
Stronger Multilinear Maps from Indistinguishability Obfuscation ∗

Navid Alamati† Hart Montgomery ‡ Sikhar Patranabis§

December 18, 2020

Abstract

We show how to construct new multilinear maps from subexponentially secure indistinguishability obfuscation
(iO) and (essentially) standard assumptions. In particular, we show how to construct multilinear maps with arbi-
trary predetermined degree of multilinearity where each of the following assumptions hold: SXDH, joint-SXDH,
exponent-DDH and all other assumptions implied by them (including k-party-DDH and k-Lin and its variants). Our
constructions almost identically achieve the full functionality of the “dream version” definition of multilinear maps
as defined in the initial work of Garg et al. (Eurocrypt’13). Our work substantially extends a previous line of works
including that of Albrecht et al. (TCC’16) and Farshim et al. (PKC’18), which showed how to build multilinear maps
endowed with weaker assumptions (such as multilinear DDH and other related assumptions) from iO.

Coupled with the recent work of Jain et al., which shows how to build iO from well-founded assumptions, and
the recent work of Brakerski et al., which shows how to build iO from circular security assumptions, our work can be
used to also build strong multilinear maps from such assumptions. This solves another long-standing open problem.
Moreover, a number of recent works have shown how to build iO from multilinear maps endowed with hardness
assumptions; one example would be the work of Lin and Tessaro (Crypto’17) which shows how to construct iO from
subexponentially secure SXDH-hard multilinear maps and some (subexponentially secure) plausible assumptions.
Coupled with any one of these constructions, our results here can be seen as formally proving the equivalence of iO
and multilinear maps/graded encodings (modulo subexponential reductions and other relatively standard assumptions)
for the first time.

∗We thank the anonymous reviewers of TCC 2020 for pointing out a technical problem in an earlier version of the paper. The current version
fixes this problem.
†University of Michigan.
‡Fujitsu Laboratories of America.
§ETH Zürich.

1

1 Introduction
Indistinguishability obfuscation (iO) [BGI+01] is a powerful primitive that offers enormous potential in terms of
cryptographic constructions. In fact, almost every cryptographic primitive can be built from iO (and some other
mild assumptions). This includes many strong primitives such as functional encryption [GGH+13b], multi-party
noninteractive key exchange [BZ14], and much more [SW14, GGHR14, HSW14, BP15]. Due to its many applications,
iO has been given its own “complexity world” called obfustopia [GPSZ17].

The story of realizing iO from concrete assumptions began with multilinear maps: Garg et al. [GGH+13b] pro-
posed the first candidate construction of iO based on the construction of a graded encoding (a generalization of mul-
tilinear maps) due to Garg, Gentry, and Halevi [GGH13a]. This spurred a huge interest in building new multilinear
maps/graded encodings, and several other candidate schemes were proposed subsequently [CLT13, GGH15, Zim15,
AB15].

However, many of these candidate constructions of multilinear maps were cryptanalyzed, starting with the work
of Cheon et al. [CHL+15] on the cryptanalysis of the multilinear map defined in [CLT13]. More attacks on multi-
linear maps and their implied iO constructions followed [MSZ16, HJ16, CLLT16], breaking all of the original mul-
tilinear map schemes. Subsequent attempts to “immunize” the existing constructions against these attacks [CLT15,
BMSZ15, GMM+16] were also shown to be vulnerable [MSZ16, CGH17]. To our knowledge, there is only one cur-
rently published multilinear map that has not been attacked [MZ18], and it is has only recently been shown to imply
iO [AMP20].1

The multitude of attacks against multilinear maps seemed to convince the cryptographic community to focus on
alternative ways of constructing iO. One such approach that has received considerable attention was building iO based
on functional encryption (FE). The authors of [AJ15, BV15] showed that subexponentially secure single-key compact
FE (in conjunction with some other standard assumptions) implies iO. They also showed how to construct single-key
compact FE from many-key FE. These works, together with some previous works [GGH+13b, Wat15] that showed
how to build many-key FE from iO and standard assumptions, established an equivalence between (subexponentially
secure) compact FE and iO (modulo certain plausible assumptions).

This naturally led to a proliferation of attempts to realize compact FE (and thus iO). A series of works [Lin16,
LV16, LT17, AS17] showed how to realize compact FE based on low-degree multilinear maps and additional novel
techniques such as local PRGs. In fact, in [LT17], the authors showed a construction of compact FE from bilinear maps
and 2-blockwise local PRGs, which seemingly paved the way for a secure iO construction from standard assumptions.
However, Lombardi and Vaikuntanathan [LV17] and Barak et al. [BBKK18] independently showed that 2-blockwise
local PRGs could never be constructed securely, implying that such iO constructions cannot be securely instantiated.2

But these attacks on FE-based iO constructions seemed to be temporary setbacks rather than a fundamental bar-
rier. Almost all of the recent works on iO [Agr19, AM18, AJL+19, JLMS19] have continued down the compact
FE road based on newer assumptions such as perturbation resilient generators.3 A more recent result of Brakerski
et al. [BDGM20a] shows how to build iO from a new primitive called split FHE. Their construction is based on
plausible assumptions, but relies on a heuristic security argument. While some of these new assumptions are not yet
well-understood, they appear to be more and more “standard-looking.” It is true that some of these recent results have
been cryptanalyzed [AP20], but, unlike multilinear map constructions, most have not been broken.

Recent iO Results. Very recently, there have been a collection of exciting breakthrough results on new iO con-
structions. In particular, Jain et al. [JLS20] proposed a new construction of iO from well-founded assumptions,
which includes the learning with errors (LWE) assumption [Reg05], the symmetric external Diffie-Hellman assump-
tion (SXDH) [BGdMM05], a version of the learning parity with noise (LPN) assumption [Ale03] over a large modulus,
and the existence of a boolean PRG in NC0 with superlinear stretch. Like much of the previous work, this construc-
tion goes through functional encryption and does not use multilinear maps at all. This is the first work to build iO

1Throughout this paper, we use multilinear maps and graded encodings interchangeably. Unless otherwise specified, multilinear maps refer to
“graded” multilinear maps and not “one-shot” multilinear maps.

2More generally, [LT17] showed a construction of iO from k-linear maps and k-blockwise local PRGs (plus some standard assumptions). The
scheme is not known to be broken for k ≥ 3.

3We refer the reader to [HB15] for a survey of multilinear maps and iO.

2

entirely from assumptions that have been previously studied by the cryptography and theory communities and has led
the cryptographic community to generally believe that iO can be realized.

Subsequently, Gay and Pass [GP20] proposed a variant of the [BDGM20a] scheme that only relies on the LWE
assumption, the decisional composite residuosity assumption [DJ01], and a circular security assumption on the Gentry-
Sahai-Waters FHE scheme [GSW13] and the Damgard-Jurik encryption scheme [DJ01]. In a follow-up work, Braker-
ski et al. showed how to construct iO while relying only on the circular-security of certain LWE-based schemes [BDGM20b].

These recent breakthrough results seem to point towards the fact that we can, in fact, realize iO–and maybe even
from fully standard assumptions (i.e. just plain LWE) in the future. Unfortunately, they say nothing about the existence
of multilinear maps.

1.1 Multilinear Maps and iO
The reported attacks on multilinear maps/graded encodings, together with the exciting new constructions of iO that
do not involve multilinear maps, have meant that multilinear maps/graded encodings have received considerably less
attention in recent years. A natural question to ask is: are multilinear maps (endowed with certain hardness assump-
tions), in fact, stronger than iO; in other words, is secure iO is more likely to exist than secure multilinear maps/graded
encodings?

In this paper, we revisit this question. Based on existing cryptographic constructions and known attacks, the answer
seems to be “yes,” at least for multilinear maps that are powerful enough to imply iO. Roughly speaking, multilinear
maps can be divided into two broad classes depending on the nature of the hardness assumption with which they are
endowed: multilinear maps with hardness assumptions over the source groups, and multilinear maps with hardness
assumptions over the target groups.

“Source” and “Target” Group Assumptions. Suppose we consider an asymmetric multilinear map e : G1× . . .×
G` → GT where each group is of order q. Examples of hardness assumptions over the “source group” include
the SXDH assumption, which informally states that for each group Gi, given some generator gi ∈ Gi, it is hard
to distinguish between the tuples

(
gi, g

a
i , g

b
i , g

ab
i

)
and

(
gi, g

a
i , g

b
i , g

c
i

)
, where a, b, c ∈ Zq are chosen uniformly at

random.4

Next, let’s consider a symmetric multilinear map e : G` → GT where both G and GT are of order q. An
example of an assumption in the target group would be the multilinear DDH assumption, which informally states
that, given a generator g ∈ G and ` + 1 group elements ga1 , . . . , ga` , ga`+1 which are encodings of random elements
a1, . . . , a`, a`+1 ∈ Zq , the term e (g, . . . , g)

a1...a`a`+1 is computationally indistinguishable from a uniformly random
element in GT .

There are no known constructions of iO based on multilinear map endowed with only a target group assumption.
This may be explained as follows: typically iO constructions based on multilinear maps involve encoding elements in
the source groups. As a result, the security proofs explicitly require indistinguishability assumptions over the source
groups. In other words, assumptions over the target groups are typically insufficient when arguing security of such iO
constructions.

Building iO from Multilinear Maps. We already know how to build iO from many “source group” hardness as-
sumptions over multilinear maps/graded encodings. Gentry et al. [GLSW15] showed how to build iO from a mul-
tilinear map where the multilinear subgroup decision assumption holds over the source group. Lin and Vaikun-
tanathan [LV16] and Lin [Lin17] also showed constructions of iO from multilinear maps with source group assump-
tions (and some other relatively standard assumptions). Very recently, Alamati et. al [AMP20] generalized [GLSW15]
to show that multilinear maps with minimal assumptions (such as SXDH or matrix-DDH [EHK+13]) imply iO.

Unfortunately, the above constructions need to assume subexponential hardness of the underlying multilinear maps
in order to achieve iO, but this seems somewhat inherent and hard to avoid. Even the functional encryption-based
constructions of iO have a similar drawback and must assume subexponential hardness at some point in the reduction.
We refer the reader to [GLSW15] for a detailed discussion on this issue.

4Note that SXDH can only be valid in an asymmetric multilinear map. Furthermore, there are subtleties when definining SXDH over high-degree
multilinear maps, and not all definitions may be equivalent to what we outline here. We explain this in detail in the body of the paper.

3

Building Multilinear Maps from iO. On the other hand, only a few works have tried to build multilinear maps from
iO. The first result in this direction was the construction of a self-bilinear map with auxiliary information [YYHK14].
While this enabled richer applications such as multi-party noninteractive key exchange (NIKE), the authors did not
consider decisional assumptions that could potentially imply iO.

Subsequently, the authors of [AFH+16] showed how to construct from iO (and some other reasonably standard
assumptions) a “one-shot” (i.e., not graded) multilinear map where the multilinear DDH assumption holds. The authors
of [FHHL18] further modified the construction in [AFH+16] to build a graded multilinear map where the multilinear
DDH assumption holds. Unfortunately, we note that the multilinear DDH assumption is a “target group” assumption,
and we do not know how to build iO from such assumptions.

So the state of the art is currently the following: we know how to build multilinear maps/graded encodings endowed
with target group assumptions from iO and (relatively) standard assumptions. But we only know how to build iO from
multilinear maps/graded encodings with certain source group assumptions. This obviously implies that multilinear
maps are at least as strong as iO, but the lack of constructions of “strong” multilinear maps with source-group hardness
also apparently suggests that multilinear maps with such source group assumptions could be strictly stronger than iO.

Further Difficulties and diO. There also seem to be many strong barriers for building multilinear maps with “source
group” assumptions from iO. For instance, suppose that we want to build an asymmetric multilinear map endowed
with the SXDH assumption. This would require us to publish circuits CA and CM that add and multiply encodings
of elements. Assume for the moment that we only want to publish a “one-shot” zero-test circuit CZ that computes
whether or not a level-` product is zero.

A natural approach might be to use obfuscation to try to hide secret information inside the circuits CA, CM and
CZ that would make it possible to process the encodings appropriately. However, we have the following difficulty:
what if the adversary performs a sequence of addition and multiplication operations involving the SXDH challenge
terms that results in a zero-encoding when the SXDH is “real”, and a non-zero-encoding when the SXDH challenge is
“random”? The zero-test circuit must behave differently on the resultant encoding in these two cases. Hence, standard
iO (even piO) is seemingly insufficient here since the obfuscated programs do not have identical outputs on known
inputs.

If we want to obfuscate programs that are not functionally equivalent on certain inputs, then we seemingly require
the stronger notion of differing inputs obfuscation [ABG+13] (diO). Unfortunately, there are some impossibility results
on diO for general circuits [BSW16, GGHW17], and only few instances of diO for certain restricted class of circuits
are known to be secure based on regular iO [BCP14]. So any iO-based construction of a multilinear map scheme with
a plausible source group assumption seemingly needs to bypass diO lower bounds, which appears nontrivial.

Other Work. There has been some other work that attempts to unify the notions of multilinear maps. In [PS15],
Paneth and Sahai introduced the notion of polynomial jigsaw puzzles, which are an abstraction of multilinear maps.
They show that iO is unconditionally equivalent to polynomial jigsaw puzzles. Unfortunately, in hindsight it is unclear
whether polynomial jigsaw puzzles accurately model multilinear maps with source group assumptions.

For instance, the authors of [AS15] show a black-box separation of iO from collision-resistant hash functions (CRHFs).
On the other hand, any multilinear map where SXDH holds implies a simple CRHF [Dam88] in one of the source
groups. So any construction of multilinear maps from iO seemingly requires additional assumptions that are at least
strong enough to imply a CRHF.

In this paper, we ask the following fundamental question, the answer to which would have many implications for
future work on iO and related primitives:

Are multilinear maps with useful source group assumptions stronger than iO? Or are they (up to subexponential
security reductions and modulo certain standard assumptions) equivalent primitives?

1.2 Our Contributions
In this paper we answer this question by showing, perhaps surprisingly, that subexponentially secure iO in conjunction
with some other standard assumptions implies multilinear maps endowed with most of the well-known (prime order)
source group assumptions. More precisely, suppose that the following cryptographic primitives exist:

4

• A probabilistic iO [CLTV15] scheme for X-Ind samplers (implied by subexponentially secure standard iO and
subexponentially secure puncturable PRFs in NC1).

• Fully homomorphic encryption (FHE) with message space Zq for some (large) prime q with perfect decryption
correctness and well-distributed homomorphic evaluation outputs.5

• A dual-mode, simulation-extractable non-interactive zero knowledge argument system (e.g., Groth-Sahai [GS08]).

• A languageL for which the membership problem is hard and whose “yes” instances have unique witnesses (such
a language is implied by any DDH-hard group).

Given these primitives and some additional assumptions (specified below), we show how to build the following mul-
tilinear maps/graded encodings:

• An asymmetric multilinear map that is SXDH-hard, assuming additionally the existence of any DDH-hard group
G of prime order.

• An asymmetric multilinear map that is joint-SXDH-hard,6 assuming additionally the existence of any DDH-hard
group of prime order.

• An asymmetric multilinear map that is exponent-DDH-hard, assuming additionally the existence of any exponent-
DDH-hard group of prime order.

• An n-degree symmetric multilinear map that is (n+1)-exponent-DDH-hard, assuming additionally the existence
of any power-DDH-hard group of prime order.

On the Ingredients. We note that all of the aforementioned ingredients for our constructions, with the exception of
piO, may be considered reasonably standard cryptoprimitives. In addition, the variant of piO needed for our construc-
tions can be built from any “regular” iO scheme and puncturable PRF in NC1 with subexponential security using the
tools from [CLTV15]. We also note that this set of assumptions is a subset of those required by [FHHL18].

Other Source Group Assumptions. The EDDH assumption implies a whole host of other source group assump-
tions, including k-party-DDH, Casc, SCasc, k-Lin, k-ILin, and, of course, multilinear DDH. Hence, our construc-
tions immediately imply multilinear map schemes where these other assumptions hold as well. We refer the reader
to [EHK+13] for the details of these assumptions and their inter-relationships.

Supported Features. Our multilinear maps almost identically achieve the full “dream version” of features that are
defined and discussed in [GGH13a] and thus should be usable in any application of multilinear maps. The only
feature that our constructions do not achieve is deterministic encodings, which would otherwise enable “classic/ideal”
multilinear map functionality.

1.3 Implications and Discussion
Our work has a number of interesting implications to iO and multilinear maps that we discuss below.

5By well-distributed, we mean that the output of homomorphic evaluation of a function is identically distributed as the output of the encryption
algorithm on the same function of the message. This kind of FHE is not known from the LWE assumption, but can be constructed from iO and
standard assumptions [CLTV15].

6Our definition of j-SXDH is slightly different (although, seemingly equivalent in practice) to the standard definition [LV16].

5

iO and Multilinear Maps. Coupled with existing work (e.g. [LT17] and the recent work of [AMP20]), our work
shows that multilinear maps and iO are equivalent up to subexponential security reductions and modulo certain rea-
sonably standard assumptions. This means that iO is tied as tightly to multilinear maps as it is to compact FE (building
iO from compact FE also, to our knowledge, requires subexponential security).

Using the very recently proposed constructions of iO from well-founded assumptions [JLS20] and circular security
assumptions [GP20, BDGM20b] in conjunction with our work, one can also build multilinear maps from well-founded
assumptions, which seemingly answers an almost twenty-year old question on the existence of multilinear maps be-
yond degree 2 [BS03].

Simpler Constructions from MMaps. One benefit of our work is simpler feasibility results for primitives that
are only known from iO or multilinear maps. As an example, consider multi-party noninteractive key exchange
(NIKE). Boneh and Silverberg’s construction of NIKE from multilinear maps [BS03] is very simple and has an almost
immediate proof of security. On the other hand, Boneh and Zhandry’s construction of NIKE from iO [BZ14], while
elegant, is quite complicated and the proof is not so simple. In many cases, cryptosystems are simpler and easier to
build from multilinear map assumptions than iO.

Our construction of multilinear maps from iO is not particularly efficient. But known constructions of iO are not
efficient at all either, and iO is mostly used at this point for feasibility results on complex cryptoprimitives. For feasi-
bility results–where we are only trying to prove the existence of some primitive from some assumption(s), and mostly
ignoring efficiency–our construction of multilinear maps still might be incredibly useful. For new constructions, we
could prove the security of the construction based on a multilinear map and base security on good assumptions through
our reduction from iO in this paper. Later, we could try to build a more efficient scheme. As we have stated before,
almost all of the results on applications of iO have focused on feasibility rather than efficiency, so, while we do think
efficiency of iO is an interesting problem going forward, we do not consider the lack of efficiency in our construction
a glaring weakness.

iO and Homomorphic Primitives. Our result also has interesting implications with respect to the relationship be-
tween iO and a generic primitive endowed with algebraic structure, namely a ring key-homomorphic weak PRF (RKHw-
PRF). The authors of [AMP20] showed that a “slotted” RKHwPRF (a slight weakening of a “classic” RKHw-
PRF) implies input-activated iO, which in turn implies standard iO under certain subexponential security assump-
tions [GLSW15]. They also showed that any multilinear map endowed with simple source group assumptions (e.g.,
SXDH) implies a slotted RKHwPRF.

Coupled with these results, our findings in this paper establish that, modulo certain subexponential security as-
sumptions, iO is equivalent to slotted RKHwPRFs. In other words, RKHwPRFs are, in some sense, obfustopia-
complete.

Bootstrapping Multilinear Maps. An interesting aspect of our work is that it paves the way for “bootstrapping”
low-degree multilinear maps into multilinear maps with arbitrarily large degree endowed with similar hardness as-
sumptions (albeit under subexponential security assumptions). For instance, the authors of [LT17] showed that as-
suming 3-blockwise local PRGs and some other relatively standard primitives, SXDH-hard trilinear maps imply iO.
Under subexponential security assumptions, our work would then allow such an SXDH-hard trilinear map to be “boot-
strapped” into an SXDH-hard multilinear map of any (predetermined) degree via iO.

In fact, we can “bootstrap” to multilinear maps endowed with potentially stronger assumptions such as joint-SXDH
and 2-exponent-DDH. We can even “bootstrap” symmetric multilinear maps into asymmetric ones, and vice versa. Our
work implies that many of the (seemingly very different) multilinear maps that are powerful enough to imply iO are,
up to subexponential security reductions and standard assumptions, equivalent in a computational hardness sense. This
provides yet another motivation for building low-degree multilinear maps from standard assumptions.

Open Questions. Our work gives rise to many interesting open problems. For example, it is not immediately clear
as to how our techniques could be extended to build multilinear maps endowed with composite-order group assump-
tions (e.g., the multilinear subgroup hiding assumption as defined in [GLSW15]). This leaves open the question of
whether or not iO implies multilinear maps endowed with such assumptions.

6

We also leave it open to investigate if iO implies multilinear maps that are endowed with useful hardness as-
sumptions as well as an unbounded degree of multilinearity (or even if such maps exist). The self-bilinear map
from [YYHK14] does not seem to support hardness assumptions of the nature considered in this work (we refer the
reader to [YYHK14] for detailed discussions). A plausible approach could be to try and build a “classic” RKHwPRF as
defined in [AMP20] from iO (at the moment, iO is only known to imply a weaker “slotted” version of RKHwPRF). A
classic RKHwPRF bears resemblance to a multilinear map/multilinear map with unbounded degree of multilinearity;
however, our current techniques do not suffice to build it from iO.

Finally, attempting to build multilinear maps directly from some of the assumptions used to build iO in a recent
line of works [JLS20, GP20, BDGM20b] seems to be an interesting and potentially promising open problem.

2 Technical Overview
In this section we give an overview of our multilinear maps/graded encoding constructions and some of the key ideas
that we use. The starting points of our construction are the works of [AFH+16] and [FHHL18]. Since [FHHL18] is a
generalization of [AFH+16], we will typically refer to it when discussing the ideas present in both works.

We will use our construction of an asymmetric multilinear map where the SXDH assumption holds as a working
example throughout most of this overview, as it is the simplest of our constructions. We assume some basic under-
standing of multilinear maps/graded encodings. The reader may refer to Section 3 for some preliminary background
on multilinear maps and other cryptographic primitives.

2.1 Construction Overview
We provide a high-level overview of our construction of an SXDH-hard asymmetric multilinear map (MMap)/graded
encoding from iO and other cryptographic assumptions. Our proofs are quite involved, so we cannot mention all of
the steps or techniques here. In Section 6 we present our full proof of SXDH-hardness with a detailed outline of all
of the steps. Rather than mimic the same presentation here, we describe the proof ideas in a more intuitive manner.
While this description does not linearly follow how the proof is actually presented in the body of the paper, it captures
the main technical ideas.

We will start by sketching out what the encodings of our multilinear map look like, and then explain our circuits
for multilinear map operations.

Non-Unique Representations. We begin by noting that our encodings are not unique: there will be (potentially)
multiple ways to represent and encode some plaintext element α ∈ Zq (q being a prime with O(λ) bits, where λ is the
security parameter). More precisely, we will use a “slotted” representation of α for our encodings, the exact form of
which will depend on the assumption that we are trying to prove. For our construction of an SXDH-hard asymmetric
MMap, we will represent an element α as a four-tuple of the form (α0, α1, α2, α3) with the restriction that, for some
fixed a, b, c ∈ Zq (sampled at setup), we have

α = α0 + a · α1 + b · α2 + c · α3 mod q.

The reader may observe this representation is structurally similar to a DDH tuple. For our “real” construction of an
SXDH-hard MMap, we will only use the α0 component to encode elements. However, we will use the full slotted
representation in certain hybrid arguments in the proof of SXDH.

Encoding Structure. Each encoding in our construction consists of two FHE ciphertexts that are encryptions of the
underlyig plaintext element α ∈ Zq and the “level” of the encoding under different public-key/secret-key pairs (the
double encryption is a necessary component of the proof as explained later), a description of the “level” of the encoding
which we denote i, and two NIZK proofs π0 and π1 that prove, in a sense, the encoding is valid (we will explain these
in more detail later). We can express this as:

Encode (α, i) =
(
FHE.Encpk0

(α, i) ,FHE.Encpk1
(α, i) , i, π0, π1

)
.

7

We have already explained the representation(s) that may be used when encoding an element α. The description of the
level of an encoding in our SXDH-hard multilinear map is a binary vector i ∈ {0, 1}n, where n is the degree of the
multilinearity of the map. Top-level encodings corresponding to each of the groups G1, ...,Gn are denoted by is with
one non-zero entry. Addition preserves the level set, so i remains unchanged, while multiplication (which can only be
done between level sets that have an empty intersection) of two elements with level sets i1 and i2 results in a new level
set i′ = i1 + i2. Other multilinear maps (e.g. symmetric constructions) may have simpler level descriptions.

Normal and Oblique Representations. Before we explain our proofs π0 and π1, we need to explain more about
the nature of our encodings. When encoding an element α, depending on whether we use only the α0 component or
all four components (α0, α1, α2, α3), we classify the encoding representation into “normal”, “partially oblique” and
“oblique”. The tuple α = (α0, α1, α2, α3) is said to be in “normal form” if

(α0, α1, α2, α3) = (α∗, 0, 0, 0)

for some α∗ ∈ Zq . Otherwise, it is said to be in “oblique form”. Depending on the forms of the tuples underlying the
FHE ciphertexts in the encoding, we classify an encoding into one of three representations:

• Normal representation: Both FHE ciphertexts encrypt tuples that are in normal form.

• Partially oblique representation: Exactly one of the FHE ciphertexts encrypts a tuple that is in normal form,
while the other encrypts a tuple that is in oblique form.

• Oblique representation: Both FHE ciphertexts encrypt tuples that are in oblique form.

Consistency of Encodings. We also associate with any given encoding a property called “consistency”, which basi-
cally captures that both FHE ciphertexts correspond to encryptions of the same plaintext element. In particular, if the
FHE ciphertexts in an encoding encrypt tuples of the form (α0, α1, α2, α3) and (β0, β1, β2, β3), then the endcoding is
“consistent” with respect to the fixed elements a, b, c ∈ Zq if the following condition is satisfied:

α0 + a · α1 + b · α2 + c · α3 = β0 + a · β1 + b · β2 + c · β3 mod q.

Note that an encoding can be consistent irrespective of its representation (normal, oblique or partially oblique).

Zero Knowledge Proofs We are finally in position to discuss our zero knowledge proofs π0 and π1. It is essential
to the construction that we use a dual-mode, simulation-extractable non-interactive zero knowledge argument system
(e.g. Groth-Sahai [GS08]). In particular, we need a NIZK proof system that is perfectly sound and extractable in
the binding mode, and perfectly witness indistinguishable and perfectly zero-knowledge in the hiding mode. In our
‘real’ construction, all of our proofs will be done in the binding mode. We will use hiding mode for certain hybrid
arguments.

The Proof π1. Since it is simpler, we will start by discussing π1. Informally, π1 is a proof of consistency. It proves
that both FHE ciphertexts encode the same α, as per the definition of consistency presented earlier. However, the
actual proof is a bit more complicated. In particular, the proof π1 is a proof that either the FHE ciphertexts are
encoded consistently or the prover has knowledge of a unique witness wity associated with an instance y of some
language L with hard membership. Informally, this language has the property that if we sample y randomly from L, it
is computationally hard to infer if y ∈ L or not, but each y that is a “yes” instance has a unique membership witness
wity (we define these languages formally in our preliminaries).

In our actual scheme, we choose to use a non-accepting y value, so this ‘or’ branch can never be satisfied due to
the perfect soundness in the binding mode of our NIZK proof system. However, this extra ‘or’ branch is necessary for
our proofs and is activated in some of our hybrid schemes and circuits. We explain the intuition behind these kinds of
proofs in more detail later in this overview, as well as in the main body of the paper.

8

The Proof π0. Our proof π0 is a little bit more complicated. It uses 2n additional instances of the hard language
L, which we denote zj,b for j ∈ [n] and b ∈ {0, 1}. Informally, in π0 we prove that both FHE ciphertexts encrypt
the same level-set i = (i1, . . . , in) as described “in the clear” in the encoding, and the fact that (at least) one of the
following conditions holds:

• Either both FHE ciphertexts encode the same α in normal representation (i.e., the corresponding plaintexts are
identical to each other).

• Or there exists some j ∈ [1, n] such that zj,0 ∈ L and ij = 0.

• Or there exists some j ∈ [1, n] such that zj,1 ∈ L and ij = 1.

So, to summarize, π0 proves that either an encoding is in the normal form or that the prover possesses a unique
membership witness corresponding to an instance of the hard language L. At a first glance, using 2n instances of L
might seem like overkill (and, in fact, our first attempt at a construction only used one instance). However, using 2n
instances of L helps us to have fine-grained control over what particular types of oblique encoding are allowed. For
instance, if we set z1,1 to be an “yes” instance of L and all other zs to be “no” instances (and put our proofs in binding
mode), then our scheme will effectively only allow oblique encodings for encodings that “include” level 1 (i.e. the
first group of the multilinear map, such that i1 = 1). As we will show later, this is crucial to our proof.

As before, these alternative ‘or’ branches never get used in our actual construction. They only are active in hybrid
stages of our proof. All of our encodings in the actual construction will be in normal form.

Addition, Inversion and Multiplication. For addition and inversion of encodings at the same level, as well as for
multiplying encodings at appropriate levels, we generate probabilistic indistinguishability obfuscations of circuits that
broadly adhere to the following strategy:

• Verify the proofs π0 and π1 of both encodings to make sure they are valid (if not, abort).

• Use the FHE secret keys to decrypt the ciphertexts and retrieve the underlying input plaintexts.

• Perform the desired operation over the input plaintexts and create a valid encoding of the output plaintext at the
appropriate level.

In some of our proof hybrids, we will want to “forget” some of the FHE secret keys and switch to computing
addition, inversion, and multiplication homomorphically (without decryption). At a high level, such switches will
allow us to transform one or more encodings from normal to oblique representation and vice versa. These steps
will, of course, involve using the ‘or’ branches of our NIZK proofs. At the same time, these steps will also require
the ability to compute the MMap operations directly over the FHE ciphertexts in the input encoding(s), without the
knowledge of the corresponding secret keys. This is precisely why we need to use FHE (rather than some simpler
form of encryption).

Multiplying Oblique Encodings. It is important to note here that multiplication of two encodings that are both in
the oblique representation is impossible to compute unless the elements a, b, c ∈ Zq used for the oblique representation
are explicitly hardwired into the obfuscated multiplication circuit. This is the case for our ‘real’ scheme.

However, for reasons relevant to the proof of SXDH, in some of our hybrid arguments, we will want to not publish
a, b, and c, and instead give out a tuple

(
g, ga, gb, gc

)
. This means that we cannot multiply two elements in oblique

form. However, in such hybrid arguments, we ensure that it is impossible to ever multiply two encodings that are both
in oblique form. We expand more on this subsequently.

9

Extraction and Zero-Test. For extraction, we generate a probabilistic indistinguishability obfuscation of a circuit
that works as follows:

• Verify the proofs π0 and π1 to make sure the encoding is constructed correctly (if not, abort).

• Use the FHE secret keys to decrypt (at least one of) the ciphertexts and recover α = (α0, α1, α2, α3).

• Output gα0+aα1+bα2+cα3 where g ∈ G is the generator of a DDH-hard group of order q

Given the aforementioned extraction circuit, zero-test follows trivially. Note that we can extract and zero-test encod-
ings at every level – an essential feature of the “dream” version of MMaps defined in [GGH13a]. Furthermore, we
only (technically) need one of the two FHE secret keys in order to successfully extract. This follows from our proof
of consistency π1, which proves that the ciphertexts encode the same α. Looking ahead, we will exploit this in our
reduction.

Comparison with Previous Works. We present a high-level comparison of our construction with those in [AFH+16]
and [FHHL18]. In these papers, the authors also encode elements using two FHE ciphertexts and use a zero knowledge
proof (that they can relax by using a witness to an instance of a hard language problem in an ‘or’-style proof, like we
do) to argue that the proofs are consistent.

Our work here can be seen as a much more complicated generalization of their approach. The core differences
between our construction and these previous works stem from how we choose to encode a plaintext element α ∈
Zq . In [AFH+16], the authors encode each plaintext element α as a linear function, which inherently limits their
functionality to a “one-shot” MMap. The authors of [FHHL18] generalize this representation to univariate polynomials
of fixed degree, which allows them to achieve a graded MMap construction.

Our encoding strategy here can be seen as a further generalization, where we allow a larger class of functions.
This generalization plays a crucial rule in achieving MMap constructions with stronger (source group) assumptions, as
compared to the previous works. However, our more general encoding strategy also leads to additional requirements
in the scheme: in particular, we must use two (more complicated) zero-knowledge proofs π0, π1 instead of a single
zero-knowledge proof as in [AFH+16] and [FHHL18]. Our proofs of security are also substantially longer and more
complicated than those of these previous works.

2.2 Proof Intuition
We now present a high-level overview of the proof strategy for our SXDH-hard MMap construction. The proof can be
broadly divided into three steps: (a) transforming the encodings in the SXDH challenge from normal representation
to oblique representation such that these are computationally indistinguishable, (b) embedding a DDH challenge (over
the group G) into the transformed encodings, and (c) switching the encodings back to the normal representation.
The idea behind step (b) is as follows: when the DDH instance over the group G is real (respectively, random), the
transformed encodings constitute a real (respectively, random) SXDH instance over the MMap.

We will start by explaining our core proof goal at a high level. Then we will explain how some of our techniques
for completing the proof work.

Overall Goal: Embedding a DDH Challenge. The core idea behind our proof is to embed a DDH challenge in
our encodings: the “real” SXDH distribution will correspond to a “real” DDH term embedded in our encodings, and
the “random” SXDH distribution will correspond to a “random” DDH term embedded. How exactly this works is a
little bit complicated, and necessitates our use of oblique encodings to switch between “real” and “random” SXDH
challenge encodings. Recall that the SXDH assumption requires that the following indistinguishability holds for a
“top-level” level-set i:7

(Encode (α, i) ,Encode (β, i) ,Encode (α · β, i))
7Some SXDH definitions require this level-set to be a top-level “group” (i.e. ij = 1 for some j and ik = 0 for all k 6= j), others require that it

hold for any level-set, and still others require that it hold for all level-sets. We discuss these nuances when defining SXDH, but for now assume that
this level-set is top-level.

10

c
≈ (Encode (α, i) ,Encode (β, i) ,Encode (γ, i)),

where α, β, γ ← Zq . In our SXDH-hard MMap construction, we encode an element α as a tuple of the form
(α0, α1, α2, α3) with the restriction that for some fixed a, b, c ∈ Zq ,

α = α0 + a · α1 + b · α2 + c · α3 mod q.

In our construction we consider two kinds of possible ways of representing an element α - the normal representation
and the oblique representation. In the first case, we encode α using only α0, while the remaining slots are unused (this
is actually what is done in the real construction). In an oblique representation, all terms may be arbitrary as long as
the total sum is consistent. In hybrid arguments, we use the oblique encoding to help us prove security.

How might we do this? We can use the exponents a, b, and c to help here by directly tying them to the SXDH
(and corresponding DDH) challenge. In particular, we will use these elements to encode a challenge that can either
be “real” or “random” depending on the choices we make. More precisely, we can sample a and b uniformly from
Zq , and, in the “real” case, set c = ab, and in the random case, sample c ← Zq . Our challenge elements will quite
literally be Encode (a, i), Encode (b, i), and Encode (c, i) where i denotes the level-set at which we want to encode the
challenge.

Note that this distribution of encodings is correct for an SXDH challenge. Moreover, we can use either one of the
following representations for the challenge encodings:

((a, 0, 0, 0) , (b, 0, 0, 0) , (c, 0, 0, 0)) or ((0, 1, 0, 0) , (0, 0, 1, 0) , (0, 0, 0, 1)) .

Of course, an SXDH adversary should not be able to tell whether c = ab or c is random. If we give out these terms
in the clear (even to the obfuscator!), then proving security becomes difficult. However, it turns out we do not have to
give a, b, and c out directly: we can give them out in the form of a DDH tuple

(
g, ga, gb, gc

)
and work with the oblique

encodings, which, as we showed above, are themselves independent of a, b, and c (even if these are needed for the
evaluation). We can continue to compute (almost) all of our multlinear map algorithms using just this DDH tuple, and
we can argue that, since the outputs are the same whether or not we use the DDH tuple or the terms a, b, and c in the
clear for our multilinear map algorithms, the obfuscated programs for our circuits can “forget” a, b, and c themselves
and use the DDH tuple at this step without any adversary being able to tell. This allows us to show that any adversary
that can break this (crucial) step of our proof of SXDH can be used to break DDH. We elaborate on this below.

Group Embedding. Working with the tuple
(
g, ga, gb, gc

)
, rather than the exponents a, b, and c themselves, is a

little bit tricky. However, we can (mostly) compute all of the required algorithms, which we show next.

Addition and Inversion. To begin, observe that addition and inversion of encodings do not require the knowledge of the
exponents a, b and c. In particular, given an encoding of x = (x0, x1, x2, x3) and y = (y0, y1, y2, y3), the reduction
can exploit the homomorphic properties of the group to compute encodings in the following way:

x+ y = (x0 + y0, x1 + y1, x2 + y2, x3 + y3) , −x = (−x0,−x1,−x2,−x3).

To see why this works, note that

gx0+ax1+bx2+cx3gy0+ay1+by2+cy3 = g(x0+y0)+a(x1+y1)+b(x2+y2)+c(x3+y3).

Extraction and Zero-Testing. Extraction and zero-testing are also relatively simple to handle given only the DDH tuple
of
(
g, ga, gb, gc

)
instead of a, b, and c. Given an encoding of x = (x0, x1, x2, x3), the extraction circuit outputs

g∗ = gx0+a·x1+b·x2+c·x3 = gx0 · ga·x1 · gb·x2 · gc·x3 .

Note that this is a valid extraction algorithm, since all representations of x extract to the same group element.
Furthermore, this is very simple to compute (just group exponentiation and multiplication) given an encoding and a
DDH tuple.

11

Multiplication. Multiplication of encodings given only the DDH tuple requires some more care, and the difficulty of
multiplication in this case is the root cause of the complexity of our construction and proofs. To begin with, observe
that given an oblique encoding of x = (x0, x1, x2, x3) and a normal encoding of y = (y0, 0, 0, 0), we can exploit the
homomorphic properties of the group to compute an encoding of the following product:

x · y = (x0 · y0, x1 · y0, x2 · y0, x3 · y0).

This still does not require the knowledge of the constants a, b and c and holds true since

e
(
gx0+ax1+bx2+cx3 , gy0

)
= g(x0+ax1+bx2+cx3)y0 = gx0y0+ax1y0+bx2y0+cx3y0 .

On the other hand, if the encoding of y also uses the oblique representation (i.e., all slots can be used to encode the
plaintext element), then evaluating the cross-product terms would require knowledge of the exponents a, b and c. This
would be a problem for us, because our multiplication circuit would not work for certain encodings if we only had the
DDH tuple and not the “secret” exponents. So, we have a slight dilemma: we need to enable oblique encodings for
(at least) the challenge encodings so that we do not need the secret exponents a, b, and c in the clear, but we also need
to ensure that we never have to multiply two oblique encodings (necessitating some kind of restriction on the oblique
encodings).

Fixing Multiplication. We can avoid this issue by modifying what elements are allowed to be in oblique form. Note
that all of the challenge elements, by definition, are in a (top-level) level set i, for some binary vector i such that
there exists an index j such that ij = 1 and ik = 0 for all j 6= k. If we ensured that only elements where ij = 1
could be encoded obliquely, then we would never have to multiply two obliquely encoded elements: multiplying two
elements that have a level in common is forbidden by the definition of a multilinear map, so we could never multiply
two elements for which both had ij = 1. Allowing oblique encodings for elements where ij = 1 also still allows us to
obliquely encode the challenge elements, since ij = 1 for them by the definition of the SXDH assumption.

This, it turns out, is exactly what we do. If we go back to the definition of our encodings, we can see that our proof
π0 pertains to what form encodings take. Now we sample the language instances zj′,b for j′ ∈ [n] and b ∈ {0, 1} in
a manner that ensures that, at the key step of our hybrid argument, oblique encodings are only allowed for encodings
such that the level-set i satisfies ij = 1. At a high level, this would involve sampling only zj,1 as a “yes” instance
and all others as “no” instances. We can use the proof π0 to enforce that any valid encoding must either be in normal
representation, or correspond to a level-set i such that ij = 1. This constitutes the core technical idea that allows us to
complete the proof. In the next section, we present more details of how to actually implement this idea.

2.3 Proof Techniques and Details
The above proof intuition explains the overall strategy for our proof. However, it doesn’t explain many of the details
of the construction, or how our overall proof is structured. We attempt to close some of those gaps here.

Overall Proof Structure. We start by describing the overall structure of our proof. This is not the exact structure of
our hybrids (some of the steps below constitute multiple hybrids), but the overall flow is the same..

1. We start with our actual construction, with a “random” SXDH challenge tuple. The multilinear map circuits
(add, invert, multiply, and extract) have access to the secret exponents a, b, and c.

2. We switch the first FHE ciphertext of our challenge encodings to oblique form. This involves a step where we
“forget” the secret keys corresponding to the first FHE ciphertexts in the tuples.

3. We switch the second FHE ciphertext of our challenge encodings to oblique form. This step is almost identical
to the previous step in terms of the proof.

12

4. We modify our circuits to enforce the special restrictions on oblique encodings described above, where oblique
encodings are only allowed for terms that contain the level-set of the challenge elements.

5. Our circuits “forget” a, b, and c, and use the tuple
(
g, ga, gb, gc

)
instead when needed in the circuit algorithms.

Note that the DDH tuple itself is a “random” tuple where c← Zq uniformly at random.

6. We switch the DDH tuple from “random” to “real” (i.e. c = ab). As a result, the challenge encodings, which
are in oblique representation, get automatically switched from “random” to “real” SXDH encodings over our
MMap.

7. We run all of the above steps except for (5) in reverse and “clean up.”

The overview above accurately describes our high-level hybrid structure. In the actual proof, these high-level or
“outer” hybrids are often sub-divided into sequences of “inner” hybrids to deal with the interplay between the NIZK
proof system and the piO scheme. In the rest of this subsection, we will look at a few steps/hybrids of the proof in
more detail. We believe that these will provide intuition for how the proofs work.

OR Proofs with Hard Languages. One of the key ingredients in our proof that we use repeatedly is what we call an
“OR proof.” Suppose we have some “hard” language L where we can efficiently sample both “yes” and “no” instances
of L. Furthermore, we require that (a) it is hard to efficiently distinguish between “yes” and “no” instances of L, that
each “yes” instance of L has a unique language membership witness, and that there is an efficient verification function
of the form RL : instance × witness → {0, 1}. We define these languages formally in definition 3.4 and note that
the existence of such L follow from the existence of DDH-hard groups.

Our OR proofs will typically be statements of the following form:

• Either an MMap encoding satisfies some property (e.g., consistency or normal representation).

• Or there is a witness witx for an instance x of L such that RL (x,witx) = 1.

These OR proofs allow us to subtly change things in our security proofs while still allowing us to use piO (which
requires input/output equivalence of programs up to “randomness”). The interplay between the language L and our
zero knowledge proof system is key to these OR proofs’ usefulness.

Recall that we require a dual-mode NIZK proof system that is perfectly sound and extractable in the binding mode,
and perfectly witness indistinguishable and perfectly zero-knowledge in the hiding mode. Our proofs will typically
start out in binding mode. The perfect binding property allows us to ensure that, if x /∈ L, then such a proof will never
verify in binding mode unless the property check passes.

Next, suppose that we have an MMap circuit that, when handling the OR proof(s) in the input encoding(s), uses an
extraction trapdoor text to extract a language-membership witness witx for x from a verifying proof of membership for
x. Now consider an alternative version of the same circuit that is identical except that it uses a hardwired language-
membership witness wit′x for the same x. Since instances of L have unique witnesses, then we know that the extracted
witness witx must be the same as the hardwired witness wit′x. Therefore, the output distribution of these two programs
is identical. Now, if needed in some hybrid of the proof, we could make this switch, and invoke piO security against
X-IND samplers to argue that the obfuscations of the two circuit versions are computationally indistinguishable.

We also extensively use hiding mode in our OR proofs. In particular, suppose we have two versions of an MMap
circuit that are identical except that they generate valid proofs with different witnesses as part of the output encodings.
For example, the first version generates a verifying proof of consistency, while the second version generates a verifying
membership proof for some x ∈ L. Since the NIZK proof system is perfectly witness indistinguishable in the hiding
mode, the output distributions of both versions of the circuit are identical. So yet again, if needed in some hybrid of
the proof, we could make this switch, and invoke piO security against X-IND samplers to argue that the obfuscations
of the two circuit versions are computationally indistinguishable.

Finally note that we can switch our NIZK proof systems between hiding mode and binding mode in a computa-
tionally indistinguishable manner. This follows from the fact that the public parameters of our NIZK proof system can
be selected independently from (and before) the rest of the construction (circuits, etc.) is generated. We exploit this in
several hybrids of our proof.

13

Enabling Oblique Encodings. With our OR proofs in mind, we can describe how we enable oblique encodings in
our construction. Below, we describe how we enable oblique encodings for all terms (which turns out to be the first
step in our overall proof). Each of these steps is rather complicated and consists of a number of sub-steps, which we
outline below. We assume the challenge terms are in some level i = (i1, . . . , in) such that ij = 1 for some j ∈ [n].

1. We start with the obfuscated circuits of the actual scheme, and “random” challenge encodings in normal form.
All of our language instances are unsatisfiable and our proof systems are in binding mode and generate witnesses
using extraction trapdoors.

2. We change the language instances zj,0 and zj,1 to be members. Note that this is a simple step in the proof, since
we can simulate the rest of the components of the multilinear map given the language instances.

3. We modify the obfuscated MMap circuits so that they directly use the hardwired witnesses witzj,0 and witzj,1
for these instances in order to generate verifying proofs π0 as part of their output encodings. We note that this
effectively allows all encodings to be oblique.

4. We switch the proofs π0 of the challenge encodings to language-membership proofs using the witness witzj,1 ,
rather than proving normal representation using some other witness (in particular, the FHE secret keys).

While step 3 is simple, step 4 is more complicated: in order to switch witnesses, we need to switch our NIZK
proof system to hiding mode. Our NIZK proof system is only guaranteed to have perfect witness indistinguishability
in hiding mode, so step 4 actually consists of several steps.

Later in the proof, when we only want to enable oblique encodings for elements such that ij = 1, we will use a
similar argument, but only modify the proofs and witnesses for elements where ij = 1.

Indistinguishability of Encoding Representations. One of the core steps in our proof is switching the FHE cipher-
texts (one at a time) from encodings in normal form to encodings in oblique form (so that we can eventually embed
a DDH challenge). Each of these steps is rather complicated and consists of a number of sub-steps, which we outline
below. We only describe the first FHE ciphertext switch below, as the second is almost identical to the first. As before,
we assume the challenge terms are in some level i = (i1, . . . , in) such that ij = 1 for some j ∈ [n].

1. We start by assuming that our circuits use the appropriate hardwired witnesses to output valid oblique encodings,
as discussed above. The FHE ciphertexts in the challenge encodings themselves are still in the normal form.
However, the proofs of normal encoding have been replaced with proofs of language membership, as discussed
earlier.

2. We next change the language instance y (used in π1) to be a satisfying or “yes” instance in L.

3. Our circuits “forget” the secret key for the first FHE ciphertext in the encodings. We evaluate addition and
multiplication homomorphically on the first FHE ciphertext, which allows us to create new encodings that are
correctly distributed. In the extract circuit, we just use the second FHE ciphertext (for which we still have the
secret keys) and ignore the first FHE ciphertext. At a high level, we justify these steps by invoking piO security
and the perfect soundness of the NIZK proof system in the binding mode).

4. We modify the MMap circuits so that they always use the witness wity to generate proofs for π1 rather than
proving the consistency check natively (i.e. by using the secret keys of the FHE scheme). This is a crucial
step that requires multiple hybrids and involves many alterations to the obfuscated MMap circuits (all of which
are justified by invoking piO security and the perfect witness indistinguishability of the NIZK proof system in
hiding mode).

14

5. We switch the proofs π1 of the challenge encodings to language-membership proofs using the witness wity ,
rather than proving consistency using the FHE secret keys. In this step, we again crucially rely on the perfect
witness indistinguishability of the NIZK proof system in the hiding mode.

6. At this point, all of the MMap circuits and the challenge encodings have essentially “forgotten” the secret key
for the first FHE ciphertext. So we can switch the first FHE ciphertext in each of the challenge tuples from
normal form to the special oblique form described earlier.

7. We repeat all of the above steps except for step 6 in the reverse order.

There are several points in the above outline that merit explanation. To begin with, forgetting the first FHE secret
key in the MMap circuits (step 3) is tricky. The need to compute additions inversions and multiplications of encodings
without secret keys is why we need to use FHE rather than a more basic form of encryption. We first note that the
output distributions of the addition, inversion, multiplication, and extraction circuits are correct. However, proving
this turns out to have some subtle difficulties.

By the definition of FHE, adding and multiplying two FHE ciphertexts results in a valid FHE ciphertext. But in
order to apply piO, we actually need the results of homomorphically adding or multiplying two FHE ciphertexts to be
identically distributed to a fresh ciphertext–otherwise the output distributions are not the same. In addition, we need
decryption to always work. This means that our FHE scheme must have perfect correctness and a property we call
“well-distributedness of output of FHE.Eval” (called “compactness” in [FHHL18]). While LWE-based FHE schemes
do not have these properties, piO-based FHE schemes such as the one in [CLTV15] do satisfy these requirements,
so we can assume that FHE with these properties exists. This allows us to justify that the output distributions of the
addition and multiplication circuits remain unaltered. The justification for the inversion circuit is essentially identical.

Extraction is simpler: we can just ignore the first FHE ciphertext in each tuple with regards to extraction since we
can learn all of the information we need to compute the extraction value from the second FHE ciphertext. We rely
on the perfect soundness guarantees of the NIZK proof system in the binding mode to argue that an adversary cannot
fool the extraction circuit into accepting encodings that have inconsistent encodings. So the output distribution of the
extraction circuit also remains unchanged.

Next, step 4 entails that the MMap circuits be suitably modified so that they no longer check the input encodings
for consistency when deciding which witness to use for the output proof π1. Since we are potentially switching
proof witnesses here, we crucially rely on the perfect witness indistinguishability of the NIZK proof system in the
hiding mode. However, our proof hybrids are designed in a manner that the adversary cannot exploit this relaxation
to design valid encodings where the FHE ciphertexts do not encode the same element. In particular, we rely on the
indistinguishability of the NIZK system in the binding and hiding modes for this guarantee to hold.

Finally, we note that at the conclusion of step 5, a simulator can simulate the obfuscated MMap circuits and the
challenge encodings without any information about the secret key corresponding to the first FHE encryption in each
encoding. This allows us to switch the first FHE ciphertext in each challenge encoding from normal to oblique form
in step 6.

Forgetting the Secret Exponents. Once the challenge encodings have been switched from normal to oblique rep-
resentation entirely, we require yet another “forgetting” step - one which essentially forms the core of our proof of
SXDH-hardness. We need the MMap circuits to “forget” the secret exponents a, b and c sampled at setup and used
for consistency checks/extraction over oblique encodings. More specifically, we wish to switch to MMap circuits that
are only hardwired with the tuple

(
g, ga, gb, gc

)
into our circuits, albeit without changing any functionality. This is a

rather involved step in our proof since it involves applying piO to some carefully constructed circuits.
We explain the circuit switches and how to apply piO to them in greater detail. As explained earlier, the addition

and inversion circuits do not require the knowledge of the secret exponents to add/invert encodings in oblique represen-
tation. Similarly, the extraction circuit can compute the extraction output on an oblique encoding x = (x0, x1, x2, x3)
as:

g∗ = gx0+a·x1+b·x2+c·x3 = gx0 · ga·x1 · gb·x2 · gc·x3 ,

15

which is efficiently computable given only the tuple
(
g, ga, gb, gc

)
. So the key focus here is our MMap multiplication

circuit.
We can describe our MMap multiplication circuit in a very particular way: we use the following “if tree” to handle

multiplication between encodings:

• If both FHE ciphertexts are in normal form, multiply using the trivial algorithm.

• Else If the first FHE ciphertext is in normal form and the second is in oblique form, use the oblique multiplication
algorithm (that doesn’t need the values of a, b, and c).

• Else If the FHE second ciphertext is in normal form and the first is in oblique form, use the oblique multiplication
algorithm with the order of ciphertexts reversed.

• Else use the multiplication algorithm that uses the exponents a, b, and c in the clear.

At a high level, what does this convoluted representation of our multiplication circuit buy us? Suppose that in
some hybrid, we force all the NIZK proofs in any valid encoding to be binding. Additionally, we fix j∗ ∈ [n] and
sample the language instances zj,b for j ∈ [n] and b ∈ {0, 1} such that only zj∗,1 is an “yes” instance and every other
instance is a “no” instance. This would enforce that any valid encoding must either be in the normal representation
or must correspond to a level i = (i1, . . . , in) such that ij∗ = 1. In other words, any two valid encodings in oblique
representation must be incompatible for multiplication.

It is easy to see that in such a scenario, the final Else branch of the MMap multiplication circuit–the only part
of the circuit that needs to use the exponents a, b, and c in the clear–is never satisfied. Due to the perfect soundness
of our NIZK proofs in the binding mode, no adversary (even computationally unbounded) can craft an input to our
multiplication circuit that satisfies this branch. So, if we create a modified MMap multiplication circuit that is identical
to the real circuit except that it does not contain the last Else branch, the outputs remain unchanged. Hence, the piO
obfuscations of these circuits are computationally indistinguishable. This allows us to “forget” the secret exponents a,
b, and c from our MMap circuits, and allows us hardwire them with a DDH challenge instance.

Of course, the above description is a simplification: our actual multiplication circuit is more complicated as some
components of the output encoding need to be computed homomorphically, and we have omitted dealing with the
NIZK proofs in the description above. But the intuition behind forgetting the secret exponents is exactly as described
above.

2.4 Other Graded Encodings
So far, we have focused on our construction of an SXDH-hard asymmetric MMap. However, it turns out that under-
standing the SXDH-secure construction is almost sufficient for understanding all of the other constructions: our other
constructions of asymmetric MMaps (where the joint-SXDH and the exponent-DDH assumptions hold) fit in the same
overall proof framework.

In particular, in all of these proofs, we start with a “basic” group assumption (i.e. over a group without any
kind of pairing), embed it in our challenge encodings, and show that any adversary that breaks the multilinear map
assumption can be used to break the “basic” group assumption. In fact, this proof framework can be viewed as a
generic tool that allows us to achieve asymmetric MMaps with most of the well-known (prime order) source group
assumptions [EHK+13].

Note that a technical requirement in the proof framework outlined above is that the adversary is restricted from
multiplying challenge encodings (or encodings derived from challenge encodings) as is the case with the SXDH and
joint-SXDH assumptions. This ensures that the reduction is not required to handle cross-product terms when obliquely
embedding a hard problem instance into the challenge encodings.

This restriction no longer applies when we want to construct a symmetric MMap endowed with hardness assump-
tions. This causes some difficulty in our proofs: we need to be able to multiply challenge encodings with each other,
which is not something that our proof structure can handle. At a high level, we get around this issue by strengthening
the hardness assumption on the basic group G used in the construction.

16

An example of this is the following: recall that the (` + 1)-EDDH assumption over a degree-` symmetric MMap
requires that the following indistinguishability holds for any level:(

Encode (α) ,Encode(α`+1)
) c
≈
(
Encode (α) ,Encode (α∗)

)
,

where α, α∗ ← Zq . Since the adversary can pair challenge encodings at the same level, in this case an adversary can
compute all encodings of the form Encode

(
αi+(`+1)j

)
for all i + j < `. If we wanted to put these challenge terms

“in the exponent” of a basic group like in our asymmetric constructions, we would need to provide all terms of the
form gα

i+(`+1)j

for all i + j < ` for some g ← G. We can obviously not simulate this in a “basic” group given only(
gα, gα

`+1
)

.
So we resort to obliquely embedding an instance of a hardness assumption that would allow the reduction to

simulate all possible cross-product terms resulting from such pairings. More specifically, we assume that the reduction
is provided with a challenge set of group elements of one of the following forms:(

g,
{
gα

i+(`+1)j
}
i+j∈[`]

)
or

(
g,
{
gα

i·(α∗)j}
i+j∈[`]

)
,

where g ← G and α, α∗ ← Zq . Note that both sets of these terms are consistent with what an adversary could check
using the multilinear map. We refer to this indistinguishability assumption as the “strong”-(`+ 1)-EDDH assumption
over the group G. In the main body of the paper, we prove that this assumption is implied by the power-DDH
assumption over the group G.

Finally, it is worth noting that the (` + 1)-EDDH assumption over a degree-` symmetric multilinear map implies
many of the most commonly studied and used assumptions over symmetric multilinear maps. For a full discussion
and reductions between all of the assumptions, we refer the reader to [EHK+13].

3 Preliminaries
We recall the definition of a dual-mode NIZK proof system. We adopt the notation from [CKWZ13].

Definition 3.1. A tuple of three algorithms (G,P, V) is said to be noninteractive proof system for a language L ∈ NP
if it satisfies the following properties:

• Completeness: For any x ∈ L and any witness w for x we have

Pr[crs← G(1λ);π ← P (crs, x, w) : V (crs, x, π) = 1] = 1.

• Soundness: For any attacker A, if crs← G(1λ) and (x, π)← A(crs) then

Pr[V (crs, x, π) = 1 ∧ x /∈ L] ≤ negl .

Definition 3.2. A noninteractive proof system (G,P, V) is said to be dual-mode NIZK if there are efficient simulators
S and S with the following properties:

• Indistinguishability of modes: If crs0 ← G(1λ) and (crs1, st)← S(1λ) then crs0
c
≈ crs1.

• Simulation in ZK mode: For any A if (crs1, st)← S(1λ) and (x,w)← A(crs, st) then

Pr[π ← P (crs, x, w) : A(π) = 1]− Pr[π ← S(st, x) : A(π) = 1] = 0.

For our constructions (similar to [FHHL18]), we need dual-mode NIZK proof systems that are

• perfectly complete in both modes;

17

• perfectly extractable and perfectly sound in the binding mode;

• perfectly zero knowledge and perfectly witness indistinguishable in the hiding mode.

Here we mention the definition of fully homomorphic encryption for bits. The following definition naturally
generalizes to an arbitrary message space (say Zq). We remark that in the following definition we assume that the
evaluation key is included as part of the public key.

Definition 3.3. A fully homomorphic encryption (FHE) scheme (for bits) is a tuple of four algorithms (Gen,Enc,Dec,Eval)
such that the tuple (Gen,Enc,Dec) is a CPA-secure PKE scheme and the evaluation algorithm Eval satisfies homo-
morphism and compactness properties as defined below:

• CPA security: If (pk, sk)← Gen(1λ) then for any messages m0 and m1 we have

Enc(pk,m0)
c
≈ Enc(pk,m1).

• Homomorphism: For any (boolean) function f : {0, 1}` → {0, 1} and any sequence of ` messages m1, . . . ,m`

if (pk, sk)← Gen(1λ) and ci ← Enc(pk,mi) then

Pr[Dec(sk,Eval(pk, c1, . . . c`)) = f(m1, . . . ,m`)] = 1.

• Compactness: There exists a polynomial p(λ) such that the output of Eval has p(λ) bits, and p(λ) is independent
of size of f and the number of inputs.

We remark that for our constructions we need an FHE scheme with the following two properties:

• Perfect correctness: For any message m in the message spaceM, it holds that

Pr[Dec(sk(Enc(pk,m))) = m] = 1,

where (pk, sk)← Gen(1λ).

• Well-distributedness of output of Eval algorithm: For any (boolean) function f : M` →M and any sequence
of ` messages m1, . . . ,m` if (pk, sk)← Gen(1λ) and ci ← Enc(pk,mi), it holds that

Enc(pk, f(m1, . . . ,m`)) ≡ Eval(Enc(pk,m1), . . . ,Enc(pk,m`))

where ≡ means that the two distributions are identically distributed and each encryption uses a fresh and inde-
pendent randomness.

We provide the definition of language family with hard membership property.

Definition 3.4. A language family with hard membership is a tuple of three algorithms (Gen,Sam,R) with the fol-
lowing syntax:

• Gen: On input 1λ outputs some public parameter pp.

• Sam: On input pp and a bit b ∈ {0, 1}, it uniformly samples a YES/NO instance of of the language depending
on the bit b.

• R: On inputs (pp, x, w) outputs a bit which denotes whether x belongs to the language or not.

We require the following properties:

• Correctness: For any pp ← Gen(1λ) and any x ← Sam(1) (respectively x ← Sam(1)), there exists (respec-
tively, does not exist) a witness w such that R(pp, x, w) = 1 (respectively, R(pp, x, w) = 0).

18

• Security: If x0 ← Sam(0) and x1 ← Sam(1) then x0
c
≈ x1.

• Uniqueness: For any pp ← Gen(1λ), any x ← Sam(1), and any pair of witnesses w and w′ if R(pp, x, w) =
R(pp, x, w′) = 1 then w = w′.

We recall the definition of indistinguishability obfuscation (iO) from [BGI+01].

Definition 3.5. A PPT algorithm Obf is an indistinguishability obfuscator for a circuit family Cλ with input space
{0, 1}`(λ) if:

• Correctness: For every circuit C ∈ Cλ and every input x ∈ {0, 1}`(λ) we have:

Pr[C(x) = C ′(x) : C ′ ← Obf(C)] = 1,

where the probability is taken over the randomness of Obf algorithm.

• Security: For any PPT attacker A and for any two functionally equivalent circuits C0 ∈ Cλ and C1 ∈ Cλ such
that |C0| = |C1|, it holds that:

|Pr[A(λ,C0) = 1]− Pr[A(λ,C1) = 1]| ≤ negl(λ).

We recall the definition of piO for a class of samplers from [CLTV15].

Definition 3.6. We say that piO is an indistinguishability obfuscator for a class of samplers S over the (randomized)
circuit family C if is satisfies the following properties:

• On input a circuit C and security parameter λ, outputs a deterministic circuit C of size poly(|C|, λ).

• For every PPT attacker A, every circuit C, and string str, consider the following experiments:

– Exp0
A(C, str): A participates in an unbounded number of iterations, and in iteration i, A chooses an xi; if

xi is equal to any of the previously chosen input xj (for j < i) abort. Otherwise, A gets C(xi; ri) using
fresh randomness ri. Finally, A outputs a bit b.

– Exp1
A(C, str): Let C = piO(C; r). Run A as in the previous experiment except that in each iteration,

provide A with C(xi).
We require that for any PPT attacker A, every circuit C, and and every polynomial-length string str it
holds that

∣∣Pr[AExp0
= 1]− Pr[AExp1

= 1]
∣∣ ≤ negl.

– For every PPT attacker A and every sampler S ∈ S, if (C0, C1, str)← S we have∣∣Pr[A(C0, C1, piO(C0), str) = 1]− Pr[A(C0, C1, piO(C0), str) = 1]
∣∣ ≤ negl .

We also recall the definition of X-Ind samplers from [CLTV15].

Definition 3.7. The class SX−Ind of (static-input) X-Ind samplers for a circuit family C contains all circuit samplers
D = {Dλ} for C with the following property: For every λ, there is a set X = Xλ of size at most X(λ) ≤ 2λ such that

• With overwhelming probability over the choice of (C0, C1, z)← Dλ, for every x′ /∈ X , it holds thatC0(x′, r) =
C1(x′, r) for every random string r.

• For every PPT adversary A = (A1,A2), the advantage of A in the following experiments is negl ·X−1:

1. (x, st)← A1(1λ).

2. (C0, C1, z)← D.

3. y ← Cb(x) where b← {0, 1}.
4. b′ ← A(st, C0, C1, z, x, y).

The advantage of A is defined to be Pr[b = b′]− 1/2.

Definition 3.8. Let X be a by function such that X ≤ 2λ. We say that a uniform PPT algorithm X-piO is an X-piO
for randomized circuits if it is a piO for the class ofX-Ind samplers SX-Ind over C that includes all randomized circuits
of size at most λ.

19

4 Multilinear Maps
In this section, we define multilinear maps (graded encodings) and some of their properties. While most of this section
is standard and thus not new to a reader familiar with the area, we do emphasize that we have some new material. In
particular, we need to delve into the security games of asymmetric multilinear maps and related assumptions such as
SXDH and joint-SXDH in ways that, to our knowledge, have not been previously explored.

We start by defining some basic notation around multilinear maps. Traditionally, a (symmetric) multilinear map
was defined as a deterministic function e : Gn → GT where plaintexts α were encoded as gα for some generator
g ∈ G, with the property that e (gα1 , . . . , gαn) = e (g, . . . g)

∏n
i=1 αi . However, unfortunately we cannot construct

such nice and simple multilinear maps, as our constructions will have randomized encodings. Moreover, we will build
multilinear maps with the additional property that such maps can be partially computed, or “graded.” Technically
speaking, we will build graded encodings, but we will follow the literature and use these terms interchangeably.

We refer to elements of multilinear maps as encodings, which encode some value. Each encoding is present at
a given level of the multilinear map, which, informally speaking, refers to how many multiplications (and, in the
asymmetric case, with which elements) it takes to reach the encoding from “top-level” encodings. We explain this
below.

Level-i Encoding, Symmetric Case. For a degree n multilinear map, we define a level-0 encoding to be a plaintext
element. We define a level-1 encoding to be an encoding of some element in the source group. For 1 ≤ i ≤ n, we
define a level-i encoding to be the product of i level-1 encodings, so that a level-n encoding is an encoding in the
target group.

Symmetric Multilinear Map. We are now ready to define a symmetric multilinear map. Our definitions are inspired
by [GGH13a]. Let R be a ring and let 0R be the zero element for the ring.

Definition 4.1. (Symmetric Multilinear Map.) A symmetric multilinear map (MMap) consists of the following
polynomial-time algorithms:

• Setup(1λ, 1n): Takes as input the security parameter λ and the degree of multilinearity n, and outputs a public
parameter pp.

• Encode(pp, a, i) : Takes as input the public parameter pp, a plaintext element a ∈ R and a level i ∈ [0, n], and
outputs the encoding [a]i.

• Add(pp, [a]i, [b]i): Takes as input the public parameter pp and two encodings [a]i and [b]i corresponding to a
valid level i ∈ [0, n], and outputs either the encoding [a + b]i or ⊥ (in case one or more of the input encodings
are invalid or the encodings are not at the same level).

• Inv(pp, [a]i): Takes as input the public parameter pp and an encoding [a]i corresponding to a valid level i ∈
[0, n], and outputs either the encoding [(−1)R · a]i or ⊥ (in case the input encoding is invalid).

• Mult(pp, [a]i1 , [b]i2): Takes as input the public parameter pp and two encodings [a]i1 and [b]i2 such that i1+i2 ≤
n, and outputs either the encoding [a.b]i1+i2 or ⊥ (in case one or more of the input encodings are invalid or
i1 + i2 > n).

• Ext(pp, [a]i): Takes as input the public parameter pp and an encoding [a]i corresponding to a valid level i, and
outputs either s ∈ {0, 1}λ or ⊥ (in case the input encoding is invalid). For any two valid encodings that encode
the same plaintext element a ∈ R at the same level i, we require that the output of Ext be identical.

• ZeroTest(pp, [a]i): Takes as input the public parameter pp and an encoding [a]i corresponding to a valid level
i, and outputs b ∈ {0, 1,⊥}, where:

– 1 indicates that a = 0R.

– 0 indicates that a 6= 0R.

20

– ⊥ indicates that the encoding is invalid.

Remark 4.2. Note that equality-checking of encodings at any valid level follows implicitly from the addition, inversion
and zero-test operations at the same level, so for some applications we may not need the extract algorithm. However,
we can achieve it in our constructions so we provide it here for completeness.

We can now move on to our definition of an asymmetric multilinear map. Traditionally, asymmetric multilin-
ear maps were defined in a similar way as symmetric multilinear maps–as functions e : G1 × . . . × Gn → GT
where plaintexts α were encoded as gαi for some generators gi ∈ Gi, with the property that e (gα1

1 , . . . , gαNn) =

e (g1, . . . gn)
∏n
i=1 αi . As with symmetric multilinear maps, we will not construct or define this kind of map, but

instead build (randomized) graded encodings.

Level-i Encoding, Asymmetric Case. Denoting the level of an encoding in an asymmetric multilinear map is more
complicated than in the symmetric case. We cannot simply use an integer to indicate the level of an encoding because
we need to keep track of which “groups” have been multiplied in order to generate the encoding.

To do this, we define a “level-vector” i ∈ {0, 1}n. Informally, speaking, the level-vector i has a one in position j
if and only if the encoding corresponding to the level set vector corresponds to some product that included an element
from the jth “level one” encoding set (i.e. Gj), where the “level-one” encoding corresponds to a level-vector with a
single non-zero entry.

We denote ~0N and ~1n to be be the all-zeroes and all-ones vectors of length n, respectively. With this in mind, we
can define a level-~0n encoding to be a plaintext element as we did before. A level-~1n encoding is analagous to an
encoding of some element in the “source group.”

For two level-vectors i1, i2 ∈ {0, 1}n, we say that i1 ≤ i2 if every entry of i2 is smaller than its corresponding
entry (coordinate-wise) in i1. A level-vector i ∈ {0, 1}n is said to represent a valid level if ~0n ≤ i ≤ ~1n. We say
two level-vectors i1 and i2 are pairing-compatible if i1 + i2 ≤ ~1n. We note that our definition of level-sets implicitly
enforces the closure restriction of pairing-compatibility as discussed in [LV16], so we do not need to worry about
closure of pairing-compatibility here.

Asymmetric MMap. We can now define an asymmetric multilinear map. Let R be a ring and let 0R be the zero
element for the ring.

Definition 4.3. (Asymmetric Multilinear Map.) An asymmetric multilinear map (MMap) consists of the following
polynomial-time algorithms:

• Setup(1λ, 1n): Takes as input the security parameter λ and the degree of multilinearity n, and outputs a public
parameter pp.

• Encode(pp, a, i) : Takes as input the public parameter pp, a plaintext element a ∈ R and a valid level-vector i,
and outputs the encoding [a]i.

• Add(pp, [a]i, [b]i): Takes as input the public parameter pp and two encodings [a]i and [b]i corresponding to a
valid level-vector i, and outputs either the encoding [a + b]i or ⊥ (in case one or more of the input encodings
are invalid or the level-vectors are not identical).

• Inv(pp, [a]i): Takes as input the public parameter pp and an encoding [a]i corresponding to a valid level-vector
i, and outputs either the encoding [(−1)R · a]i or ⊥ (in case the input encoding is invalid).

• Mult(pp, [a]i1 , [b]i2): Takes as input the public parameter pp and two encodings [a]i1 and [b]i2 such that i1+i2 ≤
~1N , and outputs either the encoding [a.b]i1+i2 or ⊥ (in case one or more of the input encodings are invalid or
i1 + i2 � ~1n).

• Ext(pp, [a]i): Takes as input the public parameter pp and an encoding [a]i corresponding to a valid level-vector
i, and outputs either s ∈ {0, 1}λ or ⊥ (in case the input encoding is invalid). For any two valid encodings that
encode the same plaintext element a ∈ R with the same level-vector i, we require that the output of Ext be
identical.

21

• ZeroTest(pp, [a]i): Takes as input the public parameter pp and an encoding [a]i corresponding to a valid level-
vector i, and outputs b ∈ {0, 1,⊥}, where:

– 1 indicates that a = 0R.

– 0 indicates that a 6= 0R.

– ⊥ indicates that the encoding is invalid.

Comparison with “Dream Version” Definitions. Note that our definition of symmetric/asymmetric multilinear
maps almost identically achieves the full “dream version” of features that are defined and discussed in [GGH13a] and
thus should be usable in any application of multilinear maps. The only technical difference is that we permit sampling
an encoding for a specific plaintext value a ∈ R, while the authors of [GGH13a] provide an algorithm to sample a
random a← R along with its encoding.

4.1 Symmetric Multilinear Map Assumptions
We begin by defining the main hardness assumption over symmetric multilinear maps that we use in this paper.

The (n + 1)-EDDH Assumption. We define the (n + 1)-exponential DDH (EDDH) assumption over symmetric
multilinear maps. Suppose that we have a multilinear map of degree n. Informally, the (n + 1)-EDDH assumption
states that an encoding of some random element and an encoding of that element raised to the n + 1th power are
indistinguishable from two encodings of random elements. Note that this is plausible since, for some encoding [α]1,
we can only hope to compute [αn]1 using the multilinear map.

As discussed in [EHK+13], we note that the (n + 1)-EDDH assumption implies many of the most commonly
studied assumptions over (symmetric) multilinear maps. We do not define them all here or go into detail about these
reductions, but instead encourage the reader to refer to that paper. We formally define the (n+ 1)-EDDH assumption
below.

Definition 4.4. ((n+1)-EDDH Assumption.) The (n+1)-EDDH assumption over a degree-n symmetric multilinear
map with input ring R requires that the following computational indistinguishability holds:(

[α]1, [α
n+1]1

)
c
≈

(
[α]1, [α

∗]1

)
,

where α, α∗ ← R, and [α]1, [αn+1]1 and [α∗]1 are all level-1 encodings.

4.2 Asymmetric Multilinear Map Assumptions
We next define our asymmetric multilinear map assumptions. Unfortunately, defining assumptions on asymmetric
multilinear maps is much more complicated than doing so for symmetric multilinear maps. We will explain the details
in this section.

k-EDDH Assumption. We start by presenting the k-EDDH assumption for asymmetric multilinear maps. Like
the (n+ 1)-EDDH assumption we defined earlier for symmetric assumption, the k-EDDH assumption for asymmetric
maps does involve giving out an encoding of some element α as well as an encoding of αk. However, in the asymmetric
case, we require that they be at the same level of the multilinear map. This extra restriction allows the assumption to
(potentially) be valid for any k ≥ 2, rather than only viable for k > n.

Definition 4.5. (k-EDDH Assumption.) Consider a degree-n asymmetric multilinear map over some ring R. Let
αi, α

∗
i ← R be sampled uniformly at random for i ∈ [1, n]. In addition, let ui ∈ {0, 1}n denote the vector with ith

coordinate one and all other coordinates zero.

22

The k-EDDH assumption over a degree-n multilinear map requires that the following computational indistin-
guishability holds:(

[α1]u1
, [αk1]u1

)
, . . . ,

(
[αn]un , [α

k
n]un

)
c
≈

(
[α1]u1

, [α∗1]u1

)
, . . . ,

(
[αn]un , [α

∗
n]un

)
.

Note that in the above definition we give out random, independent challenge encodings in each of the n top-
level vector-sets (i.e. source groups). This allows us to generate an encoding of α and αk in any level-vector using
multiplication by the identity element encoded at different levels. The definition is similar in spirit to the definition of
SXDH in [Lin17].

SXDH Assumption. Intuitively, the SXDH assumption says that, on a multilinear map, “DDH” is hard in every
“source group” [BS03, Rot13]. We generalize this definition to graded encodings and formalize it definition below.

Definition 4.6. (SXDH Assumption.) Consider a degree-n asymmetric multilinear map over some ring R. Let
αi,0, αi,1, αi,2 ← R be sampled uniformly at random for i ∈ [1, n]. In addition, let ui ∈ {0, 1}n denote the vector
with ith coordinate one and all other coordinates zero.

The SXDH assumption over a degree-n multilinear map requires that the following indistinguishability holds:(
[α1,0]u1

, [α1,1]u1
, [α1,0 · α1,1]u1

)
, . . . ,

(
[αn,0]un , [αn,1]un , [αn,0 · αn,1]un

)
c
≈

(
[α1,0]u1

, [α1,1]u1
, [α1,2]u1

)
, . . . ,

(
[αn,0]un , [αn,1]un , [αn,2]un

)
.

Note that in the above definition we give out random, independent DDH-style challenge encodings for each of
the n top-level vector-sets (i.e. source groups). This is equivalent to the definition in [Lin17], although we explicitly
provide challenges in every top level and they do not.

We note that some papers on graded encodings are either unclear about specifically on which vector-sets “DDH”
must hold or define SXDH such that “DDH” must hold on every vector set [LV16]. We call this assumption uber-SXDH
and define it below. We mainly include this for completeness, and for comparison with the joint-SXDH assumption
(which we define below).

Definition 4.7. Uber-SXDH Assumption The uber SXDH assumption over a degree-n asymmetric MMap requires
that the following indistinguishability holds for all valid level-vectors i such that 0n < i ≤ ~1n:(

[α0]i, [α1]i, [α0 · α1]i

)
c
≈

(
[α0]i, [α1]i, [α

∗]i

)
,

where α0, α1, α
∗ ← R.

This definition may seem identical to regular SXDH, and it is reducible using a simple hybrid argument to and
from our SXDH definition for constant-degree multilinear maps. However, for large-degree multilinear maps, the
assumptions are not equivalent: the Uber-SXDH assumption becomes an exponential family of assumptions (one for
every possible level-vector, for a total of 2n).

To see why this is the case, consider the following black-box adversaryA. SupposeA has some randomly selected
level-vector v hard-coded inside it. When given an SXDH challenge tuple,A first checks if the level-vector is equal to
v. If it is, then it somehow magically can tell whether the tuple is random or not. If not, then it aborts and outputs ⊥.
SinceA is a black box, we cannot learn the value of v except by randomly querying. SoA cannot be used to break the
regular SXDH game efficiently if n is polynomial in λ, because it will be impossible to find v efficiently by random
guessing, which is the best we can do with our black-box adversaryA. However, the existence ofA clearly breaks the
Uber-SXDH assumption, because there is some level-vector–v–where an adversary can distinguish between the two
classes of tuple.

For most practical purposes, though, the two assumptions are interchangeable: the “proper” SXDH assumption
implies that “DDH” is hard in any level-set, even if the adversary can decide on a challenge level-vector after seeing the

23

public parameters of the multilinear map. This follows from the fact that every possible level-set can be derived through
multiplication from one of the SXDH challenge level-vectors u1, . . . ,un. In addition, a simple hybrid argument can
extend this to any polynomial number of adversarially-chosen level-sets, which is good enough for polynomial-time
reductions. However, a proper reduction from any level-set to all level-sets would still take time proportional to the
number of level sets, so we unfortunately cannot say that these assumptions are equivalent.

We further note that our definitions are similar to [Lin17]) and borrow from the bilinear SXDH definition of [ABBC10],
which also outputs a DDH challenge in each source group. We note that the Uber-SXDH assumption is more similar
in flavor to the definitions from [CLL+13], although they are of course equivalent for bilinear maps. Finally, we
encourage the reader to peruse [BMZ19] for an interesting discussion on how minute changes in definitions can make
substantial differences.

Joint-SXDH Assumption. The joint-SXDH assumption can be seen as a generalization of the Uber-SXDH assump-
tion. Informally, instead of requiring “DDH” to just hold on all level-sets, we require it to hold simultaneously on all
possible sets of non-pairable level-sets. We give out “DDH” tuples of elements with the same secrets corresponding to
many different level-vectors, with the caveat that the level-vectors cannot be multiplied with each other. We formalize
this in the definition below. Our definition mirrors that of [LV16], where the assumption was first made.

Definition 4.8. Joint-SXDH Assumption. Let T be some set of size s = |T | = poly(λ), let {it}t∈[T] be a set of
arbitrary valid level-vectors it such that no two level-vectors in the set are pairing compatible.

The s-joint-SXDH assumption over a degree-n asymmetric MMap over some ring R requires that the following
indistinguishability holds for every set T of size s:{(

[α0]it , [α1]it , [α0 · α1]it

)}
t∈[T]

c
≈

{(
[α0]it , [α1]it , [α

∗]it

)}
t∈[T]

,

where α0, α1, α
∗ ← R uniformly at random.

On Adaptivity and Exponential-Sized Assumption Families. Unlike SXDH, the j-SXDH assumption must hold
on every set T of size s where no members of T are pairing-compatible. There are 22n sets of possible level-vectors,
and while many of these sets contain pairing-compatible vectors, some do not. As an example, any set where all of
the level-vectors have one as their first entry has no pairing-compatible level-vectors, and there are 22n−1

of these sets.
This means that proving j-SXDH for a multilinear map with large n will be very difficult.

However, in practice we usually do not need our multilinear map assumptions to hold over “all” level-sets simulta-
neously. In reality, in any protocol (or any step in a security game), it is more likely that the adversary can adaptively
choose a particular set of level-vectors to attack, upon which they will repeatedly receive a tuple of challenge elements
at that particular level-vector. Hybrid arguments involving multilinear maps might repeat this process a polynomial
number of times, but most security proofs that do not have exponential loss will go through with a polynomial number
of such challenges. Few security proofs need every possible set to be secure, and those that do typically already use
reductions that involve exponentially secure primitives.

We can model the intuition behind this alternative definition of the j-SXDH assumption in a game-based way,
which would proceed as follows: the adversary would see the public parameters of the multilinear map, perform some
polynomially bounded computation, and then submit a level-vector to the challenger. The challenger would provide
either a “random” or “DDH” set of encodings to the adversary. The adversary could continue to query the challenger
on level-vectors, and appropriate challenge tuples would be provided to the adversary by the challenger as long as they
were not pairing-compatible with any previous tuples. At the end of the game, the adversary would have to decide
which kind of encodings they received. This game gives most security proofs the power they need while also avoiding
doubly exponential amounts of sets. We define it in the game below.

Game-Based Definitions for j-SXDH. We can redefine the j-SXDH assumption as a game between a challenger and
an adversary, in accordance with our earlier discussion. Note that this new definition is not equivalent to the standard
j-SXDH definition, but may be functionally equivalent in most cases.

24

Definition 4.9. Game-Based j-SXDH Definition. We define the game-based s-j-SXDH assumption as a game be-
tween a challenger and an adversary involving an asymmetric multilinear map of degree n over a ring R, which
proceeds as follows.

• The challenger runs pp← Setup
(
1λ, 1n

)
and sends pp to the adversary.

• The challenger flips a coin to determine a bit b← {0, 1} uniformly at random.

• If b = 0, the challenger selects a1, a2, a
∗ ← R uniformly at random.

• If b = 1, the challenger selects a1, a2 ← R uniformly at random and sets a∗ = a1a2.

• For (k = 1; k ≤ s; k + +):

– The adversary can perform any poly (λ) calculations using pp. The adversary then sends a level-vector i
to the challenger.

– The challenger checks if i is pairing-compatible with previous submissions. If so, it aborts.

– The challenger sends the tuple of elements

{Encode (pp, a1, i) ,Encode (pp, a2, i) ,Encode (pp, a∗, i)}

to the adversary.

• The adversary computes a bit b′.

We say that the adversary wins the game if b′ = b.

In some applications, we could relax this (adaptive) game-based definition further to a non-adaptive case, where
the adversary would have to declare the set T of level-vectors it wants to attack before it sees the public parameters
of the multilinear map. This could be the case for practical applications, for instance, if some specific level-vector is
used in a special way in some specific cryptosystem. Of course, there may also be applications where the adversary
is allowed to choose the set of level-vectors after it sees the public parameters, but with some restrictions. A good
analogy is selective versus adaptive security in identity-based encryption (as discussed in [BB04], for instance). This
fine point over definitions has seemingly not come up yet in the literature because, to our knowledge, there have been
no attempts to formally prove complicated asymmetric assumptions on multilinear maps.

In our proofs for multilinear maps, we will need to embed challenge elements in certain levels. In other words,
we need to commit to the level-vector of the challenge elements while generating the public parameters (before they
are given to the adversary).8 So our multilinear map constructions (without any other arguments) will only be non-
adaptive, which is less than ideal. This may seem problematic. However, our constructions do have an additional
property: the level-set of the challenge element is statistically hidden from the adversary in the real scheme, and
computationally hidden from the adversary in all of our hybrids in our security proof. Therefore, we can achieve
adaptive security (with some loss) by guessing the level-vector (or guessing some level-vector that allows us to generate
a challenge encoding in the level-set the adversary actually chooses) in advance and hoping that the adversary chooses
the same level-vector. The adversary cannot tell where we have embedded the challenges, and so thus must proceed as
in an honest evaluation. We lose a factor in the security reduction proportional to the rate at which we guess correctly.

So, we can also define a nonadaptive version of the j-SXDH assumption game. This will be useful for our proofs,
because as we said above, our challenges will need to be embedded in the public parameters. In this game, we
allow the adversary to make the public parameters dependent on the challenge level-vectors (as would be the case
in a security reduction). However, we also require that the public parameters in this case are indistinguishable from
honestly generated public parameters.

8This seems to us to be something that is necessary for rigorous proofs of multilinear maps, but we cannot be sure this is this case nor come up
with a convincing argument.

25

Definition 4.10. Non-Adaptive Game-Based j-SXDH Definition. We define the non-adaptive game-based t-j-
SXDH assumption as two games between a challenger and an adversary involving an asymmetric multilinear map
of degree n over a ring R, which proceed as follows. Important changes from the game definition above are high-
lighted in red.

Game 1:

• The adversary selects a set T of s level-vectors and sends them to the challenger.

• The challenger verifies that the vectors in T are not pairing compatible. Otherwise, the challenger aborts.

• The challenger flips a coin to determine a bit b← {0, 1} uniformly at random.

• If b = 0, the challenger selects a1, a2, a
∗ ← R uniformly at random.

• If b = 1, the challenger selects a1, a2 ← R uniformly at random and sets a∗ = a1a2.

• The challenger runs pp← Setup
(
1λ, 1n, T

)
and sends pp to the adversary.

• For (k = 1; k ≤ s; k + +):

– The challenger sends the tuple of elements

{Encode (pp, a1, i) ,Encode (pp, a2, i) ,Encode (pp, a∗, i)}

to the adversary.

• The adversary computes a bit b′.

We say that the adversary wins game 1 if b′ = b.
Game 2:

• The adversary selects a set T which contains up to s level-vectors and sends them to the challenger.

• The challenger verifies that the vectors in T are not pairing compatible. Otherwise, the challenger aborts.

• The challenger flips a coin to determine a bit b← {0, 1} uniformly at random.

• If b = 0, the challenger runs pp← Setup
(
1λ, 1n, T0

)
• If b = 1, the challenger runs pp← Setup

(
1λ, 1n

)
• The challenger sends pp to the adversary.

• The adversary computes a bit b′.

We say that the adversary wins game 2 if b′ = b.

We say that the advantage of an adversary in breaking the non-adaptive game-based t-j-SXDH assumption is the
maximum of its advantage in games 1 and 2.

It may seem excessive to define the non-adaptive version of the game in the way that we did. But we need the
“public parameter indistinguishability” property of game 2 to avoid some pathological schemes and for proofs to go
through. In fact, we can prove the following lemma relating the two security games.

Lemma 4.11. Consider some asymmetric multilinear map of degree n over a ring R. Any adversary A that can win
the game-based j-SXDH game as in definition 4.9 with advantage ε can be used to win the non-adaptive game-based
j-SXDH game as defined in definition 4.10 with advantage ε

2nt+1 .

26

Proof. Suppose we are given an adversary A that can win the game-based j-SXDH game with advantage ε. We
generate a new adversary A′ that has advantage ε

2nt+1 in the non-adaptive game-based j-SXDH game in the following
way.

First, suppose that A cannot win Game 2 with advantage ε
2nt+1 . Otherwise, we are done. Assuming that A cannot

win game 2, we create a new adversary for game 1 called A′ in the following way:

• A′ samples a random set T of s level-vectors.

• A′ sends T to the challenger.

• A′ receives pp from the challenger and forwards it to A.

• A′ also receives, for all i ∈ [1, s] encodings of the form

{Encode (pp, a1, i) ,Encode (pp, a2, i) ,Encode (pp, a∗, i)}

from the challenger.

• For (k = 1; k ≤ t; k + +):

– A outputs a level-vector v as a query. If v ∈ T , then A′ forwards the appropriate encodings to A.
Otherwise A aborts.

• Eventually A outputs some bit b′. We let A′ also output b′.

If we assume that the public parameters pp were generated honestly, then A′ outputs some bit with probability
1

2nt . In this case, a transcript of the interaction between A and A′ would be itentical to that of A′ and a challenger in
the adaptive game. Since A has advantage ≤ ε

2nt+1 in game 2, by a union bound it must have advantage at least ε
2nt+1

in game 1, completing the proof.

5 An Asymmetric MMap Construction
In this section, we show a how to construct an asymmetric MMap given the following cryptoprimitives:

• A probabilistic-iO scheme piO = (piO.Obf, piOEval).

• A fully-homomorphic encryption scheme

FHE = (FHE.Gen,FHE.Enc,FHE.Dec,FHE.Eval),

such that the message space is Zq for some prime q = poly(λ) (λ being the security parameter).

• A dual mode NIZK argument system NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify) that is:

– perfectly sound and extractable in the binding mode, and

– perfectly witness indistinguishable and perfectly zero-knowledge in the hiding mode.

• A pair of sets (X ,L) such that L ⊂ X and:

1. Given x ∈ X it is computationally hard to decide if x ∈ L.

2. For each y ∈ L, there exists a unique witness wity for the statement y ∈ L.

• A pairing-free group G of prime order q.

In Appendix 6 we show that SXDH is hard over our proposed MMap construction if DDH is hard over the group
G. Subsequently, in Appendix 7, we show that for any k ≥ 2, k-exponent-DDH (abbreviated as k-EDDH) is hard over
our proposed MMap construction if k-EDDH is hard over the group G. Note that for k ≥ 2, (k + 1)-exponent DDH
implies a host of other assumptions such as k-Lin and (k + 1)-power-DDH (PDDH).

27

5.1 Setup
The setup algorithm for our MMap construction takes as input the security parameter 1λ and a second parameter 1n

for the degree of multilinearity. It samples two key-pairs for the FHE scheme as:

(pk0, sk0), (pk1, sk1)← FHE.Gen(1λ).

It then uniformly samples g0 ← G and γ1, γ2, γ3 ← Zq and sets:

g1 = gγ1

0 , g2 = gγ2

0 , g3 = gγ3

0 .

It also samples a pair of binding NIZK CRS strings (along with the corresponding extraction trapdoors) as:

(crs0, text,0), (crs1, text,1)← NIZK.Setup(1λ,binding).

The languages for which statements are proven under these CRS strings are described subsequently in Section 5.2.
Next the setup algorithm uniformly samples a total (n+ 2) elements from the set X that are all non-members for the
subset L. More formally, it samples

y, z1,0, z1,1, z2,0, z2,1, . . . , zn,0, zn,1 ← X \ L.

Finally, the setup algorithm computes and outputs four probabilistically obfuscated circuits of the form

C̄Add = piO.Obf(CAdd) , C̄Inv = piO.Obf(CInv),

C̄Mult = piO.Obf(CMult) , C̄ext = piO.Obf(Cext)

where C̄Add, C̄Inv C̄Mult, and C̄ext are the circuits for adding, inverting, multiplying, and extracting from encodings at
any given “non-zero” level. We describe these circuits in details subsequently. We only briefly mention here that these
circuits embed the following elements that we want to keep secret for reasons relevant to the proof of security:

• The FHE secret keys sk0 and sk1.

• The NIZK extraction trapdoors text,0 and text,1.

• The tuple of exponents (γ1, γ2, γ3) and the tuple of group elements (g0, g1, g2, g3).

This is why these circuits are not made public as is. Instead, the setup algorithm only makes available piO-
obfuscated versions of these circuit.

5.2 Encodings
We describe the procedure of encoding a plaintext element at any level i such that 0 ≤ i ≤ n. In our construction,
level-0 encodings are treated slightly different from encodings at other “non-zero” levels, and are equipped with their
own set of algorithms for encoding, manipulation, extraction and zero-testing. We informally mention these for the
sake of completeness.

Level-Zero Encodings. We set the level-0 encoding of a plaintext element a ∈ Zq to be a itself. Adding/multiplying
two level-0 encodings (equivalently, additively inverting a level-0 encoding) is simply done via addition/multiplication
(equivalently, additive inversion) in Zq .

Multiplying a level-0 encoding with any other encoding at some level i should result in an encoding at level-i.
This is implemented with a shift-and-add algorithm built on top of the standard encoding addition algorithm described
subsequently in Section 5.3.

Extracting a level-0 encoding a ∈ Zq outputs ga, where g is uniformly from the group G and is part of the public
description of the MMap. As will be clear later, this is consistent with the extraction algorithm for any other level i.
Zero-testing follows trivially from the extraction algorithm.

28

Level-i Encodings. We now describe the procedure of encoding a plaintext element at any “non-zero” encoding level
i such that 0 < i ≤ n. An encoding of a plaintext element a ∈ Zq at level i is a tuple of the form (ct0, ct1, i, π0, π1),
where ct0 and ct1 are FHE encryptions of a tuple of the form:

(a0,0, a1,0, a2,0, a3,0, i) , (a0,1, a1,1, a2,1, a3,1, i).

under the public key-secret key pairs (pk0, sk0) and (pk1, sk1) respectively, and π0 and π1 are verifying proofs under
crs0 and crs1,respectively, for statements described subsequently.

Normal and Oblique Representation. For b ∈ {0, 1}, the tuple (a0,b, a1,b, a2,b, a3,b, i) is said to be in “normal
form” if

(a0,b, a1,b, a2,b, a3,b, i) = (a, 0, 0, 0, i)

for some a ∈ Zq . Otherwise, it is said to be in “oblique-form”. Depending on the forms of the tuples underlying the
FHE ciphertexts, we classify an encoding into one of three representations:

• Normal representation: Both tuples are in normal form.

• Partially oblique representation: Exactly one of the tuples is in normal form, while the other is in oblique
form. Unless otherwise specified, we assume that the second tuple is in normal form.

• Oblique representation: Both tuples are in oblique form.

Consistency. Recall that the setup algorithm privately samples a tuple of group elements (g0, g1, g2, g3) and hard-
wires these into the MMap circuits that are described subsequently. We say that an encoding is “consistent” if the
tuples underlying the FHE ciphertexts satisfy the following condition:

a0,0 +
∑
`∈[3]

γ` · a`,0 = a0,1 +
∑
`∈[3]

γ` · a`,1,

or equivalently, the following condition: ∏
`∈[0,3]

g
a`,0
` =

∏
`∈[0,3]

g
a`,1
` .

Looking ahead, this will be used explicitly in the extraction algorithm of our construction.

NIZK Proof π0. π0 is a verifying NIZK proof of “normal representation”. Informally, it proves under crs0 that one
of the following statements must be true:

1. Either a0,0 = a0,1 = a and a`,0 = a`,1 = 0 for ` ∈ {1, 2, 3} and both FHE ciphertexts encrypt the same level i
as in the encoding itself.

2. Or there exists some j ∈ [n] such that ij = 0 and zj,0 ∈ L.

3. Or there exists some j ∈ [n] such that ij = 1 and zj,1 ∈ L.

Formally, π0 is a verifying NIZK proof under crs0 of the OR relation R0 defined below (KFHE being the set of all valid
key pairs under the FHE scheme):

29

Relation RL:
RL(z,witz) = 1 if and only if z ∈ L with membership witness witz .

Relation R0,0:
R0,0((ct0, ct1, i, pk0, pk1),wit) = 1 if and only if:

• EITHER wit = (sk0, sk1) and (pk0, sk0), (pk1, sk1) ∈ KFHE and

FHE.Dec(sk0, ct0) = FHE.Dec(sk1, ct1) = (a, 0, 0, 0, i) for some a ∈ Zq.

• OR wit = (a, r0, r1) for some a ∈ Zq and for each b ∈ {0, 1}, we have:

FHE.Enc(pkb, (a, 0, 0, 0, i); rb) = ctb.

Relation R0,1:
R0,1({zj,b}j∈[n],b∈{0,1}, i,wit) = 1 if and only if:

• wit = (j,witz) for some j ∈ [n] and RL(zj,ij ,witz) = 1.

Relation R0:
R0((ct0, ct1, i, pk0, pk1, {zj,b}j∈[n],b∈{0,1}),wit) = 1 if and only if:

• EITHER R0,0((ct0, ct1, i, pk0, pk1),wit) = 1.

• OR R0,1({zj,b}j∈[n],b∈{0,1}, i,wit) = 1.

NIZK Proof π1. π1 is a verifying NIZK proof of “consistency” that holds irrespective of whether the encoding is in
normal representation or (partially) oblique representation. Informally, it proves under crs1 that one of the following
statements must be true with respect to the tuple of group elements (g0, g1, g2, g3) embedded inside the MMap circuits:

1. Either we have:
a0,0 +

∑
`∈[3]

γ` · a`,0 = a0,1 +
∑
`∈[3]

γ` · a`,1,

i.e., equivalently, we have: ∏
`∈[0,3]

g
a`,0
` =

∏
`∈[0,3]

g
a`,1
` .

2. Or y ∈ L.

Formally, π1 is a verifying NIZK proof under crs1 of the OR relation R1 defined below (RL is as defined above):

30

Relation R1,0:
R1,0((ct0, ct1, i, pk0, pk1),wit) = 1 if and only if:

• EITHER wit = (sk0, sk1) and (pk0, sk0), (pk1, sk1) ∈ KFHE and for b ∈ {0, 1}, we have:

FHE.Dec(skb, ctb) = (a0,b, a1,b, a2,b, a3,b, i),

and we have: ∏
`∈[0,3]

g
a`,0
` =

∏
`∈[0,3]

g
a`,1
` .

• OR wit = ({a`,0, a`,1}`∈[0,3], r0, r1) and for each b ∈ {0, 1}, we have

FHE.Enc(pkb, (a0,b, a1,b, a2,b, a3,b, i); rb) = ctb,

and we have: ∏
`∈[0,3]

g
a`,0
` =

∏
`∈[0,3]

g
a`,1
` .

Relation R1:
R1((ct0, ct1, i, pk0, pk1, y),wit) = 1 if and only if:

• EITHER R1,0((ct0, ct1, i, pk0, pk1),wit) = 1.

• OR wit = wity and RL(y,wity) = 1.

Validity. Finally, an encoding (ct0, ct1, i, π0, π1) is said to be “valid” if both of the following hold simultaneously:

NIZK.Verify(crs0, (pk0,pk1, ct0, ct1, i, {zj,b}j∈[n],b∈{0,1}), π0) = 1,

and

NIZK.Verify(crs1, (pk0,pk1, ct0, ct1, i, y), π1) = 1.

Note that when zj,b /∈ L for each (j, b) ∈ [n] × {0, 1} and y /∈ L, any valid encoding must be in the normal
representation, and hence must also be consistent. So having the additional proof π1 might appear redundant. However,
looking ahead, during certain hybrids in the proof of security, we will switch one or more of these elements from
members to non-members, thereby allow encodings corresponding to either all levels or certain designated levels to be
in oblique representation. In such a case, the proof π1 would allow us to enforce consistency irrespective of whether
the encoding is in the normal representation or in the oblique representation.

5.3 Addition and Inversion of Encodings
We now describe the procedure for adding two encodings, and for (additive) inversion of an encoding. Suppose we
have two encodings at the same level i of the form:

(ct0,1, ct1,1, i, π0,1, π1,1) , (ct0,2, ct1,2, i, π0,2, π1,2).

Figure 2 details the operation of the encoding-addition circuit CAdd. Note that it embeds multiple secrets, including
the FHE secret keys sk0 and sk1, as well as the extraction trapdoors text,0 and text,1 for the NIZK. Hence, the circuit is
not made public as is; we only make available an obfuscated version of the circuit obtained by running the evaluation
algorithm of the probabilistic iO scheme piO on it. The same holds for the encoding-inversion circuit Cinv , which is
described in Figure 3

At a high level, we add the two input encodings by exploiting the fully-homomorphic nature of the encryption
scheme. More concretely, we homomorphically evaluate the circuit CAdd,FHE (described in Figure 1) on the corre-
sponding ciphertext components of the two input encodings to generate the ciphertext components for the output

31

CAdd,FHE(({a`,1}`∈[0,3], i1), ({a`,2}`∈[0,3], i2)):

Output
(
{a`,1 + a`,2}`∈[0,3], i1

)
.

CInv,FHE({a`}`∈[0,3], i):

Output
(
{−a` mod q}`∈[0,3], i

)
.

Figure 1: Circuits CAdd,FHE and CInv,FHE

encoding. We also generate proofs for normal representation and consistency of the output encoding using the tuple of
secret keys (sk0, sk1) as witness, unless otherwise dictated by the input encodings (in which case we use the extracted
witnesses from the proofs in the input encodings to generate the proofs for the output encodings). The approach for in-
verting an input encoding is very similar, except that we homomorphically evaluate the circuit CInv,FHE (also described
in Figure 1) on the ciphertext components of the input encoding.

For technical reasons that are relevant to the proof of security, we check the following in both the addition and
inversion circuits:

1. The validity of the proofs π1 and π2 for the language L that are provided as part of the input encodings.

2. Whether the encodings are in the normal representation as per the relation R0 described earlier.

3. Whether the encodings are consistent as per the relation R1 described earlier.

Note that validity is publicly verifiable, while verifying normal representation and consistency require knowledge
of the secret keys sk0 and sk1.

The checks in steps 5 and 7 of CAdd and CInv are included for technical reasons that are relevant to the proof of
security. In particular, we emphasize the following:

• Checking the “If” condition in step 7 of CAdd (and CInv) requires the tuple of group elements (g0, g1, g2, g3)
sampled at setup, which is hardwired into both circuits. Note, however, that the exponents α1, α2 and α3 are not
required, and are hence not hardwired into either circuit.

• When each element zj,b for j ∈ [n] and b ∈ {0, 1} is a non-member for the language L, under a binding crs0, the
“If” condition in step 5 of CAdd (and CInv) is never satisfied. This follows from the perfect soundness guarantee
of the NIZK proof system. However, the condition may be satisfied during some hybrid in the proof of security,
when some element zj,b is “switched” to a member of L.

• When the element y is a non-member for the language L, under a binding crs1, the “If” condition in step 7 of
CAdd (and CInv) is never satisfied. This again follows from the perfect soundness guarantee of the NIZK proof
system. However, the condition may be satisfied during some hybrid in the proof of security, when the element
y is “switched” to a member of L.

5.4 Multiplication of Encodings
We now describe the procedure for multiplying two encodings at levels i1 and i2, respectively such that i1 + i2 ≤ n.
Suppose we have two encodings of the form:

(ct1,0, ct1,1, i1, π1), (ct2,0, ct2,1, i2, π2).

At a high level, we multiply the two input encodings by again exploiting the fully-homomorphic nature of the
encryption scheme. However, compared to addition and inversion, multiplication of two encodings is more involved

32

CAdd[{skb, pkb, crsb, text,b}b∈{0,1}, (g0, g1, g2, g3)]
(
{(ct0,k, ct1,k, ik, π0,k, π1,k)}k∈{1,2}

)
:

1. Output⊥ if i1 6= i2 or i1 > n. Else, set i = i1 and proceed.

2. Output⊥ if for any k ∈ {1, 2}, we have

NIZK.Verify(crs0, (pk0, pk1, ct0,k, ct1,k, i, {zj,b}j∈[n],b∈{0,1}), π0,k) = 0.

3. Output⊥ if for any k ∈ {1, 2}, we have

NIZK.Verify(crs1, (pk0, pk1, ct0,k, ct1,k, i, y), π1,k) = 0.

4. For b ∈ {0, 1}, set: ct∗b = FHE.Eval(pkb, ctb,1, ctb,2,CAdd,FHE).

5. If for some k ∈ {1, 2}, R0,0((ct0,k, ct1,k, i, pk0, pk1), (sk0, sk1)) = 0, then:

(a) Extract (j,witz) = NIZK.Ext(text,0, (pk0, pk1, ct0,1, ct1,1, i, {zj,b}j∈[n],b∈{0,1}), π0,1).

(b) If RL(zj,ij ,witz) = 0, output⊥.

(c) Else, generate π∗0 ← NIZK.Prove(crs0, (pk0, pk1, ct∗0 , ct∗1 , i, {zj,b}j∈[n],b∈{0,1}), (j,witz)).

6. Else, generate π∗0 ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, {zj,b}j∈[n],b∈{0,1}), (sk0, sk1)).

7. If for some k ∈ {1, 2}, we have R1,0((ct0,k, ct1,k, i, pk0, pk1), (sk0, sk1)) = 0, then:

(a) Extract wity = NIZK.Ext(text,1, (pk0, pk1, ct0,1, ct1,1, i, y), π1,1).

(b) If RL(y,wity) = 0, output⊥.

(c) Else, generate π∗1 ← NIZK.Prove(crs1, (pk0, pk1, ct∗0 , ct∗1 , i, y),wity).

8. Else, generate π∗1 ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, y), (sk0, sk1)).

9. Output (ct∗0 , ct∗1 , i, π
∗
0 , π
∗
1).

Figure 2: Circuit CAdd

and requires some careful decision-making regarding the format of the output encoding, as well as which witness to
use when generating the output proof π∗0 . Based on the aforementioned observations, we divide the multiplication of
encodings into two keys steps:

1. Step-1: Homomorphically evaluate the ciphertexts ct∗0 and ct∗1 corresponding to the output encoding.

2. Step-2: Generate the proof π∗0 for the output encoding

We now present some detailed observations regarding the challenges for both steps:

• Suppose that both input encodings are in the normal representation, i.e, they both contain verifying proofs of
normal representation, using as witness the tuple of secret keys (sk0, sk1). In this case, the output encoding
upon multiplication is also in the normal representation, and can be computed without the knowledge of the
secret exponents γ1, γ2 and γ3. Additionally, the output proof π∗0 can be generated as a verifying proof of
normal representation using the tuple of secret keys (sk0, sk1) as witness.

• When exactly one of the input encodings is in oblique representation, then the output encoding upon multipli-
cation can be computed in oblique representation without the knowledge of the secret exponents γ1, γ2 and γ3.

33

CInv[{skb, pkb, crsb, text,b}b∈{0,1}, (g0, g1, g2, g3)](ct0, ct1, i, π0, π1):

1. Output⊥ if i > ~1n.

2. Output⊥ if NIZK.Verify(crs0, (pk0, pk1, ct0, ct1, i, {zj,b}j∈[n],b∈{0,1}), π0) = 0.

3. Output⊥ if NIZK.Verify(crs1, (pk0, pk1, ct0, ct1, i, y), π1) = 0.

4. For b ∈ {0, 1}, set: ct∗b = FHE.Eval(pkb, ctb,CInv,FHE).

5. If R0,0((ct0, ct1, i, pk0, pk1), (sk0, sk1)) = 0, then:

(a) Extract (j,witz) = NIZK.Ext(text,0, (pk0, pk1, ct0, ct1, i, {zj,b}j∈[n],b∈{0,1}), π0).

(b) If RL(zj,ij ,witzj) = 0, output⊥.

(c) Else, generate π∗0 ← NIZK.Prove(crs0, (pk0, pk1, ct∗0 , ct∗1 , i, {zj,b}j∈[n],b∈{0,1}), (j,witz)).

6. Else, generate π∗0 ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, {zj,b}j∈[n],b∈{0,1}), (sk0, sk1)).

7. If R1,0((ct0, ct1, i, pk0, pk1), (sk0, sk1)) = 0, then:

(a) Extract wity = NIZK.Ext(text,1, (pk0, pk1, ct0, ct1, i, y), π1).

(b) If RL(y,wity) = 0, output⊥.

(c) Else, generate π∗1 ← NIZK.Prove(crs1, (pk0, pk1, ct∗0 , ct∗1 , i, y),wity).

8. Else, generate π∗1 ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, y), (sk0, sk1)).

9. Output (ct∗0 , ct∗1 , i, π
∗
0 , π
∗
1).

Figure 3: Circuit CInv

However, generating the proof π∗0 for the output encoding is not as straightforward. Suppose w.l.o.g. that the
first input encoding in level i1 is in oblique representation, and consider the following scenarios:

– Suppose that the first input encoding has a verifying proof of language membership of zj,1 using witness
(j,witz) such that i1,j = 1. In this case, we know that the output encoding must correspond to a level
i∗ = i1 + i2 such that i∗j = 1. Hence, in this case, we can use the first circuit CMult,FHE,0 for homomor-
phic evaluation of the output encoding in oblique representation, and we can re-use the witness (j,witz)
extracted from the first input encoding to generate a verifying proof π∗0 for language membership of zj,1
as part of the output encoding.

– Now, suppose that the first input encoding has a verifying proof of language membership of zj,0 using
witness (j,witz) such that i1,j = 0. However, the output encoding may correspond to a level i∗ = i1 + i2
such that i∗j = 1. In such as case, we cannot re-use the witness (j,witz) extracted from the first input
encoding to generate a verifying proof π∗0 for the output encoding, since we will need to prove language
membership of zj,1 and not zj,0.

So, in the second case we need to use a different approach - We explicitly use the knowledge of the secret
exponents γ1, γ2 and γ3 to transform the output encoding back to normal representation. This allows us to
generate the output proof π∗0 as a proof for normal representation using the tuple of secret keys (sk0, sk1) as
witness.

• Finally, consider the case when both input encodings are in the oblique representation. Here, there certain sub-
cases to consider. Suppose w.l.o.g that the first ciphertext of the first encoding and the second ciphertext of

34

the second encoding encrypt tuples in oblique representation, while the remaining ciphertexts encrypt tuples in
normal representation. Again, in this sub-case, the output encoding upon multiplication can be computed in
oblique representation without the knowledge of the secret exponents γ1, γ2 and γ3. However, generating the
proof π∗0 for the output encoding presents the same potential challenges as before. So we handle ciphertext
generation in this sub-case (and other similar sub-cases) in the same way as the previous case.

Alternatively, suppose w.l.o.g that the first ciphertext of the first encoding and the first ciphertext of the second
encoding encrypt tuples in oblique representation, while the remaining ciphertexts encrypt tuples in normal
representation. Now, the output encoding upon multiplication cannot be computed (in either normal or oblique
representation) without the knowledge of the secret exponents γ1, γ2 and γ3. Hence, in this sub-case (and other
similar sub-cases), we explicitly use the knowledge of the secret exponents γ1, γ2 and γ3 to transform the output
encoding back to normal representation. The output proof π∗0 can now be generated as a proof for normal
representation using the tuple of secret keys (sk0, sk1) as witness.

CMult,FHE(({a`,1}`∈[0,3], i1), ({a`,2}`∈[0,3], i2), ({γ`}`∈[0,3],~0n), (flag1, flag2, 0, 0,~0n)))):

1. If (a1,1, a2,1, a3,1) = (0, 0, 0) and flag2 = 1, then output (({a0,1 · a`,2}`∈[0,3], (i1 + i2))).

2. Else if (a1,2, a2,2, a3,2) = (0, 0, 0) and flag1 = 1, then output (({a0,2 · a`,1}`∈[0,3], (i1 + i2))).

3. Else output ((a∗, 0, 0, 0, (i1 + i2))), where:
a
∗

=
∏

`,`′∈[0,3]

a`,0 · a`′,0 · γ` · γ`′ .

Figure 4: Circuits CMult,FHE

Based on the aforementioned observations, we design the circuit CMult,FHE (described in Figure 4). This circuit is
homomorphically evaluated on the corresponding FHE ciphertext components of the two input encodings to generate
the FHE ciphertext component for the output product encoding. Note the following:

• The circuit CMult,FHE takes as input two flag variables flag1 and flag2. For each k ∈ {1, 2}, the flag variable
flagk is set as follows: if flagk = 0, then it indicates that the kth encoding in level ik is in (partially) oblique
representation and has a verifying NIZK proof π0,k using (jk,witz), where ik,jk = 0 and witz is a language-
membership witness for zjk, 0. In all other cases, flagk is set to 1.

• If at least one input tuple is in normal form and the other input has the flag variable set to 1, then the circuit
CMult,FHE does not require to use the secret exponents γ1, γ2 and γ3. In this case, the output tuple may be either
in normal form or in oblique form depending on the nature of the other input tuple. This is captured in Steps 1
and 2 of the circuit CMult,FHE.

• If both input tuples are in oblique representation, or if both input tuples have flag variables set to 0, or if exactly
one input tuple is in oblique representation but has its flag set to 0, then the circuit CMult,FHE forces the output
to be in normal representation, irrespective of the representation of the input tuples. As shown in Step 3 of the
circuit CMult,FHE, this requires explicitly using the secret exponents γ1, γ2 and γ3.

For generating the output proof π∗0 , we use the following simple approach:

• Suppose that there exists an input encoding in oblique representation that has a verifying proof of language
membership of zj,1 using witness (j,witz) such that i1,j = 1. In this case, we know that the output encoding
must correspond to a level i∗ = i1 + i2 such that i∗j = 1. Hence, in this case, we extract and re-use the witness
(j,witz) from the first input encoding to generate a verifying proof π∗0 for language membership of zj,1 as part
of the output encoding.

35

CMult[{skb, pkb, crsb, text,b}b∈{0,1}, (g0, γ1, γ2, γ3)]
(
{(ct0,k, ct1,k, ik, π0,k, π1,k)}k∈{1,2}

)
:

1. Output⊥ if i1 + i2 > ~1n.

2. Output⊥ if for any k ∈ {1, 2}, we have

NIZK.Verify(crs0, (pk0, pk1, ct0,k, ct1,k, ik, {zj,b}j∈[n],b∈{0,1}), π0,k) = 0.

3. Output⊥ if for any k ∈ {1, 2}, NIZK.Verify(crs1, (pk0, pk1, ct0,k, ct1,k, ik, y), π1,k) = 0.

4. For k ∈ {1, 2} extract
witk = NIZK.Ext(text,0, (pk0, pk1, ct0,k, ct1,k, ik, {zj,b}j∈[n],b∈{0,1}), π0,k),

and set

flagk =

{
0 if witk = (jk,witz,k) and ik,jk = 0,

1 otherwise.

5. For b ∈ {0, 1}, set: ct∗b = FHE.Eval(pkb, ctb,1, ctb,2, ctb,γ , ctb,flag,CMult,FHE), where

ctb,γ = FHE.Enc(pkb, (0, γ1, γ2, γ3,~0n)),

ctb,flag = FHE.Enc(pkb, (flag1, flag2, 0,~0n)).

6. If there exists some k ∈ 1, 2 such that:

R1,0((ct0,k, ct1,k, ik, pk0, pk1), (sk0, sk1)) = 0 and witk = (jk,witz,k) such that ik,jk = 1,

then generate
π
∗
0 ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , (i1 + i2), {zj,b}j∈[n],b∈{0,1}), (jk,witz,k)).

7. Else, generate
π
∗
0 ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , (i1 + i2), {zj,b}j∈[n],b∈{0,1}), (sk0, sk1)).

8. If for some k ∈ {1, 2}, we have R1,0((ct0,k, ct1,k, ik, pk0, pk1), (sk0, sk1)) = 0, then:

(a) Extract wity = NIZK.Ext(text,1, (pk0, pk1, ct0,1, ct1,1, ik, y), π1,k).

(b) If RL(y,wity) = 0, output⊥.

(c) Else, generate π∗1 ← NIZK.Prove(crs1, (pk0, pk1, ct∗0 , ct∗1 , (i1 + i2), y),wity).

9. Else, generate π∗1 ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , (i1 + i2), y), (sk0, sk1)).

10. Output (ct∗0 , ct∗1 , i, π
∗
0 , π
∗
1).

Figure 5: Circuit CMult

• In all other cases, homomorphically evaluating the circuit CMult,FHE on the input encodings must, by design,
output ciphertexts that are in normal representation. Hence, in all other cases, we use the tuple of secret keys
(sk0, sk1) to generate a verifying proof π∗0 for normal representation.

Figure 5 details the operation of the encoding-inversion circuit CMult. Note that it again embeds multiple secrets,
including the FHE secret keys sk0 and sk1, as well as the extraction trapdoors text,0 and text,1 for the NIZK. Hence,
the circuit is not made public as is; we only make available an obfuscated version of the circuit obtained by running
the evaluation algorithm of the probabilistic iO scheme piO on it.

Similar to the addition and inversion procedures described previously, the checks in steps 6 and 8 of CMult are
included for technical reasons that are relevant to the proof of security. In particular, we emphasize the following:

• When each element zj,0 for j ∈ [n] and b ∈ {0, 1} is a non-member for the language L, then under a binding

36

crs0, the “If” condition in step 6 of CMult is never satisfied. This follows from the perfect soundness guarantee
of the NIZK proof system.

Looking ahead, in certain hybrids of our proof of SXDH, we do allow the “If” condition in step 6 to be satisfiable.
In these hybrids, for some j ∈ [n], we deliberately switch either zj,1 or both zj,0 and zj,1 in the public parameter
from a non-member to a member for L.

• Finally, when the element y is a non-member for the language L, then under a binding crs1, the “If” condition
in step 8 of CMult is never satisfied. This again follows from the perfect soundness guarantee of the NIZK proof
system. Looking ahead, in certain hybrids of our proof of SXDH, the “If” condition may be satisfied when the
element y is deliberately switched from a non-member to a member of L.

5.5 Extraction and Zero-Testing
Extraction. We now describe the procedure for extracting a canonical string from an encoding. Suppose we have an
encodings at the level i of the form:

(ct0, ct1, i, π0, π1).

The extraction circuit uses sk0 and sk1 to recover the plaintext elements {a`,0, a`,1}`∈[0,3] underlying the FHE cipher-
texts ct0 and ct1, and provided that these are consistent as per relation R1 described earlier, outputs

g∗ =
∏

`∈[0,3]

g
a`,0
` =

∏
`∈[0,3]

g
a`,1
` .

Figure 6 details the operation of the extraction circuit Cext. Note that it again embeds multiple secrets, including
the FHE secret keys sk0 and sk1, as well as the extraction trapdoors text,0 and text,1 for the NIZK. Hence, the circuit is
not made public as is; we only make available an obfuscated version of the circuit obtained by running the evaluation
algorithm of the probabilistic iO scheme piO on it.

Once again, similar to the addition, inversion and multiplication procedures described previously, the checks in
steps 6 and 7 of Cext are included for technical reasons that are relevant to the proof of security.

Zero-Testing Encodings. Given the aforementioned extraction procedure, zero-testing an encoding at any given
level is trivial. We simply apply the extraction procedure to the encoding, and check if the extracted group element g∗

is equal to g0 for any g ∈ G.

6 Proof of SXDH Hardness
In this section, we prove that solving SXDH is hard over our proposed MMap construction if solving DDH is hard
over the group G. More specifically we state and prove the following theorem:

Theorem 6.1. The SXDH assumption holds over our proposed MMap construction provided that all of the following
assumptions hold:

• The piO scheme is indistinguishability-secure against X-IND samplers.

• Membership in L is computationally hard to decide,

• Members of L have unique witnesses for membership.

• The dual-mode NIZK proof system satisfies CRS indistinguishability, perfect extractability in the binding mode,
and perfect witness-indistinguishability in the hiding mode.

• The DDH assumption holds over the group G.

We begin by outlining the hybrids that are used in the proof. The hybrids are classified into two broad categories -
outer hybrids and inner hybrids.

37

Cext[{skb, pkb, crsb, text,b}b∈{0,1}, (g0, g1, g2, g3)](ct0, ct1, i, π0, π1):

1. Output⊥ if i > ~1n.

2. Output⊥ if NIZK.Verify(crs0, (pk0, pk1, ct0, ct1, i, {zj,b}j∈[n],b∈{0,1}), π0) = 0.

3. Output⊥ if NIZK.Verify(crs1, (pk0, pk1, ct0, ct1, i, y), π1) = 0.

4. For b ∈ {0, 1}, recover ({a`,b}`∈[0,3], ib) = FHE.Dec(skb, ctb).

5. Compute g∗ =
∏
`∈[0,3] g

a`,0
` .

6. If R0,0((ct0, ct1, i, pk0, pk1), (sk0, sk1)) = 0, then:

(a) Extract (j,witzj) = NIZK.Ext(text,0, (pk0, pk1, ct0, ct1, i, {zj,b}j∈[n],b∈{0,1}), π0).

(b) If RL(zj ,witzj) = 0, output⊥.

7. If R1,0((ct0, ct1, i, pk0, pk1), (sk0, sk1)) = 0, then:

(a) Extract wity = NIZK.Ext(text,1, (pk0, pk1, ct0, ct1, i, y), π1).

(b) If RL(y,wity) = 0, output⊥.

8. Output g∗.

Figure 6: Circuit Cext

6.1 Outer Hybrids
We begin by describing the outer hybrids for our proof. Outer hybrid 0 corresponds to the game where the challenger
provides the adversary with encodings of uniformly random elements in a level-set that is chosen by the adversary. The
final outer hybrid corresponds to the game where the challenger provides the adversary with a valid SXDH instance,
i.e., encodings of elements sampled according to the real SXDH distribution, in the same level-set chosen by the
adversary. Before we describe the outer hybrids, we describe a few conditions that remain invariant throughout the
outer hybrids:

• The NIZK CRS strings crs0 and crs1 are in binding mode, as in the real MMap scheme, in all the outer hybrids.

• The element y in the public parameter is a non-member for the language L, as in the real MMap scheme, in all
the outer hybrids.

• The challenge encodings provided to the adversary are consistent with respect to extraction (as formalized by
the relation R1 described earlier) in all the outer hybrids. However, as we shall see later, they may be switched
from the normal to oblique representation and vice-versa.

Table 1 provides an overview of the outer hybrids, which we now describe in details.

Outer Hybrid 0. In this hybrid, the MMap is set up exactly as in the real scheme described earlier. Let (g0, g1, g2, g3)
be the tuple of group elements hardwired into each of the MMap circuits, such that g` = gγ`0 for ` ∈ {1, 2, 3}. Let µ
be a uniformly sampled element in Zq . The SXDH adversary is provided with encodings of the tuple of elements:

(α0, α1, α2, α3) = (µ, µ · γ1, µ · γ2, µ · γ3),

where the encodings are generated in normal form (formalized by relation R0 described earlier) corresponding to the
level-set i chosen by the SXDH adversary. For ease of understanding, we explicitly lay out what the FHE ciphertexts

38

Outer Hybrid MMap Circuits zj,0 zj,1 (g0, g1, g2, g3)

Challenge Encodings

SXDH/Random Representation Witness for π0 Witness for π1

0 Cop zj,0 /∈ L zj,1 /∈ L Random Random Normal (sk0, sk1) (sk0, sk1)

1 Ĉop zj,0 ∈ L zj,1 ∈ L Random Random Normal (j,witzj,1) (sk0, sk1)

2 Ĉop zj,0 ∈ L zj,1 ∈ L Random Random Partially oblique (j,witzj,1) (sk0, sk1)

3 Ĉop zj,0 ∈ L zj,1 ∈ L Random Random Oblique (j,witzj,1) (sk0, sk1)

4 ̂̂
Cop zj,0 /∈ L zj,1 ∈ L Random Random Oblique (j,witzj,1) (sk0, sk1)

5 ̂̂
Cop zj,0 /∈ L zj,1 ∈ L DDH SXDH Oblique (j,witzj,1) (sk0, sk1)

6 Ĉop zj,0 ∈ L zj,1 ∈ L DDH SXDH Oblique (j,witzj,1) (sk0, sk1)

7 Ĉop zj,0 ∈ L zj,1 ∈ L DDH SXDH Partially oblique (j,witzj,1) (sk0, sk1)

8 Ĉop zj,0 ∈ L zj,1 ∈ L DDH SXDH Normal (j,witzj,1) (sk0, sk1)

9 Cop zj,0 /∈ L zj,1 /∈ L DDH SXDH Normal (sk0, sk1) (sk0, sk1)

10 Cop zj,0 /∈ L zj,1 /∈ L Random SXDH Normal (sk0, sk1) (sk0, sk1)

Table 1: Overview of the outer hybrids in the proof of SXDH. Changes between subsequent hybrids are highlighted in red. Throughout, crs0 and crs1 are binding,
y /∈ L, and the challenge encodings are consistent with respect to extraction. We use the shorthands Cop and Ĉop for the tuples (CAdd,CInv,CMult,Cext) and
(ĈAdd, ĈInv, ĈMult, Ĉext), respectively, where the second set of circuits are described in detail subsequently.

Encoding ct0 encrypts ct1 encrypts Witness for π0 Witness for π1

[α0] (µ, 0, 0, 0, i) (µ, 0, 0, 0, i) (sk0, sk1) (sk0, sk1)

[α1] (µ · γ1, 0, 0, 0, i) (µ · γ1, 0, 0, 0, i) (sk0, sk1) (sk0, sk1)

[α2] (µ · γ2, 0, 0, 0, i) (µ · γ2, 0, 0, 0, i) (sk0, sk1) (sk0, sk1)

[α3] (µ · γ3, 0, 0, 0, i) (µ · γ3, 0, 0, 0, i) (sk0, sk1) (sk0, sk1)

Table 2: Overview of Challenge Encodings in Outer Hybrid 0

in each of the encodings actually encrypt in Table 2. Along with the FHE encryptions, each encoding also contains a
NIZK proof π0 for normal representation under the binding crs0, and a NIZK proof π1 for consistency with respect to
extraction under the binding crs1.

39

ĈAdd[{skb, pkb, crsb}b∈{0,1},{witzj,b
}b∈{0,1}, text,1, (g0, g1, g2, g3)]

(
{(ct0,k, ct1,k, ik, π0,k, π1,k)}k∈{1,2}

)
:

1. Output⊥ if i1 6= i2 or i1 > n. Else, set i = i1 and proceed.

2. Output⊥ if for any k ∈ {1, 2}, we have

NIZK.Verify(crs0, (pk0, pk1, ct0,k, ct1,k, i, {zj,b}j∈[n],b∈{0,1}), π0,k) = 0.

3. Output⊥ if for any k ∈ {1, 2}, we have

NIZK.Verify(crs1, (pk0, pk1, ct0,k, ct1,k, i, y), π1,k) = 0.

4. For b ∈ {0, 1}, set: ct∗b = FHE.Eval(pkb, ctb,1, ctb,2,CAdd,FHE).

5. If for some k ∈ {1, 2}, we have R0,0((ct0,k, ct1,k, i, pk0, pk1), (sk0, sk1)) = 0, then:

(a) // Omitted, depends on text,0.

(b) Generate π∗0 ← NIZK.Prove(crs0, (pk0, pk1, ct∗0 , ct∗1 , i, {zj,b}j∈[n],b∈{0,1}), (j,witzj,ij
)).

6. Else, generate π∗0 ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, {zj,b}j∈[n],b∈{0,1}), (sk0, sk1)).

7. If for some k ∈ {1, 2}, we have R1,0((ct0,k, ct1,k, i, pk0, pk1), (sk0, sk1)) = 0, then:

(a) Extract wity = NIZK.Ext(text,1, (pk0, pk1, ct0,1, ct1,1, i, y), π1,1).

(b) If RL(y,wity) = 0, output⊥.

(c) Else, generate π∗1 ← NIZK.Prove(crs1, (pk0, pk1, ct∗0 , ct∗1 , i, y),wity).

8. Else, generate π∗1 ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, y), (sk0, sk1)).

9. Output (ct∗0 , ct∗1 , i, π
∗
0 , π
∗
1).

Figure 7: Circuit ĈAdd

Outer Hybrid 1. In this hybrid, we make the following alterations to the manner in which the MMap is generated:

1. Fix j ∈ [n] such that for the challenge level-set i, we have ij = 1. We switch the elements zj,0 and zj,1 in the
public parameters from non-members to members for L, i.e., we now sample zj,0, zj,1 ← L, along with their
(unique) membership-witnesses witzj,0 and witzj,1 , respectively.

2. We switch the circuits for addition, inversion, multiplication and extraction as follows:

CAdd 7→ ĈAdd , CInv 7→ ĈInv,

CMult 7→ ĈMult , Cext 7→ Ĉext,

The switched circuits are described in Figures 7, 8, 9, and 10, respectively. At a high level, we make the following
alterations:

• We hardwire the witnesses witzj,0 and witzj,1 into the modified addition and inversion circuits ĈAdd and ĈInv, and
remove the extraction trapdoor text,0 from both these circuits. Instead of extracting the membership witnesses
from the input encodings, we directly use these hardwired witnesses to generate proofs of membership for the
output encodings.

40

ĈInv[{skb, pkb, crsb}b∈{0,1},{witzj,b}b∈{0,1}, text,1, (g0, g1, g2, g3)](ct0, ct1, i, π0, π1):

1. Output⊥ if i > ~1n.

2. Output⊥ if NIZK.Verify(crs0, (pk0, pk1, ct0, ct1, i, {zj,b}j∈[n],b∈{0,1}), π0) = 0.

3. Output⊥ if NIZK.Verify(crs1, (pk0, pk1, ct0, ct1, i, y), π1) = 0.

4. For b ∈ {0, 1}, set: ct∗b = FHE.Eval(pkb, ctb,CInv,FHE).

5. If R0,0((ct0, ct1, i, pk0, pk1), (sk0, sk1)) = 0, then:

(a) // Omitted, depends on text,0.

(b) Generate π∗0 ← NIZK.Prove(crs0, (pk0, pk1, ct∗0 , ct∗1 , i, {zj,b}j∈[n],b∈{0,1}), (j,witzj,ij
)).

6. Else, generate π∗0 ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, {zj,b}j∈[n],b∈{0,1}), (sk0, sk1)).

7. If R1,0((ct0, ct1, i, pk0, pk1), (sk0, sk1)) = 0, then:

(a) Extract wity = NIZK.Ext(text,1, (pk0, pk1, ct0, ct1, i, y), π1).

(b) If RL(y,wity) = 0, output⊥.

(c) Else, generate π∗1 ← NIZK.Prove(crs1, (pk0, pk1, ct∗0 , ct∗1 , i, y),wity).

8. Else, generate π∗1 ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, y), (sk0, sk1)).

9. Output (ct∗0 , ct∗1 , i, π
∗
0 , π
∗
1).

Figure 8: Circuit ĈInv

• We hardwire the witness witzj,1 into the modified multiplication circuit ĈMult, and remove the extraction trap-
door text,0 from it. Instead of extracting the membership witness from the input encoding, we directly use the
hardwired witness to generate proofs of membership for the output encodings. Note that we only need one
witness for the multiplication circuit; the witness witzj,0 is not used (the reader may observe that the original
multiplication circuit would not have extracted witzj,0 either).

• Finally, we remove the extraction trapdoor text,0 from the modified extraction circuit Ĉext

The following items are worth noting:

1. By switching both zj,0 and zj,1 to members of L, we effectively allow valid encodings in any level to be
represented using the oblique representation. In particular, valid oblique encodings in any level set i′ can, in
theory, prove membership of zj,i′j using the corresponding witness witzi′

j
.

2. The element y continues to be a non-member for L and crs1 is still generated in the binding mode. Hence, any
valid encoding must still satisfy consistency as per relation R1,0 described earlier.

Additionally, we make the following change to the manner in which the challenge encodings are generated: for
each challenge encoding, the NIZK proof π0 now proves (under the binding crs0) that zj,1 ∈ L as opposed to proving
that the encoding is in the normal representation. This is explicitly described in Table 3.

Outer Hybrid 2. This hybrid is identical to the outer hybrid 1, except that the challenge SXDH encodings are no
longer in normal form. In particular, the first FHE ciphertext in each encoding now encrypts an oblique representation
of the underlying plaintext element. For ease of understanding, we explicitly lay out what the FHE ciphertexts in each

41

ĈMult[{skb, pkb, crsb}b∈{0,1},witzj,1
, text,1, (g0, γ1, γ2, γ3)]

(
{(ct0,k, ct1,k, ik, π0,k, π1,k)}k∈{1,2}

)
:

1. Output⊥ if i1 + i2 > ~1n.

2. Output⊥ if for any k ∈ {1, 2}, we have

NIZK.Verify(crs0, (pk0, pk1, ct0,k, ct1,k, ik, {zj,b}j∈[n],b∈{0,1}), π0,k) = 0.

3. Output⊥ if for any k ∈ {1, 2}, NIZK.Verify(crs1, (pk0, pk1, ct0,k, ct1,k, ik, y), π1,k) = 0.

4. For k ∈ {1, 2} set

flagk =

{
0 if ik,j = 0,

1 otherwise.

// Omitted use of text,0 above.

5. For b ∈ {0, 1}, set: ct∗b = FHE.Eval(pkb, ctb,1, ctb,2, ctb,γ , ctb,flag,CMult,FHE), where

ctb,γ = FHE.Enc(pkb, (0, γ1, γ2, γ3,~0n)),

ctb,flag = FHE.Enc(pkb, (flag1, flag2, 0,~0n)).

6. If there exists some k ∈ 1, 2 such that:

R1,0((ct0,k, ct1,k, ik, pk0, pk1), (sk0, sk1)) = 0 and ik,j = 1,

then generate
π
∗
0 ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , (i1 + i2), {zj,b}j∈[n],b∈{0,1}), (jk,witz,k)).

7. Else, generate
π
∗
0 ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , (i1 + i2), {zj,b}j∈[n],b∈{0,1}), (sk0, sk1)).

8. If for some k ∈ {1, 2}, we have R1,0((ct0,k, ct1,k, ik, pk0, pk1), (sk0, sk1)) = 0, then:

(a) Extract wity = NIZK.Ext(text,1, (pk0, pk1, ct0,1, ct1,1, ik, y), π1,k).

(b) If RL(y,wity) = 0, output⊥.

(c) Else, generate π∗1 ← NIZK.Prove(crs1, (pk0, pk1, ct∗0 , ct∗1 , (i1 + i2), y),wity).

9. Else, generate π∗1 ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , (i1 + i2), y), (sk0, sk1)).

10. Output (ct∗0 , ct∗1 , i, π
∗
0 , π
∗
1).

Figure 9: Circuit ĈMult

of the encodings actually encrypt in Table 4. As in outer hybrid 1, each encoding also contains a NIZK proof π0 for
zj,1 ∈ L under the binding crs0, and a NIZK proof π1 for consistency under the binding crs1. The changes from outer
hybrid 1 are highlighted in red.

Outer Hybrid 3. This hybrid is identical to the outer hybrid 2, except that the challenge SXDH encodings are now
entirely in oblique form. In particular, the second FHE ciphertext in each encoding now also encrypts an oblique
representation of the underlying plaintext element. Each encoding continues to have a NIZK proof π0 for zj,1 ∈ L
under the binding crs0, and a NIZK proof π1 for consistency with respect to extraction under the binding crs1. For
ease of understanding, we explicitly lay out what the FHE ciphertexts in each of the encodings actually encrypt in
Table 5. The changes from outer hybrid 2 are highlighted in red.

42

Ĉext[{skb, pkb, crsb}b∈{0,1}, text,1, (g0, g1, g2, g3)](ct0, ct1, i, π0, π1):

1. Output⊥ if i > ~1n.

2. Output⊥ if NIZK.Verify(crs0, (pk0, pk1, ct0, ct1, i, {zj,b}j∈[n],b∈{0,1}), π0) = 0.

3. Output⊥ if NIZK.Verify(crs1, (pk0, pk1, ct0, ct1, i, y), π1) = 0.

4. For b ∈ {0, 1}, recover ({a`,b}`∈[0,3], ib) = FHE.Dec(skb, ctb).

5. Compute g∗ =
∏
`∈[0,3] g

a`,0
` .

6. // Omitted, depends on text,0.

7. If R1,0((ct0, ct1, i, pk0, pk1), (sk0, sk1)) = 0, then:

(a) Extract wity = NIZK.Ext(text,1, (pk0, pk1, ct0, ct1, i, y), π1).

(b) If RL(y,wity) = 0, output⊥.

8. Output g∗.

Figure 10: Circuit Ĉext

Encoding ct0 encrypts ct1 encrypts Witness for π0 Witness for π1

[α0] (µ, 0, 0, 0, i) (µ, 0, 0, 0, i) (j,witzj,1) (sk0, sk1)

[α1] (µ · γ1, 0, 0, 0, i) (µ · γ1, 0, 0, 0, i) (j,witzj,1) (sk0, sk1)

[α2] (µ · γ2, 0, 0, 0, i) (µ · γ2, 0, 0, 0, i) (j,witzj,1) (sk0, sk1)

[α3] (µ · γ3, 0, 0, 0, i) (µ · γ3, 0, 0, 0, i) (j,witzj,1) (sk0, sk1)

Table 3: Overview of Challenge Encodings in Outer Hybrid 1

Encoding ct0 encrypts ct1 encrypts Witness for π0 Witness for π1

[α0] (µ, 0, 0, 0, i) (µ, 0, 0, 0, i) (j,witzj,1) (sk0, sk1)

[α1] (0, µ, 0, 0, i) (µ · γ1, 0, 0, 0, i) (j,witzj,1) (sk0, sk1)

[α2] (0, 0, µ, 0, i) (µ · γ2, 0, 0, 0, i) (j,witzj,1) (sk0, sk1)

[α3] (0, 0, 0, µ, i) (µ · γ3, 0, 0, 0, i) (j,witzj,1) (sk0, sk1)

Table 4: Overview of Challenge Encodings in Outer Hybrid 2

Outer Hybrid 4. In this hybrid, we make the following alterations to the manner in which the MMap is generated:

1. We switch back the element zj,0 in the public parameters from a member to a non-member for L, i.e., we now

43

Encoding ct0 encrypts ct1 encrypts Witness for π0 Witness for π1

[α0] (µ, 0, 0, 0, i) (µ, 0, 0, 0, i) (j,witzj,1) (sk0, sk1)

[α1] (0, µ, 0, 0, i) (0, µ, 0, 0, i) (j,witzj,1) (sk0, sk1)

[α2] (0, 0, µ, 0, i) (0, 0, µ, 0, i) (j,witzj,1) (sk0, sk1)

[α3] (0, 0, 0, µ, i) (0, 0, 0, µ, i) (j,witzj,1) (sk0, sk1)

Table 5: Overview of Challenge Encodings in Outer Hybrid 3

sample zj,0 ← X \ L. The element zj,1 continues to be a member for L, i.e., we continue to sample zj,1 ← L,
along with the (unique) membership-witness witzj,1 .

2. We switch the circuits for addition, inversion and multiplication as follows:

ĈAdd 7→
̂̂
CAdd , ĈInv 7→

̂̂
CInv , ĈMult 7→

̂̂
CMult.

The switched circuits for addition, inversion and multiplication are described in Figures 11, 12, and 14, respec-
tively. The following are worth observing:

1. The modified circuits (in particular, the addition and inversion circuits ̂̂CAdd and ̂̂CInv) only have the witness
witzj,1 for the membership of zj,1 in L hardwired into them. Since zj,0 is no longer a member, it does not have
a membership witness.

2. The modified multiplication circuit ̂̂CMult no longer has the exponents γ1, γ2 and γ3 hardwired into it. It only
has the group elements g0, g1, g2 and g3 hardwired, similar to the addition and inversion circuits.

3. The modified multiplication circuit ̂̂CMult in turn homomorphically evaluates a modified circuit ̂̂CMult,FHE, de-
scribed in Figure 13.

Finally, note that the element y continues to be a non-member for L and crs1 is still generated in the binding mode.
Hence, any valid encoding must still satisfy consistency with respect to extraction.

Outer Hybrid 5. This hybrid is identical to outer hybrid 4 except that we switch the tuple (g0, g1, g2, g3) hardwired
into the modified MMap circuits ĈAdd, ĈInv, ĈMult and Ĉext from a uniformly random tuple of group elements to a
uniformly random DDH tuple, albeit with the same base element g0. More formally, we uniformly sample γ1, γ2 ←
Zq , and set

(g1, g2, g3) = (gγ1

0 , gγ2

0 , gγ1·γ2

0).

Outer Hybrid 6. In this hybrid, we make the following alterations to the manner in which the MMap is generated:

1. We switch the element zj,0 in the public parameters from a non-member to a member for L, i.e., we now sample
zj,0 ← L, along with a (unique) membership-witness witzj,0 . The element zj,1 continues to be a member for L,
i.e., we continue to sample zj,1 ← L, along with the (unique) membership-witness witzj,1 .

44

̂̂
CAdd[{skb, pkb, crsb}b∈{0,1},witzj,1

, text,1, (g0, g1, g2, g3)]
(
{(ct0,k, ct1,k, ik, π0,k, π1,k)}k∈{1,2}

)
:

1. Output⊥ if i1 6= i2 or i1 > n. Else, set i = i1 and proceed.

2. Output⊥ if for any k ∈ {1, 2}, we have

NIZK.Verify(crs0, (pk0, pk1, ct0,k, ct1,k, i, {zj,b}j∈[n],b∈{0,1}), π0,k) = 0.

3. Output⊥ if for any k ∈ {1, 2}, we have

NIZK.Verify(crs1, (pk0, pk1, ct0,k, ct1,k, i, y), π1,k) = 0.

4. For b ∈ {0, 1}, set: ct∗b = FHE.Eval(pkb, ctb,1, ctb,2,CAdd,FHE).

5. If for some k ∈ {1, 2}, we have R0,0((ct0,k, ct1,k, i, pk0, pk1), (sk0, sk1)) = 0, then:

(a) // Omitted, depends on text,0.

(b) Generate π∗0 ← NIZK.Prove(crs0, (pk0, pk1, ct∗0 , ct∗1 , i, {zj,b}j∈[n],b∈{0,1}), (j,witzj,1)).

6. Else, generate π∗0 ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, {zj,b}j∈[n],b∈{0,1}), (sk0, sk1)).

7. If for some k ∈ {1, 2}, we have R1,0((ct0,k, ct1,k, i, pk0, pk1), (sk0, sk1)) = 0, then:

(a) Extract wity = NIZK.Ext(text,1, (pk0, pk1, ct0,1, ct1,1, i, y), π1,1).

(b) If RL(y,wity) = 0, output⊥.

(c) Else, generate π∗1 ← NIZK.Prove(crs1, (pk0, pk1, ct∗0 , ct∗1 , i, y),wity).

8. Else, generate π∗1 ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, y), (sk0, sk1)).

9. Output (ct∗0 , ct∗1 , i, π
∗
0 , π
∗
1).

Figure 11: Circuit ̂̂CAdd

2. We switch the circuits for addition, inversion and multiplication as follows:

̂̂
CAdd 7→ ĈAdd ,

̂̂
CInv 7→ ĈInv,̂̂

CMult 7→ ĈMult,

Outer Hybrid 7. This hybrid is identical to the outer hybrid 6, except that the challenge SXDH encodings are now
switched back to a partially oblique form. In particular, the second FHE ciphertext in each encoding now encrypts
a normal representation of the underlying plaintext element. Each encoding continues to have a NIZK proof π0 for
zj,1 ∈ L under the binding crs0, and a NIZK proof π1 for consistency with respect to extraction under the binding crs1.
For ease of understanding, we explicitly lay out what the FHE ciphertexts in each of the encodings actually encrypt in
Table 6. The changes from outer hybrid 6 are highlighted in red.

Outer Hybrid 8. This hybrid is identical to the outer hybrid 7, except that the challenge SXDH encodings are now
switched back entirely to the normal form. In particular, the first FHE ciphertext in each encoding now also encrypts
a normal representation of the underlying plaintext element. Each encoding continues to have a NIZK proof π0 for
zj,1 ∈ L under the binding crs0, and a NIZK proof π1 for consistency with respect to extraction under the binding crs1.

45

ĈInv[{skb, pkb, crsb}b∈{0,1},witzj,1 , text,1, (g0, g1, g2, g3)](ct0, ct1, i, π0, π1):

1. Output⊥ if i > ~1n.

2. Output⊥ if NIZK.Verify(crs0, (pk0, pk1, ct0, ct1, i, {zj,b}j∈[n],b∈{0,1}), π0) = 0.

3. Output⊥ if NIZK.Verify(crs1, (pk0, pk1, ct0, ct1, i, y), π1) = 0.

4. For b ∈ {0, 1}, set: ct∗b = FHE.Eval(pkb, ctb,CInv,FHE).

5. If R0,0((ct0, ct1, i, pk0, pk1), (sk0, sk1)) = 0, then:

(a) // Omitted, depends on text,0.

(b) Generate π∗0 ← NIZK.Prove(crs0, (pk0, pk1, ct∗0 , ct∗1 , i, {zj,b}j∈[n],b∈{0,1}), (j,witzj,1)).

6. Else, generate π∗0 ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, {zj,b}j∈[n],b∈{0,1}), (sk0, sk1)).

7. If R1,0((ct0, ct1, i, pk0, pk1), (sk0, sk1)) = 0, then:

(a) Extract wity = NIZK.Ext(text,1, (pk0, pk1, ct0, ct1, i, y), π1).

(b) If RL(y,wity) = 0, output⊥.

(c) Else, generate π∗1 ← NIZK.Prove(crs1, (pk0, pk1, ct∗0 , ct∗1 , i, y),wity).

8. Else, generate π∗1 ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, y), (sk0, sk1)).

9. Output (ct∗0 , ct∗1 , i, π
∗
0 , π
∗
1).

Figure 12: Circuit ̂̂CInv

̂̂
CMult,FHE(({a`,1}`∈[0,3], i1), ({a`,2}`∈[0,3], i2), (flag1, flag2, 0, 0,~0n)))):

1. If (a1,1, a2,1, a3,1) = (0, 0, 0) and flag2 = 1, then output (({a0,1 · a`,2}`∈[0,3], (i1 + i2))).

2. Else if (a1,2, a2,2, a3,2) = (0, 0, 0) and flag1 = 1, then output (({a0,2 · a`,1}`∈[0,3], (i1 + i2))).

3. Else output⊥.

// Omitted use of the secret exponents (γ1, γ2, γ3).

Figure 13: Circuits ̂̂CMult,FHE

For ease of understanding, we explicitly lay out what the FHE ciphertexts in each of the encodings actually encrypt in
Table 7. The changes from outer hybrid 7 are highlighted in red.

Outer Hybrid 9. This hybrid is identical to outer hybrid 8, except that we make the following alterations to the
manner in which the MMap is set up:

1. We switch back the elements zj,0 and zj,1 in the public parameters from members to non-members for L, i.e.,
we now sample zj,0, zj,1 ← X \ L. Note that this is exactly as in the real MMap scheme.

46

̂̂
CMult[{skb, pkb, crsb}b∈{0,1},witzj,1

, text,1, (g0, γ1, γ2, γ3)]
(
{(ct0,k, ct1,k, ik, π0,k, π1,k)}k∈{1,2}

)
:

1. Output⊥ if i1 + i2 > ~1n.

2. Output⊥ if for any k ∈ {1, 2}, we have

NIZK.Verify(crs0, (pk0, pk1, ct0,k, ct1,k, ik, {zj,b}j∈[n],b∈{0,1}), π0,k) = 0.

3. Output⊥ if for any k ∈ {1, 2}, NIZK.Verify(crs1, (pk0, pk1, ct0,k, ct1,k, ik, y), π1,k) = 0.

4. For k ∈ {1, 2} set

flagk =

{
0 if ik,j = 0,

1 otherwise.

// Omitted use of text,0 above.

5. For b ∈ {0, 1}, set: ct∗b = FHE.Eval(pkb, ctb,1, ctb,2, ctb,flag,
̂̂
CMult,FHE), where

ctb,flag = FHE.Enc(pkb, (flag1, flag2, 0,~0n)).

// Omitted use of the secret exponents (γ1, γ2, γ3) above.

6. If there exists some k ∈ 1, 2 such that:

R1,0((ct0,k, ct1,k, ik, pk0, pk1), (sk0, sk1)) = 0 and ik,j = 1,

then generate
π
∗
0 ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , (i1 + i2), {zj,b}j∈[n],b∈{0,1}), (jk,witz,k)).

7. Else, generate
π
∗
0 ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , (i1 + i2), {zj,b}j∈[n],b∈{0,1}), (sk0, sk1)).

8. If for some k ∈ {1, 2}, we have R1,0((ct0,k, ct1,k, ik, pk0, pk1), (sk0, sk1)) = 0, then:

(a) Extract wity = NIZK.Ext(text,1, (pk0, pk1, ct0,1, ct1,1, ik, y), π1,k).

(b) If RL(y,wity) = 0, output⊥.

(c) Else, generate π∗1 ← NIZK.Prove(crs1, (pk0, pk1, ct∗0 , ct∗1 , (i1 + i2), y),wity).

9. Else, generate π∗1 ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , (i1 + i2), y), (sk0, sk1)).

10. Output (ct∗0 , ct∗1 , i, π
∗
0 , π
∗
1).

Figure 14: Circuit ̂̂CMult

2. We switch back the circuits for addition, inversion, multiplication and extraction as follows:

ĈAdd 7→ CAdd , ĈInv 7→ CInv,

ĈMult 7→ CMult , Ĉext 7→ Cext,

In particular, the circuits are now exactly as in the real MMap scheme, with the exception that the tuple
(g0, g1, g2, g3) hardwired inside these circuits continues to be a DDH tuple (and the corresponding secret expo-
nents hardwired into the multiplication circuit are γ1, γ2 and γ1 · γ2).

Additionally, we make the following change to the manner in which the challenge encodings are generated: for
each encoding, the NIZK proof π0 under the binding crs0 now proves that the encoding is in the normal representation

47

Encoding ct0 encrypts ct1 encrypts Witness for π0 Witness for π1

[α0] (µ, 0, 0, 0, i) (µ, 0, 0, 0, i) (j,witzj,1) (sk0, sk1)

[α1] (0, µ, 0, 0, i) (µ · γ1, 0, 0, 0, i) (j,witzj,1) (sk0, sk1)

[α2] (0, 0, µ, 0, i) (µ · γ2, 0, 0, 0, i) (j,witzj,1) (sk0, sk1)

[α3] (0, 0, 0, µ, i) (µ · γ1 · γ2, 0, 0, 0, i) (j,witzj,1) (sk0, sk1)

Table 6: Overview of Challenge Encodings in Outer Hybrid 7

Encoding ct0 encrypts ct1 encrypts Witness for π0 Witness for π1

[α0] (µ, 0, 0, 0, i) (µ, 0, 0, 0, i) (j,witzj,1) (sk0, sk1)

[α1] (µ · γ1, 0, 0, 0, i) (µ · γ1, 0, 0, 0, i) (j,witzj,1) (sk0, sk1)

[α2] (µ · γ2, 0, 0, 0, i) (µ · γ2, 0, 0, 0, i) (j,witzj,1) (sk0, sk1)

[α3] (µ · γ1 · γ2, 0, 0, 0, i) (µ · γ1 · γ2, 0, 0, 0, i) (j,witzj,1) (sk0, sk1)

Table 7: Overview of Challenge Encodings in Outer Hybrid 8

Encoding ct0 encrypts ct1 encrypts Witness for π0 Witness for π1

[α0] (µ, 0, 0, 0, i) (µ, 0, 0, 0, i) (sk0, sk1) (sk0, sk1)

[α1] (µ · γ1, 0, 0, 0, i) (µ · γ1, 0, 0, 0, i) (sk0, sk1) (sk0, sk1)

[α2] (µ · γ2, 0, 0, 0, i) (µ · γ2, 0, 0, 0, i) (sk0, sk1) (sk0, sk1)

[α3] (µ · γ1 · γ2, 0, 0, 0, i) (µ · γ1 · γ2, 0, 0, 0, i) (sk0, sk1) (sk0, sk1)

Table 8: Overview of Challenge Encodings in Outer Hybrid 9

using the witness (sk0, sk1), as opposed to proving that zj,1 ∈ L. For ease of understanding, we explicitly lay out
what the FHE ciphertexts in each of the encodings actually encrypt in Table 8. The changes from outer hybrid 8 are
highlighted in red.

Outer Hybrid 10. This hybrid is identical to outer hybrid 7 except that we switch the tuple of group elements
(g0, g1, g2, g3) hardwired into the MMap circuits CAdd, CInv, CMult and Cext from a uniform DDH tuple to a uniformly
random tuple, albeit with the same base element g0 (and the corresponding secret exponents hardwired into the mul-
tiplication circuit are switched from (γ1, γ2, γ1 · γ2) to uniformly random (γ1, γ2, γ3)). In other words, the MMap
circuits are now exactly as in the real scheme.

48

Inner Hybrid crs0 MMap Circuits (zj,0, zj,1)

Challenge Encodings

Remark

SXDH/Random Representation Witness for π0 Witness for π1

0-0 Binding Cop zj,0, zj,1 /∈ L Random Normal (sk0, sk1) (sk0, sk1)

0-1 Binding Cop zj,0, zj,1 ∈ L Random Normal (sk0, sk1) (sk0, sk1) L-hardness

0-2 Binding Ĉop zj,0, zj,1 ∈ L Random Normal (sk0, sk1) (sk0, sk1) piO-security + unique witzj,0

0-3 Hiding Ĉop zj,0, zj,1 ∈ L Random Normal (sk0, sk1) (sk0, sk1) NIZK CRS-indistinguishability

0-4 Hiding Ĉop zj,0, zj,1 ∈ L Random Normal (j,witzj,1) (sk0, sk1) NIZK witness-indistinguishability

0-5 Binding Ĉop zj,0, zj,1 ∈ L Random Normal (j,witzj,1) (sk0, sk1) NIZK CRS-indistinguishability

Table 9: Overview of the inner hybrids in the proof of indistinguishability of outer hybrids 0 and 1. Changes between subsequent hybrids are highlighted in red.
Throughout, crs1 is binding, zj,1, y /∈ L, (g0, g1, g2, g3) is a random tuple of group elements, and the challenge encodings are both in normal representation as well
as consistent with respect to extraction. We use the shorthands Cop and Ĉop for the tuples (CAdd,CInv,CMult,Cext) and (ĈAdd, ĈInv, ĈMult, Ĉext), respectively, where
the second set of circuits are described in detail subsequently.

6.2 Indistinguishability of Outer Hybrids
In this section, we argue that the outer hybrids are computationally indistinguishable from each other. Each argument
in turn involves a sequence of inner hybrids, as described below.

Outer Hybrids 0 and 1. We first argue that outer hybrids 0 and 1 are computationally indistinguishable from each
other. In particular, we state and prove the following lemma:

Lemma 6.2. The outer hybrids 0 and 1 are computationally indistinguishable provided that all of the following as-
sumptions hold:

• The piO scheme is indistinguishability-secure against X-IND samplers.

• Membership in L is computationally hard to decide,

• Members of L have unique witnesses for membership.

• The dual-mode NIZK proof system satisfies CRS indistinguishability, perfect extractability in the binding mode,
and perfect witness-indistinguishability in the hiding mode.

Proof. To prove this lemma, we use a sequence of inner hybrids. The first of these inner hybrids is identical to outer
hybrid 0, while the last is identical to outer hybrid 1. Table 9 provides an overview of these inner hybrids.

Inner Hybrid 0-0. This hybrid is identical to outer hybrid 0.

Inner Hybrid 0-1. In this hybrid, we switch zj,0 and zj,1 in the public parameter of the MMap from uniform
non-members to uniform members of L. By the hardness of deciding membership in the set L, inner hybrid 0-1 is
computationally indistinguishable from inner hybrid 0-0 (more formally, we require two sub-hybrids - one each for
switching each of the elements zj,0 and zj,1 from uniform non-members to uniform members of L; we avoid this for
brevity).

49

Inner Hybrid 0-2. In this hybrid we switch to using the modified MMap circuits ĈAdd, ĈInv, ĈMult and Ĉext. In
particular, we hardwire the witnesses witzj,0 and witzj,1 for the membership of zj,0 and zj,1 into the circuits, and
remove the extraction trapdoor text,0 from all of the circuits. We claim that this change does not change the functionality
of the MMap circuits at all.

To begin with, observe that in order to reach the extraction step, the input encoding(s) to each circuit must pass
the validity checks for π0. Since crs0 is binding in both inner hybrids 0-1 and 0-2, any valid encoding that passes
this test must either contain a verifying proof of normal representation, or must contain a verifying proof of language-
membership for zj,0 or zj,1. Now observe the following:

• In the former case, the first If condition in the addition and inversion circuits, the Else If conditions in the
multiplication circuit, and the first If condition in the extraction circuit are never satisfied, and the proof π∗0 for
the output encoding is generated using the witness (sk0, sk1). Hence, in this case, the outputs of the original
and modified MMap circuits are identical.

• In the latter case, these conditions may be satisfied (if one or more of the input encodings to each circuit are in
the oblique representation). In this case, to generate the proof π∗0 for the output encoding, the circuits CAdd, CInv

and CMult use the extracted witness, while the circuits ĈAdd, ĈInv and ĈMult use the hardwired witness. Since the
NIZK system has perfect extractability in the binding mode, extraction always succeeds in the original MMap
circuits. Since L has unique membership witnesses, the extracted and hardwired witnesses must be identical.
Hence, even in this case, the outputs of the original and modified MMap circuits are identical.

At this point, the transition can be justified by invoking the security of the piO scheme against X-IND sam-
plers (once for each MMap circuit).

Inner Hybrid 0-3. In this hybrid we switch the string crs0 in the public parameter from binding to hiding mode.
Hence proofs generated under crs0 will be perfectly witness indistinguishable in this hybrid. This hop can be justified
by the CRS indistinguishability of the dual-mode NIZK proof system, and the fact that the modified MMap circuits
ĈAdd, ĈInv, ĈMult and Ĉext do not use the extraction trapdoor text,0 any longer.

Inner Hybrid 0-4. In this hybrid we switch the proof π0 in each challenge encoding from using the witness
(sk0, sk1) to prove normal representation to using the witness (j,witzj,1) for proving the membership of zj,1 in L.
Note that we still generate proofs that are valid, albeit using a different witness. This hop can be justified by the perfect
witness-indistinguishability of the NIZK proof system in the hiding mode.

Inner Hybrid 0-5. In this hybrid we switch the string crs0 in the public parameter back to binding mode from hiding
mode. This hop can be justified by the CRS indistinguishability of the dual-mode NIZK proof system, and the fact
that all proofs in the challenge encodings are valid.

Observe that in inner hybrid 0-5, the public parameters of the MMap and the challenge encodings are distributed
exactly as in outer hybrid 1. This concludes the proof of Lemma 6.2.

Outer Hybrids 1 and 2. We now argue that outer hybrids 1 and 2 are computationally indistinguishable from each
other. In particular, we state and prove the following lemma:

Lemma 6.3. The outer hybrids 1 and 2 are computationally indistinguishable provided that all of the following as-
sumptions hold:

• The piO scheme is indistinguishability-secure against X-IND samplers.

• Membership in L is computationally hard to decide,

• Members of L have unique witnesses for membership.

50

Inner Hybrid (crs0, crs1) MMap Circuits y

Challenge Encodings

Remark

SXDH/Random Representation Witness for π0 Witness for π1

1-0 (Binding, Binding) Ĉop y /∈ L Random Normal (j,witzj,1) (sk0, sk1)

1-1 (Binding, Hiding) C̃op,0 y ∈ L Random Normal (j,witzj,1) wity Lemma 6.4

1-2 (Biding, Hiding) C̃op,0 y ∈ L Random Partially oblique (j,witzj,1) wity FHE CPA-security

1-3 (Binding, Binding) Ĉop y /∈ L Random Partially oblique (j,witzj,1) (sk0, sk1) Lemma 6.5

Table 10: Overview of the inner hybrids in the proof of indistinguishability of outer hybrids 1 and 2. Changes between subsequent hybrids are highlighted in red.
Throughout, crs0 is in binding mode, zj,0, zj,1 ∈ L, and (g0, g1, g2, g3) is a random tuple of group elements. We use the shorthands Ĉop and C̃op,0 for the tuples
(ĈAdd, ĈInv, ĈMult, Ĉext) and (C̃Add,0, C̃Inv,0, C̃Mult,0, C̃ext,0), respectively, where the second set of circuits are described in detail subsequently.

• The dual-mode NIZK proof system satisfies CRS indistinguishability, perfect extractability in the binding mode,
and perfect witness-indistinguishability in the hiding mode.

Proof. To prove this lemma, we use another sequence of inner hybrids. The first of these inner hybrids is identical to
outer hybrid 1, while the last is identical to outer hybrid 2. Table 10 provides an overview of these inner hybrids.

Inner Hybrid 1-0. This hybrid is identical to outer hybrid 1.

Inner Hybrid 1-1. In this hybrid, we make the following alterations:

1. We switch the string crs1 from binding to hiding mode.

2. We switch the element y in the public parameters from a non-member to a member for L, i.e., we now sample
y ← L, along with a (unique) membership-witness wity .

3. We switch the circuits for addition, inversion, multiplication and extraction as follows:

ĈAdd 7→ C̃Add , ĈInv 7→ C̃Inv,

ĈMult 7→ C̃Mult , Ĉext 7→ C̃ext,0.

4. Additionally, we make the following change to the manner in which the challenge encodings are generated: for
each encoding, the NIZK proof π1 under crs1 now proves that y ∈ L using the witness wity as opposed to
proving consistency.

The modified circuits are described in Figures 15, 16, 17, and 18, respectively. At a high level, in each of these
switched circuits, we hardwire the witness wity for the membership of y in L and avoid using the second extraction
trapdoor text,1 inside the second If branch, which checks for consistency. In other words, we suspend all consistency
checks in all MMap circuits.

Note that the modified circuits for addition, inversion and multiplication, namely C̃Add, C̃Inv and C̃Mult, are hard-
wired with neither sk0 nor sk1. The modified extraction circuits C̃ext,β is only hardwired with sk1−β and not skβ .
More specifically, C̃ext,0 is only hardwired with sk1 and not sk0.

We state and prove the following lemma:

51

C̃Add[{skb, pkb, crsb}b∈{0,1},{witzj,b
}b∈{0,1},wity, (g0, g1, g2, g3)]

(
{(ct0,k, ct1,k, ik, π0,k, π1,k)}k∈{1,2}

)
:

1. Output⊥ if i1 6= i2 or i1 > n. Else, set i = i1 and proceed.

2. Output⊥ if for any k ∈ {1, 2}, we have

NIZK.Verify(crs0, (pk0, pk1, ct0,k, ct1,k, i, {zj,b}j∈[n],b∈{0,1}), π0,k) = 0.

3. Output⊥ if for any k ∈ {1, 2}, we have

NIZK.Verify(crs1, (pk0, pk1, ct0,k, ct1,k, i, y), π1,k) = 0.

4. For b ∈ {0, 1}, set: ct∗b = FHE.Eval(pkb, ctb,1, ctb,2,CAdd,FHE).

5. // Check omitted, depends on (sk0, sk1).

6. Generate π∗0 ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, {zj,b}j∈[n],b∈{0,1}), (j,witzj,ij
)).

7. // Check omitted, depends on (sk0, sk1).

8. Generate π∗1 ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, y),wity).

9. Output (ct∗0 , ct∗1 , i, π
∗
0 , π
∗
1).

Figure 15: Circuit C̃Add

C̃Inv[{skb, pkb, crsb}b∈{0,1},{witzj,b}b∈{0,1},wity, (g0, g1, g2, g3)](ct0, ct1, i, π0, π1):

1. Output⊥ if i > ~1n.

2. Output⊥ if NIZK.Verify(crs0, (pk0, pk1, ct0, ct1, i, {zj,b}j∈[n],b∈{0,1}), π0) = 0.

3. Output⊥ if NIZK.Verify(crs1, (pk0, pk1, ct0, ct1, i, y), π1) = 0.

4. For b ∈ {0, 1}, set: ct∗b = FHE.Eval(pkb, ctb,CInv,FHE).

5. // Check omitted, depends on (sk0, sk1).

6. Generate π∗0 ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, {zj,b}j∈[n],b∈{0,1}), (j,witzj,ij
)).

7. // Check omitted, depends on (sk0, sk1).

8. Generate π∗1 ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, y),wity).

9. Output (ct∗0 , ct∗1 , i, π
∗
0 , π
∗
1).

Figure 16: Circuit C̃Inv

Lemma 6.4. The inner hybrids 1-0 and 1-1 are computationally indistinguishable provided that all of the following
assumptions hold:

• The piO scheme is indistinguishability-secure against X-IND samplers.

• Membership in L is computationally hard to decide,

• Members of L have unique witnesses for membership.

52

C̃Mult[{skb, pkb, crsb}b∈{0,1},{witzj,b
}b∈{0,1},wity, (g0, γ1, γ2, γ3)]

(
{(ct0,k, ct1,k, ik, π0,k, π1,k)}k∈{1,2}

)
:

1. Output⊥ if i1 + i2 > ~1n.

2. Output⊥ if for any k ∈ {1, 2}, we have

NIZK.Verify(crs0, (pk0, pk1, ct0,k, ct1,k, ik, {zj,b}j∈[n],b∈{0,1}), π0,k) = 0.

3. Output⊥ if for any k ∈ {1, 2}, NIZK.Verify(crs1, (pk0, pk1, ct0,k, ct1,k, ik, y), π1,k) = 0.

4. For k ∈ {1, 2} set

flagk =

{
0 if ik,j = 0,

1 otherwise.

// Omitted use of text,0 above.

5. For b ∈ {0, 1}, set: ct∗b = FHE.Eval(pkb, ctb,1, ctb,2, ctb,γ , ctb,flag,CMult,FHE), where

ctb,γ = FHE.Enc(pkb, (0, γ1, γ2, γ3,~0n)),

ctb,flag = FHE.Enc(pkb, (flag1, flag2, 0,~0n)).

6. Letting i∗ = i1 + i2, generate:

π
∗
0 ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i

∗
, {zj,b}j∈[n],b∈{0,1}), (j,witzj,i∗

j
)).

π
∗
1 ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i

∗
, y),wity).

//All checks depending on (sk0, sk1) omitted above.

7. Output (ct∗0 , ct∗1 , i, π
∗
0 , π
∗
1).

Figure 17: Circuit C̃Mult

C̃ext,β [sk1−β ,{pkb, crsb}b∈{0,1}, (j,witzj,1),wity, (g0, g1, g2, g3)](ct0, ct1, i, π0, π1) for β ∈ {0, 1}:

1. Output⊥ if i > ~1n.

2. Output⊥ if NIZK.Verify(crs0, (pk0, pk1, ct0, ct1, i, {zj,1}j∈[0,n]), π0) = 0.

3. Output⊥ if NIZK.Verify(crs1, (pk0, pk1, ct0, ct1, i, y), π1) = 0.

4. Recover ({a`,1−β}`∈[0,3], i1−b) = FHE.Dec(sk1−β , ct1−β).

5. Compute g∗ =
∏
`∈[0,3] g

a`,1−β
` .

6. // Check omitted, depends on skβ .

7. // Check omitted, depends on skβ .

8. Output g∗.

Figure 18: Circuit C̃ext,β for β ∈ {0, 1}

• The dual-mode NIZK proof system satisfies CRS indistinguishability, perfect extractability in the binding mode,
and perfect witness-indistinguishability in the hiding mode.

53

Inner Hybrid (crs0, crs1)

MMap Circuits

y

Challenge Encodings

Remark

Overall Structure Hardwired Witness for π0 Witness for π1

1-0-0 (Binding, Binding) Ĉop (sk0, sk1,witzj,0 ,witzj,1 , text,1) y /∈ L (j,witzj,1) (sk0, sk1)

1-0-1 (Binding, Binding) Ĉop (sk0, sk1,witzj,0 ,witzj,1 , text,1) y ∈ L (j,witzj,1) (sk0, sk1) L-hardness

1-0-2 (Binding, Binding) Ĉop (sk0, sk1,witzj,0 ,witzj,1 ,wity) y ∈ L (j,witzj,1) (sk0, sk1) piO-security + unique wity

1-0-3 (Hiding, Binding) Ĉop (sk0, sk1,witzj,0 ,witzj,1 ,wity) y ∈ L (j,witzj,1) (sk0, sk1) NIZK CRS-indistinguishability

1-0-4 (Hiding, Binding) Ĉop except (sk0, sk1,witzj,0 ,witzj,1 ,wity) y ∈ L (j,witzj,1) (sk0, sk1) piO-security + NIZK witness-indistinguishability
Witnesses for output π∗0 are either zj,0 or zj,1

1-0-5 (Binding, Binding) Ĉop except (sk0, sk1,witzj,0 ,witzj,1 ,wity) y ∈ L (j,witzj,1) (sk0, sk1) NIZK CRS-indistinguishability
Witnesses for output π∗0 are either zj,0 or zj,1

1-0-6 (Binding, Hiding) Ĉop except (sk0, sk1,witzj,0 ,witzj,1 ,wity) y ∈ L (j,witzj,1) (sk0, sk1) NIZK CRS-indistinguishability
Witnesses for output π∗0 are either zj,0 or zj,1

1-0-7 (Binding, Hiding) C̃op,0 (sk1,witzj,0 ,witzj,1 ,wity) y ∈ L (j,witzj,1) (sk0, sk1) piO-security + NIZK witness-indistinguishability

1-0-8 (Binding, Hiding) C̃op,0 (sk1,witzj,0 ,wity) y ∈ L (j,witzj,1) wity NIZK witness-indistinguishability

Table 11: Overview of the hybrids in the proof of indistinguishability of inner hybrids 1-0 and 1-1. Changes between subsequent hybrids are highlighted in red.
Throughout, zj,0 ∈ L, and (g0, g1, g2, g3) is a random tuple of group elements. We use the shorthands Ĉop and C̃op,0 for the tuples (ĈAdd, ĈInv, ĈMult, Ĉext) and
(C̃Add,0, C̃Inv,0, C̃Mult,0, C̃ext,0), respectively, where the second set of circuits are described in detail subsequently.

Proof. To prove this lemma, we use an additional layer of inner hybrids. The first of these inner hybrids is identical to
outer hybrid 1, while the last is identical to outer hybrid 2. Table 11 provides an overview of these inner hybrids. We
would like to note here that these sequence of hybrids closely resemble those used by the authors of [FHHL18] in the
proof of Lemma 6.2 in their paper.

1. Inner Hybrid 1-0-0: This hybrid is identical to inner hybrid 1-0.

2. Inner Hybrid 1-0-1. In this hybrid, we switch y in the public parameter of the MMap from a uniform non-
member be a uniform member of L. By the hardness of deciding membership in the set L, inner hybrid 1-0-1 is
computationally indistinguishable from inner hybrid 1-0-0.

3. Inner Hybrid 1-0-2. In this hybrid we take a first step towards switching to using the MMap circuits C̃Add,
C̃Inv, C̃Mult and C̃ext as described in Figures 15, 16, 17 and 18, respectively. In particular, we make the following
modification to the MMap circuits ĈAdd, ĈInv, ĈMult and Ĉext: we hardwire the witness wity for the membership
of y into the circuits, and remove the extraction trapdoor text,1 from all of the circuits. We claim that this change
does not change the functionality of the MMap circuits at all. The proof of this claim is very similar to the proof
of inner hybrid 0-2 (in the proof of Lemma 6.2).

To begin with, observe that in order to reach the extraction step, the input encoding(s) to each circuit must pass
the validity checks for π1. Since crs1 is binding in both inner hybrids 1-0-1 and 1-0-2, any valid encoding that
passes this test must either contain a verifying proof of consistency, or a verifying proof of language-membership
for y. Now observe the following:

• In the former case, the second If condition in each MMap circuit is never satisfied, and the proof π∗1 for the
output encoding is generated using the witness (sk0, sk1). Hence, in this case, the outputs of the MMap
circuits are identical across the inner hybrids 1-0-1 and 1-0-2.

54

• In the latter case, the second If condition in each MMap circuit may be satisfied (if the input encoding is
inconsistent). In this case, to generate the proof π∗1 for the output encoding, the circuits in inner hybrid
1-0-1 use the extracted witness for the language-membership of y, while the circuits in the inner hybrid
1-0-2 use the hardwired witness for the language-membership of y. Since the NIZK system has perfect
extractability in the binding mode, extraction always succeeds in the circuits in inner hybrid 1-0-1. Since
L has unique membership witnesses, the extracted and hardwired witnesses must be identical. Hence, even
in this case, the outputs of the MMap circuits are identical across the inner hybrids 1-0-1 and 1-0-2.

At this point, the transition can be justified by invoking the security of the piO scheme against X-IND sam-
plers (once for each MMap circuit).

4. Inner Hybrid 1-0-3. In this hybrid we switch the strings crs0 in the public parameter from binding to hiding
mode. Hence proofs generated under crs0 will be perfectly witness indistinguishable in this hybrid. This hop can
be justified by the CRS indistinguishability of the dual-mode NIZK proof system, and the fact that the modified
MMap circuits ĈAdd, ĈInv, ĈMult and Ĉext do not use the extraction trapdoors text,0.

5. Inner Hybrid 1-0-4. In this hybrid we take a second step towards switching to using the MMap circuits
C̃Add, C̃Inv, C̃Mult and C̃ext as described in Figures 15, 16, 17 and 18, respectively. In particular, we make
the following modification: we always generate the proof π∗0 for the output encoding in the addition, inversion
and multiplication circuits using either the hardwired witness witzj,0 for the language-membership of zj,0 or the
hardwired witness witzj,1 for the language-membership of zj,1 (depending on the output level set), irrespective
of whether the original encoding was in normal representation or oblique representation.

We claim that this does not change the output distribution of the MMap circuits. To see this, observe that if the
inputs to the MMap circuits are valid, then all proofs π∗0 generated by the circuits continue to remain valid. The
only item that changes is the witness used to generate these proofs, irrespective of whether the original encoding
was in normal representation or oblique representation. So there is a (potential) change of witnesses used to
generate the proof π∗0 for the output encoding.

However recall that crs0 is in hiding mode in both inner hybrids 1-0-3 and 1-0-4; hence, by the perfect witness-
indistinguishability of the NIZK proof system in the hiding mode, the distributions of these proofs, and hence the
outputs of the MMap circuits, remain unaltered. Hence, this transition can be justified by invoking the security
of the piO scheme against X-IND samplers (once for each of the three MMap circuits for addition, inversion
and multiplication).

6. Inner Hybrid 1-0-5. In this hybrid we switch the string crs0 in the public parameter back from hiding to binding
mode. Hence proofs generated under crs0 will be perfectly sound and extractable in this hybrid. This hop can
be justified by the CRS indistinguishability of the dual-mode NIZK proof system, and the fact that the modified
MMap circuits ĈAdd, ĈInv and ĈMult always produce valid proofs π∗0 for their output encodings in the inner
hybrid 1-0-4 (and hence in this inner hybrid as well).

7. Inner Hybrid 1-0-6. In this hybrid we switch the string crs1 in the public parameter from binding to hiding
mode. Hence proofs generated under crs1 will be perfectly witness indistinguishable in this hybrid. This hop can
be justified by the CRS indistinguishability of the dual-mode NIZK proof system, and the fact that the modified
MMap circuits ĈAdd, ĈInv, ĈMult and Ĉext do not use the extraction trapdoor text,1 any longer.

8. Inner Hybrid 1-0-7. In this hybrid, we completely switch to using the MMap circuits C̃Add, C̃Inv, C̃Mult and C̃ext

as described in Figures 15, 16, 17 and 18, respectively.

Specifically, the only additional change from inner hybrid 1-0-6 is that we let the addition, inversion and mul-
tiplication circuits to always use the hardwired witness wity to generate the proof π∗1 in the output encodings,
irrespective of whether the input encodings are consistent. Hence, these circuits need no longer perform the
explicit checks for the relation R1. This in turn means that they need neither sk0 nor sk1 any longer.

55

We claim that these modifications do not change the output distributions of the MMap circuits. To see this,
observe the following:

• The string crs0 is still in the binding mode, and hence any input encoding that passes the validity test for π0

must either have a verifying proof of normal representation (and hence consistency), or a verifying proof
for the language-membership of zj,0. The witnesses used for these proofs have not changed from inner
hybrid 1-0-6.

• All proofs π∗1 generated in inner hybrid 1-0-6 are verifying, and hence all encodings output by the MMap
circuits are valid. Indeed, we have only changed the witnesses used for the proof π∗1 . By the perfect
witness-indistinguishability of the NIZK proof system in the hiding mode, the distributions of these proofs
remain unaltered.

Note that even in the original scheme, one could generate “valid” encodings that are “inconsistent” pro-
vided that they could produce a verifying proof of membership for y in L. Hence, our suspension of
consistency checks does not introduce any new functionality or change the existing functionality of the
MMap circuits - it simply showcases how to use the OR branches in our NIZK statements as a proof
construct.

At this point, we can argue that the output distributions of the MMap circuits remain unaltered across inner
hybrids 1-0-6 and 1-0-7, and the transition can be justified by invoking the security of the piO scheme against
X-IND samplers (once for each MMap circuit).

9. Inner Hybrid 1-0-8. In this hybrid we switch the proof π1 in each challenge encoding from using the witness
(sk0, sk1) to prove consistency to using the witness wity for proving the membership of y in L. Note that we
still generate proofs that are valid, and the only item that changes is the witness used to generate these proofs;
hence, by the perfect witness-indistinguishability of the NIZK proof system in the hiding mode, the distributions
of these proofs remain unaltered. This allows us to justify this final hop.

Observe that in inner hybrid 1-0-8, the public parameters of the MMap and the challenge encodings are distributed
exactly as in inner hybrid 1-1. This concludes the proof of Lemma 6.4.

Inner Hybrid 1-2. In this hybrid, we switch the challenge encodings from normal representation to partially oblique
representation. More specifically, we switch the plaintext tuples underlying the FHE ciphertexts in each challenge
encoding as follows:

[α1] : (µ · γ1, 0, 0, 0, i), (µ · γ1, 0, 0, 0, i) −→ (0, µ, 0, 0, i), (µ · γ1, 0, 0, 0, i)

[α2] : (µ · γ2, 0, 0, 0, i), (µ · γ2, 0, 0, 0, i) −→ (0, 0, µ, 0, i), (µ · γ2, 0, 0, 0, i)

[α3] : (µ · γ3, 0, 0, 0, i), (µ · γ3, 0, 0, 0, i) −→ (0, 0, 0, µ, i), (µ · γ3, 0, 0, 0, i)

We argue that inner hybrid 1-1 is computationally indistinguishable from inner hybrid 1-2 assuming that FHE is
CPA-secure. More specifically, we rely on multi-challenge FHE CPA-security, which is polynomially equivalent to
single-challenge FHE CPA-security.

To see this, suppose that there exists a PPT adversaryA that can distinguish between the inner hybrids 1-1 and 1-2
with non-negligible probability. We construct a PPT algorithm B that can break the multi-challenge CPA-security of
the FHE scheme with non-negligible probability. From the challenger in the multi-challenge FHE CPA-security game,
B receives a public key pk0. It then sets up the public parameters for the MMap as follows:

56

1. B samples a different key-pair for the FHE scheme as:

(pk1, sk1)← FHE.Gen(1λ),

B then samples g0 ← G and γ1, γ2, γ3 ← Zq , and sets:

g1 = gγ1

0 , g2 = gγ2

0 , g2 = gγ3

0 .

Finally, B samples a pair of NIZK CRS strings in the hiding mode as:

crs0, crs1 ← NIZK.Setup(1λ,hiding).

2. Next B uniformly samples a total (n + 1) elements from the set X that are all non-members for the subset L
and one element that is a member for L. More formally, it samples

z1,0, z1,1, . . . , zj−1,0, zj−1,1, zj+1,0, zj+1,1 . . . , zn,0, zn,1 ← X \ L,

y, zj,0, zj,1 ← L,

where zj,0 has unique membership-witness witzj,0 , zj,1 has unique membership-witness witzj,1 , and y has
unique membership-witness wity .

3. Finally, B sets up the MMap circuits C̃Add,0, C̃Inv,0, C̃Mult,0 and C̃ext,0 exactly as described in Figures 15, 16, 17
and 18, respectively. Note that the extraction circuit is only hardwired with sk1 and not sk0, while the remaining
circuits are hardwired with neither sk0 nor sk1. Hence B does not require the knowledge of sk0 to create these
circuits. It then computes and outputs four probabilistically indistinguishability-obfuscated circuits of the form

C̄Add = piO.Obf(C̃Add,0) , C̄Inv = piO.Obf(C̃Inv,0),

C̄Mult = piO.Obf(C̃Mult,0) , C̄ext = piO.Obf(C̃ext,0).

Next, B sets up the challenge encodings as follows:

1. B samples µ ← Zq and provides the following pairs of challenge plaintexts to the challenger in the multi-
challenge FHE CPA-security game:

Pair-1: (µ · γ1, 0, 0, 0, i) , (0, µ, 0, 0, i),

Pair-2: (µ · γ2, 0, 0, 0, i) , (0, 0, µ, 0, i),

Pair-3: (µ · γ3, 0, 0, 0, i) , (0, 0, 0, µ, i).

In response, it receives from the challenger a tuple of ciphertexts (ct∗1, ct∗2, ct∗3) under pk0 and sets:

ct0,0 = FHE.Enc(pk0, (µ, 0, 0, 0, i)),

ct0,1 = ct∗1 , ct0,2 = ct∗2 , ct0,3 = ct∗3.

2. B then generates the following FHE ciphertexts:

ct1,0 = FHE.Enc(pk1, (µ, 0, 0, 0, i)) , ct1,1 = FHE.Enc(pk1, (µ · γ1, 0, 0, 0, i)),

ct1,2 = FHE.Enc(pk1, (µ · γ2, 0, 0, 0, i)) , ct1,3 = FHE.Enc(pk1, (µ · γ3, 0, 0, 0, i)).

57

3. B then generates the following proofs for each ` ∈ [0, 3]:

π0,` = NIZK.Prove(crs0, (pk0,pk1, ct0,`, ct1,`, i, {zj,1}j∈[0,n]), (j,witzj,1)),

π1,` = NIZK.Prove(crs1, (pk0,pk1, ct0,`, ct1,`, i, y),wity).

4. Finally, for each ` ∈ [0, 3], B generates the encoding [α`] as:

[α`] =

(
ct0,`, ct1,`, i, π0,`, π1,`

)
.

B then provides A with the MMap public parameters and the challenge encodings. Eventually, A outputs a bit b?.
B outputs the same bit b?. Now, observe the following:

• Suppose that B received from the challenger the FHE encryptions of the first plaintext tuple in each pair under
pk0. In this case, the view of A is exactly as in inner hybrid 1-1.

• On the other hand, suppsose that B from the challenger FHE encryptions of the second plaintext tuple in each
pair under pk0. In this case, the view of A is exactly as in inner hybrid 1-2.

Hence the advantage of B in breaking the multi-challenge CPA-security of the FHE scheme is the same as the advan-
tage of A in distinguishing the inner hybrids 1-1 and 1-2. This allows us to justify this hop.

Inner Hybrid 1-3. In this hybrid, we make the following alterations:

1. We switch the strings crs0 and crs1 back to binding mode from hiding mode.

2. We switch the element y in the public parameters back to a non-member from a member for L, i.e., we now
sample y ← X /∈ L.

3. We switch back the circuits for addition, inversion, multiplication and extraction as follows:

C̃Add,0 7→ ĈAdd , C̃Inv,0 7→ ĈInv,

C̃Mult,0 7→ ĈMult , C̃ext,0 7→ Ĉext.

4. Additionally, we make the following change to the manner in which the challenge encodings are generated:
for each encoding, the NIZK proof π1 under crs1 now proves that the encoding is consistent using the witness
(sk0, sk1).

Lemma 6.5. The inner hybrids 1-2 and 1-3 are computationally indistinguishable provided that all of the following
assumptions hold:

• The piO scheme is indistinguishability-secure against X-IND samplers.

• Membership in L is computationally hard to decide,

• Members of L have unique witnesses for membership.

• The dual-mode NIZK proof system satisfies CRS indistinguishability, perfect extractability in the binding mode,
and perfect witness-indistinguishability in the hiding mode.

Proof. The proof of this lemma uses essentially the same inner hybrids as the proof of Lemma 6.4, albeit in the reverse
order, and is hence not detailed.

Observe that in inner hybrid 1-3, the public parameters of the MMap and the challenge encodings are distributed
exactly as in outer hybrid 2. This concludes the proof of Lemma 6.3.

58

Inner Hybrid (crs0, crs1) MMap Circuits y

Challenge Encodings

Remark

SXDH/Random Representation Witness for π0 Witness for π1

2-0 (Binding, Binding) Ĉop y /∈ L Random Partially oblique (j,witzj,1) (sk0, sk1)

2-1 (Binding, Hiding) C̃op,1 y ∈ L Random Partially oblique (j,witzj,1) wity Analogue of Lemma 6.4 for β = 1

2-2 (Binding, Hiding) C̃op,1 y ∈ L Random Oblique (j,witzj,1) wity FHE CPA-security

2-3 (Binding, Binding) Ĉop y /∈ L Random Oblique (j,witzj,1) (sk0, sk1) Analogue of Lemma 6.5 for β = 1

Table 12: Overview of the inner hybrids in the proof of indistinguishability of outer hybrids 2 and 3. Changes between subsequent hybrids are highlighted in red.
Throughout, zj,1 ∈ L, and (g0, g1, g2, g3) is a random tuple of group elements. We use the shorthands Ĉop and C̃op,1 for the tuples (ĈAdd, ĈInv, ĈMult, Ĉext) and
(C̃Add, C̃Inv, C̃Mult, C̃ext,1), respectively.

Outer Hybrids 2 and 3. We now argue that outer hybrids 2 and 3 are computationally indistinguishable from each
other. In particular, we state and prove the following lemma:

Lemma 6.6. The outer hybrids 2 and 3 are computationally indistinguishable provided that all of the following as-
sumptions hold:

• The piO scheme is indistinguishability-secure against X-IND samplers.

• Membership in L is computationally hard to decide,

• Members of L have unique witnesses for membership.

• The dual-mode NIZK proof system satisfies CRS indistinguishability, perfect extractability in the binding mode,
and perfect witness-indistinguishability in the hiding mode.

Proof. To prove this lemma, we use another sequence of inner hybrids. The first of these inner hybrids is identical to
outer hybrid 2, while the last is identical to outer hybrid 3. Table 12 provides an overview of these inner hybrids. As
is evident from the description of the hybrids, they are essentially identical to the inner hybrids used in the proof of
Lemma 6.3, with the exception that we need to use the modified circuits C̃Add,1, C̃Inv,1, C̃Mult,1, and C̃ext,1 (hardwired
with only sk0 and not sk1), and we rely on analogous versions of Lemma 6.4 and Lemma 6.5 for β = 1 as opposed to
β = 0. Apart from this, the proof of indistinguishability of these inner hybrids are essentially identical to those in the
proof of Lemma 6.3, and are hence not detailed.

Outer Hybrids 3 and 4. We now argue that outer hybrids 3 and 4 are computationally indistinguishable from each
other. In particular, we state and prove the following lemma:

Lemma 6.7. The outer hybrids 3 and 4 are computationally indistinguishable provided that all of the following as-
sumptions hold:

• The piO scheme is indistinguishability-secure against X-IND samplers.

• Membership in L is computationally hard to decide,

• Members of L have unique witnesses for membership.

• The dual-mode NIZK proof system satisfies CRS indistinguishability, perfect extractability in the binding mode,
and perfect witness-indistinguishability in the hiding mode.

Proof. To prove this lemma, we use another sequence of inner hybrids. The first of these inner hybrids is identical to
outer hybrid 3, while the last is identical to outer hybrid 4. Table 13 provides an overview of these inner hybrids.

59

Inner Hybrid crs0 MMap Circuits zj,0 zj,1

Challenge Encodings

Remark

SXDH/Random Representation Witness for π0 Witness for π1

3-0 Binding Ĉop zj,0 ∈ L zj,1 ∈ L Random Normal (j,witzj,1) (sk0, sk1) NIZK CRS-indistinguishability

3-1 Binding Cop zj,0 ∈ L zj,1 ∈ L Random Normal (j,witzj,1) (sk0, sk1) piO-security + unique witnesses

3-2 Binding Cop zj,0 /∈ L zj,1 ∈ L Random Normal (j,witzj,1) (sk0, sk1) L-hardness

3-3 Binding Cop except zj,0 /∈ L zj,1 ∈ L Random Normal (j,witzj,1) (sk0, sk1) L-hardness
Hardwired witness for zj,1

3-4 Binding ̂̂
Cop zj,0 /∈ L zj,1 ∈ L Random Normal (j,witzj,1) (sk0, sk1) piO-security + NIZK perfect soundness

Table 13: Overview of the inner hybrids in the proof of indistinguishability of outer hybrids 3 and 4. Changes between subsequent hybrids are highlighted in red.

Throughout, crs1 is in binding mode, y /∈ L, and (g0, g1, g2, g3) is a random tuple of group elements. We use the shorthands Ĉop and ̂̂Cop for the tuples

(ĈAdd, ĈInv, ĈMult, Ĉext) and (ĈAdd, ĈInv,
̂̂
Cop, Ĉext), respectively, where the second set of circuits are described in detail subsequently.

Inner Hybrid 3-0. This hybrid is identical to inner hybrid 3.

Inner Hybrid 3-1. In this hybrid we switch back to using the original MMap circuits CAdd, CInv, CMult and Cext.
In particular, we no longer hardwire the witnesses witzj,0 and witzj,1 for the membership of zj,0 and zj,1 into the
circuits, and hardwire the extraction trapdoor text,0 into all of the circuits. We claim that this change does not change
the functionality of the MMap circuits at all.

To begin with, observe that in order to reach the extraction step, the input encoding(s) to each circuit must pass
the validity checks for π0. Since crs0 is binding in both inner hybrids 3-0 and 3-1, any valid encoding that passes
this test must either contain a verifying proof of normal representation, or must contain a verifying proof of language-
membership for zj,0 or zj,1. Now observe the following:

• In the former case, the first If condition in the addition and inversion circuits, the Else If conditions in the
multiplication circuit, and the first If condition in the extraction circuit are never satisfied, and the proof π∗0 for
the output encoding is generated using the witness (sk0, sk1). Hence, in this case, the outputs of the original
and modified MMap circuits are identical.

• In the latter case, these conditions may be satisfied (if one or more of the input encodings to each circuit are in
the oblique representation). In this case, to generate the proof π∗0 for the output encoding, the circuits CAdd, CInv

and CMult use the extracted witness, while the circuits ĈAdd, ĈInv and ĈMult use the hardwired witness. Since the
NIZK system has perfect extractability in the binding mode, extraction always succeeds in the original MMap
circuits. Since L has unique membership witnesses, the extracted and hardwired witnesses must be identical.
Hence, even in this case, the outputs of the original and modified MMap circuits are identical.

At this point, the transition can be justified by invoking the security of the piO scheme against X-IND sam-
plers (once for each MMap circuit).

Inner Hybrid 3-2. In this hybrid, we switch zj,0 in the public parameter of the MMap from a uniform member to a
uniform non-member of L. By the hardness of deciding membership in the set L, inner hybrid 3-2 is computationally
indistinguishable from inner hybrid 3-1.

Inner Hybrid 3-3. In this hybrid, we switch to using a set of circuits that are essentially identical to the MMap
circuits ĈAdd, ĈInv, ĈMult and Ĉext, except that they only hardwire the witness for zj,1 (and not both zj,0 and zj,1).
These circuits do not use the extraction trapdoor text,0. We claim that this change does not change the functionality of
the MMap circuits at all.

60

To begin with, observe that in order to reach the extraction step, the input encoding(s) to each circuit must pass
the validity checks for π0. Since crs0 is binding in both inner hybrids 3-2 and 3-3, any valid encoding that passes
this test must either contain a verifying proof of normal representation, or must contain a verifying proof of language-
membership for zj,1 (zj,0 is no longer a member of the language L). Now observe the following:

• In the former case, the first If condition in the addition and inversion circuits, the Else If conditions in the
multiplication circuit, and the first If condition in the extraction circuit are never satisfied, and the proof π∗0 for
the output encoding is generated using the witness (sk0, sk1). Hence, in this case, the outputs of the original
and modified MMap circuits are identical.

• In the latter case, these conditions may be satisfied (if one or more of the input encodings to each circuit are in
the oblique representation). In this case, to generate the proof π∗0 for the output encoding, the circuits CAdd, CInv

and CMult use the extracted witness, while the circuits ĈAdd, ĈInv and ĈMult use the hardwired witness. Since the
NIZK system has perfect extractability in the binding mode, extraction always succeeds in the original MMap
circuits. Since L has unique membership witnesses, the extracted and hardwired witnesses must be identical.
Hence, even in this case, the outputs of the original and modified MMap circuits are identical.

At this point, the transition can be justified by invoking the security of the piO scheme against X-IND sam-
plers (once for each MMap circuit). Note that by this hybrid, the addition and inversion circuits are already identical

to ̂̂CAdd and ̂̂CInv, respectively, while the extraction circuit is identical to Ĉext, exactly as in inner hybrid 3-4.

Inner Hybrid 3-4. In this hybrid, we switch the multiplication circuit to ̂̂CMult (Figure 14). In particular, we switch

to using the modified homomorphic evaluation circuit ̂̂CMult,FHE (Figure 13). We also remove the hardwired secret
exponents, i.e., the multiplication circuit is now hardwired with (g0, g1, g2, g3) instead of (g0, γ1, γ2, γ3). We claim
that this does not change the functionality of the multiplication circuit at all.

We claim that the output of the homomorphic evaluation circuit does not change despite the modifications made

to it. Observe that in order to reach the Else If statement in Step 3 of the homomorphic evaluation circuit ̂̂CMult (Fig-
ure 13), at least one input encoding needs to be in oblique representation with a verifying proof of language mem-
bership for zj, 0. However, the input encoding(s) must also pass the validity checks for π0 prior to the homomorphic
evaluation. Since crs0 is binding in both inner hybrids 3-3 and 3-4, any valid encoding that passes this test must
either contain a verifying proof of normal representation, or must contain a verifying proof of language-membership
for zj,1 (zj,0 is no longer a member of the language L). This immediately implies that Step 3 of the homomorphic
evaluation circuit cannot be reached by any pair of valid input encodings. Hence, changing this step by removing the
secret exponents from it does not change the output of the homomorphic circuit.

At this point, we can argue that the output of the overall multiplication circuit ̂̂CMult also remains unchanged (since
the output proofs are still generated in exactly the same way), and the transition can be justified by invoking the
security of the piO scheme against X-IND samplers.

Observe that in inner hybrid 3-4, the public parameters of the MMap and the challenge encodings are distributed
exactly as in outer hybrid 4. This concludes the proof of Lemma 6.7.

Outer Hybrids 4 and 5. We state and prove the following lemma:

Lemma 6.8. The outer hybrids 4 and 5 are computationally indistinguishable provided that the DDH assumption
holds over the group G.

Proof. Suppose that there exists a PPT adversary A that can distinguish between the outer hybrids 4 and 5 with non-
negligible probability. We construct a PPT algorithm B that can break the DDH assumption over the group G with
non-negligible probability. As part of its input DDH challenge, B receives a tuple of group elements of the form
(g0, g1, g2, g3), and sets up the public parameters for the MMap as follows:

61

1. B samples two key-pairs for the FHE scheme as:

(pk0, sk0), (pk1, sk1)← FHE.Gen(1λ),

and a pair of binding NIZK CRS strings (along with the corresponding extraction trapdoors) as:

(crs0, text,0), (crs1, text,1)← NIZK.Setup(1λ,binding).

2. Next B uniformly samples a total (n + 1) elements from the set X that are all non-members for the subset L
and one element that is a member for L. More formally, it samples

y, z1,0, z1,1, . . . , zj−1,0, zj−1,1, zj,0, zj+1,0, zj+1,1 . . . , zn,0, zn,1 ← X \ L,

zj,1 ← L,
where zj,1 has unique membership-witness witzj,1 .

3. Finally, B sets up the MMap circuits ̂̂CAdd, ̂̂CInv, ̂̂CMult and Ĉext exactly as described in Figures 11, 12, 14 and
10, respectively, except for the fact that it hardwires its input tuple (g0, g1, g2, g3) into each of these circuits. It
then computes and outputs four probabilistically indistinguishability-obfuscated circuits of the form

C̄Add = piO.Obf(
̂̂
CAdd) , C̄Inv = piO.Obf(

̂̂
CInv),

C̄Mult = piO.Obf(
̂̂
CMult) , C̄ext = piO.Obf(

̂̂
Cext).

In particular, note that creating the multiplication circuit ̂̂CMult does not require hardwiring the actual secret
exponents in Zq; hence the knowledge of the tuple of group elements (g0, g1, g2, g3) suffices in this case.

Next, B sets up the challenge encodings in the oblique representation as follows (refer to Table 5 for how the challenge
encodings are formatted in oblique representation in outer hybrid 3):

1. B samples µ← Zq and generates the following FHE ciphertexts for each b ∈ {0, 1}:

ctb,0 = FHE.Enc(pkb, (µ, 0, 0, 0, i)) , ctb,1 = FHE.Enc(pkb, (0, µ, 0, 0, i)),

ctb,2 = FHE.Enc(pkb, (0, 0, µ, 0, i)) , ctb,3 = FHE.Enc(pkb, (0, 0, 0, µ, i)).

2. B generates the following proofs for each ` ∈ [0, 3]:

π0,` = NIZK.Prove(crs0, (pk0,pk1, ct0,`, ct1,`, i, {zj,1}j∈[0,n]), (j,witzj,1)),

π1,` = NIZK.Prove(crs1, (pk0,pk1, ct0,`, ct1,`, i, y), (sk0, sk1)).

3. Finally, for each ` ∈ [0, 3], B generates the encoding [α`] as:

[α`] =

(
ct0,`, ct1,`, i, π0,`, π1,`

)
.

B then provides A with the MMap public parameters and the challenge encodings. Eventually, A outputs a bit b?.
B outputs the same bit b?. Now, observe the following:

• Suppose that B receives as input a tuple of uniformly random group elements of the form (g0, g
γ1

0 , gγ2

0 , gγ3

0). In
this case, the view of A is exactly as in outer hybrid 3.

• On the other hand, when B receives as input a DDH tuple of the form (g0, g
γ1

0 , gγ2

0 , gγ1·γ2

0), the view of A is
exactly as in outer hybrid 4.

Hence the advantage of B in breaking DDH over the group G is the same as the advantage of A in distinguishing the
outer hybrids 3 and 4. This concludes the proof of Lemma 6.7.

62

Outer Hybrids 5 and 6. We now argue that outer hybrids 5 and 6 are computationally indistinguishable from each
other. In particular, we state and prove the following lemma:

Lemma 6.9. The outer hybrids 5 and 6 are computationally indistinguishable provided that all of the following as-
sumptions hold:

• The piO scheme is indistinguishability-secure against X-IND samplers.

• Membership in L is computationally hard to decide,

• Members of L have unique witnesses for membership.

• The dual-mode NIZK proof system satisfies CRS indistinguishability, perfect extractability in the binding mode,
and perfect witness-indistinguishability in the hiding mode.

Proof. The proof of this lemma uses essentially the same inner hybrids as in the proof of Lemma 6.7, albeit in reverse
order, and is hence not detailed.

Outer Hybrids 6 and 7. We state and prove the following lemma:

Lemma 6.10. The outer hybrids 6 and 7 are computationally indistinguishable provided that all of the following
assumptions hold:

• The piO scheme is indistinguishability-secure against X-IND samplers.

• Membership in L is computationally hard to decide,

• Members of L have unique witnesses for membership.

• The dual-mode NIZK proof system satisfies CRS indistinguishability, perfect extractability in the binding mode,
and perfect witness-indistinguishability in the hiding mode.

Proof. The proof of this lemma uses essentially the same inner hybrids as in the proof of Lemma 6.6, albeit in reverse
order, and is hence not detailed.

Outer Hybrids 7 and 8. We state the following lemma:

Lemma 6.11. The outer hybrids 7 and 8 are computationally indistinguishable provided that all of the following
assumptions hold:

• The piO scheme is indistinguishability-secure against X-IND samplers.

• Membership in L is computationally hard to decide,

• Members of L have unique witnesses for membership.

• The dual-mode NIZK proof system satisfies CRS indistinguishability, perfect extractability in the binding mode,
and perfect witness-indistinguishability in the hiding mode.

Proof. The proof of this lemma uses essentially the same inner hybrids as in the proof of Lemma 6.3, albeit in reverse
order, and is hence not detailed.

63

Outer Hybrids 8 and 9. We state the following lemma:

Lemma 6.12. The outer hybrids 8 and 9 are computationally indistinguishable provided that all of the following
assumptions hold:

• The piO scheme is indistinguishability-secure against X-IND samplers.

• Membership in L is computationally hard to decide,

• Members of L have unique witnesses for membership.

• The dual-mode NIZK proof system satisfies CRS indistinguishability, perfect extractability in the binding mode,
and perfect witness-indistinguishability in the hiding mode

Proof. The proof of this lemma uses essentially the same inner hybrids as in the proof of Lemma 6.2, albeit in reverse
order, and is hence not detailed.

Outer Hybrids 9 and 10. We state and prove the following lemma:

Lemma 6.13. The outer hybrids 9 and 10 are computationally indistinguishable provided that all of the following
assumptions hold:

• The piO scheme is indistinguishability-secure against X-IND samplers.

• The dual-mode NIZK proof system satisfies perfect soundness in the binding mode.

Proof. In this hybrid, we switch the tuple of group elements (g0, g1, g2, g3) hardwired into the MMap circuits as
follows: we switch the the tuple of exponents (γ1, γ2, γ3 = γ1 · γ2) from a triplet corresponding to a DDH tuple
to a triplet corresponding to a random tuple, i.e., γ3 is now sampled uniformly at random from Zq . Effectively, this
switches the tuple of group elements (g0, g1, g2, g3) from a uniform DDH tuple to a uniformly random tuple, albeit
with the same base element g0.

We argue below that this switch does not alter the output distribution of these circuits from outer hybrid 9 to outer
hybrid 10. Once this is established, the indistinguishability argument follows immediately under the assumption that
the piO scheme is indistinguishability-secure against X-IND samplers (once for each MMap circuit).

We first focus on the MMap circuits CAdd and CInv. Observe that switching (g0, g1, g2, g3) from a uniform DDH
tuple to a uniformly random tuple only (potentially) affects the outcome of the “If” condition in step 7 of each of these
circuits. Note however that in both outer hybrids 9 and 10, crs0 is in binding mode, each zj,b in the public parameter is
a non-member for j ∈ [n] and b ∈ {0, 1}, and y in the public parameter is also a non-member. Hence, it follows from
the perfect soundness of the dual-mode NIZK proof system that any input encoding(s) for which these circuits do not
output ⊥ and terminate before step 7 must be both in normal representation and consistent. This in turn guarantees
that the outcome of the “If” condition in step 7 must be “false”. Hence, the output distributions of the MMap circuits
CAdd and CInv in outer hybrids 9 and 10 are identical.

Next, we focus on the MMap circuit CMult. Observe that switching (g0, g1, g2, g3) from a uniform DDH tuple
to a uniformly random tuple only (potentially) affects the outcome of the “Else If” condition in step 3 of the circuit
CMult,FHE (Figure 4), which is evaluated homomorphically in Step 5 of CMult. Note however that in both outer hybrids
9 and 10, crs0 is in binding mode, each zj,b in the public parameter is a non-member for j ∈ [n] and b ∈ {0, 1}, and
y in the public parameter is also a non-member. Hence, it follows from the perfect soundness of the dual-mode NIZK
proof system that any input encoding(s) for which these circuits do not output ⊥ and terminate before step 7 must
be both in normal representation and consistent. Hence, the “Else If” condition in step 3 of the circuit CMult,FHE can
never be satisfied by a pair of valid input encodings. This in turn implies that the output distributions of the MMap
circuit CMult in outer hybrids 9 and 10 are identical.

Finally, we focus on the MMap extraction circuit Cext. Observe that switching (g0, g1, g2, g3) from a uniform DDH
tuple to a uniformly random tuple potentially affects the output of the extraction circuit. However, note yet again that
in both outer hybrids 9 and 10, crs0 is in binding mode, each zj,b in the public parameter is a non-member for j ∈ [n]
and b ∈ {0, 1}, and y in the public parameter is also a non-member. Hence, it follows from the perfect soundness of

64

the dual-mode NIZK proof system that any input encoding(s) for which the circuit does not output ⊥ and terminate
before the extraction step is executed must be both in normal representation and consistent. Observe also that the base
element g0 in the tuple of group elements remains unaltered across outer hybrids 9 and 10. It follows immediately that
the outcome of extraction on a given encoding in normal representation in both hybrids is identical. In other words,
the output distributions of Cext in outer hybrids 9 and 10 are identical.

This concludes the proof of Lemma 6.13, and hence the proof of Theorem 6.1.

7 Achieving Exponent-DDH Hardness
In this section, we prove that for any k ≥ 2, solving k-EDDH is hard over our proposed MMap construction if solving
k-EDDH is hard over the group G. More specifically we state and prove the following theorem:

Theorem 7.1. For any k ≥ 2, the k-EDDH assumption holds over our proposed MMap construction provided that
all of the following assumptions hold:

• The piO scheme is indistinguishability-secure against X-IND samplers.

• Membership in L is computationally hard to decide,

• Members of L have unique witnesses for membership.

• The dual-mode NIZK proof system satisfies CRS indistinguishability, perfect extractability in the binding mode,
and perfect witness-indistinguishability in the hiding mode.

• The k-EDDH assumption holds over the group G.

The proof shares a very similar hybrid structure with the proof of SXDH-hardness in Appendix 6. We outline the
outer hybrids here for the sake of completeness. The workings of the inner hybrids are almost identical to that in the
proof of SXDH, and are hence not detailed.

7.1 Outer Hybrids
We begin by describing the outer hybrids for our proof. Outer hybrid 0 corresponds to the game where the challenger
provides the adversary with encodings of uniformly random elements in a level-set that is chosen by the adversary.
The final outer hybrid corresponds to the game where the challenger provides the adversary with a valid k-EDDH
instance, i.e., encodings of elements sampled according to the real k-EDDH distribution, in the same level-set chosen
by the adversary. Before we describe the outer hybrids, we describe a few conditions that remain invariant throughout
the outer hybrids:

• The NIZK CRS strings crs0 and crs1 are in binding mode, as in the real MMap scheme, in all the outer hybrids.

• The element y in the public parameter is a non-member for the language L, as in the real MMap scheme, in all
the outer hybrids.

• The challenge encodings provided to the adversary are consistent with respect to extraction (as formalized by
the relation R1 described earlier) in all the outer hybrids. However, as we shall see later, they may be switched
from the normal to oblique representation and vice-versa.

• The term g3 in the tuple (g0, g1, g2, g3) hardwired into the MMap circuits is sampled uniformly throughout.

Table 1 provides an overview of the outer hybrids, which we now describe in details.
Table 14 provides an overview of the outer hybrids, which we now describe in details.

65

Outer Hybrid MMap Circuits zj,0 zj,1 (g0, g1, g2)

Challenge Encodings

k-EDDH/Random Representation Witness for π0 Witness for π1

0 Cop zj,0 /∈ L zj,1 /∈ L Random Random Normal (sk0, sk1) (sk0, sk1)

1 Ĉop zj,0 ∈ L zj,1 ∈ L Random Random Normal (j,witzj,1) (sk0, sk1)

2 Ĉop zj,0 ∈ L zj,1 ∈ L Random Random Partially oblique (j,witzj,1) (sk0, sk1)

3 Ĉop zj,0 ∈ L zj,1 ∈ L Random Random Oblique (j,witzj,1) (sk0, sk1)

4 ̂̂
Cop zj,0 /∈ L zj,1 ∈ L Random Random Oblique (j,witzj,1) (sk0, sk1)

5 ̂̂
Cop zj,0 /∈ L zj,1 ∈ L k-EDDH k-EDDH Oblique (j,witzj,1) (sk0, sk1)

6 Ĉop zj,0 ∈ L zj,1 ∈ L k-EDDH k-EDDH Oblique (j,witzj,1) (sk0, sk1)

7 Ĉop zj,0 ∈ L zj,1 ∈ L k-EDDH k-EDDH Partially oblique (j,witzj,1) (sk0, sk1)

8 Ĉop zj,0 ∈ L zj,1 ∈ L k-EDDH k-EDDH Normal (j,witzj,1) (sk0, sk1)

9 Cop zj,0 /∈ L zj,1 /∈ L k-EDDH k-EDDH Normal (sk0, sk1) (sk0, sk1)

10 Cop zj,0 /∈ L zj,1 /∈ L Random k-EDDH Normal (sk0, sk1) (sk0, sk1)

Table 14: Overview of the outer hybrids in the proof of k-EDDH. Changes between subsequent hybrids are highlighted in red. Throughout, crs0 and crs1 are binding,
y /∈ L, the element g3 in the tuple (g0, g1, g2, g3) is sampled uniformly from the group G, and the challenge encodings are consistent with respect to extraction.
We use the shorthands Cop and Ĉop for the tuples (CAdd,CInv,CMult,Cext) and (ĈAdd, ĈInv, ĈMult, Ĉext), respectively, where the second set of circuits are described in
detail subsequently.

Outer Hybrid 0. In this hybrid, the MMap is set up exactly as in the real scheme described earlier. Let (g0, g1, g2, g3)
be the tuple of group elements hardwired into each of the MMap circuits, such that g` = gγ`0 for ` ∈ {1, 2, 3}. Let µ
be a uniformly sampled element in Zq . The SXDH adversary is provided with encodings of the tuple of elements:

(α0, α1, α2) = (µ, µ · γ1, µ · γ2),

where the encodings are generated in normal form (formalized by relation R0 described in Appendix 5) corresponding
to the level-set i chosen by the k-EDDH adversary. For ease of understanding, we explicitly lay out what the FHE
ciphertexts in each of the encodings actually encrypt in Table 15. Along with the FHE encryptions, each encoding also
contains a NIZK proof π0 for normal representation under the binding crs0, and a NIZK proof π1 for consistency with
respect to extraction under the binding crs1.

Outer Hybrid 1. In this hybrid, we make the following alterations to the manner in which the MMap is generated:

1. Fix j ∈ [n] such that for the challenge level-set i, we have ij = 1. We switch the elements zj,0 and zj,1 in the
public parameters from non-members to members for L, i.e., we now sample zj,0, zj,1 ← L, along with their
(unique) membership-witnesses witzj,0 and witzj,1 , respectively.

66

Encoding ct0 encrypts ct1 encrypts Witness for π0 Witness for π1

[α0] (µ, 0, 0, 0, i) (µ, 0, 0, 0, i) (sk0, sk1) (sk0, sk1)

[α1] (µ · γ1, 0, 0, 0, i) (µ · γ1, 0, 0, 0, i) (sk0, sk1) (sk0, sk1)

[α2] (µ · γ2, 0, 0, 0, i) (µ · γ2, 0, 0, 0, i) (sk0, sk1) (sk0, sk1)

Table 15: Overview of Challenge Encodings in Outer Hybrid 0

Encoding ct0 encrypts ct1 encrypts Witness for π0 Witness for π1

[α0] (µ, 0, 0, 0, i) (µ, 0, 0, 0, i) (j,witzj,1) (sk0, sk1)

[α1] (µ · γ1, 0, 0, 0, i) (µ · γ1, 0, 0, 0, i) (j,witzj,1) (sk0, sk1)

[α2] (µ · γ2, 0, 0, 0, i) (µ · γ2, 0, 0, 0, i) (j,witzj,1) (sk0, sk1)

Table 16: Overview of Challenge Encodings in Outer Hybrid 1

2. We switch the circuits for addition, inversion, multiplication and extraction as follows:

CAdd 7→ ĈAdd , CInv 7→ ĈInv,

CMult 7→ ĈMult , Cext 7→ Ĉext,

The switched circuits are described in Figures 7, 8, 9, and 10, respectively. At a high level, we make the following
alterations (these are essentially identical to those in outer hybrid 1 of the proof of SXDH-hardness):

• We hardwire the witnesses witzj,0 and witzj,1 into the modified addition and inversion circuits ĈAdd and ĈInv, and
remove the extraction trapdoor text,0 from both these circuits. Instead of extracting the membership witnesses
from the input encodings, we directly use these hardwired witnesses to generate proofs of membership for the
output encodings.

• We hardwire the witness witzj,1 into the modified multiplication circuit ĈMult, and remove the extraction trap-
door text,0 from it. Instead of extracting the membership witness from the input encoding, we directly use the
hardwired witness to generate proofs of membership for the output encodings. Note that we only need one
witness for the multiplication circuit; the witness witzj,0 is not used (the reader may observe that the original
multiplication circuit would not have extracted witzj,0 either).

• Finally, we remove the extraction trapdoor text,0 from the modified extraction circuit Ĉext

Additionally, we make the following change to the manner in which the challenge encodings are generated: for
each challenge encoding, the NIZK proof π0 now proves (under the binding crs0) that zj,1 ∈ L as opposed to proving
that the encoding is in the normal representation. This is explicitly described in Table 16.

Outer Hybrid 2. This hybrid is identical to the outer hybrid 1, except that the challenge encodings are no longer in
normal form. In particular, the first FHE ciphertext in each encoding now encrypts an oblique representation of the

67

Encoding ct0 encrypts ct1 encrypts Witness for π0 Witness for π1

[α0] (µ, 0, 0, 0, i) (µ, 0, 0, 0, i) (j,witzj,1) (sk0, sk1)

[α1] (0, µ, 0, 0, i) (µ · γ1, 0, 0, 0, i) (j,witzj,1) (sk0, sk1)

[α2] (0, 0, µ, 0, i) (µ · γ2, 0, 0, 0, i) (j,witzj,1) (sk0, sk1)

[α3] (0, 0, 0, µ, i) (µ · γ3, 0, 0, 0, i) (j,witzj,1) (sk0, sk1)

Table 17: Overview of Challenge Encodings in Outer Hybrid 2

Encoding ct0 encrypts ct1 encrypts Witness for π0 Witness for π1

[α0] (µ, 0, 0, 0, i) (µ, 0, 0, 0, i) (j,witzj,1) (sk0, sk1)

[α1] (0, µ, 0, 0, i) (0, µ, 0, 0, i) (j,witzj,1) (sk0, sk1)

[α2] (0, 0, µ, 0, i) (0, 0, µ, 0, i) (j,witzj,1) (sk0, sk1)

Table 18: Overview of Challenge Encodings in Outer Hybrid 3

underlying plaintext element. For ease of understanding, we explicitly lay out what the FHE ciphertexts in each of
the encodings actually encrypt in Table 17. As in outer hybrid 1, each encoding also contains a NIZK proof π0 for
zj,1 ∈ L under the binding crs0, and a NIZK proof π1 for consistency under the binding crs1. The changes from outer
hybrid 1 are highlighted in red.

Outer Hybrid 3. This hybrid is identical to the outer hybrid 2, except that the challenge encodings are now entirely
in oblique form. In particular, the second FHE ciphertext in each encoding now also encrypts an oblique representation
of the underlying plaintext element. Each encoding continues to have a NIZK proof π0 for zj,1 ∈ L under the binding
crs0, and a NIZK proof π1 for consistency with respect to extraction under the binding crs1. For ease of understanding,
we explicitly lay out what the FHE ciphertexts in each of the encodings actually encrypt in Table 18. The changes
from outer hybrid 2 are highlighted in red.

Outer Hybrid 4. In this hybrid, we make the following alterations to the manner in which the MMap is gener-
ated (again, these are essentially identical to those in outer hybrid 4 of the proof of SXDH-hardness):

1. We switch back the element zj,0 in the public parameters from a member to a non-member for L, i.e., we now
sample zj,0 ← X \ L. The element zj,1 continues to be a member for L, i.e., we continue to sample zj,1 ← L,
along with the (unique) membership-witness witzj,1 .

2. We switch the circuits for addition, inversion and multiplication as follows:

ĈAdd 7→
̂̂
CAdd , ĈInv 7→

̂̂
CInv , ĈMult 7→

̂̂
CMult.

The switched circuits for addition, inversion and multiplication are described in Figures 11, 12, and 14, respec-
tively. Finally, note that the element y continues to be a non-member for L and crs1 is still generated in the binding
mode. Hence, any valid encoding must still satisfy consistency with respect to extraction.

68

Encoding ct0 encrypts ct1 encrypts Witness for π0 Witness for π1

[α0] (µ, 0, 0, 0, i) (µ, 0, 0, 0, i) (j,witzj,1) (sk0, sk1)

[α1] (0, µ, 0, 0, i) (µ · γ, 0, 0, 0, i) (j,witzj,1) (sk0, sk1)

[α2] (0, 0, µ, 0, i) (µ · γk, 0, 0, 0, i) (j,witzj,1) (sk0, sk1)

Table 19: Overview of Challenge Encodings in Outer Hybrid 7

Outer Hybrid 5. This hybrid is identical to outer hybrid 3 except that we switch the group elements g0, g1 and g2

hardwired into the modified MMap circuits ĈAdd, ĈInv, ĈMult and Ĉext from uniformly random to a randomly sampled
k-EDDH tuple, albeit with the same base element g0. More formally, we uniformly sample γ ← Zq , and set

(g1, g2) = (gγ0 , g
γk

0).

Note that the final element g3 continues to be uniformly randomly sampled.

Outer Hybrid 6. In this hybrid, we make the following alterations to the manner in which the MMap is gener-
ated (again, these are essentially identical to those in outer hybrid 6 of the proof of SXDH-hardness):

1. We switch the element zj,0 in the public parameters from a non-member to a member for L, i.e., we now sample
zj,0 ← L, along with a (unique) membership-witness witzj,0 . The element zj,1 continues to be a member for L,
i.e., we continue to sample zj,1 ← L, along with the (unique) membership-witness witzj,1 .

2. We switch the circuits for addition, inversion and multiplication as follows:

̂̂
CAdd 7→ ĈAdd ,

̂̂
CInv 7→ ĈInv,̂̂

CMult 7→ ĈMult,

Outer Hybrid 7. This hybrid is identical to the outer hybrid 4, except that the challenge SXDH encodings are now
switched back to a partially oblique form. In particular, the second FHE ciphertext in each encoding now encrypts
a normal representation of the underlying plaintext element. Each encoding continues to have a NIZK proof π0 for
zj,1 ∈ L under the binding crs0, and a NIZK proof π1 for consistency with respect to extraction under the binding crs1.
For ease of understanding, we explicitly lay out what the FHE ciphertexts in each of the encodings actually encrypt in
Table ??. The changes from outer hybrid 4 are highlighted in red.

Outer Hybrid 8. This hybrid is identical to the outer hybrid 5, except that the challenge encodings are now switched
back entirely to the normal form. In particular, the first FHE ciphertext in each encoding now also encrypts a normal
representation of the underlying plaintext element. Each encoding continues to have a NIZK proof π0 for zj,1 ∈ L
under the binding crs0, and a NIZK proof π1 for consistency with respect to extraction under the binding crs1. For
ease of understanding, we explicitly lay out what the FHE ciphertexts in each of the encodings actually encrypt in
Table 20. The changes from outer hybrid 5 are highlighted in red.

Outer Hybrid 9. This hybrid is identical to outer hybrid 8, except that we make the following alterations to the
manner in which the MMap is set up (again, these are essentially identical to those in outer hybrid 8 of the proof of
SXDH-hardness):

69

Encoding ct0 encrypts ct1 encrypts Witness for π0 Witness for π1

[α0] (µ, 0, 0, 0, i) (µ, 0, 0, 0, i) (j,witzj,1) (sk0, sk1)

[α1] (µ · γ, 0, 0, 0, i) (µ · γ, 0, 0, 0, i) (j,witzj,1) (sk0, sk1)

[α2] (µ · γk, 0, 0, 0, i) (µ · γk, 0, 0, 0, i) (j,witzj,1) (sk0, sk1)

Table 20: Overview of Challenge Encodings in Outer Hybrid 8

Encoding ct0 encrypts ct1 encrypts Witness for π0 Witness for π1

[α0] (µ, 0, 0, 0, i) (µ, 0, 0, 0, i) (sk0, sk1) (sk0, sk1)

[α1] (µ · γ, 0, 0, 0, i) (µ · γ, 0, 0, 0, i) (sk0, sk1) (sk0, sk1)

[α2] (µ · γk, 0, 0, 0, i) (µ · γk, 0, 0, 0, i) (sk0, sk1) (sk0, sk1)

Table 21: Overview of Challenge Encodings in Outer Hybrid 9

1. We switch back the elements zj,0 and zj,1 in the public parameters from members to non-members for L, i.e.,
we now sample zj,0, zj,1 ← X \ L. Note that this is exactly as in the real MMap scheme.

2. We switch back the circuits for addition, inversion, multiplication and extraction as follows:

ĈAdd 7→ CAdd , ĈInv 7→ CInv,

ĈMult 7→ CMult , Ĉext 7→ Cext,

In particular, the circuits are now exactly as in the real MMap scheme, with the exception that the tuple
(g0, g1, g2) hardwired inside these circuits continues to be a k-EDDH tuple (and the corresponding secret expo-
nents hardwired into the multiplication circuit are γ and γk).

Additionally, we make the following change to the manner in which the challenge encodings are generated: for
each encoding, the NIZK proof π0 under the binding crs0 now proves that the encoding is in the normal representation
using the witness (sk0, sk1), as opposed to proving that zj,1 ∈ L. For ease of understanding, we explicitly lay out
what the FHE ciphertexts in each of the encodings actually encrypt in Table 21. The changes from outer hybrid 8 are
highlighted in red.

Outer Hybrid 10. This hybrid is identical to outer hybrid 7 except that we switch the tuple of group elements
(g0, g1, g2) hardwired into the MMap circuits CAdd, CInv, CMult and Cext from a uniform k-EDDH tuple to a uniformly
random tuple, albeit with the same base element g0 (and the corresponding secret exponents hardwired into the multi-
plication circuit are switched from γ and γk to uniformly random). In other words, the MMap circuits are now exactly
as in the real scheme.

7.2 Indistinguishability of Outer Hybrids
In this section, we argue that the outer hybrids are computationally indistinguishable from each other. A majority of
the arguments are very similar to those used in the proof of Theorem 6.1, and are hence not detailed. We expand on

70

the arguments that are specific to k-EDDH.

Outer Hybrids 0 and 1. We first argue that outer hybrids 0 and 1 are computationally indistinguishable from each
other. In particular, we state and prove the following lemma:

Lemma 7.2. The outer hybrids 0 and 1 are computationally indistinguishable provided that all of the following as-
sumptions hold:

• The piO scheme is indistinguishability-secure against X-IND samplers.

• Membership in L is computationally hard to decide,

• Members of L have unique witnesses for membership.

• The dual-mode NIZK proof system satisfies CRS indistinguishability, perfect extractability in the binding mode,
and perfect witness-indistinguishability in the hiding mode.

Proof. The proof of this lemma uses a sequence of inner hybrids that are essentially identical to those used in the proof
of Lemma 6.2. Hence, we do not detail them.

Outer Hybrids 1 and 2. We now argue that outer hybrids 1 and 2 are computationally indistinguishable from each
other. In particular, we state and prove the following lemma:

Lemma 7.3. The outer hybrids 1 and 2 are computationally indistinguishable provided that all of the following as-
sumptions hold:

• The piO scheme is indistinguishability-secure against X-IND samplers.

• Membership in L is computationally hard to decide,

• Members of L have unique witnesses for membership.

• The dual-mode NIZK proof system satisfies CRS indistinguishability, perfect extractability in the binding mode,
and perfect witness-indistinguishability in the hiding mode.

Proof. The proof of this lemma again uses a sequence of inner hybrids that are essentially identical to those used in
the proof of Lemma 6.3. Hence, we do not detail them.

Outer Hybrids 2 and 3. We now argue that outer hybrids 2 and 3 are computationally indistinguishable from each
other. In particular, we state and prove the following lemma:

Lemma 7.4. The outer hybrids 2 and 3 are computationally indistinguishable provided that all of the following as-
sumptions hold:

• The piO scheme is indistinguishability-secure against X-IND samplers.

• Membership in L is computationally hard to decide,

• Members of L have unique witnesses for membership.

• The dual-mode NIZK proof system satisfies CRS indistinguishability, perfect extractability in the binding mode,
and perfect witness-indistinguishability in the hiding mode.

Proof. To prove this lemma, we use another sequence of inner hybrids that are essentially identical to those used in
the proof of Lemma 6.6. Hence, we do not detail them.

71

Outer Hybrids 3 and 4. We state and prove the following lemma:

Lemma 7.5. The outer hybrids 3 and 4 are computationally indistinguishable provided that all of the following as-
sumptions hold:

• The piO scheme is indistinguishability-secure against X-IND samplers.

• Membership in L is computationally hard to decide,

• Members of L have unique witnesses for membership.

• The dual-mode NIZK proof system satisfies CRS indistinguishability, perfect extractability in the binding mode,
and perfect witness-indistinguishability in the hiding mode.

Outer Hybrids 4 and 5. We state and prove the following lemma:

Lemma 7.6. The outer hybrids 3 and 4 are computationally indistinguishable provided that the k-EDDH assumption
holds over the group G.

Proof. Suppose that there exists a PPT adversary A that can distinguish between the outer hybrids 3 and 4 with non-
negligible probability. We construct a PPT algorithm B that can break the k-EDDH assumption over the group G with
non-negligible probability. As part of its input k-EDDH challenge, B receives a tuple of group elements of the form
(g0, g1, g2), and sets up the public parameters for the MMap as follows:

1. B samples two key-pairs for the FHE scheme as:

(pk0, sk0), (pk1, sk1)← FHE.Gen(1λ),

and a pair of binding NIZK CRS strings (along with the corresponding extraction trapdoors) as:

(crs0, text,0), (crs1, text,1)← NIZK.Setup(1λ,binding).

2. Next B uniformly samples a total (n + 1) elements from the set X that are all non-members for the subset L
and one element that is a member for L. More formally, it samples

y, z1,0, z1,1, . . . , zj−1,0, zj−1,1, zj,0, zj+1,0, zj+1,1 . . . , zn,0, zn,1 ← X \ L,

zj,1 ← L,

where zj,1 has unique membership-witness witzj,1 .

3. Finally, B sets up the MMap circuits ̂̂CAdd, ̂̂CInv, ̂̂CMult and Ĉext exactly as described in Figures 11, 12, 14 and
10, respectively, except for the fact that it hardwires the tuple (g0, g1, g2, g3) into each of these circuits, where
g0, g1 and g2 are part of the input challenge, and g3 is uniformly sampled. It then computes and outputs four
probabilistically indistinguishability-obfuscated circuits of the form

C̄Add = piO.Obf(ĈAdd) , C̄Inv = piO.Obf(ĈInv),

C̄Mult = piO.Obf(ĈMult) , C̄ext = piO.Obf(Ĉext).

Next, B sets up the challenge encodings in the oblique representation as follows (refer to Table 18 for how the challenge
encodings are formatted in oblique representation in outer hybrid 3):

72

1. B samples µ← Zq and generates the following FHE ciphertexts for each b ∈ {0, 1}:
ctb,0 = FHE.Enc(pkb, (µ, 0, 0, 0, i)) , ctb,1 = FHE.Enc(pkb, (0, µ, 0, 0, i)),

ctb,2 = FHE.Enc(pkb, (0, 0, µ, 0, i)).

2. B generates the following proofs for each ` ∈ [0, 2]:

π0,` = NIZK.Prove(crs0, (pk0,pk1, ct0,`, ct1,`, i, {zj,1}j∈[0,n]), (j,witzj,1)),

π1,` = NIZK.Prove(crs1, (pk0,pk1, ct0,`, ct1,`, i, y), (sk0, sk1)).

3. Finally, for each ` ∈ [0, 2], B generates the encoding [α`] as:

[α`] =

(
ct0,`, ct1,`, i, π0,`, π1,`

)
.

B then provides A with the MMap public parameters and the challenge encodings. Eventually, A outputs a bit b?.
B outputs the same bit b?. Now, observe the following:

• Suppose that B receives as input a tuple of uniformly random group elements of the form (g0, g
γ1

0 , gγ2

0). In this
case, the view of A is exactly as in outer hybrid 4.

• On the other hand, when B receives as input a DDH tuple of the form (g0, g
γ
0 , g

γk), the view of A is exactly as
in outer hybrid 5.

Hence the advantage of B in breaking k-EDDH over the group G is the same as the advantage of A in distinguishing
the outer hybrids 4 and 5. This concludes the proof of Lemma 7.6.

Outer Hybrids 5 and 6. We now argue that outer hybrids 5 and 6 are computationally indistinguishable from each
other. In particular, we state and prove the following lemma:

Lemma 7.7. The outer hybrids 5 and 6 are computationally indistinguishable provided that all of the following as-
sumptions hold:

• The piO scheme is indistinguishability-secure against X-IND samplers.

• Membership in L is computationally hard to decide,

• Members of L have unique witnesses for membership.

• The dual-mode NIZK proof system satisfies CRS indistinguishability, perfect extractability in the binding mode,
and perfect witness-indistinguishability in the hiding mode.

Proof. The proof of this lemma uses essentially the same inner hybrids as in the proof of Lemma 7.5, albeit in reverse
order, and is hence not detailed.

Outer Hybrids 6 and 7. We state and prove the following lemma:

Lemma 7.8. The outer hybrids 6 and 7 are computationally indistinguishable provided that all of the following as-
sumptions hold:

• The piO scheme is indistinguishability-secure against X-IND samplers.

• Membership in L is computationally hard to decide,

• Members of L have unique witnesses for membership.

• The dual-mode NIZK proof system satisfies CRS indistinguishability, perfect extractability in the binding mode,
and perfect witness-indistinguishability in the hiding mode.

Proof. The proof of this lemma uses essentially the same inner hybrids as in the proof of Lemma 7.4, albeit in reverse
order, and is hence not detailed.

73

Outer Hybrids 7 and 8. We state the following lemma:

Lemma 7.9. The outer hybrids 7 and 8 are computationally indistinguishable provided that all of the following as-
sumptions hold:

• The piO scheme is indistinguishability-secure against X-IND samplers.

• Membership in L is computationally hard to decide,

• Members of L have unique witnesses for membership.

• The dual-mode NIZK proof system satisfies CRS indistinguishability, perfect extractability in the binding mode,
and perfect witness-indistinguishability in the hiding mode.

Proof. The proof of this lemma uses essentially the same inner hybrids as in the proof of Lemma 7.3, albeit in reverse
order, and is hence not detailed.

Outer Hybrids 8 and 9. We state the following lemma:

Lemma 7.10. The outer hybrids 8 and 9 are computationally indistinguishable provided that all of the following
assumptions hold:

• The piO scheme is indistinguishability-secure against X-IND samplers.

• Membership in L is computationally hard to decide,

• Members of L have unique witnesses for membership.

• The dual-mode NIZK proof system satisfies CRS indistinguishability, perfect extractability in the binding mode,
and perfect witness-indistinguishability in the hiding mode

Proof. The proof of this lemma uses essentially the same inner hybrids as in the proof of Lemma 7.2, albeit in reverse
order, and is hence not detailed.

Outer Hybrids 9 and 10. We state and prove the following lemma:

Lemma 7.11. The outer hybrids 9 and 10 are computationally indistinguishable provided that all of the following
assumptions hold:

• The piO scheme is indistinguishability-secure against X-IND samplers.

• The dual-mode NIZK proof system satisfies perfect soundness in the binding mode.

Proof. In this hybrid, we switch the tuple of group elements (g0, g1, g2, g3) hardwired into the MMap circuits as
follows: we switch the the tuple of exponents (γ1, γ2, γ3) from a triplet of the form (γ, γk, γ3) to a uniformly random
triple, i.e., γ2 is now sampled uniformly at random from Zq . Effectively, this switches the sub-tuple of group elements
(g0, g1, g2) from a uniform k-EDDH tuple to a uniformly random tuple, albeit with the same base element g0.

We argue below that this switch does not alter the output distribution of these circuits from outer hybrid 9 to outer
hybrid 10. Once this is established, the indistinguishability argument follows immediately under the assumption that
the piO scheme is indistinguishability-secure against X-IND samplers (once for each MMap circuit). The argument is
very similar to that presented in the proof of Lemma 6.13, but is presented for the sake of completeness.

We first focus on the MMap circuits CAdd and CInv. Observe that switching (g0, g1, g2) from a uniform k-EDDH
tuple to a uniformly random tuple only (potentially) affects the outcome of the “If” condition in step 7 of each of these
circuits. Note however that in both outer hybrids 9 and 10, crs0 is in binding mode, each zj,b in the public parameter is
a non-member for j ∈ [n] and b ∈ {0, 1}, and y in the public parameter is also a non-member. Hence, it follows from
the perfect soundness of the dual-mode NIZK proof system that any input encoding(s) for which these circuits do not
output ⊥ and terminate before step 7 must be both in normal representation and consistent. This in turn guarantees

74

that the outcome of the “If” condition in step 7 must be “false”. Hence, the output distributions of the MMap circuits
CAdd and CInv in outer hybrids 9 and 10 are identical.

Next, we focus on the MMap circuit CMult. Observe that switching (g0, g1, g2) from a uniform k-EDDH tuple
to a uniformly random tuple only (potentially) affects the outcome of the “Else If” condition in step 3 of the circuit
CMult,FHE (Figure 4), which is evaluated homomorphically in Step 5 of CMult. Note however that in both outer hybrids
9 and 10, crs0 is in binding mode, each zj,b in the public parameter is a non-member for j ∈ [n] and b ∈ {0, 1}, and
y in the public parameter is also a non-member. Hence, it follows from the perfect soundness of the dual-mode NIZK
proof system that any input encoding(s) for which these circuits do not output ⊥ and terminate before step 7 must
be both in normal representation and consistent. Hence, the “Else If” condition in step 3 of the circuit CMult,FHE can
never be satisfied by a pair of valid input encodings. This in turn implies that the output distributions of the MMap
circuit CMult in outer hybrids 9 and 10 are identical.

Finally, we focus on the MMap extraction circuit Cext. Observe that switching (g0, g1, g2) from a uniform k-EDDH
tuple to a uniformly random tuple potentially affects the output of the extraction circuit. However, note yet again that
in both outer hybrids 9 and 10, crs0 is in binding mode, each zj,b in the public parameter is a non-member for j ∈ [n]
and b ∈ {0, 1}, and y in the public parameter is also a non-member. Hence, it follows from the perfect soundness of
the dual-mode NIZK proof system that any input encoding(s) for which the circuit does not output ⊥ and terminate
before the extraction step is executed must be both in normal representation and consistent. Observe also that the base
element g0 in the tuple of group elements remains unaltered across outer hybrids 9 and 10. It follows immediately that
the outcome of extraction on a given encoding in normal representation in both hybrids is identical. In other words,
the output distributions of Cext in outer hybrids 9 and 10 are identical.

This concludes the proof of Lemma 7.11, and hence the proof of Theorem 7.1.

8 Achieving Joint-SXDH Hardness
In this section, we demonstrate that the asymmetric MMap construction can be upgraded to achieve non-adaptive
joint-SXDH hardness.

Normal v/s Oblique Encodings. Recall that in our SXDH-hard (and k-EDDH-hard) asymmetric MMap construc-
tion, an encoding could be in one of two forms - normal or oblique, depending on the plaintexts underlying the FHE
ciphertexts. To briefly recap, suppose that the plaintexts underlying the FHE ciphertexts in a given encoding at level i
are of the form:

(a0,0, a1,0, a2,0, a3,0, i) , (a0,1, a1,1, a2,1, a3,1, i).

For b ∈ {0, 1}, the tuple (a0,b, a1,b, a2,b, a3,b, i) is said to be in “normal form” if

(a0,b, a1,b, a2,b, a3,b, i) = (a, 0, 0, 0, i)

for some a ∈ Zq . Otherwise, it is said to be in “oblique-form”. Depending on the forms of the tuples underlying the
FHE ciphertexts, we classify an encoding into one of three representations:

• Normal representation: Both tuples are in normal form.

• Partially oblique representation: Exactly one of the tuples is in normal form, while the other is in oblique
form. Unless otherwise specified, we assume that the second tuple is in normal form.

• Oblique representation: Both tuples are in oblique form.

Our proof of SXDH (and that of k-EDDH) uses the oblique representation of the challenge encodings in an essen-
tial way, but enabling oblique representation of the encodings in the challenge level-set needs to be done in a careful
manner. In particular, in certain hybrids of the proof, oblique representation cannot be enabled in any given level-
set because we cannot efficiently compute the oblique representation for the product two encodings that are both in

75

oblique representation unless we know the secret exponents underlying the tuple of group elements (g0, g1, g2, g3).
This restriction arises from our extraction procedure. Given an oblique tuple of the form (a0,0, a1,0, a2,0, a3,0, i), the
extraction procedure computes

g∗ =

`=3∏
`=0

g
a`,0
` .

Clearly, in order to multiply a pair of encodings in oblique form, we would need to know the discrete log of the
hardwired group elements (g1, g2, g3) with respect to the public group element g; however in certain hybrids of the
proofs of SXDH and k-EDDH (in particular, the outer hybrids 4 and 5 in Tables 1 and 23), the proof must explicitly
avoid the knowledge of these exponents when creating the obfuscated multiplication circuit. Hence, in these specific
hybrids, when we enable oblique encodings, we ensure that any pair of level-sets that are allowed to support oblique
encodings must be incompatible for multiplication. To achieve this, we use a language-membership “trapdoor” to
enforce that any level set i′ (including the challenge level-set i chosen by the adversary) is allowed to support oblique
encodings if and only if i′j = 1 for a fixed j.

Challenges for Joint-SXDH. Unfortunately, the same approach does not work when proving non-adaptive joint-
SXDH. For instance, suppose we have a 4-linear map (i.e. n = 4), and suppose that in the non-adaptive joint-SXDH
game, the adversary commits to the following set T = (i1, i2, i3) of level-sets:

i1 =
[

0 1 1 0
]

, i2 =
[

0 0 1 1
]

, i3 =
[

0 1 0 1
]
.

In order to use the same strategy as in our proofs of SXDH and k-EDDH, we would ideally want to allow oblique
encodings in each of these level sets. Unfortunately, there is no j ∈ [n] such that all of these challenge level-sets
subsume the jth unit level-set.

A Different Restriction for Oblique Encodings. To tackle this issue, we introduce a different restriction for level-
sets supporting oblique representation. For simplicity, we first show how the restriction would have worked in the
proof of SXDH (or k-EDDH) where the adversary only chooses a single challenge level-set. Subsequently, we show
how this extends to the proof of joint-SXDH.

Suppose that we enforce that any level set i′ is allowed to support oblique encodings if and only if it subsumes the
challenge level-set. Note that assuming we can somehow efficiently enforce this restriction, it equivalently achieves
the same desired effects as the previous restriction. It allows us to switch between normal and oblique encodings for
the challenge level-set. It also ensures that any pair of level-sets that are allowed to support oblique encodings must
be incompatible for multiplication.

At this point, the question is: how do we achieve this restriction in our asymmetric MMap construction? The
answer is: we simply use multiple language-membership trapdoors as opposed to a single language-membership trap-
door. Let z1,0, z1,1, . . . , zn,0, zn,1 be the set of elements in the public parameter of the asymmetric MMap construction.
We change the statement for the proof π0 in each encoding at level i′ as follows: π0 is now a verifying NIZK proof of
“normal representation” that (informally) proves under crs0 that one of the following statements must be true:

1. Either the encoding is in the normal representation.

2. Or there exists a b∗ ∈ {0, 1} such that for each j ∈ [n] where i′j = b∗, we have zj,b∗ ∈ L.

We now show how this helps in the proof of security. Let i be the challenge level-set chosen by the adversary.
When generating the public parameters of our scheme in the various hybrids in the proof of SXDH (and k-EDDH),
we use the following strategy:

• In any hybrid where earlier we had both zj,0 and zj,1 as non-members of the language L (outer hybrids 0, 9 and
10 in Tables 1 and 23), we will now have zj,b for each j ∈ [n] and b ∈ {0, 1} as a non-member of the language
L.

76

• In any hybrid where earlier we had zj,0 as a non-member and zj,1 as a member of the language L (outer hybrids
4 and 5 in Tables 1 and 23), we will now have zj,0 for each j ∈ [n] such that ij = 0 as a member of the
language L (i being the challenge level-set in the SXDH/k-EDDH game). All other elements will be sampled
as non-members of the language L.

• In any hybrid where earlier we had both zj,0 and zj,1 as members of the language L (all remaining outer hybrids
in Tables 1 and 23), we will now have zj,b for each j ∈ [n] and b ∈ {0, 1} as a member of the language L.

Now, consider an outer hybrid where zj,0 for each j ∈ [n] such that ij = 0 is a member of the language L (i being
the challenge level-set in the non-adaptive SXDH/k-EDDH game), while all other elements are non-members. This
“trapdoor” allows not only the challenge level-set to support valid oblique encodings, but any level-set that subsumes
the challenge level-set (because for such each level-set, we can use a subset of the available membership witnesses).
On the other hand, any level-set that does not entirely subsume the challenge-level set is disallowed from supporting
oblique encodings, since it would require producing a membership witness for some zj,b /∈ L.

Extension to Joint-SXDH. The only remaining item to address is how this approach can be extended for non-
adaptive joint-SXDH. At a high level, in the appropriate hybrids in the security proof, we relax the restriction on
encodings in oblique representation as follows: any level set i′ is allowed to support oblique encodings if and only
if it subsumes at least one of the challenge level-sets. Note that assuming we can somehow efficiently enforce this
restriction, it effectively achieves the same desired effects. It allows us to switch between normal and oblique encod-
ings for the challenge level-set. In addition, since any pair of challenge level-sets must be incompatible with respect
to multiplication (from the definition of joint-SXDH), the restriction also ensures that any pair of level-sets that are
allowed to support oblique encodings must be incompatible for multiplication, and hence multiplication of two valid
input-encodings does not require the knowledge of the secret exponents.

To achieve this restriction in our asymmetric MMap construction, we simply use multiple sets of language-
membership trapdoors as opposed to a single set of language-membership trapdoors. Concretely, we use two matrices
Z0 and Z1 of group elements in the public parameter , where for each b ∈ {0, 1}, we have

Zb =

 z1,1,b z1,2,b . . . z1,n,b

...
...

. . .
...

z|T |,1,b z|T |,2,b . . . z|T |,n,b

where |T | is a parameter denoting the size of the set T of challenge level-sets chosen by the adversary in the non-
adaptive joint-SXDH game. This means that our construction is now parameterized by the joint-SXDH assumptions
that it supports, but for most known applications for MMaps with joint-SXDH, this parameter is apriori bounded. We
further change the statement for the proof π0 in each encoding at level i′ as follows: π0 is now a verifying NIZK proof
of “normal representation” that (informally) proves under crs0 that one of the following statements must be true:

1. Either the encoding is in the normal representation.

2. Or there exists some t ∈ [|T |] and some b∗ ∈ {0, 1} such that for each j ∈ [n] where i′j = b∗, we have
zt,j,b∗ ∈ L.

We now show how this helps in the proof of security. Let T = {i1, . . . , i|T |} be the challenge level-sets chosen by
the adversary. In the appropriate hybrid of the proof, for each t ∈ [|T |] we specifically switch each element zt,j,0 in the
public parameter such that it,j = 0 from a non-member to a member. This “trapdoor” allows not only all the challenge
level-sets to support oblique encodings, but any level-set that subsumes at least one of the challenge level-set (because
for such each level-set, we can use a subset of the available membership witnesses). On the other hand, any level-set
that does not entirely subsume any challenge-level set is disallowed from supporting oblique encodings, since it would
require producing a membership witness for some zt,j′ /∈ L.

77

8.1 The Construction
For completeness, we describe the construction of the joint-SXDH-hard asymmetric MMap given the following cryp-
toprimitives:

• A probabilistic-iO scheme piO = (piO.Obf, piOEval).

• A fully-homomorphic encryption scheme

FHE = (FHE.Gen,FHE.Enc,FHE.Dec,FHE.Eval),

such that the message space is Zq for some prime q = poly(λ) (λ being the security parameter).

• A dual mode NIZK argument system NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify) that is:

– perfectly sound and extractable in the binding mode, and

– perfectly witness indistinguishable and perfectly zero-knowledge in the hiding mode.

• A pair of sets (X ,L) such that L ⊂ X and:

1. Given x ∈ X it is computationally hard to decide if x ∈ L.

2. For each y ∈ L, there exists a unique witness wity for the statement y ∈ L.

• A pairing-free group G of prime order q.

8.2 Setup
The setup algorithm for our MMap construction takes as input the security parameter 1λ, a second parameter 1n for
the degree of multilinearity, and a third parameter 1|T | denoting the size of the set T of challenge level-sets chosen by
the adversary in the non-adaptive joint-SXDH game. It samples two key-pairs for the FHE scheme as:

(pk0, sk0), (pk1, sk1)← FHE.Gen(1λ),

and a tuple of four uniformly random group elements from the group G as:

g0, g1, g2, g3 ← G.

It also samples a pair of binding NIZK CRS strings (along with the corresponding extraction trapdoors) as:

(crs0, text,0), (crs1, text,1)← NIZK.Setup(1λ,binding).

The languages for which statements are proven under these CRS strings are described subsequently.
Next the setup algorithm uniformly samples a total (2|T | ·n+1) elements from the set X that are all non-members

for the subset L. More formally, it samples y ← X \ L and for each (t, b) ∈ [|T |]× {0, 1}, the following elements:

zt,1,b, zt,2,b, . . . , zt,n,b ← X \ L.

Finally, the setup algorithm computes and outputs four probabilistically indistinguishability-obfuscated circuits of the
form

C̄Add = piO.Obf(CAdd) , C̄Inv = piO.Obf(CInv),

C̄Mult = piO.Obf(CMult) , C̄ext = piO.Obf(Cext)

where C̄Add, C̄Inv C̄Mult, and C̄ext are the circuits for adding, inverting, multiplying, and extracting from encodings at
any given “non-zero” level.

78

8.3 Encodings
Level-i Encodings. We describe the procedure of encoding a plaintext element at any “non-zero” encoding level i
such that ~0 < i ≤ ~1n (the encoding for a level-zero vector is the same as in Appendix 5). An encoding of a plaintext
element a ∈ Zq at level-vector i is a tuple of the form (ct0, ct1, i, π0, π1), where:

• ct0 and ct1 are FHE encryptions of a tuple of the form:

(a0,0, a1,0, a2,0, a3,0, i) , (a0,1, a1,1, a2,1, a3,1, i).

under the public key-secret key pairs (pk0, sk0) and (pk1, sk1) respectively.

• π0 is a verifying NIZK proof of “normal representation”. Informally, it proves under crs0 that one of the
following statements must be true:

1. Either a0,0 = a0,1 = a and a`,0 = a`,1 = 0 for ` ∈ {1, 2, 3}.

2. Or there exists some t ∈ [|T |] and some b∗ ∈ {0, 1} such that for each j ∈ [n] where i′j = b∗, we have
zt,j,b∗ ∈ L.

Formally, π0 is a verifying NIZK proof under crs0 of the OR relation R0 defined below (KFHE being the set of
all valid key pairs under the FHE scheme):

Relation RL:
RL(z,witz) = 1 if and only if z ∈ L with membership witness witz .

Relation R0,0:
R0,0((ct0, ct1, i, pk0, pk1),wit) = 1 if and only if:

– EITHER wit = (sk0, sk1) and (pk0, sk0), (pk1, sk1) ∈ KFHE and

FHE.Dec(sk0, ct0) = FHE.Dec(sk1, ct1) = (a, 0, 0, 0, i) for some a ∈ Zq.

– OR wit = (a, r0, r1) for some a ∈ Zq and for each b ∈ {0, 1}, we have:

FHE.Enc(pkb, (a, 0, 0, 0, i); rb) = ctb.

Relation R0,1:
R0,1({zt,j,b}t∈[|T |]j∈[n],b∈{0,1}, i,wit) = 1 if and only if:

– wit = (t,J , {witz,j}j∈J) for some J ∈ P([n]) and for each j ∈ J , we have RL(zt,j,ij ,witz,j) = 1.

Relation R0:
R0((ct0, ct1, i, pk0, pk1, {zt,j,b}t∈[|T |]j∈[n],b∈{0,1}),wit) = 1 if and only if:

– EITHER R0,0((ct0, ct1, i, pk0, pk1),wit) = 1.

– OR R0,1({zt,j,b}t∈[|T |]j∈[n],b∈{0,1}, i,wit) = 1.

• π1 is a verifying NIZK proof of “consistency” that holds irrespective of whether the encoding is in normal
representation or (partially) oblique representation. Informally, it proves under crs1 that one of the following
statements must be true with respect to the tuple of group elements (g0, g1, g2, g3) embedded inside the MMap
circuits:

79

1. Either we have:
a0,0 +

∑
`∈[3]

γ` · a`,0 = a0,1 +
∑
`∈[3]

γ` · a`,1,

i.e., equivalently, we have: ∏
`∈[0,3]

g
a`,0
` =

∏
`∈[0,3]

g
a`,1
` .

2. Or y ∈ L.

Formally, π1 is a verifying NIZK proof under crs1 of the OR relation R1 defined previously in Appendix 5.

Finally, an encoding (ct0, ct1, i, π0, π1) is said to be “valid” if both of the following hold simultaneously:

NIZK.Verify(crs0, (pk0,pk1, ct0, ct1, i, {zt,j,b}t∈[|T |],j∈[n],b∈{0,1}), π0) = 1,

and

NIZK.Verify(crs1, (pk0,pk1, ct0, ct1, i, y), π1) = 1.

8.4 Operations Over Encodings
Addition, inversion, multiplication, extraction and zero-testing of encodings in the modified construction follow ex-
actly the same procedure as in our original MMap construction in Appendix 5. The circuits for addition, inversion,
multiplication, and extraction are exactly as described in Figures 2, 3, 5 and 6, respectively, except that checking the
relation R̄1 in each circuit now uses the matrix of elements {zt,j}t∈[|T |],j∈[n]. Zero-testing again follows trivially from
extraction.

8.5 Proof of Joint-SXDH Hardness
In this section, we prove that solving joint-SXDH is hard over the modified asymmetric MMap construction if solving
DDH is hard over the group G. More specifically we state the following theorem:

Theorem 8.1. The joint-SXDH assumption holds over the modified asymmetric MMap construction provided that all
of the following assumptions hold:

• The piO scheme is indistinguishability-secure against X-IND samplers.

• Membership in L is computationally hard to decide,

• Members of L have unique witnesses for membership.

• The dual-mode NIZK proof system satisfies CRS indistinguishability, perfect extractability in the binding mode,
and perfect witness-indistinguishability in the hiding mode.

• The DDH assumption holds over the group G.

We outline the hybrids that are used in the proof. The hybrids are classified into two broad categories - outer
hybrids and inner hybrids. We outline the outer hybrids - the inner hybrids are essentially identical to those in the
proof of SXDH in Appendix 6.

Outer hybrid 0 corresponds to the game where the challenger provides the adversary with encodings of uniformly
random elements in the level-sets that are chosen by the adversary. The final outer hybrid corresponds to the game
where the challenger provides the adversary with a valid joint-SXDH instance, i.e., encodings of elements sampled
according to the SXDH distribution, in each level-set chosen by the adversary. Before we describe the outer hybrids,
we describe a few conditions that remain invariant throughout the outer hybrids:

80

Outer Hybrid MMap Circuits {zt,j,b} (g0, g1, g2, g3)

Challenge Encodings

Joint-SXDH/Random Representation Witness for π0 Witness for π1

0 Cop {zt,j,b /∈ L}t∈|T |,j∈[n],b∈{0,1} Random Random Normal (sk0, sk1) (sk0, sk1)

1 Ĉop {zt,j,b ∈ L}t∈|T |,j∈[n],b∈{0,1} Random Random Normal (t,Sit , {wit{zt,j,0}}j∈Sit) (sk0, sk1)

2 Ĉop {zt,j,b ∈ L}t∈|T |,j∈[n],b∈{0,1} Random Random Partially oblique (t,Sit , {wit{zt,j,0}}j∈Sit) (sk0, sk1)

3 Ĉop {zt,j,b ∈ L}t∈|T |,j∈[n],b∈{0,1} Random Random Oblique (t,Sit , {wit{zt,j,0}}j∈Sit) (sk0, sk1)

4 ̂̂
Cop {{zt,j,0 ∈ L}j∈Sit }t∈|T | Random Random Oblique (t,Sit , {wit{zt,j,0}}j∈Sit) (sk0, sk1)

5 ̂̂
Cop {{zt,j,0 ∈ L}j∈Sit }t∈|T | DDH Joint-SXDH Oblique (t,Sit , {wit{zt,j,0}}j∈Sit) (sk0, sk1)

6 Ĉop {zt,j,b ∈ L}t∈|T |,j∈[n],b∈{0,1} Random Random Oblique (t,Sit , {wit{zt,j,0}}j∈Sit) (sk0, sk1)

7 Ĉop {zt,j,b ∈ L}t∈|T |,j∈[n],b∈{0,1} DDH Joint-SXDH Partially oblique (t,Sit , {wit{zt,j,0}}j∈Sit) (sk0, sk1)

8 Ĉop {zt,j,b ∈ L}t∈|T |,j∈[n],b∈{0,1} DDH Joint-SXDH Normal (t,Sit , {wit{zt,j,0}}j∈Sit (sk0, sk1)

9 Cop {zt,j,b /∈ L}t∈|T |,j∈[n],b∈{0,1} DDH Joint-SXDH Normal (sk0, sk1) (sk0, sk1)

10 Cop {zt,j,b /∈ L}t∈|T |,j∈[n],b∈{0,1} Random Joint-SXDH Normal (sk0, sk1) (sk0, sk1)

Table 22: Overview of the outer hybrids in the proof of joint-SXDH. Changes between subsequent hybrids are highlighted in red. Throughout, crs0 and crs1 are
binding, y /∈ L, and the challenge encodings are consistent with respect to extraction. We use the shorthands Cop and Ĉop for the tuples (CAdd,CInv,CMult,Cext) and
(ĈAdd, ĈInv, ĈMult, Ĉext), respectively, where the second set of circuits are as described earlier in the proof of SXDH. Note that for each t ∈ [|T |], Sit ∈ P([n]) is
the set of all indices j ∈ [n] such that it,j = 0.

• The NIZK CRS strings crs0 and crs1 are in binding mode, as in the real MMap scheme, in all the outer hybrids.

• The element y in the public parameter is a non-member for the language L, as in the real MMap scheme, in all
the outer hybrids.

• The challenge encodings provided to the adversary are consistent with respect to extraction (as formalized by
the relation R1 described earlier) in all the outer hybrids.

Table 22 provides an overview of the outer hybrids, which we now describe in details.

Outer Hybrid 0. In this hybrid, the MMap is set up exactly as in the real scheme described earlier. Let (g0, g1, g2, g3)
be the tuple of group elements hardwired into each of the MMap circuits, such that g` = gγ`0 for ` ∈ {1, 2, 3}. Let µ be
a uniformly sampled element in Zq . The joint-SXDH adversary is provided with encodings of the tuple of elements:

(α0, α1, α2, α3) = (µ, µ · γ1, µ · γ2, µ · γ3),

where the encodings are generated in normal form (formalized by relation R0 described earlier) corresponding to each
level-set it for t ∈ [|T |] chosen by the SXDH adversary. Each encoding also contains a NIZK proof π0 for normal
representation under the binding crs0, and a NIZK proof π1 for consistency with respect to extraction under the binding
crs1.

81

Outer Hybrid 1. In this hybrid, we make the following alterations to the manner in which the MMap is generated:

1. For each t ∈ [|T |], j ∈ [n] and b ∈ {0, 1}, switch zt,j,b in the public parameters from a non-member to a
member for L, i.e., we now sample zt,j,b ← L, along with a (unique) membership-witness witzt,j,b .

2. We switch the circuits for addition, inversion, multiplication and extraction as follows:

CAdd 7→ ĈAdd , CInv 7→ ĈInv,

CMult 7→ ĈMult , Cext 7→ Ĉext,

The switched circuits are essentially as already described in Figures 7, 8, 9, and 10, respectively, in Appendix 6.
At a high level, in each of these switched circuits, we hardwire the witness witzt,j,b for the membership of each zt,j,b
in L and avoid using the first extraction trapdoor text,0. In other words, we “allow” valid encodings in any level-set i′

to use the oblique representation.
Additionally, we make the following change to the manner in which the challenge encodings are generated: for a

challenge-encoding at level it, the NIZK proof π0 under the binding crs0 now proves language-membership of each
zt,j,0 such that it,j = 0, as opposed to proving that the encoding is in the normal representation.

Outer Hybrid 2. This hybrid is identical to the outer hybrid 1, except that the challenge joint-SXDH encodings
are no longer in normal form. In particular, the first FHE ciphertext in each encoding now encrypts an oblique
representation of the underlying plaintext element. The NIZK proofs continue to be generated as in outer hybrid 1.

Outer Hybrid 3. This hybrid is identical to the outer hybrid 2, except that the challenge joint-SXDH encodings are
now entirely in oblique form. In particular, the second FHE ciphertext in each encoding now also encrypts an oblique
representation of the underlying plaintext element. The NIZK proofs continue to be generated as in outer hybrid 2.

Outer Hybrid 4. In this hybrid, we make the following alterations to the manner in which the MMap is generated:

1. For each t ∈ [|T |], let it be the challenge level-set chosen the joint-SXDH adversary. For each j ∈ [n] such that
it,j = 0, sample zt,j,0 in the public parameter as a member for L, and sample all other elements in the public
parameter as non-members.

2. We switch the circuits for addition, inversion, multiplication and extraction as follows:

ĈAdd 7→
̂̂
CAdd , ĈInv 7→

̂̂
CInv , ĈMult 7→

̂̂
CMult.

The switched circuits are essentially as already described in Figures 11, 12, and 14, respectively, in Appendix 6.
At a high level, we “only allow” valid encodings in a level-set i′ that subsumes at least one challenge level-set to use
the oblique representation.

Outer Hybrid 5. This hybrid is identical to outer hybrid 4 except that we switch the tuple (g0, g1, g2, g3) hardwired

into the MMap circuits ̂̂CAdd, ̂̂CInv, ̂̂CMult and Ĉext from a uniformly random tuple of group elements to a uniformly
random DDH tuple, albeit with the same base element g0. More formally, we uniformly sample γ1, γ2 ← Zq , and set

(g1, g2, g3) = (gγ1

0 , gγ2

0 , gγ1·γ2

0).

82

Outer Hybrid 6. In this hybrid, we make the following alterations to the manner in which the MMap is generated:

1. For each t ∈ [|T |], j ∈ [n] and b ∈ {0, 1}, sample zt,j,b in the public parameters as a member for L, i.e., we
now sample each zt,j,b ← L, along with a (unique) membership-witness witzt,j,b .

2. We switch back the circuits for addition, inversion, multiplication and extraction as follows:

̂̂
CAdd 7→ ĈAdd ,

̂̂
CInv 7→ ĈInv ,

̂̂
CMult 7→ ĈMult.

At a high level, we again “allow” valid encodings in any level-set i′ to use the oblique representation.

Outer Hybrid 7. This hybrid is identical to the outer hybrid 6, except that the challenge joint-SXDH encodings are
now switched back to a partially oblique form. In particular, the second FHE ciphertext in each encoding now encrypts
a normal representation of the underlying plaintext element. The NIZK proofs continue to be generated as in outer
hybrid 6.

Outer Hybrid 8. This hybrid is identical to the outer hybrid 7, except that the challenge joint-SXDH encodings
are now switched back entirely to the normal form. In particular, the first FHE ciphertext in each encoding now also
encrypts a normal representation of the underlying plaintext element. The NIZK proofs continue to be generated as in
outer hybrid 7.

Outer Hybrid 9. This hybrid is identical to outer hybrid 8, except that we make the following alterations to the
manner in which the MMap is set up:

1. For each t ∈ [|T |], j ∈ [n] and b ∈ {0, 1}, we switch back zt,j,b in the public parameters from a uniform
member to a uniform non-member for L, as in the real scheme.

2. We switch back the circuits for addition, inversion, multiplication and extraction as follows:

ĈAdd 7→ CAdd , ĈInv 7→ CInv,

ĈMult 7→ CMult , Ĉext 7→ Cext,

In particular, the circuits are now exactly as in the real MMap scheme, with the exception that the tuple
(g0, g1, g2, g3) hardwired inside these circuits continues to be a DDH tuple.

Additionally, we make the following change to the manner in which the challenge encodings are generated: for
each challenge encoding, the NIZK proof π0 under the binding crs0 now proves that the encoding is in the normal
representation using the witness (sk0, sk1).

Outer Hybrid 10. This hybrid is identical to outer hybrid 7 except that we switch the tuple of group elements
(g0, g1, g2, g3) hardwired into the MMap circuits CAdd, CInv, CMult and Cext from a uniform DDH tuple to a uniformly
random tuple, albeit with the same base element g0. In other words, the MMap circuits are now exactly as in the real
scheme.

Indistinguishability of Outer Hybrids. The proof of indistinguishability of the outer hybrids are very similar to the
proof of indistinguishability of the outer hybrids in the proof of SXDH (Appendix 6). Hence we do not detail them.

83

9 A Symmetric MMap Construction
In this section, we show a how to construct a symmetric MMap given same set of cryptoprimitives as in the asymmetric
MMap construction:

• A probabilistic-iO scheme piO = (piO.Obf, piOEval).

• A fully-homomorphic encryption scheme

FHE = (FHE.Gen,FHE.Enc,FHE.Dec,FHE.Eval),

such that the message space is Zq for some prime q = poly(λ) (λ being the security parameter).

• A dual mode NIZK argument system NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify) that is:

– perfectly sound and extractable in the binding mode, and

– perfectly witness indistinguishable and perfectly zero-knowledge in the hiding mode.

• A pair of sets (X ,L) such that L ⊂ X and:

1. Given x ∈ X it is computationally hard to decide if x ∈ L.

2. For each y ∈ L, there exists a unique witness wity for the statement y ∈ L.

• A pairing-free group G of prime order q.

In Appendix 10 we show that (n+ 1)-EDDH is hard over our proposed MMap construction if CP-EDDH is hard
over the group G.

Differences with Asymmetric MMap Construction. At a high level, our symmetric MMap construction is very
similar to the asymmetric MMap construction presented in Appendix 5, except for the following key differences that
we discuss informally here.

“All-or-Nothing” Approach to Representation. In the asymmetric MMap construction and the corresponding proof of
SXDH (and k-EDDH), we used an OR-proof technique to restrict the “validity” of encodings in (partially) oblique
representation to particular level-sets. In other words, depending on the public parameters for the MMap scheme,
either all valid encodings were in the normal representation, or valid encodings in certain level-sets were allowed to be
in the oblique representation. In the symmetric MMap construction, where no such level-sets exist, such restrictions
cannot be imposed. Hence, we opt for an “all-or-nothing” approach - depending on the public parameters for the
MMap scheme, either all valid encodings must be in the normal representation, or all valid encodings are allowed
to be in the oblique representation. This also means that it now suffices to have a single element z ∈ X in the
public parameter in order to “switch-on” or “switch-off” this OR branch, as opposed to n elements z1, . . . , zn in the
asymmetric construction.

“Well-Formedness”. The aforementioned change, however, presents certain challenges when multiplying encodings.
In the asymmetric construction, we ensured that any two “allowed” level-sets for oblique representation must be
incompatible with respect to multiplication. Since we cannot enforce such a restriction in the symmetric setting, we
opt for a different restriction, called “well-formedness”, that must be satisfied irrespective of whether the encoding is
in normal or oblique representation. Any encoding in normal representation is well-formed by default. On the other
hand, any pair of oblique encodings can be multiplied provided that they are well-formed. The formal definition of
well-formedness is presented subsequently.

84

9.1 Setup
The setup algorithm for our MMap construction takes as input the security parameter 1λ and a second parameter 1n

for the degree of multilinearity. It samples two key-pairs for the FHE scheme as:

(pk0, sk0), (pk1, sk1)← FHE.Gen(1λ).

Unlike the asymmetric construction, the setup algorithm for our symmetric MMap construction uniformly samples
γ, δ ← Zq and g ← G, and creates a tuple of n(n+ 1)/2 group elements in G as:

g`,`′ = gγ
`·δ`
′

for each `, `′ ∈ [0, n] such that `+ `′ ≤ n.

As explained subsequently, this change is motivated by the nature of the hardness assumption we wish to prove over
our symmetric MMap construction.

The setup algorithm also samples a pair of binding NIZK CRS strings (along with the corresponding extraction
trapdoors) as:

(crs0, text,0), (crs1, text,1)← NIZK.Setup(1λ,binding).

The languages for which statements are proven under these CRS strings are described subsequently in Section 9.2.
Next the setup algorithm uniformly samples a pair of non-member elements as:

y, z ← X \ L.

Finally, the setup algorithm computes and outputs four probabilistically indistinguishability-obfuscated circuits of the
form

C̄Add = piO.Obf(CAdd) , C̄Inv = piO.Obf(CInv),

C̄Mult = piO.Obf(CMult) , C̄ext = piO.Obf(Cext)

where CAdd, CInv CMult, and Cext are the circuits for adding, inverting, multiplying, and extracting from encodings at
any given “non-zero” level. Note that while the names for these circuits are overloaded from the asymmetric MMap
construction for ease of representation, their descriptions are not exactly identical to their counterparts described
previously. We describe these circuits in details subsequently. However, as before, these circuits also embed certain
elements that we want to keep secret:

• The FHE secret keys sk0 and sk1.

• The NIZK extraction trapdoors text,0 and text,1.

• The tuple of group elements {g`,`′}`+`′∈[1,n] (only g0,0 is made publicly available).

This is why these circuits are not made public as is. Instead, the setup algorithm only makes available piO-
obfuscated versions of these circuit. To summarize, the public parameter pp for our symmetric MMap construction is
as follows:

pp =
(
pk0,pk1, crs0, crs1, g0,0, y, z, C̄Add, C̄Inv, C̄Mult, C̄ext

)
.

9.2 Encodings
We describe the procedure of encoding a plaintext element at any level i such that i ∈ [0, n]. In our construction,
level-0 encodings are treated slightly different from encodings at other “non-zero” levels, and are equipped with their
own set of algorithms for encoding, manipulation, extraction and zero-testing. We informally mention these for the
sake of completeness.

85

Level-Zero Encodings. We set the level-0 encoding of a plaintext element a ∈ Zq to be a itself. Adding/multiplying
two level-0 encodings (equivalently, additively inverting a level-0 encoding) is simply done via addition/multiplication
(equivalently, additive inversion) in Zq .

Multiplying a level-0 encoding with any other encoding at some level i should result in an encoding at level-i.
This is implemented with a shift-and-add algorithm built on top of the standard encoding addition algorithm described
subsequently.

Extracting a level-0 encoding a ∈ Zq outputs ga0,0, where g0,0 ∈ G is the publicly available group element sampled
at setup that is also embedded inside each MMap circuit. As will be clear later, this is consistent with the extraction
algorithm for any other level i. Zero-testing follows trivially from the extraction algorithm.

Level-iEncodings. We now describe the procedure of encoding a plaintext element at any “non-zero” encoding level
i such that i ∈ [n]. An encoding of a plaintext element a ∈ Zq at level-vector i is a tuple of the form (ct0, ct1, i, π0, π1),
where:

• ct0 and ct1 are FHE encryptions of a tuple of the form:

({a`,`′,0}`+`′∈[0,n], i) , ({a`,`′,1}`+`′∈[0,n], i).

under the public key-secret key pairs (pk0, sk0) and (pk1, sk1) respectively.

For b ∈ {0, 1}, the tuple ({a`,`′,b, i) is said to be in “normal form” if

{a`,`′,b = 0}(`,`′) 6=(0,0).

Otherwise, it is said to be in “oblique-form”. As before, depending on the forms of the tuples underlying the
FHE ciphertexts, we classify an encoding into one of three representations:

– Normal representation: Both tuples are in normal form.

– Partially oblique representation: Exactly one of the tuples is in normal form, while the other is in oblique
form. Unless otherwise specified, we assume that the second tuple is in normal form.

– Oblique representation: Both tuples are in oblique form.

We also introduce the concept of a “well-formed encoding”. An encoding at level i ∈ [n] is said to be “well-
formed” if the tuples underlying the FHE ciphertexts satisfy the following condition:

a`,`′,b = 0 for each `, `′ ∈ [0, n] such that `+ `′ > i.

Also recall that the setup algorithm privately samples a tuple of group elements ({g`,`′}) and hardwires these
into the MMap circuits that are described subsequently. We say that an encoding is “consistent” if the tuples
underlying the FHE ciphertexts satisfy the following condition:∏

`+`′∈[0,n]

(g`,`′)
a`,`′,0 =

∏
`+`′∈[0,n]

(g`,`′)
a`,`′,1 .

Looking ahead, this will be used explicitly in the extraction algorithm of our construction.

• π0 is a verifying NIZK proof of “normal representation”. Informally, it proves under crs0 that one of the
following statements must be true: either the encoding is in normal representation or z ∈ L. Formally, π0 is a
verifying NIZK proof under crs0 of the OR relation R̄0 defined below (KFHE being the set of all valid key pairs
under the FHE scheme and RL being as defined earlier):

86

Relation R0:
R̄0((ct0, ct1, i, pk0, pk1),wit) = 1 if and only if:

– Either wit = (sk0, sk1) and (pk0, sk0), (pk1, sk1) ∈ KFHE and

FHE.Dec(sk0, ct0) = FHE.Dec(sk1, ct1) = (a, 0, 0, . . . , 0, i) for some a ∈ Zq.

– Or wit = (a, r0, r1) for some a ∈ Zq and for each b ∈ {0, 1}, we have:

FHE.Enc(pkb, (a, 0, 0, . . . , 0, i); rb) = ctb.

OR Relation R̄0:

R̄0((ct0, ct1, i, pk0, pk1, z),wit) = R0((ct0, ct1, i, pk0, pk1),wit) ∨ RL(z,wit).

• π1 is a verifying NIZK proof of “well-formedness” and “consistency” that holds irrespective of whether the
encoding is in normal representation or (partially) oblique representation. Informally, it proves under crs1 that
one of the following statements must be true: either the encoding is well-formed and consistent, or y ∈ L.
Formally, π1 is a verifying NIZK proof under crs1 of the OR relation R̄1 defined below (RL is as defined
earlier):

Relation R1:
R1((ct0, ct1, i, pk0, pk1), wit) = 1 if and only if:

– Either wit = (sk0, sk1) and (pk0, sk0), (pk1, sk1) ∈ KFHE and for b ∈ {0, 1}, we have

FHE.Dec(skb, ctb) = ({a
`,`′,b}`+`′∈[0,n]

, i),

such that for we have
a
`,`′,b = 0 for each `, `′ ∈ [0, n] such that ` + `

′ ≥ i,

and we have ∏
`+`′∈[0,n]

(g
`,`′)

a
`,`′,0 =

∏
`+`′∈[0,n]

g
a
`,`′,1
`,`′,1

= g
a
0,0.

– Or wit = ({a
`,`′,0, a`,`′,1}`+`′∈[0,n]

, r0, r1) and for each b ∈ {0, 1}, we have

FHE.Enc(pkb, ({a`,`′,b}`+`′∈[0,n]
, i); rb) = ctb,

and we have
a
`,`′,b = 0 for each `, `′ ∈ [0, n] such that ` + `

′ ≥ i,

and we have ∏
`+`′∈[0,n]

(g
`,`′)

a
`,`′,0 =

∏
`+`′∈[0,n]

(g
`,`′)

a
`,`′,1 ,

OR Relation R̄1:

R̄1((ct0, ct1, i, pk0, pk1, y), wit) = R1((ct0, ct1, i, pk0, pk1), wit) ∨ RL(y, wit).

An encoding (ct0, ct1, i, π0, π1) is said to be “valid” if both of the following hold simultaneously:

NIZK.Verify(crs0, (pk0,pk1, ct0, ct1, i, z), π0) = 1,

and

NIZK.Verify(crs1, (pk0,pk1, ct0, ct1, i, y), π1) = 1.

87

CAdd,FHE(({a`,`′,1}`+`′∈[0,n], i1), ({a`,`′,2}`+`′∈[0,n], i2)):

1. If i1 6= i2 or i1 > n, output⊥.

2. Else, output
(
{a`,`′,1 + a`,`′,2}`+`′∈[0,n], i1

)
.

CInv,FHE({a`,`′}`+`′∈[0,n], i):

1. If i > n, output⊥.

2. Else, output
(
{−a`,`′ mod q}`+`′∈[0,n], i

)
.

Figure 19: Circuits CAdd,FHE and CInv,FHE for the symmetric MMap

Note that when z /∈ L and y /∈ L, any valid encoding must be in the normal representation, and hence must also
be well-formed and consistent. So having the additional proof π1 might appear redundant. However, looking ahead,
during certain hybrids in the proof of security, we will relax one or more of the language non-membership conditions
to allow encodings corresponding to certain designated level sets to be in oblique representation. In such a case, the
proof π1 would allow us to enforce well-formedness and consistency irrespective of whether the encoding is in the
normal representation or in the oblique representation.

9.3 Addition and Inversion of Encodings
We now describe the procedure for adding two encodings, and for (additive) inversion of an encoding. Suppose we
have two encodings at the same level i of the form:

(ct0,1, ct1,1, i, π0,1, π1,1) , (ct0,2, ct1,2, i, π0,2, π1,2).

Figure 20 details the operation of the encoding-addition circuit CAdd. Note that it embeds multiple secrets, including
the FHE secret keys sk0 and sk1, as well as the extraction trapdoors text,0 and text,1 for the NIZK. Hence, the circuit is
not made public as is; we only make available an obfuscated version of the circuit obtained by running the evaluation
algorithm of the probabilistic iO scheme piO on it. The same holds for the encoding-inversion circuit CInv, which is
described in Figure 21.

At a high level, we add the two input encodings by exploiting the fully-homomorphic nature of the encryption
scheme. More concretely, we homomorphically evaluate the circuit CAdd,FHE (described in Figure 19) on the cor-
responding ciphertext components of the two input encodings to generate the ciphertext components for the output
encoding. We also generate proofs for normal representation and well-formedness + consistency of the output encod-
ing using the tuple of secret keys (sk0, sk1) as witness, unless otherwise dictated by the input encodings (in which
case we use the extracted witnesses from the proofs in the input encodings to generate the proofs for the output en-
codings). The approach for inverting an input encoding is very similar, except that we homomorphically evaluate the
circuit CInv,FHE (also described in Figure 19) on the ciphertext components of the input encoding.

For technical reasons that are relevant to the proof of security, we check the following in both the addition and
inversion circuits:

1. The validity of the proofs π1 and π2 that are provided as part of the input encodings (steps 1 and 2).

2. Whether the encodings are in the normal representation as per the relation R0 described earlier (step 5).

3. Whether the encodings are well-formed and consistent as per the relation R1 described earlier (step 7).

The checks in steps 5 and 7 of CAdd and CInv are included for technical reasons that are relevant to the proof of
security. In particular, we emphasize the following:

88

CAdd[{skb, pkb, crsb, text,b}b∈{0,1}, {g`,`′}]((ct0,1, ct1,1, i, π0,1, π1,1), (ct0,2, ct1,2, i, π0,2, π1,2)):

1. Output⊥ if for any k ∈ {1, 2}, NIZK.Verify(crs0, (pk0, pk1, ct0,k, ct1,k, i, z), π0,k) = 0.

2. Output⊥ if for any k ∈ {1, 2}, NIZK.Verify(crs1, (pk0, pk1, ct0,k, ct1,k, i, y), π1,k) = 0.

3. For b ∈ {0, 1}, set: ct∗b = FHE.Eval(pkb, ctb,1, ctb,2,CAdd,FHE).

4. For b ∈ {0, 1} and k ∈ {1, 2}, recover ({a`,`′,b,k}`+`′∈[0,n], i) = FHE.Dec(skb, ctb,k).

5. If for some k ∈ {1, 2}, R0((sk0, sk1), (ct0,k, ct1,k, i, pk0, pk1)) = 0, then:

(a) Extract witz = NIZK.Ext(text,0, (pk0, pk1, ct0,1, ct1,1, i, z), π0,1).

(b) If RL(z,witz) = 0, output⊥.

(c) Else, generate π∗0 ← NIZK.Prove(crs0, (pk0, pk1, ct∗0 , ct∗1 , i, z),witz).

6. Else, generate π∗0 ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, z), (sk0, sk1)).

7. If for some k ∈ {1, 2}, we have R1((sk0, sk1), (ct0,k, ct1,k, i, pk0, pk1)) = 0, then:

(a) Extract wity = NIZK.Ext(text,1, (pk0, pk1, ct0,1, ct1,1, i, y), π1,1).

(b) If RL(y,wity) = 0, output⊥.

(c) Else, generate π∗1 ← NIZK.Prove(crs1, (pk0, pk1, ct∗0 , ct∗1 , i, y),wity).

8. Else, generate π∗1 ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, y), (sk0, sk1)).

9. Output (ct∗0 , ct∗1 , i, π
∗
0 , π
∗
1).

Figure 20: Circuit CAdd for the symmetric MMap

• Checking the “If” condition in step 7 of CAdd and CInv requires the tuple of group elements {g`,`′} sampled at
setup, and we implicitly assume that it is embedded in both circuits. We omit explicitly describing it for the sake
of brevity.

• When the element z is a non-member for the language L, then under a binding crs0, the “If” condition in step
5 of CAdd is never satisfied. This follows from the perfect soundness guarantee of the NIZK proof system.
However, the condition may be satisfied during some hybrid in the proof of security, when we deliberately
switch z to a member of L.

• When the element y is a non-member for the language L, then under a binding crs1, the “If” condition in step 7
of CAdd is never satisfied. This again follows from the perfect soundness guarantee of the NIZK proof system.
However, the condition may be satisfied during some hybrid in the proof of security, when we deliberately
switch y to a member of L.

9.4 Multiplication of Encodings
We now describe the procedure for multiplying two encodings at levels i1 and i2, respectively such that i1 + i2 ≤ n.
Suppose we have two encodings of the form:

(ct1,0, ct1,1, i1, π1), (ct2,0, ct2,1, i2, π2).

Figure 23 details the operation of the encoding multiplication circuit CMult. Note that it again embeds multiple
secrets, including the FHE secret keys sk0 and sk1, as well as the extraction trapdoors text,0 and text,1 for the NIZK.

89

CInv[{skb, pkb, crsb, text,b}b∈{0,1}, {g`,`′}](ct0, ct1, i, π0, π1):

1. Output⊥ if NIZK.Verify(crs0, (pk0, pk1, ct0, ct1, i, z), π0) = 0.

2. Output⊥ if NIZK.Verify(crs1, (pk0, pk1, ct0, ct1, i, y), π1) = 0.

3. For b ∈ {0, 1}, set: ct∗b = FHE.Eval(pkb, ctb,CAdd,FHE).

4. For b ∈ {0, 1}, recover ({a`,`′,b}`+`′∈[0,n], i) = FHE.Dec(skb, ctb).

5. If R0((sk0, sk1), (ct0, ct1, i, pk0, pk1)) = 0, then:

(a) Extract witz = NIZK.Ext(text,0, (pk0, pk1, ct0, ct1, i, z), π0).

(b) If RL(z,witz) = 0, output⊥.

(c) Else, generate π∗0 ← NIZK.Prove(crs0, (pk0, pk1, ct∗0 , ct∗1 , i, z),witz).

6. Else, generate π∗0 ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, z), (sk0, sk1)).

7. If R1((sk0, sk1), (ct0, ct1, i, pk0, pk1)) = 0, then:

(a) Extract wity = NIZK.Ext(text,1, (pk0, pk1, ct0, ct1, i, y), π1).

(b) If RL(y,wity) = 0, output⊥.

(c) Else, generate π∗1 ← NIZK.Prove(crs1, (pk0, pk1, ct∗0 , ct∗1 , i, y),wity).

8. Else, generate π∗1 ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, y), (sk0, sk1)).

9. Output (ct∗0 , ct∗1 , i, π
∗
0 , π
∗
1).

Figure 21: Circuit CInv for the symmetric MMap

Hence, the circuit is not made public as is; we only make available an obfuscated version of the circuit obtained by
running the evaluation algorithm of the probabilistic iO scheme piO on it.

CMult,FHE(({a`,`′,1}`+`′∈[0,n], i1), ({a`,`′,2}`+`′∈[0,n], i2)):

1. If i1 + i2 > n, output⊥.

2. Else if a`,`′,1 6= 0 for some `, `′ such that `+ `′ ≥ i1, then output⊥.

3. Else if a`,`′,2 6= 0 for some `, `′ such that `+ `′ ≥ i2, then output⊥.

4. Else, output ({a∗
`,`′}(`+`′)∈[0,n], (i1 + i2)), where for each (`, `′), we have

a
∗
`,`′ =

∑
`1,`2∈[0,`] s.t. `1+`2=`

`′1,`
′
2∈[0,`′] s.t. `′1+`′2=`′

a`1,`′1,1
· a`2,`′2,2.

Figure 22: Circuit CMult,FHE for the symmetric MMap

At a high level, we multiply the two input encodings by again exploiting the fully-homomorphic nature of the
encryption scheme. More concretely, we homomorphically evaluate the circuit CMult,FHE (described in Figure 22)
on the corresponding ciphertext components of the two input encodings to generate the ciphertext components for
the output encoding. Note that the circuit outputs ⊥ unless both the input encodings are well-formed. However,
as described subsequently, we ensure in our MMap construction as well as in the proof of SXDH that any “valid”

90

CMult[{skb, pkb, crsb, text,b}b∈{0,1}, {g`,`′}]((ct0,1, ct1,1, i1, π0,1, π1,1), (ct0,2, ct1,2, i2, π0,2, π1,2)):

1. Output⊥ if for any k ∈ {1, 2}, NIZK.Verify(crs0, (pk0, pk1, ct0,k, ct1,k, ik, z), π0,k) = 0.

2. Output⊥ if for any k ∈ {1, 2}, NIZK.Verify(crs1, (pk0, pk1, ct0,k, ct1,k, ik, y), π1,k) = 0.

3. For b ∈ {0, 1}, set: ct∗b = FHE.Eval(pkb, ctb,1, ctb,2,CMult,FHE).

4. For b ∈ {0, 1} and k ∈ {1, 2}, recover ({a`,`′,b,k}`+`′∈[0,n], ik) = FHE.Dec(skb, ctb,k).

5. If for some k ∈ {1, 2}, R0((sk0, sk1), (ct0,k, ct1,k, ik, pk0, pk1)) = 0, then:

(a) Extract witz = NIZK.Ext(text,0, (pk0, pk1, ct0,k, ct1,k, ik, z), π0,k).

(b) If RL(z,witz) = 0, output⊥.

(c) Else, generate π∗0 ← NIZK.Prove(crs0, (pk0, pk1, ct∗0 , ct∗1 , (i1 + i2), z),witz).

6. Else, generate π∗0 ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , (i1 + i2), z), (sk0, sk1)).

7. If for some k ∈ {1, 2}, we have R1((sk0, sk1), (ct0,k, ct1,k, ik, pk0, pk1)) = 0, then:

(a) Extract wity = NIZK.Ext(text,1, (pk0, pk1, ct0,1, ct1,1, ik, y), π1,k).

(b) If RL(y,wity) = 0, output⊥.

(c) Else, generate π∗1 ← NIZK.Prove(crs1, (pk0, pk1, ct∗0 , ct∗1 , (i1 + i2), y),wity).

8. Else, generate π∗1 ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , (i1 + i2), y), (sk0, sk1)).

9. Output (ct∗0 , ct∗1 , i, π
∗
0 , π
∗
1).

Figure 23: Circuit CMult for the symmetric MMap

encoding must be well-formed. Hence, evaluation using the circuit CMult,FHE never outputs ⊥.
Finally, similar to the addition and inversion circuits, we also generate proofs for normal representation and well-

formedness + consistency of the output encoding using the tuple of secret keys (sk0, sk1) as witness, unless otherwise
dictated by the input encodings (in which case we use the extracted witnesses from the proofs in the input encodings
to generate the proofs for the output encodings).

Similar to the addition and inversion procedures described previously, the checks in steps 5 and 7 of CInv are
included for technical reasons that are relevant to the proof of security. In particular, we emphasize the following:

• Checking the “If” condition in step 7 of CMult requires the tuple of group elements {g`,`′} sampled at setup, and
we implicitly assume that it is embedded in the CMult circuit. We omit explicitly describing it for the sake of
brevity.

• When the element z is a non-member for the language L, then under a binding crs0, the “If” condition in
step 5 of CInv is never satisfied. This follows from the perfect soundness guarantee of the NIZK proof system,
and ensures that no pair of valid input encodings (even adversarially created) can result in the homomorphic
evaluation of CMult,FHE outputting ⊥.

Looking ahead, in certain hybrids of our proof of SXDH, we do allow the “If” condition in step 5 to be satisfiable
for encodings corresponding to certain level sets. In these hybrids, we switch exactly z from a non-member to
a member for L. Note, however, that in this case, any valid encoding that is allowed to deviate from the normal
representation must still be well-formed and consistent.

• When the element y is a non-member for the language L, then under a binding crs1, the “If” condition in step 7
of CAdd is never satisfied. This again follows from the perfect soundness guarantee of the NIZK proof system.

91

Cext[{skb, pkb, crsb, text,b}b∈{0,1}, {g`,`′}](ct0, ct1, i, π0, π1):

1. Output⊥ if NIZK.Verify(crs0, (pk0, pk1, ct0, ct1, i, z), π0) = 0.

2. Output⊥ if NIZK.Verify(crs1, (pk0, pk1, ct0, ct1, i, y), π1) = 0.

3. For b ∈ {0, 1}, recover ({a`,`′,b}`+`′∈[0,n], i) = FHE.Dec(skb, ctb).

4. Compute g∗ =
∏
`+`′∈[0,n](g`,`′)

a
`,`′,0 .

5. If R0((sk0, sk1), (ct0, ct1, i, pk0, pk1)) = 0, then:

(a) Extract witz = NIZK.Ext(text,0, (pk0, pk1, ct0, ct1, i, z), π0).

(b) If RL(z,witz) = 0, output⊥.

6. If R1((sk0, sk1), (ct0, ct1, i, pk0, pk1)) = 0, then:

(a) Extract wity = NIZK.Ext(text,1, (pk0, pk1, ct0, ct1, i, y), π1).

(b) If RL(y,wity) = 0, output⊥.

7. Output g∗.

Figure 24: Circuit Cext for the symmetric MMap

However, the condition may be satisfied during some hybrid in the proof of security, when we deliberately
switch y to a member of L.

9.5 Extraction and Zero-Testing
Extraction. We now describe the procedure for extracting a canonical string from an encoding. Suppose we have an
encodings at the level i of the form:

(ct0, ct1, i, π0, π1).

The extraction circuit uses sk0 and sk1 to recover the plaintext elements {a`,`′,0, a`,`′,1}`+`′∈[0,n] underlying the FHE
ciphertexts ct0 and ct1, and provided that these are consistent as per relation R1 described earlier, outputs

g∗ =
∏

`+`′∈[0,n]

(g`,`′)
a`,`′,0 .

Figure 24 details the operation of the extraction circuit Cext. Note that it again embeds multiple secrets, including
the FHE secret keys sk0 and sk1, as well as the extraction trapdoors text,0 and text,1 for the NIZK. Hence, the circuit is
not made public as is; we only make available an obfuscated version of the circuit obtained by running the evaluation
algorithm of the probabilistic iO scheme piO on it.

Similar to the addition, inversion and multiplication procedures described previously, the checks in steps 5 and 6
of Cext are included for technical reasons that are relevant to the proof of security. In particular, we emphasize the
following:

• When the element z is a non-member for the language L, then under a binding crs0, the “If” condition in step
5 of CInv is never satisfied. This again follows from the perfect soundness guarantee of the NIZK proof system.
However, the condition may be satisfied during some hybrid in the proof of security, when some element z is a
member of L.

• When the element y is a non-member for the language L, then under a binding crs1, the “If” condition in
step 6 of CInv is never satisfied. This follows from the perfect soundness guarantee of the NIZK proof system.

92

However, the condition may be satisfied during some hybrid in the proof of security, when the element y ∈ X
is a member of L.

Zero-Testing Encodings. Given the aforementioned extraction procedure, zero-testing an encoding at any given
level is trivial. We simply apply the extraction procedure to the encoding, and check if the extracted group element g∗

is equal to g0 for any g ∈ G.

10 Proof of (n+ 1)-EDDH Hardness
In this section, we prove that solving (n + 1)-EDDH is hard over our proposed MMap construction if solving CP-
EDDH is hard over the group G. More specifically we state and prove the following theorem:

Theorem 10.1. The (n+ 1)-EDDH assumption holds over our proposed MMap construction provided that all of the
following assumptions hold:

• The piO scheme is indistinguishability-secure against X-IND samplers.

• Membership in L is computationally hard to decide,

• Members of L have unique witnesses for membership.

• The dual-mode NIZK proof system satisfies CRS indistinguishability, perfect extractability in the binding mode,
and perfect witness-indistinguishability in the hiding mode.

• The (n+ 1)-EDDH assumption holds over the group G.

We begin by outlining the hybrids that are used in the proof. The hybrids are classified into two broad categories -
outer hybrids and inner hybrids.

10.1 Outer Hybrids
We begin by describing the outer hybrids for our proof. Outer hybrid 0 corresponds to the game where the challenger
uniformly samples γ, δ ← Zq and provides the adversary with level-1 encodings of the form

[µ]1, [γ]1, [δ]1,

where µ, γ, δ ← Zq are uniformly sampled. The final outer hybrid corresponds to the game where the challenger
provides the adversary with a valid (n + 1)-EDDH instance, i.e., it uniformly samples µ, γ ← Zq and provides the
adversary with level-1 encodings of the form

[µ]1, [γ]1, [γ
n+1]1,

where µ, γ ← Zq are uniformly sampled. Before we describe the outer hybrids, we describe a few conditions that
remain invariant throughout the outer hybrids:

• The NIZK CRS strings crs0 and crs1 are in binding mode, as in the real MMap scheme, in all the outer hybrids.

• The element y in the public parameter is a non-member for the language L, as in the real MMap scheme, in all
the outer hybrids.

• The challenge encodings provided to the adversary are well-formed and consistent (as formalized by the relation
R1 described earlier) in all the outer hybrids. However, as we shall see later, they may be switched from the
normal to oblique representation and vice-versa.

Table 23 provides an overview of the outer hybrids, which we now describe in details.

93

Outer Hybrid MMap Circuits z {g`,`′}
Challenge Encodings

(n+ 1)-EDDH/Random Representation Witness for π0 Witness for π1

0 Cop z /∈ L Random Random Normal (sk0, sk1) (sk0, sk1)

1 Ĉop z ∈ L Random Random Normal witz (sk0, sk1)

2 Ĉop z ∈ L Random Random Partially oblique witz (sk0, sk1)

3 Ĉop z ∈ L Random Random Oblique witz (sk0, sk1)

4 Ĉop z ∈ L CP-EDDH (n+ 1)-EDDH Oblique witz (sk0, sk1)

5 Ĉop z ∈ L CP-EDDH (n+ 1)-EDDH Partially oblique witz (sk0, sk1)

6 Ĉop z ∈ L CP-EDDH (n+ 1)-EDDH Normal witz (sk0, sk1)

7 Cop z /∈ L CP-EDDH (n+ 1)-EDDH Normal (sk0, sk1) (sk0, sk1)

8 Cop z /∈ L Random (n+ 1)-EDDH Normal (sk0, sk1) (sk0, sk1)

Table 23: Overview of the outer hybrids in the proof of (n + 1)-EDDH. Changes between subsequent hybrids are highlighted in red. Throughout, crs0 and crs1
are binding, y /∈ L, and the challenge encodings are well-formed and consistent with respect to extraction. We use the shorthands Cop and Ĉop for the tuples
(CAdd,CInv,CMult,Cext) and (ĈAdd, ĈInv, ĈMult, Ĉext), respectively, where the second set of circuits are described in detail subsequently.

94

Outer Hybrid 0. In this hybrid, the MMap is set up exactly as in the real scheme described earlier. Let ({g`,`′}) be
the tuple of group elements hardwired into each of the MMap circuits, such that:

g`,`′ = gγ
`·δ`
′

for each `, `′ ∈ [0, n] such that `+ `′ ≤ n,

where g ← G and γ, δ ← Zq are uniformly sampled. Let µ be a uniformly sampled element in Zq . The (n+1)-EDDH
adversary is provided with level-1 encodings of the tuple of elements:

(α0, α1, α2) = (µ, µ · γ, µ · δ),

where the encodings are generated in normal form (formalized by relation R0 described earlier). In particular, the
plaintexts underlying the FHE ciphertexts corresponding to α0,α1 and α2 are of the form

(µ, 0, 0, 0, . . . , 0, 1) , (µ, 0, 0, 0, . . . , 0, 1),

(µ · γ, 0, 0, 0, . . . , 0, 1) , (µ · γ, 0, 0, 0, . . . , 0, 1),

(µ · δ, 0, 0, 0, . . . , 0, 1) , (µ · δ, 0, 0, 0, . . . , 0, 1).

Along with the FHE encryptions, each encoding also contains a NIZK proof π0 for normal representation under the
binding crs0, and a NIZK proof π1 for well-formedness and consistency with respect to extraction under the binding
crs1.

Outer Hybrid 1. In this hybrid, we make the following alterations to the manner in which the MMap is generated:

1. We switch the element z in the public parameters from a non-member to a member for L, i.e., we now sample
z ← L, along with a (unique) membership-witness witz .

2. We switch the circuits for addition, inversion, multiplication and extraction as follows:

CAdd 7→ ĈAdd , CInv 7→ ĈInv,

CMult 7→ ĈMult , Cext 7→ Ĉext,

The switched circuits are described in Figures 25, 26, 27, and 28, respectively. At a high level, in each of these
switched circuits, we hardwire the witness witz for the membership of z in L and avoid using the first extraction
trapdoor text,0 inside the first If branch, which checks for normal encoding. In other words, we “allow” encodings in
any level-set i′ such that i′j = 1 to be encoded using the oblique representation.

The following items are worth noting:

1. Any two level-sets i′ and i′′ such that i′j = i′′j = 1 are incompatible for multiplication. This includes the
adversarially chosen level set i. Hence, the multiplication circuit never evaluates CMult,FHE to multiply two
encodings that are both in the oblique representation.

2. The element y continues to be a non-member for L and crs1 is still generated in the binding mode. Hence, any
(adversarially) generated encoding must still satisfy consistency with respect to extraction.

Additionally, we make the following change to the manner in which the challenge encodings are generated: for
each encoding, the NIZK proof π0 under the binding crs0 now proves that z ∈ L as opposed to proving that the
encoding is in the normal representation.

95

ĈAdd[{skb, pkb, crsb}b∈{0,1},witz, text,1, {g`,`′ }]((ct0,1, ct1,1, i, π0,1, π1,1), (ct0,2, ct1,2, i, π0,2, π1,2)):

1. Output⊥ if for any k ∈ {1, 2}, NIZK.Verify(crs0, (pk0, pk1, ct0,k, ct1,k, i, z), π0,k) = 0.

2. Output⊥ if for any k ∈ {1, 2}, NIZK.Verify(crs1, (pk0, pk1, ct0,k, ct1,k, i, y), π1,k) = 0.

3. For b ∈ {0, 1}, set: ct∗b = FHE.Eval(pkb, ctb,1, ctb,2,CAdd,FHE).

4. For b ∈ {0, 1} and k ∈ {1, 2}, recover ({a`,`′,b,k}`+`′∈[0,n], i) = FHE.Dec(skb, ctb,k).

5. If for some k ∈ {1, 2}, R0((sk0, sk1), (ct0,k, ct1,k, i, pk0, pk1)) = 0, then:

(a) // Omitted, depends on text,0.

(b) Generate π∗0 ← NIZK.Prove(crs0, (pk0, pk1, ct∗0 , ct∗1 , i, z),witz).

6. Else, generate π∗0 ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, z), (sk0, sk1)).

7. If for some k ∈ {1, 2}, we have R1((sk0, sk1), (ct0,k, ct1,k, i, pk0, pk1)) = 0, then:

(a) Extract wity = NIZK.Ext(text,1, (pk0, pk1, ct0,1, ct1,1, i, y), π1,1).

(b) If RL(y,wity) = 0, output⊥.

(c) Else, generate π∗1 ← NIZK.Prove(crs1, (pk0, pk1, ct∗0 , ct∗1 , i, y),wity).

8. Else, generate π∗1 ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, y), (sk0, sk1)).

9. Output (ct∗0 , ct∗1 , i, π
∗
0 , π
∗
1).

Figure 25: Circuit ĈAdd for the symmetric MMap

Outer Hybrid 2. This hybrid is identical to the outer hybrid 1, except that the challenge (n+ 1)-EDDH encodings
are no longer in normal form. In particular, the first FHE ciphertext in each encoding now encrypts an oblique form of
the underlying plaintext element. The representations of the plaintexts corresponding to α0,α1 and α2 are of the form

(µ, 0, 0, 0, . . . , 0, 1) , (µ, 0, 0, 0, . . . , 0, 1),

(0, µ, 0, 0, . . . , 0, 1) , (µ · γ, 0, 0, 0, . . . , 0, 1),

(0, 0, µ, 0, . . . , 0, 1) , (µ · δ, 0, 0, 0, . . . , 0, 1).

where the non-zero entries in the second plaintext correspond to the indices (`, `′) = (0, 0), (1, 0), (0, 1), respectively.
We represent the encodings as a vector with these as the first three indices for ease of representation. As in outer
hybrid 1, each encoding also contains a NIZK proof π0 for z ∈ L under the binding crs0, and a NIZK proof π1 for
well-formedness and consistency with respect to extraction under the binding crs1.

Outer Hybrid 3. This hybrid is identical to the outer hybrid 2, except that the challenge (n+ 1)-EDDH encodings
are now entirely in oblique form. In particular, the representations of the plaintexts corresponding to α0,α1 and α2 are
of the form

(µ, 0, 0, 0, . . . , 0, 1) , (µ, 0, 0, 0, . . . , 0, 1),

(0, µ, 0, 0, . . . , 0, 1) , (0, µ, 0, 0, . . . , 0, 1),

(0, 0, µ, 0, . . . , 0, 1) , (0, 0, µ, 0, . . . , 0, 1).

where the non-zero entries in both plaintexts correspond to the indices (`, `′) = (0, 0), (1, 0), (0, 1), respectively.
Each encoding continues to have a NIZK proof π0 for z ∈ L under the binding crs0, and a NIZK proof π1 for
well-formedness and consistency with respect to extraction under the binding crs1.

96

ĈInv[{skb, pkb, crsb}b∈{0,1},witz, text,1, {g`,`′}](ct0, ct1, i, π0, π1):

1. Output⊥ if NIZK.Verify(crs0, (pk0, pk1, ct0, ct1, i, z), π0) = 0.

2. Output⊥ if NIZK.Verify(crs1, (pk0, pk1, ct0, ct1, i, y), π1) = 0.

3. For b ∈ {0, 1}, set: ct∗b = FHE.Eval(pkb, ctb,CAdd,FHE).

4. For b ∈ {0, 1}, recover ({a`,`′,b}`+`′∈[0,n], i) = FHE.Dec(skb, ctb).

5. If R0((sk0, sk1), (ct0, ct1, i, pk0, pk1)) = 0, then:

(a) // Omitted, depends on text,0.

(b) Generate π∗0 ← NIZK.Prove(crs0, (pk0, pk1, ct∗0 , ct∗1 , i, z),witz).

6. Else, generate π∗0 ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, z), (sk0, sk1)).

7. If R1((sk0, sk1), (ct0, ct1, i, pk0, pk1)) = 0, then:

(a) Extract wity = NIZK.Ext(text,1, (pk0, pk1, ct0, ct1, i, y), π1).

(b) If RL(y,wity) = 0, output⊥.

(c) Else, generate π∗1 ← NIZK.Prove(crs1, (pk0, pk1, ct∗0 , ct∗1 , i, y),wity).

8. Else, generate π∗1 ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , i, y), (sk0, sk1)).

9. Output (ct∗0 , ct∗1 , i, π
∗
0 , π
∗
1).

Figure 26: Circuit ĈInv for the symmetric MMap

Outer Hybrid 4. This hybrid is identical to outer hybrid 3 except that we switch the tuple of group elements ({g`,`′})
hardwired into the modified MMap circuits ĈAdd, ĈInv, ĈMult and Ĉext to a valid CP-EDDH tuple. More formally, we
hardwire a tuple of group elements ({g`,`′}) into each of the modified MMap circuits, such that:

g`,`′ = gγ
`+(n+1)·`′

for each `, `′ ∈ [0, n] such that `+ `′ ≤ n,

where g ← G and γ ← Zq are uniformly sampled.

Outer Hybrid 5. This hybrid is identical to the outer hybrid 4, except that the challenge (n+ 1)-EDDH encodings
are now switched back to a partially oblique form. In particular, the representations of the plaintexts corresponding to
α0,α1 and α2 are of the form

(µ, 0, 0, 0, . . . , 0, 1) , (µ, 0, 0, 0, . . . , 0, 1),

(0, µ, 0, 0, . . . , 0, 1) , (µ · γ, 0, 0, 0, . . . , 0, 1),

(0, 0, µ, 0, . . . , 0, 1) , (µ · γn+1, 0, 0, 0, . . . , 0, 1).

where the non-zero entries in both plaintexts correspond to the indices (`, `′) = (0, 0), (1, 0), (0, 1), respectively.
Each encoding continues to have a NIZK proof π0 for z ∈ L under the binding crs0, and a NIZK proof π1 for
well-formedness and consistency with respect to extraction under the binding crs1.

Outer Hybrid 6. This hybrid is identical to the outer hybrid 5, except that the challenge (n+ 1)-EDDH encodings
are now switched back entirely to the normal form. In particular, the representations of the plaintexts corresponding

97

ĈMult[{skb, pkb, crsb}b∈{0,1},witz, text,1, {g`,`′ }]((ct0,1, ct1,1, i1, π0,1, π1,1), (ct0,2, ct1,2, i2, π0,2, π1,2)):

1. Output⊥ if for any k ∈ {1, 2}, NIZK.Verify(crs0, (pk0, pk1, ct0,k, ct1,k, ik, z), π0,k) = 0.

2. Output⊥ if for any k ∈ {1, 2}, NIZK.Verify(crs1, (pk0, pk1, ct0,k, ct1,k, ik, y), π1,k) = 0.

3. For b ∈ {0, 1}, set: ct∗b = FHE.Eval(pkb, ctb,1, ctb,2,CMult,FHE).

4. For b ∈ {0, 1} and k ∈ {1, 2}, recover ({a`,`′,b,k}`+`′∈[0,n], ik) = FHE.Dec(skb, ctb,k).

5. If for some k ∈ {1, 2}, R0((sk0, sk1), (ct0,k, ct1,k, ik, pk0, pk1)) = 0, then:

(a) // Omitted, depends on text,0.

(b) Generate π∗0 ← NIZK.Prove(crs0, (pk0, pk1, ct∗0 , ct∗1 , (i1 + i2), z),witz).

6. Else, generate π∗0 ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , (i1 + i2), z), (sk0, sk1)).

7. If for some k ∈ {1, 2}, we have R1((sk0, sk1), (ct0,k, ct1,k, ik, pk0, pk1)) = 0, then:

(a) Extract wity = NIZK.Ext(text,1, (pk0, pk1, ct0,1, ct1,1, ik, y), π1,k).

(b) If RL(y,wity) = 0, output⊥.

(c) Else, generate π∗1 ← NIZK.Prove(crs1, (pk0, pk1, ct∗0 , ct∗1 , (i1 + i2), y),wity).

8. Else, generate π∗1 ← NIZK.Prove(crs, (pk0, pk1, ct∗0 , ct∗1 , (i1 + i2), y), (sk0, sk1)).

9. Output (ct∗0 , ct∗1 , i, π
∗
0 , π
∗
1).

Figure 27: Circuit ĈMult for the symmetric MMap

Ĉext[{skb, pkb, crsb}b∈{0,1},witz, text,1, {g`,`′}](ct0, ct1, i, π0, π1):

1. Output⊥ if NIZK.Verify(crs0, (pk0, pk1, ct0, ct1, i, z), π0) = 0.

2. Output⊥ if NIZK.Verify(crs1, (pk0, pk1, ct0, ct1, i, y), π1) = 0.

3. For b ∈ {0, 1}, recover ({a`,`′,b}`+`′∈[0,n], i) = FHE.Dec(skb, ctb).

4. Compute g∗ =
∏
`+`′∈[0,n](g`,`′)

a
`,`′,0 .

5. // Omitted, depends on text,0.

6. If R1((sk0, sk1), (ct0, ct1, i, pk0, pk1)) = 0, then:

(a) Extract wity = NIZK.Ext(text,1, (pk0, pk1, ct0, ct1, i, y), π1).

(b) If RL(y,wity) = 0, output⊥.

7. Output g∗.

Figure 28: Circuit Ĉext for the symmetric MMap

to α0,α1 and α2 are of the form

(µ, 0, 0, 0, . . . , 0, 1) , (µ, 0, 0, 0, . . . , 0, 1),

(µ · γ, 0, 0, 0, . . . , 0, 1) , (µ · γ, 0, 0, 0, . . . , 0, 1),

(µ · γn+1, 0, 0, 0, . . . , 0, 1) , (µ · γn+1, 0, 0, 0, . . . , 0, 1).

98

where the non-zero entries in both plaintexts correspond to the indices (`, `′) = (0, 0), (1, 0), (0, 1), respectively.
Each encoding continues to have a NIZK proof π0 for z ∈ L under the binding crs0, and a NIZK proof π1 for
well-formedness and consistency with respect to extraction under the binding crs1.

Outer Hybrid 7. This hybrid is identical to outer hybrid 5, except that we make the following alterations to the
manner in which the MMap is set up:

1. We switch back the element z in the public parameters from a member to a non-member for L, i.e., we now
sample z ← X \ L. Note that this is exactly as in the real MMap scheme.

2. We switch back the circuits for addition, inversion, multiplication and extraction as follows:

ĈAdd 7→ CAdd , ĈInv 7→ CInv,

ĈMult 7→ CMult , Ĉext 7→ Cext,

In particular, the circuits are now exactly as in the real MMap scheme, with the exception that the tuple ({g`,`′})
hardwired inside these circuits continues to be a CP-EDDH tuple.

Additionally, we make the following change to the manner in which the challenge encodings are generated: for
each encoding, the NIZK proof π0 under the binding crs0 now proves that the encoding is in the normal representation
using the witness (sk0, sk1), as opposed to proving that z ∈ L.

Outer Hybrid 8. This hybrid is identical to outer hybrid 7 except that we switch the tuple of group elements ({g`,`′})
hardwired into the MMap circuits CAdd, CInv, CMult and Cext from a uniform CP-EDDH tuple back to a tuple as in the
real scheme. More formally, we hardwire a tuple of group elements ({g`,`′}) into each of the modified MMap circuits,
such that:

g`,`′ = gγ
`·δ`
′

for each `, `′ ∈ [0, n] such that `+ `′ ≤ n,

where g ← G and γ, δ ← Zq are uniformly sampled.

10.2 Indistinguishability of Outer Hybrids
In this section, we argue that the outer hybrids are computationally indistinguishable from each other. Each argument
in turn involves a sequence of inner hybrids, as described below.

Outer Hybrids 0 and 1. We first argue that outer hybrids 0 and 1 are computationally indistinguishable from each
other. In particular, we state and prove the following lemma:

Lemma 10.2. The outer hybrids 0 and 1 are computationally indistinguishable provided that all of the following
assumptions hold:

• The piO scheme is indistinguishability-secure against X-IND samplers.

• Membership in L is computationally hard to decide,

• Members of L have unique witnesses for membership.

• The dual-mode NIZK proof system satisfies CRS indistinguishability, perfect extractability in the binding mode,
and perfect witness-indistinguishability in the hiding mode.

Proof. The proof of this lemma uses a sequence of inner hybrids that are technically very similar to those used in the
proof of Lemma 6.2. Hence, we do not detail them.

99

Outer Hybrids 1 and 2. We now argue that outer hybrids 1 and 2 are computationally indistinguishable from each
other. In particular, we state and prove the following lemma:

Lemma 10.3. The outer hybrids 1 and 2 are computationally indistinguishable provided that all of the following
assumptions hold:

• The piO scheme is indistinguishability-secure against X-IND samplers.

• Membership in L is computationally hard to decide,

• Members of L have unique witnesses for membership.

• The dual-mode NIZK proof system satisfies CRS indistinguishability, perfect extractability in the binding mode,
and perfect witness-indistinguishability in the hiding mode.

Proof. The proof of this lemma uses a sequence of inner hybrids that are technically very similar to those used in the
proof of Lemma 6.3. Hence, we do not detail them.

Outer Hybrids 2 and 3. We now argue that outer hybrids 2 and 3 are computationally indistinguishable from each
other. In particular, we state and prove the following lemma:

Lemma 10.4. The outer hybrids 2 and 3 are computationally indistinguishable provided that all of the following
assumptions hold:

• The piO scheme is indistinguishability-secure against X-IND samplers.

• Membership in L is computationally hard to decide,

• Members of L have unique witnesses for membership.

• The dual-mode NIZK proof system satisfies CRS indistinguishability, perfect extractability in the binding mode,
and perfect witness-indistinguishability in the hiding mode.

Proof. The proof of this lemma uses a sequence of inner hybrids that are technically very similar to those used in the
proof of Lemma 6.6. Hence, we do not detail them.

Outer Hybrids 3 and 4. We state and prove the following lemma:

Lemma 10.5. The outer hybrids 3 and 4 are computationally indistinguishable provided that the CP-EDDH assump-
tion holds over the group G.

Proof. Suppose that there exists a PPT adversary A that can distinguish between the outer hybrids 3 and 4 with non-
negligible probability. We construct a PPT algorithm B that can break the CP-EDDH assumption over the group G
with non-negligible probability. As part of its input CP-EDDH challenge, B receives a tuple of group elements of the
form {g`,`′}, and sets up the public parameters for the MMap as follows:

1. B samples two key-pairs for the FHE scheme as:

(pk0, sk0), (pk1, sk1)← FHE.Gen(1λ),

and a pair of binding NIZK CRS strings (along with the corresponding extraction trapdoors) as:

(crs0, text,0), (crs1, text,1)← NIZK.Setup(1λ,binding).

100

2. Next B uniformly samples
y ← X \ L , z ← L,

where z has unique membership-witness witz .

3. Finally, B sets up the MMap circuits ĈAdd, ĈInv, ĈMult and Ĉext exactly as described in Figures 25, 26, 27 and
28, respectively, except for the fact that it hardwires its input tuple {g`,`′} into each of these circuits. It then
computes and outputs four probabilistically indistinguishability-obfuscated circuits of the form

C̄Add = piO.Obf(ĈAdd) , C̄Inv = piO.Obf(ĈInv),

C̄Mult = piO.Obf(ĈMult) , C̄ext = piO.Obf(Ĉext).

Next, B sets up the challenge encodings in the oblique representation as follows:

1. B samples µ← Zq and generates the following FHE ciphertexts for each b ∈ {0, 1}:

ctb,0 = FHE.Enc(pkb, (µ, 0, 0, 0 . . . , 0, 1)),

ctb,1 = FHE.Enc(pkb, (0, µ, 0, 0 . . . , 0, 1),

ctb,2 = FHE.Enc(pkb, (0, 0, µ, 0, . . . , 0, 1).

2. B generates the following proofs for each ` ∈ {0, 1, 2}:

π0,` = NIZK.Prove(crs0, (pk0,pk1, ct0,`, ct1,`, 1,witz),

π1,` = NIZK.Prove(crs1, (pk0,pk1, ct0,`, ct1,`, 1, y), (sk0, sk1)).

3. Finally, for each ` ∈ {0, 1, 2}, B generates the encodings for α` as:

[α`] =

(
ct0,`, ct1,`, 1, π0,`, π1,`

)
.

B then provides A with the MMap public parameters and the challenge encodings. Eventually, A outputs a bit b?.
B outputs the same bit b?. Now, observe the following:

• Suppose that B receives as input a tuple of uniformly random group elements {g`,`′} such that

g`,`′ = gγ
`·δ`
′

for each `, `′ ∈ [0, n] such that `+ `′ ≤ n,

where g ← G and γ, δ ← Zq are uniformly sampled. In this case, the view of A is exactly as in outer hybrid 3.

• On the other hand, suppose that B receives as input a CP-EDDH tuple of the form {g`,`′} such that

g`,`′ = gγ
`+(n+1)·`′

for each `, `′ ∈ [0, n] such that `+ `′ ≤ n,

where g ← G and γ ← Zq are uniformly sampled. In this case, the view of A is exactly as in outer hybrid 4.

Hence the advantage of B in breaking CP-EDDH over the groupG is the same as the advantage ofA in distinguishing
the outer hybrids 3 and 4. This concludes the proof of Lemma 10.5.

101

Outer Hybrids 4 and 5. We state and prove the following lemma:

Lemma 10.6. The outer hybrids 2 and 3 are computationally indistinguishable provided that all of the following
assumptions hold:

• The piO scheme is indistinguishability-secure against X-IND samplers.

• Membership in L is computationally hard to decide,

• Members of L have unique witnesses for membership.

• The dual-mode NIZK proof system satisfies CRS indistinguishability, perfect extractability in the binding mode,
and perfect witness-indistinguishability in the hiding mode.

Proof. The proof of this lemma uses a sequence of inner hybrids that are technically very similar to those used in the
proof of Lemma 6.8. Hence, we do not detail them.

Outer Hybrids 5 and 6. We state the following lemma:

Lemma 10.7. The outer hybrids 5 and 6 are computationally indistinguishable provided that all of the following
assumptions hold:

• The piO scheme is indistinguishability-secure against X-IND samplers.

• Membership in L is computationally hard to decide,

• Members of L have unique witnesses for membership.

• The dual-mode NIZK proof system satisfies CRS indistinguishability, perfect extractability in the binding mode,
and perfect witness-indistinguishability in the hiding mode.

Proof. The proof of this lemma uses a sequence of inner hybrids that are technically very similar to those used in the
proof of Lemma 6.9. Hence, we do not detail them.

Outer Hybrids 6 and 7. We state the following lemma:

Lemma 10.8. The outer hybrids 6 and 7 are computationally indistinguishable provided that all of the following
assumptions hold:

• The piO scheme is indistinguishability-secure against X-IND samplers.

• Membership in L is computationally hard to decide,

• Members of L have unique witnesses for membership.

• The dual-mode NIZK proof system satisfies CRS indistinguishability, perfect extractability in the binding mode,
and perfect witness-indistinguishability in the hiding mode

Proof. The proof of this lemma uses a sequence of inner hybrids that are technically very similar to those used in the
proof of Lemma 6.10. Hence, we do not detail them.

102

Outer Hybrids 7 and 8. We state and prove the following lemma:

Lemma 10.9. The outer hybrids 7 and 8 are computationally indistinguishable provided that all of the following
assumptions hold:

• The piO scheme is indistinguishability-secure against X-IND samplers.

• The dual-mode NIZK proof system satisfies perfect soundness in the binding mode.

Proof. In this hybrid, we switch the tuple of group elements ({g`,`′}) hardwired into the MMap circuits CAdd, CInv,
CMult and Cext from a uniform CP-EDDH tuple to a uniformly random tuple, albeit with the same base element g0,0.
We argue below that this switch does not alter the output distribution of these circuits from outer hybrid 7 to outer
hybrid 8. Once this is established, the indistinguishability argument follows immediately under the assumption that
the piO scheme is indistinguishability-secure against X-IND samplers.

We first focus on the MMap circuits CAdd, CInv and CMult. Observe that switching ({g`,`′}) from a uniform CP-
EDDH tuple to a tuple distributed as in the real scheme only (potentially)affects the outcome of the “If” condition
in step 7 of each of these circuits. Note however that in both outer hybrids 7 and 8, crs0 is in binding mode and the
element z in the public parameter is a non-member for L. Hence, it follows from the perfect soundness of the dual-
mode NIZK proof system that any input encoding(s) for which these circuits do not output ⊥ and terminate before
step 7 must be in normal representation and well-formed and consistent. This in turn guarantees that the outcome of
the “If” condition must be “true”. Hence, the output distributions of the MMap circuits CAdd, CInv and CMult in outer
hybrids 7 and 8 are identical.

Finally, we focus on the MMap extraction circuit Cext. Observe that switching ({g`,`′}) from a uniform CP-EDDH
tuple to a tuple distributed as in the real scheme potentially affects the output of the extraction circuit. However, note
yet again that in both outer hybrids 7 and 8, crs0 is in binding mode and the element z in the public parameter is a
non-member for L. Hence, it follows from the perfect soundness of the dual-mode NIZK proof system that any input
encoding(s) for which the circuit does not output ⊥ and terminate before the extraction step is executed must be in
normal representation and well-formed and consistent. Observe also that the base element g0 in the tuple of group
elements remains unaltered across outer hybrids 7 and 8. It follows immediately that the outcome of extraction on a
given encoding in normal representation in both hybrids is identical. In other words, the output distributions of Cext in
outer hybrids 7 and 8 are identical. This concludes the proof of Lemma 10.9, and hence the proof of Theorem 10.1.

Acknowledgements
We thank Dennis Hofheinz and Kenneth G. Paterson for many useful discussions and inputs. We thank the anonymous
reviewers of TCC 2020 for pointing out a technical problem in an earlier version of the paper. The current version
fixes this problem.

References
[AB15] Benny Applebaum and Zvika Brakerski. Obfuscating circuits via composite-order graded encoding.

In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS, pages
528–556. Springer, Heidelberg, March 2015.

[ABBC10] Tolga Acar, Mira Belenkiy, Mihir Bellare, and David Cash. Cryptographic agility and its relation to
circular encryption. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 403–
422. Springer, Heidelberg, May / June 2010.

[ABG+13] Prabhanjan Ananth, Dan Boneh, Sanjam Garg, Amit Sahai, and Mark Zhandry. Differing-inputs ob-
fuscation and applications. Cryptology ePrint Archive, Report 2013/689, 2013. https://eprint.
iacr.org/2013/689.

103

https://eprint.iacr.org/2013/689
https://eprint.iacr.org/2013/689

[AFH+16] Martin R. Albrecht, Pooya Farshim, Dennis Hofheinz, Enrique Larraia, and Kenneth G. Paterson. Multi-
linear maps from obfuscation. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part I, volume
9562 of LNCS, pages 446–473. Springer, Heidelberg, January 2016.

[Agr19] Shweta Agrawal. Indistinguishability obfuscation without multilinear maps: New methods for boot-
strapping and instantiation. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part I,
volume 11476 of LNCS, pages 191–225. Springer, Heidelberg, May 2019.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact functional en-
cryption. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215
of LNCS, pages 308–326. Springer, Heidelberg, August 2015.

[AJL+19] Prabhanjan Ananth, Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. Indistinguishability
obfuscation without multilinear maps: New paradigms via low degree weak pseudorandomness and se-
curity amplification. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III,
volume 11694 of LNCS, pages 284–332. Springer, Heidelberg, August 2019.

[Ale03] Michael Alekhnovich. More on average case vs approximation complexity. In 44th FOCS, pages
298–307. IEEE Computer Society Press, October 2003.

[AM18] Shweta Agrawal and Monosij Maitra. FE and iO for turing machines from minimal assumptions. In
Amos Beimel and Stefan Dziembowski, editors, TCC 2018, Part II, volume 11240 of LNCS, pages
473–512. Springer, Heidelberg, November 2018.

[AMP20] Navid Alamati, Hart Montgomery, and Sikhar Patranabis. Ring key-homomorphic weak prfs and appli-
cations. Cryptology ePrint Archive, Report 2020/606, 2020.

[AP20] Shweta Agrawal and Alice Pellet-Mary. Indistinguishability obfuscation without maps: Attacks and
fixes for noisy linear FE. In Vincent Rijmen and Yuval Ishai, editors, EUROCRYPT 2020, Part I,
LNCS, pages 110–140. Springer, Heidelberg, May 2020.

[AS15] Gilad Asharov and Gil Segev. Limits on the power of indistinguishability obfuscation and functional
encryption. In Venkatesan Guruswami, editor, 56th FOCS, pages 191–209. IEEE Computer Society
Press, October 2015.

[AS17] Prabhanjan Ananth and Amit Sahai. Projective arithmetic functional encryption and indistinguishability
obfuscation from degree-5 multilinear maps. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
EUROCRYPT 2017, Part I, volume 10210 of LNCS, pages 152–181. Springer, Heidelberg, April / May
2017.

[BB04] Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity based encryption without random
oracles. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS,
pages 223–238. Springer, Heidelberg, May 2004.

[BBKK18] Boaz Barak, Zvika Brakerski, Ilan Komargodski, and Pravesh K. Kothari. Limits on low-degree pseu-
dorandom generators (or: Sum-of-squares meets program obfuscation). In Jesper Buus Nielsen and
Vincent Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 649–679. Springer,
Heidelberg, April / May 2018.

[BCP14] Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation. In Yehuda Lindell, editor,
TCC 2014, volume 8349 of LNCS, pages 52–73. Springer, Heidelberg, February 2014.

[BDGM20a] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Candidate iO from homomorphic
encryption schemes. In Vincent Rijmen and Yuval Ishai, editors, EUROCRYPT 2020, Part I, LNCS,
pages 79–109. Springer, Heidelberg, May 2020.

104

[BDGM20b] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Factoring and pairings are not
necessary for io: Circular-secure lwe suffices. Cryptology ePrint Archive, Report 2020/1024, 2020.
https://eprint.iacr.org/2020/1024.

[BGdMM05] Lucas Ballard, Matthew Green, Breno de Medeiros, and Fabian Monrose. Correlation-resistant storage
via keyword-searchable encryption. Cryptology ePrint Archive, Report 2005/417, 2005. https:
//eprint.iacr.org/2005/417.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan, and
Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian, editor, CRYPTO 2001, volume
2139 of LNCS, pages 1–18. Springer, Heidelberg, August 2001.

[BMSZ15] Saikrishna Badrinarayanan, Eric Miles, Amit Sahai, and Mark Zhandry. Post-zeroizing obfuscation:
The case of evasive circuits. Cryptology ePrint Archive, Report 2015/167, 2015. http://eprint.
iacr.org/2015/167.

[BMZ19] James Bartusek, Fermi Ma, and Mark Zhandry. The distinction between fixed and random generators
in group-based assumptions. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part II, volume 11693 of LNCS, pages 801–830. Springer, Heidelberg, August 2019.

[BP15] Nir Bitansky and Omer Paneth. ZAPs and non-interactive witness indistinguishability from indistin-
guishability obfuscation. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II,
volume 9015 of LNCS, pages 401–427. Springer, Heidelberg, March 2015.

[BS03] Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptography. Contemporary
Mathematics, 324(1):71–90, 2003.

[BSW16] Mihir Bellare, Igors Stepanovs, and Brent Waters. New negative results on differing-inputs obfuscation.
In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS,
pages 792–821. Springer, Heidelberg, May 2016.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from functional encryption.
In Venkatesan Guruswami, editor, 56th FOCS, pages 171–190. IEEE Computer Society Press, October
2015.

[BZ14] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and more from in-
distinguishability obfuscation. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I,
volume 8616 of LNCS, pages 480–499. Springer, Heidelberg, August 2014.

[CGH17] Yilei Chen, Craig Gentry, and Shai Halevi. Cryptanalyses of candidate branching program obfuscators.
In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part III, volume 10212
of LNCS, pages 278–307. Springer, Heidelberg, April / May 2017.

[CHL+15] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé. Cryptanalysis
of the multilinear map over the integers. In Elisabeth Oswald and Marc Fischlin, editors, EURO-
CRYPT 2015, Part I, volume 9056 of LNCS, pages 3–12. Springer, Heidelberg, April 2015.

[CKWZ13] Seung Geol Choi, Jonathan Katz, Hoeteck Wee, and Hong-Sheng Zhou. Efficient, adaptively secure, and
composable oblivious transfer with a single, global CRS. In Kaoru Kurosawa and Goichiro Hanaoka,
editors, PKC 2013, volume 7778 of LNCS, pages 73–88. Springer, Heidelberg, February / March 2013.

[CLL+13] Jie Chen, Hoon Wei Lim, San Ling, Huaxiong Wang, and Hoeteck Wee. Shorter IBE and signatures
via asymmetric pairings. In Michel Abdalla and Tanja Lange, editors, PAIRING 2012, volume 7708 of
LNCS, pages 122–140. Springer, Heidelberg, May 2013.

105

https://eprint.iacr.org/2020/1024
https://eprint.iacr.org/2005/417
https://eprint.iacr.org/2005/417
http://eprint.iacr.org/2015/167
http://eprint.iacr.org/2015/167

[CLLT16] Jean-Sébastien Coron, Moon Sung Lee, Tancrède Lepoint, and Mehdi Tibouchi. Cryptanalysis of
GGH15 multilinear maps. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part II,
volume 9815 of LNCS, pages 607–628. Springer, Heidelberg, August 2016.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear maps over the
integers. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS,
pages 476–493. Springer, Heidelberg, August 2013.

[CLT15] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. New multilinear maps over the integers.
In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS,
pages 267–286. Springer, Heidelberg, August 2015.

[CLTV15] Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Obfuscation of probabilistic
circuits and applications. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II,
volume 9015 of LNCS, pages 468–497. Springer, Heidelberg, March 2015.

[Dam88] Ivan Damgård. Collision free hash functions and public key signature schemes. In David Chaum and
Wyn L. Price, editors, EUROCRYPT’87, volume 304 of LNCS, pages 203–216. Springer, Heidelberg,
April 1988.

[DJ01] Ivan Damgård and Mats Jurik. A generalisation, a simplification and some applications of Paillier’s
probabilistic public-key system. In Kwangjo Kim, editor, PKC 2001, volume 1992 of LNCS, pages
119–136. Springer, Heidelberg, February 2001.

[EHK+13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An algebraic framework for
Diffie-Hellman assumptions. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume
8043 of LNCS, pages 129–147. Springer, Heidelberg, August 2013.

[FHHL18] Pooya Farshim, Julia Hesse, Dennis Hofheinz, and Enrique Larraia. Graded encoding schemes from
obfuscation. In Michel Abdalla and Ricardo Dahab, editors, PKC 2018, Part II, volume 10770 of LNCS,
pages 371–400. Springer, Heidelberg, March 2018.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices. In Thomas
Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 1–17.
Springer, Heidelberg, May 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In 54th FOCS, pages 40–49.
IEEE Computer Society Press, October 2013.

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps from lattices. In
Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS, pages
498–527. Springer, Heidelberg, March 2015.

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure MPC from indis-
tinguishability obfuscation. In Yehuda Lindell, editor, TCC 2014, volume 8349 of LNCS, pages 74–94.
Springer, Heidelberg, February 2014.

[GGHW17] Sanjam Garg, Craig Gentry, Shai Halevi, and Daniel Wichs. On the implausibility of differing-inputs
obfuscation and extractable witness encryption with auxiliary input. Algorithmica, 79(4):1353–1373,
2017.

[GLSW15] Craig Gentry, Allison Bishop Lewko, Amit Sahai, and Brent Waters. Indistinguishability obfuscation
from the multilinear subgroup elimination assumption. In Venkatesan Guruswami, editor, 56th FOCS,
pages 151–170. IEEE Computer Society Press, October 2015.

106

[GMM+16] Sanjam Garg, Eric Miles, Pratyay Mukherjee, Amit Sahai, Akshayaram Srinivasan, and Mark Zhandry.
Secure obfuscation in a weak multilinear map model. Cryptology ePrint Archive, Report 2016/817,
2016. http://eprint.iacr.org/2016/817.

[GP20] Romain Gay and Rafael Pass. Indistinguishability obfuscation from circular security. Cryptology ePrint
Archive, Report 2020/1010, 2020. https://eprint.iacr.org/2020/1010.

[GPSZ17] Sanjam Garg, Omkant Pandey, Akshayaram Srinivasan, and Mark Zhandry. Breaking the sub-
exponential barrier in obfustopia. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EURO-
CRYPT 2017, Part III, volume 10212 of LNCS, pages 156–181. Springer, Heidelberg, April / May
2017.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In Nigel P.
Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 415–432. Springer, Heidelberg, April
2008.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part I, volume 8042 of LNCS, pages 75–92. Springer, Heidelberg, August 2013.

[HB15] Máté Horváth and Levente Buttyán. The birth of cryptographic obfuscation – a survey. Cryptology
ePrint Archive, Report 2015/412, 2015. https://eprint.iacr.org/2015/412.

[HJ16] Yupu Hu and Huiwen Jia. Cryptanalysis of GGH map. In Marc Fischlin and Jean-Sébastien Coron,
editors, EUROCRYPT 2016, Part I, volume 9665 of LNCS, pages 537–565. Springer, Heidelberg, May
2016.

[HSW14] Susan Hohenberger, Amit Sahai, and Brent Waters. Replacing a random oracle: Full domain hash
from indistinguishability obfuscation. In Phong Q. Nguyen and Elisabeth Oswald, editors, EURO-
CRYPT 2014, volume 8441 of LNCS, pages 201–220. Springer, Heidelberg, May 2014.

[JLMS19] Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. How to leverage hardness of constant-degree
expanding polynomials overa R to build iO. In Yuval Ishai and Vincent Rijmen, editors, EURO-
CRYPT 2019, Part I, volume 11476 of LNCS, pages 251–281. Springer, Heidelberg, May 2019.

[JLS20] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded assump-
tions. Cryptology ePrint Archive, Report 2020/1003, 2020. https://eprint.iacr.org/2020/
1003.

[Lin16] Huijia Lin. Indistinguishability obfuscation from constant-degree graded encoding schemes. In Marc
Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part I, volume 9665 of LNCS, pages
28–57. Springer, Heidelberg, May 2016.

[Lin17] Huijia Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 PRGs. In
Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages
599–629. Springer, Heidelberg, August 2017.

[LT17] Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from trilinear maps and block-wise
local PRGs. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of
LNCS, pages 630–660. Springer, Heidelberg, August 2017.

[LV16] Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from DDH-like assumptions
on constant-degree graded encodings. In Irit Dinur, editor, 57th FOCS, pages 11–20. IEEE Computer
Society Press, October 2016.

107

http://eprint.iacr.org/2016/817
https://eprint.iacr.org/2020/1010
https://eprint.iacr.org/2015/412
https://eprint.iacr.org/2020/1003
https://eprint.iacr.org/2020/1003

[LV17] Alex Lombardi and Vinod Vaikuntanathan. Limits on the locality of pseudorandom generators and
applications to indistinguishability obfuscation. In Yael Kalai and Leonid Reyzin, editors, TCC 2017,
Part I, volume 10677 of LNCS, pages 119–137. Springer, Heidelberg, November 2017.

[MSZ16] Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear maps: Cryptanalysis
of indistinguishability obfuscation over GGH13. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part II, volume 9815 of LNCS, pages 629–658. Springer, Heidelberg, August 2016.

[MZ18] Fermi Ma and Mark Zhandry. The MMap strikes back: Obfuscation and new multilinear maps immune
to CLT13 zeroizing attacks. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018, Part II,
volume 11240 of LNCS, pages 513–543. Springer, Heidelberg, November 2018.

[PS15] Omer Paneth and Amit Sahai. On the equivalence of obfuscation and multilinear maps. Cryptology
ePrint Archive, Report 2015/791, 2015. https://eprint.iacr.org/2015/791.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In Harold N.
Gabow and Ronald Fagin, editors, 37th ACM STOC, pages 84–93. ACM Press, May 2005.

[Rot13] Ron Rothblum. On the circular security of bit-encryption. In Amit Sahai, editor, TCC 2013, volume
7785 of LNCS, pages 579–598. Springer, Heidelberg, March 2013.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption, and
more. In David B. Shmoys, editor, 46th ACM STOC, pages 475–484. ACM Press, May / June 2014.

[Wat15] Brent Waters. A punctured programming approach to adaptively secure functional encryption. In
Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS,
pages 678–697. Springer, Heidelberg, August 2015.

[YYHK14] Takashi Yamakawa, Shota Yamada, Goichiro Hanaoka, and Noboru Kunihiro. Self-bilinear map on
unknown order groups from indistinguishability obfuscation and its applications. In Juan A. Garay
and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS, pages 90–107. Springer,
Heidelberg, August 2014.

[Zim15] Joe Zimmerman. How to obfuscate programs directly. In Elisabeth Oswald and Marc Fischlin, editors,
EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 439–467. Springer, Heidelberg, April 2015.

108

https://eprint.iacr.org/2015/791

	Introduction
	Multilinear Maps and iO
	Our Contributions
	Implications and Discussion

	Technical Overview
	Construction Overview
	Proof Intuition
	Proof Techniques and Details
	Other Graded Encodings

	Preliminaries
	Multilinear Maps
	Symmetric Multilinear Map Assumptions
	Asymmetric Multilinear Map Assumptions

	An Asymmetric MMap Construction
	Setup
	Encodings
	Addition and Inversion of Encodings
	Multiplication of Encodings
	Extraction and Zero-Testing

	Proof of SXDH Hardness
	Outer Hybrids
	Indistinguishability of Outer Hybrids

	Achieving Exponent-DDH Hardness
	Outer Hybrids
	Indistinguishability of Outer Hybrids

	Achieving Joint-SXDH Hardness
	The Construction
	Setup
	Encodings
	Operations Over Encodings
	Proof of Joint-SXDH Hardness

	A Symmetric MMap Construction
	Setup
	Encodings
	Addition and Inversion of Encodings
	Multiplication of Encodings
	Extraction and Zero-Testing

	Proof of (n+1)-EDDH Hardness
	Outer Hybrids
	Indistinguishability of Outer Hybrids

