
Lattice-Based E-Cash, Revisited

Amit Deo1,3, Benôıt Libert2,1, Khoa Nguyen4, and Olivier Sanders5

1 ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, Inria, UCBL), France
2 CNRS, Laboratoire LIP, France

3 Inria, France
4 School of Physical and Mathematical Sciences, Nanyang Technological University,

Singapore
5 Orange Labs, Applied Crypto Group, Cesson-Sévigné, France

Abstract. Electronic cash (e-cash) was introduced 40 years ago as the
digital analogue of traditional cash. It allows users to withdraw elec-
tronic coins that can be spent anonymously with merchants. As advo-
cated by Camenisch et al. (Eurocrypt 2005), it should be possible to
store the withdrawn coins compactly (i.e., with logarithmic cost in the
total number of coins), which has led to the notion of compact e-cash.
Many solutions were proposed for this problem but the security proofs
of most of them were invalidated by a very recent paper by Bourse et al.
(Asiacrypt 2019). The same paper describes a generic way of fixing ex-
isting constructions/proofs but concrete instantiations of this patch are
currently unknown in some settings. In particular, compact e-cash is no
longer known to exist under quantum-safe assumptions. In this work, we
resolve this problem by proposing the first secure compact e-cash system
based on lattices following the result from Bourse et al. Contrarily to the
latter work, our construction is not only generic, but we describe two
concrete instantiations. We depart from previous frameworks of e-cash
systems by leveraging lossy trapdoor functions to construct our coins.
The indistinguishability of lossy and injective keys allows us to avoid the
very strong requirements on the involved pseudo-random functions that
were necessary to instantiate the generic patch proposed by Bourse et al.

Keywords. Lattice-based cryptography, e-cash, anonymity, exculpabil-
ity, provable security.

1 Introduction

The last decades have witnessed major changes in consumer habits, with a grad-
ual shift to credit/debit cards for payments. Since 2016, the total amount of card
payment transactions worldwide has indeed exceeded that of cash transactions,6

as card transactions simply make spending easier and enable online purchases.
However, the benefits of electronic payments come at a price. Each transac-

tion indeed leaks very sensitive information (at least to the entity managing the
payment system), such as the identity of the recipient, the amount, the location

6 https://avpsolutions.com/blog/payment-cards-now-set-to-surpass-cash/

of the spender, etc. For example, a patient paying his cardiologist with his card
implicitly reveals to his bank that he probably has a heart condition, which is
far from insignificant.

One could argue that, in some cases, the users’ or recipients’ identities can be
masked through pseudonyms, but the concrete privacy benefits of this solution
are questionable. Indeed, even for systems without central authority such as
Bitcoin, pseudonymity only provides limited anonymity guarantees as shown for
example by Ron and Shamir [31]. A natural question in this context is whether
we can achieve the best of the two worlds. Namely, can we combine the features
of electronic payments together with the anonymity of traditional cash?

Related Work. A first answer to this question was provided by Chaum in
1982 [13] when he introduced the notion of electronic cash (e-cash). Concretely,
an electronic coin is the digital analogue of a standard coin/banknote that is
issued by an authority, called a bank, to users. The authenticity of coins can
be checked publicly, which allows users to spend them anonymously with any
merchant who knows the bank public key. Unfortunately, the comparison stops
there, as there is a major difference between physical and electronic coins. In the
first case, the physical support is assumed to be unclonable, unless for extremely
powerful adversaries. Obviously, the same assumption does not hold for digital
data, and it is thus necessary to deter multiple spendings of the same coin.

However, detecting multiple uses of the same coin without affecting the
anonymity of honest users is challenging. Chaum achieved this using blind sig-
natures [13], by associating each coin with a serial number that remains hidden
until the coin is spent. At this time, the serial number is added to a register that
can be public, preluding crypto-currency ledgers. Using this register, anyone can
detect the reuse of a coin, which leads to two families of e-cash systems.

The first one allows detecting frauds but does not enable the identification
of perpetrators. In this case, detection must be performed before accepting pay-
ments. These systems are thus inherently online, as any recipient must be able
to check the ledger at any time. This entails incompressible latencies to process
payments that can be prohibitive in some situations, such as payments at toll-
gates, or at turnstiles for public transport.

The second family allows for the identification of defrauders. In this case, it
is no longer necessary to check the coin upfront, as the defrauders know that
they will ultimately be identified and then prosecuted. This simplifies the whole
payment process as the e-cash system can now work offline.

It is hard today to discuss e-cash without mentioning crypto-currencies such
as Bitcoin. The distinction between the two families above highlights the first
difference between such systems. Crypto-currencies are indeed necessarily online
whereas e-cash can be offline. However the main difference between these two
systems rather lies in the trust model. The main strength of crypto-currencies
is probably the absence of a central authority. This helps them circumvent the
traditional reluctance of banks to novelties because a crypto-currency can be
launched (almost) from scratch. In contrast, an e-cash system requires the sup-

2

port of a financial institution. Nevertheless, the absence of a central authority
is also the main drawback of crypto-currencies. It indeed means that, in case
of theft or loss of secret keys, the users lose everything, which is a major issue
that we believe to be unacceptable for the general public. In the e-cash setting,
where some authority manages the system, handling these situations is quite
easy (corresponding procedures already exist for current payments systems such
as debit/credit cards). There are also differences such as compliance with legisla-
tion, etc. In all cases, the very different features of both systems mean that they
cannot be opposed. The reality is in fact the opposite and we should rather see
crypto-currencies and e-cash systems as complementary solutions for privacy-
preserving payments. From now on, we will only consider offline e-cash.

Following Chaum’s seminal work, blind signatures were the first cornerstone
of e-cash systems. Unfortunately, this design strategy comes with some limita-
tions, such as the need to withdraw and store coins one by one, which quickly
becomes cumbersome (see, e.g., [9]). This problem was addressed by Camenisch
et al. [11] who proposed the notion of compact e-cash, where users withdraw and
store N coins (that constitute a wallet) with constant, or at least logarithmic,
complexity. The core idea of their construction – which has become the blueprint
of most following works – is to associate each wallet with two seeds k and t for a
pseudo-random function (PRF) family. These two seeds are then used to generate
N pairs of pseudo-random values (PRFk(i),PRFt(i)). The former (i.e., PRFk(i))
serves as the coin serial number whereas PRFt(j) essentially acts as a one-time
pad on the spender’s identity, resulting in a so-called double-spending tag. In
case a coin is spent more than once, the same mask PRFt(j) is used twice and
can thus be cancelled out to reveal the defrauder’s identity.

This elegant construction underlies many subsequent systems, including a
candidate based on lattices [24]. Unfortunately, a recent result by Bourse et
al. [9] has shown the limitations of this framework. In particular, they high-
lighted that systems based on it may fail to provably achieve exculpability, i.e.,
the property that honest users cannot be wrongly accused of double-spending a
coin, even when the bank and other users conspire against them. As this issue
underlies most of our design choices, we need to recall some details on it.

In the CHL construction [11], the serial number and the double-spending
tag are constructed from the PRF outputs mentioned above but also from the
spender’s public key and some public data that can be seen as the unique iden-
tifier of a transaction. In case of double-spendings, it can be shown that the
perpetrator will necessarily be identified. Unfortunately, Bourse et al pointed
out that the opposite is not true, except in some very specific settings excluding
lattices, as carefully crafted serial numbers and double-spending tags might lead
the identification process to output a public key that was not even involved in
the fraudulent transactions. Actually, two spendings from different users may
even be considered as a double-spending by the system. As a consequence, the
security proofs of the e-cash construction of Libert et al. [24] and of a subsequent
improvement by Yang et al. [33] (the only schemes relying on quantum-resistant
computational assumptions) are invalid and there is no known simple fix.

3

Before accusing a user, it is therefore necessary to perform additional veri-
fications on the serial number occurring in a double-spending, in particular to
ensure that it was constructed from the same seed and the same identity. This
unfortunately seems infeasible given only PRFk(i), as in [11]. To overcome this
problem, the authors of [9] extended the serial number with new elements, each
one being protected by a fresh PRF output. To ensure exculpability, it is then
necessary to exclude collisions that could result from the PRF, leading to strong
and non-standard requirements on the latter in [9]. Indeed, Bourse et al. need a
notion of collision-resistance where, given the public parameters of a PRF fam-
ily, the adversary should be unable to output two seeds k, k′ and inputs x, x′

such that PRFk(x) = PRFk′(x
′). This might seem achievable by using a PRF

based on symmetric primitives or by applying the techniques of Farshim et al.
[17] to key-injective PRFs [22]. However, this would result in extremely ineffi-
cient e-cash constructions. Indeed, achieving security against cheating spenders
requires to have them prove in zero-knowledge that they behaved honestly and
correctly evaluated these PRFs, using certified seeds with valid inputs, etc. Such
complex relations hardly coexist with the two solutions above. In particular, the
Kim-Wu PRF [22] relies on a complex encoding of inputs into matrices which
is hardly compatible with zero-knowledge techniques in lattices (recall that the
PRF inputs should be part of witnesses). These rather require PRFs with a sim-
pler algebraic structure, in the spirit of [5,8,4]. Unfortunately, the latter are not
known to achieve collision-resistance. As of today, instantiating the Bourse et
al. framework [9] from lattices would thus require to translate all statements to
be proved into Boolean circuits. This would be much more expensive (by several
orders of magnitude) than what we can hope for by leveraging the most efficient
zero-knowledge techniques in standard lattices [33].

Our Contribution. In this paper, we show that we can dispense with the
need for strong collision-resistance requirements by significantly departing from
previous frameworks [11,9]. Our core idea is to perform only one standard PRF
evaluation and use the resulting output to mask all the components of the serial
number and double-spending tag, thanks to the use of a lossy trapdoor func-
tion FLTF [29]. Recall that these are function families where injective evaluation
keys are computationally indistinguishable from lossy evaluation keys, for which
image elements reveal very little information on their preimages. In our construc-
tion, during a spending, we reveal FLTF(PRFk(i)) instead of PRFk(i) and then
extract randomness from the remaining entropy of PRFk(i) in order to mask the
spender’s public key. This masked public key constitutes the second part of our
serial number. When FLTF is set up in its lossy mode in the proof of anonymity,
we can show that the resulting serial number is indistinguishable from random
and does not leak any sensitive information on the spender. Moreover, as FLTF

can be generated in injective mode in the real scheme, in case of colliding se-
rial numbers, we are guaranteed that the same value PRFk(i) is used in all the
corresponding transactions. Together with the equality of serial numbers, this
implies that the involved public keys necessarily coincide.

4

At this stage, we are ensured that a double-spending alert can only be gen-
erated by two transactions involving the same user. Then, it only remains to
adapt the same technique to our double-spending tags, which is fairly simple.
We can then prove security of our construction based only on the standard secu-
rity properties of the pseudo-random function and the lossy trapdoor function.

However, as we intend to provide concrete constructions and not just frame-
works, we still have to realise the missing component of the coin, namely the
non-interactive zero-knowledge (NIZK) proofs that both the serial number and
the double-spending tag are well-formed. Indeed, NIZK proofs are notoriously
hard to produce in the lattice setting, at least compared to their counterparts
in cyclic groups. We start from a very recent result by Yang et al. [33] which
provides a protocol capturing many interesting lattice-related relations and show
that it can be used to prove the statements required by our e-cash system. This
is far from trivial as, in particular, spenders need to prove their correct composed
evaluation of a pseudo-random function and a lossy trapdoor function using dif-
ferent parameters for the two primitives. We nevertheless manage to propose
such NIZK arguments for two different PRF constructions [5,8], leading to two
different instantiations. Notably, the GGM-based PRF [21] of Banerjee et al. [5]
allows for the use of a polynomial modulus.

However, despite this nice asymptotic complexity, one should keep realistic
expectations about the concrete performances of our scheme according to the
current lattices state-of-the-art. We indeed note that, as of writing, most of our
building blocks (zero-knowledge proofs, PRFs, etc) remain complex tools that
can hardly compete with their pairing-based counterparts. This is highlighted by
the recent paper by Yang et al [33] showing that existing (insecure) lattice e-cash
constructions [24,33], which use building blocks similar to ours, generate trans-
actions ranging from 260 MB to 720 TB. Fortunately, any future improvements
of these tools could easily be leveraged by our construction. This is particularly
true for our zero-knowledge proofs that we manage to represent as a standard
instance of the powerful framework from [33].

Eventually, we propose the first concrete e-cash systems based on quantum-
resistant hardness assumptions, following the reset of the state-of-the art re-
sulting from [9]. Unlike [9] that modifies the CHL framework [11] by requiring
stronger properties on the original building blocks, we upgrade it by considering
alternative building blocks that are instantiable from standard lattice assump-
tions. Our work does not only lead to concrete constructions, but it also sheds
new lights on e-cash by implicitly relying on a new framework which differs
from [11,9] and does not require PRFs with non-standard security properties.

2 Preliminaries

We use lower-case bold characters (e.g. x) to denote vectors and upper-case bold
characters (e.g. M) to denote matrices. The (n× n) identity matrix is denoted
by In. A superscript > for a vector or matrix denotes its transpose (e.g. M> is
the transpose of M). For any integer q > 0, Zq denotes the integers modulo q.

5

For integers a < b, [a, b] denotes the set {a, a+ 1, . . . , b}. Alternatively if b > 1,
we define [b] := {1, . . . , b}. For any real x, we denote by bxc the greatest integer
smaller than or equal to x. In addition, for positive integers n, p, q such that
q > p, we define the rounding operation b·cp : Znq → Znp as bxcp := b(p/q) · xc.
For probability distribution D, we write s ←↩ D to denote that s is a sample of
the distribution D. If X is a set, then s ←↩ U(X) represents the sampling of a
uniform element of X. We also define the min-entropy of a discrete distribution
D as H∞(D) := − log maxx′ Prx←↩D[x = x′]. The statistical distance between
two distributions D1 and D2 is denoted ∆(D1,D2). Throughout, we let λ denote
a security parameter and use standard asymptotic notation O, Θ,Ω, ω etc. We
also use the standard notion of a pseudo-random function (PRF) and a zero-
knowledge argument of knowledge (ZKAoK).

Binary decompositions. We use the same decompositions as those in [24] as
explained next. Firstly, for any positive integer B and δB := blog(B)c + 1,

we define the sequence B1, . . . , BδB where Bj := bB+2j−1

2j c for j ∈ [1, δB].
It can be verified that

∑
j∈[1,δB]Bj = B. For any integer x ∈ [0, B], there

is an efficiently computable deterministic function idecB : [0, B] → {0, 1}δB
outputting a vector idecB (x) =: y ∈ {0, 1}δB satisfying

∑
j∈[1,δB]Bj · yj =

x. The function idecB can be extended to handle vector inputs, resulting in
vdecm,B : [0, B]m → {0, 1}m·δB , for any integer m > 0. Explicitly, for any

x ∈ [0, B]m, vdecm,B (x) := (idecB (x1)
>
, . . . , idecB (xm)

>
)>. In order to in-

vert vdecm,B , we define the matrix Hm,B := (B1, . . . , BδB) ⊗ Im. It is easy to
see that Hm,B · vdecm,B (y) = x. In addition, for any x ∈ [0, B], we denote by
ibinB(x) the standard binary decomposition of x that fits into blog(B)c+ 1 bits.
We define the binary representation of a vector to be the concatenation of the
binary representations of its entries. Concretely, for any vector x ∈ [0, B]m, we
define its binary representation to be binB(x)> := (ibin(x1), . . . , ibin(xm)).

2.1 Lattice Preliminaries

An m-dimensional lattice is a discrete subgroup of Rm. For any integers n and
q, A ∈ Zn×mq and u ∈ Znq we define the full-rank lattice Λ⊥q (A) := {x ∈ Zm :
A · x = 0 mod q} and the lattice coset Λu

q (A) := {x ∈ Zm : A · x = u mod q}.
Defining ρσ : Rm → R as ρσ(x) := exp(−π‖x‖2/σ2), the discrete Gaussian
distribution over a lattice coset L with parameter σ (denoted as DL,σ) is the
distribution with support L and mass function proportional to ρσ.

Hardness Assumptions. We will be assuming that both the learning with errors
(LWE) and short integer solution (SIS) problems (as defined next) are hard for
appropriate parameter settings.

Definition 1. Let m,n, q ∈ N with m > n and β > 0. The short integer solution
problem SISn,m,q,β is, given A←↩ U(Zn×mq), find a non-zero x ∈ Λ⊥q (A) with 0 <
‖x‖ ≤ β.

6

Definition 2. Let q, α be functions of a parameter n. For a secret s ∈ Znq , the
distribution Aq,α,s over Znq × Zq is obtained by sampling a ←↩ U(Znq) and a
noise e←↩ DZ,αq, and returning (a, 〈a, s〉+ e). The learning with errors problem
LWEn,m,q,α is, for s ←↩ U(Znq), to distinguish between m independent samples
from U(Znq × Zq) and the same number of samples from Aq,α,s.

If m is omitted in the LWE problem, it is assumed that m = poly(n).
If q ≥ βnδ for any constant δ > 0 and m,β = poly(n), then standard worst-case
lattice problems with approximation factors γ = max{1, β2/q} · Õ(β

√
n) reduce

to SISn,m,q,β [27]. Alternatively, if q ≥
√
nβ and m,β = poly(n), then standard

worst-case lattice problems with approximation factors γ = O(β
√
n) reduce to

SISm,q,β (see, e.g., [19, Sec. 9]). Similarly, if αq = Ω(
√
n), standard worst-case lat-

tice problems with approximation factors γ = Õ(n/α) reduce to LWEn,q,α[30,10].

2.2 Lossy Trapdoor Functions

We will be using the notion of lossy trapdoor function (LTF) families from [29].
Informally, a lossy trapdoor function family can be used in one of two modes: a
lossy mode and an injective mode. In the lossy mode, functions lose information
on their inputs and cannot be inverted whereas in the injective mode, a trap-
door enables efficient inversion. In addition, there are generation algorithms that
sample functions in either the lossy or injective mode. A crucial requirement is
that no efficient adversary can distinguish whether a generation algorithm is out-
putting lossy functions or injective functions. We now recall the formal syntax
and definition of an LTF family.

Definition 3. An (m, k) lossy trapdoor function family with security parameter
λ is a 4-tuple of PPT algorithms (G0,G1,F,F

−1) such that:

– (Injective Mode) G0(1λ) outputs a function index u and trapdoor τ . For
any pair (u, τ) output by G0, F(u, ·) computes an injective function fu :
{0, 1}m → {0, 1}∗ and F−1(τ,F(u, x)) = x.

– (Lossy Mode) G1(1λ) outputs a function index u. For any u output by G1,
F(u, ·) computes a lossy function fu : {0, 1}m → {0, 1}∗, whose image is of
size at most 2m−k.

– (Indistinguishability) Let (u, τ) ← G0(1λ) and u′ ← G1(1λ). Then the
distributions of u and u′ are computationally indistinguishable.

We will use the algorithms of the LTF family given in [29]. This family was
reconstructed by Wee [32] where n,m, q, α are functions of λ, p ≤ q/(4n) and
n̄ = m/ log p. In the following, G ∈ Zm×n̄q is a special public matrix that allows
to efficiently solve the bounded error decoding problem [29].

– G0(n,m, q, α) : Sample A ←↩ U(Zn×mq),S ←↩ U(Zn×n̄q),E ←↩ (Ψ̄α)m×n̄ and

output the index
(
A,B := S>A + E> + G>

)
along with trapdoor S.

– G1(n,m, q, β) : Sample A ←↩ U(Zn×mq),S ←↩ U(Zn×n̄q),E ←↩ (Ψ̄α)m×n̄ and

output the index
(
A,B := S>A + E>

)
7

– F : On input ((A,B),x) where A ∈ Zn×mq ,B ∈ Zn̄×mq and x ∈ {0, 1}m,
output (Ax,Bx)

– F−1 : On input (S, (y1,y2)) where S ∈ Zn×n̄q ,y1 ∈ Znq and y2 ∈ Zn̄q , compute

y := y2 − S>y1. Use the efficient bounded-error decoder with respect to G
on y to recover a vector x∗ ∈ {0, 1}m such that e∗ + G>x∗ = y for some
small e∗ with ‖e∗‖∞ ≤ q/p. Output x∗.

Lemma 1 ([32]). For any constant γ < 1 and n, take q = Θ(n1+1/γ), p =
Θ(n1/γ) such that p ≤ q/(4n). Further, take m = O(n log q), α = Θ(

√
n/q)

and n̄ = m/ log p. Assuming that the LWEn,m,q,α problem is hard, the above
construction is an (m, k)-LTF family where k = (1− γ)m− n log q.

The following instantiation of the generalized Leftover Hash Lemma of [15,
Lemma 2.4] will be particularly useful:

Lemma 2. Choose γ, n, q, p, α as in Lemma 1, arbitrary integers n′, q′ > 2 and

an arbitrary distribution X over {0, 1}m. Then, for A←↩ U(Zn
′×m
q′), (Ā, B̄)←↩

G1(n,m, q, α), x←↩ U(X) and u←↩ U(Zn′q′), we have

∆
((

Ax,A, (Ā, B̄, Āx, B̄x)
)
,
(
u,A, (Ā, B̄, Āx, B̄x)

))
≤ 1

2
·
√

2−(H∞(X)−(mγ+n log q+n′ log q′)).

2.3 Witness Extraction and Forking Lemma

Recall that the transcript of a Σ-protocol consists of three messages starting with
a message from a prover to a verifier. The Fiat-Shamir transform [18] provides a
well-known method to remove interaction from a Σ-protocol. In particular, the
second message (which is a uniformly chosen “challenge” value from the verifier
to the prover) is replaced by the evaluation of a random oracle on input given by
the first message. When adopting this method, it is important to carefully argue
that the resulting non-interactive protocol is still an argument of knowledge.
That is, if a prover convinces the verifier to accept with non-negligible prob-
ability, then replaying the prover allows for the extraction of a witness to the
statement in question. This is usually achieved by applying a “forking lemma”.

We will focus on the argument system of Yang et al.[33] which takes the
three-message form of a Σ-protocol. The witness extraction for the interactive
ZKAoK of Yang et al. requires any ` = 3 accepting transcripts, all with the same
first prover message but distinct challenge values. We refer to ` such accepting
transcripts as an `-fork.

When using a random oracle to remove interaction with our chosen argument
system, a forking lemma that considers the probability of producing an `-fork for
` = 3 should be used. The extended/generalised forking lemma of El Kaafarani
and Katsumata [16, Lemma 1] provides a forking lemma for any ` ≥ 2. For
simplicity, we state their result in the special case that ` = 3.

8

Lemma 3 ([16]). Fix some input x ∈ {0, 1}∗ and take some arbitrary set
accept. Let A be an efficient algorithm outputting triples (m1,m2,m3) on in-
put x that has oracle access to a random oracle H : {0, 1}∗ → [h] and let Q be
an upper bound on the number of queries that A makes to H. Denote

acc := Pr
[
(m1,m2,m3)← AH(·)(x) : (m1,m2,m3) ∈ accept ∧

m2 is the result of an H-query

]
frk3 := Pr

[
((m1,m2,i,m3,i))

3
i=1 ← FA(x) :

∀i∈{1,2,3} : (m1,m2,i,m3,i) ∈ accept

∧ (m2,i)
3
i=1are pairwise distinct

]

for any efficient algorithm FA that runs A at most 3 times. Then, for a particular
choice of FA,

frk3 ≥ acc ·

((
acc

Q

)2

− 3

h

)
.

2.4 E-Cash Security Definitions

E-cash systems involve three types of parties: banks denoted B, users denoted
U and merchants denoted M. The syntax of an offline compact e-cash system
consists of the following algorithms/protocols:

ParGen(1λ, 1L): On input a security parameter λ and wallet size L = log(poly(λ)),
outputs public parameters par containing L (amongst other things).

BKeyGen(1λ, par): On input par, outputs a key pair (PKB, SKB) for the bank,
which allows B to issue wallets of size 2L.

UKeyGen
(
1λ, par

)
: On input par, generates a key pair (PKU , SKU) for the user.

MKeyGen(1λ, par): On input par, generates (PKM, SKM) for the merchant.

We henceforth assume that all algorithms implicitly take par as input.

Withdraw (U(PKB, SKU),B(PKU , SKB)): An interactive protocol that allows
U to obtain a wallet W consisting of 2L coins or an error message ⊥. The
bank B obtains tracing information TW .

Spend (U(W, PKB, PKM),M(SKM, PKU , PKB, info)): A protocol allowing a
user U to give a coin from W to merchant M with respect to transaction
metadata info. The user outputs an updated wallet W ′ whereas the output
of M is a coin coin consisting of info, a serial number, a security tag and a
proof of validity or an error symbol ⊥.

VerifyCoin (PKB, coin): Outputs 1 if the proof of validity in coin verifies cor-
rectly with respect to PKB and 0 otherwise.

VerifyDeposit (PKB, PKM, coin, µ): Outputs 1 if the proof of validity in coin
verifies correctly with respect to PKB and if the data µ verifies correctly
with respect to PKM. Else, outputs 0.

Deposit (M(SKM, coin, PKB),B(PKM, SKB, stateB)): This is a protocol al-
lowing M to deposit coin (containing some metadata info) in its account
with B. In the protocol, M sends coin along with some data µ. Then, B

9

uses a list stateB of previously deposited coins to proceed as follows. If
VerifyCoin (PKB, coin) = 0 or VerifyDeposit (PKB, PKM, coin, µ) = 0, B out-
puts ⊥. If info and PKM exist in the same entry of stateB, then B returns
this entry (coin, PKM, µ

′). If the serial number yS derived from coin is not
in stateB, then B adds the tuple (coin, PKM, µ,yS) to stateB. If there is some
tuple (coin′, PK ′M, µ

′,yS) in stateB, then B outputs such a tuple.
Identify (PKB, coin1, coin2): An algorithm allowing to identify a double spender
U whenever coin1 and coin2 share the same serial number. The output of this
algorithm is a public key PKU and a proof that this public key corresponds
to a double spender ΠG.

E-cash systems should provide the following properties whose formal defini-
tions, adapted from [24,9], are provided below.

– Anonymity: no coalition of banks and merchants can identify the wallet
that a coin originates from.

– Traceability: the bank is always able to identify at least one member of a
coalition that has spent more than it has withdrawn. This property intro-
duced by Canard et al. [12] simultaneously captures the balance and identi-
fication properties considered in [11,7].

– Strong exculpability: no coalition of banks and merchants can convinc-
ingly accuse an innocent user of double-spending.

– Clearing: an honest merchant is always able to deposit the received coins.
In particular, no coalition of bank, merchants and users can generate a con-
vincing proof that the latter have already been deposited.

Definition 4. An e-cash system provides anonymity if there exists an efficient
simulator S = (SimParGen,SimSpend) such that no PPT adversary A has non-
negligible advantage in the anonymity game described below:

1. The challenger flips a fair coin d←↩ U({0, 1}) and runs par← ParGen(1λ, 1L)
if d = 1 and (par, τsim) ←↩ SimParGen(1λ, 1L) otherwise. In either case, it
gives par to A.

2. A outputs some public key PKB and adaptively invokes the following oracles:

• QGetKey(i): this oracle generates (SKUi , PKUi)←↩ UKeygen(par) if it does
not exist yet and returns PKUi .
• QWithdraw(PKB, i): this oracle plays the role of user Ui – and creates

their key pair if it does not exist yet – in an execution of the withdrawal
protocol Withdraw

(
U(par, PKB, SKUi),A(state)

)
, with the adversary A

playing the role of the bank. At the j-th query, we denote by Wj the
user’s output which may be a valid wallet or an error message ⊥.
• QSpend

(
PKB, i, j, PKM, info

)
: the oracle first checks if the wallet Wj has

been issued to Ui by the bank B via an invocation of QWithdraw(PKB, i).
If not, the oracle outputs ⊥. Otherwise, QSpend checks if the internal
counter J of Wj satisfies J < 2L − 1. If J = 2L − 1, it outputs ⊥.
Otherwise, QSpend responds as follows:

10

- If d = 1, it runs Spend
(
Ui(Wj , PKB, PKM),A(state, info)

)
with the

merchant-executing A in order to spend a coin from Wj.
- If d = 0, QSpend runs SimSpend

(
par, τsim, PKB, PKM, info

)
.

3. When A halts, it outputs a bit d′ ∈ {0, 1} and wins if d′ = d. The adver-
sary’s advantage is the distance Advanon

A (λ) := |Pr[d′ = d]−1/2|, where the
probability is taken over all coin tosses.

Definition 5. An e-cash system ensures traceability if, for any PPT adver-
sary A, the experiment below outputs 1 with negligible probability:

1. The challenger generates public parameters par←↩ ParGen(1λ, 1L) and a pub-
lic key (PKB, SKB)←↩ BKeyGen(par). It gives par and PKB to A.

2. A is granted access to the oracle QWithdraw (PKU) that plays the role of
the bank B in an execution of Withdraw(A(state),B(par, PKU , SKB)) with
A, acting as a cheating user. After each query, the challenger stores in a
database T the information TW = PKU , or ⊥ if the protocol fails.

3. After Qw polynomially many queries, A outputs coins {coini}Ni=1 which are
parsed as (infoi, PKMi

, Si, πi). The experiment returns 1, unless (at least)
one of the following conditions holds (in which case, it returns 0):

• N ≤ 2L ·Qw;
• ∃(i, j) ∈ {1, . . . , N}2 such that (infoi, PKMi

) = (infoj , PKMj
);

• ∃i ∈ {1, . . . , N} such that VerifyCoin (PKB, coini) = 0;
• ∃(i, j) ∈ {1, . . . , N}2 such that Identify

(
par, PKB, coini, coinj

)
returns a

public key PKU that belongs to the database T.

Definition 6. An e-cash system provides strong exculpability if no PPT ad-
versary A has noticeable success probability in the game below:

1. The challenger runs par ← ParGen(1λ, 1L), gives par to A and initializes
empty sets of honest users HU , wallets TFW and double spent coins Tds.

2. A generates PKB on behalf of the bank and interacts with these oracles:

• QGetKey(i): this oracle generates (SKUi , PKUi)←↩ UKeygen(par) if it does
not exist yet and returns PKUi , which is added to HU .

• QWithdraw(PKB, i): this oracle plays the role of Ui – and creates (SKUi ,
PKUi) if it does not exist yet – in an execution of Withdraw

(
U(par, PKB,

SKUi),A(state)
)

where A plays the role of the bank. At the j-th such
query, we denote byWj the user’s output. If the protocol succeeds (Wj =⊥
), then (j,Wj) is added to TFW.

• QSpend

(
PKB, i, j, PKM, info

)
: the oracle first checks if the walletWj was

provided to Ui via an invocation of QWithdraw(par, PKB, i) using TFW. If
not, the oracle outputs ⊥. If the internal counter ofWj satisfies J = 2`−
1, thenWj is reset to its original state, where J = 0. Then, QSpend spends
a coin from Wj by running Spend

(
Ui(Wj , PKB, PKM),A(state, info)

)
with A. If the resulting coin has the same serial number S as a previous
query QSpend

(
PKB, i, j, ·, ·

)
then add (i, j, S) to Tds.

11

3. When adversary A halts, it outputs two coins coin1, coin2. It is declared
successful if Identify(par, PKB, coin1, coin2) ∈ HU and ∀(i, j), (i, j, S) /∈ Tds

where S is the common serial number shared by coin1 and coin2

Definition 7. An e-cash system ensures clearing if for any PPT adversary A,
the probability of A winning the clearing game below is negligible:

1. The challenger runs par ← ParGen(1λ, 1L), gives par to A and initializes a
set of honest merchants HM which is initially empty.

2. A generates PKB on behalf of the bank and interacts with these oracles:

• QGetKey(i): this oracle generates (SKMi
, PKMi

) ←↩ MKeygen(par) if it
does not exist yet and returns PKMi

, which is added in HM.
• QReceive

(
PKB, i

)
: this oracle plays the role of a merchant – and creates

(SKMi
, PKMi

) if it does not exist yet – in an execution of Spend
(
A(state),

Mi(SKM, PKU , info)
)

where A plays the role of the user. At the j-th
query, we denote by coinj the merchant’s output.
• QDeposit

(
PKB, i, j

)
: this oracle plays the role of the merchant in an exe-

cution of Deposit(Mi(SKMi
, coinj , PKB),A(state)) with A playing the

role of B. It however aborts if PKMi
/∈ HM, if coinj has not been re-

ceived by merchant i or if it has already been deposited.
3. When A halts, it outputs a tuple (PKM, coin, µ). The adversary wins if

PKM ∈ HM, VerifyDeposit (PKB, PKM, coin, µ) = 1 and coin has not been
involved in a previous QDeposit query.

3 Intuition

The core of an e-cash system is the pair constituted by the serial number yS and
the double-spending tag yT of a coin. Besides zero-knowledge proofs, they are
essentially the only elements made public during a spending and therefore must
comply with very strong anonymity requirements while allowing the identifica-
tion of double-spenders. In addition, it should be possible to (efficiently) prove
that they are well-formed, which rules out most simple constructions.

Designing such elements is thus far from trivial which partially explains why
most e-cash systems have followed the elegant idea proposed by Camenisch et al
[11]. It relies on a pseudo-random function PRF as follows. For a wallet of N = 2L

coins, a first seed k is used to generate N pseudo-random values PRFk(i), for
i ∈ [1, N], acting as the coins’ serial numbers. Meanwhile, a second seed t allows
generating independent values PRFt(i) acting as one-time pads on the spender’s
identity. The concealed identity constitutes the double-spending tag.

Any user can generate at most N fresh pairs (PRFk(i),PRFt(i)) per wallet.
In case of double-spending, a pair must have been re-used, meaning that a serial
number PRFk(i) will appear twice in the bank database, thus making frauds
easy to detect. Moreover, in such a case, the spender’s identity will be masked
using the same value PRFt(i). An appropriate combination of the correspond-
ing double-spending tags thus allows to remove PRFt(i) and so to identify the

12

defrauder. Some adjustments are necessary in the lattice setting [24], but the
high-level principle remains the same.

However, Bourse et al [9] recently showed that this approach may fail to pro-
vide a sound proof of exculpability in many cases. Indeed, the identity returned
by the identification algorithm is a complex mix of PRF outputs, public keys
and random values, most of them being totally controlled by the adversary. It is
therefore impossible to guarantee that the returned identity corresponds to the
author of these fraudulent payments nor even to guarantee that both payments
have been performed by the same user.

In [9], Bourse et al. point out that this problem is partially due to a misiden-
tification of the properties that must be satisfied by the pseudo-random function
PRF. They therefore propose to strengthen the requirements on PRF, introducing
in particular a notion of collision resistance that essentially states the difficulty
of finding (s, s′, i, i′) such that PRFs(i) = PRFs′(i

′). Assuming that the PRF sat-
isfies such suitable properties, they prove security of generic constructions that
are reminiscent of the seminal scheme proposed by Camenisch et al. An inter-
esting aspect of [9] is thus the rehabilitation of the original intuition of compact
e-cash [11] that has been common to all following works.

Unfortunately, this is done by relying on unconventional security notions for
PRFs that have not been considered by designers of such functions. Bourse et
al. show that, under suitable assumptions, these notions are actually already
satisfied by some PRFs in cyclic groups, but similar results are not known in
the lattice setting. Indeed, existing lattice-based PRFs are not known to pro-
vide collision-resistance in this strong sense, which prevents instantiation of their
frameworks in this setting. Concretely, this means that secure lattice-based e-
cash systems are not known to exist for the time being.

In this work, we choose a very different strategy that we believe to be better
suited for the lattice setting as it does not rely on collision-resistant PRFs.

Our first step is to modify the construction of the serial numbers to ensure
that collisions only occur for spendings performed by the same user. In [9], this
is achieved by using the same seed (but different public parameters) to generate
all the pseudo-random values used during a spending. Assuming that pseudo-
randomness still holds in this context and that collision resistance is achieved by
some of the PRFs, they prove that a collision only occurs for spendings involving
the same seed. They are then able to prove that the use of the same seed implies
the involvement of the same user, and so on until proving exculpability of their
construction. Here, we still use a PRF as a source of pseudo-random values but
our serial numbers are not simply the outputs of such a function. We indeed want
to reuse the same pseudo-random values for different parts of our serial numbers
and double-spending tags to rule out the adversarial strategy pointed out in [9].
To achieve this while retaining anonymity, we use the notion of a lossy trapdoor
function FLTF introduced in [29] and more specifically, the elegant instantiation
based on LWE proposed in [32] related to the original construction in [29].

The first element of yS is now FLTF(PRFk(i)), which still allows to extract
random bits from PRFk(i) using a universal hash function HUH, as proved in [29].

13

We can thus incorporate PKU +HUH(PRFk(i)) in yS while ensuring anonymity
of the user U that owns the public key PKU . In the exculpability proof, we will
generate FLTF in the injective mode, thus ensuring that a collision yS = yS′ can
only occur when the same value PRFk(i) is used for both transactions. Together
with PKU+HUH(PRFk(i)) = PKU ′+HUH(PRFk(i)), this implies PKU = PKU ′ .

We then adapt this idea to double-spending tags. We similarly extract ran-
dom bits from PRFk(i) using a different universal hash function H ′UH to define
yT = PKU +FRD(R) ·H ′UH(PRFk(i)), where FRD(R) is some public matrix spe-
cific to the transaction. As PRFk(i) and the public key PKU are the same for

both transactions, the formula yT−FRD(R)·[(FRD(R)− FRD(R′))
−1·(yT−yT ′)]

necessarily returns such a public key whose owner is guilty of double-spendings.
As far as efficiency goes, we essentially add some matrix-vector products to

the construction of [24]. Moreover, since all of these matrices are public, a NIZK
proof of correct computations can be produced using the framework provided in
[24] or the more efficient techniques in Section 5.

4 Construction

We present a new e-cash system that overcomes the aforementioned issues in
the proof of exculpability. We use the PRF from [8] that allows for a simpler
description of our system. We nevertheless explain in Section 7 how to improve
efficiency by using the alternative PRF from [5]. While the Withdraw protocol is a
simplification of [24], the Spend protocol is very different in the way to construct
coin serial numbers and security tags. Additional details on the zero-knowledge
arguments of knowledge used in our construction are given in Section 5.

ParGen(1λ, 1L): Given security parameter λ and integer L > 0 such that 2L is
the desired number of coins per wallet issued, perform the following:

1. Choose secure public parameters parPRF =
(
m,n, p, q,P0,P1

)
for the

BLMR PRF family [8]. Namely,

a. For n = O(λ), set α = 2−ω(log1+c(n)) for some constant c > 0; a prime

p = 2log1+c(n); a prime power q = O(
√
n/α) such that p divides q;

and m = n · dlog qe.
b. Sample P0,P1 ←↩ U({0, 1}m×m) over Zq-invertible matrices.

2. Choose parameters parsig = (qs, `, σ, (mi)
3
i=0,ms,mf) for a signature

scheme allowing to sign committed values [23]. Namely,

a. Choose a prime power modulus qs = Õ(n3) dividing q, an integer
` = Θ(λ) and a Gaussian parameter σ = Ω(

√
n log qs log n). Set

δqs−1 = dlog2(qs)e, δq−1 = dlog2(q)e and δp−1 = dlog2(p)e. Define
the message block lengths m0 = ms := 2nδqs−1, as well as m1 = m
and m2 = m̄ := mδq−1.

b. Sample D′0,D
′′
0 ←↩ U(Zn×m0

qs) and Di ←↩ U(Zn×miqs), for i ∈ {1, 2},
and define the commitment key to be CK := (D0 := [D′0|D′′0],D1,D2) .

c. Sample F←↩ U(Zn×mp).

14

3. Choose parameters parLTF for the lossy trapdoor function of [29]. In terms
of nLTF = Õ(λ) for constant c > 0, these consist of moduli qLTF =

Θ(n
1+1/γ
LTF) that divides q and pLTF = Θ(n

1/γ
LTF) for some constant γ <

1; matrix dimensions nLTF and mLTF = Θ(nLTF log qLTF) and n̄LTF =
m̄LTF/ log pLTF such that pLTF < qLTF/4nLTF; and an LWE error rate
αLTF = Θ(

√
n/qLTF). We additionally require that mLTF = m · dlog pe.

Then, select an evaluation key ekLTF for a lossy trapdoor function in
injective mode FLTF : {0, 1}mLTF → ZnLTF+n̄LTF

qLTF
, meaning that ekLTF =(

ALTF,ULTF

)
consists of a random ALTF ←↩ U(ZnLTF×mLTF

q) and a matrix

ULTF = S>LTF ·ALTF + E>LTF + G>LTF ∈ Zn̄LTF×mLTF
qLTF

,

for some SLTF ←↩ U(ZnLTF×n̄LTF
qLTF

), ELTF ←↩ DZmLTF×n̄LTF ,αLTFqLTF and GLTF

referred to in the preliminaries.
4. Choose an integer p̄ > 0 such that p̄ < p/2 which will define a challenge

space {−p̄, . . . , p̄} for the argument system of [33]. Choose a hash func-
tion HFS : {0, 1}∗ → {−p̄, . . . , p̄}κ, for some κ = O(λ/ log p̄), which will
be modelled as a random oracle in the security analysis.

5. Choose a full-rank difference function FRD : Znp → Zn×np such as the one
in [1]; two universal hash functions HUH : ZmLTF

p → Znp , H ′UH : ZmLTF
p → Znp

keyed by two uniformly random matrices UUH,U
′
UH ←↩ U(Zn×mLTF

p); and
a collision resistant hash function H0 : {0, 1}∗ → Znp \ {0n}.

6. Select a digital signature algorithm7 Σ able to sign any bitstring.

The final output is par = (parPRF, parsig, parLTF,F,FRD,UUH,U
′
UH, H0, ekLTF,

HFS, CK,Σ).
BKeyGen(1λ, par): The bank B generates a key pair for the signature scheme

by conducting the following steps.

1. Sample (A,TA) ←↩ TrapGen(1n, 1ms , qs) (using Lemma 8 in Section A
of the Supplementary Material) so that TA is a short basis of Λ⊥qs(A)

that allows B to sample Gaussian vectors in Λ⊥qs(A) with parameter σ.
2. Choose uniform A0, . . . ,A` ←↩ U(Zn×msqs).

3. Choose D←↩ U(Zn×ms/2qs) and u←↩ U(Znqs).

The key pair consists of PKB :=
(
A, {Aj}`j=0 ,D,u

)
and SKB := TA.

UKeyGen
(
1λ, par

)
: Choose a secret key SKU := eu ←↩ U({0, 1}m) and set the

public key to be PKU := F · eu ∈ Znp .

MKeyGen(1λ, par): Generate and output (SKM, PKM)← Σ.Keygen(1λ).
Withdraw

(
U(PKB, SKU , 2

L),B(PKU , SKB, 2
L)
)
: A user U withdraws a wallet

with 2L coins from a bank B by engaging in the following protocol:

1. U picks a PRF key k←↩ U(Zmq) and computes its binary decomposition

k̃ = vdecm,q−1 (k) ∈ {0, 1}m̄. Then, U commits to the 2-block message

(eu, k̃) ∈ {0, 1}m × {0, 1}m̄ by sampling r0 ←↩ DZms ,σ and sending

cU = D′0 · r0 + D1 · eu + D2 · k̃ ∈ Znqs
7 Any EUF-CMA secure scheme Σ can be selected here.

15

to B. In addition, U generates an interactive zero-knowledge argument of
knowledge of an opening (r0, eu, k̃) such that PKU = F ·eu with B. This
argument of knowledge can be instantiated using the methods of [33] by
applying the technique of [14] to parallel repetitions.8

2. If the argument of U verifies, then B extends the commitment cU by
sampling r1 ←↩ DZms ,σ, and computing c′U = cU + D′′0 · r1. Next B
chooses τ ←↩ U({0, 1}`), defines uU = u + D · vdecn,qs−1 (c′U), sets

Aτ := [A|A0 +
∑̀
j=1

τ [j] ·Aj] ∈ Zn×2ms
qs

and computes a short basis Tτ of Λ⊥qs(Aτ) using TA. Using Tτ , it then
samples a short vector v←↩ DΛ

uU
qs (Aτ),σ and sends (τ,v, r1) to U .

3. U verifies that ‖v‖ ≤ σ
√

2ms, ‖r1‖ ≤ σ
√
ms and

Aτ · v = u + D · vdecn,qs−1 (cU + D′′0 · r1) ∈ Znqs .

If so, U sets r = (r>0 | r>1)> ∈ Z2ms
qs and stores the wallet W :=(

eu,k,SigB = (τ,v, r), J = 0
)

whereas B records a debit of 2L for the
account associated to PKU .

Spend (U(W, PKB, PKM),M(SKM, PKB, info)): A user U in possession of a
wallet W =

(
eu,k,SigB = (τ,v, r), J

)
wants to spend a coin with M. If

J > 2L − 1, U outputs ⊥. Otherwise, they run the following protocol:

1. U generates a digital coin by first hashing the transaction information
to R = H0(PKM, info) ∈ Znp before conducting the following steps.

a. Compute a BLMR PRF evaluation on the standard binary represen-
tation of J in {0, 1}L using key k ∈ Zmq ; i.e., set

yk =

⌊
L∏
i=1

PJ[L+1−j] · k

⌋
p

and let ỹk = binp(yk) ∈ {0, 1}mLTF its standard bit-decomposition.
b. Using ekLTF, compute y1 = FLTF(ỹk) and y2 = PKU + HUH(ỹk) to

form the serial number yS := (y1,y2) ∈ ZnLTF+n̄LTF
qLTF

× Znp .
c. Compute the security tag yT = PKU + FRD(R) ·H ′UH(ỹk) ∈ Znp .
d. Generate a non-interactive argument of knowledge πK to show knowl-

edge of (J,k, eu, (τ,v, r)) such that:

- The vector k and secret key eu associated with W and PKU
have been certified by B through the signature (τ,v, r).

- yS and yT were computed correctly using par, the secret key eu,
the PRF seed k and a valid J ∈ {0, . . . , 2L−1}.

8 Technically, we should add a CRS to par but we leave this implicit for simplicity

16

More precisely, letting yS = (y1,y2), πK argues knowledge of (J,k,
eu, (τ,v, r)) where J ∈ {0, 1}L, k ∈ Zmq , eu ∈ {0, 1}m, τ ∈ {0, 1}`,
v ∈ Z2ms s.t. ‖v‖∞ ≤ σ

√
2ms and r ∈ Zms s.t. ‖r‖∞ ≤ σ

√
2ms,

satisfying the relations

[A | A0+
∑̀
j=1

τ [j] ·Aj] · v

= u + D · vdecn,qs−1

(
[D′0|D′′0] · r + D1 · eu + D2 · vdecm,q−1 (k)

)

y1 = FLTF

binp

⌊ L∏
i=1

PJ[L+1−j] · k

⌋
p

 ∈ ZnLTF+n̄LTF
qLTF

y2 = F · eu +HUH

binp

⌊ L∏
i=1

PJ[L+1−j] · k

⌋
p

 ∈ Znp

yT = F · eu + FRD(R) ·H ′UH

binp

⌊ L∏
i=1

PJ[L+1−j] · k

⌋
p

 ∈ Znp

The non-interactive argument πK is produced by running the proof
described in Section 5.2 κ = O(λ/ log p̄) times in parallel and using
the Fiat-Shamir heuristic with random oracle HFS. We may write

πK =
(
{CommK,j}κj=1 ,ChallK ,

{
RespK,j

}κ
j=1

)
where ChallK = HFS(par, R,yS ,yT , {CommK,j}κj=1).

U sends coin = (info′, PKM,yS ,yT , πK) to M.

2. If info′ = info and VerifyCoin (par, PKB, coin) outputs 1, thenM outputs
coin. Otherwise, M outputs ⊥. In either case, U outputs an updated
wallet W ′ where J is increased by 1.

VerifyCoin (PKB, coin): Parse the coin as coin = (info, PKM,yS ,yT , πK) and
output 1 if and only if πK verifies.

VerifyDeposit (PKB, PKM, coin, µ): If VerifyCoin (PKB, coin) = 0, return 0. Oth-
erwise, return 1 if and only if µ is a valid signature on coin with respect to
PKM: i.e., Σ.Verify(PKM, µ, coin) = 1.

Deposit (M(SKM, coin, PKB),B(PKM, SKB, stateB)): M and B interact in the
following way.

1. M sends coin = (info, PKM,yS ,yT , πK) to B along with a signature
µ = Σ.Sign(SKM, coin).

17

2. If VerifyDeposit (PKB, PKM, coin, µ) = 0 or VerifyCoin (PKB, coin) = 0,
then B outputs ⊥. If info and PKM are found in stateB, then B outputs
the corresponding entry (coin′, PKM, µ

′,y′S). If the serial number yS
contained in coin is not found in stateB, then B accepts the coin, adds
the tuple (coin, PKM, µ,yS) to stateB and creditsM’s account. If there
exists a tuple (coin, PK ′M, µ

′,yS) in stateB, then B outputs such a tuple.

Identify (PKB, coin1, coin2): Parse coini = (infoi, PKMi ,yS,i,yT,i, πK,i) for each
i ∈ {1, 2}. If any of the following conditions hold, output ⊥:

– yS,1 6= yS,2,
– VerifyCoin (par, PKB, coin1) or VerifyCoin (par, PKB, coin2) 6= 1,
– (info1, PKM1

) = (info2, PKM2
).

Otherwise, compute y′T = (FRD(R1)− FRD(R2))
−1 ·(yT,1−yT,2) ∈ Znp with

Ri = H0(PKMi , infoi) and set PKU = yT,1−FRD(R1) ·y′T ∈ Znp . Note that
this calculation is performed using publicly known values, so the proof of
guilt of a double spender is simply ΠG = (coin1, coin2). The output of this
algorithm is then the pair (PKU , ΠG).

5 Zero-Knowledge Arguments with Soundness Error
1/poly(λ) in Standard Lattices

We proceed in two steps to describe the ZKAoK used to spend a coin. We first de-
scribe an argument of knowledge of a (seed,input) pair generating a given BLMR
evaluation. We then extend this to capture the whole statement proved by a user
during a spending. For the ZKAoK in the withdrawal protocol, we directly rely
on results of [33]. Throughout our construction, we use the argument system
of Yang et al. [33] which was originally proved computationally honest-verifier
ZK (HVZK) with polynomial soundness error. However, we can use known tech-
niques to transform parallel repetitions of this protocol into a 3-round, malicious
verifier ZK protocol with negligible soundness error in the CRS model [14]. This
is how we instantiate the interactive ZKAoK in the withdrawal protocol. In the
spend protocol, we use the standard result that the Fiat-Shamir transform [18]
applied to parallel repetitions of an HVZK protocol yields a NIZK argument in
the ROM. We also note that one may use a statistically hiding configuration of
the commitment scheme from [6] instead of the more efficient computationally
hiding configuration chosen in [33] to obtain statistical ZK arguments.

5.1 Zero-Knowledge Arguments for the BLMR PRF

We extend the protocol of Yang et al. [33] to build a ZKAoK of a (seed,input)
pair producing a given BLMR evaluation. A similar result for the GGM-based
PRF implied by [5] is provided in Section B of the Supplementary Material,
leading to a more efficient instantiation.

18

In [33], Yang et al. provide an argument of knowledge for the “instance-
relation” set given by

R∗ =
{(

(M′,y′,M),x′
)

: M′·x′=y′ mod q ∧
∀(h,i,j)∈M,x′[h]=x′[i]·x′[j] mod q

}
. (1)

where M′ ∈ Zm′×n′q ,y′ ∈ Zm′q andM⊆ [n′]× [n′]× [n′], for some prime power q.

The tuple (M′,y′,M) is the instance whereas x′ ∈ Zn′q is the witness. By care-
fully crafting each of these elements, we show that a proof of correct evaluation
of the BLMR PRF is an instance of this argument of knowledge.

Indeed, recall that, for any seed k and input x ∈ {0, 1}L, the PRF output is

defined as y =
⌊∏L

i=1 PxL+1−i · k
⌋
p
, where P0,P1 ∈ {0, 1}m×m are public pa-

rameters and p is a prime power dividing q. If we write yj =
∏L
i=L+1−j PxL+1−i ·k

for j ∈ [L], we can represent a PRF evaluation using the linear system over Zq:

y1 −P0 · (1− x1)k−P1 · x1k = 0

y2 −P0 · (1− x2)y1 −P1 · x2y1 = 0

...

yL −P0 · (1− xL)yL−1 −P1 · xLyL−1 = 0

yL − e =
q

p
· y

where e ∈ [0, q/p]m. This system is a linear system in the (quadratic) unknowns
(1− x1)k, x1k, (1− x2)y1, x2y1, . . . , (1− xL)yL−1, xLyL−1,yL, e. As a first step
towards transforming our system into one captured by R∗, we can embed the
above system in a larger system whose solution is given by

(x′)> =
(
(x′1)>, (x′2)>, (x′3)>, ẽ>

)
(2)

where

– (x′1)> =
(
(1− x1), x1, . . . , (1− xL), xL

)
∈ {0, 1}2L,

– (x′2)> =
(
y>0 ,y

>
1 , . . . ,y

>
L

)
∈ Z(L+1)·m

q , with y0 := k,
– x′3 ∈ Z2L·m

q is of the form

(x′3)> =
(
(1− x1)y0, x1y0, (1− x2)y1, x2y1, . . . , (1− xL)yL−1, xLyL−1

)
,

– ẽ = vdecm, qp−1 (e) ∈ {0, 1}m·(blog(qp−1)c+1), which ensures that ‖e‖∞ < q/p.

One aspect of this extended solution is that every consecutive pair of entries
of x′1 is either (0, 1) or (1, 0). In other words, each consecutive pair of entries
of x′1 sums to 1 and is binary. The fact that consecutive pairs add to 1 can be
captured by a linear constraint that will constitute the first block of our matrix
M′. Next, the fact that the entries of x′1 are binary may be captured by the set
of equations x′1[i] = x′1[i] · x′1[i]. In fact, proving this relation only for even i is
sufficient as x′1[2i] ∈ {0, 1} and x′1[2i] + x′1[2i−1] = 1 implies x′1[2i−1] ∈ {0, 1}.

19

The next part of a valid solution’s structure is that entries of x′3 are the result
of multiplying entries of x′1 and x′2. This can be written as x′3[h′] = x′1[i′] ·x′2[j′]
for appropriate choices of h′, i′, j′. It then only remains to prove that the entries
of ẽ are binary, which is captured by the equations ẽ[i] = ẽ[i] · ẽ[i].

Following the details outlined above, we may represent a BLMR evaluation
as the system M′ · x′ = y′ mod q for

– x′ ∈ Z2L+(L+1)·m+2L·m+(blog(q/p−1)c+1)·m
q which is subject to the following

constraints, when parsed as in Equation 2:

• for i ∈ [L]: x′1[2i] = x′1[2i] · x′1[2i]

• for (i, j) ∈ [m]× [L]: x′3[2m(j− 1) + i] = x′1[2j− 1] ·x′2[m(j− 1) + i] and
x′3[2m(j − 1) +m+ i] = x′1[2j] · x′2[m(j − 1) + i]

• for i ∈ [(blog(q/p− 1)c+ 1) ·m]: ẽ[i] = ẽ[i] · ẽ[i]

– (y′)> = (

L︷ ︸︸ ︷
1, . . . , 1,

m·L︷ ︸︸ ︷
0, . . . , . . . , 0, (q/p)y>)

–

M′ =

 IL ⊗ (1, 1)
0mL×m‖Im·L −IL ⊗ [P0‖P1]
0m×L·m‖Im −Hm,q/p−1

 (3)

where all blank blocks consist of 0 entries.

5.2 Zero-Knowledge Arguments for the Spend Protocol

The previous protocol enables to prove correct evaluation of the BLMR PRF
but is not sufficient to produce the proof πK expected by the merchant during
the Spend protocol. In particular, we also need to prove

– knowledge of (short) solutions to linear systems (e.g., the user’s secret key);

– knowledge of solutions to an equation involving a subset sum of known-
matrix and secret vector multiplications (i.e. the computation of Aτ);

– correct evaluation of the lossy trapdoor function FLTF.

All these statements can be captured by the relation R∗ from [33], as explained
below. Together with our proof of correct PRF evaluation, this means that πK
can be instantiated using only the Yang et al. framework. We can then achieve
inverse-polynomial soundness error 1/p̄ in one ZKAoK protocol run. To achieve
a soundness error of 2−λ, we only need O(λ/ log p̄) repetitions. This clearly im-
proves upon the Stern-type protocols used in [24], which requireO(λ) repetitions.

Remark 1. It should be noted that we have different equations over various mod-
uli in our Spend protocol. However, as long as q is a prime power and all remain-
ing moduli divide q, we may lift all equations to use the modulus q. For example,
to lift an equation over Zq′ to an equation over Zq where q′ divides q, we simply
multiply by q/q′ ∈ Z. We will use this trick in what follows.

20

The explicit linear system. Transforming the argument of knowledge produced
by a user during the Spend protocol into an instance of the Yang et al. protocol
is far from trivial as there are several details to address. Besides the moduli issue
mentioned above, we indeed need to juggle with two different types of binary
decomposition in order to ensure security of the whole system.

We use the notation from the Spend protocol specification in Section 4. We
further parse v as (v1,v2), where v1,v2 ∈ Zms . Also, we define σ′ := bσ√ms+1c
and v+

i = vi+σ
′ ·1 for i ∈ {1, 2}, where 1 denotes the all-one vector. This implies

that valid values of vi (i.e., such that ‖vi‖∞ ≤ σ′) give rise to v+
i ∈ [0, 2σ′]ms .

We also set r+ := r +
√

2σ′ · 1 so that r+ ∈ [0, 2
√

2σ′]2ms for valid choices of r
(i.e. values such that ‖r‖∞ ≤

√
2σ′). We can then define ṽi := vdecms,2σ′

(
v+
i

)
for i ∈ {1, 2}, r̃ := vdec2ms,2

√
2σ′ (r

+), k̃ := vdecm,q−1 (k) and

w̃ := vdecn,qs−1

(
[D′0|D′′0] · r + D1 · eu + D2 · k̃

)
.

We begin by considering the equation associated to the signature. We can express
it as the following linear system over Zq

q

qs

[
A (Hms,2σ′ · ṽ1 − σ′1) +

A0 (Hms,2σ′ · ṽ2 − σ′1) +∑̀
j=1

Aj (Hms,2σ′ · (τ [j] · ṽ2)− σ′τ [j] · 1)−D · w̃
]

=
q

qs
u

q

qs

[
Hn,qs−1 · w̃ −

(
[D′0|D′′0]

(
H2ms,2

√
2σ′ · r̃−

√
2σ′1

)
+

D1 · eu + D2 · k̃
)]

= 0

Hm,q−1 · k̃− k = 0,

whose solution is x1 :=
(
τ, ṽ1, ṽ2, τ [1] · ṽ2, . . . , τ [`] · ṽ2, w̃, r̃, eu,k, k̃

)
, with some

quadratic constraints amongst unknowns.
We next consider the evaluation of y1, as written in the Spend protocol. Here

a subtlety arises as we need to use two different types of binary decomposition.
So far, we have only used the vdecm,p−1 function because it allows achieving
exact soundness with the proofs of Yang et al. Unfortunately, the decomposi-
tion of an integer according to the sequences B1, . . . , Bδp−1

implicitly defined by
vdecm,p−1 (see Section 2) may not be unique, which might lead to undetected
frauds in our system. We will then also use the standard binary decomposition
(that is unique) to ensure that the user is not evaluating FLTF on two different
decompositions of the same PRF output. It then remains to prove consistency
of both decompositions, which is explained below.

Concretely, let ỹk denote the standard binary decomposition of the PRF

output yk =
⌊∏L

i=1 PJ[L+1−j] · k
⌋
p
. Importantly, we must ensure that ỹk does

21

really correspond to binary decomposition of a vector in [0, p− 1]m rather than
some larger space. Alternatively, we need to ensure that yk (which is unknown)
has entries in [0, p− 1]. We achieve this by considering ỹ′k = vdecm,p−1 (yk). By
multiplying the evaluation equation of y1 by q/qLTF and denoting the LTF key

ekLTF as BLTF ∈ Z(nLTF+n̄LTF)×mLTF
qLTF , we can derive the following equations over Zq:

q

qLTF
BLTF · ỹk =

q

qLTF
· y1

yk −Hm,p−1 · ỹ′k = 0

yk − Im ⊗
(

1, 2, . . . , 2dlog pe
)
· ỹk = 0

Conveniently, the restriction that the entries of ỹk and ỹ′k are binary is easily
captured using quadratic constraints. Therefore all boxed equations so far con-
stitute a linear system whose solution is x2 := (x1‖ỹk, ỹ

′
k,yk), subject to some

quadratic constraints that can easily be handled with the Yang et al. framework.
However, we still need some equations to ensure that yk is computed correctly as
a BLMR PRF output. In order to describe these equations, we will use the obser-
vations from Section 5.1 and the matrix M′ given in Equation (3). In particular,
we set the unknown vector

xk =(1− J [1], J [1], . . . , 1− J [L], J [L],yk0, . . . ,ykL,

(1− J [1])yk0, J [1]yk0, . . . , (1− J [L])ykL−1, J [L]ykL−1, ek)

where yki ∈ Zmq for i ∈ [0, L] and ek ∈ {0, 1}m·(blog(qp−1)c+1). As noted in
Section 5.1 (and shown by the form of xk), the constraints on these unknown
vectors are quadratic as required. To capture the PRF computation, we extend
the vector of unknowns by defining x3 := (x2‖xk). We then add the following to
the boxed linear equations over Zq above (where M′ is defined in Equation (3)):

yk0 − k = 0

M′ · xk −
(

0(m+1)·L,
q

p
y>k

)>
= (1L, 0m·(L+1))>

Finally, it remains to prove that y2 and yT are well-formed. This consists in
proving the following relation over Zq:

q

p
F · eu +

q

p
UUH · ỹk =

q

p
y2

q

p
F · eu +

q

p
FRD(R) ·U′UH · ỹk =

q

p
yT ,

where the witnesses are already included in x3.
We have shown that the whole statement proved during the Spend protocol

can be expressed as the collection of the boxed linear systems with a vector x3

of unknowns subject to quadratic constraints supported by the protocol of [33].

22

6 Security Proofs

In this section and Section C of the Supplementary Material, we prove Theorem
1, which states that our construction provides all the required security properties.

Theorem 1. Our construction is a secure e-cash system in the random oracle
model assuming that the following conditions hold:

– The SISn,ms,qs,β′ for β′ = O
(
σ2m

1/2
s (ms +m log q)

)
and SISn,m,p,2

√
m prob-

lems are hard;
– Parameters are chosen so that the interactive AoK Π1 in the withdrawal

protocol is zero-knolwedge (ZK) and that the non-interactive AoK Π2 in the
spend protocol is honest-verifier zero-knowledge (HVZK);

– Parameters m,n, q, p are chosen so that the BLMR PRF is pseudo-random;
– The LWEnLTF,mLTF,qLTF,α problem is hard;
– Σ is an EUF-CMA secure signature scheme.

Proof of Exculpability. Suppose the lossy trapdoor function is sampled in its
injective mode. The proof of exculpability relies on the fact that an adversary
producing two valid coins with the same serial number must produce at least
one fresh proof of knowledge of a secret key underlying an honestly produced
public key. In particular, our construction guarantees that this public key is the
one that Identify points to. The ability to produce fresh arguments of knowledge
for an honest public key can be used to solve the SIS problem. We first present a
lemma about collision probabilities on PRFs with randomly sampled seeds and
polynomial-size domain.

Lemma 4. Let PRF =
{
PRFk : {0, 1}L → {0, 1}M | k ∈ K

}
be a family of pseudo-

random functions where 2L = poly(λ) and M = poly(λ). Take any N = poly(λ)
and sample k1, . . . ,kN ←↩ U(K). The probability that ∃(i, j, x1, x2) ∈ [N]2 ×
{0, 1}L × {0, 1}L such that PRFki(x1) = PRFkj (x2) is negligible.

Proof. We first describe a challenger algorithm C. In the first stage, C sam-
ples k1, . . . ,kN ←↩ U(K), samples N uniform functions U1, . . . , UN : {0, 1}L →
{0, 1}M and samples a challenge bit b←↩ U({0, 1}). In the second phase, C waits
for queries x ∈ {0, 1}L. If b = 1, it answers with (PRFk1(x), . . . ,PRFkN (x)). On
the other hand, if b = 0, it responds with (U1(x), . . . , UN (x)). By a standard
hybrid argument, no PPT adversary A can guess the bit b with non-negligible
advantage under the assumption that PRF is a PRF family and N = poly(λ).
Consider the following adversary A∗ that queries C on the entire set {0, 1}L.
Denote the response to query x as (y1,x, . . . , yN,x). Now, A∗ outputs b∗ = 1 if
there exists (i, j, x1, x2) such that yi,x1

= yj,x2
. Otherwise, A∗ outputs b∗ = 0.

Note that, if b = 0, the probability that A∗ outputs b∗ = 1 is equal to

1−
2LN∏
k=1

(
1− (k − 1)

2M

)

23

which is negligible since 2LN = poly(λ) and 2M = 2poly(λ). Therefore, under the
assumption that PRF is a PRF family, the probability that A∗ outputs b∗ = 1
when b = 1 is also negligible. ut

Lemma 5. Our construction provides strong exculpability in the random ora-
cle model assuming that: (i) The SISn,m,p,2

√
m problem is hard; (ii) Parameters

(m,n, p, q) are chosen so that the BLMR PRF is pseudo-random; (iii) Π1 and
Π2 are ZK and HVZK, respectively; (iv) The protocols underlying Π1 and Π2

are arguments of knowledge.

Recall that a successful adversary returns coin1 and coin2 such that PKU∗ =
Identify(PKB, coin1, coin2) for honest user U∗. This implies two things:

– First, the two coins have been generated using the public key PKU∗ . Indeed,
the fact that the identification procedure succeeds implies that these coins
share the same serial number yS := (y1,y2). Since the evaluation key of FLTF

was sampled in injective mode, the serial number yS uniquely determines
the value PK ′ = y2−HUH(F−1

LTF(y1)), which underlies both coin1 and coin2.
Then, the soundness of Π2 ensures that

yT,1 = PK ′ + FRD(R1) ·H ′UH(F−1
LTF(y1)),

yT,2 = PK ′ + FRD(R2) ·H ′UH(F−1
LTF(y1)),

which implies that PK ′ is the public key PKU∗ pointed to by Identify.
– Second, there exists d ∈ {1, 2} such that coind = (Rd,yS,d,yT,d, πK,d) is

not the result of a QSpend-query w.h.p. To see why, consider the case that
coin1 and coin2 are both the result of QSpend-queries, but do not appear in
Tds. This occurs if, when sampling polynomially many seeds, one finds k,k′

satisfying PRFk(J) = PRFk′(J
′) for some (J, J ′) ∈ [0, 2L−1]2. By Lemma 4,

this occurs with negligible probability negl1(λ).

Proof. Using these two observations, we will prove the strong exculpability of
our scheme by defining the following sequence of games. Let ε be the probability
that A succeeds against the exculpability of our scheme and let Qw (resp. Qs)
denote the maximal number of QWithdraw queries (resp. QSpend queries).

Game0: This is exactly the strong exculpability experiment, as defined in Section
2. The probability ε0 that A succeeds in this game is then exactly ε.

Game1,0: In this game, our reduction S (acting as a challenger in the strong
exculpability experiment) proceeds as in Game0 except that it defines F
as Ā ∈ Zn×mp , where Ā is a uniform matrix provided in a SISn,m,p,2

√
m

instance. We denote by eu∗ ∈ {0, 1}m the secret key generated by S for the
accused user PKU∗ = F · eu∗ . Note that A is given black-box access to HFS

and S answers queries to HFS by returning uniformly random elements of
{−p̄, . . . , p̄}κ. In addition, S initialises empty lists of honest users HU and
double-spent coins Tds. As Ā is distributed as F in the original setup, the
probability that A succeeds in this game is ε1,0 = ε0 .

24

Game1,i: For i ∈ [1, Qw], this game is defined as Game1,i−1, except that S now
answers the i-th QWithdraw-query (if any) by running the simulator of Π1 to
simulate the interactive proof generated by the user at this stage. This is
done for every user PKU , and not just PKU∗ . Any change of behaviour of
A can thus be straightforwardly used against the zero-knowledge property
of Π1. We therefore have ε1,i−1 − AdvΠ1

ZK(A) ≤ ε1,i for all i ∈ [1, Qw].
Game1,Qw+i: For i ∈ [1, Qs], this game is defined as Game1,Qw+i−1, except that
S now answers the i-th QSpend-query (if any) by running the simulator of
Π2 to simulate the non-interactive argument generated by the spender at
this stage. This can be done (using only the user’s public key PKU) by
applying the standard technique of programming the random oracle HFS on
new inputs, which only requires the statistical HVZK property of Π2. The
simulation fails whenever the random oracle HFS needs to be programmed
at an input that it was previously queried on. However, this happens with
negligible probability at most CollH := (QS + QH)/2λ, where QH is the
total number of queries made by A to HFS and the denominator 2λ is a
lower bound on the domain-size of HFS-inputs. Therefore, we can conclude
that ε1,Qw+i−1 − AdvΠ2

HV ZK(A)− CollH ≤ ε1,Qw+i for all i ∈ [1, Qs].

It is important to note that, in Game1,Qw+Qs , the reduction S only needs
PKU∗ and not eu∗ to simulate the game. This concretely means that the adver-
sary’s view is independent of the preimage eu∗ of PKU∗ selected by S. Thanks
to [25, Lemma 8], we know that this preimage is not unique: i.e., there exists at
least one vector e ∈ {0, 1}m \ {eu∗} such that Ā · eu∗ = Ā · e mod p with all but
negligible probability. This observation will be crucial in what follows.

Game2: Let QH be a polynomial bounding the number of random oracle queries
made by A to HFS. Up until A terminates, S answers A’s queries as in the
previous games, recording the random oracle queries as (q1, q2, . . .) and the
corresponding uniformly distributed responses as (h1, h2, . . .). Our second
observation at the beginning of the proof implies that at least one coin
coind returned by A is not the result of a QSpend-query with overwhelming
probability (if none of the coins were generated as a response toQSpend-query,
then select a random d ∈ {1, 2}. Define

πK,d :=
(
{CommK,d,j}κj=1 ,ChallK,d,

{
RespK,d,j

}κ
j=1

)
,

ChallK,d := HFS

(
par, R,yS,d,yT,d, {CommK,d,j}κj=1

)
.

In this game, S aborts if the above query was not made to HFS. We note
that in such a case the proof πK,d would only have been acceptable with
probability at most (2p̄+ 1)−κ. We then have ε1,Qw+Qs − (2p̄+ 1)−κ ≤ ε2.

From now on, we know that there exists an index i∗ ∈ [QH] such that the
i∗-th HFS-query is used to produce ChallK,d (i.e., ChallK,d = hi∗) and that A
succeeds in Game2 with probability ε2 ≥ ε−Qw ·AdvΠ1

ZK(A)−Qs(AdvΠ2

HV ZK(A)+
CollH)− (2p̄+ 1)−κ. We then define our last game Game3 as follows:

25

1. Run Game2 once: S runs A by behaving as in Game2. If A fails to win the
game, then S aborts. Otherwise, it records coind, πK,d,ChallK,d, (q1, q2, . . .),
(h1, h2, . . .), i

∗, sets a variable fork = 1 and proceeds to the next step.
2. (Search for a 3-fork). This step is repeated twice. S runs A with the same

random tape as in the beginning of the first step. In addition, it sends A the
same par as before, giving A oracle access to HFS. S allows A to run until
termination, answering queries to HFS as follows:

– Answer queries q1, . . . , qi∗−1 (which are identical to those of the first run)
using the same values h1, . . . , hi∗−1 as before.

– At the i∗-th query qi∗ (which is also the same as the first time A was
run), pick a fresh uniform response h′i∗ .

– For the remaining queries made by A denoted q′i∗+1, . . . , q
′
QH

, pick fresh
uniform random responses h′i∗+1, . . . , h

′
QH

.

If this is the first repetition, S sets h
(2)
i∗ = h′i∗ . At the second repetition,

it sets h
(3)
i∗ = h′i∗ . If A terminates without winning the strong exculpability

game, then S begins the next repetition of this step. If A terminates and wins
the game, denote its output as (PK ′B′ , coin

′
1, coin

′
2). As before, let d′ ∈ {1, 2}

denote the index that was not the result of aQSpend-query (picking d′ ∈ {1, 2}
randomly if neither coin was the result of a spend query). Recall that both
coins can be the result of QSpend-queries with at most negligible probability
negl(λ)1, but if this is the case, S skips to the next repetition of this step.
Denote coin′d′ = (R′d′ ,y

′
S,d′ ,y

′
T,d′ , π

′
K,d′). Write

π′K,d′ =
({

Comm′K,d′,j
}κ
j=1

,Chall′K,d′ ,
{
Resp′K,d′,j

}κ
j=1

)
.

S skips to the next repetition of this step at this point if(
Rd,yS,d,yT,d, {CommK,d,j}κj=1

)
6=
(
R′d′ ,y

′
S,d′ ,y

′
T,d′ ,

{
Comm′K,d′,j

}κ
j=1

)
or if hi∗ = h′i∗ . Otherwise, S sets fork← fork + 1 and π

(fork+1)
K = π′K,d′ .

3. (Derive SIS solution from 3-fork) If fork < 3 or, fork = 3 but there

exists no j ∈ [κ] such that (hi∗ [j], h
(2)
i∗ [j], h

(3)
i∗ [j]) take three distinct val-

ues, then S terminates outputting ⊥. Otherwise, S has access to argu-

ments πK,d, π
(2)
K , π

(3)
K sharing the same first message which we denote as

{Commj}κj=1. In addition, ∃j∗ ∈ [κ] at where hi∗ [j
∗], h

(2)
i∗ [j∗], h

(3)
i∗ [j∗] take

three distinct values in {−p̄, . . . , p̄}. Now a witness can be extracted from

the transcripts πK,d, π
(2)
K , π

(3)
K by considering the j∗-th parallel repetition and

the special-soundness/extractor of the ZKAoK protocol [33]. We denote this
witness as (J̄ , k̄, ēu∗). If ēu∗ = eu∗ , then S aborts. Otherwise, S terminates,
outputting v := ēu∗ − eu∗ ∈ {−1, 0, 1}m as a SIS solution.

It then remains to evaluate the probability ε3 that A succeeds in this last game.
We begin by noting that the first and second steps corresponds exactly to the
forking algorithm denoted as FA in Lemma 3. Therefore, a direct application of

26

this forking lemma implies that the variable fork reaches the value fork = 3 at
the beginning of Step 3 with probability at least

frk := ε2 ·
((ε2

QH

)2

− 3

(2p̄+ 1)κ

)
.

which is non-negligible if ε2 is non-negligible as 1/(2p̄+ 1)κ is negligible and QH
is polynomial. Next, note that S extracts a witness (J̄ , k̄, ēu∗) if and only if it
does not terminate at, or before the beginning of Step 3. In order to analyse the
probability that this occurs, we define three events:

– GF (“Good fork”): This is the event that fork = 3 and there exists an index

j∗ ∈ [κ] such that (hi∗ [j
∗], h

(2)
i∗ [j∗], h

(3)
i∗ [j∗]) is a triple of 3.

– F (“Any fork”): This is the event that fork = 3 at the beginning of Step 4.
– GH (“Good hashes”): This is the event that there is an index j∗ ∈ [κ] such

that (hi∗ [j
∗], h

(2)
i∗ [j∗], h

(3)
i∗ [j∗]) take 3 distinct values.

It is easy to see that Pr[GH] = ((6p̄ + 1)/(2p̄ + 1)2)κ is negligible and that
Pr[F] = frk. We also have

Pr[F] ≤ Pr[F|GH] · 1 + 1 · Pr[GH] = Pr[F|GH] + negl(λ) .

This implies that S does not abort at the beginning of Step 3 or before with
non-negligible probability

Pr[GF] = Pr[F ∩ GH] = Pr[F|GH] · Pr[GH] ≥ (frk− negl(λ)) · (1− negl(λ)).

The last step is to evaluate the probability that ēu∗ = eu∗ , leading S to
abort. Here we rely on our previous observation, namely that the adversary’s
view has been independent of eu∗ since Game1,Qw+Qs and that there is, with
overwhelming probability, at least another vector ēu∗ 6= eu∗ that is a valid secret
key for PKU∗ . We therefore know that the probability of the event ēu∗ 6= eu∗ is
at least 1

2 . In summary, we get the following bound on the probability ε3 that A
succeeds in Game3:

ε3 ≥
1

2
· (frk− negl(λ)) · (1− negl(λ))

where frk is defined above. Any adversary A succeeding with non-negligible prob-
ability ε against the exculpability of our scheme can thus be used to solve the
SIS problem, distinguish the BLMR PRF from pseudo-random, or break the
zero-knowledge property of Π1 or Π2, which completes the proof. ut

7 A More Efficient GGM-based Construction

In Section 4, we use the BLMR PRF because it allows for a simpler description
of the argument of knowledge, as it only requires one rounding per evaluation.
Unfortunately, this comes at the price of a super-polynomial modulus q. We

27

can do better by using a PRF obtained by applying the seminal construction
of Goldreich, Goldwasser and Micali [21] to the LWR-based PRG of Banerjee et
al. [5] for which the LWE-to-LWR reduction of [2] allows the use of a polynomial
modulus. This leads to an e-cash construction with q = poly(λ) which still relies
on the hardness of standard worst-case lattice problems. Explicitly, the PRF we
have in mind relies on the hardness of the LWRm,m,q,p problem (which is at least

as hard as LWEm′,m,q,α′ for m′ ≥ log q
log(2γ′)m, q ≥ γ′m2α′p for any γ′ ≥ 1 [2]).

This PRF uses public parameters m, p, q,A0,A1 ∈ Zm×mq where A0,A1 ←↩
U(Zm×mq). The evaluation on seed k ∈ Zmq and input x ∈ {0, 1}L is

Fk(x) :=

⌊
AxL ·

⌊
.

⌊
Ax2 · bAx1 · kcp

⌋
p
.

⌋
p

⌋
p

. (4)

When replacing the BLMR PRF with the above in our e-cash construction,
it is more convenient to keep the parameters m and n as described in Section 4.
This allows us to reuse our security proofs without any issues. However, in con-
trast with the BLMR instantiation, we choose polynomially large p and q such
that q2 > m5/2p in the ParGen() phase. In addition, the binary public matrices
P0,P1 must be replaced by uniformly sampled A0,A1 ∈ Zm×mq . In Section B of
the Supplementary Material, we show that this alternative PRF is compatible
with the ZK relation R∗ considered in [33], as we did for the BLMR PRF in
Section 5.1. Combining this with the reasoning in Section 5.2 allows us to show
that the GGM-based PRF is compatible with the ZKAoKs used in Spend.

7.1 Parameters

We provide in this section some details on the parameters and the complexity
of an instantiation of our e-cash system using the GGM-based PRF. Firstly,
Theorem 1 states that the security of our construction relies on:

– LWRm,m,q,p (which is at least as hard as LWEm′,m,q,α′ for m′ ≥ log q
log(2γ′)m, q ≥

γ′m2α′p for any γ′ ≥ 1 [2])

– LWEnLTF,mLTF,qLTF,α with α = Θ
(√

nLTF

qLTF

)
, qLTF = Θ(n

1+1/γ
LTF) for constant γ < 1

– SISn,m,p,2
√
m

– SISn,ms,qs,β′ for β′ = O(σ2m
1/2
s (ms + m̄))

and also that we use secure ZKAoKs. Since all moduli will be polynomial, we may
safely assume that there is a parameter setting such that the argument system of
Yang et al. is a ZKAoK. Additionally, our proof of the clearing property requires
use of a signature scheme. Note that we can use the signature scheme of [19] so
that the arising assumption is made redundant by the final item listed above.
Recall that for our zero-knowledge proofs, we require that qs, qLTF and p all divide
the prime power q. In order to achieve this, we now set q = qe0 where q0 is prime
and e > 1 is a constant integer. Since all moduli are polynomial, we may take
nLTF = Θ(m) = Θ(n log q) = Õ(n). Additionally, m, m̄,ms,mLTF, n̄LTF and n′

28

are all Õ(n). Note that we will take γ′ = 1 in the LWE-to-LWR reduction result
stated above and γ = 1/2. To comply with hardness results relating standard
worst-case lattice problems to SIS [19,27] and LWE [30,10], we require:

q2/p = Ω̃(n5/2) qLTF = Θ̃(n3) p = Ω̃(n) qs = Ω̃(σ2n2) = Ω̃(n3).

Therefore, to base security on worst-case lattice problems, we may take n,m,nLTF,
n̄LTF,mLTF,ms all Õ(λ), p = q0 = Õ(λ) and q = qs = qLTF = q3

0 = Õ(λ3).

Communication cost of [33]. We assess the communication cost of the pro-
tocol of [33] assuming that the linear system in R∗ (cf. Equation (1)) con-
sists of mzk equations in nzk dimensions over Zqzk with `zk quadratic rela-
tions. The protocol takes the form of a Σ-protocol, where the first message is
a cryptographic commitment, the second is a random challenge sampled from
{−p̄, . . . , p̄} and the third message is an opening of the original commitment
plus some further information depending on the challenge. Since we work in the
random oracle model, we may instantiate the commitment using a hash func-
tion outputting O(λ) bits. The second message is simply an integer consisting
of log 2p̄ = O(log qzk) = Õ(1) bits assuming qzk is polynomial in the security
parameter. The final message consists of vectors over Zqzk with various dimen-
sions, all of which areO(max(λ,mzk, nzk, `zk)). Since the protocol of [33] requires
λ/ log p̄ = Õ(λ) repetitions to achieve soundness error 2−λ, the communication
complexity of the overall ZKAoK protocol is Õ (λ ·max(λ,mzk, nzk, `zk)).

Communication Cost of the Withdraw Protocol. We now consider the cost
of the Withdraw protocol, which consists of two distinct parts. In the first part,
the user sends a commitment cU ∈ Znqs and a ZKAoK. The ZKAoK can take

the form of a linear system of mzk = O(n+ms) = Õ(λ) equations in dimension
nzk = O(ms log σ + m + 2n log p) = Õ(λ) over Zqs with `zk = nzk = Õ(λ)
quadratic constraints. This first component of Withdraw thus incurs a commu-
nication cost of Õ(λ2). The second component is the bank’s response which
consists of O(ms log σ) = Õ(λ) bits. Therefore, the overall communication cost
in the Withdraw protocol is Õ(λ2) bits.

Communication Cost of the Spend Protocol. The Spend protocol consists
of a single message from the spender to the merchant, the main components of
which are a merchant public key, a serial number, a security tag, and a ZKAoK.
Assuming the use of GPV signatures [19], we can assume that the merchant
public key consists of Õ(λ) bits. Next, the serial number and security tag together
consists of 2(nLTF+n̄LTF) log qLTF+2n log p = Õ(λ) bits. Finally, if we look at the
full ZKAoK described in Section 5, we have a system of mzk = O(m ·L) = Õ(λ)
equations in dimension nzk = O(nL+n log q) = Õ(λ) with `zk = O(nzk+nL) =
Õ(λ) quadratic constraints. This implies that the Spend protocol has a total
communication cost of Õ(λ2) bits.

29

Acknowledgements

This work is supported by the European Union PROMETHEUS project (Hori-
zon 2020 Research and Innovation Program, grant 780701). Khoa Nguyen is also
supported by the Gopalakrishnan – NTU Presidential Postdoctoral Fellowship
2018.

References

1. S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (H)IBE in the standard
model. In Eurocrypt, 2010.

2. J. Alwen, S. Krenn, K. Pietrzak, and D. Wichs. Learning with rounding revisited
– new reduction, properties and applications. In Crypto, 2013.

3. W. Banaszczyk. New bounds in some transference theorems in the geometry of
numbers. Mathematische Annalen, 296, 1993.

4. A. Banerjee and C. Peikert. New and improved key-homomorphic pseudo-random
functions. In Crypto, 2014.

5. A. Banerjee, C. Peikert, and A. Rosen. Pseudorandom functions and lattices. In
Eurocrypt, 2012.

6. C. Baum, I. Damg̊ard, V. Lyubashevsky, S. Oechsner, and C. Peikert. More efficient
commitments from structured lattice assumptions. In SCN, 2018.

7. M. Belenkiy, M. Chase, M. Kohlweiss, and A. Lysyanskaya. Compact e-cash and
simulatable VRFs revisited. In Pairing, 2009.

8. D. Boneh, K. Lewi, H. Montgomery, and A. Raghunathan. Key-homomorphic prfs
and their applications. In Crypto, 2013.

9. F. Bourse, D. Pointcheval, and O. Sanders. Divisible e-cash from constrained
pseudo-random functions. In Asiacrypt, 2019.

10. Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé. On the classical
hardness of learning with errors. In STOC, 2013.

11. J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact e-cash. In Eurocrypt,
2005.

12. S. Canard, D. Pointcheval, O. Sanders, and J. Traoré. Divisible e-cash made prac-
tical. In PKC, 2015.

13. D. Chaum. Blind signatures for untraceable payments. In Crypto, 1982.
14. I. Damg̊ard. Efficient concurrent zero-knowledge in the auxiliary string model. In

Eurocrypt, 2000.
15. Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy extractors: How to gen-

erate strong keys from biometrics and other noisy data. In SIAM, 2008.
16. A. El Kaafarani and S. Katsumata. Attribute-based signatures for unbounded

circuits in the rom and efficient instantiations from lattices. In PKC, 2018.
17. P. Farshim, C. Orlandi, and R. Rosie. Security of symmetric primitives under

incorrect usage of keys. In ToSC, volume 2017.
18. A. Fiat and A. Shamir. How to prove yourself – practical solutions to identification

and signature problems. In Crypto, 1986.
19. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and

new cryptographic constructions. In STOC, 2008.
20. O. Goldreich. Foundations of Cryptography: Volume 1. Cambridge University

Press, 2006.

30

21. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.
In FOCS, 1984.

22. S. Kim and D. Wu. Watermarking cryptographic functionalities from standard
lattice assumptions. In Crypto, volume 2017.

23. B. Libert, S. Ling, F. Mouhartem, K. Nguyen, and H. Wang. Signature schemes
with efficient protocols and dynamic group signatures from lattice assumptions. In
Asiacrypt, volume 2016.

24. B. Libert, S. Ling, K. Nguyen, and H. Wang. Zero-knowledge arguments for lattice-
based prfs and applications to e-cash. In Asiacrypt, 2017.

25. V. Lyubashevsky. Lattice-Based Identification Schemes Secure Under Active At-
tacks. In PKC, 2008.

26. D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In Eurocrypt, 2012.

27. D. Micciancio and C. Peikert. Hardness of SIS and LWE with small parameters.
In Crypto, 2013.

28. C. Peikert and A. Rosen. Efficient collision-resistant hashing from worst-case as-
sumptions on cyclic lattices. In TCC, 2006.

29. C. Peikert and B. Waters. Lossy trapdoor functions and their applications. In
STOC, 2008.

30. O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
In STOC, 2005.

31. D. Ron and A. Shamir. Quantitative analysis of the full bitcoin transaction graph.
In Financial Cryptography, 2013.

32. H. Wee. Dual projective hashing and its applications — lossy trapdoor functions
and more. In Eurocrypt, 2012.

33. R. Yang, M.H. Au, Z. Zhang, Q. Xu, Z. Yu, and W. Whyte. Efficient lattice-based
zero-knowledge arguments with standard soundness: Constructions and applica-
tions. In Crypto, 2019.

31

Supplementary Material

A Lattice Sampling Algorithms

Our construction uses of the efficient algorithms SampleLeft and SampleRight of
Agrawal et al. [1] that satisfy the properties given in the following lemmas. Note
that Ã represents the matrix resulting from applying the Gram-Schmidt process
to the columns of A. Further, ‖A‖ represents the length of the column of A
with the largest Euclidean norm. We also recall a trapdoor generation result
from [26].

Lemma 6 ([1]). Let q > 2, n,m > n,m1 be positive integers. Also take any
A ∈ Zn×mq ; M ∈ Zn×m1

q ; u ∈ Znq ; and full-rank TA ∈ Zm×mq such that A ·TA =

0 mod q. For any σ > ‖T̃A‖ · ω(
√

log(m+m1)), SampleLeft(A,M,TA,u, σ)
outputs a vector distributed statistically close to DΛu

q (A‖M),σ.

Lemma 7 ([1]). Let n,m > n,m1 be positive integers and q > 2 be prime.
Also take A ∈ Zn×mq ; R ∈ Zm×m1

q ; B ∈ Zn×m1
q ; u ∈ Znq ; non-zero h ∈ Zq; and

full rank TB ∈ Zm×mq such that B · TB = 0 mod q. For any σ > ‖T̃B‖ · (sR +

1)ω(
√

log(m)) where sR := max‖x‖=1 ‖R·x‖1, SampleRight(A,B,R,TB, h, σ,u)
outputs a vector distributed statistically close to DΛu

q (A‖AR+hB),σ.

Lemma 8 ([26]). Let n = O(λ), q be a prime and let m ≥ 2ndlog qe. Then there
is an efficient algorithm TrapGen such that TrapGen(1n, 1m, q) outputs (A,TA) ∈
Zn×mq × Zm×mq where A is statistically indistinguishable from uniform, and TA

is a basis of Λ⊥q (A) satisfying ‖T̃A‖ = (2
√
m+ 1) ·

√
5.

B Zero-Knowledge Arguments Showing the Correct
Evaluation of a GGM-based PRF

We now consider reducing the problem of proving knowledge of an input/seed
pair of a GGM-based PRF to proving knowledge of a solution to a linear system
with quadratic relations over the entries of the solution. In other words, we
will show that proving knowledge of an input/seed pair for the PRF in [5] is
compatible with R∗ and the protocol in [33].

Our starting point is to consider a set of equations over Q representing a
GGM-based PRF evaluation (Equation (4)) leading to output y ∈ Zmp . Using
the notation (·)q to denote that all operations within the brackets are performed

32

over Zq, the system of equations (over Q) is given by

y1 =
p

q
·
(

(1− x1)A0 · k + x1A1 · k
)
q

− e1

y2 =
p

q
·
(

(1− x2)A0 · y1 + x2A1 · y1

)
q

− e2

...

yL−1 =
p

q
·
(

(1− xL−1)A0 · yL−2 + xL−1A1 · yL−2

)
q

− eL−1

y =
p

q
·
(

(1− xL)A0 · yL−1 + xLA1 · yL−1

)
q

− eL

For i ∈ [L−1], yi ∈ {0, 1, . . . , p−1}m and the “error” terms ei belong to the set
[0, 1)m∩ p

q ·Z
m where [0, 1) := {x : x ∈ R, 0 ≤ x < 1}. For i ∈ [L], we now define

ēi := q
pei ∈ [0, qp − 1]m ∩ Zm, xi,1 := (1 − xi) and xi,2 := xi. Multiplying the

above system of equations by q/p and relabelling y0 := k yields the following
system over Zq:

q

p
· y1 = A0 · x1,1y0 + A1 · x1,2y0 − ē1 mod q

q

p
· y2 = A0 · x2,1y1 + A1 · x2,2y1 − ē2 mod q

... (5)
q

p
· yL−1 = A0 · xL−1,1yL−2 + A1 · xL−1,2yL−2 − ēL−1 mod q

q

p
· y = A0 · xL,1yL−1 + A1 · xL,2yL−1 − ēL mod q

This system over Zq almost captures a GGM PRF evaluation. It remains to
ensure that for i ∈ [L − 1], yi is an integer vector reduced modulo p (i.e. that
yi ∈ [0, p − 1]n), that for i ∈ [L], ēi ∈ [0, qp − 1]n, and also that xi,1 + xi,2 = 1,
for i = 1, . . . , L. We will use vector decompositions. In particular, introducing
the binary vectors ỹi := vdecm,p−1 (yi) and ẽi := vdecm, qp−1 (ēi), we append the

33

following to Equations (5):

x1,1 + x1,2 = 1 mod q

...

xL,1 + xL,2 = 1 mod q

y1 −Hm,p−1 · ỹ1 = 0 mod q

... (6)

yL−1 −Hm,p−1 · ỹL−1 = 0 mod q

ē1 −Hm, qp−1 · ẽ1 = 0 mod q

...

ēL −Hm, qp−1 · ẽL = 0 mod q

Note that the system of Equations (5) and (6) is linear in the vector of unknowns

(w′)> =
(
(w′1)>, (w′2)>, (w′3)>, (w′4)>, (w′5)>, (w′6)>

)
(7)

where

– (w′1)> = (x1,1, x1,2, . . . , xL,1, xL,2)
– (w′2)> =

(
y>0 , . . . ,y

>
L−1

)
– (w′3)> =

(
x1,1y

>
0 , x1,2y

>
0 , . . . , xL,1y

>
L−1, xL,2y

>
L−1

)
– (w′4)> =

(
ỹ>0 , . . . , ỹ

>
L−1

)
– (w′5)> =

(
ē>1 , . . . , ē

>
L

)
– (w′5)> =

(
ẽ>1 , . . . , ẽ

>
L

)
At this point it can be seen that finding an input/seed pair with GGM evaluation
output equal to y corresponds precisely to finding a solution w′ to the system
M′′ ·w′ = y′′ mod q where:

– The matrix defining the linear system is

M′′ =

IL ⊗ (1, 1)

ImL 0mL×2mL −IL ⊗Hm,p−1

ImL −IL ⊗Hm,q/p−1
q
pImL −ImL ⊗ [A0‖A1] ImL

– (y)′′> = (1L, 02mL, qp · y

>)

– when parsed as in Equation (7), w′ is subject to the following quadratic
constraints:
• w′1[2i] = w′1[2i] ·w′1[2i] for i ∈ [L]
• w′3[2m(i− 1) + j] = w′1[2i− 1] ·w′2[m(i− 1) + j] for i ∈ [L], j ∈ [m]
• w′3[2m(i− 1) +m+ j] = w′1[2i] ·w′2[m(i− 1) + j] for i ∈ [L], j ∈ [m]
• w′4[i] = w′4[i] ·w′4[i] for i ∈ [m · blog(p− 1)c]
• w′6[i] = w′6[i] ·w′6[i] for i ∈ [m · blog(qp − 1)c]

Note that one can trivially remove w′5 from the system by replacing w′5 =
IL⊗Hm,q/p−1 ·w′6, but we choose not to for the sake of simplifying presentation.

34

C Deferred Security Proofs

C.1 Proof of Anonymity

We begin with a high level intuition of the proof structure. We will show that
any coin (info, PKM,yS ,yT , πK) that is the result of a real Spend protocol run
can be replaced by a simulated coin (info, PKM,y

′
S ,y

′
T , π

′
K). In slightly more

detail, recall that yS and yT depend on a PRF evaluations yk, where k is a
secret value stored in a wallet. The idea of the proof is to first replace a real
ZKAoK πK with a simulated π′K using the zero-knowledge simulator. Next, we
replace yk by a uniform random value and then finally use Lemma 2 to justify
replacing the resulting serial number/security tag by a uniformly chosen value.

Lemma 9. Let Π1 be the interactive ZKAoK used during the Withdraw protocol
and Π2 be the non-interactive one used during the Spend protocol. Construction 4
provides the anonymity property assuming parameters are chosen so that (i) Π1

and Π2 are both ZK; (ii) the BLMR PRF with respect to n,m, p, q is pseudo-
random; (iii) the LWEnLTF,mLTF,qLTF,α problem is hard.

Proof. LetA denote a PPT adversary in the anonymity game. Let QU denote the
number of users that A initialises by making QGetKey or QWithdraw-queries and let
Qw denote the maximal number ofQWithdraw-queries involving any single user. We
proceed via a sequence of games as listed next. For notational convenience, we set
Game2.(0,Qw) ≡ Game1, Game2.(k,Qw+1) ≡ Game2.(k+1,1), Game4.(0,Qw) ≡ Game3

and Game4.(k,Qw+1) ≡ Game4.(k+1,1). In addition, we use Wl to denote the event
that A wins Gamel.

Game0: The challenger behaves as described in the real anonymity game with
coin toss d = 1.

Game1: The challenger behaves as in Game0 except that, when responding to
QSpend-queries, all non-interactive arguments are simulated without using the
witnesses. This is achieved by using the honest-verifier zero-knowledge sim-
ulator and programming the random oracle HFS : {0, 1}∗ → {−p̄, . . . , p̄}κ. If
any of the zero-knowledge simulations fails, the challenger aborts.

Game2.(k,f)

(
(k, f) ∈ {1, . . . , QU} × {1, . . . , Qw}

)
: The challenger proceeds as

in Game2.(k,f−1) except for one modification in the treatment of spending
queries of the form QSpend(·, k, f, ·, ·). Using the notations of Section 4, the
challenger replaces the real PRF output yk by a uniformly chosen vector
yk ←↩ U(Zmp). All spending queries of the form QSpend(·, i, j, ·, ·) with i > k
or (i = k) ∧ (j > f) are answered as in Game2.(k,f−1).

Game3: The challenger’s behaviour is identical to that in Game2.(QU ,Qw) with
the sole difference that the evaluation key ekLTF of FLTF is sampled as a lossy
key in the setup phase.

Game4.(k,f)

(
(k, f) ∈ {1, . . . , QU} × {1, . . . , Qw}

)
: The challenger behaves as in

Game4.(k,f−1) apart from when responding to spending queries of the form
QSpend(·, k, f, ·, ·). For these queries, the challenger computes the first compo-
nent of a serial number yS := (y1,y2) ∈ ZnLTF+n̄LTF

qLTF
×Znp as before. However,

35

it now sets the second component to a uniform value y2 ←↩ U(Znp). It also
sets yT ←↩ U(Znp). All spending queries of the form QSpend(·, i, j, ·, ·) with
i > k or (i = k) ∧ (j > f) are dealt with as in Game5.(k,f−1).

Game0 ≈s Game1 : We first argue that no PPT adversary A can tell whether it
is running playing Game0 or Game1. To show this, we bound the probability that
the challenger aborts in Game1. Note that an abort occurs when the challenger
attempts to program the random oracle on an input where HFS was already de-
fined. If QH is the maximal number of random oracle queries made by A and QS
denotes the number of QSpend-queries, then we can upper-bound the abort proba-
bility when simulating a single argument by (QS+QH)/2κ. Using a union bound,
the probability that an abort occurs when simulating all QS QSpend-queries is
upper bounded by QS · (QS +QH)/2κ, which is also negligible. In addition, the
zero-knowledge property implies that A cannot distinguish Game0 from Game1

when no abort occurs. This implies that |Pr[W0]− Pr[W1]| = negl(λ).

Game2.(k,f−1) ≈c Game2.(k,f) : We show that, if A can distinguish Game2.(k,f−1)

from Game2.(k,f), then there is an efficient algorithm D distinguishing the BLMR
PRF from a truly random function. From now on, we will refer to the BLMR
PRF as F . Let ω denote a PRF challenge bit. That is, if ω = 1, the PRF
challenger answers D’s queries pseudo-randomly whereas, if ω = 0, it outputs
uniformly random vectors over Zmp at each new query. We now describe D,
which plays the role of A’s challenger as described in both Game2.(k,f−1) and
Game2.(k,f) for all queries that are not of the form QSpend(·, k, f, ·, ·). For queries
of the form QSpend(·, k, f, ·, ·), it checks the internal counter J of Wf (aborting if
J = 2L − 1) and queries its PRF challenger on the input J to obtain a response
y ∈ Zmp . It uses the latter to set yk = y and computes the coin as it does in
both Game2.(k,f−1) and Game2.(k,f). Finally, D outputs whatever A outputs.

Suppose that ω = 1. Denote Wf = (eu,k,SigB, J), where k ←↩ U(Zmq) was
randomly chosen by D at some QWithdraw-query. If ω = 1, D sets yk to be
PRFk∗(J), where k∗ ∼ U(Zmq) is the secret key chosen by the PRF challenger.
Note that k∗ 6= k w.h.p. while, in the withdrawal protocol, D sent A the statis-
tically hiding commitment

cU = D′0 · r0 + D1 · eu + D2 · k̃,

where k̃ = vdecm,q−1 (k) and r0 ←↩ DZms ,σ. In addition, D generated an interac-
tive computational witness indistinguishable (WI)9 argument that cu is honestly
computed for some r0 of infinity norm at most β = σ · √ms and binary k̃. Now,

define k̃∗ = vdecm,q−1 (k∗) and consider a sub-hybrid where D samples uniform
k∗ for itself and D′0 with a trapdoor [26] allowing for the efficient sampling of
a vector r∗0 ←↩ D

Λ
D3(k̃−k̃∗)+D′0r0
qs (D′0),σ

. Note that ‖r∗0‖ ≤ β with all but negligible

probability and
cU = D′0 · r∗0 + D1 · eu + D2 · k̃∗,

9 The zero-knowledge property implies witness indistinguishability by, e.g., [20, Propo-
sition 4.6.3]

36

allowing k to be used in a withdrawal protocols and k∗ to be used in the spend
protocol. At this point, we can rely on the witness indistinguishability of the
interactive argument generated by D at step 1 of the withdrawal protocol to show
that A cannot distinguish whether it is interacting with the challenger described
in Game2.(k,f−1), or with D involved in a game with its PRF challenger holding
a bit ω = 1. If ω = 0, then D perfectly emulates the challenger of Game2.(k,f).
This implies that, if A can distinguish Game2.(k,f−1) from Game2.(k,f), then D
can distinguish the PRF from uniform, thus contradicting the assumption that
n,m, p, q are chosen so that the BLMR PRF is pseudo-random. Consequently,
under this assumption, it must be that

|Pr[W2.(k,f−1)]− Pr[W2.(k,f)]| ≤ negl(λ) .

Finally, in Game2.(QU ,Qw), the challenger does not need any wallet information
to answer QSpend-queries. However, it still has to know the users’ public keys to
create the simulated spendings. To remove this dependency, the rest of the proof
exploits the lossiness properties of the trapdoor function family FLTF.

Game2.(QU ,Qw) ≈c Game3 : We now observe that, if the adversary A can distin-

guish between Game2.(QU ,Qw) and Game3, then it can distinguish between the
cases where ekLTF is sampled as a lossy mode or injective evaluation key. Since
we are using the LWE-based LTF described in [29], such an adversary would vi-
olate the LWEnLTF,mLTF,qLTF,α assumption by Lemma 1.

Game4.(k,f−1) ≈s Game4.(k,f) : Next, we argue that Game4.(k,f) is indistinguish-

able from Game4.(k,f−1) via a statistical argument. Let FLTF be the lossy trap-
door function and HUH, H

′
UH be the universal hash functions (indexed by ekLTF

and UUH,U
′
UH) sampled in Game4.(k,f−1) and denote the same functions in

Game4.(k,f) as F̄LTF and H̄UH, H̄
′
UH (indexed by ēkLTF and ŪUH, Ū

′
UH). To aide

presentation, we denote the distribution arising from taking the standard binary
decomposition of a uniformly sampled vector in Zmp as binp(U(Zmp)). We also
define the following matrices:

U :=

[
UUH

U′UH

]
, Ū :=

[
ŪUH

Ū′UH

]
∈ Z2n×mLTF

p .

Note that we may apply Lemma 2 to show that for y, ȳ ←↩ bin(Znp) and ū′ ←↩
U(Z2n

p), the distributions of (Uy,U, (ekLTF, FLTF(y))) and (ū′, Ū, (ēkLTF, F̄LTF(ȳ)))
are at most a statistical distance

δ =
1

2

√
2−(m log p−(mLTFγ+nLTF log qLTF+2n log p)).

apart. Recall that m = dn log qe,mLTF = m · dlog pe, nLTF = Õ(n), γ < 1 is a
constant and mLTF = Θ(nLTF log qLTF). From these observations, it can be seen
that the exponent in the square root is negative and Ω(nLTF log qLTF) in absolute
value (for appropriate choices of constants), implying that the statistical distance

37

δ is negligible. By a hybrid argument, it follows that the statistical distribution
between (

U, ekLTF, {FLTF(yJ)}2
L

J=1, {UyJ}2
L

J=1

)
(8)

and (
Ū, ēkLTF, {F̄LTF(ȳJ)}2

L

J=1, {ū′J}2
L

J=1

)
(9)

where yJ , ȳJ ←↩ binp(Znp) and ūJ ←↩ U(Z2
pn) is at most 2L ·δ which is also negli-

gible. We now argue that an adversary that distinguishes between Game4.(k,f−1)

and Game4.(k,f) with noticeable probability would also distinguish (8) and (9)
with noticeable probability. We will use the fact that for any R = H0(info) 6=
0 ∈ Znp , the matrix FRD(R) must be invertible due to the function FRD [1] that
we use. This follows from the observation that FRD(0) = 0n×n which implies
that FRD(R) = FRD(R) − FRD(0) must be invertible over Zp by the full-rank
differences property. We will show that there is an algorithm C that perfectly
simulates perfectly Game4.(k,f−1) on input distributed as in (8), and simulates
Game4.(k,f) on input distributed as in (9). In doing so, if A manages to distin-
guish the two cases with noticeable probability, then C distinguishes (8) from
(9) leading to a contradiction. On parsing its input as([

U∗UH,0
U∗UH,1

]
, ek∗LTF, {f∗J}2

L

J=1,

{[
u∗J,0
u∗J,1

]}2L

J=1

)
,

C simulates ParGen as described in the construction apart from that it sets the
LTF key to ek∗LTF and uses the universal hash functions associated to the ma-
trices U∗UH,0 and U∗UH,1. C also answers all queries apart from those of the form
QSpend(·, ·, k, f, ·, ·) as in Game4.(k,f−1) and Game4.(k,f). For aQSpend(·, k, f, ·, info)
query where Wf has been assigned to the k-th user, it sets serial number
yS = (f∗J∗ , PKk + u∗J∗,0) and security tag yTPKk +FRD(H0(info)) ·u∗J∗,1 where

J∗ < 2L − 1 is the internal counter value of Wf . Otherwise, C behaves as the
challenger in Game4.(k,f−1) when answering such queries. It should be clear that
if C’s input is of the form (8), it perfectly simulates Game4.(k,f−1). On the other
hand, if C is given input of the form (9), then it simulates Game4.(k,f). This can
be argued by making two simple observations. Firstly, multiplying a uniform
value of Zn×np by the invertible matrix FRD(H0(info)) yields a uniform value in
Znp . Secondly, adding PKk to uniform samples of Znp is distributed uniformly.
Therefore, we can conclude that even if A is unbounded, it cannot distinguish
between Game4.(k,f−1) and Game4.(k,f) with noticeable probability.
The anonymity property follows after noting that the parameter generation and
answers to QSpend-queries in Game4.(QU ,Qw) are independent of both the wallets
issued during the game and user public keys. Therefore, SimParGen and SimSpend
are defined by the challenger’s behavior in Game4.(QU ,Qw). ut

C.2 Proof of the Traceability Property

Lemma 10. Let Π1 be the interactive ZKAoK used during the Withdraw proto-
col and Π2 be the non-interactive one used during the Spend protocol. Assuming

38

that (i) the SISn,ms,qs,β′ problem is hard for the parameter β′ = O(σ2m
1/2
s (ms

+ m̄)), (ii) that H0 is sampled from a collision-resistant hash function family,
and (iii) that Π1 and Π2 are AoKs, our construction possesses the traceability
property in the random oracle model.

Proof. An adversary A breaks traceability of our e-cash scheme if it is able to
spend more coins than it has withdrawn without being identified as a double-
spender. Concretely, after Qw queries to the QWithdraw oracle, it is able to output
N > 2L ·Qw coins {coinj = (infoj , PKMj ,yS,j ,yT,j , πK,j)}Nj=1 such that

1. (PKMj
, infoj) 6= (PKMk

, infok), for all pairs (j, k) ∈ {1, . . . , N}2;
2. VerifyCoin(par, PKMj

, PKB, coinj) = 1, for j ∈ {1, . . . , N};
3. Identify

(
par, PKB, coinj , coink

)
does not output a public key in the database

T, for all pairs (j, k) ∈ {1, . . . , N}2.

Each of these coins contains an argument of knowledge of v(j), r
(j)
0 , r

(j)
1 , eu,j

and τ (j),k(j) such that

Aτ(j) · v(j) = u + D · vdecn,qs−1

(
w(j)

)
w(j) = cUj + D′′0 · r

(j)
1 (10)

c∗U = D′0 · r
(j)
0 + D1 · eu,j + D2 · vdecm,q−1

(
k(j)

)
At each query to the QWithdraw oracle, the adversary playing the role of a user

Ui sends a commitment

cUi = D′0 · r
(i)
0 + D1 · eui + D2 · vdecm,q−1

(
k(i)
)
∈ Znqs

to the bank and interactively proves knowledge of the corresponding openings.
The reduction is thus able to invoke a knowledge extractor E to extract such
values.

To distinguish elements involved in such queries from those involved in the
adversary output, we will always use a superscript i in the former case and j in

the latter case. For example, w(i) = cUi +D′′0 ·r
(i)
1 and τ (i) are the elements used

by the bank during the i-th QWithdraw-query.
We distinguish the following cases.

– Case 1: ∃j∗ ∈ {1, . . . , N} such that ∀i ∈ {1, . . . , Qw}, τ (j∗) 6= τ (i).
– Case 2: ∃j∗ ∈ {1, . . . , N} and i∗ ∈ {1, . . . , Qw} such that τ (j∗) = τ (i∗) but

w(j∗) 6= w(i∗).
– Case 3: Cases 1 and 2 do not occur and there is no collision in the set of

serial numbers {yS,i}Ni=1.
– Case 4: Cases 1 and 2 do not occur and there is a collision in the set of

serial numbers {yS,i}Ni=1.

39

In the first two cases, our reduction makes a guess j∗ ←↩ U({1, . . . , N}) for
the index j∗. This guess is correct with probability at least 1/N . For the sake
of clarity, the elements associated with this guessed index will only be denoted
with a superscript ∗ (e.g., w∗ instead of w(j∗)).

For k ∈ {1, 2, 3, 4}, we define the algorithm Bk designed to solve a SIS in-
stance for matrix Ā ∈ Zn×msqs with non-negligible probability when A breaks
traceability in Case k.

• Case 1: Description of B1

Simulation of ParGen and BKeyGen. B1 samples τ (1), . . . , τ (Qw) ←↩ {0, 1}` that
will be used to answer QWithdraw-queries at the outset of the game. Next, B1

generates (C,TC) ← TrapGen(1n, 1ms , qs). It then draws random indexes i′ ←↩
U([Qw]) and t′ ←↩ U({0, . . . , ` − 1}) and sets τ ′ = τ

(i)
|t′ ‖τ (i)[t′ + 1] where τ

(i)
|t′

denotes the vector consisting of the first t′ entries of τ (i). Given the SIS input
Ā ∈ Zn×msqs , it samples Sj ←↩ DZms×ms ,σ for j ∈ {0, . . . , `} and sets

A = Ā

A0 = Ā · S0 +

t′∑
j=1

τ ′[j] ·C

Aj = Ā · Sj + (−1)τ
′[j] ·C, j = 1, . . . , t′

Aj = Ā · Sj , j = t′ + 1, . . . , `.

Note that

Aτ =

Ā | Ā ·

S0 +
∑̀
j=1

τ [j] · Sj

+ hτ ·C

 ,
where hτ is the Hamming distance between τ|t′+1 and τ ′. Furthermore, we have
hτ = 0 mod qs if and only if τ ′ is a prefix of τ because hτ ∈ [0, t′ + 1] and
t′+ 1 ≤ qs. Next, B1 samples s←↩ DZms ,σ, R←↩ DZms×ms/2,σ and sets u = Ā · s,
D = Ā ·R. It generates the remaining components of the public key of the bank
and the public parameters as described in the real construction and feeds A with
them. Note that the simulated public parameters and PKB are sampled from
distributions which are statistically close to those used in the real scheme by the
standard Leftover Hash Lemma.

Simulation of QWithdraw-queries. At the i-th withdrawal query, B1 uses the value
τ (i). If τ ′ is a prefix of τ (i), B2 aborts. Otherwise, B2 considers the matrix

Aτ(i) =

Ā | Ā ·

S0 +
∑̀
j=1

τ [j] · Sj

+ hτ ·C

and uses TC (together with the small-norm matrix S0 +

∑`
j=1 τ [j] ·Sj ∈ Zms×ms

and Lemma 7) to sample Gaussian vectors v(i) ∈ Z2ms in the desired coset of

40

the lattice Λ⊥qs(Aτ(i)) with a distribution statistically close to the distribution
DΛ

uU
qs (A

τ(i)),σ used in the real withdrawal protocol.

Output stage. In case 1, if our guess on j∗ is correct, a successful adversary A
necessarily outputs an argument of knowledge of short v∗ and some w∗ such that
Aτ∗ · v∗ = u + D · vdecm,q−1 (w∗). Note that, with non-negligible probability at
least 1/(Qw · `), the longest common prefix of τ∗ amongst prefixes of the τ (i)’s is

τ
(i′)
|t′ . We call this event E and observe that, if E occurs, then τ ′ = τ

(i′)
|t′ ‖τ (i)[t′ + 1]

must be a prefix of τ∗, in which case we have

Aτ∗ = Ā · [I | S0 +
∑̀
j=1

τ [j] · Sj].

Therefore, if A wins the traceability game in Case 1 and event E occurs, then A
proves knowledge of short v∗ and w∗ such that

Ā ·

[I | S0 +
∑̀
j=1

τ [j] · Sj] · v∗
 = Ā · (s + R · vdecm,q−1 (w∗)) .

Rearranging the above equation shows that A argues knowledge of a SIS solution
with respect to the instance Ā provided that

vSIS := [I | S0 +
∑̀
j=1

τ [j] · Sj] · v∗ − s−R · vdecm,q−1 (w∗)

is non-zero. This is true due to the fact that even when conditioned on u (which
is the only quantity depending on s that A is given), s retains at least ms bits of
min-entropy by Lemma 2.11 of [28]. Therefore, the probability that A outputs
vSIS = 0 is negligible. Using the Cauchy-Schwarz inequality and the fact that
the Euclidean norm of a sample from DZn′ ,r is bounded by r

√
n′ with all but

negligible probability [3], we may conclude that ‖vSIS‖∞ ≤
√

1 + σ2ms ·σ
√

2ms+

σ
√
ms + σ

√
ms/2 ·

√
ms/2 i.e. that ‖vSIS‖ ≤ O(σ2m

3/2
s) with all but negligible

probability. The final step is for B1 to extract the SIS solution which is done in the
same way as in the proof of exculpability (Section 6). We conclude that, if a PPT
A wins in Case 1 with non-negligible probability, then B1 efficiently computes a
non-trivial solution to the SIS instance with non-negligible probability.

• Case 2: Description of B2

Simulation of ParGen and BKeyGen. Before starting its interaction with A, B2

samples random strings τ (1), . . . , τ (Qw) ←↩ U({0, 1}`) that will be used when
answering QWithdraw-queries. Next, it samples i∗ ←↩ U({1, . . . , Qw}) along with

41

uniformly chosen h0, . . . , h` ←↩ U(Zqs) such that

h0 +
∑̀
j′=1

τ (i∗)[j′] · hj′ = 0 (11)

h0 +
∑̀
j′=1

τ (i)[j′] · hj′ 6= 0 for all i 6= i∗.

In addition, B2 generates (C,TC) ← TrapGen(1n, 1ms , qs). It also samples vec-
tors v(i∗) ←↩ DZ2ms ,σ, c′U ←↩ U(Zmqs) as well as matrices R ←↩ DZms×ms/2,σ and
Sj ←↩ DZms×ms ,σ for j ∈ {0, . . . , `}. It sets the various elements of the bank’s
public key to be:

D = Ā ·R
A = Ā

Aj = Ā · Sj + hj ·C, j = 0, . . . , `

u = Ā · v(i∗) −D · vdecn,qs−1 (c′U)

Notice that Aτ(i∗) does not depend on C by the first constraint (11). Finally,
B2 samples D′′0 ,TD′′0

← TrapGen(1n, 1ms , qs) and the remaining public param-
eters as described in the real scheme. Again, the public parameters and the
bank’s public key are statistically indistinguishable from those involved in the
real construction by the standard Leftover Hash Lemma.

Simulation of QWithdraw-queries. For each i ∈ [Qw], we have

Aτ(i) =

Ā | Ā ·

S0 +
∑̀
j=1

τ (i)[j] · Sj

+

h0 +
∑̀
j=1

τ (i)[j] · hj

 ·C
 ,

so that B2 can answer the i-th QWithdraw-query using trapdoor TC as long as
i 6= i∗. The i∗-th query is answered as follows. On receipt of cU ∈ Znqs from A,
B2 samples

r1 ←↩ D
Λ

c′U−cU
qs (D′′0),σ

using the trapdoor TD′′0
. By doing so, B2 ensures that cU + D′′0 · r

(i∗)
1 = c′U , in

which case we have

Aτ(i∗) · v(i∗) = u + D · vdecn,qs−1 (c′U) mod qs

by construction. Note that the distribution of
(
τ (i∗),v(i∗), r(i∗)

)
is statistically

close to its counterpart in the real construction. To see why, we first note that
τ (i∗) is chosen uniformly as in the real construction. Next, we use the fact that
sampling a discrete Gaussian over a uniformly chosen coset of lattice Λ for pa-
rameter σ larger than the smoothing parameter of Λ yields the discrete Gaussian
distribution over integer vectors to within negligible statistical distance. This fact

42

follows from Claim 3.8 in [30]. This implies that the distribution of r
(i∗)
1 is sta-

tistically close to a discrete Gaussian as it should be. Finally, conditioned on

the values r
(i∗)
1 , τ (i∗), the distribution of v(i∗) is a Gaussian restricted to a coset

depending on r
(i∗)
1 , τ (i∗) as it is in the real construction.

Output stage. If A wins in Case 2 and if our guess i∗ is correct, it outputs an
argument of knowledge of some w∗ ∈ Znqs and a short v∗ ∈ Z2ms such that

Aτ∗ · v∗ = u + D · vdecn,qs−1 (w∗) where τ∗ = τ (i∗) and w∗ 6= w(i∗). This
happens with probability at least 1/Qw. If this is the case, then we can extract
(as in the proof of exculpability) a short v∗ ∈ Z2ms and binary vdecn,qs−1 (w∗)
such that

Ā · [I | (S0 +
∑̀
j=1

τ∗[j] · Sj)] · (v∗ − v(i∗))

= Ā ·R (vdecn,qs−1 (w∗)− vdecn,qs−1 (c′U)) mod qs. (12)

Since we are assuming that the adversary A wins in Case 2, we have w∗ 6= w(i∗),
where w(i∗) := c′U , which implies vdecn,qs−1 (w∗) 6= vdecn,qs−1 (c′U). From this,
Equation (12) implies that

vSIS := [I | (S0 +
∑̀
j=1

τ∗[j] · Sj)] · (v∗ − v(i∗))

−R · (vdecn,qs−1 (w∗)− vdecn,qs−1 (c′U)) ∈ Zms (13)

is a SIS solution provided it is non-zero. Now, while PKB depends on {Sj}`j=0

and R via the relations Aj = Ā · Sj + hj · C and D = Ā ·R, the columns of
Sj and R retain a lot of entropy conditionally on PKB. In particular, by [28,
Lemma 2.11], each column of R ∈ Zms×ms/2 retains at least ms bits of entropy
conditionally on D = Ā · R. Moreover, this entropy does not decrease during
the game since the matrix R is never used to answer QWithdraw-queries. Since
(vdecn,qs−1 (w∗)− vdecn,qs−1 (c′U)) ∈ {−1, 0, 1}ms/2 \ {0ms/2}, the second term
of (13) can be written as the sum of up to ms/2 Gaussian vectors, of which at
least one is statistically unpredictable. Consequently, vSIS ∈ Zms is a non-zero
vector of Λ⊥qs(Ā) with all but negligible probability. Similarly to the output phase

in Case 1, we can argue that ‖vSIS‖∞ ≤
√

1 + σ2ms ·σ
√

2ms+σ
√
ms/2·

√
ms/2

i.e. ‖vSIS‖ ≤ O(σ2m
3/2
s) with all but negligible probability.

• Case 3: Description of B3

In Case 3, all the pairs (τ (j),w(j)) involved in the j-th coin returned by the
adversary have also been used to answer a QWithdraw-query. However, A has
returned N > 2L · Qw coins while querying QWithdraw only Qw times and, yet,
there is no collision in the N resulting serial numbers.

43

Let {(e(i)
U ,k

(i))}Qwi=1 be the elements involved in the Qw QWithdraw queries.
From them, we can derive at most 2L · Qw legitimate serial numbers. Since
N > 2L · Qw and since we assume that there is no collision, there is a coin
coin∗ returned by the adversary that contains a serial number y∗S which is not
legitimate. However, since we here consider Case 3, we know that there is an
index i∗ ∈ {1, . . . , Qw} such that (τ∗,w∗) = (τ (i∗),w(i∗)) (otherwise, this would
be one of the first two cases). We construct an algorithm B3 that solves its SIS
instance Ā ∈ Zn×msq as follows.

Simulation of ParGen and BKeyGen. Algorithm B3 samples matrices with Gaus-
sian entries Q′′0 ←↩ DZms×ms ,σ , Q1 ←↩ DZms×m,σ, Q2,Q3 ←↩ DZms×m̄,σ. It then
sets D′0 = Ā, D′′0 = Ā ·Q′′0 and Di = Ā ·Qi for i ∈ {1, 2}. Note that the re-
sulting matrices are statistically close to uniform by the standard Leftover Hash
Lemma. The remaining public parameters and the bank’s public key are chosen
as described in the real construction.

Simulation of QWithdraw-queries. Since the matrices A and {Ai}`i=0 were sampled
as described in the real construction, B3 is able to honestly answer all QWithdraw

queries. However, at each query i ∈ [Qw], B3 runs the knowledge extractor of the

interactive argument by rewindingA so as to extract the witnesses (r
(i)
0 , e

(i)
u , k̃(i))

in the first step of the withdraw protocol. In particular, for the i-th query to
QWithdraw, B3 can record the resulting wallet

Wi =
(
e(i)
u ,k(i),

(
τ (i),v(i), r(i) =

(r(i)
0

r
(i)
1

))
, J = 0

)
for later use.

Output stage. If A wins the traceability game in Case 3, it outputs a coin
containing a non-trivial serial number

y∗S =
(
FLTF

(
binp(yk∗)

)
, F · e∗u +HUH

(
binp(yk∗)

))
.

Moreover, the coin must contain an argument of knowledge of the underlying
e∗u ∈ {0, 1}m, J∗ ∈ {0, 1}L, k∗ ∈ Zmq as well as a binary τ∗ ∈ {0, 1}` and

short vectors v∗ ∈ Z2ms , r∗ = (r∗0
> | r∗1

>)> ∈ Z2ms satisfying the verification
equations (10). By the same reasoning as in the proof of exculpability, B3 can
extract the witness (v∗, r∗, e∗u, τ

∗,k∗, J∗).
Since we are in Case 3, there exists i∗ ∈ [Qw] such that the values

r′ := r∗ − r(i∗)

e′u := e∗u − e(i∗)
u

k′ := vdecm,q−1 (k∗)− vdecm,q−1

(
k(i∗)

)
satisfy

[D′0 | D′′0] · r′ + D1 · e′u + D2 · k′ = 0n mod qs. (14)

44

Moreover, the serial number y∗S does not belong to the set

Si∗ :=
{(
FLTF

(
binp(PRFk(i∗)(J))

)
,

F · e(i∗)
u +HUH

(
binp(PRFk(i∗)(J))

))
: J ∈ {0, 1}L

}
,

since, otherwise, it would be a legitimate serial number. We now rewrite Equa-
tion (14) as

Ā ·
(
Q ·

(
r′
> | e′u

> | k′>
)>)

= 0n mod qs

where Q := [I | Q′′0 | Q1 | Q2]. We now argue that

vSIS := Q ·
(
r′
> | e′u

> | k′>
)>

is non-zero which implies that it is a valid SIS solution. Since y∗S /∈ Si∗ , we must
have at least one of the following cases since FLTF was generated in injective
mode:

1. PRFk∗(J
∗) 6= PRFk(i∗)(J) for all J ∈ {0, 1}L, which implies that k∗ 6= k(i∗);

2. e∗u 6= e
(i∗)
u .

In any of the above cases, we have
(
r′
> | e′u

> | k′>
)> 6= 0. To complete the proof,

we argue that public matrices D′′0 ,D1,D2 do not reveal significant information
on Q′′0 ,Q1 and Q2. To this end, we rely again on [28, Lemma 2.11] to argue
that the columns of Q′′0 ,Q1 and Q2 retain at least ms bits of min-entropy.
Moreover, this entropy never decreases when B3 answers adversarial queries.

Since
(
e′u
> | k′>

)> ∈ {−1, 0, 1}m+m̄ \ {0m+m̄}, the sum

Q1 · e′u + Q2 · k′ ∈ Zms

can be written as the sum of up to m + m̄ Gaussian vectors, of which at least
one is statistically unpredictable. This shows that vSIS 6= 0ms with all but neg-
ligible probability. In a similar manner to the previous cases, we can argue
that ‖vSIS‖∞ ≤

√
1 + σ2ms · σ

√
2 · 2ms + σ

√
m ·
√
m + 3σ

√
m̄ ·
√
m̄ i.e. that

‖vSIS‖ = O(σ2m
1/2
s (ms + m̄)) with all but negligible probability.

• Case 4: Description of B4

We will take the behaviour of B4 to be identical to that of B3. Therefore, we will
simply argue that B4 may extract a SIS solution in Case 4 assuming most of the
analysis from Case 3. The details follow.

In Case 4, we know that the adversary outputs at least two coins (that we
denote by coin1 and coin2) with the same serial number yS := yS,1 = yS,2.

We distinguish two cases:

– Case 4.a: H0(info1,M1) = H0(info2,M2)
– Case 4.b: H0(info1,M1) 6= H0(info2,M2)

45

The first case is straightforward and implies a collision on H0 as the suc-
cess conditions for A require (info1,M1) 6= (info2,M2). We will therefore only
consider the second case.

The soundness of arguments πK,1 and πK,2 (which are included in coin1 and
coin2, respectively) ensures that, for each j ∈ {1, 2}, there exists y1,j ∈ Zmp and
PKj such that

∀j ∈ {1, 2} :

{
yS = (yS,1,yS,2) =

(
FLTF

(
binp(y1,j)

)
, PKj +HUH

(
binp(y1,j)

))
yT,j = PKj + FRD(H0(PKMj , infoj)) ·H ′UH

(
binp(y1,j)

)
Since FLTF is injective, the consistency of yS,1 amongst the two coins implies
that y1 := y1,0 = y1,1. In turn, since coin1 and coin2 also share the same yS,2,
this implies that PK := PK0 = PK1. Combining these observations, we find
that

yT,1 = PK + FRD(H0(PKM1
, info1)) ·H ′UH(binp(y1))

yT,2 = PK + FRD(H0(PKM2
, info2)) ·H ′UH(binp(y1))

for (M1, info1) 6= (M2, info2). In our case, we have R1 := H0(M1, info1) 6=
H0(M2, info2) =: R2, meaning that (FRD(R1)− FRD(R2)) is invertible over Zp.
At this stage, it can be easily verified that Identify(PKB, coin1, coin2) outputs
PK.

The soundness of the proof implies that the first coin contains a proof of
knowledge of v∗, r∗0, r

∗
1, e
∗
u and τ∗,k∗ such that

Aτ∗ · v∗ = u + D · vdecn,qs−1 (w∗)

w∗ = cPK + D′′0 · r∗1 (15)

cPK = D′0 · r∗0 + D1 · e∗u + D2 · vdecm,q−1 (k∗)

We know that there is some i∗ ∈ {1, . . . , Qw} such that τ∗,w∗ = (τ (i∗),w(i∗))
since, otherwise, we would be considering either Case 1 or 2. Additionally, A
succeeds only if PK does not belong to T. This implies that, for all i ∈ [Qw],

we have PK = F · e∗u 6= F · e(i)
u and thus e∗u 6= e

(i∗)
u . We can then reproduce the

proof of Case 3. In particular, re-using the strategy and notation from Case 3,
we can conclude that

vSIS := Q ·
(
r′
> | e′u

> | k′>
)>

is a solution to the SIS instance Ā as long as it is non-zero. Similarly to before,

we can argue that vSIS is non-zero due to the fact that e′u := e∗u − e
(i∗)
u ∈

{−1, 0, 1}m \ 0m and that Q1 retains high entropy from the perspective of A.
Therefore, any adversary corresponding to Case 4 can be used to solve SIS with
the same norm-bound as in Case 3. ut

46

C.3 Proof of the Clearing Property

Recall that the VerifyDeposit algorithm run on (PKB, PKM , coin, µ) essentially
verifies that µ is a valid signature under PKM on a valid coin coin. The success
conditions defined by the clearing experiment imply then that the adversary
managed to output a valid signature µ on a coin coin for the public key of
an honest merchant. Since coin contains a pair (info, PKM) that is necessarily
different for each coin deposited through a QDeposit-query, µ is a valid forgery
against the signature scheme Σ. The formal security proof is provided below.

Proof. Let A be an adversary succeeding in the clearing experiment with prob-
ability ε. The challenger C makes a guess on the index i∗ of the honest merchant
targeted by A and runs the EUF-CMA experiment for Σ as an adversary. Let
PK∗ be the public key it received from this experiment. C thus answers oracle
queries as follows:

– QGetKey(i): C proceeds as usual if i 6= i∗ and returns PK∗ otherwise.
– QReceive

(
PKB, i, j

)
: all the computations performed by the merchant during

a spending only require public elements, so C is perfectly able to handle such
oracle queries, even when i∗ = i.

– QDeposit

(
PKB, i, j

)
: C proceeds as usual when i 6= i∗ (it knows the corre-

sponding secret key SKMi
) and uses its signing oracle from the EUF-CMA

experiment otherwise. In all cases, it can perfectly answer such queries.

At the end of the game, A outputs a tuple (PKM, coin, µ). The challenger
aborts if PKM 6= PK∗. Else, µ is a valid forgery under PK∗ because coin has
never been submitted to the signing oracle, as we have explained. Since C does
not abort with probability at least 1

|HM| , this means thatA can be converted into

an adversary against the EUF-CMA security of Σ succeeding with probability
at least ε

|HM| . The probability ε is therefore necessarily negligible. ut

47

	Lattice-Based E-Cash, Revisited

