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ABSTRACT
Although it is one of the most popular signature schemes today,

ECDSA presents a number of implementation pitfalls, in particular

due to the very sensitive nature of the random value (known as the

nonce) generated as part of the signing algorithm. It is known that

any small amount of nonce exposure or nonce bias can in principle

lead to a full key recovery: the key recovery is then a particular

instance of Boneh and Venkatesan’s hidden number problem (HNP).

That observation has been practically exploited in many attacks

in the literature, taking advantage of implementation defects or

side-channel vulnerabilities in various concrete ECDSA implemen-

tations. However, most of the attacks so far have relied on at least 2
bits of nonce bias (except for the special case of curves at the 80-bit
security level, for which attacks against 1-bit biases are known,

albeit with a very high number of required signatures).

In this paper, we uncover LadderLeak, a novel class of side-

channel vulnerabilities in implementations of the Montgomery

ladder used in ECDSA scalar multiplication. The vulnerability is in

particular present in several recent versions of OpenSSL. However,

it leaks less than 1 bit of information about the nonce, in the sense

that it reveals the most significant bit of the nonce, but with proba-

bility < 1. Exploiting such a mild leakage would be intractable using

techniques present in the literature so far. However, we present

a number of theoretical improvements of the Fourier analysis ap-

proach to solving the HNP (an approach originally due to Bleichen-

bacher), and this lets us practically break LadderLeak-vulnerable
ECDSA implementations instantiated over the sect163r1 and NIST
P-192 elliptic curves. In so doing, we achieve several significant

computational records in practical attacks against the HNP.

KEYWORDS
side-channel attacks, ECDSA, OpenSSL, Montgomery Ladder, hid-

den number problem, Bleichenbacher’s attack, list sum problem

1 INTRODUCTION
The ECDSA algorithm is one of the most widely deployed signa-

ture schemes today, and is part of many practical cryptographic

protocols such as TLS and SSH. Its signing operation relies on an

ephemeral random value called nonce, which is particularly sensi-

tive: it is crucial to make sure that the nonces are kept in secret

and sampled from the uniform distribution over a certain integer

interval. It is easy to see that if the nonce is exposed or reused

completely, then an attacker is able to extract the secret signing

key by observing only a few signatures. By extending this simple

observation, cryptanalysts have discovered stronger attacks that

make it possible to recover the secret key even if short bit substrings

of the nonces are leaked or biased. These extended attacks relate

key recovery to the so-called the hidden number problem (HNP)

of Boneh and Venkatesan [17], and are part of a line of research

initiated by Howgrave-Graham and Smart [36], who described a

lattice-based algorithm to solve the corresponding problem, and

Bleichenbacher [15], who proposed a Fourier analysis-based ap-

proach.

Lattice-based attacks are known to perform very efficiently when

sufficiently long substrings of the nonces are known to the attacker

(say over 4 bits for signatures on a 256-bit elliptic curve, and at least

2 bits for a 160-bit curve). As a result, a number of previous works

adapted Howgrave-Graham and Smart’s technique to practically

break vulnerable implementations of ECDSA and related schemes

like Schnorr signatures [59], for instance by combining it with side-

channel analysis on the nonces (see related works in Section 2.5).

However, a limitation of lattice-based attacks is that they become

essentially inapplicable when only a very short fraction of the

nonce is known for each input sample. In particular, for a single-

bit nonce leakage, it is believed that they should fail with high

probability, since the lattice vector corresponding to the secret is

no longer expected to be significantly shorter than other vectors in

the lattice [9, 49]. In addition, lattice-based approaches assume that

inputs are perfectly correct, and behave very poorly in the presence

of erroneous leakage information.

In contrast, Bleichenbacher’s Fourier analysis-based attack can

in principle tackle arbitrarily small nonce biases, and handles er-

roneous inputs out of the box, so to speak. Despite those features,

it has garnered far less attention from the community than lattice-

based approaches, perhaps in part due to the lack of formal pub-

lications describing the attack until recently (even though some

attack records were announced publicly [16]). It was only in 2013

that De Mulder et al. [24] revisited the theory of Bleichenbacher’s

approach in a formally published scholarly publication, followed

soon after by a paper of Aranha et al.’s [9], who overcame the 1-bit

“lattice barrier” by breaking 160-bit ECDSA with a single bit of
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Table 1: Comparisonwith the previous records of solutions to the hiddennumber problemwith small nonce leakages. Each row
corresponds to the size of group order in which the problem is instantiated. Each column corresponds to the (average) number
of leaked nonce bits per signature. Citations in green (resp. purple) use Bleichenbacher’s approach (resp. lattice attacks).

< 1 1 2 3 4

384-bit – – – [20] [24]

256-bit – – [62] [62], [5] [23, 45, 52, 56, 57, 67]

192-bit This work This work – – –

160-bit This work [9, 16], this work (less data) [15], [41] [47] –

nonce bias. Takahashi, Tibouchi and Abe [62] then improved the

space complexity of Bleichenbacher’s method and broke qDSA [55]

(a variant of Schnorr) with 2-bit nonce leaks. However, the practi-

cality of these works may seem limited: indeed, De Mulder et al.

attacked parameters that can be solved more efficiently by lattice

attacks; Aranha et al. required over 8 billion signatures as input; and

Takahashi et al. only mounted their attack by artificially injecting

physical faults into the modified, non-standard implementation.

In this work, we present the first real-world ECDSA vulnerabili-

ties that are not susceptible to lattice attacks, but become practically

exploitable with the Fourier analysis method, thanks to novel theo-

retical improvements that we propose over existing literature.

1.1 Contributions
New Cache Timing Attacks Against OpenSSL Montgomery Ladder.

We first propose LadderLeak, a new class of vulnerabilities lurking

in scalar multiplication algorithms invoked by ECDSA. Our attack

exploits small timing differences within the implementations of

Montgomery Ladder [46] relying on inappropriate coordinate rep-

resentations, and allows the attacker to learn a single-bit of the

secret scalar (which corresponds to nonces in ECDSA) with high

probability. We discovered LadderLeak vulnerabilities in several ver-
sions of OpenSSL (particularly in the 1.0.2 and 1.1.0 branches),
and in version 0.4.0 of RELIC toolkit [8]. We present two attack

flavors: one for binary curves and the other for prime curves. Both

have been experimentally validated, and provide high-precision dis-

tinguishers for ECDSA nonces in our target versions of OpenSSL.

The vulnerability affects various curve parameters in the above

implementations, including NIST P-192, P-224, P-256, P-384, P-521,

B-283, K-283, K-409, B-571, sect163r1, secp192k1, secp256k1. In
Section 3 we describe the attack idea, as well as concrete side-

channel experiments carried out using Flush+Reload cache timing

attacks [70]. As concrete targets we choose ECDSA instantiated

over NIST P-192 and sect163r1, and successfully retrieve 1-bit of

nonce information with high probability.

Theoretical Improvements to Bleichenbacher’s Solution to the HNP.
In Section 4 we establish a unified time–space–data tradeoff for-

mula for Bleichenbacher style attacks, and use it to concretely find

optimal attack parameter choices for a given group size and a given

amount of nonce bias. Our formula relies on the connection between

the hidden number problem on the one hand and the K-list sum

problem on the other (the latter of which is a sub-problem of Wag-

ner’s generalized birthday problem [66], particularly well-known

in symmetric key cryptology). Our approach is generic, allowing to

integrate in principle anyK-list integer sum algorithms to derive a

similar tradeoff formula. Although Bleichenbacher’s method was

thought to require billions of signatures as input to attack 1-bit of

nonce leakage, we prove that it is possible to significantly reduce

the data complexity by carefully choosing the inputs to our trade-

off formula. Our analysis also provides significant improvements

to the data complexity for leaks of more than 1 bit, allowing the

side-channel attacker to recover the ECDSA key given only several

thousands signatures in many cases, or even several hundreds in

some scenarios. The complete complexity estimates given in Ap-

pendix C may therefore be of independent interest. Our analysis

also incorporates the effect of misdetection in the most significant

bit of the HNP samples, which becomes crucial when combining

with the practical side-channel leakage we consider.

Optimized Implementation and New Attack Records for the HNP.
Putting both contributions together, we mount a full signing key re-

covery attack on ECDSA signatures instantiated over the sect163r1
binary curve and over the NIST P-192 prime curve, using less than
1 bit of nonce leakage (in the sense that we recover 1 bit of the

nonces, but with probability less than 1). The tradeoff formula we

develop allows us to break the corresponding HNP instances with

realistic computational resources. In our attack experiments, pre-

sented in Section 5, the data complexity required for the former

case is significantly less than Aranha et al. [9], by a factor of around

2
10
. Furthermore, to the best of our knowledge, 192-bit ECDSA

has never been broken before with 1 bit of leakage or less (see

Table 1 for the comparison with previous HNP records), and our

concrete attack therefore marks a dramatic advance in concrete

attacks on the HNP. This was made possible by tuning the tradeoffs

to optimize the time complexity and by running our highly opti-

mized scalable implementation in Amazon Web Service (AWS) EC2

cloud instances. Our empirical results also indicate that breaking

larger instances like P-224 with 1-bit leak, or P-256 with 2-bit leak

would be practically doable with relatively modest data complex-

ity. The approach and implementation devised in this work can

be applied to various types of leakage from ECDSA independent

of the LadderLeak vulnerability, and hence offer an interesting av-

enue for future cryptanalytic work. Our experimental results of

cache attacks, constant-time patch, tradeoff formula solver, and

optimized implementation of Bleichenbacher’s attack are available

in our GitHub repository
1
.

1
https://github.com/akiratk0355/ladderleak-attack-ecdsa

https://github.com/akiratk0355/ladderleak-attack-ecdsa
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1.2 Vulnerable Software Versions and
Coordinated Disclosure

In December 2019, we originally reported to the OpenSSL develop-

ment team the vulnerabilities in versions 1.0.2t and 1.0.1l in ac-

cordance with the OpenSSL security policy
2
before the end of long-

term support for those versions. After version 1.0.2uwas released,
we confirmed that the same vulnerabilities were still present, and

hence we proposed a patch with corresponding countermeasures,

which has already been approved
3
. Although the 1.0.2 branch is

now out of public support as of May 2020, the OpenSSL develop-

ment team still provides its customers with an extended support

for 1.0.2 and our patch is included in their further internal re-

leases. Finally, we note that the same vulnerabilities exist in the

FIPS module of OpenSSL since its code base relies on the 1.0.2
branch. For instance, the FIPS module compiled with enabled curve

parameters NIST P-256, P-384, P-521 and secp256k1 is bundled

with the latest release of CentOS Linux
4
, and hence our LadderLeak

in principle applies to it (albeit with much higher time and input

data complexities for the full-key extraction to succeed). Similar

steps have also been taken to address the vulnerability in RELIC,

after the authors were contacted privately and a fix was pushed in

January 2020.

2 PRELIMINARIES
2.1 Notations
We denote the imaginary unit by roman i. For any positive integer

x a function MSBn (x) returns its most significant n bits. When a
and b are integers such that a < b we use the integer interval

notation [a,b] to indicate {a,a + 1, . . . ,b }. Throughout the paper
log c denotes the binary logarithm of c > 0.

2.2 Cache Attacks
To deliver the high performance expected of modern computers,

processors employ an array of techniques that aim to predict pro-

gram behavior and optimize the processor for such behavior. As

a direct consequence, program execution affects the internal state

of the processor, which in turn affects the speed of future program

execution. Thus, by monitoring its own performance, a program

can learn about execution patterns of other programs, creating an

unintended and unmonitored communication channel [29].

Unintended leakage of cryptographic software execution pat-

terns can have a devastating impact on the security of the implemen-

tation. Over the years, multiple attacks have demonstrated complete

key recovery, exploiting leakage through the internal state of vari-

ous microarchitectural components, including caches [1, 40, 51, 64],

branch predictors [2, 39], functional units [4, 20], and translation

tables [31].

Flush+Reload [34, 70] is a prominent attack strategy, in which

the attacker monitors victim access to a memory location. The

attack consists of two steps. In the flush step, the attacker evicts

the monitored memory location from memory, typically using a

dedicated instruction such as clflush. The attacker then waits a bit

2
https://www.openssl.org/policies/secpolicy.html

3
https://github.com/openssl/openssl/pull/11361

4
https://wiki.centos.org/Download

to allow the victim time to execute. Finally, in the reload step, the

attacker accesses the memory location, while measuring how long

the access takes. If the victim has not accessed the monitored loca-

tion, it will remain uncached, and access will be slow. Conversely,

if the victim has accessed the monitored location between the flush

and the reload steps, the memory location will be cached, and access

will be fast. Repeating the attack, an attacker can recover the mem-

ory usage patterns of the victim, allowing attacks on symmetric

ciphers [34, 37], public key primitives, both traditional [13, 52, 70]

and post-quantum [32, 53], as well as on non-cryptographic soft-

ware [33, 68].

2.3 The Montgomery Ladder and its Secure
Implementation

An elliptic curve E defined over a finite field F is the set of solutions
(x ,y) ∈ F that satisfy the curve equation, together with a point at

infinity O. The chord-and-tangent rule defines a group law (⊕) for

adding and doubling points on the curve, with O the identity ele-

ment. Given P ∈ E(F) and k ∈ Z, the scalar multiplication operation
computes R = [k]P , which corresponds to adding P to itself k − 1
times. Cryptographic protocols rely on the multiplication of a point

by a secret scalar as a fundamental operation to base security on the

Elliptic Curve Discrete Logarithm Problem (ECDLP): find k given

(P , [k]P). Concrete instances of elliptic curves used in cryptography
employ a subgroup of points of a large prime order q, for which the

ECDLP is known to be hard. For efficiency reasons, it is common to

represent points in projective coordinates (X ,Y ,Z ) and avoid the

computation of expensive field inversions during the evaluation of

the group law.

In many settings, an adversary able to recover leakage from the

scalar multiplication operation, in particular bits of the scalar, can

substantially reduce the effort necessary to solve the ECDLP. The

Montgomery Ladder, which was initially proposed for accelerat-

ing the ECM factorization method [46], later became crucial for

secure implementations of elliptic curve cryptography due to its

inherent regularity in the way it processes the scalar: the same

number of group operations is required no matter the bit pattern of

k . Algorithm 1 illustrates the idea. There is a rich literature about

coordinate systems and elliptic curve models for securely imple-

menting the algorithm [22, 50]. Unfortunately, these techniques

do not always work for the standardized curves in the Weierstrass

model that greatly contributed to the adoption of elliptic curves in

industry through the SECG and NIST standards[38].

A constant-time implementation of the Montgomery ladder pro-

tected against timing attacks must satisfy two basic preconditions:

(i) memory operations cannot depend on bits of the secret scalar,

to avoid leakage through the memory hierarchy; (ii) the group law

must be evaluated with the same number and type of field opera-

tions in the same order, independently of the bits of the scalar. The

former is easier to guarantee, by simply replacing branches with

conditional operations to swap the accumulators (R0,R1) when
ki = 1. The latter is more involved, but greatly simplified by com-
plete addition laws that compute the correct result for all possible

inputs [14] (even when the point is being doubled) without any

exceptions or corner cases. While complete addition laws for Weier-

strass curves do exist [54], they incur a substantial performance

https://www.openssl.org/policies/secpolicy.html
https://github.com/openssl/openssl/pull/11361
https://wiki.centos.org/Download
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Algorithm 1Montgomery Ladder

Require: k ∈ Zq , point P on E(F).
Ensure: The results of the scalar multiplication R = [k]P .
1: (R0,R1) = (P , 2P)
2: for i = ⌊lg(k)⌋ − 1 downto 0 do
3: if ki = 0 then
4: (R0,R1) = ([2]R0,R0 ⊕ R1
5: else
6: (R0,R1) = (R0 ⊕ R1, [2]R1)
7: end if
8: end for
9: return R0

penalty and have not been popularized enough for current imple-

mentations of classical standardized curves. As we further discuss

in Section 3, attempts to improve side-channel security of current

implementations of scalar multiplication risk retrofitting an oth-

erwise constant-time Montgomery Ladder on top of a group law

implementation that still leaks information through optimizations.

2.4 ECDSA and Hidden Number Problem with
Erroneous Input

The signing key extraction from the nonce leakages in ECDSA

signatures typically amounts to solving the so-called hidden number
problem (HNP). We present a generalized variant of the original

HNP by Boneh and Venkatesan [17], incorporating some erroneous

information of the most significant bits. In particular, the error

distribution below models the attacker’s misdetection during the

side-channel acquisition.

Definition 2.1 (Hidden Number Problem with Erroneous Input).
Let q be a prime and sk ∈ Zq be a secret. Let hi and ki be uniformly

random elements in Zq for each i = 1, . . . ,M and define zi =

ki − hi · sk mod q. Suppose some fixed distribution χb on {0, 1}b

for b > 0 and define a probabilistic algorithm EMSBχb (x) which
returns MSBb (x) ⊕ e for some error bit string e sampled from χb .
Given (hi , zi ) and EMSBχb (ki ) for i = i, . . . ,M , the HNP with error
distribution χb asks one to find sk.

In our concrete attacks against OpenSSL ECDSA, we focus on the

case where b = 1 and χb is the Bernoulli distribution Bϵ for some

error rate parameter ϵ ∈ [0, 1/2], i.e., EMSBχb (x) simply returns the

negation of the most significant bit of x with probability ϵ , and
otherwise returns the correct bit.

A straightforward calculation shows that a set of ECDSA signa-

tures with leaky nonces is indeed an instance of the HNP. Notice

that the ECDSA signature (r , s) generated as in Algorithm 2 satis-

fies s = (H (msg) + r · sk)/k mod q for uniformly chosen k ∈ Zq .
Rearranging the terms, we get

H (msg)/s = k − (r/s) · sk mod q.

Hence letting z = H (msg)/s mod q and h = r/s mod q, we obtain
a HNP sample if the MSB of k is leaked with some probability.

2.5 Lattice Attacks on HNP
Boneh and Venkatesan [17] suggest solving the Hidden Number

Problem by first reducing it to the lattice Closest Vector Problem

Algorithm 2 ECDSA signature generation

Require: Signing key sk ∈ Zq , message msg ∈ {0, 1}∗, group order
q, base pointG , and cryptographic hash functionH : {0, 1}∗ →

Zq .
Ensure: A valid signature (r , s)
1: k ←$Zq
2: R = (rx , ry ) ← [k]G; r ← rx mod q
3: s ← (H (msg) + r · sk)/k mod q
4: return (r , s)

(CVP). Howgrave-Graham and Smart [36] show the reduction of

partial nonce leakage from DSA to HNP, which they solve by reduc-

tion to CVP. Nguyen and Shparlinski [47] prove that the Howgrave-

Graham and Smart approach works with a leak of log logq bits

from a polynomial number of ephemeral keys. They later extend

the result to ECDSA [48].

Brumley and Tuveri [19] demonstrate a timing attack onOpenSSH

acquiring a small number of bits from the ephemeral keys. Follow-

ing works present cache [6, 12, 65] and electromagnetic emana-

tion [11, 30] attacks, all use a conversion of HNP to a lattice prob-

lem. Dall et al. [23] explore the viability of solving HNP with errors

using a lattice attack. One of the main target curves in our work is

NIST P-192, which was also exploited by Medwed and Oswald [43]

using several bits of nonce acquired via template-based SPA attacks.

2.6 Bleichenbacher’s Attack Framework
The Fourier analysis-based approach to the HNP was first pro-

posed by Bleichenbacher [15] and it has been used to break ECDSA,

Schnorr and variants with small nonce leakages that are hard to

exploit with the lattice-based method [9, 25, 62]. This section covers

the fundamentals of the Bleichenbacher’s framework, summarized

in Algorithm 3. For more theoretical details we refer the readers

to the aforementioned previous works. The essential idea of the

method is to quantify the modular bias of nonce k using the bias
functions in the form of inverse discrete Fourier transform (iDFT).

Definition 2.2 (Bias Functions). Let K be a random variable over

Zq . The modular bias Bq (K) is defined as

Bq (K) = E
[
e(2πK /q)i

]
where E(K) represents the mean and i is the imaginary unit. Like-

wise, the sampled bias of a set of pointsK = {ki }Mi=1 in Zq is defined

by

Bq (K) =
1

M

M∑
i=1

e(2πki /q)i.

When the l MSBs of K are fixed to some constant and K is

otherwise uniform modulo q, then it is known that the norm of

bias |Bq (K)| converges to 2l · sin(π/2l )/π for large q [62, Corollary

1]. The estimate holds for the sampled bias Bq (K) as well for a

given set of biased nonces {ki }
M
i=1. For example, if the first MSB

of each ki is fixed to a constant bit then the bias is estimated as

|Bq (K)| ≈ 2/π ≈ 0.637. Moreover, if the ki ’s follow the uniform

distribution over Zq then the mean of the norm of sampled bias
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is estimated as 1/
√
M , which is a direct consequence of the well-

known fact about average distance from the origin for a random

walk on the complex plane.

Small linear combinations. Given such a function, it would be

straightforward to come up with a naive approach to find sk: for
each candidate secret keyw ∈ Zq , compute the corresponding set of

candidate nonces Kw = {zi + hiw mod q }Mi=1 and then conclude

thatw = sk if the sampled bias |Bq (Kw )| shows a peak value. This

is of course no better than the exhaustive search over the entire Zq .
To avoid this issue, the so-called collision search of input samples

is required, which is the crucial preliminary step to expand the

peak width. It has been shown both theoretically and practically

that the peak width broadens to approximately q/LFFT, by taking

linear combinations of input samples {(hi , zi )}
M
i=1 to generate new

samples {(h′j , z
′
j )}

M ′
j=1 such that h′j < LFFT. This way, one could hit

somewhere in the broadened peak by only checking the sampled

biases at LFFT candidate points over Zq . As the inverse DFT at LFFT
points can be efficiently computed by fast Fourier transform (FFT)

algorithms in O(LFFT logLFFT) time and O(LFFT) space, the first

goal of the collision search phase is to find sufficiently small linear

combinations of the samples so that the FFT on the table of size

LFFT becomes practically computable. A few different approaches

have been explored to the collision search phase, such as lattice

reduction [25], sort-and-difference [9] and 4-list sum algorithm [62].

Sparse linear combinations. One may be tempted to repeat such

collision search operations as many times as needed until the linear

combinations with the desired upper bound are observed. However,

the linear combinations come at a price; in exchange of the broader

peak width, the peak height gets reduced exponentially. Concretely,
if the original modular bias of nonce is |Bq (K)| and all coefficients

in the linear combinations are restricted to {−1, 0, 1} then the peak

bias gets exponentiated by L1-norm of the coefficient vector. Thus,

for the peak height to be distinguishable from the noise value the

diminished peak should be significantly larger than the noise value

(which is 1/
√
M ′ on average as mentioned above). This imposes

another constraint on the collision search phase: the sparsity of

linear combinations. In summary, the efficiency of Bleichenbacher’s

attack framework crucially relies upon the complexities of small

and sparse linear combination search algorithm.

2.7 K-list Sum Problem
We introduce the K-list sum problem [26] (a sub-problem of the

generalized birthday problem [66]) instantiated over the integers.

The latter part of the paper discusses the connection between this

problem and the Bleichenbacher’s attack framework.

Definition 2.3 (K-list Sum Problem). Given K sorted lists L1,

. . . ,LK , each of which consists of 2
a
uniformly random ℓ-bit in-

tegers, the K-list sum problem asks one to find a non-empty list

L′ consisting of x ′ =
∑K
i=1 ωixi , where K-tuples (x1, . . . ,xK ) ∈

L1× . . .×LK and (ω1, . . . ,ωK ) ∈ {−1, 0, 1}
K
satisfy MSBn (x

′) = 0

for some target parameter n ≤ ℓ.

Algorithm 4 is an instance of the K-list sum algorithm for

K = 4. This is essentially a parameterized variant of the Howgrave–

Graham–Joux [35], which we analyze by extending Dinur’s frame-

work [26] in Section 4.

Algorithm 3 Bleichenbacher’s attack framework

Require:
{(hi , zi )}

M
i=1 - HNP samples over Zq .

M ′ - Number of linear combinations to be found.

LFFT - FFT table size.

Ensure: Most significant bits of sk
1: Collision search
2: Generate M ′ samples {(h′j , z

′
j )}

M ′
j=1, where (h′j , z

′
j ) =(∑

i ωi, jhi ,
∑
i ωi, jzi

)
is a pair of linear combinations

with the coefficients ωi, j ∈ {−1, 0, 1}, such that for j ∈ [1,M ′]
(1) Small: 0 ≤ h′j < LFFT and

(2) Sparse:
��Bq (K)��Ωj ≫ 1/

√
M ′ for all j ∈ [1,M ′], where Ωj B∑

i |ωi, j |.
3: Bias Computation
4: ZB(Z1, . . . ,ZLFFT ) ← (0, . . . , 0)
5: for j = 1 toM ′ do
6: Zh′j ← Zh′j + e

(2πz′j /q)i

7: end for
8:

{
Bq (Kwi )

}LFFT
i=1 ← FFT(Z ), wherewi = iq/LFFT.

9: Find the value i such that

��Bq (Kwi )
��
is maximal.

10: Output most significant logLFFT bits ofwi .

Algorithm 4 Parameterized 4-list sum algorithm based on

Howgrave–Graham–Joux [35]

Require:
{Li }

4

i=1 - Sorted lists of 2
a
uniform random ℓ-bit samples.

n - Number of nullified top bits per each round.

v ∈ [0,a] - Parameter.

Ensure: L′ - List of (ℓ − n)-bit samples.

1. For each c ∈ [0, 2v ) :
a. Look for pairs (x1,x2) ∈ L1×L2 such that MSBa (x1+x2) =

c . Store the expected number of 2
2a−a = 2

a
output sums

x1 + x2 in a new sorted list L′
1
. Do the same for L3 and

L4 to build the sorted list L′
2
.

b. Look for pairs (x ′
1
,x ′

2
) ∈ L′

1
× L′

2
such that MSBn (|x

′
1
−

x ′
2
|) = 0. Store the expected number of 2

2a−(n−a) = 2
3a−n

output sums |x ′
1
− x ′

2
| in the list L′.

2. Output L′ of the expected lengthM ′ = 2
3a+v−n

3 TIMING ATTACKS ON MONTGOMERY
LADDER

An implementation of the Montgomery Ladder must be built on top

of a constant-time implementation of the group law to enjoy its side-

channel resistance guarantees. Any minor deviation in the number

of field operations or memory access pattern in the group law

can leak information about which of the two branches of a certain

iteration are being evaluated, which further leaks information about

the key bit. In this work, we exploit a vulnerability in the way

the Montgomery Ladder is prepared (line 1 of Algorithm 1), by

observing that implementations employing projective coordinates

will have accumulators R0 in affine coordinates in which input

point P is typically given; and R1 in projective coordinates after a

point doubling is performed. This coordinate mismatch allows the
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attacker to mount a cache-timing attack against the first iteration

of the ladder, revealing the second MSB of the scalar k . We found

the issue in the popular OpenSSL cryptographic library, and in

the research-oriented RELIC toolkit[8], both apparently caused by

attempting to implement a constant-time ladder on top of a group

law optimized for special cases. This generality motivated us to

name the discovered vulnerability under the moniker LadderLeak.

3.1 Cache-timing vulnerabilities in OpenSSL’s
implementation

OpenSSL contains multiple implementations of the Montgomery

Ladder in its codebase, depending on the choice of curve and field,

so we split the discussion based on the choice of underlying field.

Binary curves. . For curves defined over F2m , OpenSSL employs

the well-known López-Dahab scalar multiplication algorithm[42],

which amounts to the Montgomery Ladder over points represented

in López-Dahab coordinates (x = X/Z ,y = Y/Z 2). Parameters

affected are SECG curve sect163r1; and NIST curves B-283, K-283,

K-409 and B-571 (i.e. binary curves with group order slightly below

the power of two) in versions 1.0.2u and 1.1.0l. The latest 1.1.1
branch is not affected due to a unified and protected implementation

of the ladder. We further note that the issue is also present in the

deprecated FIPS version of the library, which is even easier to exploit

by branch prediction attacks [3] due to the presence of branches

on bits of the secret scalar.

The Montgomery Ladder is implemented in function ec_GF2m
_montgomery_point_multiply() in file crypto/ec/ec2_mult.c.
The function computes scalar multiplication [k]P for fixed-length

scalar k and input point P = (x ,y). The ladder starts by initializing

two points (X1,Z1) = (x , 1) and (X2,Z2) = [2]P = (x
4 + b,x2).

The first loop iteration follows after a conditional swap function

that exchanges these two points based on the value of the second

MSB. The first function to be called within the first iteration is

gf2m_Madd() for point addition, which starts by multiplying by

value Z1. However, since the finite field arithmetic is not imple-

mented in constant-time for binary fields, there is a timing differ-

ence between multiplying by (1) or (x2), since modular reduction

is only needed in the latter case. In particular, a modular reduction

will be computed when Z1 = x2 after the conditional swap. This
happens when the second MSB is 1 because the conditional swap

effectively swapped the two sets of values. A cache-timing attack

can then monitor when the modular reduction code is called to

reduce a non-trivial intermediate multiplication result.

Prime curves. In curves defined over Fp for large primep, OpenSSL
1.0.2u employs the Montgomery Ladder when precomputation is

turned off, a scenario prevalent in practice since precomputation

must be manually turned on for a certain point (typically a fixed

generator). Parameters affected are NIST curves P-192, P-224, P-

256, P-384 and P-521; and SECG curves secp192k1 and secp256k1
(i.e. prime curves with group order slightly below the power of

two). Note that secp256k1 refers to the curved adopted for signing
Bitcoin transactions with ECDSA.

In this case, OpenSSL implements the Montgomery Ladder by

using optimized formulas for elliptic curve arithmetic in the Weier-

strass model. The ladder is implemented in ec_mul_consttime()

within /crypto/ec/ec_mult.c, but which does not run in constant-
time from a cache perspective, despite the naming. The ladder starts

again by initializing two accumulators R = P (in affine coordinates)

and S = 2P (in projective coordinates). The first loop iteration is

non-trivial and computes a point addition and a point doubling

after a conditional swap. Depending on the key bit, the conditional

swap is effective and only one point will remain stored in projective

coordinates. Both the point addition and point doubling functions

have optimizations in place for mixed addition, and the Z coor-

dinate of the input point can be detected for the point doubling

case implemented in function ec_GFp_simple_dbl(). When the

input point for the doubling function is in affine coordinates, a field

multiplication by Z is replaced by a faster call to BN_copy(). This
happens when the two accumulators are not swapped in the ladder,

which means that point R in affine coordinates is doubled and the

second MSB is 0. The timing difference is very small, but can be

detected with a cache-timing attack.

3.2 Implementation of the attacks
We implemented cache-timing attacks using a Flush+Reload strat-

egy and the FR-Trace program available in the Mastik side-channel

analysis toolkit [69].We targetedOpenSSL by running the command-

line signature computation in two Broadwell CPUs with models

Core i7-5500U and i7-3520M clocked at 2.4GHz and 2.9GHz, re-

spectively, with TurboBoost disabled. OpenSSL was built using a

standard configuration with debugging symbols and optimizations

enabled. Targeted parameters were at lowest security in each class:

sect163r1 for the binary and P-192/secp192k1 for the prime case.

Although the observed timing difference was very small in both

cases, we managed to amplify it using performance degradation [7]:

multiple threads running in the background penalize the targeted

pieces of code (modular reduction in the binary case and BN_copy()
in the prime case) by constantly evicting their addresses from the

cache. The timing difference for handling the first iteration of the

ladder was amplified to around 100,000 and 15,000 cycles for the bi-

nary and prime case, respectively. Amplifying the timing difference

made it feasible to detect the second MSB with high probability

using Flush+Reload: around 99% for curves sect163r1 and P-192.

We configured the slot, or the time between two consecutive prob-

ings by the Flush+Reload thread, to 5,000 cycles to obtain finer

granularity.

In the binary case, the detection strategy consisted of first locat-

ing in the traces a cache-hit matching the execution of the first field

multiplication by Z1 in gf2m_Madd() at the beginning of the first
ladder iteration, and then looking for the next cache-hit matching

the second field multiplication which marks the end of the first. If

the number of slots between the two was above 15, this means a

timing difference of at least 75,000 cycles. The first version of the

attack achieved 97.3% precision, which was later improved. When

running the attack against 10,000 signature computations, we were

able to correctly detect 2,735 signatures with second MSB 1 and

only 27 false positives, amounting to a precision of 99.00%. Sample

traces illustrating the strategy can be found in Figure 1.

In the prime case, the detection strategy consisted of looking for

the first ladder iteration by locating in the traces for a cache-hit

matching the execution of ec_GFp_simple_dbl() and then count-

ing the number of consecutive cache-hits matching the execution
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Figure 1: Pattern in traces collected by FR-Trace for the bi-
nary curve case. Cache accesses are considered hits when be-
low the default threshold of 100 cycles. The cache hits cor-
respond to executions of the two first field multiplications
inside point addition, the first by Z1. When the second MSB
is 0 andZ1 = 1 in the first trace above, there is nomodular re-
duction, hence the two first fieldmultiplications in point ad-
dition quickly follow in succession. When the second MSB
is 1 and Z1 = x2 in the second trace, performance degrada-
tion penalizes modular reduction and the time between two
field multiplications grows much larger.
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Figure 2: Pattern in traces collected by FR-Trace for the
prime curve case. Cache accesses are again considered hits
when below the default threshold of 100 cycles. The cache
hits correspond to the time a BN_copy() operation inside
point doubling takes to complete under performance degra-
dation.When the secondMSB is 1 in thefirst trace, BN_copy()
is not called inside point doubling, but the cache line con-
taining the function call and next field operation is brought
to the cache. When the second MSB is 0, BN_copy() is actu-
ally called and takes longer to complete due to performance
degradation. The pattern is visible between slots 20 and 30.

of BN_copy(). If the next two slots had cache-hits for the latter, this
means that the copy took around 3 slots, or 15,000 cycles. When

running the attack against 10,000 signature computations, we were

able to correctly detect 2,343 signatures with second MSB 0 and

only 12 false positives, amounting to a precision of 99.53%. Sample

traces illustrating the strategy can be found in Figure 2.

3.3 Translating Nonce Leakages to the Hidden
Number Problem Instance

In OpenSSL, the nonce k ∈ {1, . . . ,q − 1} is rewritten to be either

ˆk = k + q or
ˆk = k + 2q before passed to a scalar multiplication

algorithm, so that the resulting
ˆk has the fixed bit length. This

is to countermeasure the remote timing attacks of Brumley and

Tuveri [19]. For the curves with group order slightly below the

power of 2 (denoted byq = 2
ℓ−δ ), it holds that ˆk = k+q except with

negligible probability. Our LadderLeak attack detects the second

MSB of
ˆk and we argue that it coincides with the first MSB of k with

overwhelming probability. Let us denote the ℓ-th bit of k (resp.
ˆk)

by kℓ (resp. ˆkℓ ). Then Pr[kℓ , ˆkℓ] < Pr[kℓ = 0 ∧ k < δ ] + Pr[kℓ =

1 ∧ k < δ + 2
ℓ−1] since the ℓ-th bit of q is 1 and kℓ gets flipped

only if there’s no carry from the lower bits in the addition k + q.
It is easy to see that the right-hand side of the above inequality is

negligibly small if δ is negligibly smaller than q.
Therefore, putting together with the usual conversion in Sec-

tion 2.4 we have obtained HNP instances with error rate at most

ϵ = 0.01 for P-192 and ϵ = 0.027 for sect163r1. Now we are set

out to port them to the Bleichenbacher’s attack framework.

4 IMPROVED ANALYSIS OF
BLEICHENBACHER’S ATTACK

In this section we present our new theoretical analysis of Bleichen-

bacher’s method, which enable us to practically break the HNP

with less than 1-bit nonce leakage.

4.1 Unified Formula for Time–Space–Data
Tradeoffs

The FFT-based approach to the HNP typically requires significant

amount of input signatures, compared to lattice-based attacks. The

sort-and-difference method attempted by Aranha et al. [9], for

instance, required 2
33

input signatures to break 160-bit ECDSAwith

1-bit bias. We could of course take the same approach to exploit

the leakage of sect163r1 from the previous section, but collecting

over 8 million signatures via cache attacks doesn’t seem very easy

in practice. Takahashi, Tibouchi and Abe [62] took much more

space-efficient approach by making use of Howgrave–Graham and

Joux’s (HGJ) knapsack solver [35]. They also provide “lower bounds”

for the required amount of input samples to attack given signature

parameters and bit biases. However, their lower bound formula

implicitly relies on two artificial assumptions: 1) the number of

input and output samples, space complexity, and FFT table size are

all equal (i.e.,M = M ′ = LFFT in Algorithm 3), and 2) the number

of collided bits to be found by the HGJ algorithm is fixed to some

constant. Such assumptions do help stabilizing time and space

complexities throughout the entire attack, but at the same time

seem to sacrifice the true potential of applying the HGJ algorithm.
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In fact, the HGJ-like algorithm implemented in [62] can be regarded

as a variant of the generalized birthday algorithm over integers

analyzed by Wagner [66] and Dinur [26]. The latter in particular

analyzes the time–space tradeoffs in detail, which we would like

to apply and extend by introducing the third parameter, the data
complexity. Our formulation below is motivated by practical side-

channel attacks, since depending on a situation the adversary may

want to trade the “online” side-channel detection costs (i.e., data

complexity) for the “offline” Bleichenbacher’s attack phase (i.e.,

time and space complexities). We are now set out to answer the

following question.

For given most significant bits information in the HNP
and the attacker’s budget for computational resources,
what would be the optimal balance between the time,
memory, and input data complexities?

4.1.1 Tradeoffs for Parameterized 4-list Sum Algorithm. We begin

by presenting our mild generalization of Dinur’s tradeoff formula

(the one for the algorithm denoted by A4,1). The main difference is

that we made the number of output samples arbitraryM ′.

Theorem 4.1. For Algorithm 4, the following tradeoff holds.

2
4M ′N = TM2

or put differently
m′ = 3a +v − n

where
• N = 2

n , where n is the number of top bits to be nullified.
• M = 2

m = 4×2a is the number of input samples. Each divided
list has the length 2

a .
• M ′ = 2

m′ is the number of output samples such that the top n
bits are 0.
• v ∈ [0,a] is a parameter deciding how many iterations of the
collision search to be executed.
• T = 2

t = 2
a+v is the time complexity.

Proof. For each partial target value c ∈ [0, 2v ), Step 1.a. takes

O(2a ) time andO(2m ) space to find 2a pairs that sum to c in the top

a bits, e.g., by employing the sort-merge join-like algorithm of [62].

At Step 1.b. since two pairs x ′
1
and x ′

2
are guaranteed to collide in the

top a bits the probability that the collision occurs in the top n bits

is 1/2n−a . Hence we get 22a/2n−a = 2
3a−n

linear combinations.

Iterating these steps 2
v
times, we get in totalM ′ = 2

m′ = 2
3a+v−n

samples in O(2a+v ) time and O(2m ) space. □

Our generalization gives more flexibility to the sample amplifica-

tion; as the formula implies one could amplify the number of input

samples to an arbitrary value by trading either nullified bits or time

complexity. This is in particular important in the Bleichenbacher’s

framework, since one would carefully coordinate the number of

output samples so that the noise floor is sufficiently smaller than

the peak.

4.1.2 Integration with Bleichenbacher and Linear Programming. We

now integrate the above basic tradeoff formula with two crucial con-

straints for the Bleichenbacher’s attack to work; namely, smallness

and sparsity of the output linear combinations. In Bleichenbacher’s

attack, the adversary could repeat the 4-list sum algorithm for

r rounds to find small linear combinations of 4
r
integers below

Algorithm 5 Iterative HGJ 4-list sum algorithm

Require:
L - List ofM = 4 × 2a uniform random ℓ-bit samples.

{ni }
r−1
i=0 - Number of nullified top bits per each round.

{vi }
r−1
i=0 - Parameter where vi ∈ [0,ai ].

Ensure: L′ - List of (ℓ −
∑r−1
i=0 ni )-bit samples of the length 2

mr
.

1. Let a0 = a.
2. For each i = 0, . . . , r − 1 :
a. Divide L into 4 disjoint lists L1, . . . ,L4 of length 2

ai
and

sort them.

b. Apply Algorithm 4 to {Li }
4

i=1 with parameters ni and
vi . Obtain a single list L′ of the expected length 2

mi+1 =

2
3ai+vi−ni

. Let LBL′.
3. Output L′.

Table 2: Linear programming problems based on the itera-
tive HGJ 4-list sum algorithm (Algorithm 5). Each column
corresponds to the objective and constraints of linear pro-
gramming problems for optimizing time, space, and data
complexities, respectively. The boxed equations are the com-
mon constraints for all problems.

Time Space Data

minimize t0 = . . . = tr−1 m0 = . . . =mr−1 min

subject to — ti ≤ tmax ti ≤ tmax

subject to mi ≤ mmax — mi ≤ mmax

subject to

mi+1 = 3ai +vi − ni i ∈ [0, r − 1]
ti = ai +vi i ∈ [0, r − 1]
vi ≤ ai i ∈ [0, r − 1]
mi = ai + 2 i ∈ [0, r − 1]
mi+1 ≤ 2ai i ∈ [0, r − 1]
min =m0 + f
ℓ ≤ ℓFFT + f +

∑r−1
i=0 ni

mr = 2(logα − 4r log(Bq (K)))

certain budget parameter for the FFT table, LFFT = 2
ℓFFT

, so that

the computation of FFT becomes tractable. Hence we rewrite the

tradeoff formula for each round i = 0, . . . , r − 1 as

m′i = 3ai +vi − ni

where we define ni ,mi ,m
′
i ,ai ,vi , and ti as in Theorem 4.1. Algo-

rithm 5 describes the iterative version of HGJ 4-list sum algorithm,

which calls Algorithm 4 as a subroutine. Note that now the 2
m′i

outputs from the i-th round are used as inputs to the (i + 1)-th

round, so we havemi+1 =m
′
i . Moreover, we could also incorporate

a simple filtering technique that trades the initial problem size for

the data complexity: given 2
min

uniformly random ℓ-bit samples,

one could keep only 2
m0 = 2

min−f
samples below 2

ℓ−f
-bit for any

f ≥ 0.

With these notations in mind, the smallness condition from Algo-

rithm 3 is expressed as logh′j ≤ ℓ − f −
∑r−1
i=0 ni ≤ ℓFFT, since after

r iterations the top
∑r−1
i=0 ni bits of ℓ-bit input samples get nullified.

On the other hand, recall that the peak height decays exponentially



LadderLeak: Breaking ECDSA With Less Than One Bit Of Nonce Leakage

in the L1-norm of the coefficient vectors (see Section 2.6), many

sparse linear combinations need to be found in the end to satisfy

the second condition |Bq (K)|4
r
≫ 1/

√
M ′, where M ′ = 2

mr
is

the number of outputs after r rounds. By introducing a new slack

variable α ≥ 1 and taking the logarithm the inequality can be con-

verted to the equivalent equationmr = 2(logα − 4r log(Bq (K))).
Here we remark that the slack variable α should be determined

depending on the possible largest noise value, which should be

somewhat larger than the average 1/
√
M ′. This can be estimated

by checking the distribution of {h′j }
M ′
j=1 after the collision search in

Algorithm 3: let H ′ and Z ′ be random variables corresponding to

h′j =
∑
j ωi, jhi and z

′
j =

∑
j ωi, jzi , and hence let K ′ = Z ′ + skH ′.

Since Bleichenbacher’s attack should detect the peak at a candidate

point within q/2LFFT distance from the actual secret sk, all the
modular biases of incorrect guess K ′x = Z ′ + (sk ± x)H ′ mod q
for x ∈ [q/2LFFT,q/2) are noise. Thus the largest noise value is

maxx |Bq (K
′
x )| = maxx (|Bq (K

′)| · |Bq (xH
′)|) (due to Lemma 1 of

[25]), which relies on the distribution that H ′ follows. For each
concrete collision search algorithm one could experimentally find

the maximum value of |Bq (K
′
x )|, and therefore can choose the ap-

propriate α to make sure that the bias peak is larger than that.

For instance, for two rounds of the iterative HGJ we observed

maxx |Bq (K
′
x )| ≈ 5/

√
M ′. In Appendix B we discuss the estimation

of noise floor in a more formal fashion.

Putting together, we obtain the unified tradeoffs in the form of

linear programming problem, summarized in Table 2. For instance,

to optimize the data complexity the goal of linear programming is to

minimize the (logarithm of) number of inputsmin while the problem

receives budget parameters tmax,mmax, ℓFFT, slack parameterα , and
estimated bias Bq (K) as fixed constants. We can further iteratively

solve the linear programming over choices of r to find the optimal

number of rounds that leads to the best result. For small number

of bit biases like less than 5 bit biases, r is at most 5, so we can

efficiently find the optimal parameters. We present in Figs. 3 and 4

the optimal time and data complexities for attacking 1-bit biased

HNP, with different FFT table sizes and max memory bounds. These

results are obtained by solving the linear programming problems

with our SageMath [63] script available in our GitHub repository.

More tradeoff graphs in case of few bits nonce leakages are also

given in Appendix C.

One caveat is, that simply iterating Algorithm 4 r rounds does
not necessarily guarantee the 4

r
sums in the resulting list; the same

element in the original list may be used more than once in a single

linear combinations of 4
r
when the output list of i-th round is used

as input to the i +1-th round. This would violate the coefficient con-

straints of the collision search phase required in Algorithm 3, since

due to the [25, Lemma 1.d.] if K follows the uniform distribution

over [0,q/2l ) then the bias peak cancels out, i.e., |Bq (2
lK)| = 0. To

circumvent the issue one could alternatively use the “layered” HGJ

algorithm due to Dinur [26], of which we present a generalized vari-

ant in Algorithm 6 together with its tradeoff linear programming

problems in Table 4. This way, the input list is first divided into 4
r

sub-lists and the algorithm guarantees to find linear combinations

composed of single element per each sub-list, while we observe

that the concrete complexities for attacking our OpenSSL targets

are worse than the iterative HGJ.

In practice, a few iterations of HGJ algorithm outputs a negligible

fraction of such undesirable linear combinations, and hence the

actual bias peak is only slightly lower than the estimated |Bq (K)|4
r
.

This heuristic was also implicitly exploited by [62] and we chose to

make use of Algorithm 5 for the better performance in the attack

experiments.

Finally, we remark that our approach is generic, allowing to in-

tegrate in principle any K-list integer sum algorithms to establish

a similar time–space–data tradeoff formula. In Appendix D, we

present more linear programming problems derived from other

K-list sum algorithms, such as the 16-list sum due to Becker, Coron

and Joux (BCJ) [10] and its multi-layer variant by Dinur [26]. For

the specific HNP instances related to our attack on OpenSSL, these

K-list sum algorithms provide slightly worse complexities than the

iterative HGJ. We leave for future work the discovery of parame-

ter ranges where those alternatives perform better, as well as the

adaptation of more up-to-date list sum algorithms.

4.2 Bias Function in Presence of Misdetection
All previous works taking the FFT-based approaches only consid-

ered the idealized setting where input HNP samples come with the

correct MSB information (corresponding to ϵ = 0 in Section 2.4).

As observed in the previous sections, however, this is often not

the case in practice since the side-channel detection is not 100 per-

cent accurate. This motivates us to consider the behavior of the

bias function on non-uniformly biased samples. Below we show

how to concretely calculate biases when there are ϵ errors in the

input. For instance, our cache timing attack yields HNP samples

with ϵ = 0.01 for P-192 (resp. ϵ = 0.027 for sect163r1), and the

present lemma gives |Bq (K)| = (1−2ϵ)|Bq (K0)| ≈ 0.98×0.637 (resp.

|Bq (K)| = (1− 2ϵ)|Bq (K1)| ≈ 0.946× 0.637). Note that the extreme

case where ϵ = 1/2 simply means that the samples are not biased

at all, and therefore |Bq (K)| degenerates to 0. This also matches

the intuition; when the attacker gains no side-channel information

about nonces it should be information theoretically impossible to

solve the HNP (except with some auxiliary information like the

knowledge of public key corresponding to the secret).

Lemma 4.2. For any ϵ ∈ [0, 1/2] and even integer q > 0 the
following holds.

(a) Let K be a random variable following the weighted uniform
distribution over Zq below.

Pr[K = ki ] =
1 − ϵ

q/2
if 0 ≤ ki < q/2

Pr[K = ki ] =
ϵ

q/2
if q/2 ≤ ki < q

Then the modular bias of K is

Bq (K) = (1 − 2ϵ)Bq (K0)

where K0 follows the uniform distributions over [0,q/2).
(b) Let K be a random variable following the weighted uniform

distribution over Zq below.

Pr[K = ki ] =
1 − ϵ

q/2
if q/2 < ki < q

Pr[K = ki ] =
ϵ

q/2
if 0 ≤ ki ≤ q/2
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Figure 3: Time–Data tradeoffs wheremmax = 30, nonce k is 1-bit biased, slack parameter α = 8 and the number of rounds r = 2.
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Figure 4: Time–Data tradeoffs wheremmax = 35, nonce k is 1-bit biased, slack parameter α = 8 and the number of rounds r = 2.

Then the modular bias of K is

Bq (K) = (1 − 2ϵ)Bq (K1)

where K1 follows the uniform distributions over [q/2,q).

Proof. We prove the first case. The other case holds by symme-

try. By Definition 2.2 the bias for K is rewritten as follows due to

the law of the unconscious statistician.

Bq (K) =E
[
e(2πK /q)i

]
=

∑
ki ∈Zq

e(2πki /q)i · Pr[K = ki ]

=
1 − ϵ

q/2

∑
ki ∈[0,q/2)

e(2πki /q)i +
ϵ

q/2

∑
ki ∈[q/2,q)

e(2πki /q)i

=
1 − ϵ

q/2

∑
ki ∈[0,q/2)

e(2πki /q)i +
ϵ

q/2

∑
k ′i ∈[0,q/2)

e(2π (k
′
i+q/2)/q)i

=
1 − ϵ

q/2

∑
ki ∈[0,q/2)

e(2πki /q)i −
ϵ

q/2

∑
k ′i ∈[0,q/2)

e(2πk
′
i /q)i

=
1 − 2ϵ

q/2

∑
ki ∈[0,q/2)

e(2πki /q)i = (1 − 2ϵ)E
[
e(2πK 0/q)i

]

where k ′iBki − q/2 and we used e(2π (k
′
i+π )/q)i = −e(2πk

′
i /q)i. □

For brevity, we omit an almost identical result for odd q. We

remark that if q is odd then there is a tiny additive error of order

1/q. In practice, such an error is negligible since q is always signifi-

cantly large for the actual HNP instances, and we experimentally

confirmed that the actual bias peak for odd q behaves as if q was

even.

4.3 Concrete Parameters to Attack OpenSSL
sect163r1. To showcase the power of our tradeoff formula we

describe how to concretely choose the optimal parameters to exploit

error-prone 1-bit leakages from OpenSSL ECDSA. For sect163r1,
the attacker would be able to obtain ℓ = 162-bit HNP samples

with error rate at most ϵ = 0.027 due to our cache timing side-

channel analysis. By Lemma 4.2 the modular bias is estimated as

Bq (K) ≈ 0.602. Suppose the attacker’s computational budget is

tmax = 44,mmax = 29, ℓFFT = 34 and let the slack variable α = 8.

We show in the next section that such computational facilities are

relatively modest in practice. If the attacker’s goal is to minimize the

number of input samplesmin, then by solving the integer program-

ming for the data complexity optimization we obtain the solution

min = 24. Our solver script gives all intermediate attack parameters,

suggesting the following attack strategy that amplifies the number

of samples by 2
5
during the first round.

• The first round generates 2
m1 = 2

29
samples with top n0 =

59 bits nullified via Algorithm 4 in time 2
t0 = 2

a0+v0 =

2
22+22 = 2

44
, given 2

m0 = 2
min = 2

24
input samples.

• The second round generates 2
m2 = 2

29
samples with top

n1 = 69 bits nullified via Algorithm 4 in time 2
t1 = 2

a1+v1 =

2
27+17 = 2

44
, given 2

m1 = 2
29

input samples.

• After r = 2 rounds of the collision search phase, the bias com-

putation phase does the FFT of table size 2
ℓFFT = 2

ℓ−n0−n1 =

2
34
, expecting to find the peak of height |Bq (K)|4

2

= α/
√
2
m2 ≈

0.0003 and then recover the top 34 bits of sk.
Notice that the required number of input signatures is now signifi-

cantly lower than what would have been derived from the previous

published works. For example, the implementation of Aranha et

al. [9] would require over 2
33

input samples in our setting. The

lower bound formula found in [62] with the same slack parameter
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would yield 2
29

signatures as input for 2 rounds of the HGJ algo-

rithm. Surprisingly, the best previous attack record dates back to

2005, in which Bleichenbacher informally claimed to break 160-bit

DSA given only 2
24

signatures [16] although no details have been

ever explained to date. Since the claimed number of samples does

match our result, our parameter choice above may explain what he

conducted back then. Moreover, all these works only considered the

setting where HNP samples come without any errors in the MSB

information. In such an ideal case, our tradeoff formula actually

allows to mount the attack given only 2
23

samples with almost

the same time and space complexity. Appendix A describes how it

can be achieved in detail. To our knowledge, no prior works have

managed to exploit 1-bit biases with such small data complexity.

NIST P-192. Attacking the ℓ = 192-bit HNP would be much more

costly in terms of time complexity, and the attacker would be likely

to want to minimize the time. Hence we now present a solution to

the linear programming problem for the optimal time complexity.

Note that our cache attack had the error rate at most ϵ = 0.01, so

the estimated bias peak is slightly more evident than the one for

sect163r1. Suppose the attacker is given 2
min = 2

35
samples as

input and its computational budget ismmax = 29, ℓFFT = 37 and

now let us set the slack variable α = 16 to observe more prominent

peak than before.

• As a preprocessing phase, filter f = 6 bits to collect 2
m0 =

2
min−f = 2

29
samples such that h < 2

ℓ−f = 2
186

holds.

• The first round generates 2
m1 = 29 samples with top n0 = 75

bits nullified via Algorithm 4 in time 2
t0 = 2

a0+v0 = 2
27+23 =

2
50
, given 2

m0 = 2
29

input samples.

• The second round generates 2
m2 = 30 samples with top

n1 = 74 bits nullified via Algorithm 4 in time 2
t1 = 2

a1+v1 =

2
27+23 = 2

50
, given 2

m1 = 2
29

input samples.

• After r = 2 rounds of the collision search phase, the bias com-

putation phase does the FFT of table size 2
ℓFFT = 2

ℓ−f −n0−n1 =

2
37
, expecting to find the peak of height |Bq (K)|4

2

= α/
√
2
m2 ≈

0.0005 and then recover the top 37 bits of sk.
Such optimized time complexity allowed us to practically solve

the previously unbroken 192-bit HNP even with erroneous 1-bit

leakage. Moreover, if we assume error-free input then only 2
29

samples are needed to solve the instance with almost the same

computational cost as described in Appendix A. We remark that

the lower bound formula of [62] with the same slack parameter,

filtering bits and modular bias would yield almost the same num-

ber of signatures as input. However, their non-parameterized HGJ

algorithm exhaustively looks at all bit patterns in top a bits and

tries to find collisions there (which can be seen as a special case

of A4,2m algorithm in Dinur’s framework by fixing the parameter

v = a). The resulting algorithm would thus run in quadratic time,

leading to a much worse time complexity of around 2
56
.

5 EXPERIMENTAL RESULTS
5.1 Optimized Parallel Implementations
We implemented the Bleichenbacher’s attack instantiated with Al-

gorithm 5 as a collision search method. Our MPI-based parallel

implementation is built upon the public available code base of Taka-

hashi et al. [61, 62], and we applied various optimizations to it,

which we summarize below.

• Our implementation accepts the flexible configurations of

attack parameters, to fully accommodate the tradeoffs ob-

served in the previous section, while [62] only allowed to

exhaustively nullify the fixed number of bits and did not

support any sample amplifications.

• After the preliminary collision search phase in top a bits

between two lists, we only keep the top 64 bits of linear

combinations of two, instead of 128 bits as [62] did. Without

losing the correctness of the algorithm, this allows us to

represent samples using the standard uint64_t type and

avoid the multiprecision integer arithmetic altogether in

later collision search phase. Due to this change, both the

RAM usage and cycle counts have been improved by a factor

two.

• The 4-list sum algorithm requires to frequently sort the large

arrays of uniformly distributed random elements (i.e., sorting

of L′
1
and L′

2
in Algorithm 4 step 1.a. ). In such a situation

the radix sort usually performs better than comparison sort

algorithms like the quick sort used by [62]. By utilizing the

spreadsort function of Boost library
5
we achieved a maxi-

mum speedup factor of 1.5.

• In [9] and [62] the FFT computations were carried out in a

single-node machine. To achieve scalability we utilize the

distributed-memory FFT interfaces of FFTW [28].

5.2 Attack Experiments
NIST P-192. We exploited AmazonWeb Service EC2 to attack two

HNP instances without errors and with ϵ = 0.001 error. The con-

crete attack parameters are described in Appendix A and Section 4.3,

respectively. To simulate the ECDSA signatures with side-channel

leakage, we first obtained 2
29

and 2
35

signatures with (erroneous)

MSB information of nonces using the modified dgst command of

OpenSSL 1.0.2u, and then preprocessed them to initialize the HNP

samples as in Section 2.4. The entire signature generation took 114

CPU hours and 7282 CPU hours in total for each case, and the latter

computation was parallelized. The experimental results for the first

iteration of Bleichenbacher’s attack are summarized in Table 3. For

both experiments we used 24 r5.24xlarge on-demand instances

(with 96 vCPUs for each) to carry out the collision search phase.

Since the current largest memory-optimized instance in EC2 is

x1e.32xlarge (with 4TB RAM)
6
we accordingly set the FFT table

size budget LFFT = 2
38

using two such instances. To test both paral-

lelized and non-parallelized FFT, we launched 2 distributed-memory

nodes with 128 shared-memory threads for the former experiment,

and just a single thread for the latter. As a result we were able

to recover the expected number of most significant key bits. The

detected peak sizes matched the estimate |Bq (K)|16 with a small

relative error of order 2
−5
, and the largest noise floors were about

5 times the estimated average (i.e., 5/
√
2
m2 ) in both experiments.

Once the top ℓ′ MSBs of sk have been found, recovering the

remaining bits is fairly straightforward in Bleichenbacher’s frame-

work; one could just “re-inject” the known part of the secret to the

HNP samples as k = z +h · sk = (z +h · sk
hi
· 2ℓ−ℓ

′

)+h · sk
lo
, where

sk = sk
hi
· 2ℓ−ℓ

′

+ sk
lo
, Thus one would obtain a new set of HNP

5
https://www.boost.org/doc/libs/1_72_0/libs/sort/doc/html/index.html

6
https://aws.amazon.com/ec2/pricing/on-demand/

https://www.boost.org/doc/libs/1_72_0/libs/sort/doc/html/index.html
https://aws.amazon.com/ec2/pricing/on-demand/
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Table 3: Summary of the experimental results. The “Thread” columns are of the format #shared-memory threads ×
#distributed-memory nodes. The “Recovered MSBs” were computed with respect to the relative error from the actual secret
sk, i.e., ⌊ℓ − log |sk −w |⌋, wherew is an estimated secret key and ℓ is the bit-length of group size. We remark that the large body
of memory consumption is due to the parallelization overhead, and in fact, the per-thread RAM usages were below 6GB in the
collision search phase and 32GB in FFT, respectively.

Target Facility Cost Error rate Input Output Thread Time RAM LFFT Thread Time RAM Recovered

(Collision) (Collision) (Collision) (FFT) (FFT) (FFT) MSBs

NIST P-192 AWS EC2 $16,429 0 2
29

2
29

96 × 24 113h 492GB 2
38

128 × 2 0.5h 4TB 39

NIST P-192 AWS EC2 $7,870 0.010 2
35

2
30

96 × 24 52h 492GB 2
37

1 12h 4TB 39

sect163r1 Cluster – 0 2
23

2
27

16 × 16 7h 80GB 2
35

8 × 8 1h 128GB 36

sect163r1 Workstation – 0.027 2
24

2
29

48 42h 250GB 2
34

16 1h 512GB 35

samples and apply Algorithm 3 iteratively to recover the top bits

of sk
lo
. These iterations are much more efficient than the top MSB

recovery because now the collision search only needs to find the

linear combinations smaller than 2
ℓFFT+ℓ

′

(see [25] for more details).

Following the convention from previous works we took a small

security margin; assuming that only ℓFFT − 4 bits are correctly re-

covered for each iteration, we set the search space for the unknown

sk
lo
to a slightly larger interval [0, 2ℓ

′+4]. In our experiment, we

repeated Algorithm 3 in total 5 times until the top 170 bits of sk are

recovered and then did the exhaustive search to find the remaining

22 bits. All but first iterations have been completed in around 6

hours using Intel Xeon E5-2670 CPU ×2 (16 cores in total) with

128GB RAM.

sect163r1. We exploited parallel cluster computing nodes (Intel

Xeon E5-2670) and workstation (Intel Xeon E5-2697) to attack two

HNP instances without errors and with ϵ = 0.0027 error. The con-

crete attack parameters for the former is described in Appendix A

and the ones for the latter were already described in Section 4.3.

We first generated 2
23

and 2
24

ECDSA signatures just as in the

case of P-192, which took 1.8 and 3.6 CPU hours respectively. The

measured experimental results are in Table 3. The recovery of re-

maining bits was carried out as well and it took about 2 hours using

the single computing node. Owing to our optimized implementa-

tion both attacks succeeded with relatively modest computational

costs compared to previous works. Since the CPU times are below

3 months and per-thread memory usage was 32GB in both cases

we can infer that the entire attack could be easily performed with

a laptop as of today.

AWS Cost Estimates to Attack NIST P-224 and P-256. Fig. 4 indi-
cates that given 2

35
P-224 signatures and 2

35
memory space one

could complete the collision search phase in 2
54.5

time and then

solve the HNP by computing the FFT of size 2
45
. Hence we can

infer from the above empirical results the concrete AWS costs to

break P-224 given only 1-bit nonce leaks; indeed, the entire compu-

tation for such a case could be completed by paying about $300,000

to Amazon and running 256 x1e.32xlarge instances for 45 days
(even considering the parallelization overhead), which should be

practically doable for well-funded adversaries. Breaking P-256 with

1-bit leakage remains challenging; however, if 2 bits of leakage are

available thanks to a more powerful side-channel attack, then Fig. 6

implies that key recovery is doable with the same computation-

al/AWS costs, given about half a million signatures.

6 SOFTWARE COUNTERMEASURES
The main countermeasure to defend against the attack we introduce

in this paper is enforcing regular behavior in the implementation of

scalar multiplication, in particular constant-time execution. We dis-

cuss three possible options, in increasing implementation complex-

ity: Z -coordinate randomization, constant-time implementation of

the group law and alternative scalar multiplication algorithms.

Given a high-quality entropy source also required to generate

nonces for ECDSA, the countermeasure that is easiest to implement

is randomization of Z -coordinates to guarantee all intermediate

points in project coordinates and hide timing differences when mix-

ing different coordinate systems. This is a popular countermeasure

when implementing the Montgomery Ladder in Curve25519, al-

though its exact efficacy against side-channel attacks in that context

is not entirely clear [27]. We further note that additional care must

be taken when converting from projective to affine coordinates at

the end of the computation to prevent a related attack [5].

Another potential countermeasure is to refactor the implemen-

tation to satisfy constant-time guarantees. A first option is to im-

plement the group law in constant time using the complete for-

mulas in [54], admitting a substantial performance impact [60].

There are other alternatives for the scalar multiplication algorithm

which do not penalize performance as much. For example, the SPA-

resistance left-to-right double-and-add scalar multiplication strat-

egy by Coron [21] computes a point addition and a point doubling

at every iteration, using a conditional copy to select the correct re-

sult at the end. This strategy would have comparable performance

to Montgomery Ladder in the Weierstrass model (which does not

benefit from differential addition formulas) while being conceptu-

ally simpler to implement securely. Another alternative would be

implementing the ladder over co-Z arithmetic to remove explicit

handling of Z -coordinates [44].
Our patches submitted as part of coordinated disclosure imple-

ment the coordinate randomization countermeasure to randomize

both the accumulators independently as a defense-in-depth mea-

sure, without needing to taken into account how the underlying

field arithmetic is implemented. We validated the effectiveness of

the countermeasure in both binary and prime curves by failing

to mount the same cache-timing attacks against the patched im-

plementations. Our patches illustrating the countermeasure are

available in our GitHub repository, together with datasets for sig-

nature computation containing the cache-timing traces.
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A CONCRETE PARAMETERS TO ATTACK
HNPWITHOUT ERRORS

sect163r1. For ℓ = 162 we present a solution to the linear

programming problem in Table 2 for the optimized data complexity.

Suppose the attacker is given 2
min = 2

23
HNP samples with ϵ = 0

as input and its computational budget ismmax = 29, ℓFFT = 35 and

let the slack variable α = 8.

• The first round generates 2
m1 = 29 samples with top n0 = 55

bits nullified via Algorithm 4 in time 2
t0 = 2

a0+v0 = 2
21+21 =

2
42
, given 2

m0 = 2
min = 2

23
input samples.

• The second round generates 2
m2 = 27 samples with top

n1 = 72 bits nullified via Algorithm 4 in time 2
t1 = 2

a1+v1 =

2
27+18 = 2

45
, given 2

m1 = 2
29

input samples.

• After r = 2 rounds of the collision search phase, the bias com-

putation phase does the FFT of table size 2
ℓFFT = 2

ℓ−n0−n1 =

2
37
, expecting to find the peak of height |Bq (K)|4

2

= α/
√
2
m2 ≈

0.0007 and then recover the top 35 bits of sk.

P-192. For ℓ = 192 we present a solution to the linear program-

ming problem in Table 2 for the optimized time complexity. Suppose

the attacker is given 2
min = 2

29
HNP samples with ϵ = 0 as input

and its computational budget ismmax = 29, ℓFFT = 38 and let the

slack variable α = 8.

• The first round generates 2
m1 = 29 samples with top n0 = 76

bits nullified via Algorithm 4 in time 2
t0 = 2

a0+v0 = 2
27+24 =

2
51
, given 2

m0 = 2
min = 2

29
input samples.

• The second round generates 2
m2 = 27 samples with top

n1 = 78 bits nullified via Algorithm 4 in time 2
t1 = 2

a1+v1 =

2
27+24 = 2

51
, given 2

m1 = 2
29

input samples.

• After r = 2 rounds of the collision search phase, the bias com-

putation phase does the FFT of table size 2
ℓFFT = 2

ℓ−n0−n1 =

2
38
, expecting to find the peak of height |Bq (K)|4

2

= α/
√
2
m2 ≈

0.0007 and then recover the top 38 bits of sk.

B ESTIMATING THE HEIGHT OF THE NOISE
FLOOR

In this appendix, we rely on standard results on subgaussian random

variables as introduced for example in [18]. In particular, we use the

following result. It is stated over R in op. cit., but the generalization

to C is immediate.

Lemma B.1 ([18, Lemma 4.4]). Let ®v be a τ -subgaussian random
vector in CN . Then:

Pr[∥ ®v ∥∞ > t ] ≤ 2N · exp
( t2

2τ 2

)
.

Now consider H ′ = {h′i }
M
i=1 a family of M independent identi-

cally distributed random variables over Zq , and suppose that for

some x ∈ Zq , it holds that the modular bias of the distribution of

the x · h′i ’s is zero. This is for example satisfied when the h′i are
uniform over {0, . . . ,L−1} for some L dividing q, and x is a nonzero

multiple of q/L. The sample bias:

Bq (x · H
′) =

1

M

M∑
i=1

e2iπh
′
i /q

is a linear combination of the random variables ui = e2iπx ·h
′
i /q

which are independent, of mean 0 by the modular bias assumption,

and supported over the unit circle, hence 1-subgaussian by Hoeffd-

ing’s lemma (see [18, Lemma 2.5(iv)]). Therefore, Bq (x · H
′) itself

is τ -subgaussian for τ =
√
1/M2 + · · · + 1/M2 = 1/

√
M .

Given a family X of points x as above, suppose that the subgaus-

sian random variables Bq (x · H
′), x ∈ X are independent.

7
Then

the vector ®v =
(
Bq (x · H

′)
)
x ∈X is again 1/

√
M-subgaussian. In

particular, by Lemma B.1, we have:

Pr[∥ ®v ∥∞ > t ] ≤ 2|X | · eMt 2/2
)
.

In other words, except with probability at most ϵ , we have:

max

x ∈X

��Bq (xi · H ′)�� ≤ √
2 ln(2|X |/ϵ)

M
.

When carrying out the FFT-based peak search, we are in the

setting whereM = L is the number of FFT points and X is the set

of the L − 1 non zero multiples of q/L. The argument shows that

we expect the noise floor to be at most a factor

√
2 ln(2M/ϵ) times

higher than the average 1/
√
M .

As an example, takingM = 2
35

and ϵ = 2
−10

, this gives an upper

bound slightly below 8. Hence, picking a slack value somewhat

above 8 for a 2
35
-point FFT should ensure the correct recovery of

the peak with high probability.

C IMPROVED COMPLEXITY ESTIMATES TO
HNPWITH MORE NONCE LEAKAGES

For the attacks against OpenSSL ECDSA we focused on analyzing

the cases of (less than) single-bit nonce leakages. In this appendix,

we consider less restricted situations where a few bits of nonces per

signature are available to the attacker. To our knowledge, all previ-

ously discovered ECDSA vulnerabilities in the literature required

at least 3 bits of nonces to mount the lattice attacks in practice

(except 160-bit DSA with 2-bit leakages broken by [41]). Thanks

to our tradeoff formula, we indicate that 2 or 3 bits of nonce leak-

ages are indeed exploitable with modest input data complexity,

while maintaining the realistic time and space complexities (recall

that our attack experiments for P-192 practically solved the case

corresponding to over 2
50

time and 2
29

space). For instance, the

high-profile NIST P-256 curve can be easily broken given only a

several thousands of signatures leaking 3 bits of nonces for each.

We include in Figs. 5 to 8 the time-data tradeoffs for various differ-

ent combinations of parameters: the target group size, the number

of biased/leaked nonce bits, max memory bound, and FFT table size.

All results are obtained by solving the linear programming problem

in Table 2.

7
It is possible but non trivial to quantify the extent to which this assumption holds:

see e.g. [58]. In our case of interest, namely the h′i ’s uniform over [0, L) and X the set

of non zero multiples of q/L, the assumption should be close to hold for L no larger

than M .
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Figure 5: Time–Data tradeoffs wheremmax = 30, nonce k is 2-bit biased, slack parameter α = 8 and the number of rounds r = 3.
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Figure 6: Time–Data tradeoffs wheremmax = 35, nonce k is 2-bit biased, slack parameter α = 8 and the number of rounds r = 3.
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Figure 7: Time–Data tradeoffs wheremmax = 30, nonce k is 3-bit biased, slack parameter α = 8 and the number of rounds r = 4.
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Figure 8: Time–Data tradeoffs wheremmax = 35, nonce k is 3-bit biased, slack parameter α = 8 and the number of rounds r = 4.
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D MORE LIST SUM ALGORITHMS AND
TRADEOFF FORMULAS

In the next page we present alternative K-list sum algorithms in

Algorithms 6, 8 and 9 that can be applied to the collision search

phase, instead of the iterative HGJ in Algorithm 5. The correspond-

ing linear programming problems representing the tradeoffs are

found in Tables 4 to 6. The solver script for all problems is also

available in our GitHub repository.

Table 4: Linear programming problems based on the multi-
layer K = 4

r -list sum algorithm (Algorithm 6).

Time Space Data

minimize t0 = . . . = tr−1 m0 = . . . =mr−1 2
min

subject to — ti ≤ tmax ti ≤ tmax

subject to mi ≤ mmax — mi ≤ mmax

subject to

ai+1 = 3ai +vi − ni i ∈ [0, r − 1]
ti = ai +vi + 2(r − i − 1) i ∈ [0, r − 1]
vi ≤ ai i ∈ [0, r − 1]
mi = ai + 2(r − i) i ∈ [0, r − 1]
ai+1 ≤ 2ai i ∈ [0, r − 1]
min =m0 + f
ℓ ≤ ℓFFT + f +

∑r−1
i=0 ni

mr = 2(logα − 4r log(Bq (K)))

Table 5: Linear programming problems based on the itera-
tive BCJ 16-list sum algorithm (Algorithm 8).

Time Space Data

minimize t0 = . . . = tr−1 m0 = . . . =mr−1 min

subject to — ti ≤ tmax ti ≤ tmax

subject to mi ≤ mmax — mi ≤ mmax

subject to

mi+1 = 7ai +wi − ni i ∈ [0, r − 1]
ti = 2ai +wi i ∈ [0, r − 1]
wi ≤ 9ai i ∈ [0, r − 1]
mi = ai + 4 i ∈ [0, r − 1]
mi+1 ≤ 11ai i ∈ [0, r − 1]
min =m0 + f
ℓ ≤ ℓFFT + f +

∑r−1
i=0 ni

mr = 2(logα − 16r log(Bq (K)))

Table 6: Linear programming problems based on the multi-
layer BCJ 16-list sum algorithm (Algorithm 9).

Time Space Data

minimize t0 = . . . = tr−1 m0 = . . . =mr−1 min

subject to — ti ≤ tmax ti ≤ tmax

subject to mi ≤ mmax — mi ≤ mmax

subject to

ai+1 = 7ai +wi − ni i ∈ [0, r − 1]
ti = 2ai +wi + 4(r − i − 1) i ∈ [0, r − 1]
wi ≤ 9ai i ∈ [0, r − 1]
mi = ai + 4(r − i) i ∈ [0, r − 1]
ai+1 ≤ 11ai i ∈ [0, r − 1]
min =m0 + f
ℓ ≤ ℓFFT + f +

∑r−1
i=0 ni

mr = 2(logα − 16r log(Bq (K)))
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Algorithm 6 Parameterized multi-layer K = 4
r
-list sum algorithm based on Dinur [26]

Require:
L - List ofM = 4

r × 2a uniform random ℓ-bit samples.

{ni }
r−1
i=0 - Number of nullified top bits per each round.

{vi }
r−1
i=0 - Parameter where vi ∈ [0,ai ].

Ensure: L′ - List of (ℓ −
∑r−1
i=0 ni )-bit samples of the length 2

mr
.

1. Divide L into 4
r
disjoint lists L1, . . . ,L4

r . Let a0 = a.
2. For each i = 0, . . . , r − 1 :

a. Sort lists L1, . . . ,L4
r−i and apply Algorithm 4 4

r−i−1
times to {Li }

4

i=1 , . . . ,{Li }
4
r−i

i=4r−i−3 with parameters ni andvi . Obtain 4
r−i−1

lists L′
1
, . . . ,L′

4
r−i−1 of the expected length 2

ai+1 = 2
3ai+vi−ni

.

b. Let L1BL
′
1
, . . . ,L

4
r−i−1BL′

4
r−i−1 .

3. Output L1.

Algorithm 7 Parameterized 16-list sum algorithm based on Becker–Coron–Joux [10]

Require:
{Li }

16

i=1 - Sorted lists of 2
a
uniform random ℓ-bit samples.

n - Number of nullified top bits per each round.

w ∈ [0, 9a] - Parameter.

Ensure: L′ - List of (ℓ − n)-bit samples.

1. For each 2
w
possible values of the four 3a-bit words c1, c2, c3 and c4 that satisfy c1 + c2 − c3 − c4 = 0:

a. Apply Algorithm 4 four times to lists {Li }
4

i=1 ,{Li }
8

i=5 ,{Li }
12

i=9 and {Li }
16

i=13 with parameters n = 3a, v = a and c1, c2, c3 and c4
as the 3a-bit target values (i.e., find linear combinations of four such that the top 3a bits are ci ), respectively. Store the expected
number of 2

4a−3a = 2
a
output sums in new sorted lists L′

1
,L′

2
,L′

3
and L′

4
.

b. Apply Algorithm 4 to L′
1
,L′

2
,L′

3
and L′

4
with parameters n = n − 3a and v = a. Store the expected number of 2

4a−(n−3a) = 2
7a−n

output sums in the list L′.

2. Output L′ of the expected length 2
7a+w−n

.

Algorithm 8 Iterative BCJ 16-list sum algorithm

Require:
L - List ofM = 16 × 2a uniform random ℓ-bit samples.

{ni }
r−1
i=0 - Number of nullified top bits per each round.

{wi }
r−1
i=0 - Parameter wherewi ∈ [0, 9ai ].

Ensure: L′ - List of (ℓ −
∑r−1
i=0 ni )-bit samples of the length 2

mr
.

1. Let a0 = a.
2. For each i = 0, . . . , r − 1 :
a. Divide L into 16 disjoint lists L1, . . . ,L16 of length 2

ai
and sort them.

b. Apply Algorithm 7 to {Li }
16

i=1 with parameters ni andwi . Obtain a single list L′ of the expected length 2
mi+1 = 2

7ai+wi−ni
. Let

LBL′.
3. Output L′.

Algorithm 9 Parameterized multi-layer K = 16
r
-list sum algorithm based on Dinur [26]

Require:
L - List ofM = 16

r × 2a uniform random ℓ-bit samples.

{ni }
r−1
i=0 - Number of nullified top bits per each round.

{wi }
r−1
i=0 - Parameter wherewi ∈ [0, 9ai ].

Ensure: L′ - List of (ℓ −
∑r−1
i=0 ni )-bit samples of the length 2

mr
.

1. Divide L into 16
r
disjoint lists L1, . . . ,L16

r . Let a0 = a.
2. For each i = 0, . . . , r − 1 :

a. Sort lists L1, . . . ,L16
r−i and apply Algorithm 7 16

r−i−1
times to {Li }

16

i=1 , . . . ,{Li }
16
r−i

i=16r−i−15 with parameters ni andwi . Obtain

16
r−i−1

lists L′
1
, . . . ,L′

16
r−i−1 of the expected length 2

ai+1 = 2
7ai+wi−ni

.

b. Let L1BL
′
1
, . . . ,L

16
r−i−1BL′

16
r−i−1 .

3. Output L1.
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