3 .

5. // If clause omitted — avoids dependency on sk1−β and extraction trapdoor t.

6. Output g∗.

Figure 36: Let crs ← NIZK.Setup(1λ) be in hiding mode. Additionally, let (pk0, sk0), (pk1, sk1) ← FHE.Gen(1λ). Also, let {g`,`′}(`+`′)∈[0,N] be a set of
group elements over the groupG such that {g`,`′}(`+`′)∈[0,N] ← Dstrong−(N+1)−EDDH,G if β′ = 0 and {g`,`′}(`+`′)∈[0,N] ← D

′
strong−(N+1)−EDDH,G other-

wise. For each β ∈ {0, 1}, we define a deterministic circuit ĈExt,MMap,β (which has the public keys pk0 and pk1, the secret key skβ and the set {g`,`′}(`+`′)∈[0,N]
hard-wired into it) as in Figure 36 below.

Lemma 6.5. Hybrid-3 is computationally indistinguishable from Hybrid-2 assuming: (a) that NIZK satisfies crs-
indistinguishability, perfect simulation-extractability under a binding crs and perfect zero-knowledge under a hiding
crs, and (b) that piO satisfies probabilistic-iO security.

The proof of this lemma is very similar to the proof of Lemma 4.4 and is hence not detailed.

Hybrid-4. In this hybrid, we change the manner in which the (N + 1)-EDDH challenge encodings are generated.
Suppose that the set of group elements {g`,`′}(`+`′)∈[0,N ] embedded in the extraction circuit ĈExt,MMap,0,0 is distributed
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as:

{g`,`′}(`+`′)∈[0,N ] =

{
gγ

`+(N+1)`′
}

(`+`′)∈[0,N ]

.

We switch the plaintext underlying the second FHE ciphertext in each challenge encoding as follows:

(α, 0, 0, 0, . . . , 0, i) → (0, (α · γ−1), 0, 0, . . . , 0, i)

(αN+1, 0, 0, 0, . . . , 0, i) → (0, 0, (α · γ−1)N+1, 0, . . . , 0, i)

Lemma 6.6. Hybrid-4 is computationally indistinguishable from Hybrid-3 assuming that FHE is IND-CPA secure with
respect to the public key-secret key pair (pk1, sk1).

The proof of this lemma is very similar to the proof of Lemma 4.5 and is hence not detailed.

Hybrid-5. In this hybrid, we change the public parameter pp as follows: compute CExt,piO = piO.Obf(ĈExt,MMap,0,1),
where ĈExt,MMap,0,1 is as defined in Figure 12.

Lemma 6.7. Hybrid-5 is computationally indistinguishable from Hybrid-4 assuming that the strong (N + 1)-EDDH
assumption holds over the group G.

Proof. Note that the only difference between hybrids 4 and 5 is the manner in which the obfuscated extraction circuit
CExt,piO is generated as part of the public parameter.

In Hybrid-4, CExt,piO is an obfuscation of the circuit ĈExt,MMap,0,0, while in Hybrid-5, CExt,piO is an obfuscation of
the circuit ĈExt,MMap,0,1 (where both circuits are as defined in Figure 12).

Now, observe that the only difference between the extraction circuits ĈExt,MMap,0,0 and ĈExt,MMap,0,1 is that the
former embeds a set of group elements sampled from the distribution Dstrong−(N+1)−EDDH,G over the group G, while
the latter embeds a set of group elements sampled from the distribution D′strong−(N+1)−EDDH,G over the group G.

It immediately follows that Hybrid-5 is computationally indistinguishable from Hybrid-4 assuming that the strong
(N + 1)-EDDH assumption holds over the group G.

Hybrid-6. In this hybrid, we change the manner in which the (N + 1)-EDDH challenge encodings are generated.
Recall that in hybrid-5, the set of group elements {g`,`′}(`+`′)∈[0,N ] in the extraction circuit ĈExt,MMap,0,1 is distributed
as:

{g`,`′}(`+`′)∈[0,N ] =

{
gγ

`·δ`
′
}

(`+`′)∈[0,N ]

.

We switch the plaintext underlying the second FHE ciphertext in each challenge encoding as follows:

(0, (α · γ−1), 0, 0, . . . , 0, i) → (α, 0, 0, 0, . . . , 0, i)

(0, 0, (α · γ−1)N+1, 0, . . . , 0, i) → ((α · γ−1)N+1 · δ, 0, 0, 0, . . . , 0, i)

Lemma 6.8. Hybrid-6 is computationally indistinguishable from Hybrid-5 assuming that FHE is IND-CPA secure with
respect to the public key-secret key pair (pk1, sk1).

The proof of this lemma is very similar to the proof of Lemma 4.7 and is hence not detailed.
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Hybrid-7. In this hybrid, we change the public parameter pp as follows: compute CExt,piO = piO.Obf(ĈExt,MMap,1,1),
where ĈExt,MMap,1,1 is as defined in Figure 36.

Lemma 6.9. Hybrid-7 is computationally indistinguishable from Hybrid-6 assuming: (a) that NIZK satisfies crs-
indistinguishability, perfect simulation-extractability under a binding crs and perfect zero-knowledge under a hiding
crs, and (b) that piO satisfies probabilistic-iO security.

The proof of this lemma is very similar to the proof of Lemma 4.8 and is hence not detailed.

Hybrid-8. In this hybrid, we change the manner in which the (N + 1)-EDDH challenge encodings are generated.
Recall that in hybrid-7, the set of group elements {g`,`′}(`+`′)∈[0,N ] in the extraction circuit ĈExt,MMap,1,1 is distributed
as:

{g`,`′}(`+`′)∈[0,N ] =

{
gγ

`·δ`
′
}

(`+`′)∈[0,N ]

.

We switch the plaintext underlying the first FHE ciphertext in each challenge encoding as follows:

(0, (α · γ−1), 0, 0, . . . , 0, i) → (α, 0, 0, 0, . . . , 0, i)

(0, 0, (α · γ−1)N+1, 0, . . . , 0, i) → ((α · γ−1)N+1 · δ, 0, 0, 0, . . . , 0, i)

Lemma 6.10. Hybrid-8 is computationally indistinguishable from Hybrid-7 assuming that FHE is IND-CPA secure
with respect to the public key-secret key pair (pk0, sk0).

The proof of this lemma is very similar to the proof of Lemma 4.9 and is hence not detailed.

Hybrid-9. In this hybrid, we change the public parameter pp as follows:

1. Switch crs for the NIZK proof system to binding mode, as in the real scheme.

2. Switch y ∈ X to a uniform non-member instance, as in the real scheme.

3. Compute CAdd,piO = piO.Obf(CAdd,MMap), as in the real scheme.

4. Compute CInv,piO = piO.Obf(CInv,MMap), as in the real scheme.

5. Compute CMult,piO = piO.Obf(CMult,MMap), as in the real scheme.

6. Compute CExt,piO = piO.Obf(CExt,MMap), as in the real scheme.

Lemma 6.11. Hybrid-9 is computationally indistinguishable from Hybrid-8 assuming: (a) that deciding subset mem-
bership with respect to L ⊂ X is computationally hard, (b) that NIZK satisfies crs-indistinguishability, perfect
simulation-extractability under a binding crs and perfect zero-knowledge under a hiding crs, and (c) that piO satisfies
probabilistic-iO security.

The proof of this lemma is very similar to the proof of Lemma 4.10 and is hence not detailed.

Finally, Hybrid-9 is identical to the game where the adversary is given a random invalid (N + 1)-EDDH instance
generated as per the real scheme. This completes the proof of Theorem 6.1.
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6.8 Power-DDH Implies Strong EDDH
In this subsection, we prove the following lemma:

Lemma 6.12. The “strong”-(N + 1)-EDDH assumption over a group G for N ≥ 1 is implied by the power-DDH
assumption over the group G.

Proof. Recall that the strong-(N + 1)-EDDH assumption states that letting g ← G and γ, δ ← Z∗q , the following
indistinguishability holds: ({

gγ
`+(N+1)`′

}
(`+`′)∈[0,N ]

)
c
≈

({
gγ

`·δ`
′
}

(`+`′)∈[0,N ]

)
.

Also recall that the power DDH assumption states that the following indistinguishability holds for any t = poly(λ):(
g, ga, ga

2

, . . . , ga
t)

or
(
g, gr1 , gr2 , . . . , grt

)
,

where g ← G and a, r1, r2, . . . , rt ← Zq . Hence, by the power-DDH assumption, we have:({
gγ

`+(N+1)`′
}

(`+`′)∈[0,N ]

)
c
≈

({
gr`,`′

}
(`+`′)∈[0,N ]

)
,

where each r`,`′ ← Zq . Also, by the power-DDH assumption, we have:({
gγ

`·δ`
′
}

(`+`′)∈[0,N ]

)
c
≈

({
gr`·δ

`′
}

(`+`′)∈[0,N ]

)
c
≈

({
gr`·r

′
`′

}
(`+`′)∈[0,N ]

)
.

where each r`, r′`′ ← Zq . Finally, by the DDH assumption (which is implied by the power DDH assumption), we have:({
gr`·r

′
`′

}
(`+`′)∈[0,N ]

)
c
≈

({
gr`,`′

}
(`+`′)∈[0,N ]

)
,

where each r`,`′ ← Zq . This completes the proof of Lemma 6.12.
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