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Abstract. Consider a sender S and a group and of n recipients. S holds
a secret message m of length l bits and the goal is to allow S to create
a secret sharing of m with privacy threshold t among the recipients, by
broadcasting a single message c to the recipients. Our goal is to do this
with information theoretic security in a model with a simple form of
correlated randomness. Namely, for each subset A of recipients of size q,
S may share a secret random bit string with all recipients in A. We call
this Broadcast Secret-Sharing (BSS) with parameters l, n, t and q.
Our main question is: how large must c be, as a function of the parame-
ters? We show that n−t

q
l is a lower bound, and we show an upper bound

of (n(t+1)
q+t

−t)l, matching the lower bound whenever t = 0, or when q = 1
or n− t.
When q = n− t, the size of c is exactly l which is clearly minimal. The
protocol demonstrating the upper bound in this case requires S to share
a key with every subset of size n− t. We show that this overhead cannot
be avoided when c has minimal size.
We also show that if access is additionally given to an idealized PRG,
the lower bound on ciphertext size becomes n−t

q
λ + l − negl(λ) (where

λ is the length of the input to the PRG). The upper bound becomes

(n(t+1)
q+t

− t)λ+ l.
BSS can be applied directly to secret-key threshold encryption. We can
also consider a setting where the correlated randomness is generated
using computationally secure and non-interactive key exchange, where
we assume that each recipient has an (independently generated) public
key for this purpose. In this model, any protocol for non-interactive secret
sharing becomes an ad hoc threshold encryption (ATE) scheme, which is
a threshold encryption scheme with no trusted setup beyond a PKI. Our
upper bounds imply new ATE schemes, and our lower bound becomes a
lower bound on the ciphertext size in any ATE scheme that uses a key
exchange functionality and no other cryptographic primitives.
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1 Introduction

In this paper, we consider the following scenario: We have a sender S and a
group of n recipients. S holds a secret message m of length l bits, and the goal
is to allow S to create a secret sharing of m with privacy threshold t among
the recipients. This should be done by broadcasting a single message c to the
recipients, followed by local computation by the recipients.
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Our goal is to do this with information theoretic security, and since this
is clearly impossible in the plain model, we consider a model with correlated
randomness. In doing so, one should be careful not to assume something “too
strong” so the problem becomes trivial1. We therefore choose the arguably sim-
plest and easiest to implement form of correlated randomness where S shares
random strings with one or more of the recipients. More precisely, for each sub-
set A of recipients of size q, S may share a secret random bit string sA with all
recipients in A. Note that this particular form of correlated randomness is useful
for applications with computational security because it can be extended by only
local computation using a PRF, see Section 1.1 for details.

For any q, we also allow S to share a secret with any subset smaller than q 2.
This means that, for larger q, we have stronger forms of correlated randomness.

We consider protocols where S computes c from m and all the shared secrets
(sA’s). Then c is broadcast, and each recipient computes his share of m from c
and the shared secrets he holds. Security means that c and the information held
by up to t recipients contain no information on m, but c and the information
held by any t+ 1 recipients determine m.

We call the notion we just sketched Broadcast Secret-Sharing (BSS), with
parameters l, n, t and q. In the following, we will sometimes refer to c as the
ciphertext and the correlated randomness as shared keys, which is motivated by
the fact that any broadcast secret sharing scheme can be used as is for a secret
key threshold encryption scheme. More on this interpretation below.

Our main question is: how large must c be, as a function of the parameters?
And, as a secondary question, how much secret correlated data do we need?
To the best of our knowledge, these questions, as well the notion of broadcast
secret-sharing, have not been considered before.

Let lc be the length of c. It is easy to see that

l ≤ lc ≤ n · l.

Namely, c must always carry enough information to transmit m to the receivers
— and on the other hand, S can always solve the problem by sharing a one-time
pad key with each receiver, then making a standard secret sharing of m and
letting c consist of the one-time pad encryptions of each of the shares.

In this paper, we show the much stronger conditions

n− t
q

l ≤ lc ≤ (
n(t+ 1)

q + t
− t)l.

Note that our upper bound matches the lower bound whenever t = 0 or when
q = 1 or n− t. Note also that when q = n− t, the size of c is exactly l which is

1 For instance, we could ask that S has a random secret r of the same length as m
and the recipients have shares of r in some linear secret-sharing scheme. Now, S
can broadcast m− r which is clearly of minimal size, and the recipients adjust their
shares accordingly.

2 The motivation is that, for virtually any way to implement the shared randomness,
S could always share with q′ < q parties by imagining q − q′ virtual parties and
emulate these herself.
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minimal, so q = n−t is the largest value it makes sense to consider. The protocol
demonstrating the upper bound in this case requires S to share a key with every
subset of size n − t. We show that this (possibly exponential) overhead cannot
be avoided when c has minimal size.

Finally, we also show that if access is additionally given to an idealized PRG,
the lower bound on ciphertext size becomes n−t

q λ+ l − negl(λ) (where λ is the

length of the input to the PRG). The upper bound becomes (n(t+1)
q+t − t)λ + l.

Namely, the sender chooses a PRG-seed, shares it among the receivers using the
best available BSS and one-time pad encrypts the message using the output
from the PRG.

1.1 Applications

We believe broadcast secret-sharing is interesting in its own right, and we de-
scribe below a couple of applications that make use of a BSS-scheme “out of the
box”. As further motivation, we also consider in the following subsection two
different ways to provide the correlated randomness, leading to other applica-
tions.

(Secret-Key) Threshold Encryption The first application is to secret-key
threshold encryption, where a sender sends a ciphertext to set of receivers such
that only large enough subsets can decrypt. The main difference between broad-
cast secret sharing and secret-key threshold encryption is that, in secret-key
threshold encryption, it is important that the shared keys be reusable. We can
easily achieve this by interpreting each key shared between S and a (subset
of) receiver(s) as a key for a pseudorandom function (PRF) φ. To encrypt, S
chooses a random nonce r, and for each shared key K, computes φK(r). Note
that these PRF values form a (pseudorandom) set of values that can be used as
fresh correlated randomness for the broadcast secret-sharing scheme we use. S
now uses this scheme to share her message m among the receivers, resulting in
a ciphertext c, and sends the pair (r, c). Decryption can clearly be done by any
subset consisting of at least t+1 receivers, and no smaller subset learns anything,
which follows easily from security of the PRF and the underlying BSS-scheme.
Note that decryption requires minimal interaction: each receiver just has to send
his share to the others.

Note also that this application works exactly for the simple form of correlated
randomness we use, where S knows some keys, and each receiver knows a subset
of them. Had we allowed a more complicated correlation, the receivers could not
have generated new (pseudorandom) correlations of the same form simply by
applying the PRF locally.

Secure Multiparty Computation A second application of BSS is to use it to
non-interactively supply input to a secret-sharing based multiparty computation
protocol, where the shared keys can be generated in an earlier setup phase.
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Given an ideal functionality for distributing keys, we get information theoretic
security if the shared keys are used once. But if we are happy with computational
security, we can use a PRF as explained in the previous subsection to extend
the key material and support any number of inputs. Note that this will not work
when using the well-known method of “pre-cooking” a Shamir secret sharing of
a random value known to the sender. Note also that our construction generates
Shamir secret-sharings and so is compatible with standard MPC protocols.

1.2 Implementing Shared Keys

Broadcast secret sharing assumes keys shared between the sender and (subsets
of) the receiver(s). To discuss the use of BSS in practice, we must also consider
the distribution of these keys. We suggest two approaches: non-interactive key
exchange (NIKE), and quantum key agreement.

Using NIKE to get (Public-Key) Ad-Hoc Threshold Encryption In
this subsection, we discuss a way to generate the shared keys on the fly, via
computationally secure and non-interactive key exchange. Here, we assume that
each recipient has an (independently generated) public key and secret key for
this purpose.

In this model, any protocol for BSS (including our upper bounds) implies
a (public-key) ad hoc threshold encryption (ATE) scheme, which is a threshold
encryption scheme with no trusted setup beyond a PKI. Namely, the sender
creates a ciphertext that includes the information required for the key exchange
as well as the c created for broadcast secret-sharing of the message m. To decrypt,
at least t+ 1 recipients will first compute the shared randomness using the key
exchange, then use this to compute their shares, and finally exhange the shares
to reconstruct m. In the related work section below, we give more background
on ATE and its relation to standard threshold encryption.

Note that for q = 1 the non-interactive key exchange can be done very ef-
ficiently based on the DDH assumption: if each receiver i has a public key of
form gxi in some appropriate group, then S just needs to include a single el-
ement gr for random r in the ciphertext, then the shared key will be of form
gxir for receiver i. A similar solution for q = 2 can be designed using pairing
friendly groups. Thus, for these cases, our upper bounds become (essentially)
upper bounds on the ciphertext size of the corresponding ATE-scheme. In par-
ticular, the ATE-scheme that follows from this and our construction for q = 2 has
smaller ciphertext size than the best previous scheme of Daza et. al [DHMR08].
For instance, when t = 1, that scheme has ciphertext size (n− 1)l while we can
obtain ( 2n

3 − 1)l.
Less efficient non-interactive key exchange solutions also exist for larger val-

ues of q. They can be constructed from multilinear maps, indistinguishability
obfuscation [BZ14], universal samplers [HJK+16,GPSZ17] (which can be built
from indistinguishability obfuscation or functional encryption), or encryption
combiners satisfying perfect independence [MZ17] (which can be built from uni-
versal samplers).
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On the other hand, in this setting, our lower bound becomes a lower bound
on the ciphertext size in any ATE scheme that uses an ideal functionality for
key exchange (and perhaps for PRG), and no other cryptographic primitives.
We formalize the demand that no other cryptographic primitives are used by
requiring that the scheme is information theoretically secure when using the
ideal functionalities.

We stress that these lower bounds hold for ATE-schemes that have access to
the cryptographic primitives only via the ideal functionalities they implement.
This is more restrictive than if black-box access were given to the corresponding
algorithms; one might say that we allow the protocol to use them “only as
intended”. However, to the best our knowledge, no general lower bound was
known for ATE before.

Using Quantum Agreement The correlated randomness needed for BSS can
also be provided in a setting where the sender shares entangled quantum states
with each of the receivers. As is well known, if sender and receiver share a pair of
particles that are in the so-called EPR state, then measuring each particle results
in the same random bit being obtained by both parties. Moreover, as long as the
state really is the pure EPR state, no third party has any information on the
randomness obtained. Thus this setting gives us exactly what we want for q = 1,
with perfect security assuming perfect ability to prepare states and measure
them. The same is true if one assumes that sender and receiver has executed a
secure quantum key exchange protocol at some earlier time.

The case of q > 1 also has a quantum implementation, namely if we assume
that the sender shares multipartite entangled states with subsets of receivers.
In a multipartite entangled state, each involved party holds a particle, and the
global state of the particles can be designed to be fully entangled so that local
measurements return the same random result for all parties.

1.3 Related Work

Threshold Secret-Key Cryptosystems There is not much work on secret-
key (symmetric) cryptosystems where the decryption and/or the encryption pro-
cess can be distributed among a number of parties. A formal study of this was
done by Agrawal et al. [AMMR18], in which formal security definitions and
constructions were given for the case where both encryption and decryption is
distributed. Our construction is in a different model where only the decryption
is distributed. This allows us to offer new tradeoffs for constructions using only
secret-key primitives and no public-key techniques, which is usually the more
efficient case. The one construction from [AMMR18] using only secret-key prim-
itives (a PRF) is very similar to our solution where q = n − t. It has minimal
ciphertext size l but requires

(
n
t

)
keys, potentially leading to exponential in n

overhead. At the other extreme, we have the trivial solution where q = 1 and
the sender secret-shares the message and sends a share to each receiver, leading
to ciphertext size nl and a total of n keys. However, the construction leading to
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our upper bound implies a spectrum of options “in between”, namely we can get

ciphertext size (n(t+1)
q+t − t)l using n

q+t

(
q+t
t

)
keys.

Threshold Public-Key Cryptogsystems The concept of public-key thresh-
old encryption is very well known. It goes back at least to Desmedt et. al
[DDFY94], and has since then been studied in a very long line of research.
For this type of scheme, the key generation outputs a public key pk and a set
of secret keys sk1, . . . , skn which are generated with respect to a threshold value
t, where 0 ≤ t < n. Informally, the important security properties are that given
any set of at least t+1 secret keys, one can decrypt a ciphertext encrypted under
pk, while the encryption remains secure even given any set of t secret keys. For
efficiency, ciphertexts should have size independent of n.

Requiring a single trusted execution of key generation can be very limit-
ing, particularly in a system where parties may join at any point, or where
senders want to dynamically choose subsets of the parties to be the recipients of
a particular message. Dynamic threshold public-key encryption, introduced by
Delerablée and Pointcheval [DP08], has a reduced setup requirement where the
sender can pick the set of n recipients at encryption time; however, each recipi-
ent’s secret key must be derived from a common master secret key, so a trusted
authority is still necessary. Ad hoc threshold encryption (ATE), first introduced
by Daza et. al [DHMR08] as threshold broadcast encryption3 (motivated by its
applicability to mobile ad hoc networks), requires no trusted setup beyond the
absolute minimum — a PKI.

ATE considers a universe of users, where each user i has a public key pki
and corresponding secret key ski, and where all key pairs are independently
generated. A sender can select a set R of n users and a threshold value t at
the time at which he decides to send a message m. He can then construct a
ciphertext c = EpkR,t(m), where pkR is the set of public keys belonging to parties
in R. ATE requires properties similar to those of standard threshold encryption:
namely, that any t + 1 parties in R can decrypt, while the encryption remains
semantically secure even given the secret keys of any t parties in R.

Clearly, ATE has a number of attractive properties that standard threshold
encryption lacks: no trusted authority, and the ability to decide on the set of
receivers and the threshold on the fly. On the other hand, it is not clear that
an ATE ciphertext can be as small as a standard one. The best known solution
is from Daza et. al [DHMR08]. They show how to get ciphertext size linear in
n−t. This solution is in our model discussed earlier (though it was not presented
this way). Namely, it combines a BSS-scheme with non-interactive key exchange,
where q = 1. In fact, their BSS scheme is a special case of our upper bound.

In this context, our lower bound shows that the ATE scheme of Daza et. al
has optimal ciphertext size in the class of ATE schemes that use non-interactive

3 One should note that ATE for t = 0 is very similar to broadcast encryption: each
party can decrypt on his own. However, in broadcast encryption, centralized key
generation is usually allowed (or at least key generation is coordinated between
receivers). This is exactly what is not allowed in ATE.
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key exchange with q = 1 and no other cryptographic tools (but as mentioned
above, it can be improved using q = 2). To the best of our knowledge, our bound
is the first lower bound obtained for ATE schemes.

Reyzin et. al [RSY18] show that using indistinguishability obfuscation, as
well as few standard primitives, it is possible to get ciphertext size independent
of n. There are several reasons, however, why this is not a very satisfactory
answer. For one thing, the construction requires that also senders have public
and secret keys, which is not usually assumed for ATE (this is also one reason why
that construction does no contradict our lower bound). Moreover, obfuscation
requires strong assumptions; and with current state of the art techniques, it
comes at the price of a huge loss of efficiency in practice.

Pseudorandom Secret-Sharing In [CDI05], Cramer et. al show that, in a
model where sufficiently many independent random values are generated and
each player is given an appropriate subset of these, the players can locally convert
this information to a random Shamir secret-sharing (with a fixed threshold that
depends on the set-up). This model is a somewhat similar to ours. The crucial
difference, however, is that we have a distinguished player - the sender - who
knows all the values and can send a single message to the others. This allows us
to create secret-sharings with any threshold, and while we do make use of their
technique in our construction, we need additional new ideas to do so.

1.4 Open Problems

There is a very rich space of problems to explore. The most obvious open question
is of course to close the gap between the upper and the lower bound on ciphertext
size. Another problem is to understand how large the correlated randomness
must be. Can the lower bound for minimal ciphertext size be generalized, or is
there a way to get polynomial size randomness when the ciphertext is (close to)
minimal size?

2 Definitions

In this section, we give the syntax and security definitions for broadcast secret
sharing (BSS).

We consider the following random variables:

– SA, the random variable shared by the sender with the q parties in the set
A,

– the message M, and
– the ciphertext C.

For ease of notation, we also let U be the random variable giving all the secrets
SA shared by the sender with any subset of receivers, Ui be the random variable
giving all the secrets held by party Pi (that is, Ui = {SA}i∈A), and UA be the
random variable giving the union of all the secrets held by parties in A.



8 Ivan Damg̊ard, Kasper Green Larsen, and Sophia Yakoubov

We use uppercase variables — S,U,M,C — to refer to distributions, and
lowercase variables — s, u,m, c — to refer to concrete values.

2.1 BSS Syntax

We assume that any BSS scheme comes with a specification of finite sets from
where the random variables are to be chosen. Hence, when we say in the follow-
ing “any distribution of M”, for instance, this means any distribution over the
specified set of outcomes.

A BSS scheme with parameters (l, n, t, q) consists of two algorithms, de-
scribed below.

EuR(m)→ c is a secret sharing algorithm (which we also sometimes dub en-
cryption) that uses a set of keys uR = {ui}i∈R belonging to the parties in
the size-n set R of intended recipients (where each ui consists of all secrets
known to sets A where i ∈ A) to transform a length-l message m into a
secret sharing (or ciphertext) c.

DuA(c)→ m is a reconstruction (or decryption) algorithm that uses keys uA =
{ui}i∈A belonging to a subset A of the intended recipient set R (where
|A| > t) to recover the message m from the sharing / ciphertext c.

2.2 BSS Security

Informally, a BSS scheme is secure if any t parties in the designated set of
receivers R can learn nothing about a message from a ciphertext, but any t+ 1
parties in R can recover the message. More precisely:

Definition 1 (BSS Perfect Security). A BSS scheme (E,D) is perfectly
secure with threshold t if for any set of receivers R of size n, for C = EUR(M),
the following two properties hold for any distribution of M:

Security For any A ⊂ R of size at most t, we have H(M|C,UA) = H(M).
Correctness For any A ⊂ R of size greater than t, we have H(M|C,UA) = 0.

Furthermore, M = DUR(C).

We can define statistical security similarly, where we assume that the dis-
tribution of the variables may also depend on a security parameter λ, but we
always assume that the parameters l, n, t are polynomial in λ.

Definition 2 (BSS Statistical Security). A BSS scheme (E,D) is statis-
tically secure with threshold t if for any set of receivers R of size n, for C =
EUR(M), the following two properties hold for any distribution of msg:

Security For any A ⊂ R of size at most t, we have H(M|C,UA) ≥ H(M) −
negl(λ).

Correctness For any A ⊂ R of size greater than t, we have H(M|C,UA) ≤
negl(λ). Furthermore, M = DUR(C) with overwhelming probability.
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Finally we define a different type of security that we will need later for
technical reasons. It is designed for a situation where t = 0, so C alone reveals
nothing about the message. Moreover, each player on her own can learn l′ bits
of the message, but not necessarily the entire message.

Definition 3 (BSS l′-Security). A BSS scheme (E,D) is l′ − secure if for
any set of receivers R of size n, for C = EUR(M), the following two properties
hold for any distribution of M and some l′ ≤ H(M):

Security H(M|C) ≥ H(M)− negl(λ).
Correctness For any receiver Pi we have H(M|C,Ui) ≤ H(M)− l′ + negl(λ).

Clearly, if a BSS-scheme is l′-secure for l′ = H(M), it is statistically secure
in the case where t = 0.

3 Lower Bounds for Broadcast Secret Sharing

In this section, we prove a lower bound for BSS schemes with statistical security.
Throughout the proofs, we consider sending a uniform random message M of l
bits. We then prove that the corresponding ciphertext of a BSS scheme must
(roughly) satisfy H(C) ≥ nH(M)/q = nl/q. Since the entropy of a random
variable giving a bit string is a lower bound on its expected length (Shannon’s
source coding theorem), this also lower bounds the length of the ciphertext. We
prove the lower bound in steps, starting with the warm-up case t = 0, q = 1 and
then extending it to arbitrary q and finally also to arbitrary t.

3.1 Warm-Up: BSS with t = 0 and q = 1

We start with a lower bound proof in the simple setup with threshold t = 0 and
shared keys among q = 1 recipients. We let the message M be a uniform random
bit string of length l (hence H(M) = l). We prove the following lower bound,
where negl(λ) may be replaced by 0 for perfect security:

Theorem 1. For any BSS scheme with statistical security, n recipients, thresh-
old t = 0 and sharing of keys with q = 1 recipients, we must have:

H(C) ≥ n(l − negl(λ)).

To prove the lower bound, let Si for i = 1, . . . , n denote the shared key
received by the i’th recipient (for q = 1, only i receives that random key). The
high level idea in our proof is to argue that C must contain a lot of information
about the randomness Si for every index i. Since the shared keys are independent,
this implies a lower bound on the entropy of C. More formally, consider the
mutual information I(Si;C | M,S1, . . . ,Si−1). We will show:

Lemma 1. For all recipients i, it holds that I(C;Si | M,S1, . . . ,Si−1) ≥ l −
negl(λ).
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Before proving Lemma 1, let us see how we use it to prove Theorem 1. Using
non-negativity of entropy and the chain rule of mutual information, we have

H(C) ≥ H(C | M)

≥ H(C | M)−H(C | M,S1, . . . ,Sn)

= I(C;S1, . . . ,Sn | M)

=

n∑
i=1

I(C;Si | M,S1, . . . ,Si−1)

≥ n(l − negl(λ)).

This completes the proof of Theorem 1. Thus what remains is to prove Lemma 1.

Proof (of Lemma 1). The basic idea in the proof of Lemma 1 is that C and Si
together reveal M, thus collectively they must have l−negl(λ) bits of information
about M. Since S1, . . . ,Si alone have no information about M, those l− negl(λ)
bits must be accounted for in I(C;Si | M,S1, . . . ,Si−1). We prove that formally
in the following. By definition, the mutual information in Lemma 1 equals:

I(C;Si | M,S1, . . . ,Si−1) =

H(Si | M,S1, . . . ,Si−1)−H(Si | C,M,S1, . . . ,Si−1).

The message M and all the shared keys are independent, henceH(Si | M,S1, . . . ,Si−1) =
H(Si). Since entropy may only increase by dropping variables we condition on,
we also conclude H(Si | C,M,S1, . . . ,Si−1) ≤ H(Si | C,M). Using the definition
of mutual information, we thus have:

I(Si;C | M,S1, . . . ,Si−1) ≥ H(Si)−H(Si | C,M)

= I(Si;C,M)

= H(C,M)−H(C,M | Si).

Since the ciphertext C contains no information about M alone (up to negl(λ)), we
have H(C,M) = H(C)+H(M | C) ≥ H(C)+H(M)−negl(λ). By the chain rule of
entropy, we have H(C,M | Si) = H(C | Si)+H(M | C,Si) ≤ H(C)+H(M | C,Si).
But H(M | C,Si) ≤ negl(λ) since recipient i can recover M from C and Si. We
therefore have:

I(Si;C | M,S1, . . . ,Si−1) ≥ H(C) +H(M)− negl(λ)− (H(C) + negl(λ))

= H(M)− negl(λ)

= l − negl(λ).

�

3.2 BSS with t = 0

In this section, we generalize the lower bound from Section 3.1 to q ≥ 1 (still
assuming t = 0 and that the message M is a uniform random l bit string):
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Theorem 2. For any BSS scheme with statistical security, n recipients, security
threshold t = 0 and sharing of keys with q recipients, we must have:

H(C) ≥ n(l − negl(λ))/q.

To show this, we will show a stronger statement that will be useful for other
purposes in the following:

Theorem 3. For any l′-secure BSS scheme with n recipients, and sharing of
keys with q recipients, we must have:

H(C) ≥ n(l′ − negl(λ))/q.

Clearly, this result implies Theorem 2: when M is uniform and H(M) = l,
the assumption in Theorem 2 is equivalent to requiring l-security.

The basic idea in the proof for q = 1 was to argue that the ciphertext C
contained a lot of information about each Si. Formally, Lemma 1 showed that
I(C;Si | M,S1, . . . ,Si−1) ≥ l−negl(λ). In the following, we discuss the obstacles
we face when generalizing the proof to q ≥ 1 and show how we overcome them.

First, in order to prove Lemma 1, we used the fact that Si together with C re-
vealed M to conclude that I(C;Si | M,S1, . . . ,Si−1) ≥ l−negl(λ). Considering in-
stead l′-security this statement would be I(C;Si | M,S1, . . . ,Si−1) ≥ l′−negl(λ)
and it could be proved in exactly the same way for q = 1.

However, since a recipient may now use all his shared keys to recover M, we
define a random variable Ui for each recipient i: We let Ui denote all shared keys
held by recipient i (Ui = {SA}i∈A). Intuitively, the analog of Lemma 1 would
state that I(C;Ui | M,U1, . . . ,Ui−1) ≥ l′ − negl(λ).

With this definition of Ui we again have that Ui and C together reveal l′ bits
of M. Unfortunately, the sets of shared keys held by different recipients are not
disjoint. This means that Ui may depend on U1, . . . ,Ui−1 and thus the lower
bound on the mutual information is not necessarily true.

Our key idea for addressing the above issue is to further partition Ui into
subset Ui,1, . . . ,Ui,q where Ui,k contains all shared keys SA for which i is the
k’th smallest index in A. Note that with this definition Ui,k and Uj,k with i 6= j
are disjoint sets of shared keys (only one index can be the k’th smallest in a set
A) and thus are independent. The same holds for Ui,j and Ui,k with j 6= k (i
cannot both be the j’th and k’th smallest index in A). Finally, we also define
Fi,k to denote the set of all shared keys SA in which i is the largest index in A
and |A| < k. Our generalization of Lemma 1 then becomes:

Lemma 2. There is an index k ∈ {1, . . . , q} such that

n∑
i=1

I(Ui,kFi,k;C | M,Ui+1,k, Fi+1,k, . . . ,Un,k, Fn,k) ≥ n(l′ − negl(λ))/q.
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Before proving Lemma 2, let us see that it implies Theorem 2. We have:

H(C) ≥ H(C | M)

≥ H(C | M)−H(C | M,U1,k, F1,k, . . . ,Un,k, Fn,k)

= I(C;U1,k, F1,k, . . . ,Un,k, Fn,k | M)

=

n∑
i=1

I(C;Ui,k, Fi,k | M,Ui+1,k, Fi+1,k, . . . ,Un,k, Fn,k)

≥ n(l′ − negl(λ))/q.

What remains is thus to prove Lemma 2. The key step in doing so is to replace
each mutual information in the sum by a term that only depends on the sets
Ui,1, . . . ,Ui,q seen by the i’th recipient. The rewriting is quite non-trivial and
crucially relies on the fact that we applied the chain rule in reverse order of
indices such that we condition on Uj,k, Fj,k for indices j > i. The rewriting we
make uses the following:

Lemma 3. For every recipient i and every index k ∈ {1, . . . , q} we have

I(Ui,kFi,k;C | M,Ui+1,k, Fi+1,k, . . . ,Un,k, Fn,k) ≥ I(Ui,k;C | M,Ui,1, . . . ,Ui,k−1).

Let us first use Lemma 3 to prove Lemma 2.

Proof (of Lemma 2). Consider summing over all recipients and all choices of k,
applying Lemma 3 on each term:

q∑
k=1

n∑
i=1

I(Ui,kFi,k;C | M,Ui+1,k, Fi+1,k, . . . ,Un,k, Fn,k) ≥

q∑
k=1

n∑
i=1

I(Ui,k;C | M,Ui,1, . . . ,Ui,k−1) =

n∑
i=1

q∑
k=1

I(Ui,k;C | M,Ui,1, . . . ,Ui,k−1) =

n∑
i=1

I(Ui,1, . . . ,Ui,q;C | M) =

n∑
i=1

I(Ui;C | M).

Since Ui and M are independent, we have I(Ui;C | M) = H(Ui | M) − H(Ui |
C,M) = H(Ui)−H(Ui | C,M) = I(Ui;C,M) = H(C,M)−H(C,M | Ui). Since M
cannot be recovered from C, we have

H(C,M) = H(C) +H(M | C) ≥ H(C) +H(M)− negl(λ).

By the chain rule, H(C,M | Ui) = H(C | Ui) + H(M | C,Ui) ≤ H(C) + H(M |
C,Ui). But, by l′-security, l′ bits of M are determined from C and Ui, more
precisely

H(M | C,Ui) ≤ H(M)− l′ + negl(λ).
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We have thus shown I(Ui;C | M) ≥ H(C) +H(M)− negl(λ)− (H(C) +H(M)−
l′ + negl(λ)) = l′ − negl(λ). We therefore have:

q∑
k=1

n∑
i=1

I(Ui,kFi,k;C | M,Ui+1,k, Fi+1,k, . . . ,Un,k, Fn,k) ≥

n∑
i=1

l′ − negl(λ) =

n(l′ − negl(λ)).

Averaging over all choices of k completes the proof of Lemma 2. �

To finish, we thus need to prove Lemma 3:

Proof (of Lemma 3). We need to show that for all recipients i and every index
k, it holds that

I(Ui,kFi,k;C | M,Ui+1,k, Fi+1,k, . . . ,Un,k, Fn,k) ≥ I(Ui,k;C | M,Ui,1, . . . ,Ui,k−1).

The main observation needed in the proof is the fact every shared key in Ui,1, . . . ,Ui,k
also appears in Ui,k, Fi,k, . . . ,Un,k, Fn,k. More formally, we start by observing
that:

I(Ui,kFi,k;C | M,Ui+1,k, Fi+1,k, . . . ,Un,k, Fn,k) ≥
I(Ui,k;C | M, Fi,k,Ui+1,k, Fi+1,k, . . . ,Un,k, Fn,k) =

H(Ui,k | M, Fi,k,Ui+1,k, . . . , Fn,k)−H(Ui,k | C,M, Fi,k,Ui+1,k, . . . , Fn,k).

Notice that the set of shared keys Ui,k is disjoint from the sets Uj,k with j 6= i.
This holds since for any set of receivers A, only one receiver can be the k’th
smallest. Moreover, Ui,k is also disjoint from Fj,k for all j. This is true since Fj,k
contains only shared keys for sets of receivers with cardinality less than k. This
means that Ui,k is independent of M, Fi,k,Ui+1,k, Fi+1,k, . . . ,Un,k, Fn,k and thus
we have

H(Ui,k | M, Fi,k,Ui+1,k, . . . , Fn,k) = H(Ui,k).

We therefore have:

I(Ui,kFi,k;C | M,Ui+1,k, Fi+1,k, . . . ,Un,k, Fn,k) ≥
H(Ui,k)−H(Ui,k | C,M, Fi,k,Ui+1,k, Fi+1,k, . . . ,Un,k, Fn,k).

Since entropy may only increase by removing variables that we condition on,
we remove all shared keys from Fi,k,Ui+1,k, Fi+1,k, . . . ,Un,k, Fn,k which do not
appear in Ui,1, . . . ,Ui,k−1. We claim that we are left with precisely the full set of
shared keys appearing in Ui,1, . . . ,Ui,k−1. To see this, consider a shared key SA
appearing in Ui,j for some j < k. Assume first that i is the largest index in the
set A. Then the cardinality of A is j < k and we have SA ∈ Fi,k by definition
of Fi,k. Next, assume that the cardinality of A is less than k, but i is not the
largest index in A. Let i′ > i be the largest index. Then by definition, we have
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SA ∈ Fi′,k. Finally, assume that the cardinality of A is at least k. Let i′ > i be
the k’th smallest index in A, then SA ∈ Ui′,k. In all cases, we have that SA is in
one of Fi,k,Ui+1,k, Fi+1,k, . . . ,Un,k, Fn,k and we conclude that we are left with
Ui,1, . . . ,Ui,k−1. We therefore have:

I(Ui,kFi,k;C | M,Ui+1,k, Fi+1,k, . . . ,Un,k, Fn,k) ≥
H(Ui,k)−H(Ui,k | C,M,Ui,1, . . . ,Ui,k−1).

Conditioning on a random variable may only decrease entropy, we can therefore
bound the above by:

I(Ui,kFi,k;C | M,Ui+1,k, Fi+1,k, . . . ,Un,k, Fn,k) ≥
H(Ui,k | M,Ui,1, . . . ,Ui,k−1)−H(Ui,k | C,M,Ui,1, . . . ,Ui,k−1) =

I(Ui,k;C | M,Ui,1, . . . ,Ui,k−1).

This concludes the proof of Lemma 3 and thus also of Theorem 3. �

3.3 Final BSS Lower Bound

In this section, we finally extend the lower bound in Theorem 2 to the general
case of t ≥ 0 and q ≥ 1. Our final result is the following:

Theorem 4. For any BSS scheme with statistical security, n recipients, security
threshold t and sharing of keys with q recipients, we must have:

H(C) ≥ (n− t)(l − negl(λ))/q.

The proof follows via a reduction from the case with t = 0 (Theorem 2). The
basic idea is to show that any BSS scheme for arbitrary threshold t ≥ 0 can
be converted into a scheme for t = 0 and n − t receivers. This is done by
treating the first t receivers as dummy receivers for which all shared keys are
public information. This way, we get a BSS scheme with t = 0 for the remaining
receivers t+ 1, . . . , n.

In detail, consider all shared keys U1, . . . ,Ut held by the first t parties in
a BSS scheme with threshold t. Consider any concrete instantiation u1, . . . , ut
of the random variables and let Eu1,...,ut denote the event that Ui = ui for
i = 1, . . . , t. We will prove that for most instantiations of U1 = u1, . . . ,Ut = ut,
conditioned on Eu1,...,ut , the BSS statistical security definitions hold for the re-
maining n− t receivers with threshold t = 0. Formally, we require that:

Security We have H(M | C, Eu1,...,ut) ≥ H(M)− negl(λ).

Correctness For any receiver i with i ∈ {t+ 1, . . . , n}, we have

H(M | C, Ui, Eu1,...,ut) ≤ negl(λ).

Call u1, . . . , ut typical if they satisfies the above Security and Correctness. If
u1, . . . , ut are typical, then we have a BSS scheme with threshold t = 0 for the
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remaining n − t receivers t + 1, . . . , n if we hard code U1 = u1, . . . ,Ut = ut and
let those be shared knowledge. Therefore, by Theorem 2, it must be the case for
typical u1, . . . , ut, that

H(C | Eu1,...,ut) ≥
n− t
q

(1− negl(λ)).

We will show:

Lemma 4. U1, . . . ,Ut are typical with probability at least 1− negl(λ).

Before we prove Lemma 4, we use the lemma to finish the proof of Theorem 4.
We see that

H(C) ≥ H(C | U1, . . . ,Ut)

=
∑

u1,...,ut

H(C | Eu1,...,ut) Pr[Eu1,...,ut ]

≥
∑

u1,...,ut:u1,...,ut are typical

H(C | Eu1,...,ut) Pr[Eu1,...,ut ]

≥ n− t
q

(1− negl(λ)) Pr[U1, . . . ,Ut are typical]

=
n− t
q

(1− negl(λ)).

What remains is thus to prove Lemma 4.

Proof (of Lemma 4). Let X(u1, . . . , ut) take the value H(M)−H(M | C, Eu1,...,ut).
Observe that since M is independent of U1, . . . ,Ut, we have H(M) = H(M |
Eu1,...,ut) and thus X(u1, . . . , ut) = H(M | Eu1,...,ut)−H(M | C, Eu1,...,ut). Condi-
tioning on C may only decrease entropy, henceX is non-negative for all u1, . . . , ut.
It follows by Markov’s inequality that

Pr
[
X(U1, . . . ,Ut) >

√
E[X(U1, . . . ,Ut)]

]
<
√

E[X(U1, . . . ,Ut)].

Now recall from the security requirements of a BSS scheme with threshold t that:

H(M)− negl(λ) ≤ H(M | C,U1, . . . ,Ut)

=
∑

u1,...,ut

H(M | C, Eu1,...,ut) Pr[Eu1,...,ut ],

which implies

E[X(U1, . . . ,Ut)] = H(M)−
∑

u1,...,ut

H(M | C, Eu1,...,ut) Pr[Eu1,...,ut ]

≤ negl(λ).

Thus by Markov’s, we have Pr
[
X(U1, . . . ,Ut) > negl(λ)

]
< negl(λ).
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Next, for any receiver i > t, define Yi(u1, . . . , ut) to take the value H(M |
C,Ui, Eu1,...,ut). Since entropy is always non-negative, so is Yi. By definition
of conditional entropy, we have E[Yi(U1, . . . ,Ut)] = H(M | C,Ui,U1, . . . ,Ut).
Thus from Markov’s we again have Pr[Yi(U1, . . . ,Ut) > negl(λ)] < negl(λ). It
finally follows by a union bound that with probability at least 1 − (n − t +
1)negl(λ) = 1 − negl(λ), we simultaneously have X(U1, . . . ,Ut) < negl(λ) and
Yi(U1, . . . ,Ut) < negl(λ) for all i = t + 1, . . . , n. That is, U1, . . . ,Ut are typical
with probability at least 1− negl(λ). �

4 Upper Bound on Ciphertext Size

In this section, we explore constructions of broadcast secret-sharing.

4.1 Building Block: Pseudorandom Secret Sharing

Our results in this section leverage pseudorandom secret sharing, which is a
technique for the local (that is, non-interactive) conversion of a replicated secret
sharing to a Shamir secret sharing.

A replicated secret sharing for the (t+ 1)-out-of-n threshold access structure
proceeds as follows. First, the dealer splits the secret M into

(
n
t

)
additive secret

shares, where each share rA corresponds to a different maximally unqualified set
A of size t. Then, the complement of each set A (that is, the n− t parties that
are not in A) are all given rA. It is then clear that any maximally unqualified set
A is only missing knowledge of one share rA, which any additional party holds.

Pseudorandom secret sharing [CDI05] locally converts such a replicated secret
sharing into a Shamir secret sharing (a degree-t polynomial f with f(0) = M
as the secret, and f(i) = si as party i’s share for i ∈ [1, . . . , n]). Pseudorandom
secret sharing proceeds as follows: let fA be the degree-t polynomial such that
fA(0) = 1, and fA(i) = 0 for all i ∈ [n]\A. Each player Pi can then compute
their Shamir share as

si =
∑

A⊆[n]:|A|=n−t,i∈A

rAfA(i).

We stress that, despite the name, pseudorandom secret-sharing as presented
here provides perfect information theoretic security. The name comes from an
application of the technique that uses pseudorandom functions.

Cramer, Damg̊ard and Ishai [CDI05] also prove a lower bound, stated in
Theorem 5.

Theorem 5 (From [CDI05]). Fewer than
(
n
t

)
independent random values

shared among various subsets of parties cannot be locally converted into a (t+1)-
out-of-n threshold secret sharing.
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4.2 Lower Bounding the Correlated Randomness When
H(C) = H(M)

Theorem 6. For any perfectly secure BSS scheme with threshold t = θ(n), if
H(C) = H(M), then correlated randomness of exponential size is necessary.

Proof. If H(C) = H(M), then for any distribution of keys, there is exactly one
ciphertext that corresponds to any given message. Therefore, choosing a cipher-
text at random (without considering the correlated randomness) will always give
a valid ciphertext that corresponds to some message, no matter which value the
randomness takes. Choosing the randomness and ciphertext simultaneously in-
dependently at random thus produces a random (t + 1)-out-of-n secret sharing
(where the ciphertext is simply an additional random value given to all par-
ties). So, the exponential lower bound by Cramer et. al [CDI05] (Theorem 5) on
amount of independent randomness that can be converted into a (t+1)-out-of-n
secret sharing applies. �

4.3 The Upper Bound

Construction 1 below achieves optimal ciphertext size whenever t = 0, or when
q = 0 or when q is the maximal relevant value n − t. We this result this by
leveraging the techniques of replicated or pseudorandom secret sharing. The
price we pays is that the overhead in terms of size of correlated randomness is
sometimes exponential (that is, the sender and each of the receivers must use an
exponential number of shared random values). Whether this happens depends
on the parameter values.

Construction 1 Let n′ = q + t. We partition the recipients into n
n′ subsets of

size n′ = q+t. (We assume for simplicity that n′ = q+t divides n.) An arbitrary
but fixed one of these subsets is chosen and named B. This is done publicly once
and for all. We also assign once and for all a unique point in a suitable finite
field to each recipient.

Consider now any of the above subsets A. We set up the correlated random-
ness such that the sender S shares a random value with any subset of A, of
size n′ − t = q. These values form a random replicated secret-sharing among
the players in A and hence, using the technique from [CDI05], S can share a
random polynomial fA of degree at most t with the participants in A, using only
the correlated randomness. Concretely, S knows fA and each player in A knows
a point on fA.

The ciphertext consists of m + fB(0) and fB − fA for every subset A 6= B.
Each recipient locally computes from the correlated randomness fA(i) where

A is the subset she is in and i is her assigned point in the field. Then she computes
fB(i) = fA(i) + (fB−fA)(i). To reconstruct, any subset of size at least t+ 1 can
interpolate fB and compute m = (m + fB(0))− fB(0).

The security of this construction follows trivially from the security of repli-
cated secret sharing: each fA is uniformly random of degree at most t and so
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fB − fA contains no information on m, even given m + fB(0). Since each poly-
nomial fB − fA can be specified using t+ 1 coefficients, the ciphetext size is

((t+ 1)(n/(q + t)− 1) + 1)l = (n(t+ 1)/(q + t)− t)l.

The size of the shared keys (correlated randomness) is n/(q+ t) ·
(
(q+t)
t

)
field

elements. This can be as much as
(
n
t

)
and so may be exponential in n. But as

we showed above, at least when q = n− t, this overhead cannot be avoided.

5 Bounds Additionally Assuming an Idealized PRG

In this section, we add to our BSS model an idealized pseudorandom generator
(PRG); an idealized functionality that takes in a random length-λ seed, and
outputs a longer random value. (As long as the output is at least one bit longer
than the input, we can bootstrap the PRG to give arbitrarily long outputs. In
our case, the output length that most often makes sense is l, the length of the
message.) Our BSS algorithms are augmented with oracle access to the idealized
PRG.

We make some assumptions on how the BSS protocol may use the idealized
PRG:

Definition 4. An admissible BSS-protocol satisfies the following:

– For any subset of receivers, any PRG-seed chosen by the sender can either
be computed using what that subset of receivers knows, or has full entropy
(possibly up to a negligible loss).

– During the sharing phase, the sender chooses all seeds that are input to PRG
uniformly, independently of anything else.

– The idealized PRG is not called with any shared keys as input.

In the following we will only consider admissible BSS constructions. The
motivation for this is as follows:

– We want to make sure that an admissible protocol can be turned into a
construction in the real world by replacing the idealized PRG by a real PRG
construction. Now, if a seed has (essentially) full entropy in the view of the
adversary, then (and only then) can we use the standard security of a real
PRG to conclude that the output is pseudorandom. Seeds for which the
adversary has partial information are not useful in this sense, and we may
as well give the adversary full information on that seed for free.

This is why we assume that in the view of a subset of receivers, any seed that
the sender chose can either be computed or has (essentially) full entropy.
However, for a seed to be potentially useful it must have full entropy in
the first place, which is why we assume that the sender chooses all seeds
uniformly, independently of anything else.
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– We assume that the idealized PRG is not called using shared keys as input
for simplicity, because this does not cost us any generality: calls to the PRG
using shared keys as input is equivalent to asking for longer shared keys. In
both cases, the result is a greater amount of correlated randomness.

Finally, we will assume that privacy only needs to hold given ability to call
the PRG a polynomial number of times. The reason for this is that otherwise
protocols that actually make use of the PRG could not ensure that the message
is hidden from a non-qualified subset of receivers. As an example, suppose the
sender secret-shares a seed s and includes in the ciphertext a one-time pad
encryption m⊕ PRG(s). A completely unbounded adversary can call the PRG
on all inputs and now the only uncertainty she has is which seed the sender used.
Then, if m is longer than s, it cannot have full entropy.

To be able to talk about the information a set of receivers can get from the
oracle, we abuse notation and let PRG(C,UA) denote the random variable that
is obtained by calling the PRG on inputs that are selected by an unbounded
randomized algorithm that gets C,UA as input. The algorithm only returns
a polynomial number of outputs. For simplicity of notation, we suppress the
algorithm and the random coins it uses.

Definition 5 (BSS Statistical Security with PRG). A BSS scheme (E,D)
is statistically secure with threshold t with respect to a random oracle PRG if for
any set of receivers R of size n, for C = EPRGUR

(M), the following two properties
hold for any distribution of M:

Security For any A ⊂ R of size at most t, we have H(M|C,UA, PRG(C,UA)) ≥
H(M)− negl(λ).

Correctness For any A ⊂ R of size greater than t, H(M|C,UA, PRG(C,UA)) ≤
negl(λ). Furthermore, M = DPRG

UR
(C) with overwhelming probability.

5.1 Lower Bound on Ciphertext Size

Theorem 7. Consider any BSS scheme that is statistically secure with thresh-
old t with respect to PRG (which takes inputs of size λ) and shares messages of
length l ≥ λ. If the scheme is admissible it holds that

H(C) ≥ n− t
q

λ+ l − δ(λ)

for a negligible function δ(λ).

To show the above theorem, consider first a scheme that satisfies the as-
sumption with threshold t = 0, so then the only unqualified set of receivers is
the empty set. Since the scheme is admissible, there is a (possibly empty) set
of seeds S that were chosen by the sender, but where each seed in S has full
entropy given the ciphertext C, and all other seeds are determined by C.

We claim that we can transform this scheme into a new one (for a different
distribution of messages) that is l′-secure (Definition 3) with l′ = λ. In particular,
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this will be a scheme where the PRG is not available. Recall that in such a scheme
a qualified subset of receivers can determine at least l′ bits of the message.

To this end, we define the message M′ in the new scheme to be the original
M concatenated with the seeds in S. Reconstruction in the new scheme by a
qualified set A works as follows: If at least one seed s ∈ S is determined by
C,UA, then return s. Otherwise, by admissibility, all seeds in S have full entropy
given C,UA. Consider the random variable PRG(C,UA) that would have been
used for reconstruction in the original scheme. Notice that since this variable is
formed by calling the PRG a polynomial number of times, the inputs used will
overlap with S with only negligible probability. Therefore unless this overlap
event happens, access to the PRG can be perfectly simulated without calling
the PRG, simply by choosing fresh randomness to play the role of the PRG’s
output. Hence, we can return M with overwhelming probability without calling
the PRG, so H(M|C,UA) is negligible, even without access to the PRG.

Since l ≥ λ, we have shown that given C,UA for a qualified set A, the
entropy of M′ drops by at least l′ bits (up to a negligible amount), and this is
the correctness property of Definition 3.

The security property of Definition 3 follows immediately from admissibility
and from the security property of Definition 5: given only C, all seeds in S have
full entropy and H(M|C,UA, PRG(C,UA)) can only increase if we take away the
PRG and therefore do not condition on PRG(C,UA).

We can now apply Theorem 3 and since we did not change the distribution
of C, we conclude:

Lemma 5. For any BSS-scheme satisfying Definition 5 with t = 0, we have:

H(C) ≥ n(λ− δ(λ))/q.

Proof (of Theorem 7). Given any BSS-scheme satisfying Definition 5, we can
construct from this a new scheme for n′ = n − t receivers and threshold 0 (but
the same ciphertext dsitribution). This is done by fixing the shared keys of the
first t players and making them public, exactly as in the proof of Theorem 4,
so we will not repeat the details here. We then apply the above lemma, and
conclude that H(C) ≥ (n− t)(λ− δ(λ))/q. We finally obtain Theorem 7 by also
noting that C must carry enough information to determine the message, so we
can add l to the lower bound.

�

5.2 Upper Bound

Construction 2 describes how, using an idealized PRG in addition to shared keys,
we can achieve

H(C) = (n(t+ 1)/(q + t)− t)λ+ l.

Construction 2 The sender chooses a random PRG seed, uses the scheme from
Construction 1 to share this seed among the receivers, and uses the PRG output
on this seed to one-time-pad-encrypt the message.
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Ciphertext size and reconstruction follows trivially from Construction 1. As for
security, it follows from security of Construction 1 that an unqualified set A of
receivers has no information on the seed chosen by the sender. Hence the event
that the (polynomial number of) inputs to the PRG chosen by A include the
sender’s seed has negligible probability. Unless this event happens, the message
has full entropy, so the security property follows.

6 Application: Ad hoc Threshold Encryption

We can use any (l, n, t, q) BSS scheme together with any non-interactive key
exchange (NIKE) scheme for q + 1 parties to get (l, n, t) ad hoc threshold en-
cryption (ATE). Informally, the message sender uses the NIKE scheme to set
up the correlated randomness for BSS non-interactively. She simply generates
a fresh NIKE key pair, uses the secret key to derive shared secrets with every
size-q subset of receivers, uses those shared secrets to run BSS, and sends the
NIKE public key along with the resulting ciphertext to enable the recipients to
derive the same shared secrets.

We sketch the definitions of NIKE and ATE below, and formalize how ATE
can be instantiated from NIKE and BSS.

6.1 NIKE Definitions

A non-interactive key exchange (NIKE) scheme consists of two algorithms:

KG(1λ)→ (pk, sk) is a randomized key generation algorithm that takes in the
security parameter λ and returns a public-private key pair.

KA(ski, pkA)→ s is a key agreement algorithm that takes in one secret key and
q public keys pkA = {pkj}j∈A and returns a shared secret.

Informally, a NIKE scheme for q parties is correct as long as, for any i ∈ A
(where |A| = q + 1), sA ← KA(ski, {pkj}j∈A,j 6=i) gives the same value. It is
secure as long as, given {pki}i∈A (but none of the associated secret keys ski),
sA is computationally indistinguishable from random.

6.2 ATE Definitions

An ad hoc threshold encryption (ATE) scheme consists of three algorithms:

KG(1λ)→ (pk, sk) is a randomized key generation algorithm that takes in the
security parameter λ and returns a public-private key pair.

EpkR(m)→ c is an encryption algorithm that encrypts a message m to a set of
public keys pkR = {pki}i∈R belonging to the parties in the intended recipient
set R in such a way that any size-(t + 1) subset of the recipient set should
jointly be able to decrypt.
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DpkR,skA(c)→ m is a decryption algorithm that uses secret keys skA = {ski}i∈A
belonging to a subset A of the intended recipient set R (where |A| > t) to
decrypt the ciphertext c and recover the message m.

Informally, an (l, n, t) ATE scheme is correct if D(E(M)) = M (where D and
E are run with the appropriate keys). It is secure if, for any two messages m0 and
m1 of the same length l, c0 = EpkR(M0) and c1 = EpkR(M1) are computationally
indistinguishable even given t or fewer of the secret keys ski, i ∈ A.

6.3 ATE from NIKE and BSS

We can build an ATE scheme from a NIKE scheme and a BSS scheme as follows:

KG(1λ)→ (pk, sk):

1. Return (pk, sk)← NIKE.KG(1λ).

EpkR(m) :

1. Run (pk, sk)← NIKE.KG(1λ).

2. For every size-q subset A ⊆ R, run sA ← NIKE.KA(sk, pkA).

3. Run BSS.c← BSS.EuR(m).

4. Return (pk, BSS.c).

DpkR,skA(c = (pk, BSS.c)):

1. For every party i ∈ A, for every size-q subset A′ such that i ∈ A′, run

sA′ ← NIKE.KA(ski, {pk} ∪ {pkj}j∈A′,j 6=i).

2. Recall that uA denotes {sA′}A′∪A6=∅. Return m← BSS.DuA(BSS.c).

The size of a ciphertext in this scheme will be equal to the size of the corre-
sponding BSS ciphertext plus the size of a NIKE public key.

6.4 From ATE and NIKE to BSS

Assume we have an ATE-scheme whose algorithms use an ideal NIKE function-
ality. We also assume that the ATE scheme is statistically secure when using
the ideal NIKE functionality, that is, ciphertexts of different messages are sta-
tistically indistinguishable, and the message has full entropy in the view of a
non-qualified set of receivers (up to a negligible amount).

From this, we can obtain a BSS scheme: the keys returned from the NIKE
functionality become the correlated randomness, the encryption algorithm be-
comes the sharing algorithm, and the view of each receiver (including the cipher-
text) is a share. Reconstruction is done by emulating the decryption protocol.

It therefore follows that our lower bound for BSS ciphertext size is also a
lower bound for ciphertext size in any ATE scheme of the type we assumed.
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