
A preliminary version of this article appears in ToSC 2020(2). This is the full version.

Key Assignment Schemes with
Authenticated Encryption, revisited

Jeroen Pijnenburg1 and Bertram Poettering2

1 Information Security Group at Royal Holloway, University of London
jeroen.pijnenburg.2017@rhul.ac.uk

2 IBM Research – Zurich
poe@zurich.ibm.com

Abstract. A popular cryptographic option to implement Hierarchical Access Control
in organizations is to combine a key assignment scheme with a symmetric encryption
scheme. In brief, key assignment associates with each object in the hierarchy a unique
symmetric key, and provides all higher-ranked “authorized” subjects with a method
to recover it. This setup allows for encrypting the payloads associated with the
objects so that they can be accessed by the authorized and remain inaccessible for the
unauthorized. Both key assignment and symmetric encryption have been researched
for roughly four decades now, and a plethora of efficient constructions have been the
result. Surprisingly, a treatment of the joint primitive (key assignment combined with
encryption, as used in practice) in the framework of provable security was conducted
only very recently, leading to a publication in ToSC 2018(4). We first carefully revisit
this publication. We then argue that there are actually two standard use cases for
the combined primitive, which also require individual treatment. We correspondingly
propose a fresh set of security models and provably secure constructions for each
of them. Perhaps surprisingly, the two constructions call for different symmetric
encryption primitives: While standard AEAD is the right tool for the one, we identify
a less common tool called Encryptment as best fitting the other.
Keywords: Cryptographic Access Control · AEAD · Encryptment · Provable Security

1 Introduction
Access control is the protection of resources (objects) against access by unauthorized
entities (users) [Shi07]. The set of access control rules is defined by an information flow
policy (IFP). An IFP assigns each object a security label and each user a clearance level.
The classical example is government documents that can be labelled from ‘Top Secret’ to
‘Unclassified’ and a civil servant would need a high enough security clearance to access
these documents. As another example, consider a university building where everyone has
access to the diligent student’s office, professors are additionally granted access to their
own offices, and security staff can access everyone’s office. We note that the access rights
of two professors are in general incomparable as neither can access all the offices the other
has access to. The (partially) ordered set defined by the IFP can be represented as a
hierarchy, hence we will refer to Hierarchical Access Control (HAC) in this paper.

A key assignment scheme (KAS) is a mechanism to cryptographically enforce an
information flow policy, first proposed by Akl and Taylor [AT83]. With such a mechanism
each clearance level is associated with some unique private information. A user can use
their private information to derive symmetric encryption keys assigned to all objects lower
in the hierarchy. These symmetric keys can subsequently be used to decrypt objects,
ensuring that only authorized users, i.e. those who can derive the correct key, will be able

http://orcid.org/0000-0001-6525-5141
mailto:jeroen.pijnenburg.2017@rhul.ac.uk
mailto:poe@zurich.ibm.com

2 Key Assignment Schemes with Authenticated Encryption, revisited

to decrypt and access the object. In this article we will focus on the combined primitive of
key assignment schemes and encryption, as it would be used in practice.

1.1 Prior Work
Akl and Taylor’s work [AT83] on Key Assignment Schemes (KAS) for arbitrary partially
ordered sets laid the foundations to implement cryptographic Hierarchical Access Control
(HAC) in organizations. Earlier work by Gudes [Gud80] introduced a KAS for totally
ordered sets and only offered a trivial solution for partially ordered sets: storing each
(independent) key in the user’s state. Since these works, many key assignment schemes
have been proposed in the literature offering different time versus storage trade-offs
[MTMA85,CC02,HL90,WC01,ADFM06,ADFM12,Tze06,AFB05,ABFF09,CT17,CFG+17].
A survey by Crampton et al. [CMW06] provides a categorization of KAS in five generic
schemes. Analyzing many proposals, they note that most have been reinvented, differing
only in the choice of cryptographic primitives to implement one of the five generic schemes.
Furthermore, they conclude that many have made unsubstantiated claims and lack formal
security analysis. Unsurprisingly, they remark many proposals have later been found to
be flawed. For example they were vulnerable to attacks where two users collude to gain
access to a security level neither of them has access to.

The lack of formal analysis was first addressed by Atallah et al. [AFB05] proposing two
different security notions: Key Recovery (KR) security and Key Indistinguishability (KI)
security. Informally, KR-security states that an adversary should not be able to recover a
full key to which it should not have access. KI-security states that an adversary should
not even be able to distinguish between the real key and a random key sampled from the
same key space. After Atallah et al.’s work, several constructions have been proposed
satisfying these security notions [DDFM09,DDFM10,DFM07,DFM11,FP11]. Freire et
al. [FPP13] introduced the notion of Strong Key Indistinguishability (S-KI). This notion
differs from the one provided in [AFB05] in the sense that the adversary is now also allowed
to access keys used by users higher in the hierarchy (but not their secret state). The
authors argue that a key may leak through its use, but this should not allow an adversary
to derive information about other, unrelated keys. S-KI-security is also crucial to securely
compose KAS with other cryptographic primitives, e.g. an encryption scheme. Castiglione
et al. [CDM+16] proved KI-security and S-KI-security to be technically equivalent, albeit
S-KI is more versatile.

A common construction technique for KAS, first considered in [CDM10], is by par-
titioning the IFP poset into a collection of totally ordered sets (‘chains’), and solving
the much easier problem of constructing KAS for chains. More recently, Crampton et
al. have generalized this technique and realized KAS via tree partitions instead of chain
partitions [CFG+15,CFG+17].

To the best of our knowledge there has not been attempted a formal treatment of
the joint primitive of key assignment combined with encryption, in particular not in the
domain of provable security, except for the recent work by Kandele and Paul [KP18a].

1.2 Motivation of this Work
Kandele and Paul (KP) assume that HAC should be implemented from KAS by KAS-
deriving a key and using the latter with authenticated encryption (AE) [KP18a, p. 151].
Whilst this appears the natural way to realise the composition, the question arises which
kind of authenticity is expected for the combined construction. Authentication issues might
for instance emerge in the face of insider attacks, i.e. if users at higher hierarchy levels
manipulate ciphertexts of objects accessible by users at lower hierarchy levels. This topic
was first formally approached by KP [KP18a] who study the HAC-promising joint primitive
and whether it can be securely built from KAS+AE as described. They demonstrate, by

Jeroen Pijnenburg and Bertram Poettering 3

presenting an attack, that the naive combination of KAS and AE is insecure [KP18a, p. 151],
but claim security for a similar construction [KP18a, p. 151]. Unfortunately, as we point out,
not only their attack cannot be formalized in their security notions, also the construction
they propose as a fix turns out to fall prey to the same attack. We refer the reader to
Sec. 2 for a further discussion. In this work, to remedy the situation, we fully re-think the
security models of KAS+AE and develop provably secure constructions.

1.3 Contributions
We study the joint primitive of key assignment combined with encryption as it would be
used in practice. KP [KP18a,KP18b] examined this primitive first and we reconsider their
work, focusing particularly on their generic constructions. Our first contribution is that
we identify two use cases of the joint primitive and observe that they require different
security profiles. By consequence, we separate the notions into two independent primitives,
the one allowing read-only access to authorized users and the other allowing read and
write access. The read-only primitive guards against insider attacks as any modification
by an authorized user would count as a forgery. On the other hand, the read-and-write
primitive, which may be useful to organizations who wish to allow authorized employees to
create and edit files, does, for obvious reasons, not protect against such attacks. KP only
consider the read-only primitive.

Before we develop our notions for read-only and read-and-write access control, we
first refine the definition of KAS in Sec. 4.2. In particular, we provide new security
models allowing more interaction compared to the static models in previous work [FPP13].
Moreover, we introduce associated data to the KAS domain. The option to perform
operations in the context of an explicitly specified associated-data string was proposed
about two decades ago and since then has become standard in cryptography.1 By offering
a method to cleanly domain-separate inputs, e.g. for different applications, the availability
of an associated-data input can considerably improve the versatility of a primitive. Finally,
our KAS definition drops the necessity of authentic ‘public information’. The conceptual
separation of state and public information is typically made to improve storage efficiency,
but it should not be assumed the public information is authentic if it is not stored in the
user’s state. Thus, we allow the adversary to provide forged public information.

As it turns out, surprisingly, the combined read-only and read-and-write primitives
are considerably different. We thus develop two independent sets of strong and versatile
security notions to analyze them. In Sec. 5 we define security for the read-only enforcement
scheme and provide a provably secure construction. Next, in Sec. 6 we do the same for
read-and-write enforcement. In both cases we focus on generic constructions (from KAS
and some encryption primitive), allowing for modularity and ease of implementation. In
particular, we do not commit to any specific KAS type as categorized by [CMW06], and
allow for instance also the recent efficient construction from [CFG+17].

2 A Critique of [KP18a]
We carefully studied the models and schemes considered in [KP18a], and our verdict is
that some of the arguments made in that work are questionable. In the following we walk
the reader through a line of issues that we found particularly worrisome from the security
perspective. References in brackets refer to items in [KP18a].

The overall concern of [KP18a] is to marry key assignment with authenticated encryp-
tion (AE), in a sound way. The corresponding definition of AE is specified in [Sec. 2.2.6/

1Different names for the same concept are used in different domains. For instance ‘associated data’
for symmetric encryption [Rog02], ‘tweak’ for block ciphers [LRW02], and ‘label’ for public-key encryp-
tion [Sho04].

4 Key Assignment Schemes with Authenticated Encryption, revisited

pp. 157–158], with formalizations of confidentiality and authenticity in two separate games,
IND-PRV and INT, both made explicit in [Fig. 2/p. 158]. We note that the details of how
the notions are formalized are non-standard, with severe implications on security that
might not have been foreseen by the authors. Concretely, the IND-PRV notion models
a kind of indistinguishability against passive adversaries (a.k.a. privacy), but with an
encryption oracle missing. The latter means that, generically speaking, an instantiation
that is IND-PRV secure according to the definition may become insecure the moment the
adversary sees sample ciphertexts emerging from an application. Independently of this,
the INT game requires that for adversaries with access to an encryption oracle it should be
hard to find two different valid ciphertexts that share the same authentication tag. This
crucially deviates from the standard understanding of integrity that rather considers the
unforgeability of (whole) ciphertexts. Towards a separating example we found that an
encryption scheme that uses a collision-resistant hash function to compute the tag from the
ciphertext body meets INT-security according to [Fig. 2], yet is trivially forgeable in the
classic (intuitive) sense. The two just described issues let us conclude that the AE related
definitions in [KP18a] are not suitable for most AE applications.2 To support this point of
view also formally, in Appendix A.1 we specify an encryption scheme that is secure with
respect to the IND-PRV and INT notions from [KP18a], yet allows for arbitrary ciphertext
decryption and universal forgery attacks when operated (as an AE scheme) in the real
world.

One might argue that demanding unorthodox security notions of primitives does not
necessarily have to lead to issues—possibly the targeted application just doesn’t require any
stronger type of security. Without doubt, however, care has to be taken with instantiating
the primitive, simply as off-the-shelf constructions might not have been tested with respect
to the special goals. Indeed, in [Sec. 2.3.1/p. 162], KP explicitly propose a total of seven
AE instantiations, some of them rather exotic, by referencing academic articles that specify
such schemes. As these proposals are made without proofs of sufficiency, we checked
all these references, just to confirm that not a single one of the articles tested for the
non-standard INT definition of [KP18a]. We thus (have to) expect that all seven proposals
are in fact insufficient to meet the IND-PRV and INT notions.3

We continue with discussing the confidentiality and authenticity notions of the com-
bination of key assignment and AE. The definitions are in [Sec. 3/pp. 164–167]. Also
here the authors define IND-PRV and INT notions, based on the games in [Fig. 6/p. 166].
Our observation on the IND-PRV game is that it does not consider insider attacks: If
the adversary learns the state of any user, say at the bottom of an IFP hierarchy, the
model would not require that the information of other users, including those higher in the
hierarchy, remain confidential. This contradicts the core idea of access control. The INT
game, surprisingly, represents the other extreme: Here the adversary assigns all secrets
and public information (rather than just learning them), which reaches well beyond insider
security. The restrictions that the game imposes on the adversary are actually so liberal
that the correctness definition [p. 165] does not apply. One consequence of this is that
different (authorized) users could decrypt the information associated with the same object
differently, showing that a simplifying assumption on which the game crucially depends,
namely that information is accessed exclusively by the ‘owning’ user, in general does not
hold. Thus, whatever behavioural regime the INT game is meant to enforce, it can be
evaded by switching to an equivalent (authorized) user.

Our final set of remarks is on generic constructions that combine key assignment
with authenticated encryption. In [Sec. 4.1/p. 167] and [Sec. 4.2/pp. 167–168] two such

2Another interpretation would be that the primitive considered by KP should not be referred to as AE.
Indeed, the Encryptment primitive considered in [DGRW18] (see also Sec. 3.3) seems to be much closer in
spirit to what KP describe.

3That is, in continuation of Footnote 2, even if KP actually meant to refer to encryptment schemes,
they propose to instantiate them with (weaker) AE constructions.

Jeroen Pijnenburg and Bertram Poettering 5

constructions are exposed. The first construction is canonic: To read the information
stored for an object, the user first derives the corresponding symmetric key via the key
assignment scheme, then uses the key with the AE scheme and a stored ciphertext. In
[Sec. 4.1/p. 167] it is argued that this construction is insecure, and a corresponding attack
is described. Unfortunately, while it is communicated that the attack is against the INT
notion, the attack is not expressed in formal terms, and the specific adversarial actions
seem to map neither to the INT nor the IND-PRV game. (For instance, the attacker
shall “replace a ciphertext by a different ciphertext”, but the games do not provide such
an option.) The second construction is like the first one, but users store in their local
information also the tags of all acceptable ciphertexts. The intuition seems to be that the
INT notion of AE from [KP18a] (see above) prevents the adversary from finding a valid
ciphertext that can replace an original one, explicitly ruling out the attack suggested for
the first construction. A theorem statement in [p. 168] claims that if the AE scheme is
INT secure, then the same holds for the combination of key assignment and AE. The proof
sketch given is not very precise, and indeed we believe the statement is actually wrong.
The crucial observation is that the INT notion for AE considers adversaries that ‘only’
have access to an encryption oracle, rather than to the encryption keys, while in the INT
game for the key assignment plus AE combination the adversary controls, and thus knows,
all keys. It is thus unclear how the one security notion can be leveraged to prove the
other. To illustrate this further, in Appendix A.2 we specify an AE instance that provides
IND-PRV and INT as per [Fig. 2/p. 158], yet allows trivial attacks against INT if the keys
are known. We note that this AE scheme not only exemplifies that the theorem statement
from [p. 168] is wrong, it also shows that the construction from [Sec. 4.2/pp. 167–168] falls
prey to the same attack as suggested in [KP18a] against the construction from [Sec. 4.1/
p. 167].

3 Preliminaries
3.1 Notation
For the Boolean constants True and False we either write T and F, respectively, or 1 and 0,
respectively, depending on the context. For sets A,B we write BA for the universe of
functions A→ B. If the cardinality |A| of A is small enough, computer implementations
can represent such functions via tabulation. In this article, whenever an algorithm receives
a function on input, or generates one as output, this should be understood using tabulation.

Unless explicitly communicated otherwise, all algorithms considered in this article
may be randomized, i.e., are assumed to have access to a source of private random coins.
We specify scheme algorithms and security games in pseudocode. In such code we write
‘var ← exp’ for evaluating expression exp and assigning the result to variable var . Here,
expression exp may comprise the invocation of algorithms.4 If var is a set variable and
exp evaluates to a set, we write var ∪← exp shorthand for var ← var ∪ exp. If S is a
finite set, expression $(S) stands for picking an element of S uniformly at random; in
particular, instruction b← $({0, 1}) flips a fair bit-valued coin and assigns the outcome
to variable b. Associative arrays implement the ‘dictionary’ data structure: Once the
instruction A[·] ← exp initialized all items of array A to the default value exp, with
A[idx]← exp and var ← A[idx] individual items indexed by expression idx can be updated
or extracted.

Security games are parameterized by an adversary, and consist of a main game body
plus zero or more oracle specifications. The execution of a game starts with the main game
body and terminates when a ‘Stop with exp’ instruction is reached, where the value of
expression exp is taken as the outcome of the game. If the outcome of a game G is Boolean,

4Non-deterministic algorithms are always executed with fresh uniform coins.

6 Key Assignment Schemes with Authenticated Encryption, revisited

we write Pr[G(A)] for the probability that an execution of G with adversary A results in
True (where the probability is taken over the random coins of G and A). We define macros
for specific combinations of game-ending instructions: We write ‘Win’ for ‘Stop with T’
and ‘Lose’ for ‘Stop with F’, and further ‘Reward cond’ for ‘If cond: Win’, ‘Promise cond’
for ‘If ¬cond: Win’, and ‘Require cond’ for ‘If ¬cond: Lose’. (For an overview consider
also Table 1 in Appendix B.) We use these macros to emphasize the specific semantics of
game termination conditions. For instance, we terminate games with ‘Reward cond’ in
cases where the adversary arranged for a situation —indicated by cond resolving to True—
that should be awarded a win (e.g., the successful crafting of a forgery in an authenticity
game).

We finally draw attention to a possibly unusual yet important detail of our algorithm
and game notation that is connected with how algorithms handle failures. Here, by failure
we understand the case where an algorithm does not generate output according to its
syntax specification, but instead outputs some kind of error indicator.5 In this article, for
generality we assume that any scheme algorithm may fail. However, instead of encoding
this explicitly in syntactical constraints which would heavily clutter the notation, we
assume that if an algorithm invokes another algorithm as a subroutine, and the latter
fails, then also the former immediately fails. We assume the same for game oracles: If an
invoked scheme algorithm fails, then the oracle immediately aborts as well. Further, we
assume that the adversary that queried the oracle learns about this failure, including in
which code line of the oracle it occurred. This aims at modeling realistic situations in
which the adversary, through natural side channels, might learn about the reasons of why
a failure occurred.6

We note that our approach to handle algorithm failures borrows from how modern
programming languages handle ‘exceptions’, where any algorithm can raise (or ‘throw’)
an exception, and if the caller does not explicitly ‘catch’ it, the caller is terminated as
well and the exception is passed on to the next level.7 We believe that our way to handle
errors implicitly rather than explicitly contributes to obtaining definitions with clean and
clear semantics.

3.2 AEAD
A scheme providing authenticated encryption with associated data (AEAD) for associated-
data space AD and message spaceM consists of algorithms enc,dec, a key space K, and
a ciphertext space C. The encryption algorithm enc takes a key k ∈ K, an associated-data
string ad ∈ AD, and a message m ∈M, and returns a ciphertext c ∈ C. The decryption
algorithm dec takes a key k ∈ K, an associated-data string ad ∈ AD, and a ciphertext
c ∈ C, and returns a message m ∈M. A shortcut notation for this syntax is

K ×AD ×M→ enc→ C K ×AD × C → dec→M .

Correctness and Security. We require of an AEAD scheme that if a message m is
encrypted to a ciphertext c and then ciphertext c is (successfully) decrypted to a messagem′,
and the involved associated-data strings ad are identical, then also the messages m,m′

5An example for this is an AEAD decryption algorithm that rejects a ciphertext that is too short to be
valid, or one that is deemed unauthentic.

6We emphasize that providing this extra information only strengthens our models, meaning that schemes
that achieve our notions are more secure than schemes that achieve the corresponding notions without
detailed failure indication. In particular, schemes that leak vital information through error handling can
be flagged insecure in our models, while they might be provably secure according to models that don’t
consider this type of information leakage.

7See Wikipedia: Exception_handling_syntax for a first idea of exception handling syntaxes for many
different programming languages.

https://en.wikipedia.org/wiki/Exception_handling_syntax

Jeroen Pijnenburg and Bertram Poettering 7

Game SAFE(A)
00 k ← $(K)
01 C[·]← ∅
02 M[·]← ·
03 Invoke A
04 Lose

Oracle Enc(ad,m)
05 c← enc(k, ad,m)
06 Promise c /∈ C[ad]
07 C[ad] ∪← {c}
08 M[ad, c]← m
09 Return c

Oracle Dec(ad, c)
10 m← dec(k, ad, c)
11 If c ∈ C[ad]:
12 Promise m = M[ad, c]
13 m← �
14 Return m

Game INT(A)
15 k ← $(K)
16 C[·]← ∅
17 Invoke A
18 Lose

Oracle Enc(ad,m)
19 c← enc(k, ad,m)
20 C[ad] ∪← {c}
21 Return c

Oracle Dec(ad, c)
22 m← dec(k, ad, c)
23 Reward c /∈ C[ad]
24 m← �
25 Return m

Game INDb(A)
26 k ← $(K)
27 C[·]← ∅
28 b′ ← A
29 Stop with b′

Oracle Enc(ad,m0,m1)
30 Require m0 ≡ m1

31 c← enc(k, ad,mb)
32 C[ad] ∪← {c}
33 Return c

Oracle Dec(ad, c)
34 m← dec(k, ad, c)
35 If c ∈ C[ad]:
36 m← �
37 Return m

Figure 1: Games for AEAD. For the values ad,m,m0,m1, c provided by the adversary we
require that ad ∈ AD, m,m0,m1 ∈ M, c ∈ C. Read C like in ciphertext and M like in
message. Assuming � /∈M, we encode suppressed messages with �. We refer the reader to
Appendix F.1 for a further discussion.

shall be identical. This is formalized via the SAFE game in Fig. 1.8 Intuitively, the scheme
is safe if the maximum advantage Advsafe(A) := Pr[SAFE(A)] that can be attained by
realistic adversaries A is negligible. The scheme is perfectly safe if Advsafe(A) = 0 for
all A.

Our security notions demand that the integrity of ciphertexts be protected (INT-
CTXT), and that encryptions be indistinguishable in the presence of chosen-ciphertext
attacks (IND-CCA). The notions are formalized via the INT and IND0, IND1 games in
Fig. 1, the latter two with respect to some equivalence relation ≡ ⊆ M ×M on the
message space.9 We say that a scheme provides integrity if the maximum advantage
Advint(A) := Pr[INT(A)] that can be attained by realistic adversaries A is negligible, and
that it provides indistinguishability if the same holds for the advantage Advind(A) :=
|Pr[IND1(A)]− Pr[IND0(A)]|.

3.3 Encryptment
The encryptment primitive, proposed by Dodis et al. in [DGRW18] in the context of
secure messaging, provides one-time secure encryption with authenticity guarantees that
hold beyond key compromise. In more detail, processing a message with an encryptment
scheme yields a pair of ciphertext and binding tag, where the ciphertext hides the message

8We borrow the SAFETY notion, which should not be confused with a notion of security, from the
Distributed Computing community. Informally, safety properties require that “bad things” will not happen.
(In the case of encryption, it would be a bad thing if the decryption of an encryption would yield the wrong
message.) Its counterpart LIVENESS is not relevant for modelling cryptographic properties of AEAD:
The absence of liveness damages neither the integrity nor the confidentiality of a scheme. For an initial
overview we refer to Wikipedia: Safety_property and Wikipedia: Liveness, and for the details to [AS87].

9We use relation ≡ (in line 30 of INDb) to deal with certain restrictions that practical AEAD schemes
may feature. Concretely, most constructions we are aware of do not take effort to hide the length of
encrypted messages, implying that indistinguishability is necessarily limited to same-length messages. In
our formalization such a technical restriction can be expressed by defining ≡ such that m0 ≡ m1 :⇔
|m0| = |m1|.

https://en.wikipedia.org/wiki/Safety_property
https://en.wikipedia.org/wiki/Liveness

8 Key Assignment Schemes with Authenticated Encryption, revisited

contents as in regular encryption and the binding tag prevents forgery attacks even against
insiders: A receiver equipped with an authentic copy of the binding tag will not accept
any unauthentic ciphertext, even if all secrets of the sender and receiver become public.
In Appendix C we reproduce details of a generic construction of this primitive from a
passively secure secret key encryption scheme and a collision resistant hash function. More
efficient though less general constructions are considered in [DGRW18]. Our formalization
of encryptment follows the one of [DGRW18], but simplifies it by removing the option to
process associated data, and by merging the decryption and verification algorithms into
one.10

Definition 1. An encryptment scheme for message spaceM consists of algorithms enc,dec,
a key space K, a binding-tag space Bt, and a ciphertext space C. The encryptment
algorithm enc takes a key k ∈ K and a message m ∈M, and returns a binding tag bt ∈ Bt
and a ciphertext c ∈ C. The decryptment algorithm dec takes a key k ∈ K, a binding tag
bt ∈ Bt, and a ciphertext c ∈ C, and returns a message m ∈M. A shortcut notation for
this syntax is

K ×M→ enc→ Bt × C K × Bt × C → dec→M .

Correctness and Security. We require of an encryptment scheme that if a mes-
sage m is processed to a tag-ciphertext pair, and then a message m′ is recovered from
this pair, then the messages m,m′ shall be identical. This is formalized via the SAFE
game in Fig. 2. Intuitively, the scheme is safe if the maximum advantage Advsafe(A) :=
maxk∈K,m∈M Pr[SAFE(k,m,A)] that can be attained by realistic adversaries A is negligi-
ble. The scheme is perfectly safe if Advsafe(A) = 0 for all A.

Game SAFE(k,m,A)
00 (bt, c)← enc(k,m)
01 A(k,m, bt, c)
02 Lose

Oracle Dec(c̄)
03 m̄← dec(k, bt, c̄)
04 If c̄ = c:
05 Promise m̄ = m
06 m̄← �
07 Return m̄

Game INT(k,m,A)
08 (bt, c)← enc(k,m)
09 A(k,m, bt, c)
10 Lose

Oracle Dec(c̄)
11 m̄← dec(k, bt, c̄)
12 Reward c̄ 6= c
13 m̄← �
14 Return m̄

Game INDb(m0,m1,A)
15 Require m0 ≡ m1

16 k ← $(K)
17 (bt, c)← enc(k,mb)
18 b′ ← A(m0,m1, bt, c)
19 Stop with b′

Oracle Dec(c̄)
20 m̄← dec(k, bt, c̄)
21 If c̄ = c:
22 m̄← �
23 Return m̄

Figure 2: Games for encryptment. For the values c̄ provided by the adversary we require
that c̄ ∈ C. Assuming � /∈M, we encode suppressed messages with �. We refer the reader
to Appendix F.2 for a further discussion.

Our security notions demand that the integrity of ciphertexts be protected (INT-
CTXT), and that encryptions be indistinguishable in the presence of chosen-ciphertext
attacks (IND-CCA). The notions are formalized via the INT and IND0, IND1 games
in Fig. 2, where like in Sec. 3.2 the latter two depend on some equivalence relation
≡ ⊆M×M on the message space. We say that a scheme provides integrity if the maximum
advantage Advint(A) := maxk∈K,m∈M Pr[INT(k,m,A)] that can be attained by realistic
adversaries A is negligible, and that it provides indistinguishability if the same holds for
the advantage Advind(A) := maxm0,m1∈M|Pr[IND1(m0,m1,A)]− Pr[IND0(m0,m1,A)]|.

10While a considerable number of different security notions for encryptment is considered in [DGRW18],
here we only reproduce those relevant for our work. They may appear in [DGRW18] under a different
name.

Jeroen Pijnenburg and Bertram Poettering 9

4 Information Flow Policies and Key Assignment
We recall standard definitions from the domain of cryptographically enforced access control.
While an information flow policy is an abstract structure that defines access rules, a key
assignment scheme is a cryptographic primitive that helps implementing such a policy.

4.1 Information Flow Policies
An information flow policy for a hierarchical organization is a specification that describes
which user can access which object. A key property is monotonicity in the sense that if an
object is accessible by a specific user, then the object is also accessible by all higher-ranked
users, where the ranking is defined via a partially ordered set (or poset), i.e., a set X
equipped with a reflexive, anti-symmetric, transitive relation 6 ⊆ X ×X.11 In this article
we denote posets as a pair (X,6), but we may also just write X if the relation is clear
from the context. Our IFP definition follows [CMW06].

Definition 2. Let U and O be disjoint sets of users and objects, respectively. An
information flow policy (IFP) for U,O is a tuple (L,6, ν, ω) where

• (L,6) is a (finite) partially ordered set of security labels;

• ν : U → L and ω : O → L are security functions that associate users and objects,
respectively, with security labels.

We say that a user u ∈ U is authorized to access an object o ∈ O (e.g. for reading or
writing) if ω(o) 6 ν(u); otherwise, if ω(o)
 ν(u), the user is unauthorized to access the
object.

For u, v ∈ U and o ∈ O, as shortcut notations we also write o 6 u if ω(o) 6 ν(u),
and u 6 v if ν(u) 6 ν(v). Note the transitivity o 6 u ∧ u 6 v ⇒ o 6 v. This further
suggests to denote the sets of authorized and unauthorized users for an object o ∈ O with
{u : o 6 u} and {u : o
 u}, respectively, and to denote with {o : o 6 u} the set of objects
a user u ∈ U is authorized for.12 To avoid trivial side cases it is often useful to demand
that for each object there is at least one authorized user, i.e., that {u : o 6 u} 6= ∅ for all
o ∈ O. We refer with IFPO

U to the space of all IFPs for U,O with this property.

4.2 Enforcement via Key Assignment
A classic option to efficiently implement an information flow policy is via cryptographic
enforcement [AT83]. The idea is that all users in an organization are assigned individual
secrets (also referred to as their secret states) that allow them to derive keys associated
with the objects they are authorized to access. These keys protect the object payloads by
means of some cryptographic primitive, e.g. symmetric encryption. This section focuses on
the key assigning component, referred to as KAS. We specify its syntax and an appropriate
security notion in the upcoming paragraphs, where the syntactical framework enriches
the one from [CMW06] by the option to derive keys depending on an associated-data

11Recall that while the symbols < and � are equivalent in totally ordered sets, this may not be assumed
in posets. More precisely, specific elements x, x′ ∈ X in a poset may be incomparable, meaning that the
relations x 6= x′ and x
 x′ and x � x′ hold simultaneously.

12In continuation of Footnote 11, the set of users not authorized for object o is in general not equal to
{u : u < o}. This needs emphasis as [KP18a] seem to be using the terms interchangeably, which leads to
artificially weak security definitions. For instance, we believe that in all games of [Fig. 3/p. 159] the set
Pu should be defined as {Sv : u
 v} rather than {Sv : v < u}. Similar comments apply to the games in
[Fig. 6/p. 166], and the running text on [Sec. 2.2.7/pp. 158–160] and [p. 166].

10 Key Assignment Schemes with Authenticated Encryption, revisited

input, and the security notion strengthens the strongest definition of [FPP13] by tolerating
potentially unauthentic public inputs.13

A large number of KAS constructions is proposed in prior work [CMW06,CFG+17]14.
Considering that these not necessarily support associated-data inputs, we show in Ap-
pendix D how a classic KAS, i.e., one that lacks support for associated data, can be
transformed into a KAS of our type, with only a minimal overhead incurring due to an
auxiliary PRF invocation.15

Definition 3. A key assignment scheme (KAS) for sets U,O, associated-data space AD,
and key space K, consists of the two algorithms setup and derive, a secret-state space Σ,
and a public-state space Π.16 The initialization algorithm setup takes an information flow
policy I = (L,6, ν, ω) ∈ IFPO

U and outputs a mapping ~σ : U → Σ that assigns to each
user u ∈ U a corresponding secret state ~σ(u), and a public state π ∈ Π (shared by all
users). We let σu := ~σ(u) for all u ∈ U . The key derivation algorithm derive takes on
input a secret state σ ∈ Σ, a public state π ∈ Π, an object o ∈ O, and an associated-data
string ad ∈ AD, and outputs a key k ∈ K. A shortcut notation for the algorithms’ syntax
is

IFPO
U → setup→ ΣU ×Π Σ×Π×O ×AD → derive→ K .

Correctness and Security. We require of a KAS that if any two (authorized) users
independently of each other derive the key associated with an object, and the involved
associated-data strings are identical, then also the derived keys shall be identical. This is
formalized via the SAFE game in Fig. 3. Intuitively, the scheme is safe if for all IFPs I the
maximum advantage Advsafe(I,A) := Pr[SAFE(I,A)] that can be attained by realistic
adversaries A is negligible. The scheme is perfectly safe if Advsafe(I,A) = 0 for all A.

Our security notion demands that the keys associated with objects be secret and
uniformly distributed. The notion is formalized in a model supporting user corruptions
via the real-or-random style KIND0

t ,KIND1
t games in Fig. 3, where t ∈ N is a parameter

that specifies the maximum number of challengeable keys. We say that the scheme
provides t-challenge indistinguishable keys if for all IFPs I the maximum advantage
Advt-kind(I,A) := |Pr[KIND1

t (I,A)]− Pr[KIND0
t (I,A)]| that can be attained by realistic

adversaries A is negligible.
We note that key indistinguishability definitions proposed in prior works, e.g. in [FPP13],

assume that scheme algorithms always have authentic access to the public state. Our
model is stronger by not making this assumption and letting the adversary provide forged
public information. Fortunately, as we detail in Appendix D, a classic KAS (satisfying the
notions of [FPP13]) can readily be transformed into a KAS that satisfies our notions.

The following result formally connects the t-challenge and single-challenge cases of
key indistinguishability. The proof is based on a simple hybrid argument and provided in
Appendix G.1.

Lemma 1. Let I be an IFP and A an adversary. Then for any t ∈ N there exists an
adversary A′ such that Advt-kind(I,A) ≤ t ·Adv1-kind(I,A′).

13Concretely, the notion defined by our KINDb
1 games implies the notion defined by the S-KI-ST game

of [FPP13]. While S-KI-ST is less interactive than KINDb
1, it is not hard to see that there are simple

reductions between the two (for the case of one fixed associated-data string and authentic access to the
public state). See Lemma 1 for the more general case.

14Many more works propose KAS constructions. Here we reference [CFG+17] for a recent example of an
efficient construction and [CMW06] as it surveys general construction techniques. See Sec. 1.1 for further
pointers.

15The reverse direction is, of course, trivial: To obtain a classic KAS from a KAS according to our
definitions it suffices to restrict the associated-data space to a single element.

16The ‘state’ term should not suggest that states are dynamic objects. In the KAS context, states are
assigned once and then remain invariant.

Jeroen Pijnenburg and Bertram Poettering 11

Game SAFE(I,A)
00 K[·]← ∅
01 (~σ, π)← setup(I)
02 A(I, π)
03 Lose

Oracle Derive(u, π̄, o, ad)
04 k ← derive(σu, π̄, o, ad)
05 Promise o 6 u
06 If π̄ = π:
07 K[o, ad] ∪← {k}
08 Promise |K[o, ad]| ≤ 1
09 Return k

Oracle Corrupt(u)
10 Return σu

Game KINDb
t(I,A)

11 K[·]← ×
12 CO← ∅
13 CH← ∅
14 (~σ, π)← setup(I)
15 b′ ← A(I, π)
16 Stop with b′

Oracle Derive(u, π̄, o, ad)
17 k ← derive(σu, π̄, o, ad)
18 If π̄ = π:
19 K[o, ad]← k
20 k ← ?
21 Return k

Oracle Corrupt(u)
22 Ou ← {o : o 6 u}
23 Require CH ∩Ou = ∅
24 CO ∪← Ou

25 Return σu

Oracle Reveal(o, ad)
26 Require K[o, ad] ∈ K
27 k ← K[o, ad]
28 K[o, ad]← �
29 Return k

Oracle Challenge(o, ad)
30 Require K[o, ad] ∈ K
31 Require o /∈ CO
32 k0 ← K[o, ad]
33 k1 ← $(K)
34 K[o, ad]← �
35 CH ∪← {o}
36 Require |CH| ≤ t
37 Return kb

Figure 3: Games for KAS. For all values u, π̄, o, ad provided by the adversary we require
that u ∈ U , π̄ ∈ Π, o ∈ O, ad ∈ AD. Read K like in key, CO like in corrupted object,
and CH like in challenge. Assuming ×, ?, � /∈ K, we encode uninitialized keys with ×,
challengeable keys with ?, and revealed/challenged keys with �. We refer the reader to
Appendix F.3 for a further discussion.

5 Read-Only Enforcement
We first develop the syntax and security notions for read-only cryptographically enforced
access control, and then provide a provably secure solution. In read-only enforcement, files
or messages are specified at setup, and no modifications are allowed, not even by users
that are authorized to (read-only) access them.

5.1 Syntax and Security
As in Sec. 4.1, let U be a set of users and O be a set of objects.

Definition 4. A read-only enforcement scheme (ROES) for sets U,O and message
spaceM consists of the two algorithms setup, read, a secret-state space Σ, a public-state
space Π, and a ciphertext space C. The initialization algorithm setup takes an information
flow policy I = (L,6, ν, ω) ∈ IFPO

U and a mapping M: O →M (one message per object),
and outputs a mapping ~σ : U → Σ (one secret state per user), a public state π ∈ Π (shared
by all users), and a mapping C: O → C (one ciphertext per object). We let σu := ~σ(u)
for all u ∈ U . The retrieve algorithm read takes on input a secret state σ ∈ Σ, a public
state π ∈ Π, an object o ∈ O, and a ciphertext c ∈ C, and outputs a message m ∈M. A
shortcut notation for the algorithms’ syntax is

IFPO
U ×MO → setup→ ΣU ×Π× CO Σ×Π×O × C → read→M .

Correctness. We require of a ROES that if a message m is specified at setup for an
object and then a message m′ is (successfully) retrieved for that object, then the retrieving
user must be authorized and the messages m,m′ identical. This is formalized via the
SAFE game in Fig. 4. Intuitively, the scheme is safe if for all IFPs I the advantage

12 Key Assignment Schemes with Authenticated Encryption, revisited

Advsafe(I,A) := maxM Pr[SAFE(I,M,A)], where the maximum is over all object-to-
message mappings M ∈ MO, is negligible for all realistic adversaries A. The scheme is
perfectly safe if Advsafe(I,A) = 0 for all A.

Game SAFE(I,M,A)
00 (~σ, π,C)← setup(I,M)
01 Invoke A(I,M, π,C)
02 Lose

Oracle Read(u, π̄, o, c)
03 m← read(σu, π̄, o, c)
04 Promise o 6 u
05 If π̄ = π ∧ c = C(o):
06 Promise m = M(o)
07 m← �
08 Return m

Oracle Corrupt(u)
09 Return σu

Game INT(I,M,A)
10 (~σ, π,C)← setup(I,M)
11 Invoke A(I,M, π,C)
12 Lose

Oracle Read(u, π̄, o, c)
13 m← read(σu, π̄, o, c)
14 Reward π̄ 6= π
15 Reward c 6= C(o)
16 m← �
17 Return m

Oracle Corrupt(u)
18 Return σu

Game INDb(I,M0,M1,A)
19 For all o ∈ O:
20 Require M0(o) ≡ M1(o)
21 CH← {o : M0(o) 6= M1(o)}
22 (~σ, π,C)← setup(I,Mb)
23 b′ ← A(I,M0,M1, π,C)
24 Stop with b′

Oracle Read(u, π̄, o, c)
25 m← read(σu, π̄, o, c)
26 If π̄ = π ∧ c = C(o):
27 m← �
28 Return m

Oracle Corrupt(u)
29 Ou ← {o : o 6 u}
30 Require CH ∩Ou = ∅
31 Return σu

Figure 4: Games for ROES. For all values u, π̄, o, c provided by the adversary we require
that u ∈ U , π̄ ∈ Π, o ∈ O, c ∈ C. Read CH like in challenge. Assuming � /∈M, we encode
suppressed messages with �. We refer the reader to Appendix F.4 for a further discussion.

Security. Our security notions demand that the messages associated with objects
remain authentic and confidential. The notions are formalized in models supporting
user corruptions. Authenticity is defined via the INT game and confidentiality via
the left-or-right style IND0, IND1 games in Fig. 4. The latter depend on some equiv-
alence relation ≡ ⊆M×M on the message space, like the INDb games in Sections 3.2
and 3.3. We say that the scheme provides integrity if for all IFPs I the advantage
Advint(I,A) := maxM|Pr[INT(I,M,A)]|, where the maximum is over all object-to-
message mappings M ∈ MO, is negligible for all realistic adversaries A. We say that
the scheme provides indistinguishability if for all IFPs I the advantage Advind(I,A) :=
maxM0,M1 |Pr[IND1(I,M0,M1,A)]− Pr[IND0(I,M0,M1,A)]|, where the maximum is over
all object-to-message mappings M0,M1 ∈MO, is negligible for all realistic adversaries A.

5.2 Construction
In Fig. 5 we specify a construction of ROES that is secure according to our definitions. As
generic building blocks we employ a KAS and an encryptment scheme.17

17We recall from [KP18a] that simply composing a KAS with a regular AEAD scheme does not yield
a secure ROES. Indeed, in Fig. 8 we formally consider this construction (though in a different context;
assume the associated-data input ad is fixed to some constant #) and the following attack shows that it
falls short of providing authenticity. The attack succeeds by corrupting any user, recovering the AEAD
key from their state, and forging by simply creating a fresh ciphertext using this key. In detail, consider
the adversary A against the INT game that receives (I,M, π,C) in line 11 (of Fig. 4), picks any user
u ∈ U and object o ∈ {o : o 6 u} and message m′ 6= M[o], queries Corrupt(u) to receive state σu, recovers

Jeroen Pijnenburg and Bertram Poettering 13

We provide details of the construction. Numbers in brackets refer to line numbers in
the figure. The setup procedure [00–13] initializes in [00,01] the two arrays B[·] and C[·]
that will store for each object a binding tag and a ciphertext, respectively. It then runs
the KAS initialization algorithm setup′ [02] to generate a secret-state vector, which assigns
a secret state to each user, and a public state. In a loop [03–09], for each object [03] the
procedure picks an(y) authorized user [04,05] to derive a key for the object [06], uses this
key and the specified message [07] with the encryptment algorithm enc′ [08], and stores the
resulting binding tag and ciphertext in arrays B and C, respectively [09]. In a second loop
[10–12], for each user [10] the procedure considers all objects the user is authorized for [11],
and encodes the KAS secret state and the binding tags of these objects in the user’s ROES
secret state [12]. The setup procedure returns such a secret state for each user, the KAS
public state, and for each object the encryptment ciphertext [13]. Given this description,
the details of the read procedure should be clear. Note that the procedure fails if any of
the steps in [15,17] fail.

Proc setup(I,M)
00 B[·]← ×
01 C[·]← ×
02 (~σ′, π)← setup′(I)
03 For all o ∈ O:
04 U ′ ← {u′ : o 6 u′}
05 Pick any u′ ∈ U ′
06 k ← derive′(σ′u′ , π, o,#)
07 m← M(o)
08 (bt, c)← enc′(k,m)
09 (B[o],C[o])← (bt, c)
10 For all u ∈ U :
11 O′ ← {o′ : o′ 6 u}
12 σu ← (σ′u,B[O′])
13 Return (~σ, π,C)

Proc read(σu, π, o, c)
14 (σ′u,B[·])← σu

15 k ← derive′(σ′u, π, o,#)
16 bt ← B[o]
17 m← dec′(k, bt, c)
18 Return m

Figure 5: Our ROES construction roes with procedures setup, read using procedures
setup′,derive′ of a generic KAS kas and procedures enc′,dec′ of a generic encryptment
scheme enc. In [00,01] we encode uninitialized values with ×. In [06,15] we write # for any
fixed associated-data string.

We conduct the security analysis of our scheme in Sec. 7.1. Here we just provide
shortened versions of the formal statements.

Theorem 1 (informal version). Fix any IFP I. If the key assignment scheme kas
and the encryptment scheme enc provide indistinguishability, then so does our ROES
construction roes. More precisely, for any adversary A there exist adversaries A′,A′′ of
comparable efficiency such that

Advind
roes(I,A) ≤ t ·

(
Adv1-kind

kas (I,A′) + Advind
enc(A′′)

)
,

where t = |O| is the number of objects defined by the IFP, and the advantages are defined
using the indistinguishability games corresponding to the primitive.

Theorem 2 (informal version). Fix any IFP I. If the encryptment scheme enc provides
integrity, then so does our ROES construction roes. More precisely, for any adversary A

key ku ← derive′(σu, π, o,#) as in line 07 of Fig. 8, computes c′ ← enc′(ku, ad,m′) as in line 08 (of
Fig. 8), and queries Read(u, π, o, c′) to score a win by line 15 (of Fig. 4). For this adversary we have
Advint(I,A) = 1, for any IFP I.

14 Key Assignment Schemes with Authenticated Encryption, revisited

there exists an adversary A′ of comparable efficiency such that

Advint
roes(I,A) ≤ t ·Advint

enc(A′),

where t = |O| is the number of objects defined by the IFP, and the advantages are defined
using the integrity game corresponding to the primitive.

6 Read-Write Enforcement
We first develop the syntax and security notions for read-write cryptographically enforced
access control, and then provide a provably secure solution. In read-write enforcement,
only the IFP has to be specified at setup, while the encryptions for each object happen
dynamically.

6.1 Syntax and Security
As in Sec. 4.1, let U be a set of users and O be a set of objects.

Definition 5. A read and write enforcement scheme (RWES) for sets U,O, associated-
data space AD, and message spaceM, consists of the three algorithms setup, enc,dec, a
secret-state space Σ, a public-state space Π, and a ciphertext space C. The initialization
algorithm setup takes an information flow policy I = (L,6, ν, ω) ∈ IFPO

U and outputs
a mapping ~σ : U → Σ (one secret state per user) and a public state π ∈ Π (shared by
all users). We let σu := ~σ(u) for all u ∈ U . The encryption algorithm enc takes on
input a secret state σ ∈ Σ, a public state π ∈ Π, an object o ∈ O, an associated-data
string ad ∈ AD, and a message m ∈M, and outputs a ciphertext c ∈ C. The decryption
algorithm dec takes on input a secret state σ ∈ Σ, a public state π ∈ Π, an object o ∈ O,
an associated-data string ad ∈ AD, and a ciphertext c ∈ C, and outputs a message m ∈M.
A shortcut notation for the algorithms’ syntax is

IFPO
U → setup→ ΣU ×Π

Σ×Π×O ×AD ×M→ enc→ C Σ×Π×O ×AD × C → dec→M .

Correctness. We require of a RWES that if a message m is (successfully) encrypted
with respect to an object to a ciphertext c and then ciphertext c is (successfully) decrypted
with respect to the same object to a message m′, and the involved associated-data strings
are identical, then the involved users must be authorized and the messages m,m′ identical.
This is formalized via the SAFE game in Fig. 6. Intuitively, the scheme is safe if for all
IFPs I the maximum advantage Advsafe(I,A) := Pr[SAFE(I,A)] that can be attained by
realistic adversaries A is negligible. The scheme is perfectly safe if Advsafe(I,A) = 0 for
all A.

Security. Our security notions demand that the messages associated with objects
remain authentic and confidential. The notions are formalized in models supporting user
corruptions. Authenticity is defined via the game INT in Fig. 6 and confidentiality via
the left-or-right style IND0, IND1 games in Fig. 7. The latter depend on a parameter
t ∈ N that specifies the maximum number of challenge pairs, and, akin to Sec. 5.1,
on some equivalence relation ≡ ⊆ M ×M on the message space. We say that the
scheme provides integrity if for all IFPs I the maximum advantage Advint(I,A) :=
Pr[INT(I,A)] that can be attained by realistic adversaries A is negligible. We say that the
scheme provides t-challenge indistinguishability if for all IFPs I the maximum advantage
Advt-ind(I,A) := |Pr[IND1

t (I,A)] − Pr[IND0
t (I,A)]| that can be attained by realistic

adversaries A is negligible.

Jeroen Pijnenburg and Bertram Poettering 15

Game SAFE(I,A)
00 C[·]← ∅
01 M[·]← ·
02 (~σ, π)← setup(I)
03 A(I, π)
04 Lose

Oracle Corrupt(u)
05 Return σu

Oracle Enc(u, π̄, o, ad,m)
06 c← enc(σu, π̄, o, ad,m)
07 Promise o 6 u
08 If π̄ = π:
09 Promise c /∈ C[o, ad]
10 C[o, ad] ∪← {c}
11 M[o, ad, c]← m
12 Return c

Oracle Dec(u, π̄, o, ad, c)
13 m← dec(σu, π̄, o, ad, c)
14 Promise o 6 u
15 If π̄ = π ∧ c ∈ C[o, ad]:
16 Promise m = M[o, ad, c]
17 m← �
18 Return m

Game INT(I,A)
19 C[·]← ∅
20 CO← ∅
21 (~σ, π)← setup(I)
22 A(I, π)
23 Lose

Oracle Corrupt(u)
24 Ou ← {o : o 6 u}
25 CO ∪← Ou

26 Return σu

Oracle Enc(u, π̄, o, ad,m)
27 c← enc(σu, π̄, o, ad,m)
28 If π̄ = π:
29 C[o, ad] ∪← {c}
30 Return c

Oracle Dec(u, π̄, o, ad, c)
31 m← dec(σu, π̄, o, ad, c)
32 If o /∈ CO:
33 Reward π̄ 6= π
34 Reward c /∈ C[o, ad]
35 m← �
36 Return m

Figure 6: SAFE and INT games for RWES (the INDb games are in Fig. 7). For all values
u, π̄, o, ad,m, c provided by the adversary we require that u ∈ U , π̄ ∈ Π, o ∈ O, ad ∈ AD,
m ∈ M, c ∈ C. Read C like in ciphertext, M like in message, and CO like in corrupted
object. Assuming � /∈M, we encode suppressed messages with �. We refer the reader to
Appendix F.5 for a further discussion.

The following result formally connects the t-challenge and single-challenge cases of
indistinguishability. The proof is based on a simple hybrid argument and provided in
Appendix G.2.

Lemma 2. Let I be an IFP and A an adversary. Then for any t ∈ N there exists an
adversary A′ such that Advt-ind(I,A) ≤ t ·Adv1-ind(I,A′).

6.2 Construction
In Fig. 8 we specify a construction of RWES that is secure according to our definitions. As
generic building blocks we employ a KAS, an AEAD scheme, and a collision-resistant hash
function. Alternatively, in Appendix E we leverage the associated-data input of KAS and
provide a construction for which an AE scheme suffices as building block instead of AEAD.

We provide details of the construction. Numbers in brackets refer to line numbers in
the figure. The setup procedure simply runs setup′ from KAS [00] and appends the hash
value of the public state to each secret state [01–03]. Finally, setup returns the secret-state
vector, which assigns a secret state to each user, and a global public state [04]. The enc
and dec procedures mirror each other, we will describe dec. The dec procedure first verifies
that the provided public state is correct [11]. Next, it derives an object-dependent key with
derive′ from KAS [12] (but independently of the associated data). Subsequently, it uses
this key to decrypt the ciphertext with associated data using dec′ from AEAD [13], and
returns the message [14]. Note that the procedure fails if any of the steps in [11,12,13] fail.

We conduct the security analysis of our scheme in Sec. 7.2. Here we just provide
shortened versions of the formal statements.
Theorem 3 (informal version). Fix any IFP I. If the key assignment scheme kas and
the AEAD scheme aead provide indistinguishability, then so does our RWES construction

16 Key Assignment Schemes with Authenticated Encryption, revisited

Game INDb
t(I,A)

00 C[·]← ∅
01 CO← ∅
02 CH← ∅
03 (~σ, π)← setup(I)
04 b′ ← A(I, π)
05 Stop with b′

Oracle Enc(u, π̄, o, ad,m)
06 c← enc(σu, π̄, o, ad,m)
07 If π̄ = π:
08 C[o, ad] ∪← {c}
09 Return c

Oracle Challenge(u, π̄, o, ad,m0,m1)
10 Require m0 ≡ m1

11 c← enc(σu, π̄, o, ad,mb)
12 If π̄ = π:
13 Require o /∈ CO
14 C[o, ad] ∪← {c}
15 CH ∪← {o}
16 Require |CH| ≤ t
17 Return c

Oracle Dec(u, π̄, o, ad, c)
18 m← dec(σu, π̄, o, ad, c)
19 If π̄ = π ∧ c ∈ C[o, ad]:
20 m← �
21 Return m

Oracle Corrupt(u)
22 Ou ← {o : o 6 u}
23 Require CH ∩Ou = ∅
24 CO ∪← Ou

25 Return σu

Figure 7: INDb
t games for RWES (the SAFE and INT games are in Fig. 6). For all values

u, π̄, o, ad,m,m0,m1, c provided by the adversary we require that u ∈ U , π̄ ∈ Π, o ∈ O,
ad ∈ AD, m,m0,m1 ∈M, c ∈ C. Read C like in ciphertext, CO like in corrupted object,
and CH like in challenge. Assuming � /∈M, we encode suppressed messages with �. We
refer the reader to Appendix F.5 for a further discussion.

rwes. More precisely, for any adversary A that queries at most qo different objects in
the t-challenge indistinguishability game, there exist adversaries A′,A′′ of comparable
efficiency such that

Advt-ind
rwes (I,A) ≤ t · qo ·

(
Adv1-kind

kas (I,A′) + Advind
aead(A′′)

)
,

where the advantages are defined using the indistinguishability games corresponding to
the primitive.

Theorem 4 (informal version). Fix any IFP I. If the key assignment scheme kas
provides indistinguishability and the AEAD scheme aead provides integrity, then our
RWES construction rwes provides integrity. More precisely, for any adversary A that
queries at most qo different objects there exist adversaries A′,A′′ of comparable efficiency
such that

Advint
rwes(I,A) ≤ qo ·

(
Adv1-kind

kas (I,A′) + Advint
aead(A′′)

)
,

where the advantages are defined using the games corresponding to the primitive.

Proc setup(I)
00 (~σ′, π)← setup′(I)
01 h′ ← H(π)
02 For all u ∈ U :
03 σu ← (h′, σ′u)
04 Return (~σ, π)

Proc enc(σu, π, o, ad,m)
05 (h′, σ′u)← σu

06 Require H(π) = h′

07 k ← derive′(σ′u, π, o,#)
08 c← enc′(k, ad,m)
09 Return c

Proc dec(σu, π, o, ad, c)
10 (h′, σ′u)← σu

11 Require H(π) = h′

12 k ← derive′(σ′u, π, o,#)
13 m← dec′(k, ad, c)
14 Return m

Figure 8: Our RWES construction rwes with procedures setup, enc,dec using procedures
setup′,derive′ of a generic KAS kas and procedures enc′,dec′ of a generic AEAD scheme
aead. In [07,12] we write # for any fixed associated-data string. If the conditions in [06,11]
are not fulfilled, the respective algorithm fails.

Jeroen Pijnenburg and Bertram Poettering 17

7 Security proofs
We prove our ROES and RWES constructions from Sections 5 and 6 secure in their
respective models. By inspection one can readily verify that both constructions are safe.
In this section we will answer the adversary’s oracle queries by forwarding to oracles in a
different game or running a procedure. To keep our proofs concise and to the point, we do
not explicitly mention the advantage of finding a collision in the hash function each time.
Instead, we assume the adversary can only receive (non-error) output from the oracles
when providing an authentic public state.

7.1 ROES security proofs
Theorem 1. Let roes be the construction specified in Fig. 5, I an IFP, t = |O|, A an
adversary, and Advind

roes(I,A) the advantage that A has against construction roes in the
ROES indistinguishability games of Fig. 4. For any adversary A there exist adversaries
A′,A′′ of comparable efficiency such that

Advind
roes(I,A) ≤ t ·

(
Adv1-kind

kas (I,A′) + Advind
enc(A′′)

)
.

Proof. By Lemma 3 (below) we can replace the keys for each challenge object by an
independent uniformly random key. What remains is exactly t independent instances
of encryptment: A is provided with m0, m1, bt and c for each challenge object and
has to guess b, which yields Advind

roes(I,A) ≤ Advt-kind
kas + t ·Advind

enc(A′′). The theorem
statement immediately follows from applying Lemma 1 to reduce from the t-challenge to
single-challenge KAS game.

Lemma 3. Let roes be the ROES construction from Theorem 1, roest the construction
similar to roes with the exception that for each challenge object the derive algorithm is
replaced by sampling a key k ← $(K), I an IFP and t = |O|. For any adversary A there
exists an adversary A′ with comparable efficiency such that

Advind
roes(I,A) ≤ Advind

roest(I,A) + Advt-kind
kas (I,A′).

Proof. To prove the result we will show we can use an adversary A that can distinguish
whether the game IND calls roes or roest to win KINDt with non-negligible advantage. A′
will initialize its own KINDt game and call its own Challenge(o,#) oracle for all challenge
objects and Derive(u, π, o,#) for an authorized user for the remaining objects. It will use
these keys in the setup procedure, instead of deriving a key for each object, to simulate
the IND game to A. A′ can answer any Read queries A makes as it holds all the keys.
Moreover, A is not allowed to corrupt any users that are authorized to access challenge
objects so any Corrupt query A′ can simply forward to its own oracle. Now observe that
the simulation always succeeds and A′ simulates IND with roes if it is playing KIND0

t

and IND with roest if it is playing KIND1
t . When A makes its guess, A′ will make the

corresponding guess in its own game.

Theorem 2. Let roes be the ROES construction specified in Fig. 5, I an IFP, t = |O|,
A an adversary, and Advint

roes(I,A) the advantage that A has against construction roes in
the ROES integrity game of Fig. 4. For any adversary A there exist an adversary A′ of
comparable efficiency such that

Advint
roes(I,A) ≤ t ·Advint

enc(A′).

Proof. A′ will simulate the INT game for ROES by running roes with the exception
that each enc′(k,m) call in setup is replaced by initializing an INT(k,m,A′) game for
Encryptment, which will return the required pair (bt, c). Since A′ holds the secret state for

18 Key Assignment Schemes with Authenticated Encryption, revisited

each user, it can answer any Corrupt query by A. When A makes a Read query, A′ will
replace each dec′(k, bt, c̄) call in read by a Dec(c̄) query in the corresponding INT game.
Because roes uses a safe KAS construction, k will be equal to the key A′ initialized the
game with and bt was provided by the game. We conclude Dec will execute dec(k, bt, c̄)
and thus reward A′ if c 6= c̄. This is exactly the win condition for A.

7.2 RWES security proofs
Theorem 3. Let rwes be the RWES construction specified in Fig. 8, I an IFP, A an
adversary, and Advt-ind

rwes (I,A) the advantage that A has against construction rwes in
the RWES indistinguishability games of Fig. 7 that allows t Challenge queries. For any
adversary A that queries at most qo different objects (i.e., qo ≤ |O|) there exist adversaries
A′,A′′ of comparable efficiency such that

Advt-ind
rwes (I,A) ≤ t · qo ·

(
Adv1-kind

kas (I,A′) + Advind
aead(A′′)

)
.

Proof. The statement follows as a corollary from Lemma 2 (above), and Lemmas 4 and 5
(below).

Lemma 4. Let rwes be the RWES construction from Theorem 3, rwesi the construction
similar to rwes with the exception that for the i-th new object the derive algorithm is
replaced by sampling a key k ← $(K), and I an IFP. For any adversary A that queries at
most qo different objects there exists an adversary A′ with comparable efficiency such that

Adv1-ind
rwes (I,A) ≤ Adv1-ind

rwesi(I,A) + qo ·Adv1-kind
kas (I,A′).

Proof. To prove the result we will show we can use an adversary A that can distinguish
whether the game IND1 calls rwes or rwesi to win KIND1 with non-negligible advantage.
A′ will initialize its own KIND1 game, pick b← $({0, 1}), pick i← $({1, . . . , qo}) create
an array of uninitialized keys K[·]← × and run A. If A makes an Enc(u, π, o, ad,m) or
Dec(u, π, o, ad, c) query A′ will first check if it has already stored a key for object o, i.e.
if K[o,#] ∈ K. If A′ does not yet have a key stored it will call its own Derive(u, π, o,#)
oracle and subsequently Reveal(o,#) if o is not the i-th object queried and Challenge(o,#)
if o is the i-th object. The respective oracle will return a key k and A′ will set K[o,#]← k.
Finally A′ will use K[o,#] to encrypt or decrypt the message or ciphertext, respectively.
For A’s Challenge(u, π, o, ad,m0,m1) query A′ will abort if o is not the i-th object or if
the requirements are not met (line 31 in Fig. 3). Otherwise it will use K[o,#] (and derive
K[o,#] if necessary as described above) to encrypt mb. Finally, to answer Corrupt(u)
queries A′ will check if the requirements (line 23 in Fig. 3) are met. If not, A′ will abort
as A would lose anyway. Otherwise it will forward the Corrupt query to its own game
and return σu to A. Now observe that the simulation succeeds (except in cases where
A would lose anyway) if A′ guessed correctly that the i-th object would be challenged.
Moreover, A′ simulates IND1 with rwes if it is playing KIND0

1 and IND1 with rwesi if it is
playing KIND1

1. When A makes its guess, A′ will make the corresponding guess in its own
game.

Lemma 5. Let rwesi be the construction from Lemma 4 and I an IFP. For any adversary
A that queries at most qo different objects there exists an adversary A′ with comparable
efficiency such that

Adv1-ind
rwesi(I,A) ≤ qo ·Advind

aead(A′).

Proof. A′ picks i ← $({1, . . . , qo}), initializes rwesi and maintains all secret states to
answer A’s oracle queries, with the exception of queries related to the i-th object. Corrupt
queries are not allowed for any u that have access to the i-th object as A′ guessed it is the

Jeroen Pijnenburg and Bertram Poettering 19

challenge object. So in this case A′ can abort (either during the corrupt query or later
when the i-th object becomes known). For any Enc, Dec or Challenge queries related to
the i-th object, A′ will forward the query to the oracles in its own IND game and return
the result to A. (Note A′ can call the Enc oracle in its own game with the same messages
to answer A’s Enc queries.) Recall in the IND1 game with rwesi a uniformly random key
gets selected for encryptions and decryptions related to the i-th object, so A′ perfectly
simulates to A if it guessed correctly that the i-th object would be challenged. We conclude
A′ simulates INDb

1 with rwesi if and only if it is playing INDb. When A makes its guess,
A′ will make the corresponding guess in its own game.

Theorem 4. Let rwes be the RWES construction given in Fig. 8, I an IFP, A an
adversary, and Advint

rwes(I,A) the advantage that A has against construction rwes in the
RWES integrity game of Fig. 6. For any adversary A that queries at most qo different
objects (i.e., qo ≤ |O|) there exist adversaries A′,A′′ of comparable efficiency such that

Advint
rwes(I,A) ≤ qo ·

(
Adv1-kind

kas (I,A′) + Advint
aead(A′′)

)
.

Proof. The proof follows from Lemmas 6 and 7 (below).

Lemma 6. Let rwes be the RWES construction from Theorem 4, rwesi the construction
similar to rwes with the exception that for the i-th new object the derive algorithm is
replaced by sampling a key k ← $(K), and I an IFP. For any adversary A that queries at
most qo different objects there exists an adversary A′ with comparable efficiency such that

Advint
rwes(I,A) ≤ Advint

rwesi(I,A) + qo ·Adv1-kind
kas (I,A′).

Proof. To prove the result we will show we can use an adversary A that can distinguish
whether the game INT calls rwes or rwesi to win KIND1 with non-negligible advantage. A′
will initialize its own KIND1 game, pick i← $({1, . . . , qo}) create an array of uninitialized
keys K[·]← × and run A. If A makes an Enc(u, π, o, ad,m) or Dec(u, π, o, ad, c) query A′
will first check if it has already stored a key for object o, i.e. if K[o,#] ∈ K. If A′ does
not yet have a key stored it will call its own Derive(u, π, o,#) oracle and subsequently
Reveal(o,#) if o is not the i-th object queried and Challenge(o,#) if o is the i-th object.
The respective oracle will return a key k and A′ will set K[o,#] ← k. Finally A′ will
use K[o,#] to encrypt or decrypt the message or ciphertext, respectively. To answer
Corrupt(u) queries A′ will check if o 6 u for the i-th object o. If not, A′ will abort as A
will not win with a forgery for object o. Otherwise it will forward the Corrupt query to
its own game and return σu to A. Now observe that the simulation succeeds (except in
cases where A would lose anyway) if A′ guessed correctly that a ciphertext for the i-th
object would be forged. Moreover, A′ simulates INT with rwes if it is playing KIND0

1
and INT with rwesi if it is playing KIND1

1. When A makes its guess, A′ will make the
corresponding guess in its own game.

Lemma 7. Let rwesi be the construction from Lemma 6 and I an IFP. For any adversary A
that queries at most qo different objects there exists an adversary A′ with comparable
efficiency such that

Advint
rwesi(I,A) ≤ qo ·Advint

aead(A′).

Proof. A′ picks i ← $({1, . . . , qo}), initializes rwesi and maintains all secret states to
answer A’s oracle queries, with the exception of queries related to the i-th object. Corrupt
queries are not allowed for any u that have access to the i-th object as A′ guessed A wins
the game with a forgery for this object. So in this case A′ can abort (either during the
corrupt query or later when the i-th object becomes known). For any Enc or Dec queries
related to the i-th object, A′ will forward the query to the oracles in its own INT game

20 Key Assignment Schemes with Authenticated Encryption, revisited

and return the result to A. Recall in the INT game with rwesi a uniformly random key
gets selected for encryptions and decryptions related to the i-th object, so A′ perfectly
simulates to A if it guessed correctly that the i-th object would be used for a forgery.
When A forges, A′ will have forwarded the query to the Dec oracle and won in its own
game.

8 Conclusion
The cryptographic primitive that we consider has a long history in practically implementing
hierarchical access control. After giving a careful critique of recent prior work (published in
ToSC 2018(4), presented at FSE 2019), we note that there are two main profiles in access
control: read-only access and read-write access. These call for an individual treatment
with dedicated models and constructions. We deliver precisely this, and observe that while
the one primitive is naturally built from regular AEAD, the other requires a stronger
symmetric building block, Encryptment, that has recently been proposed in a considerably
different context.

Acknowledgments
The research of Pijnenburg was supported by the EPSRC and the UK government as part of
the Centre for Doctoral Training in Cyber Security at Royal Holloway, University of London
(EP/P009301/1). We thank the reviewers of ToSC for their particularly detailed and helpful
comments.

References
[ABFF09] Mikhail J. Atallah, Marina Blanton, Nelly Fazio, and Keith B. Frikken. Dy-

namic and efficient key management for access hierarchies. ACM Trans. Inf.
Syst. Secur., 12(3):18:1–18:43, January 2009.

[ADFM06] Giuseppe Ateniese, Alfredo De Santis, Anna Lisa Ferrara, and Barbara Masucci.
Provably-secure time-bound hierarchical key assignment schemes. In Ari Juels,
Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors, ACM CCS
2006, pages 288–297. ACM Press, October / November 2006.

[ADFM12] Giuseppe Ateniese, Alfredo De Santis, Anna Lisa Ferrara, and Barbara Masucci.
Provably-secure time-bound hierarchical key assignment schemes. Journal of
Cryptology, 25(2):243–270, April 2012.

[AFB05] Mikhail J. Atallah, Keith B. Frikken, and Marina Blanton. Dynamic and
efficient key management for access hierarchies. In Vijayalakshmi Atluri,
Catherine Meadows, and Ari Juels, editors, ACM CCS 2005, pages 190–202.
ACM Press, November 2005.

[AP19a] Marcel Armour and Bertram Poettering. Substitution attacks against message
authentication. IACR Trans. Symm. Cryptol., 2019(3):152–168, 2019.

[AP19b] Marcel Armour and Bertram Poettering. Subverting decryption in AEAD. In
Martin Albrecht, editor, 17th IMA International Conference on Cryptography
and Coding, volume 11929 of Lecture Notes in Computer Science, pages 22–41.
Springer, Cham, 2019.

[AS87] Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness. Dis-
tributed Computing, 2(3):117–126, 1987.

Jeroen Pijnenburg and Bertram Poettering 21

[AT83] Selim G. Akl and Peter D. Taylor. Cryptographic solution to a problem of
access control in a hierarchy. ACM Trans. Comput. Syst., 1(3):239–248, 1983.

[CC02] Tzer-Shyong Chen and Yu-Fang Chung. Hierarchical access control based on
Chinese Remainder Theorem and symmetric algorithm. Computers & Security,
21(6):565–570, 2002.

[CDM10] Jason Crampton, Rosli Daud, and Keith M. Martin. Constructing key as-
signment schemes from chain partitions. In Sara Foresti and Sushil Jajodia,
editors, Data and Applications Security and Privacy XXIV, 24th Annual IFIP
WG 11.3 Working Conference, Rome, Italy, June 21-23, 2010. Proceedings,
volume 6166 of Lecture Notes in Computer Science, pages 130–145. Springer,
2010.

[CDM+16] Arcangelo Castiglione, Alfredo De Santis, Barbara Masucci, Francesco Palmieri,
and Aniello Castiglione. On the relations between security notions in hierar-
chical key assignment schemes for dynamic structures. In Joseph K. Liu and
Ron Steinfeld, editors, ACISP 16, Part II, volume 9723 of LNCS, pages 37–54.
Springer, Heidelberg, July 2016.

[CFG+15] Jason Crampton, Naomi Farley, Gregory Gutin, Mark Jones, and Bertram
Poettering. Cryptographic enforcement of information flow policies without
public information. In Tal Malkin, Vladimir Kolesnikov, Allison Bishop Lewko,
and Michalis Polychronakis, editors, ACNS 15, volume 9092 of LNCS, pages
389–408. Springer, Heidelberg, June 2015.

[CFG+17] Jason Crampton, Naomi Farley, Gregory Z. Gutin, Mark Jones, and Bertram
Poettering. Cryptographic enforcement of information flow policies without
public information via tree partitions. Journal of Computer Security, 25(6):511–
535, 2017.

[CMW06] Jason Crampton, Keith M. Martin, and Peter R. Wild. On key assignment
for hierarchical access control. In 19th IEEE Computer Security Foundations
Workshop, (CSFW-19 2006), 5-7 July 2006, Venice, Italy, pages 98–111. IEEE
Computer Society, 2006.

[CT17] Yi-Ruei Chen and Wen-Guey Tzeng. Hierarchical key assignment with dynamic
read-write privilege enforcement and extended KI-security. In Dieter Gollmann,
Atsuko Miyaji, and Hiroaki Kikuchi, editors, ACNS 17, volume 10355 of LNCS,
pages 165–183. Springer, Heidelberg, July 2017.

[DDFM09] Paolo D’Arco, Alfredo De Santis, Anna Lisa Ferrara, and Barbara Ma-
succi. Security and tradeoffs of the Akl-Taylor scheme and its variants. In
Rastislav Královic and Damian Niwinski, editors, Mathematical Foundations
of Computer Science 2009, 34th International Symposium, MFCS 2009, Novy
Smokovec, High Tatras, Slovakia, August 24-28, 2009. Proceedings, volume
5734 of Lecture Notes in Computer Science, pages 247–257. Springer, 2009.

[DDFM10] Paolo D’Arco, Alfredo De Santis, Anna Lisa Ferrara, and Barbara Masucci.
Variations on a theme by Akl and Taylor: Security and tradeoffs. Theor.
Comput. Sci., 411(1):213–227, 2010.

[DFM07] Alfredo De Santis, Anna Lisa Ferrara, and Barbara Masucci. Efficient provably-
secure hierarchical key assignment schemes. In Ludek Kucera and Antonín
Kucera, editors, Mathematical Foundations of Computer Science 2007, 32nd
International Symposium, MFCS 2007, Ceský Krumlov, Czech Republic, August

22 Key Assignment Schemes with Authenticated Encryption, revisited

26-31, 2007, Proceedings, volume 4708 of Lecture Notes in Computer Science,
pages 371–382. Springer, 2007.

[DFM11] Alfredo De Santis, Anna Lisa Ferrara, and Barbara Masucci. Efficient provably-
secure hierarchical key assignment schemes. Theor. Comput. Sci., 412(41):5684–
5699, 2011.

[DGRW18] Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and Joanne Woodage.
Fast message franking: From invisible salamanders to encryptment. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume
10991 of LNCS, pages 155–186. Springer, Heidelberg, August 2018.

[FP11] Eduarda S. V. Freire and Kenneth G. Paterson. Provably secure key assignment
schemes from factoring. In Udaya Parampalli and Philip Hawkes, editors,
ACISP 11, volume 6812 of LNCS, pages 292–309. Springer, Heidelberg, July
2011.

[FPP13] Eduarda S. V. Freire, Kenneth G. Paterson, and Bertram Poettering. Simple,
efficient and strongly KI-secure hierarchical key assignment schemes. In
Ed Dawson, editor, CT-RSA 2013, volume 7779 of LNCS, pages 101–114.
Springer, Heidelberg, February / March 2013.

[Gud80] Ehud Gudes. The design of a cryptography based secure file system. Software
Engineering, IEEE Transactions on, SE-6:411–420, 10 1980.

[HL90] Lein Harn and Hung-Yu Lin. A cryptographic key generation scheme for
multilevel data security. Computers & Security, 9(6):539–546, 1990.

[KP18a] Suyash Kandele and Souradyuti Paul. Key assignment scheme with authenti-
cated encryption. IACR Trans. Symm. Cryptol., 2018(4):150–196, 2018.

[KP18b] Suyash Kandele and Souradyuti Paul. Key assignment scheme with authen-
ticated encryption. Cryptology ePrint Archive, Report 2018/1233, 2018.
https://eprint.iacr.org/2018/1233.

[LRW02] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ciphers.
In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 31–46.
Springer, Heidelberg, August 2002.

[MTMA85] Stephen J. MacKinnon, Peter D. Taylor, Henk Meijer, and Selim G. Akl.
An optimal algorithm for assigning cryptographic keys to control access in a
hierarchy. IEEE Trans. Computers, 34(9):797–802, 1985.

[Rog02] Phillip Rogaway. Authenticated-encryption with associated-data. In Vijayalak-
shmi Atluri, editor, ACM CCS 2002, pages 98–107. ACM Press, November
2002.

[Shi07] R. Shirey. Internet Security Glossary, Version 2. RFC 4949, August 2007.

[Sho04] Victor Shoup. ISO 18033-2: An emerging standard for public-key encryption.
http://shoup.net/iso/std6.pdf, December 2004. Final Committee Draft.

[Tze06] Wen-Guey Tzeng. A secure system for data access based on anonymous
authentication and time-dependent hierarchical keys. In Ferng-Ching Lin,
Der-Tsai Lee, Bao-Shuh Lin, Shiuhpyng Shieh, and Sushil Jajodia, editors,
ASIACCS 06, pages 223–230. ACM Press, March 2006.

[WC01] Tzong-Chen Wu and Chin-Chen Chang. Cryptographic key assignment scheme
for hierarchical access control. International Journal of Computer Systems
Science and Engineering, 16(1), 2001.

https://eprint.iacr.org/2018/1233
http://shoup.net/iso/std6.pdf

Jeroen Pijnenburg and Bertram Poettering 23

A Support Material for Section 2

A.1 Scheme A
The encryption scheme specified in Fig. 9 is formally secure according to the IND-PRV and
INT notions from [KP18a, Fig. 2]. However, as quite simple attacks show, the scheme offers
neither confidentiality (against passive let alone active adversaries) nor authenticity in an
intuitive sense. The ideas behind the construction are: (a) encryption keys are additively
made up of two shares, k0 and k1, and each encryption operation leaks (via the tag) one of
the two shares to the public, meaning that key recovery may be possible after seeing just
two ciphertexts, and (b) the essential part of the tag is computed using a public function.

Proc gen
00 k0 ← $(K)
01 k1 ← $(K)
02 k+ ← k0 ⊕ k1

03 k ← (k0, k1, k+)
04 Return k

Proc enc(k,m)
05 (k0, k1, k+)← k
06 c← enc′(k+,m)
07 b← |m| mod 2
08 (u, v)← (kb, H(c))
09 t← (u, v)
10 Return (c, t)

Proc dec(k, c, t)
11 (k0, k1, k+)← k
12 (u, v)← t
13 v′ ← H(c)
14 Require v′ = v
15 m← dec′(k+, c)
16 Return m

Figure 9: We let K = {0, 1}256, write ⊕ for the bit-wise exclusive-or combination of two
same-length strings, write |·| for the length of a string (e.g., in bits), and use enc′,dec′
and H as placeholders for CPA-secure encryption/decryption algorithms with key space K,
and a collision-resistant hash function, respectively. If the condition in line 14 is not
fulfilled, the dec algorithm fails.

A.2 Scheme B
The encryption scheme specified in Fig. 10 is an encrypt-then-mac design where the
MAC component is itself composed of a universal hash function (UHF) followed by a
pseudorandom function. This construction is formally secure according to the IND-PRV
and INT notions from [KP18a, Fig. 2], and also according to the classic notions. It is a
standard property of the most efficient UHFs that collisions can be efficiently computed if
the hashing key is known. For instance, if the UHF is instantiated via polynomial hashing
(as in GCM or Poly1305), a couple of field operations are sufficient for this. This shows
that the goal of the INT notion, namely to ensure that for any tag at most one valid
ciphertext can be found, immediately has to be given up once key k becomes public.

Proc gen
00 ke ← $(K)
01 kh ← $(K)
02 kt ← $(K)
03 k ← (ke, kh, kt)
04 Return k

Proc enc(k,m)
05 (ke, kh, kt)← k
06 c← enc′(ke,m)
07 h← UHF(kh, c)
08 t← F (kt, h)
09 Return (c, t)

Proc dec(k, c, t)
10 (ke, kh, kt)← k
11 h← UHF(kh, c)
12 t′ ← F (kt, h)
13 Require t′ = t
14 m← dec′(ke, c)
15 Return m

Figure 10: We let K = {0, 1}256, and use enc′,dec′ and UHF and F as placeholders for CPA-
secure encryption/decryption algorithms, a universal hash function, and a pseudorandom
function, respectively, all with key space K. If the condition in line 13 is not fulfilled, the
dec algorithm fails.

24 Key Assignment Schemes with Authenticated Encryption, revisited

B Macros for game termination
Table 1 reproduces definitions from Sec. 3.1 in tabular form.

Table 1: Macros for game termination

Win — Stop with T
Lose — Stop with F
Reward cond — If cond: Win
Penalize cond — If cond: Lose
Promise cond — If ¬cond: Win
Require cond — If ¬cond: Lose

C Encryptment from One-Time Encryption and Hashing
In Sec. 3.3 we recall the definition of encryptment from [DGRW18]. Quite obviously, this
primitive can be realized by combining regular symmetric encryption with a cryptographic
hash function. For completeness, and without claiming novelty, we specify the details of
this construction in Fig. 11. To obtain an encryptment scheme enc,dec for a message
spaceM, the required building blocks are a one-time passively secure symmetric encryption
scheme enc′,dec′ forM and a collision resistant hash function H : {0, 1}∗ → {0, 1}l, for a
suitable value l. The security argument is trivial.

Proc enc(k,m)
00 c← enc′(k,m)
01 bt ← H(c)
02 Return (bt, c)

Proc dec(k, bt, c)
03 Require H(c) = bt
04 m← dec′(k, c)
05 Return m

Figure 11: Construction of encryptment. If the condition in line 03 is not fulfilled, the
dec algorithm fails.

D Simple KAS transforms
In Fig. 12 we indicate two simple transforms that illustrate that the syntactical and
semantical changes to KAS that we carried out in Sec. 4.2 are minor. Concretely, the
transform in Fig. 12 (top) shows how support for associated data can be retrofitted
into a classical KAS by outputting as the derived (ad-dependent) key the output of a
pseudorandom function F keyed with a classical (ad-independent) key and evaluated on
the ad input. The second transform in Fig. 12 (bottom) shows how a collision-resistant
hash function H can be used to protect a KAS with explicit input of a public state against
attacks where the adversary tricks users to derive keys using an unauthentic public state.

E RWES Construction from KAS and AE
In Fig. 13 we specify a construction of RWES that is secure according to our definitions. It
is very similar to that of Fig. 8 but leverages the associated-data input of KAS such that
the construction could be implemented with an AE scheme instead of an AEAD scheme.

Jeroen Pijnenburg and Bertram Poettering 25

Proc setup(I)
00 (~σ, π)← setup′(I)
01 Return (~σ, π)

Proc derive(σ, π, o, ad)
02 k′ ← derive′(σ, π, o)
03 k ← F (k′, ad)
04 Return k

Proc setup(I)
05 (~σ′, π)← setup′(I)
06 h′ ← H(π)
07 For all u ∈ U :
08 σu ← (h′, σ′u)
09 Return (~σ, π)

Proc derive(σ, π, o)
10 (h′, σ′)← σ
11 Require H(π) = h′

12 k′ ← derive′(σ′, π, o)
13 Return k′

Figure 12: Two constructions of a KAS setup,derive from a KAS setup′,derive′. We
assume building blocks F : K ×AD → K and H : {0, 1}∗ → {0, 1}256. If the condition in
line 11 is not fulfilled, the derive algorithm fails.

F Discussion of Security Games
In this section we will refer to line numbers in the security games using square brackets.

F.1 AEAD
In Fig. 1 we provide security games for AEAD. Here we discuss some of the subtleties in the
games. We remark in the SAFE game in [06] we promise c /∈ C[ad], implying encryption
is randomized. It should be obvious the promise in [12] ensures that the dec procedures
outputs the correct message if the ciphertext was output of the Enc oracle. In this case we
can also overwrite the message, as it is already known to the adversary. Next, we recall an
algorithm may fail. In particular, the integrity game makes critical use of this: the dec
procedure must reject unauthentic ciphertexts such that [23], which rewards the adversary,
is not executed. Again, for consistency, we can overwrite the message because the game
would have ended if it was not output of the Enc oracle. Finally, in the indistinguishability
games in [36] we crucially overwrite the message if the ciphertext was output of the Enc
oracle such that the adversary does not trivially learn which message was encrypted.

F.2 Encryptment
In Fig. 2 we provide security games for encryptment. Here we discuss some of the subtleties
in the games. We remark the games are now specified for a specific message, but this is not
restrictive as the advantage is defined as a maximum over all m ∈M. Similarly, the SAFE

Proc setup(I)
00 (~σ′, π)← setup′(I)
01 h′ ← H(π)
02 For all u ∈ U :
03 σu ← (h′, σ′u)
04 Return (~σ, π)

Proc enc(σu, π, o, ad,m)
05 (h′, σ′u)← σu

06 Require H(π) = h′

07 k ← derive′(σ′u, π, o, ad)
08 c← enc′(k,#,m)
09 Return c

Proc dec(σu, π, o, ad, c)
10 (h′, σ′u)← σu

11 Require H(π) = h′

12 k ← derive′(σ′u, π, o, ad)
13 m← dec′(k,#, c)
14 Return m

Figure 13: Our alternative RWES construction with procedures setup, enc,dec using
procedures setup′,derive′ of a generic KAS kas, procedures enc′,dec′ of a generic AEAD
scheme aead, and a collision-resistant hash function H. In [08,13] we write # for any fixed
associated-data string; in particular this can be the empty string. If the conditions in
[06,11] are not fulfilled, the respective algorithm fails.

26 Key Assignment Schemes with Authenticated Encryption, revisited

and INT games are specified for a specific key with the advantage defined as the maximum
over all keys. Moreover, the adversary is provided with the key, as safety and integrity
should be maintained even when the key becomes public. For the indistinguishability
games we do not provide the key to the adversary as this would allow for trivial decryption.
In addition, we must sample a key uniformly at random. Otherwise, an adversary which
always attempts decryption for a hard-coded key would have an advantage of 1 when
we take the maximum over all keys. Finally, recall an algorithm may fail. In particular,
the integrity game crucially depends on this: the dec procedure must reject unauthentic
ciphertexts such that [12], which rewards the adversary, is not executed. Similarly to
F.1, we overwrite the decrypted message if it was generated by the game such that in
the indistinguishability games the adversary does not trivially learn which message was
encrypted.

F.3 KAS
In Fig. 3 we provide security games for KAS. Here we discuss some of the key ideas in
the games. In the SAFE game we promise the user has access to the object [05]. This
implies for any safe construction the derive procedure will fail when it attempts to derive
a key for an object the user cannot access. If an authentic public state is used, the SAFE
game promises each user derives identical keys for each object given they use identical
associated data [08]. Note the SAFE game makes no such promise for unauthentic public
states. In the KIND games we remark an adversary is only allowed to either Reveal or
Challenge a key for a specific object o and associated data ad, but not both. We encode
this by requiring the queried key is in the key space [26,30]. Correspondingly, we overwrite
K[o, ad] in [28,34] with � to encode revealed/challenged keys. Since uninitialized keys
are also not in the key space, the adversary must first Derive the keys it wishes to use.
For any key derived with an authentic public state the adversary can decide to reveal
or challenge it. Clearly, the Derive oracle must not output challengeable keys. So, if an
authentic public state was provided, we overwrite the key with ? to encode this [20]. If
an unauthentic public state was provided, and the derive procedure outputs a key, the
Derive oracle will simply return the key to the adversary. Finally, we note to avoid trivial
attacks the adversary is not allowed to Challenge and Corrupt (a user that can access) the
same object. The remaining lines in these oracles actively track queries and exclude these
attacks.

F.4 ROES
In Fig. 4 we provide security games for ROES. Here we discuss some of the subtleties in
the games. For the SAFE game it is again important to recall an algorithm is allowed to
fail. In particular, if a user is unauthorized the read procedure must fail. Indeed, it is
promised read will only retrieve messages for authorized users [04]. The integrity game
rewards the adversary (for any object) if the read procedure accepts any ciphertext that
was not generated by the game for the specified object. The corruption of any user is
allowed, capturing the fact that even insiders should not be able to create different, valid
ciphertexts. The indistinguishability games are specified for all functions from M to
O. In a similar fashion to our other indistinguishability notions, we only consider the
combination of two functions if each object is mapped to equivalent messages under them
[20]. We mark messages as challenge messages if they are different [21]. The Corrupt
oracle prevents trivial attacks where the adversary corrupts a user authorized to access
a challenge message [30]. The corruption of users which do not have access to challenge
messages precisely captures that unauthorized users should have no information that can
help distinguish these messages.

Jeroen Pijnenburg and Bertram Poettering 27

F.5 RWES

In Fig. 6 and Fig. 7 we provide security games for RWES. Here we discuss some of the
subtleties in the games. In the SAFE game, we first remark we promise only authorized
users are able to encrypt and decrypt messages. This implies the enc and dec procedures
must fail for unauthorized users. Next, we promise in [09] that c /∈ C[o, ad], implying
encryption is randomized. It should be obvious the promise in [16] ensures that the dec
procedures outputs the correct message if the ciphertext was output of the Enc oracle
when provided with an authentic public state. Note that the INT game also makes critical
use of the fact procedures can fail: the dec procedure must reject unauthentic ciphertexts
such that the oracle aborts and the adversary is not rewarded. Of course, we only reward
the adversary for a forgery if the adversary had not corrupted a user with access to the
object. Finally, in the IND game in [20] we overwrite the message if the ciphertext was
output of the Enc or Challenge oracle such that the adversary does not trivially learn
which message was encrypted in the case of a Challenge query. We note that in the case
of an Enc query, the adversary already knows the message anyway, so it does not need to
learn this from the Dec oracle. The remaining lines in the Challenge and Corrupt oracles
are there to track these queries and exclude trivial attacks where the adversary challenges
and corrupts the same object.

G One-time to t-time reductions

G.1 KAS

Proof of Lemma 1. Let Hi denote the hybrid of the KINDt game where the first
i challenge queries output the real key and the remaining challenge queries output a
random key. Clearly H0 = KIND1

t and Ht = KIND0
t . We define Advhyb

i,i+1(I,A) :=
|Pr[Hi(I,A)] − Pr[Hi+1(I,A)]|. By the triangle inequality we have Advt-kind(I,A) ≤∑t−1

i=0 Advhyb
i,i+1(I,A), so there must exist a j s.t. 0 ≤ j < t and Advt-kind(I,A) ≤

t · Advhyb
j,j+1(I,A). To prove the result it remains to show we can use an adversary A

that can distinguish between Hi and Hi+1 to win the KIND1 game with non-negligible
advantage. A′ will initialise its own game KIND1 and run A. Any queries that A makes
to the Corrupt, Derive and Reveal oracles are forwarded to A′’s own oracles after checking
for the requirements in the game oracles. (A′ will abort if the requirements are not met
as A would lose the game anyway.) When A makes a Challenge(o, ad) query A′ will first
check it is a valid challenge. If it is not valid A′ will abort as A would lose the game
anyway. Otherwise A′ will proceed as follows, where qc counts the number of preceding
challenge queries:

• If qc < j: A′ makes the corresponding Reveal (and Derive if necessary) query, adds
(o, ad) to CH and returns k to A.

• If qc = j: A′ makes the corresponding Challenge (and Derive if necessary) query,
adds (o, ad) to CH and returns k to A.

• If qc > j: A′ makes the corresponding Derive query if necessary, picks k ←$ K, adds
(o, ad) to CH and returns k to A.

Now observe A′ simulates Hj to A in the case A′ is playing KIND1
1 and Hj+1 in the case

A′ is playing KIND0
1. When A makes its guess, A′ will make the corresponding guess in

its own game. We conclude Advhyb
j,j+1(I,A) ≤ Adv1-kind(I,A′).

28 Key Assignment Schemes with Authenticated Encryption, revisited

G.2 RWES
Proof of Lemma 2. Let Hi denote the hybrid of the INDt game where the first i
challenge queries output the encryption of m0 and the remaining challenge queries output
the encryption of m1. Clearly H0 = IND1

t and Ht = IND0
t . We define Advhyb

i,i+1(I,A) :=
|Pr[Hi(I,A)] − Pr[Hi+1(I,A)]|. By the triangle inequality we have Advt-ind(I,A) ≤∑t−1

i=0 Advhyb
i,i+1(I,A), so there must exist a j s.t. 0 ≤ j < t and Advt-ind(I,A) ≤ t ·

Advhyb
j,j+1(I,A). To prove the result it remains to show we can use an adversary A that

can distinguish between Hi and Hi+1 to win the IND1 game with non-negligible advantage.
A′ will initialise its own game IND1 and run A. Any queries that A makes to the Corrupt,
Enc and Dec oracles are forwarded to A′’s own oracles after checking for the requirements
in the game oracles. (A′ will abort if the requirements are not met as A would lose the
game anyway.) When A makes a Challenge(u, π, o, ad,m0,m1) query A′ will first check
it is a valid challenge. If it is not valid A′ will abort as A would lose the game anyway.
Otherwise A′ will proceed as follows, where qc counts the number of preceding challenge
queries:

• If qc < j: A′ makes an Enc(u, π, o, ad,m0) query, adds (o, ad) to CH and returns c
to A.

• If qc = j: A′ forwards the Challenge query, adds (o, ad) to CH and returns c to A.

• If qc > j: A′ makes an Enc(u, π, o, ad,m1) query, adds (o, ad) to CH and returns c
to A.

Now observe A′ simulates Hj to A in the case A′ is playing IND1
1 and Hj+1 in the case

A′ is playing IND0
1. When A makes its guess, A′ will make the corresponding guess in its

own game. We conclude Advhyb
j,j+1(I,A) ≤ Adv1-ind(I,A′).

	Introduction
	Prior Work
	Motivation of this Work
	Contributions

	A Critique of [KP]
	Preliminaries
	Notation
	AEAD
	Encryptment

	Information Flow Policies and Key Assignment
	Information Flow Policies
	Enforcement via Key Assignment

	Read-Only Enforcement
	Syntax and Security
	Construction

	Read-Write Enforcement
	Syntax and Security
	Construction

	Security proofs
	ROES security proofs
	RWES security proofs

	Conclusion
	Support Material for Section 2
	Scheme A
	Scheme B

	Macros for game termination
	Encryptment from One-Time Encryption and Hashing
	Simple KAS transforms
	RWES Construction from KAS and AE
	Discussion of Security Games
	AEAD
	Encryptment
	KAS
	ROES
	RWES

	One-time to t-time reductions
	KAS
	RWES

