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Abstract. Threshold encryption is encryption to a group of n intended
recipients in such a way that any t+1 out of the n recipients together can
decrypt, but t or fewer learn nothing about the message. Ad hoc threshold
encryption (ATE) is threshold encryption with no trusted setup beyond
a PKI (that is, all keys are generated independently). The techniques
known in the ad hoc setting suffer either from ciphertexts linear in (n−t)
(Daza et. al), or from reliance on cumbersome primitives like indistin-
guishability obfuscation (Reyzin et. al).
In this paper, we set out to determine whether we can get ATE with
short ciphertexts from standard primitives. We therefore work in a model
where we limit reliance on computational assumptions. We do this by de-
manding information theoretic security given black-box access to limited
cryptographic tools such as non-interactive key exchange and pseudoran-
dom generators.
We show that, with access only to idealized two-party key exchange, any
secure ATE scheme must produce ciphertexts of size at least (n− t− 1)l
(where l is the length of the message). If access is additionally given to
an idealized PRG, the lower bound on ciphertext size becomes dn−t

2
eλ+l

(where λ is the length of the input to the PRG).
If idealized q-party key exchange for q > 2 is availabe, then we can
achieve a constant-size ciphertext, at the cost of invoking the key ex-
change an exponential number of times. We also prove that, if the size of
the ciphertext is optimal (that is, equal to the size of the message), the
exponential overhead is unavoidable. Finally, we give some alternative
constructions demonstrating that the overhead can be reduced at the
cost of slightly larger ciphertext size.
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1 Introduction

The concept of public-key threshold encryption is very well known. It goes back
at least to Desmedt et. al [DDFY94], and has since then been studied in a very
long line of research. For this type of scheme, the key generation outputs a public
key pk and a set of secret keys sk1, . . . , skn which are generated with respect to a
threshold value t, where 0 ≤ t < n. Informally, the important security properties
are that given any set of at least t+ 1 secret keys, one can decrypt a ciphertext
encrypted under pk, while the encryption remains secure even given any set of t
secret keys. For efficiency, ciphertexts should have size independent of n.

Requiring a single trusted execution of key generation can be very limit-
ing, particularly in a system where parties may join at any point, or where
senders want to dynamically choose subsets of the parties to be the recipients of
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a particular message. Dynamic threshold public-key encryption, introduced by
Delerablée and Pointcheval [DP08], has a reduced setup requirement where the
sender can pick the set of n recipients at encryption time; however, each recipi-
ent’s secret key must be derived from a common master secret key, so a trusted
authority is still necessary. Ad hoc threshold encryption (ATE), first introduced
by Daza et. al [DHMR08] as threshold broadcast encryption1 (motivated by its
applicability to mobile ad hoc networks), requires no trusted setup beyond the
absolute minimum — a PKI.

ATE considers a universe of users, where each user i has a public key pki
and corresponding secret key ski, and where all key pairs are independently
generated. A sender can select a set R of n users and a threshold value t at
the time at which he decides to send a message m. He can then construct a
ciphertext C = EpkR,t(m), where pkR is the set of public keys belonging to parties
in R. ATE requires properties similar to those of standard threshold encryption:
namely, that any t + 1 parties in R can decrypt, while the encryption remains
semantically secure even given the secret keys of any t parties in R.

Clearly, ATE has a number of attractive properties that standard threshold
encryption lacks: no trusted authority, and the ability to decide on the set of
receivers and the threshold on the fly. On the other hand, it is not clear that
an ATE ciphertext can be as small as a standard one. The easiest approach
to building an ATE solution is to secret-share the message with threshold t
to get shares m1, . . . ,mn and encrypt the shares, setting E{pk1,...,pkn},t(m) =
(Epk1(m1), . . . , Epkn(mn)). This clearly works, but leads to ciphertext size linear
in n. Daza et. al [DHMR08] show how to decrease the ciphertext size to be linear
in n − t, which, while better, may still be unmanageable for large n and small
t. Reyzin et. al [RSY18] show that using indistinguishability obfuscation, as well
as few standard primitives, it is possible to get ciphertext size independent of n.
There are several reasons, however, why this is not a very satisfactory answer.
For one thing, the construction requires senders to have public and secret keys,
which is not usually assumed for ATE. Moreover, obfuscation requires strong
assumptions; with current state of the art techniques, it comes at the price of
a huge loss of efficiency in practice; and finally, it is well known that candidate
obfuscation constructions have a somewhat shaky security status.

An important question therefore is to determine whether we can get ATE
with short ciphertexts using standard cryptographic techniques. This question
is completely open, except for the case of almost maximal threshold t. When
t = n − 1 (that is, where everyone must collaborate in decryption), it is easy
to see that we can get constant size ciphertexts based on the DDH assumption.
One can simply multiply together n parties’ El Gamal public keys, to get a new
key that is also a valid El Gamal public key; the corresponding secret key is now
effectively additively secret shared among the n original parties. One can then

1 One should note that ATE for t = 0 is very similar to broadcast encryption: each
party can decrypt on his own. However, in broadcast encryption, centralized key
generation is usually allowed (or at least key generation is coordinated between
receivers). This is exactly what is not allowed in ATE.
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produce the ATE ciphertext by encrypting using El Gamal under the public
key product; this ciphertext will have size independent of n. For t = n − c (for
constant c), one can use the techniques of Daza et. al [DHMR08] to get constant-
size ciphertexts (since n−t = c), also under DDH or other standard assumptions.
However, there is no known way to generalize any of this to significantly smaller
thresholds, which makes the problem all the more tantalizing.

1.1 Our Contribution

In this paper, our goal is to understand the feasibility of ATE with short ci-
phertexts from standard cryptographic techniques. Clearly, indistinguishability
obfuscation (which enables constant-size ciphertexts [RSY18]) is not standard;
an important question is finding a suitable restriction that precludes the use of
indistinguishability obfuscation, while allowing the use of more standard tools.

We take the approach of giving protocols access to ideal functionalities for
certain basic cryptographic primitives such as key exchange and pseudorandom
generators. We then require that the ATE constructions that use those primi-
tives be information theoretically secure assuming the idealized versions of the
primitives. Intuitively, this ensures that the protocols we consider can use the
underlying primitives, but cannot use anything else that requires computational
assumptions, since such assumptions cannot lead to information theoretic secu-
rity.

Lower bounds in such a model are, on the one hand, limited — they only hold
for restricted black-box use of the underlying primitives. On the other hand, they
are stronger than usual, in two ways. First, when proving lower bounds, we do not
assume that the idealized primitives or the protocols themselves are efficient2.
Second, the communication cost of implementing the idealized primitives is not
considered as part of the ciphertext size.

Our results in this setting are summarized in Figure 1.
We show, using information theoretic methods, that if the only cryptographic

tool you have is key exchange (a functionality that outputs the same random
string to two parties), then it is impossible to achieve a constant size ciphertext.
In fact, the ciphertext must have size at least (n− t− 1)l, where l is the entropy
of the message (Theorem 2). The construction of Daza et. al [DHMR08] (which
is in our model) leads to an upper bound of (n− t)l on the ciphertext size.

As mentioned above, we do not charge the protocols for the communication
cost of implementing the available primitives, which makes our lower bound
stronger. As for the upper bounds, we note that key exchange between a sender
and several receivers can be implemented with very little communication over-
head based on DDH: the sender provides a group element gs as part of the

2 Note that in a model where protocols do not have to be efficient, indistinguishability
obfuscation exists: one just takes the lexicographically first circuit with the desired
input-output behavior [MR13]. However, the construction from [RSY18] is still ex-
cluded in our model because it makes essential non-black-box use of several standard
primitives.
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Bounds
Lower Bounds Upper Bounds

Threshold Assumptions Security Ctext Size Number of
NIKE Calls

Ctext Size Number of
NIKE Calls

NIKE
Output
Size

any t 2-party NIKE Perfect (n− t− 1)l Constr 1
(Theorem 2) (n− t)l n l

any t 2-party NIKE Statistical (n− t− 1)l
− negl(λ)

Constr 1

(Theorem 4) (n− t)l n l

any t 2-party NIKE
and PRG

Statistical dn−t
2 eλ+ l−
negl(λ)

Constr 2

(Theorem 5) (n− t)λ+ l n λ
any t (n− t+ 1)-

party
Perfect Constr 3

NIKE l
( n
n−t

)
l

any
t = Θ(n)

q-party NIKE
for any q

Perfect l exponential
(Theorem 7)

t = 0 q-party NIKE Perfect Constr 4
(broadcast) for any q d n

q−1 el d n
q−1 e l

t = 1 q-party NIKE
for

Perfect Constr 5

q = dn2 e+ 1 log(n)l 2 log(n) l
any t q-party NIKE Perfect Constr 5

for any q 2(t+ 1)3 ·
log(n)l

2(t+ 1)3 ·
log(n)

l

Fig. 1: Summary of Results. In this table, n denotes the size of the recipient
set, t denotes the threshold of parties (such that any subset of recipients of size
greater than t is able to decrypt), l denotes the entropy of the message (often
equivalent to its length), and λ denotes the security parameter. NIKE stands for
Non Interactive Key Exchange.
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ciphertext, and for receiver i with public key gxi , the shared key is gsxi . Thus,
the communication overhead for the key exchange is independent of n, so our
upper bound can indeed be very close to the lower bound even for a practical
implementation.

In the same spirit, we show that if we grant access to both key exchange and
a PRG, then the lower bound is dn−t2 eλ + l, where λ is the seed length of the
PRG (Theorem 5). This says that the obvious approach where we send a seed
using ATE, and use the output of the PRG as a one-time pad on the message,
is optimal up to a factor of two in this model.

We next explore what is possible if we give access to a more general form of
key exchange – multiparty non-interactive key exchange, or q-NIKE – where
q (the sender and q − 1 receivers) can agree on the same randomness non-
interactively (from their respective public keys). Multiparty NIKE can be con-
structed from multilinear maps, indistinguishability obfuscation [BZ14], univer-
sal samplers [HJK+16,GPSZ17] (which can be built from indistinguishability
obfuscation or functional encryption), or encryption combiners satisfying per-
fect independence [MZ17] (which can be built from universal samplers).

We show that leveraging multiparty NIKE allows for ATE with optimal ci-
phertext size, equal to the message length (Constr 3); however, our construction
requires an exponential number (in n) of invocations of a (n− t+ 1)-NIKE. We
also show that if the goal is to have the ciphertext be of the same length as the
message (which is optimal), then the hurdle of having to invoke the multiparty
NIKE an exponential number of times is unavoidable (Theorem 7).

Finally, we explore other ways to leverage multiparty NIKE. In particular,
when t is small enough — that is, when t3 log n is o(n) — Constr 5 shows that we
can have ciphertext size sublinear in n, while invoking the NIKE polynomially
many (in n) times. This demonstrates a tradeoff that is fundamentally different
from our other results: using multiparty NIKE, we can break the lower bound
on ciphertext size for 2-NIKE, but still avoid the exponential overhead required
for minimal ciphertext size.

1.2 Open Problems

This is a very rich space of problems to explore. In particular, it is natural to ask
what becomes of lower bounds on the ciphertext size given q-NIKE for various
values of q. For q = n− t we can obtain optimal-size ciphertexts (Constr 3), but
for q = 2 we have (n− t− 1)l as a lower bound (Theorem 2). Lower bounds on
ciphertext size for other values of q are wide open.

Another natural question to ask is, for general q, what becomes of the tradeoff
between number of invocations of q-NIKE and ciphertext size. Is there a lower
bound on the number of q-NIKE invocations for constant-size (but sub-optimal)
ciphertexts, like there is for optimal ciphertexts (Theorem 7)?
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1.3 Notation

We use lowercase variables — pk, sk,m, c — to refer to concrete values, and
uppercase variables — PK,SK,M,C — to refer to distributions.

2 Definitions

In this section, we give some rudimentary definitions of ad hoc homomorphic
encryption (ATE).

2.1 ATE Syntax

An ATE scheme consists of three algorithms, described below.

KG(1λ)→ (pk, sk) is a randomized key generation algorithm that takes in the
security parameter λ and returns a public-private key pair.

EpkR,t(m)→ c is an encryption algorithm that encrypts a message m to a set of
public keys pkR = {pki}i∈R belonging to the parties in the intended recipient
set R in such a way that any size-(t + 1) subset of the recipient set should
jointly be able to decrypt.

DpkR,skA(c)→ m is a decryption algorithm that uses secret keys skA = {ski}i∈A
belonging to a subset A of the intended recipient set R (where |A| > t) to
decrypt the ciphertext c and recover the message m.

In this paper, we want to model giving the parties black-box access to an
idealized cryptographic primitive F . All three algorithms are then augmented
with oracle access to F .

When F is a primitive like key exchange that has no inputs (apart from party
identities) — only outputs — we can get away with a simplification. Because
there are no inputs, it doesn’t really matter when F is called (since inputs
cannot be adaptively chosen), so we simply assume that F has been called a
sufficient number of times before encryption (say, at key generation time). (Of
course, actually implementing ATE this way would have serious efficiency issues;
key exchange would have to be run among all sets of parties many times, even
among those who might not have a future need to send messages to one another.
However, even though ATE should not be implemented this way, modeling it
this way is valid for arguing lower bounds on ciphertext size.)

In the rest of this paper, we abstract away from using public-private key
pairs which we assume are only used to implement key exchange3. Instead, we
directly model the outputs of key exchange as a set s = {si} of shared keys.
In the idealized key exchange model, s is a random value whose components
are shared by multiple parties (usually by the sender and one of the receivers).
Under this simplification, the syntax changes as follows. KG(1λ) is replaced by

3 This follows from the fact that our first goal is to analyze information theoretically
secure ATE based on idealized key exchange.
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invocations of the idealized key exchange functionality, distributing shared keys
in s to the appropriate parties Namely, si to party i and the entire set s to the
sender. Encryption becomes Es,t(m)→ c, and decryption becomes DsA(c)→ m
(where sA = {si}i∈A, |A| > t).

2.2 ATE Security in the Pairwise Key Exchange Model

For our purposes, an ad hoc threshold encryption (ATE) scheme in the pairwise
key exchange model is characterized by the joint distribution of the following
random variables: S1, . . . ,Sn (where Si is a random variable shared by the sender
and receiver i), the message M, and the ciphertext C. Informally, an ATE scheme
is secure if any t parties in the designated set of receivers R can learn nothing
about a message from a ciphertext, but any t + 1 parties in R can recover the
message. More precisely:

Definition 1 (ATE Perfect Security). An ATE scheme (E,D) in the pair-
wise key exchange model is perfectly secure with threshold t if for any set of
receivers R of size n, for C = ES,t(M), the following two properties hold:

Security For any A ⊂ R of size at most t, we have H(M|C,SA) = H(M), where
SA = {Si}i∈A is the set of keys shared by the sender and parties in A.

Correctness For any A ⊂ R of size greater than t, we have H(M|C,SA) = 0.
Furthermore, M = DSR(C).

We can define statistical security similarly, where we assume that the dis-
tribution of the variables may also depend on a security parameter λ, but we
always assume that the parameters l, n, t are polynomial in λ.

Definition 2 (ATE Statistical Security). An ATE scheme (E,D) in the
pairwise key exchange model is statistically secure with threshold t if for any
set of receivers R of size n, for C = ES,t(M), the following two properties hold:

Security If for any A ⊂ R of size at most t, we have H(M|C,SA) ≥ H(M) −
negl(λ), where SA = {Si}i∈A is the set of keys shared by the sender and
parties in A.

Correctness For any A ⊂ R of size greater than t, we have H(M|C,SA) ≤
negl(λ). Furthermore, M = DSR(C) with overwhelming probability.

2.3 Relationship to Other Definitions

In this section, we consider the relationship between our definitions and some
other flavors of threshold encryption definitions.
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Relationship to Semantic Security For those readers used to dealing with com-
putational notions of security, Definition 1 might not look quite like a typical
definition for encryption. In the security requirement, instead of demanding the
inability of an adversary to distinguish between encryptions of two messages (as
in semantic security), we demand that the entropy of the message not dimin-
ish in the presence of the ciphertext and insufficiently many keys. However, the
entropy of the message remaining the same in the presence of the ciphertext
clearly implies that even an unbounded adversary cannot distinguish between
encryptions of two messages.

Relationship to Adaptive Security Because we require security against any sub-
set of corrupt parties A ⊂ R of size at most t, we get an equivalent of adaptive
security (where the adversary can choose the subset adaptively based on the chal-
lenge ciphertext), which is stronger than selective security (where the adversary
must choose the subset before seeing the ciphertext).

Modeling Encryption Oracles Definition 1 does not explicitly model additional
information that may be available to an adversary, such as known message / ci-
phertext pairs, or access to encryption oracles. We do not model this information
because, in our idealized key exchange setting, it cannot be of any possible use.
We assume that every message is encrypted with fresh outputs S of the idealized
key exchange, so an adversary can simulate known message / ciphertext pairs
and encryption oracles by picking the values S for other messages and cipher-
texts at random. We do not consider decryption oracles or CCA security in this
paper.

3 Bounds Assuming Idealized Key Exchance

In this section, we assume that a sender has access to pairwise shared randomness
with each of the n receivers (distributed, e.g., by an idealized key exchange
functionality). Thus each receiver i gets a random variable (or key) Si, while the
sender has access to the full set of keys {S1, . . . ,Sn}. The keys Si are independent,
since they are the result of separate calls to the key exchange functionality. The
choice of message is represented by random variable M, and we let l denote the
entropy of M, which we assume (for simplicity) is fixed. The sender computes a
ciphertext C from M, {S1, . . . ,Sn} and possibly some local randomness.

3.1 Lower Bound on Ciphertext Size in the Perfect Security Setting

We begin with Theorem 1, which gives a lower bound on ciphertext size specifi-
cally for the broadcast (t = 0) setting. We then use Theorem 1 to prove Theo-
rem 2, which deals with general t.

Theorem 1. For any ATE scheme in the pairwise key exchange model that is
perfectly secure with threshold t = 0, it holds that

H(C) ≥ (n− 1)l.
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Proof. In this proof, we refer to the entropy diagram in Figure 2.

1. H(M|C) = H(M), by perfect security. It follows that b + c = 0 in Figure 2
(that is, M and C are independent). (Note also that g = 0, since C together
with Si completely determine M.)

2. For i ∈ {1, . . . , n},H(M|C,Si) = 0, by the fact that any one key together with
the ciphertext can be used to recover the message. It follows that H(M) =
a+ b+ c = a (by Step 1, since b+ c = 0).

3. H(Si|M,C) = H(Si) − (a + b + d) ≤ H(Si) − a (since b + d must be non-
negative) = H(Si)−H(M) (by Step 2, since H(M) = a).

4.

H(S1, . . . ,Sn|M,C) ≤
n∑
i=1

H(Si|M,C) (1)

≤
n∑
i=1

(
H(Si)−H(M)

)
(by Step 3) (2)

=
( n∑
i=1

H(Si)
)
− nH(M) (3)

5. On the other hand, we have

H(S1, . . . ,Sn|M,C) ≥ H(S1, . . . ,Sn)−H(C,M) (4)

= H(S1, . . . ,Sn)−H(C)−H(M) (5)

=
( n∑
i=1

H(Si)
)
−H(C)−H(M), (6)

since the keys are all independent, and C and M are independent (Step 1).

6. By combining Step 4 and Step 5, we get

( n∑
i=1

H(Si)
)
−H(C)−H(M) ≤

( n∑
i=1

H(Si)
)
− nH(M)

from which we conclude that

H(C) ≥ (n− 1)H(M) = (n− 1)l.

�

Theorem 2. For any ATE scheme in the pairwise key exchange model that is
perfectly secure with threshold t, it holds that

H(C) ≥ (n− t− 1)l.
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Fig. 2: Entropy Diagram. Each circle represents the entropy of an object
(M,C,Si). The overlap areas represent the mutual information of two objects.
For instance I(C;M) = b + c. All subareas represent amounts of information
and are therefore non-negative, except b which may be negative.
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Proof. Fix arbitrary values s1, . . . , st. Let Es1,...,st be the event that S1 = s1, . . . ,St =
st. Clearly, it is sufficient to show that for any such event, H(C|Es1,...,st) ≥
(n− t− 1)l, since this implies

H(C) ≥ H(C|S1, . . . ,St) =
∑

s1,...,st

H(C|Es1,...,st) Pr[Es1,...,st ] ≥ (n− t− 1)l.

We do this in the following way. We fix keys s1, . . . , st belonging to notional
parties as public parameters. It is then straightforward to see that we can build
an ATE with t = 0 by always including the notional parties 1, . . . , t in the
recipient set R; any of the remaining n − t parties will be able to decrypt on
their own. Thus, we can leverage Theorem 1 (with a modified recipient set size
n′ = n− t) to conclude that

H(C|Es1,...,st) ≥ (n′ − 1)l = (n− t− 1)l.

�

3.2 Lower Bound on Ciphertext Size in the Statistical Security
Setting

We have a very similar result for statistical security. Like in the perfect security
setting, we begin with Theorem 3, which gives a lower bound on ciphertext size
specifically for the broadcast (t = 0) setting.

Theorem 3. For any ATE scheme in the pairwise key exchange model that is
statistically secure with threshold t = 0, it holds that

H(C) ≥ (n− 1)H(M)− δ(λ)

for a negligible function δ(λ).

Proof. Like the proof of Theorem 1, this proof refers to the entropy diagram in
Figure 2.

1. By the statistical security of the ATE scheme, H(M)−H(M|C) = ε(λ) for a
negligible function ε(λ). So,

b+ c = ε(λ)

in Figure 2 (or, in other words, M and C are nearly independent; H(M,C) =
H(M) +H(C)− ε(λ)).

2. For i ∈ {1, . . . , n}, statistical security implies that g (in Figure 2) = H(M|C,Si) =
ε(λ) for a negligible function ε(λ).

H(M) = a+ b+ c+ g = a+ 2ε(λ)

by Step 1, since we can assume b+ c = ε(λ).
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3. For i ∈ {1, . . . , n}, H(Si|M,C) = H(Si)− (a+ b+d) ≤ H(Si)−a, since b+d
must be non-negative. Then by Step 2, we get

H(Si|M,C) ≤ H(Si)−H(M) + 2ε(λ).

4. We now use Step 3 to conclude:

H(S1, . . . ,Sn|M,C) ≤
n∑
i=1

H(Si|M,C) (7)

≤
n∑
i=1

(
H(Si)−H(M) + 2ε(λ)

)
(8)

=
( n∑
i=1

H(Si)
)
− nH(M) + 2nε(λ) (9)

5. On the other hand, we have

H(S1, . . . ,Sn|M,C) ≥ H(S1, . . . ,Sn)−H(M,C) (10)

= H(S1, . . . ,Sn)− (H(M) +H(C)− ε(λ)) (11)

=
( n∑
i=1

H(Si)
)
−H(M)−H(C) + ε(λ), (12)

by Step 1 and since the keys are all independent.
6. By combining Step 4 and Step 5, we get( n∑

i=1

H(Si)
)
−H(M)−H(C) ≤

( n∑
i=1

H(Si)
)
− nH(M) + (2n− 1)ε(λ)

from which we conclude that

H(C) ≥ (n− 1)H(M)− δ(λ),

where we define the negligible function δ(λ) = (2n− 1)ε(λ).

�

Theorem 4. For any ATE scheme in the pairwise key exchange model that is
statistically secure with threshold t, it holds that

H(C) ≥ (n− t− 1)H(M)− δ(λ),

for a negligible function δ(λ).

To prove Theorem 4, we first need the following lemma, which is quite well
known, but we include a proof for completeness.

Lemma 1. For any random variable X with X ≥ 0, we have Pr[X ≥
√
E(X)] ≤√

E(X).
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Proof. Writing P [X = x] = px, and E(X) = E, we have

E =
∑
x

xpx =
∑
x≤
√
E

xpx +
∑
x>
√
E

xpx (13)

≥
∑
x≤
√
E

0px +
∑
x>
√
E

√
Epx (14)

=
√
E
∑
x≥
√
E

px (15)

=
√
E Pr[x ≥

√
E] (16)

from which the lemma follows immediately. �

Proof (Theorem 4). Fix arbitrary values s1, . . . , st and define the event Es1,...,st

be the event that S1 = s1, . . . ,St = st. It is sufficient to show the following claim.

Claim. We can define a set of good values s1, . . . , st, such that

1. it holds that for good values we have

H(C|Es1,...,st) ≥ (n− t− 1)H(M)− η(λ)

for a negligible function η(λ);
2. and the probability that s1, . . . , st is bad is a negligible function ν(λ).

Namely, if the claim holds, we have:

H(C) ≥ H(C|S1, . . . ,St) (17)

=
∑

s1,...,st

H(C|Es1,...,st) Pr[Es1,...,st ] (18)

≥
∑

good s1,...,st

H(C|Es1,...,st) Pr[Es1,...,st ] (19)

≥ ((n− t− 1)H(M)− η(λ)) Pr[s1, . . . , st is good] (20)

= ((n− t− 1)H(M)− η(λ))(1− ν(λ)) (21)

from which the conclusion of the theorem follows easily.
To show the above claim, we write H̃ for entropies of all variables as they

are distributed when we condition on Es1,...,st . Since the keys are chosen inde-

pendently of M, we have H(M) = H̃(M).
We define s1, . . . , st to be good if, when s1, . . . , st are fixed as public parame-

ters, the t of n ATE scheme becomes a statistically secure 0 of n−t ATE scheme.
The first part of the claim then follows by Theorem 3.

By the statistical security of the ATE scheme, H(M) − H(M|C) = ε(λ) for
negligible ε(λ). We can think of H̃(M) − H̃(M|C) as a random variable that
takes a value for each fixed choice of s1, . . . , st. Its expectation is then clearly
ε(λ). Further since H̃() stands for entropy (of distributions conditioned on the
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choice of s1, . . . , st) we have H̃(M)− H̃(M|C) ≥ 0 by the standard inequality for
entropy conditioned on a variable.

Therefore Lemma 1 gives us that H̃(M) − H̃(M|C) ≤
√
ε(λ), except with

probability
√
ε(λ).

Likewise, statisitical security also says that H(M|C,S1, . . . ,St,Si) = ε(k) for
any i > t. In the same way as above, we can use Lemma 1 to argue that this
means that H̃(M|Si) ≤

√
ε(λ), except with probability

√
ε(λ).

It follows that, except with negligible probability, s1, . . . , st are good, which
proves the second part of the claim.

�

3.3 Upper Bound

The bound in Theorem 2 is tight, up to an additive H(M) = l. It is achieved in
Constr 1, which is based on the work of Daza et. al [DHMR08]. (In the work of
Daza et. al, specific assumptions are used; Constr 1 is expressed more generally.)

Construction 1 Let the message and each of the shared keys Si be a field el-
ement. The ciphertext consists of an additional n − t points on the degree-n
polynomial interpolating the message and the secret keys. Decryption is then
done by interpolation.

The above construction has H(C) = (n− t)l.

4 Bounds Additionally Assuming an Idealized PRG

In this section, we add an idealized pseudorandom generator (PRG); an idealized
functionality that takes in a random length-λ seed, and outputs a longer random
value. (As long as the output is at least one bit longer than the input, we can
bootstrap the PRG to give arbitrarily long outputs. In our case, the output
length that most often makes sense is l, the length of the message.) Our ATE
algorithms are augmented with oracle access to the idealized PRG.

We make some assumptions on how the ATE protocol may use the idealized
PRG:

Definition 3. An admissible ATE-protocol satisfies the following:

– For any subset of receivers, any PRG-seed chosen by the sender can either
be computed using what that subset of receivers knows, or has full entropy
(possibly up to a negligible loss).

– During encryption, the sender chooses all seeds that are input to PRG uni-
formly, independently of anything else.

– The idealized PRG is not called during key generation KG.

In the following we will only consider admissible protocols. The motivation
for this is as follows:
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– We want to make sure that an admissible protocol can be turned into a
construction in the real world by replacing the idealized PRG by a real PRG
construction. Now, if a seed has (essentially) full entropy in the view of the
adversary then (and only then) can we use the standard security of a real
PRG to conclude that the output is pseudorandom. Seeds for which the
adversary has partial information are not useful in this sense, and we may
as well give the adversary full information on that seed for free.
This is why we assume that in the view of a subset of receivers, any seed that
the sender chose can either be computed or has (essentially) full entropy.
However, for a seed to be potentially useful it must have full entropy in
the first place, which is why we assume that the sender chooses all seeds
uniformly, independently of anything else.

– We assume that the idealized PRG is not called during key generation KG
for simplicity, because this does not cost us any generality: calls to the PRG
on inputs that are independent of the resulting shared keys S may as well
be performed later. On the other hand, calls to the PRG using shared keys
as input may as well be replaced with additional calls to the idealized key
exchange functionality itself (resulting, either way, in a greater amount of
shared randomness).

4.1 Lower Bound on Ciphertext Size

Theorem 5. Consider any statistically secure threshold t ATE scheme in the
pairwise key exchange model with additional access to an idealized PRG which
takes inputs of size λ. Assume the scheme encrypts a message M with entropy
l. If the scheme is admissible it holds that

H(C) ≥
⌈n− t

2

⌉
λ+ l − δ(λ)

for a negligible function δ(λ).

For the proof of the above theorem, we define a modified broadcast ATE
scheme (that is, a modified ATE scheme with t = 0) which we call a multi-
message random broadcast ATE (MMRB ATE) scheme. In a multi-message ran-
dom broadcast ATE scheme, different members of the set of recipients recover
different independent uniformly random messages of length l (where the sender
can specify that more than one party recover the same message, for a total of
x distinct messages). The statistical security of such a scheme is defined anal-
ogously to that of a regular ATE scheme; each of the messages should have
(nearly) full entropy in the presence of just the ciphertext, and in the additional
presence of one of the secret keys, one or more messages loses (nearly) all entropy.

Corollary 1 (of Theorem 3). For any multi-message random broadcast ATE
scheme in the pairwise key exchange model that is statistically secure, for a set
of independent uniformly random messages M = {M1, . . . ,Mx} each with length
l, it holds that

H(C) ≥
⌈n

2

⌉
l − δ(λ)
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for a negligible function δ(λ).

Proof. We prove Corollary 1 in three steps:

1. It is easy to see that H(C) ≥ xl− δ1(λ) for a negligible function δ1(λ), since
the ciphertext must carry information about all x messages of length l.

2. We prove below that H(C) ≥ (n−x)l− δ2(λ) for a negligible function δ2(λ).

3. Given those two facts, it follows that H(C) ≥ dn2 el − δ(λ) for a negligi-
ble function δ(λ), since the maximum of the two bounds above is clearly
minimized at x = n

2 .

The proof that H(C) ≥ (n−x)l−δ2(λ) closely follows the proof of Theorem 3,
with only minor modifications. In the entropy diagram, the entire set of messages
M (where H(M) = xl) is considered instead of a single message. We include the
details below for completeness.

1. By the statistical security of the multi-message random broadcast ATE
scheme, H(M)−H(M|C) = ε(λ) for a negligible function ε. So,

b+ c = ε(λ)

in Figure 2.

2. For i ∈ {1, . . . , n}, g (in Figure 2) = H(M|C,Si) ≤ (x − 1)l + ε(λ) for a
negligible function ε(λ) (since C together with Si enable the recovery of at
least one message with entropy l).

H(M)xl = a+ b+ c+ g ≤ a+ (x− 1)l + 2ε(λ)

⇒ a ≥ l − 2ε(λ)

by Step 1, since we can assume b+ c = ε(λ).

3. For i ∈ {1, . . . , n}, H(Si|M,C) = H(Si)− (a+ b+d) ≤ H(Si)−a, since b+d
must be non-negative. Then by Step 2, we get

H(Si|M,C) ≤ H(Si)− l + 2ε(λ).

4. We now conclude:

H(S1, . . . ,Sn|M,C) ≤
n∑
i=1

H(Si|M,C) (22)

≤
n∑
i=1

(
H(Si)− l + 2ε(λ)

)
(23)

=
( n∑
i=1

H(Si)
)
− nl + 2nε(λ) (24)
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5. On the other hand, we have

H(S1, . . . ,Sn|M,C) ≥ H(S1, . . . ,Sn)−H(M,C) (25)

= H(S1, . . . ,Sn)− (H(M) +H(C)− ε(λ)) (26)

=
( n∑
i=1

H(Si)
)
−H(M)−H(C) + ε(λ) (27)

=
( n∑
i=1

H(Si)
)
− xl −H(C) + ε(λ), (28)

since M and C are independent and since the keys are all independent.

6. By combining the previous two steps, we get

( n∑
i=1

H(Si)
)
− xl −H(C) ≤

( n∑
i=1

H(Si)
)
− nl + (2n− 1)ε(λ)

from which we conclude that

H(C) ≥ (n− x)l − η(λ),

where we define the negligible function η(λ) = (2n− 1)ε(λ).

�

Proof (of Theorem 5). If the PRG is not utilized at all, then we inherit the lower
bound from Theorem 4. In order for the PRG to be useful, it is clear that at
least one λ-size input to that PRG must be communicated to the recipient set
R. This is because if the sender and receivers don’t know any common inputs
to the PRG, invocations of the PRG may as well be replaced by picking fresh
random values.

Let a set of seeds for the PRG be useful if invoking the PRG with those
seeds (in addition to performing operations unrelated to the PRG) is sufficient
to decrypt.

No useful set of seeds can be communicated in such a way that an unqualified
set of parties can recover it. This is because if an unqualified set of parties can
learn a useful set of seeds, then the PRG once more becomes useless, since
instead of using the PRG we could model the PRG output on those seeds as
public information and achieve the same results.

Of course, it must be true that some useful set of seeds is recoverable by any
qualified set.

Imagine a fixed maximally unqualified set of parties; fix the keys belonging
to that set as public parameteres. Each remaining party must enable the recon-
struction of at least one additional seed, so that the resulting qualified set of
parties knows a useful set of seeds. Let S be the set of those additional seeds
that remaining parties enable the reconstruction of.
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Notice that, with overwhelming probability, we are left with a statistically
secure multi-message random broadcast ATE to n′ = n− t parties with message
length l′ = λ. By Corollary 1, we have

H(C) ≥
⌈n′

2

⌉
l′ − δ′(λ) =

⌈n− t
2

⌉
λ− δ′(λ)

for a negligible function δ′(λ).
The ciphertext must carry an additional l bits corresponding to the actual

message, which must be independent of all other values.
�

4.2 Upper Bound

Constr 2 describes how, using an idealized PRG in addition to pairwise shared
randomness, we can achieve

H(C) = (n− t)λ+ l,

which is only a factor of two off from the lower bound.

Construction 2 The sender chooses a random PRG seed, uses the ATE scheme
from Constr 1 to encrypt this seed to the receivers, and uses the PRG output on
this seed to one-time-pad-encrypt the message.

5 Bounds Assuming Idealized Multiparty Key Exchange

In this section, we explore what happens when we allow the sender to agree on a
shared key with more than one receiver at a time (that is, if we assume multiparty
key exchange). As we mentioned in the introduction, multiparty non interactive
key exchange (multiparty NIKE) can be constructed from multilinear maps,
indistinguishability obfuscation [BZ14], universal samplers [HJK+16,GPSZ17],
or encryption combiners [MZ17].

Remark 1. It might seem that allowing access to NIKE defeats the point of ATE,
which is to avoid the need for correlated randomness; however, just like two-party non-
interactive key exchange, multiparty NIKE is something that can be used to bootstrap
independently generated public-private key pairs into a limited notion of correlated
randomness without requiring interaction.

5.1 Building Block: Pseudorandom Secret Sharing

Both our positive and our negative results in the multiparty key exchange model
leverage pseudorandom secret sharing, which is a technique for the local (that
is, non-interactive) conversion of a replicated secret sharing to a Shamir secret
sharing.
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A replicated secret sharing for the (t+ 1)-out-of-n threshold access structure
proceeds as follows. First, the dealer splits the secret M into

(
n
t

)
additive secret

shares, where each share rA corresponds to a different maximally unqualified set
A of size t. Then, the complement of each set A (that is, the n− t parties that
are not in A) are all given rA. It is then clear that any maximally unqualified set
A is only missing knowledge of one share rA, which any additional party holds.

Pseudorandom secret sharing [CDI05] locally converts such a replicated secret
sharing into a Shamir secret sharing (a degree-t polynomial f with f(0) = M
as the secret, and f(i) = si as party i’s share for i ∈ [1, . . . , n]). Pseudorandom
secret sharing proceeds as follows: let fA be the degree-t polynomial such that
fA(0) = 1, and fA(i) = 0 for all i ∈ [n]\A. Each player Pi can then compute
their Shamir share as

si =
∑

A⊆[n]:|A|=n−t,i∈A

rAfA(i).

Cramer, Damg̊ard and Ishai [CDI05] also prove a lower bound, stated in
Theorem 6.

Theorem 6 (From [CDI05]). Fewer than
(
n
t

)
independent random values

shared among various subsets of parties cannot be locally converted into a (t+1)-
out-of-n threshold secret sharing.

5.2 Lower Bounding the Key Size When H(C) = H(M)

Theorem 7. For any ATE scheme with threshold t = θ(n) in the multiparty key
exchange model that is perfectly secure, if H(C) = H(M), then keys of exponential
size are necessary.

Proof. If H(C) = H(M), then for any distribution of keys, there is exactly one
ciphertext that corresponds to any given message. Therefore, choosing a cipher-
text at random (without considering the keys) will always give a valid ciphertext
that consistently decrypts to some message. Choosing the keys and ciphertext
simultaneously independently at random thus produces a random (t + 1)-out-
of-n secret sharing (where the ciphertext is simply an additional random value
given to all parties). So, the exponential lower bound by Cramer et. al [CDI05]
(Theorem 6) on amount of independent randomness that can be converted into
a (t+ 1)-out-of-n secret sharing applies. �

5.3 Upper Bounds

Upper Bounds with Optimal Ciphertext Size Constr 3 achieves ciphertext size
independent of the number of parties by leveraging the techniques of replicated
or pseudorandom secret sharing. However, the price it pays is exponential key
size (that is, the sender and each of the receivers must use an exponential number
of shared random values).
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Construction 3 The sender shares a different independently random field ele-
ment with the compliment of each maximally unqualified subset (that is, with each
set of size n− t). This is a (t+ 1)-out-of-n replicated secret sharing of a random
value (which, if desired, can then be converted to a Shamir secret sharing of the
same random value using the pseudorandom secret sharing technique [CDI05]).
This shared random value can then be used directly for encryption (e.g. as a one
time pad).

Constr 3 produces ciphertexts of optimal size; H(C) = H(M). The number
q of parties (including the sender) sharing any given random value is fixed at
q = n− t+ 1.

Next, we consider other constructions leveraging q-NIKE that do not achieve
optimal ciphertext size, and thus avoid paying the exponential overhead we have
demonstrated is necessary for such optimality.

Upper Bounds with t = 0 In Constr 4, we show that for broadcast (that is, t = 0),
we can use any slight increase in the number q of parties sharing randomness to
decrease the required ciphertext size.

Construction 4 The sender shares a different independently random value with
enough size-(q−1) subsets of receivers to cover the entire size-n set of receivers.
(We will need d n

q−1e such values.) To broadcast a message, the sender uses each

of those random values individually to encrypt the message (e.g. as a one time
pad).

Constr 4 produces ciphertexts of size d n
q−1el.

Upper Bounds with t > 0 Next, we turn to a completely different approach that
works for t > 0, as long as t is small compared to n. Let c = t + 1, so that the
goal is to allow any c of the n recipients to decrypt while t or fewer cannot.

We first need a couple of technical results. Some notation: a k-split A of the n
recipients will be a randomly chosen partitioning of [n] = [1, . . . , n] into disjoint
subsets A = [A1, . . . , Ak]. (Equivalently, put each recipient into a bucket chosen
randomly from among k buckets.) Consider a subset C ⊂ [n] of size c. We say
that C is happy about a split A if no two members of C are in the same bucket.

Lemma 2. For k = 2c2, for each fixed C ⊂ [n] of size c, the probability that C
is not happy about a random k-split is at most 1

2 .

Proof. For i ∈ C, let Ei be the event that recipient i lands in the same bucket
as some other member of C. Clearly Pr[Ei] ≤ c

k = c
2c2 = 1

2c . C is unhappy
about the split if and only if Ei occurs for some i ∈ C. By the union bound, the
probability that C is not happy is at most c

2c = 1
2 . �

Consider a set S of s random splits. We say S is c-good if it holds that every
subset of size c is happy about at least one of the splits.
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Lemma 3. For any number n of recipients, c = t+ 1 and k = 2c2, there exists
a set S of c log(n) k-splits that is c-good.

Proof. Consider a random set S of s = c log(n) splits. Let C ⊂ [n] be a fixed
subset of size c. The probability that C is unhappy about every split in S is at
most 2−s by Lemma 2. The number of subsets of size c is

(
n
c

)
≤ nc, so by the

union bound the probability that some C is unhappy — and thus that S is not
c-good — is is less than nc · 2−s = nc · 2−c log(n) = nc · n−c = 1. It follows that
there must exist a set S of splits that is c-good. �

Lemma 4. For any number n of recipients and c = 2, we can get a set S of
log(n) 2-splits that is 2-good.

Proof. Represent each recipient i ∈ [n] in binary. Let the jth bit of that repre-
sentation denote whether i is in A0 (equivalently A2) or A1 in the jth 2-split.
Clearly this set of splits is 2-good, since the binary representation of every two
parties must differ in at least one place. �

Finally, in Constr 5 we observe that from a (c-good) set of s splits S, we can
easily obtain an c-of-n ATE.

Construction 5 Given a c-good set of splits S, for each split A = [A1, . . . , Ak] ∈
S, consider the Ai’s as virtual receivers. Use Constr 1 to build an ATE where the
Ai’s are receivers and any c of the k virtual receivers can decrypt (i.e., t = c−1).
The only change is that where Constr 1 would call a 2-NIKE to share a key with
Ai, instead we invoke a multiparty NIKE to share a key with all recipients in
Ai. The ciphertext is the concatenation of all the s ciphertexts, one from each
of the splits.

Since a subset C can decrypt a ciphertext induced by a split if C is happy
about the split, and all subsets of size c are happy about at least one split in a
c-good set of splits, it is straightforward to see that Constr 5 gives a c-of-n ATE.

Using the lemmas above, we can get a c-good set S of s k-splits with s =
c log(n) and k = 2c2. Constr 1 gives ciphertexts of size (k− (c−1))l, so Constr 5
gives ciphertexts of size s(k − (c− 1))l = c log(n)(2c2 − c+ 1)l = O(c3 log(n)l),
where l is the length of the message.

One can also see that the expected size of a subset in a split is n
k = n

2c2 , so
we can use this construction with a q-NIKE, where q is roughly n

2c2 . Of course,
even if this construction in principle works for any n and c, it is only really
interesting when c3 log(n) is significantly smaller than n, since otherwise it is
not better than using Constr 1 directly.

For c = 2 (t = 1), Lemma 4 gives a 2-good set of log(n) 2-splits, which allows
us to get ciphertexts of size s(k − (c− 1))l = log(n)(2− 2 + 1)l = log(n)l.
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