
How to Base Security on the Perfect/Statistical Binding Property

of Quantum Bit Commitment?

Junbin Fang∗2, Dominique Unruh†1, Jun Yan‡2, and Dehua Zhou§2

1University of Tartu
2Jinan University

Abstract

The concept of quantum bit commitment was introduced in the early 1980s for the purpose
of basing bit commitment solely on principles of quantum theory. Unfortunately, such uncon-
ditional quantum bit commitment still turns out to be impossible. As a compromise like in
classical cryptography, Dumais, Mayers and Salvail [DMS00] introduce and realize the condi-
tional quantum bit commitment that additionally relies on complexity assumptions. However, in
contrast to the classical bit commitment which is widely used in classical cryptography, up until
now there is relatively little work towards studying the application of quantum bit commitment
in quantum cryptography. This may be partly due to the well-known weakness of the quantum
binding, making it unclear whether quantum bit commitment could be used as a primitive (like
its classical counterpart) in quantum cryptography.

As the first step towards studying the possible application of quantum bit commitment in
quantum cryptography, in this work we consider replacing the classical bit commitment used
in some well-known constructions with a perfectly/statistically-binding quantum bit commit-
ment. We show that (quantum) security can still be fulfilled in particular with respect to
zero-knowledge, oblivious transfer, and proofs-of-knowledge. In spite of this, we stress that the
corresponding security analyses are by no means a trivial adaptation of their classical coun-
terparts. New techniques are needed to handle possible superposition attacks by the cheating
sender of the quantum bit commitments.

Since non-interactive quantum bit commitment schemes can be constructed from general
quantum-secure one-way functions, we hope to use quantum bit commitment (rather than the
classical one that is still quantum-secure) in cryptographic construction to reduce the round
complexity and weaken the complexity assumption simultaneously.
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1 Introduction

Bit commitment is an important cryptographic primitive. A bit commitment scheme can be viewed
as a digital analogue of a non-transparent sealed envelope. Informally, a classical bit commitment
scheme is a classical two-stage interactive protocol between a sender and a receiver, both of whom
can be formalized by probabilistic polynomial-time algorithms. In the first commit stage, the
sender commits to a bit b such that the receiver should not be able to guess its value better than
a random guess; this is known as the hiding property. Later in the reveal stage, the sender opens
the bit commitment and reveals the bit b to the receiver. The binding property guarantees that
any cheating sender should not be able to open the bit commitment as 1− b.

In this work, we study quantum bit commitments1, which allows both the sender and the
receiver to be quantum polynomial-time algorithms and exchange quantum messages, whereas still
a classical bit is secured [DMS00, CDMS04, KO09, KO11, CK11, YWLQ15]. Like their classical
counterpart, unconditional quantum bit commitments afe impossible as well [May97, LC98]. Based
on the quantum complexity assumption there are also two flavors of quantum bit commitments:
(computationally-hiding) statistically-binding quantum bit commitments [DMS00, KO09, KO11]
and statistically-hiding (computationally-binding) quantum bit commitments [YWLQ15].

One reason that we are interested in quantum bit commitments is because it can be realized
in such a way that the commit stage is non-interactive, i.e. the commit stage consists of just one
message from the sender to the receiver, even based on general quantum-secure one-way functions
[YWLQ15, KO09, KO11]. In contrast, classical constructions of non-interactive or even constant-
round bit commitment are only known relying on stronger complexity assumptions [Gol01]; some
negative results suggest that they seems cannot be based on general one-way function [MP12,
HHRS07].

Since bit commitment is extremely useful in classical cryptography, we naturally ask whether
this is also true for quantum bit commitment in quantum cryptography. In particular, we ask the
following question that is the main motivation of this work:

Motivating question: If we use quantum instead of classical bit commitments in
existing (classical or quantum) cryptographic constructions, then can we still base the
(quantum) security of those constructions on the security (i.e. hiding and binding) of
the quantum bit commitment?

If the answer of this question is “yes”, then by turning to non-interactive quantum bit commitments
we may simultaneously reduce the round complexity and weaken the complexity assumption of the
corresponding construction.

Strangely, up until now there are only very few works studying the application of quantum bit
commitments in quantum cryptography [CDMS04, YWLQ15].

1.1 On difficulties of basing security on that of quantum bit commitment

New difficulties arise when we are using quantum instead of classical bit commitment in applications
and trying to establish their securities. These difficulties can be best understood by examining
Blum’s zero-knowledge protocol for the NP-complete language Hamiltonian Cycle [Blu86] with a

1We highlight that the quantum bit commitment studied here is different from the one which is often also referred
to as a quantum bit commitment in the post-quantum literature. There, the bit commitment studied is the quantum-
secure (classical) bit commitment, or bit commitment secure against the quantum attack, whose construction is
restricted to be classical [AC02, Unr12, Unr16b, Unr16a].
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quantum bit commitment scheme plugged in; we want to show its zero-knowledge and soundness
property against quantum attacks.

For zero-knowledge, recall that in the classical security analysis it relies on the hiding property
of bit commitment, and the security reduction will rewind the (possibly cheating) verifier. Though
quantum hiding is a straightforward generalization of the classical hiding property, we cannot
rewind a quantum verifier freely in general [vdG97]. Thus, the classical analysis does not extend
to the quantum setting straightforwardly. Fortunately, it turns out that the remarkable quantum
rewinding technique devised by Watrous [Wat09] in the post-quantum setting can be easily adapted
to the quantum setting to establish the zero-knowledge [YWLQ15].

The more challenging part of the security analysis lies in showing the soundness, which is to
be based on the binding property of quantum bit commitment. Apart from the difficulty incurred
by the quantum rewinding, yet another general difficulty of the soundness analysis comes from
the inherently much weaker quantum binding (than the classical binding), which is due to the
potential superposition attack of the quantum sender. To see this, note that a quantum cheating
sender is able to commit to an arbitrary superposition of 0 and 1, in such a way that with this
superposition as the control, execute the commitment stage of the quantum bit commitment scheme
honestly [DMS00, CDMS04]. Later in the reveal stage, the commitment can be opened as the same
superposition; if the (honest) receiver measures/collapses it, the outcome will be a distribution
over {0, 1}. Thus, both 0 and 1 could be revealed with a noticeable probability, e.g. when the
superposition is 1/

√
2(|0⟩+ |1⟩), in contrast to the classical binding. Even worse, when quantum bit

commitment is composed in parallel (to commit a binary string) and used in some larger protocol,
the classical information on which bit commitments are to open and what bit values are to reveal
could be in an arbitrary superposition. This will make the analysis much more complicated.

More concretely, regarding the soundness analysis of Blum’s protocol, the cheating prover (who
plays the role of the sender of commitments) may either open all quantum bit commitments as a
superposition of permuted input graphs (when the verifier’s challenge is 0), or open a superposi-
tion of subsets (corresponding to locations of a Hamiltonian cycle) of quantum bit commitments
as all 1’s (when the verifier’s challenge is 1). Intuitively, one may tend to argue that these su-
perpositions somehow can be viewed as collapsed to their corresponding probability distributions,
so that the classical soundness analysis can be applied. This is indeed possible in some cases
in the post-quantum setting (where the quantum-secure classical bit commitment is used), e.g.
[Wat09, Unr16b]. However, after some thought, we find that this argument is no longer true in our
(quantum) setting.

After some exploration, it turns out that there are two general technical difficulties one has to
overcome for the purpose of basing security on the quantum binding property:

1. Since the quantum state may collapse significantly when the receiver of commitments mea-
sures the opening information (e.g. in case of Blum’s protocol, the opening information is
contained in the prover’s response), general quantum rewinding is impossible.

2. One should avoid the exponential blow-up in bounding the security error that is incurred by
the binding error, which may arise from a naive application of the triangle inequality. This is
because a cheating sender of commitments may commit to a superposition of exponentially
many strings.

The current known techniques for basing security on the quantum binding are tailored for
specific applications [CDMS04, YWLQ15], which are not general enough for the possible wider
applications of quantum bit commitment in quantum cryptography.
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1.2 Our contribution

In this work, we propose a framework for basing security on the perfect/statistical binding property
of quantum bit commitment2, and devise several techniques/tricks for this purpose. For applica-
tions, we plug a generic perfectly/statistically-binding quantum bit commitment scheme in three
well-known constructions and establish their security, including zero-knowledge, oblivious transfer,
and proof-of-knowledge. Our results examplify that (statistically-binding) quantum bit commit-
ment could be used as a primitive in quantum cryptography.

The framework. It proceeds in two steps. First, we lift the classical security of the construction
based on the perfect/statistical binding property of the classical bit commitment to the quantum
security based on the perfect binding property of the quantum bit commitment. This step varies
from application to application, but the basic idea is the same: introduce what we call commitment
measurements to collapse the potential superposition of the committed value underlying quantum
bit commitments.

Second, we extend the security based on the quantum perfect binding property to the quantum
statistical binding property. We highlight that this step is not trivial, in contrast to the corre-
sponding trivial extension in the classical setting3. The basic idea of this step is perturbation. We
also remark that this second step is “standard”, almost the same for all applications.

Techniques/tricks supporting this framework are introduced in subsection 1.3.

Applications. We give three applications of the framework in the below, which are ordered by
the complexity (in our opinion) of their security analyses.

1. Quantum zero-knowledge proofs. We plug a generic statistically-binding quantum bit com-
mitment scheme in Blum’s protocol for the NP-complete language Hamiltonian Cycle and establish
its quantum security. The hard part of the security analysis lies in the soundness analysis, which
was provided in [YWLQ15]; here we give an alternative one following our framework (Lemma
11, Corollary 12). We remark that this analysis can be extended to any other GMW-type zero-
knowledge protocols, which in particular include the GMW protocol [GMW91]. As an immediate
corollary, we reprove the following theorem (also firstly proved in [YWLQ15]).

Theorem 1 If quantum-secure one-way functions exist, then every language in NP has a three-
round public-coin quantum (computational) zero-knowledge proof with perfect completeness and
soundness error 1/2 + o(1).

We remark that we do not know a similar theorem like the above when restricting to classical
constructions: we either need an extra round for realizing statistically-binding classical bit com-
mitment based on general quantum-secure one-way functions [Nao91], or to keep the three rounds,
we need stronger complexity assumptions such as the existence of quantum-secure injective one-
way functions [AC02], or some fancier complexity assumptions other than quantum-secure one-way
functions [MP12].

2. Quantum oblivious transfer. We plug a generic perfectly/statistically-binding quantum bit
commitment scheme in the quantum oblivious transfer protocol [BBCS91, Cré94, DFL+09] and
establish its quantum security. The hard part of the security analysis lies in establishing the
security against Bob, who is the receiver of oblivious transfer and plays the role of the sender of

2Another flavor of quantum binding, i.e. quantum computational binding, turns out to be more exotic [CDMS04,
ARU14, Unr16b, Unr16a] and beyond the scope of this work.

3In the classical setting, for such a extension we just add the sentence “except for a negligible probability” before
the argument for the case of perfect binding (to obtain an argument for the case of statistical binding).
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quantum bit commitment in this protocol. Following our framework, we extend the security against
Bob in the case that a classical bit commitment is used [BBCS91, Cré94, MS94, Yao95, BF10] to our
setting (Lemma 13, Corollary 14). As an immediate corollary, we reprove the following well-known
theorem.

Theorem 2 If quantum-secure one-way functions exist, then there exists a constant-round quan-
tum oblivious transfer that is computationally secure against Alice and unconditionally secure
against Bob.

However, unlike the application in quantum zero-knowledge proofs mentioned above, we note
that the round complexity of the quantum oblivious transfer protocol cannot be reduced if we
use quantum instead of classical bit commitments. This is because though Naor’s classical bit
commitment scheme takes two messages in the commit stage [Nao91], when it is used in the quantum
oblivious transfer protocol its first message can be sent together with Alice’s (who plays the role of
the receiver of bit commitments) earlier messages; thus, the (classical) commitments still take only
one additional message.

We remark that classical constructions of oblivious transfer rely on stronger cryptographic
assumptions involving “structure”4, such as the enhanced trapdoor one-way permutation [Gol04];
and this seems inherent [GKM+00].

3. Quantum proof-of-knowledge. Unruh [Unr12] showed that a variant of Blum’s protocol
gives rise to a quantum (computational) zero-knowledge proof-of-knowledge for the NP-complete
language Hamiltonian Cycle [Blu86]. Unruh’s construction is classical, relying on the perfectly-
binding bit commitment with an extra requirement of the binding known as the strict-binding,
which can be based on the injective quantum-secure one-way function. Here we plug a generic
perfectly/statistically-binding quantum bit commitment scheme in this variant of Blum’s protocol
and show that the quantum proof-of-knowledge can also be fulfilled (Corollary 17, Corollary 18).
As an immediate corollary, we arrive at the following new theorem.

Theorem 3 If quantum-secure one-way function exists, then every language in NP has a three-
round public-coin quantum (computational) zero-knowledge proof-of-knowledge with perfect com-
pleteness and knowledge error 1/2.

Compared with Unruh’s (post-quantum) result, we make use of quantum construction and
succeed in reducing the complexity assumption to general (removing the injective requirement)
quantum-secure one-way function. This answers an open question raised by Unruh [Unr12] affir-
matively. Interestingly, a barrier pointed out in [ARU14] does not extend to our setting, thanks to
the inherent strictness of the quantum (whether statistical or computational) binding, which in a
sense is similar to the one introduced by Unruh [Unr12]: namely, the decommitment is uniquely
determined by the commitment. But in our quantum setting here, the strictness is guaranteed
through the quantum entanglement rather than the classical correlation.

More interestingly, in the analysis of quantum proof-of-knowledge, we make use of a quantum
rewinding that is similar to the one in [Unr12], whereas the state of the quantum system before the
rewinding may have collapsed significantly. So the reason why the almost same quantum rewinding
works in our setting must be for a different reason. (More discussion is referred to subsection 1.4.)
This again demonstrates that though quantum rewinding is generally impossible, it may still work
in some special cases, like in [Wat09, Unr12, Unr16b] and here.

4In contrast, we consider the one-way function assumption as a raw-hardness assumption without any structures.
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1.3 Our techniques/tricks

We give a brief overview of our techniques/tricks used in this work. More detail is referred to
section 4.

(Imaginary) commitment measurement. In the case that the quantum bit commitment
scheme used is perfectly binding, we can introduce an imaginary binary projective measurement
performed on each claimed quantum bit commitment; we call it the commitment measurement.
It turns out that in many interesting situations, introducing a commitment measurement will not
affect the receiver’s acceptance probability when the bit commitments are opened subsequently. In
more detail, the commitment measurement is just the measurement that optimally distinguishes
the honest commitments to 0 respective 1, which typically is not efficiently realizable. In spite of
this, we are allowed to introduce it just for the purpose of the security analysis. The benefit of
doing so is that the superposition of the committed value underlying quantum bit commitments
will then collapse to its corresponding probability distribution. In turn, the security analysis can
be done by averaging over all possible committed values, in such a way that for each value we can
do a security analysis that is similar to the classical one. This technique will enable us to realize
step one of the framework. Similar techniques are also used in [Reg06, CLS01].

Measurement manipulation. In our quantum security analysis, we may add or remove a mea-
surement, or replace a measurement with some other one. This may seem tricky, but it turns out to
be extremely useful in our analysis and enables us to apply other techniques. For example, without
affecting the security, sometimes we may try to collapse the quantum system as much as we can by
introducing new measurements, so that the classical analysis can be lifted to the quantum setting;
in some other times, we may try to “collapse less” by removing measurements, so that quantum-
specific techniques can be applied, including the perturbation and the quantum rewinding that will
be used in this paper.

Commit to secret coins. The trick of committing to the secret coins used in quantum crypto-
graphic construction was introduced by Unruh [Unr12, Unr16b] for a quantum rewinding to work
in its security analysis, where the commitments are classical but quantum-secure. We find that the
same trick also enables a similar quantum rewinding even if we use the (seemingly much weaker)
statistically-binding quantum bit commitment, but for a different reason: it amounts to an implicit
measurement of the secret coins without leaking them.

Perturbation. We devise a generic procedure for realizing step two of the framework. Our basic
idea is to perturb the quantum circuit pair (Q0, Q1) that represents a generic statistically-binding
quantum bit commitment scheme. We expect that the perturbed scheme (Q̃0, Q̃1) is sort of perfectly
binding. (The quantum circuits Q̃0, Q̃1 may be of super-polynomial size, but this is not a problem
for the security analysis.) A key observation is that the error incurred by replacing the scheme
(Q0, Q1) with the scheme (Q̃0, Q̃1) in any quantum computation only grows linearly in the number
of such replacements, thus avoiding the potential exponential blow-up of the error aforementioned.
Similar techniques are also used in [CKR11, Wat09].

A weak quantum rewinding lemma with improved bound. Roughly, the weak quantum
rewinding lemma in [YWLQ15] enables a quantum rewinding in a special case in which only the
qubit indicating whether the verifier is to accept or not is measured. In this work, we will use
the same lemma but with an improved lower bound on the success probability of the quantum
rewinding, which allows us to obtain the asymptotically optimal knowledge error in the analysis of
quantum proof-of-knowledge (Section 7).
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1.4 Proof overview of our applications

We give an overview of step one of applying the framework to our three applications (step two is
standard, as aforementioned, by perturbation), i.e. lifting the corresponding classical security based
on the perfect/statistical binding property of classical bit commitments to the quantum security
based on the perfect binding property of quantum bit commitments.

1. Zero-knowledge proof. We can assume without of loss of generality that a “commitment
measurement” is performed on each claimed quantum bit commitment immediately after it is sent
by the prover. We highlight that there is no rewinding in the information-theoretic soundness
analysis here.

2. Quantum oblivious transfer. Compared with the quantum zero-knowledge proof, the quantum
oblivious transfer protocol here has an additional phase following Alice’s opening quantum bit
commitments (and some other verifications). Thus, here we need to take into account not only
Alice’s acceptance probability but also the post-verification state of the system.

3. Quantum proof-of-knowledge. Compared with the two applications above, the main difficulty
here comes from the quantum rewinding: it seems that we cannot let the verifier “measure less” (i.e.
only measuring the bit indicating whether to accept or not) so that the weak quantum rewinding
lemma can be applied. This is because the canonical knowledge extractor (which we will use) needs
to rewind and measure more classical information for the purpose of extracting the knowledge.
But more measurements will cause more collapses of the quantum system, making the quantum
rewinding impossible.

In Unruh’s setting [Unr12, Unr16b], by letting the prover additionally commit to some secret
coins used in its first message, its second message (that will convince the verifier to accept) will
become “unique”. In this way, the quantum rewinding turns out to work for the reasons that either
there is no collapse of the quantum state incurred by the verifier’s measurements [Unr12], or the
collapse is unnoticeable from the prover’s point of view [Unr16b]. However, neither of these two
facts extend to our setting if almost the same quantum rewinding is performed. This is because the
potential superposition of the committed value underlying quantum bit commitments may collapse
significantly by the verifier’s measurements, and which is possible to be noticed by the prover.

Interestingly, after a careful analysis, it turns out that almost the same quantum rewinding still
works in our setting, but for a completely different reason! In more detail, its correctness is based
on the following key observation about committing to a bit using a perfectly-binding quantum bit
commitment scheme: it amounts to an implicit measurement of this bit (due to the perfect binding
property) without leaking its value (due to the computational hiding property). Intuitively, it can be
viewed as a generalization of the standard unitary simulation of measuring a qubit in the standard
basis, or the principle of deferred measurement [NC00]. Thus, as long as the prover has collapsed
the quantum state via sending proper quantum bit commitments in its first message, the verifier’s
measurements of the prover’s second message will cause no more collapses. In turn, for the purpose
of lowerbounding the success probability of the canonical knowledge extractor, we can remove the
verifier’s measurements of the classical information so that the weak quantum rewinding lemma
can be applied.

Organization

The remainder of this paper is organized as follows. In Section 2, we fix some notations and review
necessary backgrounds. In Section 3, we propose a formalization of the verification that involves
opening quantum bit commitments, which will be crucial to the subsequent security analyses. In
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Section 4, we present several technical lemmas needed for our security analyses, whose proofs are
deferred to the appendix. Three subsequent sections 5, 6, 7 are devoted to the security analyses
of the quantum zero-knowledge, quantum oblivious transfer, and quantum proof-of-knowledge,
respectively. We conclude with Section 8.

2 Preliminaries

We assume that readers are familiar with basic quantum information and computation, as well as
basic cryptographic protocols (in particular the commitment and the zero-knowledge proof).

Quantum notation(s). We use quantum system and quantum register, both of which can hold
a quantum state, interchangeably. Names of registers will always be uppercase letters in sans serif
font, such as A, B, and C. The finite dimensional Hilbert spaces associated with registers will be
denoted by capital script letters such as A, B, and C, and it will generally be convenient to use the
same letter in the two different fonts to denote a quantum register and its corresponding space.
We write name(s) of register(s) (now in normal font) as the superscript of a quantum state (resp.
operator) to indicate the register(s) holding this state (resp. on which this operator performs). For
example, ρA (resp. |ψ⟩A) indicates that the quantum state of the register A is represented by the
density operator ρ (resp. state vector |ψ⟩), and UA indicates that the operator U performs on the
register A. When it is clear from the context, we often drop superscripts to simplify the notation.
We also occasionally drop the tensor product with the identity 1 for a quantum operation U when
it is clear from the context on which (sub)system the U performs. But sometimes, we choose to
explicitly write out the tensor product with the identity, e.g. U⊗1A, to highlight that the operation
U does not touch the register A. When a quantum system is composed of m copies of some atomic
system A, we denote it by A⊗m. When a quantum register consisting of many qubits such that
each qubit is in the state |0⟩, we just write the state of this register as |0⟩ (a single 0) for short.

Given a projector Π, we also use Π to denote the subspace on which it projects by abusing
the notation, and call it the subspace Π; we also call the binary measurement {Π,1−Π} the
measurement Π if the Π corresponds to the outcome 1 (or accepting).

Quantum information. Given two mixed quantum states (or density operators) ρ and σ, their

fidelity and trace distance are denoted by F(ρ, σ) and TD(ρ, σ), respectively, where F(ρ, σ)
def
=∥∥√ρ√σ∥∥

1
and TD(ρ, σ)

def
= 1/2 ∥ρ− σ∥1. When either of the ρ or σ are pure, say ρ = |ψ⟩ ⟨ψ|,

we will simplify the notation by writing F(|ψ⟩ , σ) (resp. TD(|ψ⟩ , σ)) instead of F(|ψ⟩ ⟨ψ| , σ)
(resp. TD(|ψ⟩ ⟨ψ| , σ)). Fidelity and trace distance are two commonly used measures of the close-
ness/distance between two quantum states. Several facts about them that will be used in this
paper (often without explicit reference) are listed as below, all of which can be found in a standard
quantum information textbook (e.g. [Wat18]):

• (Uhlmann’s Theorem). Let ρ, σ be two density operators of a Hilbert space X . Then

F(ρ, σ) = max {|⟨ψ| η⟩| : unit vectors |ψ⟩ , |η⟩ ∈ X ⊗ Y s.t. TrY (|ψ⟩ ⟨ψ|) = ρ, TrY (|η⟩ ⟨η|) = σ} .

• (Fuchs-van de Graaf inequalities). Let ρ, σ be two density operators of a Hilbert space X .
Then 1− TD(ρ, σ) ≤ F(ρ, σ) ≤

√
1− TD(ρ, σ)2.

• Let |ψ⟩ and |η⟩ be two unit vectors of a Hilbert space X . Then TD(|ψ⟩ , |η⟩) =
√

1− |⟨ψ|η⟩|2.
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• Let ρ be a density operator and |ψ⟩ be a unit vector of a Hilbert space X . Then F(ρ, |ψ⟩) =√
⟨ψ| ρ |ψ⟩.

• (Monotonicity of fidelity). Let ρ, σ be two density operators of the space X ⊗Y, where X ,Y
are two Hilbert space. Then F(ρ, σ) ≤ F(TrY (ρ),TrY (σ)).

• (Monotonicity of trace distance). Let ρ, σ be two density operators of the space X ⊗Y, where
X ,Y are two Hilbert space. Then TD(ρ, σ) ≥ TD(TrY (ρ),TrY (σ)).

Throughout this paper, we use the “∥·∥” (without explicit subscript) to denote the 2-norm ∥·∥2,
i.e. the vector (resp. operator) norm when it is applied to a (state) vector (resp. operator).

Quantum computational model. Without loss of generality, we can restrict to consider the
standard unitary quantum circuit model [NC00]. Specifically, in this model a quantum algorithm
can be formalized as a uniformly generated quantum circuit family, where the “uniformly generated”
means the description of the quantum circuit coping with n-bit inputs can be output by a single
classical polynomial-time algorithm on the input 1n. We assume without that each quantum circuit
is composed of quantum gates chosen from some fixed universal, finite, and unitary quantum gate
set. We only allow projective measurements in any quantum computation, which can be purified in
a standard way. Given a unitary quantum circuit Q, we also abuse the notation to use Q to denote
the corresponding unitary transformation, and Q† to denote its inverse.

Other notation(s). Throughout this paper, we use ϵ(·) to denote an arbitrary negligible function,
and use Sn to denote the symmetric group consisting of all permutations over the set {1, 2, . . . , n}.

Quantum security game. For the purpose of arguing security, we can introduce security games
(or experiments) as in the classical cryptography. Roughly, a quantum security game consists of
a sequence of quantum operations performing on a initialized quantum system, and by which a
certain security can be defined. This sequence of quantum operations in particular include the
adversary’s operations; each quantum operation can be formalized by a quantum circuit.

2.1 A generic (non-interactive) statistically-binding quantum bit commitment
scheme

We review a formalization of the non-interactive statistically-binding quantum bit commitment
scheme proposed in [YWLQ15], which will be used throughout this paper.

Definition 1 A generic non-interactive quantum bit commitment scheme can be represented by
an assemble of unitary quantum circuit pair {Q0(n), Q1(n)}n, which can be uniformly generated in
poly(n) time by a classical algorithm. To ease the notation, we often drop the security parameter n
and just write (Q0, Q1). Both quantum circuits Q0 and Q1 act on quantum registers (C, R), which
are referred to as the commitment register and decommitment register, respectively. The commit
and the reveal stages of the quantum bit commitment scheme (Q0, Q1) proceed as follows:

• Commit stage: Let b ∈ {0, 1} be the bit to commit. The sender performs the following
operations: initialize the quantum register pair (C,R) in the state |0⟩, perform the circuit Qb

on the (C,R), and then send the commitment register C to the receiver.

• Reveal stage: The sender sends the committed bit b, together with the decommitment
register R, to the receiver. Upon receiving them, the receiver performs the circuit Q†

b on the
(C,R), accepting if and only if the system (C, R) returns to the state |0⟩.

10



We denote the (mixed) state of the commitment register C at the end of the commit stage by
ρb when the bit to commit is b; that is,

ρb = TrR
(
Qb(|0⟩ ⟨0|)CRQ†

b

)
. (1)

Two securities of the scheme (Q0, Q1) are as follows:

• Computational hiding. We say that the scheme (Q0, Q1) is computationally hiding if the
quantum state ensembles {ρ0(n)}n and {ρ1(n)}n are quantum polynomial-time indistinguish-
able.

• Statistical ϵ-binding. We say that the scheme (Q0, Q1) is statistically ϵ-binding if the
fidelity F(ρ0, ρ1) ≤ ϵ(n). We call the function ϵ(·) the binding error ; if ϵ ≡ 0, then we say
that the scheme (Q0, Q1) is perfectly binding. As our convention in cryptography, we say that
the scheme (Q0, Q1) is statistically binding (without referring to the binding error explicitly)
if the binding error ϵ(·) is negligible.

Remark. Note that requiring a non-interactive commitment protocol of the specific form above
is not a restriction. A more general non-interactive commit phase (using non-unitary quantum
algorithms) can always be brought into this form by purifying the commit algorithm, this will not
change the hiding property. And a general reveal state can always be replaced by a reveal stage of
this specific form. It is easy to see that if the original commitment is statistically ϵ-binding, it is
still ϵ-binding with the same (or smaller) ϵ after this replacement.

Parallel composition. To commit a string s ∈ {0, 1}m, we commit it in a bitwise fashion using the
quantum bit commitment scheme (Q0, Q1). Thus, the quantum circuit used to commit the string
s is given by Qs = ⊗m

i=1Qsi , where the quantum circuit Qsi performs on a copy of the quantum
register pair (C,R). The (quantum) commitment is given by the quantum state ⊗m

i=1ρsi .

3 A formalization of opening quantum bit commitments within a
larger protocol

For an arbitrary quantum two-party protocol which uses quantum bit commitment as a building
block, let us call the party who sends quantum bit commitments the “sender”, and the other
party the “receiver”. In this section, we propose a pictorial formalization (in terms of quantum
circuits) of a typical honest receiver’s verification that involves opening quantum bit commitments.
This formalization will play an important role in the subsequent analysis of the security against
the cheating sender. A prior, readers who are not familiar with the cheating sender’s possible
superposition attack is referred to Appendix A, which is helpful (in our opinion) to understand the
roles of the qubits A and B in the subsequent Figure 1, or the register D in the subsequent Figure
3.

We start with a formalization of opening one quantum bit commitment, and then extend it to
multiple quantum bit commitments which are typical in applications.

3.1 Formalizing opening a quantum bit commitment

Suppose that a quantum circuit pair (Q0, Q1) represents a generic quantum bit commitment scheme
(Definition 1). We introduce the quantum circuit Vcom as illustrated in Figure 1, which depicts the
procedure of opening a quantum bit commitment by the honest receiver; its explanation follows.

11



A  • • • a

B  • b

C /

Q†
0 Q†

1
M|0⟩

R /

ok
��

Figure 1: The quantum circuit Vcom that represents opening a quantum bit commitment by the
honest receiver. The classical bit a indicates whether this quantum bit commitment is to open,
and the classical bit b indicates the bit value to reveal. It outputs a single classical bit ok, which is
equal to 1 if the quantum bit commitment is opened successfully or not opened.

The construction of the quantum circuit Vcom basically follows the reveal stage of the quantum
bit commitment scheme. Specifically, within the Vcom the single qubit A indicates whether the
quantum bit commitment (stored in the commitment register C) is to open, and the qubit B
indicates what value (0 or 1) is to reveal. The measurement outcomes of the qubits A and B are
denoted by a and b, respectively. The subcircuit M|0⟩ realizes a controlled (by the bit a) binary
measurement {|0⟩ ⟨0| , |1⟩ ⟨1|}. Intuitively,

• When a = 1, the quantum bit commitment is to open. In this case, the quantum circuit Q†
b

will be performed before checking whether the quantum register pair (C, R) returns to the
state |0⟩. If yes, then output the bit ok = 1; otherwise, output ok = 0.

• When a = 0, the quantum bit commitment is not to open. In this case, simply output ok = 1.

It is not hard to see that removing the two measurements of the qubits A and B within the
quantum circuit Vcom will not affect Pr[ok = 1]. We call the resulting quantum circuit obtained
from the Vcom by removing these two measurements the V sup

com (the superscript “sup” indicates that
we do not collapse the potential superpositions in the registers A and B), as illustrated in Figure 2.
Thus, the quantum circuit V sup

com realizes a binary measurement which outputs a single bit ok, such
that the projector corresponding to the outcome ok = 1 is given by (abusing the notation, we also
denote it by the V sup

com)

V sup
com = (|0⟩ ⟨0|)A⊗1BCR+(|1⟩ ⟨1|)A⊗

(
(|0⟩ ⟨0|)B⊗

(
Q0 |0⟩ ⟨0|Q†

0

)CR
+(|1⟩ ⟨1|)B⊗

(
Q1 |0⟩ ⟨0|Q†

1

)CR
)
.

(2)
In the subsequent security analyses, we prefer to use V sup

com (than Vcom) because it perturbs less,
which is conceptually simpler and turns out to be more convenient in some situation. Even in cases
where we need to measure the registers A and B to obtain the classical opening information, we still
stick to V sup

com, while deferring the measurements of the qubits A and B at the moment immediate
after V sup

com is performed.
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��

Figure 2: The quantum circuit V sup
com that represents opening a quantum bit commitment by the

honest receiver without measuring the opening information. The qubit A indicates whether this
quantum bit commitment is to open, and the qubit B indicates the bit value to reveal. It outputs
a single classical bit ok, which is equal to 1 if the quantum bit commitment is opened successfully
or not opened.

3.2 Formalizing a typical verification involving opening quantum bit commit-
ments

To model a verification (within a larger two-party protocol) in which m bits are committed in
parallel using the quantum bit commitment scheme (Q0, Q1), we introduce the quantum system
(C⊗m,R⊗m,D). Specifically, each copy of the register pair (C, R) is used for committing a bit.
The opening register D is used to store the cheating sender’s classical message, which in particular
contains the opening information that indicates which bit commitments are to open as what values.
Composingm copies of the quantum circuit V sup

com in parallel, a typical verification involving opening
quantum bit commitments is illustrated (but not precisely) in Figure 3, as explained and remarked
below.

okpred
KS

D Vpred • •

C1

V sup
com

· · · Cm

V sup
com

R1

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

· · · Rm

ok1

��
okm

��

acc = okpred ∧ ok1 ∧ · · · ∧ okm
��

Figure 3: A typical verification involving opening quantum bit commitments, where arrows “⇑”
or “⇓” indicate classical outputs. The classical bit okpred indicates whether the predicate check
passes; each classical bit oki(1 ≤ i ≤ m) is equal to 1 if the i-th quantum bit commitment is opened
successfully or not opened.

First, the receiver will perform two checks as explained below, outputting acc = 1 if and only
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if both checks pass:

1. The predicate check Vpred: check whether the classical message stored in the opening register
D satisfies the predicate typically prescribed by the outer two-party protocol. It outputs a
single classical bit okpred indicating whether this check passes.

2. The commitment check V sup
com

⊗m
: check whether all quantum bit commitments are opened

successfully in the way as specified by the classical message stored in the opening register D.
The classical output bit of the i-th copy of the quantum circuit V sup

com is denoted by oki.

Second, the control under the opening register D for each copy of the quantum circuit V sup
com

deserves additional explanation. Recall that each copy of the V sup
com is controlled by two qubits

(Figure 2), indicating whether the corresponding quantum bit commitment is to open and what
value is to reveal, respectively. Typically, in applications such opening information is either fixed
a prior or can be computed (if not given explicitly) from the sender’s classical message stored in
the opening register D. In Figure 3, for simplification we in fact drop a translation procedure which
first copies the content of the opening register D (in standard basis) somewhere in the verifier’s
auxiliary space and then computes all the control bits from it that will be fed to each copy of the
V sup
com; instead, we directly draw a control under the register D for each copy of the V sup

com. Generally
speaking, the sender’s classical message contains additional information that will be used for the
predicate check other than the opening information.

Third, to perturb less, we can remove all internal measurements within the verification other
than the single output bit acc = okpred ∧ ok1 ∧ · · · ∧ okm. That is, we can purify (in a standard
way) both quantum circuits Vpred and V sup

com; in particular, the purification of the V sup
com is depicted

in Figure 4 and denoted by U sup
com. According to the expression (2), the expression of U sup

com is given
by

U sup
com = (|0⟩ ⟨0|)A⊗1BCR⊗XO+(|1⟩ ⟨1|)A⊗

(
1B⊗UCRO

M|0⟩

)((
(|0⟩ ⟨0|)B⊗Q†

0+(|1⟩ ⟨1|)B⊗Q†
1

)
⊗1O

)
,

(3)
where the X is the Pauli-X (i.e. bit-flipping) operator, and the unitary transformation

UCRO
M|0⟩

= (|0⟩ ⟨0|)CR ⊗XO + (1− |0⟩ ⟨0|)CR ⊗ 1O

simulating the binary measurement M|0⟩. After the purification, the quantum circuit depicted in
Figure 3 becomes the circuit depicted in Figure 5, which actually realizes a binary measurement.
It is easy to see that this quantum circuit outputs acc = 1 with the same probability as that of the
quantum circuit depicted in Figure 3 when they are performed on the same quantum system.

A • • •

B •

C /

Q†
0 Q†

1
UM|0⟩R /

O ok

Figure 4: Quantum circuit U sup
com that is a unitary simulation of the quantum circuit V sup

com. Its
output qubit ok, an alias of O, is not measured.
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· · · Rm

ok1

��
okm
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acc = okpred ∧ ok1 ∧ · · · ∧ okm
��

Figure 5: A typical verification involving opening quantum bit commitments with a single classical
output bit acc. Now the okpred stands for a single qubit (represented by the arrow “↑” rather than
“⇑”, in contrast to the okpred in Figure 3) indicating whether the predicate check passes; similarly,
each oki (1 ≤ i ≤ m) stands for a single qubit indicating whether the i-th quantum bit commitment
is opened successfully or not opened. Neither okpred nor oki’s are measured.

Fourth, we prefer to let the (honest) receiver not measure the sender’s classical message (or,
the opening register D) within the verification; this will not affect the receiver’s acceptance prob-
ability. The purpose of doing this, as before, is to perturb the quantum state less. Even if such a
measurement is really needed by the outer two-party protocol, we can let the receiver measure it
immediately after the verification (r.f. Figure 7).

4 Technical lemmas

We state all technical lemmas we need and informally explain their meanings and usages in this
section, while deferring most of their proofs to Appendix B.

4.1 Two simple quantum information-theoretic lemmas on (projective) mea-
surements

Consider the scenario in which two projective measurements are performed on two disjoint subsys-
tems simultaneously. Informally, we say that the first measurement determines the second if the
outcome of first measurement determines that of the second. In this case, removing the second mea-
surement will not affect anything. In the special case in which these two measurements determine
each other, then we say that they are equivalent. In this special case, removing either measurement
will not affect anything. This simple trick of manipulating measurements are formally stated in
the lemma as below without proof.

Lemma 2 Suppose that quantum registers X and Y are two disjoint subsystems of a larger system.
If a projective measurement MX performing on the register X determines another projective mea-
surement MY performing on the register Y, then removing the measurement MY will not affect
the post-measurement state of the whole system. In the special case in which the two measurements
MX and MY are equivalent, removing either the measurement MX or the measurement MY will
not affect the post-measurement state of the system.
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Another lemma as below was once proved in [YWLQ15]. For self-containment, its proof is
deferred to Appendix B.1.

Lemma 3 Let X ,Y be two Hilbert spaces. Unit vectors |φ0⟩ , |φ1⟩ ∈ X ⊗ Y. Let ρ0 and ρ1 be the
reduced states of |φ0⟩ and |φ1⟩ in the Hilbert space X , respectively; their fidelity F(ρ0, ρ1) = ϵ ≥ 0.
Then there exists a projective measurement Π = {Π0,Π1} on the Hilbert space X such that

1.
∥∥(ΠX

0 ⊗ 1Y ) |φ0⟩
∥∥2 = Tr(Π0ρ0) ≥ 1− ϵ,

∥∥(ΠX
1 ⊗ 1Y ) |φ1⟩

∥∥2 = Tr(Π1ρ1) ≥ 1− ϵ.

2.
∥∥|φ0⟩ − (ΠX

0 ⊗ 1Y ) |φ0⟩
∥∥ ≤

√
2ϵ,

∥∥|φ1⟩ − (ΠX
1 ⊗ 1Y ) |φ1⟩

∥∥ ≤
√
2ϵ.

In particular, when F(ρ0, ρ1) = 0, i.e. ρ0 = ρ1, we have Tr(ΠX
0 ρ

X
0 ) = 1, Tr(ΠX

1 ρ
X
1 ) = 1, |φ0⟩ =

(ΠX
0 ⊗ 1Y ) |φ0⟩, and |φ1⟩ = (ΠX

1 ⊗ 1Y ) |φ1⟩.

4.2 (Imaginary) commitment measurement

We apply Lemma 3 to the quantum states induced by the statistically ϵ-binding quantum bit
commitment scheme (Q0, Q1), obtaining the following corollary that will be intensively used in the
sequel.

Corollary 4 Suppose that the quantum bit commitment scheme (Q0, Q1) is ϵ-binding. Then there
exists a projective measurement Π = {Π0,Π1} on the commitment register C such that∥∥(ΠC

0 ⊗ 1R)Q0 |0⟩
∥∥ ≥

√
1− ϵ,

∥∥(ΠC
1 ⊗ 1R)Q0 |0⟩

∥∥ ≤
√
ϵ;∥∥(ΠC

0 ⊗ 1R)Q1 |0⟩
∥∥ ≤

√
ϵ,

∥∥(ΠC
1 ⊗ 1R)Q1 |0⟩

∥∥ ≥
√
1− ϵ.

(4)

In the special case in which ϵ ≡ 0, i.e. the scheme is perfectly binding, we have

(ΠC
0 ⊗ 1R)Q0 |0⟩ = Q0 |0⟩ , (ΠC

1 ⊗ 1R)Q0 |0⟩ = 0;
(ΠC

0 ⊗ 1R)Q1 |0⟩ = 0, (ΠC
1 ⊗ 1R)Q1 |0⟩ = Q1 |0⟩ .

(5)

Proof: Replace the |φ0⟩, |φ1⟩, ρ0, ρ1, X , Y and ϵ in Lemma 3 with the Q0 |0⟩, Q1 |0⟩, ρ0, ρ1, C,
R and ϵ that are fixed in Definition 1, respectively. ■

This corollary allows us to introduce what we called the “imaginary commitment measurement”
as follows.

Definition 5 (Imaginary commitment measurement) Suppose that the quantum bit com-
mitment scheme (Q0, Q1) is perfectly binding. Then the projective measurement Π = {Π0,Π1}
whose existence is guaranteed by Corollary 4 will be referred to as the imaginary commitment
measurement, or just the commitment measurement for short, throughout this paper.

We remark that we call the measurement defined above “imaginary” for the reason that it is
typically not efficiently realizable; otherwise, the scheme (Q0, Q1) would not be (computationally)
hiding. This imaginary measurement will be introduced just for the purpose of security analysis in
our applications.

The lemma below basically states that nothing will change if we introduce a commitment
measurement of the commitment register C prior to opening a quantum bit commitment.
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(b) Open a collapsed quantum bit commitment

Figure 6: Introduce a commitment measurement before opening a quantum bit commitment

Lemma 6 Suppose that the quantum bit commitment scheme (Q0, Q1) is perfectly binding. The
procedure of opening a quantum bit commitment with a posterior measurement of the opening in-
formation is depicted in Figure 6a, where the quantum circuit V sup

com (which represents opening a
quantum bit commitment without measuring the opening information) is as depicted in Figure 2.
By introducing a pre-opening commitment measurement, we obtain the quantum circuit as depicted
in Figure 6b. Then we have:

1. Perform the quantum circuit depicted in Figure 6b on an arbitrary system. Conditioned on
acc = 1 and a = 1 (i.e. the quantum bit commitment is opened successfully), the revealed
value should be the same as the outcome of the (pre-verification) commitment measurement.

2. If we perform the two quantum circuits depicted in Figure 6a respective Figure 6b on the same
system, then

(a) Pr[ok = 1 : Figure 6a] = Pr[ok = 1 : Figure 6b]. That is, introducing the commitment
measurement will not change the probability of the event that either the quantum bit
commitment is opened successfully or not opened.

(b) conditioned on ok = 1 and a = 1, the two corresponding final states of the system will be
the same. That is, introducing commitment measurement will not affect the post-opening
state of the system conditioned on a successful opening.

Proof: Deferred to Appendix B.2. ■

As an immediate corollary of the lemma above, now we consider introducing a commitment
measurement of the commitment register C prior to each copy of the U sup

com (the unitary simulation of
the V sup

com) within the verification depicted in Figure 5, with an extra post-verification measurement
of the opening register D.

Corollary 7 Suppose that the quantum bit commitment scheme (Q0, Q1) is perfectly binding. A
typical verification involving opening quantum bit commitments with a posterior measurement of
the opening register is depicted in Figure 7. For the i-th (1 ≤ i ≤ m) copy of the U sup

com, let ai and
bi denote the bits (which can be computed from the opening information d; recall the second remark
in subsection 3.2) indicating whether the i-th quantum bit commitment is to open and what value
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acc = okpred ∧ ok1 ∧ · · · ∧ okm
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Figure 7: A typical verification involving opening quantum bit commitments (in the dashed box),
with a posterior measurement of the opening register

is to reveal, respectively. By introducing a commitment measurement on the commitment register
C prior to each copy the U sup

com, we obtain the quantum circuit depicted in Figure 8. Then we have:

1. Perform the quantum circuit depicted in Figure 8 on an arbitrary quantum system. Condi-
tioned on acc = 1 and ai = 1, the revealed value bi should be the same as the outcome of the
corresponding commitment measurement.

2. If we perform the two quantum circuits depicted in Figure 7 respective Figure 8 on the same
system, then

(a) Pr[acc = 1 : Figure 7] = Pr[acc = 1 : Figure 8]. That is, introducing commitment
measurements will not change the success probability of the verification.

(b) conditioned on acc = 1 and a1 = a2 = · · · = am = 1, the two corresponding final states
of the system will be the same. That is, introducing commitment measurements will
not affect the post-verification state of the system conditioned on that the verification
succeeds and all quantum bit commitments are opened.

Proof: Deferred to Appendix B.2. ■

Remark. Recall the third remark in Subsection 3.2, where we point out that a translation proce-
dure which computes the opening information is dropped. Since this opening information is either
fixed or only depends on the prover’s classical message stored in the opening register D, by Lemma
2, measuring the register D in Figure 7 and Figure 8 will implicitly measure the control qubits A
and B for each copy of the U sup

com. This point is important when we try to prove the corollary above
using Lemma 6.

4.3 Perturbation

The goal of this subsection is to develop a generic perturbation technique to realize step two of
our framework, i.e. extending the quantum security based on the perfect binding property to the
statistical binding property of quantum bit commitments. For this purpose, we prove a lemma as
below.
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Figure 8: A typical verification involving opening quantum bit commitments with pre-verification
commitment measurements (in the dashed box), as well as a posterior measurement of the opening
register

Lemma 8 Suppose that the quantum bit commitment scheme (Q0, Q1) is statistically ϵ-binding.
Then there exists a perfectly-binding scheme (Q̃0, Q̃1) which approximates the scheme (Q0, Q1) in
the following sense. Consider an arbitrary quantum security game in which there are in total m
(counted with repetitions5) quantum bit commitments opened. Let ρ and ρ̃ be the output quantum
states of the games when the schemes (Q0, Q1) and (Q̃0, Q̃1) are used in opening quantum bit
commitments, respectively. Then TD(ρ, ρ̃) ≤ 10m

√
ϵ.

Proof: Deferred to Appendix B.3. ■

The following corollary of the lemma above gives a useful fact for applications in this paper.

Corollary 9 Consider an arbitrary quantum security game in which there are in total m (counted
with repetitions) quantum bit commitments are opened and which outputs just one classical bit.
Let p0 and pϵ denote the probabilities of this classical bit being one when a perfectly-binding and
a statistically ϵ-binding quantum bit commitment schemes are used, respectively. Then |pϵ − p0| ≤
10m

√
ϵ.

Proof: Deferred to Appendix B.3. ■

In the rest of this subsection, we give a construction of the approximation scheme (Q̃0, Q̃1) in
Lemma 8 and highlight the basic idea of step two of our framework.

The construction of the approximation scheme (Q̃0, Q̃1). For each bit b ∈ {0, 1}, consider
the two-dimensional subspace spanned by the vector Qb |0⟩ and the vector (ΠC

b ⊗ 1R)Qb |0⟩ after

renormalization, which we denote by Q̃b |0⟩, where {Π0,Π1} denotes the imaginary commitment
measurement (Definition 5). There exists a unitary operator Rb which acts on this subspace and

sends the vector Qb |0⟩ to the vector Q̃b |0⟩; it acts as the identity on the complement subspace.

5We note that a quantum bit commitment may be opened several times in a sequence of verifications, e.g. referring
to Section 7.
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Indeed, the Rb is just the rotation around the origin by the angle θb (0 < θb < π/2) such that
cos θb =

∥∥(ΠC
b ⊗ 1R)Qb |0⟩

∥∥. From Corollary 4, it follows that

cos θb ≥
√
1− ϵ. (6)

We introduce unitary operator

Q̃b
def
= RbQb. (7)

By definition,

Q̃b |0⟩ = Q̃b |0⟩ =
(ΠC

b ⊗ 1R)Qb |0⟩∥∥(ΠC
b ⊗ 1R)Qb |0⟩

∥∥ .
One can easily check that if we view the quantum circuit pair (Q̃0, Q̃1) as a quantum bit

commitment scheme, then it is perfectly binding in the following sense:

(ΠC
0 ⊗ 1R)Q̃0 |0⟩ = Q̃0 |0⟩ , (ΠC

1 ⊗ 1R)Q̃0 |0⟩ = 0;

(ΠC
0 ⊗ 1R)Q̃1 |0⟩ = 0, (ΠC

1 ⊗ 1R)Q̃1 |0⟩ = Q̃1 |0⟩ ,
(8)

which are similar to equations in (5).

Remark. Note that the scheme (Q̃0, Q̃1) cannot be a realistic quantum bit commitment scheme
for two reasons:

1. Both quantum circuits Q̃0 and Q̃1 are not efficiently realizable.

2. It may not satisfy the hiding property any more.

In spite of this, we can still view (Q̃0, Q̃1) as representing a quantum bit commitment scheme in
security analyses where only the binding property of quantum bit commitments is relevant.

The quantum circuit Ṽ sup
com (depicted in Figure 9) that represents opening a quantum bit com-

mitment using the scheme (Q̃0, Q̃1) can be easily adapted from the V sup
com (Figure 2).

A • • • • •

B • •

C /

R†
0 Q†

0 R†
1 Q†

1
M|0⟩

R /

ok
��

Figure 9: Quantum circuit Ṽ sup
com that is an approximation of the V sup

com

Step two of our framework. Step two is to extend the security based on the quantum perfect
binding property to the quantum statistical binding property of quantum bit commitments. The
basic idea for such an extension is as follows: according to equations in (8), the quantum security
based on the quantum perfect binding property extends to case in which the scheme (Q̃0, Q̃1) is
used. We are then left to show that the perturbation incurred by replacing the scheme (Q̃0, Q̃1)
with the scheme (Q0, Q1) in the corresponding security game is statistically negligible. This is
exactly what Lemma 8 states.
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4.4 A quantum rewinding lemma

It is well known that quantum rewinding is only possible in some special cases [vdG97, Wat09,
Unr12, YWLQ15]. The quantum rewinding lemma given below (Lemma 10) improves the one
appeared in [YWLQ15] by providing a better lower bound. Its proof is almost the same as that
in [YWLQ15], except that in one step of the argument the Pythagorean theorem rather than the
triangle inequality is used.

Lemma 10 (A weak quantum rewinding) Let X and Y be two Hilbert spaces. Unit vector
|ψ⟩ ∈ X ⊗ Y. Orthogonal projectors Γ1, . . . ,Γk perform on the space X ⊗ Y, and unitary trans-

formations U1, . . . , Uk perform on the space Y. If 1/k ·
∑k

i=1

∥∥Γi(Ui ⊗ 1X) |ψ⟩
∥∥2 ≥ 1 − η, where

0 ≤ η ≤ 1, then∥∥∥(U †
k ⊗ 1X)Γk(Uk ⊗ 1X) · · · (U †

1 ⊗ 1X)Γ1(U1 ⊗ 1X) |ψ⟩
∥∥∥ ≥ 1−

√
kη. (9)

Proof: Deferred to Appendix B.4. ■

Actually, the lemma above is just the famous quantum union bound [Aar16, Aar06] in disguise.
But we put it in a form that is convenient to apply for the analysis of the security against the
cheating sender of quantum commitments.

In more detail, in Lemma 10 the Hilbert space X will correspond to the space induced by
the commitment registers, which are expected to hold the (possibly cheating) sender’s quantum
commitments. The unitary transformation Ui (1 ≤ i ≤ k) will correspond to the sender’s operation
to meet the receiver’s challenge indexed by i. Note that commitment registers are at the receiver’s
hands, Ui’s (which performs on the space Y) will not touch the space X . The projector Γi (1 ≤ i ≤
k) can be viewed as induced by the receiver’s acceptance condition of the verification corresponding
to the challenge i. In this view, loosely speaking, Lemma 10 states that if the sender can convince the
receiver to accept with high probability w.r.t. a random challenge chosen from the set {1, 2, . . . , k},
then he/she can convince the receiver to accept a sequence of verifications corresponding to the
challenges 1, 2, . . . , k with high probability6.

The “rewinding” in the name of Lemma 10 comes from the applications of the unitary trans-
formations U †

i ’s in the inequality (9): the sender intends to restore the system to the initial state
(though he/she could not achieve this perfectly) before entering the next verification. We consider
this quantum rewinding “weak” because it only allows us to perform just one binary measurement
(i.e. deciding whether to accept or reject, which can be seen from the projectors Γi’s) before each
rewinding.

5 Application 1: quantum zero-knowledge proof

The zero-knowledge proof for a language is an interactive proof such that the prover can convince
the verifier the membership of the input in the language without leaking anything else. In particular,
regarding an NP language, its zero-knowledge proof should not leak the witness to the verifier.
Readers are referred to standard cryptography or complexity textbooks, e.g. [AB09, Gol01], for a
formal treatment of the zero-knowledge proof.

Blum’s zero-knowledge protocol [Blu86] for theNP-complete language Hamiltonian Cycle roughly
proceeds as follows. Let G be the input graph with n vertices, where n is also to be used as the

6Actually, the sequence of indices from the set {1, 2, . . . , k} does not matter; the lemma holds for any sequences.
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security parameter subsequently. The prover first chooses a random permutation π ∈ Sn and com-
mits to each entry of the adjacency matrix of the graph π(G) using a bit commitment scheme.
Then the verifier comes up with a random challenge bit ch ∈ {0, 1}. Finally, depending on the
verifier’s challenge, the prover either opens all n2 bit commitments as π(G) when ch = 0, or opens
the bit commitments to the n entries that correspond to a Hamiltonian cycle of π(G) as all 1’s
when ch = 1.

In this section, we plug a generic perfectly/statistically-binding quantum bit commitment
scheme in Blum’s protocol, and establish its soundness against any quantum computationally
unbounded cheating prover. Formally, we prove the following lemma and corollary:

Lemma 11 Suppose that the quantum bit commitment scheme {(Q0(n), Q1(n))}n is perfectly bind-
ing. Then Blum’s zero-knowledge protocol for the language Hamiltonian Cycle with this scheme
plugged in is sound against any quantum computationally unbounded prover with the soundness
error 1/2.

Corollary 12 Suppose that the quantum bit commitment scheme {(Q0(n), Q1(n))}n is statistically
binding with a negligible binding error ϵ. Then Blum’s zero-knowledge protocol for the language
Hamiltonian Cycle with this scheme plugged in is sound against any quantum computationally un-
bounded prover with the soundness error 1/2 +O(n2

√
ϵ).

Since the quantum computational zero-knowledge of Blum’s protocol can be proved by adapting
proofs in [Wat09, Unr12] trivially, combined with Corollary 12, we arrive at Theorem 1.

Remark. Our soundness analysis for Blum’s protocol extends to any other GMW-type zero-
knowledge protocols, in particular the GMW zero-knowledge protocol for the language Graph 3-
Coloring [GMW91].

In the remainder of this section, we first prove Lemma 11. Then combing it with Corollary 9,
we prove Corollary 12.

Proof of Lemma 11: For soundness, we need to prove that if the input graph G does not have a
Hamiltonian cycle, then the verifier will accept with probability at most 1/2. An execution of the
protocol w.r.t. an arbitrary challenge ch ∈ {0, 1} is illustrated in Figure 10, where

• Each copy of the registers (C,R) is used by the quantum bit commitment scheme (Q0, Q1)
for committing a bit.

• The opening register D is used to store the classical responses w.r.t. the challenge ch = 0
or 1. We highlight that this classical response will determine which bit commitments are to
open as what value.

• The register S is the prover’s working space.

• The P ∗ is the prover’s operation for preparing the (quantum) commitments.

• The P ∗
ch is the prover’s operation for preparing the response w.r.t. the challenge ch ∈ {0, 1}.

• The verification V ch
zk can be specialized from the general verification involving opening quan-

tum bit commitments depicted in Figure 5 in the following way:

– Plug in m = n2.
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– When ch = 0, the predicate check Vpred verifies that a permutation π is stored in the
register D. The commitment check verifies that all (in total n2) quantum bit commit-
ments are revealed as the graph π(G). Or put it formally, the expression of the projector
V 0
zk is given by

V 0
zk =

∑
π∈Sn

(|π⟩ ⟨π|)D ⊗
(
Qπ(G) |0⟩ ⟨0|Q

†
π(G)

)C⊗n2
R⊗n2

.

– When ch = 1, the predicate check Vpred verifies that (the description of) an n-cycle
is stored in the register D. The commitment check verifies that the n quantum bit
commitments to the entries of the adjacency matrix that correspond to this n-cycle are
all revealed as 1’s. Or put it formally, the expression of the projector V 1

zk is given by

V 1
zk =

∑
hc

(|hc⟩ ⟨hc|)D ⊗
(
Q⊗n

1 |0⟩ ⟨0| (Q†
1)

⊗n
)C⊗nR⊗n[hc]

,

where the hc sums over all possible positions of the n-cycle and the C⊗nR⊗n[hc] de-
notes the corresponding register pair (C,R)’s on which the commitment check will be
performed.

Now our goal is to show that Pr[acc = 1] ≤ 1/2.
acc = okpred ∧ ok1 ∧ · · · ∧ okn2

KS

C⊗n2

P ∗

V ch
zkR⊗n2

P ∗
ch

D 

d
��

S

Figure 10: An execution of Blum’s zero-knowledge protocol w.r.t. the challenge ch ∈ {0, 1}

We are going to define a sequence of games to argue the soundness. Each game will output a
classical bit acc. And for any two consecutive games i and i + 1, we are to show that Pr[acc =
1 : Game i] = Pr[acc = 1 : Game i + 1]. If we can prove that the probability of the event acc = 1
happening is at most 1/2 for the last game, then it will conclude the proof.

Specifically, for a fixed challenge ch ∈ {0, 1}, we define a sequence of games as follows, where
the description of each game will only contain the changes w.r.t. the proceeding game.

• Game 0. An execution of the protocol as depicted in Figure 10.

• Game 1. Perform the commitment measurement Π (Definition 5) on the commitment register
C prior to each copy of the quantum circuit V sup

com within the quantum circuit V ch
zk , as depicted

in Figure 8 for the general case. By the item 2(a) of Corollary 7, we have Pr[acc = 1 :
Game 1] = Pr[acc = 1 : Game 0].
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• Game 2. Move all commitment measurements to the positions posterior to the P ∗, as illus-
trated in Figure 11. We have Pr[acc = 1 : Game 2] = Pr[acc = 1 : Game 1], because all
commitment register C’s are not touched by any party between the two moments before and
after the movement.

s ∈ {0, 1}n2

KS
acc = okpred ∧ ok1 ∧ · · · ∧ okn2

KS

C⊗n2

P ∗

Π⊗n2

V ch
zkR⊗n2

P ∗
ch

D 

d
��

S

Figure 11: An execution of Blum’s zero-knowledge protocol w.r.t. the challenge ch ∈ {0, 1} such
that all quantum bit commitments are collapsed by commitment measurements

Since the argument above holds for any ch ∈ {0, 1}, it follows that Prch∈R{0,1}[acc = 1 :
Game 0] = Prch∈R{0,1}[acc = 1 : Game 2]. We are then sufficient to show that Prch∈R{0,1}[acc = 1 :
Game 2] ≤ 1/2. Before doing this, we first note that in Game 2 all quantum bit commitments will
be collapsed by the commitment measurements Π⊗n2

; let s ∈ {0, 1}n2
be the outcome. We have

two comments on this classical string s:

1. Regardless of whether the subsequent verification succeeds or not, we can obtain such a string
s ∈ {0, 1}n2

from the commitment measurements.

2. Though this classical string s is unknown to the (honest) verifier, it nevertheless will enable
us to argue the soundness (as below) in a similar way as in the classical setting.

We are ready to bound the Prch∈R{0,1}[acc = 1 : Game 2]. We focus on the case in which

the verifier accepts, i.e. the verification V ch
zk outputs acc = 1. Since the scheme (Q0, Q1) is

perfectly binding, a key observation is that if the i-th(1 ≤ i ≤ n2) quantum bit commitment is
indeed opened, then by the item 1 of Corollary 7 it can only be opened as si. The remaining
part of the soundness analysis is just a reproduction of the classical one. Namely, we claim that
whatever a string s ∈ {0, 1}n2

that the commitment measurements Π⊗n2
outputs, the verifier

will reject either in the case that ch = 0 or ch = 1 with certainty. This will concludes that
Prch∈R{0,1}[acc = 1 : Game 2] ≤ 1/2.

We are left to prove the claim, whose argument is classical. For contradiction, suppose that the
verifier will accept with nonzero probability w.r.t. both challenges 0 and 1. From that the verifier
will accept w.r.t. ch = 0 with nonzero probability, it follows that the string s should encode a graph
that is isomorphic to the input graph G. Moreover, from that the verifier will accept w.r.t. ch = 1
with nonzero probability, it follows that the string s should encode a graph that has a Hamiltonian
cycle. Combining the two facts obtained from ch = 0 respective ch = 1 implies that the input
graph G contains a Hamiltonian cycle. A contradiction.

This concludes the proof of the lemma. ■
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To lift the soundness to the case in which the quantum bit commitment scheme plugged in is
statistically binding, we simply apply Corollary 9.

Proof of Corollary 12: We consider the (quantum) security game w.r.t. an arbitrary challenge
ch ∈ {0, 1} induced by performing the quantum circuit depicted in Figure 10 to an arbitrary
quantum system, i.e. the Game 0 defined in the proof of Lemma 11. We know that whether
the ch is 0 or 1, there are at most n2 quantum bit commitments will be opened. Now we apply
Corollary9, with m, p0 and p1 replaced by n2 and Pr[acc = 1] corresponding to perfectly-binding
and statistically ϵ-binding quantum bit commitment schemes plugged in, respectively. It then
follows that pϵ ≤ p0 + 10n2

√
ϵ ≤ 1/2 + 10n2

√
ϵ, where p0 ≤ 1/2 is by Lemma 11. This finishes the

proof the corollary. ■

6 Application 2: quantum oblivious transfer

Oblivious transfer is an important primitive in cryptography. Informally, via a 1-2 oblivious transfer
Bob can obtain one out of two bits from Alice such that: (1) Bob does not know the other bit; (2)
Alice does not know which bit is leaked to Bob. Interestingly, while classical constructions of obliv-
ious transfer rely on stronger complexity assumptions than one-way function [GKM+00, Gol04],
quantum oblivious transfer can be built on perfectly/statistically-binding classical bit commitment
(which is implied by one-way function/permutation) [BBCS91, Cré94, CLS01, BF10].

In this section, we study almost the same quantum oblivious transfer protocol as the one
appeared in [BBCS91, Cré94, BF10], but replacing the classical bit commitment scheme used there
with a generic perfectly/statistically-binding quantum bit commitment scheme. We manage to lift
the security of the quantum oblivious transfer protocol based on that of classical bit commitments
to quantum bit commitments (Theorem 2). It turns out that while such a lift is relatively easy
for the security against Alice (which is just a straightforward adaptation), it is not obvious for the
security against Bob that is to be based on the binding of bit commitments. This is because the
quantum binding is inherently weaker than its classical counterpart and may harm the security (as
discussed before).

This section is devoted to applying our framework for such a lift of Bob’s security from the
case in which a perfectly-binding classical bit commitment scheme is used to the case in which a
perfectly/statistically-binding quantum bit commitment scheme is used. In contrast to what we
did in the preceding section, here for simplicity we will not do a security analysis from the scratch
and reproduce an analysis that is almost the same as the existing one, which itself is already very
complicated [Yao95, DFL+09]; rather, we manage to reduce the security based on the quantum
perfect/statistical binding property to the classical perfect binding property. For this purpose, we
even do not need to give out the formal definition of the security against Bob here, as long as we
know that it only depends on Bob’s output7; all we need to do is to show that if there were a Bob
B∗ who can break some kind of security in the latter case, then there would exist another Bob B∗∗

who can break the same kind of security in the former case.
The main difference between the security analysis in this section and that of the preceding one,

lies in that besides the success probability of the verification here, we additionally have to take into
account of the post-verification state conditioned on the verification succeeding. This is where the

7This is indeed the case considered in [Yao95, DFL+09], which is sufficient when the protocol is run stand-alone.
There is also a stronger definition of Bob’s security for which the quantum oblivious transfer protocol can be used as
a building block within a larger protocol [BF10]. However, we did not check whether our reduction extends to this
case (though we guess so).
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Security parameter: m

Preparation phase:

• For i = 1, 2, . . . ,m, Alice chooses xi ∈R {0, 1} and θi ∈R {+,×}, sending |xi⟩θi to Bob.

• Upon receiving each qubit |xi⟩θi , Bob chooses θ̂i ∈R {+,×} and measure the qubit in

the basis θ̂i; let x̂i ∈ {0, 1} be the outcome. Then Bob commits to both θ̂i and x̂i.

Verification phase:

• Alice sends a random test subset T ⊂ {1, 2, . . . ,m} of size pm, where 0 < p < 1.

• For all i ∈ T , Bob opens the i-th and the (m+ i)-th bit commitments, i.e. bit commit-
ments to θ̂i and x̂i, respectively.

• Alice checks that all openings succeed and xi = x̂i whenever θi = θ̂i, for all i ∈ T . If
yes, then Alice accepts and proceeds to the next (post-processing) phase; otherwise, she
rejects and aborts immediately.

Figure 12: The preparation and verification phases of the quantum oblivious transfer protocol

item 2(b) of Corollary 7 comes in to help us.

6.1 A recap of the quantum oblivious transfer protocol with some formalization

The well-known quantum oblivious transfer protocol (following [DFL+09]) consists of three phases:
the preparation phase, the verification phase, and the post-processing phase. The first two phases
are quantum, whereas the last one is classical. For our purpose and for the sake of self-containment,
we describe the first two phases in Figure 12. (The last phase is dropped because it is irrelevant to
the security analysis here.)

Suppose that in the protocol above Bob uses a generic perfectly/statistically-binding quantum
bit commitment scheme (Q0, Q1) for his commitments. Then an execution of the protocol w.r.t.
Alice’s test set T is depicted in Figure 13, which is explained as below:

• The 2m copies of the quantum register pair (C, R) are used for committing θ̂i’s and x̂i’s,
1 ≤ i ≤ m, as described in the preparation phase of the protocol.

• The boxes containing (A ↔ B∗)prep respective (A ↔ B∗)post denote the quantum circuits
realizing the joint computations of Alice and Bob in the preparation respective post-processing
phases.

• The opening register D is used to store the classical message from Bob to Alice indicating the
bit values to reveal of the quantum bit commitments with indices in the test set T .

• The register S is the residual system of Bob’s.

• For each test set T ⊂ {1, 2, . . . ,m}, the box containing B∗
T denotes the quantum circuit

realizing Bob’s corresponding operation in the verification phase.

• The wire out denotes Bob’s final output.
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acc = okpred ∧ ok1 ∧ · · · ∧ okm
KS

out
OO

C⊗2|T |

(A↔ B∗)prep

V T
qot

(A↔ B∗)post

R⊗2|T |

B∗
T

{
(θ̂i, x̂i)

}
i∈T

KS

D 

S

R⊗(2m−2|T |)

C⊗(2m−2|T |)

Figure 13: An execution of the quantum oblivious transfer protocol w.r.t. an arbitrary test set T

• The verification procedure V T
qot is specialized from the general verification procedure depicted

in Figure 5 in the following way:

1. The predicate check verifies that the register D stores a set
{
(θ̂i, x̂i)

}
i∈T such that for

each i ∈ T , if θ̂i = θi, then x̂i = xi.

2. The commitment check verifies that for each i ∈ T , the i-th and the (m + i)-th bit
commitments are successfully opened as θ̂i and x̂i, respectively.

6.2 The security against Bob

We first prove the security against Bob when the quantum bit commitment scheme plugged in is
perfectly binding.

Lemma 13 Suppose that the quantum bit commitment scheme (Q0, Q1) is perfectly-binding. Then
the quantum oblivious transfer protocol with this scheme plugged in is secure against any quantum
computationally unbounded Bob.

Proof: The proof proceeds in two steps as follows:

1. Define a sequence of games such that Bob’s output in the last game is identical to that of the
first game.

2. Convert the Bob who can break the security of the last game into a Bob who will break the
same security in the case when a classical perfectly-binding bit commitment scheme is used.

This will conclude the lemma because the security against Bob when a classical perfectly-binding bit
commitment scheme is used in the quantum oblivious transfer protocol has already been established
[Yao95, DFL+09].

For the first step, the description of each game w.r.t. a fixed test set T is as follows, which will
only contain changes w.r.t. the proceeding game.

• Game 0. An execution of the protocol as depicted in Figure 13.
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• Game 1. Introduce (in the same way as depicted in Figure 8 for the general case) the com-
mitment measurement Π prior to each copy of the U sup

com within the V T
qot with indices in the

test set T .

We are going to apply Corollary 7 to reduce the security of this game to that of Game 0.
We highlight that here since only quantum bit commitments with indices in the test set T
are to open, only those corresponding quantum register pairs (C, R) (in total 2 |T |) are to be
taken into account of. (The remaining pairs are treated as the residual system of the larger
system.) Specifically, by the item 2(a) of Corollary 7, introducing commitment measurements
will not affect Alice’s acceptance probability. We thus have Pr[acc = 1 : Game 1] = Pr[acc =
1 : Game 0]. Further, by the item 2(b) of Corollary 7, conditioned on the verification V T

qot

succeeding, we know that the quantum state at the moment prior to the post-processing phase
in this game is identical to that of Game 0. Combining these two facts, Bob’s output in this
game is identical to that of Game 0.

• Game 2. Perform the commitment measurement Π on each copy of the register C with
indices outside the test set T at the moment before the verification V T

qot is performed. Since
subsequent to the preparation phase, quantum bit commitments outside the set T are at
Alice’s hands and will never be used, performing commitment measurements on them will
not affect Bob’s security. It follows that Bob’s output in this game is identical to that of
Game 1.

• Game 3. Move all commitment measurements to the end of the preparation phase. Since
there are no other operations on the commitment registers C⊗2m between the two moments
before and after the movement, nothing will change. It follows that if Bob’s output in this
game is identical to that of Game 2.

Since the argument above holds for any test set T , it follows that averaging over a random test set
T , Bob’s output in Game 3 is identical to that of Game 0.

For the second step, we are to convert a Bob B∗ who breaks the security of Game 3 into a
Bob B∗∗ who breaks the security in the case when a perfectly-binding classical bit commitment
scheme is used. Note that in Game 3, by the item 1 of Corollary 7, Bob B∗ is “bound” to a string
s ∈ {0, 1}2m output by the commitment measurements Π⊗2m, in a similar sense to the case when
a perfectly-binding classical bit commitment scheme is used. This inspires us to construct the Bob
B∗∗ given access to the Bob B∗ as follows: B∗∗ internally emulates B∗, except that

• In the preparation phase, B∗∗ does not send quantum bit commitments to Alice; instead, he
internally emulates this step.

• At the end of the preparation phase, B∗∗ internally performs the commitmentment measure-
ments Π⊗2m; let s ∈ {0, 1}2m be the outcome8. Then B∗∗ honestly commits to the 2m-bit
string s using the perfectly-binding classical bit commitment scheme.

• In the verification phase, B∗∗ internally emulates B∗’s opening of quantum bit commitments.
For each i (1 ≤ i ≤ 2m), there are three cases:

1. i ̸∈ T , i.e. the i-th quantum bit commitment is not to open. B∗∗ will do nothing.

8One can see from here that the construction is not efficient, because the commitment measurement Π is not
efficiently realizable.
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2. i ∈ T and the i-th quantum bit commitment is opened successfully. B∗∗ will send the
correct decommitment of the i-th classical bit commitment to Alice externally.

3. i ∈ T but the i-th quantum bit commitment fails to open. B∗∗ will send a dummy
message as the decommitment of the i-th classical bit commitment to Alice externally.

Denote the interaction between honest Alice and Bob B∗ in Game 3 by A ↔ B∗, and the
interaction between honest Alice and Bob B∗∗ when a perfectly-binding classical bit commitment
scheme is used by A ↔ B∗∗. Now let us compare these two interactions. Note that by the
construction of B∗∗, Alice’s acceptance probability of the verification in the verification phase is
the same for the two interactions. Since in the case that the verification fails the security against
B∗∗ is trivial, we suffice to show that conditioned on the verification succeeding, B∗∗’s output is
identical to that of B∗.

For both interactions A ↔ B∗ and A ↔ B∗∗, we restrict our attention to the case in which
Alice’s verification (in the verification phase) succeeds, and consider the moment before the post-
processing phase. For the former interaction, the state of the whole system at this moment can be
written as ∑

s∈{0,1}m
T⊂{1,2,...,m}

ps,T |s⟩ ⟨s| ⊗ |T ⟩ ⟨T | ⊗ ρs,T , (10)

where 0 ≤ ps,T ≤ 1 satisfying
∑

s,T ps,T = 1, and the density operator ρs,T denotes the state of the
whole system other than those storing s respective T . For the latter interaction, by the construction
of B∗∗, it is not hard to see that the state of the whole system at this moment can be written as∑

s∈{0,1}m
T⊂{1,2,...,m}

ps,T |s⟩ ⟨s| ⊗ |T ⟩ ⟨T | ⊗ ρs,T ⊗ ξs,T , (11)

where the density operator ξs,T denotes the state of the system used for the classical commitments
(to the string s) and the corresponding decommitments (w.r.t. to the test set T ). A subtlety we
would like to point out here, is that the systems holding the state ρs,T within the expressions (10)
respective (11) are divided differently between Alice and Bob: all quantum bit commitments and
corresponding decommitments w.r.t. to the test set T are in Alice’s hands for the state (10) but
Bob’s hands for the state (11).

Now we can conclude that B∗∗’s output is identical to that of B∗ by combing the following two
observations: subsequent to the verification phase,

1. in the interaction A ↔ B∗∗ the system holding the state ξs,T will not be touched by either
Alice or B∗∗. Moreover, the residual state obtained by discarding this system from the state
(11) exactly gives the state (10).

2. both the operations of honest Alice and B∗∗ in the interaction A↔ B∗∗ are identical to those
of honest Alice and B∗ in the interaction A ↔ B∗, respectively. Moreover, these operations
do not touch the quantum bit commitments and corresponding decommitments w.r.t. the
test set T , regardless of the corresponding system is at whose hands.

This completes the proof of the lemma. ■

Applying Lemma 8, we can further lift the security against Bob to the case in which a generic
statistically-binding quantum bit commitment scheme (Q0, Q1) is used in the quantum oblivious
transfer protocol.
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Corollary 14 Plug a generic statistically-binding quantum bit commitment scheme (Q0, Q1) in the
quantum oblivious transfer protocol. Then the resulting protocol is secure against any computation-
ally unbounded Bob.

Proof Sketch: Consider an execution of the protocol conditioned on an arbitrary test set T ⊂
{1, 2, . . . ,m} is chosen. Applying Lemma 8, we can know that the state of the whole system at the
end of the verification phase when the schemes (Q0, Q1) respective (Q̃0, Q̃1) are used are statistically
close. This implies that averaging over a random test set T , the corresponding two quantum states
are statistically close9, too. Hence, the security in the case where the perturbed scheme (Q̃0, Q̃1)
is used, which follows from Lemma 13 by noting that the scheme (Q̃0, Q̃1) is perfectly binding, can
be lifted to the case where the scheme (Q0, Q1) is used. ■

7 Application 3: quantum proof-of-knowledge

In this section, we plug a generic perfectly/statistically-binding quantum bit commitment scheme
(Q0, Q1) in a variant of Blum’s zero-knowledge protocol for the NP-complete language Hamiltonian
Cycle [Unr12], showing that it gives rise to a quantum proof-of-knowledge, a stronger security than
the soundness against any quantum computationally unbounded prover.

Very roughly, the quantum proof-of-knowledge requires that if a (possibly cheating) prover P ∗

can convince the verifier to accept with a probability that is higher than a quantity known as the
knowledge error, then there exists a polynomial-time extractor KP ∗

(a quantum algorithm with
black-box access to P ∗) who can output a witness of the input. The oracle P ∗ can be an arbitrary
unitary transformation, whose inverse can also be accessed by the extractor K. We remark that
it is enough to just keep this informal definition of quantum proof-of-knowledge in one’s mind for
understanding the security analysis in this section. A formal definition can be adapted from that
of the classical proof-of-knowledge [Gol01] straightforwardly, just like the post-quantum proof-of-
knowledge [Unr12].

In contrast to the analyses of the two previous applications, the one here takes an opposite way:
we try to remove (rather than introduce) measurements as possible as we can, so that the weak
quantum rewinding lemma can be applied (Lemma 10). We also remark that like the soundness
analysis in section 5, our security analysis of the quantum proof-of-knowledge here can also be
adapted to any other GMW-type zero-knowledge protocols (after a similar modification following
[Unr12, Unr16b]), in particular the GMW zero-knowledge protocol for the NP-complete language
Graph 3-Coloring.

In the remainder of this section, we first describe how to modify Blum’s protocol and con-
struct the canonical knowledge extractor following [Unr12], and then prove that thus constructed
knowledge extractor indeed works.

7.1 The actual protocol and the canonical knowledge extractor

Following [Unr12], we modify Blum’s protocol by letting the prover in addition commit to the
response w.r.t. the challenge 0, i.e. the chosen permutation π, in his first message; other parts of
the protocol will be modified correspondingly. The actual protocol is described in Figure 14.

A cheating prover P ∗ can be represented by three unitary quantum operations (U,U0, U1),
corresponding to the operations of P ∗ before sending his first message (i.e. commitments), sending

9Their distance can be bounded via the fidelity, which is jointly concave.
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Common input: a directed graph G with n vertices.
Prover’s private input: A Hamiltonian cycle hc of the graph G.

Protocol:

P1 The prover first chooses a random permutation π ∈ Sn and commits to (the adjacency ma-
trix of) the graph π(G) and (the permutation matrix corresponding to) the permutation
π.

V2 The verifier responds with a uniformly random challenge bit ch ∈ {0, 1}.

P3 If ch = 0, then the prover sends the permutation π, together with the decommitments for
all bit commitments, to the verifier. If ch = 1, then the prover sends the location of the
n-cycle π(hc), together with the decommitments only for the commitments to (in total
n) entries (of the adjacency matrix of the graph π(G)) corresponding to the edges of the
n-cycle π(hc), to the verifier.

Verification If ch = 0, then the verifier accepts if and only if all bit commitments are opened
as (π(G), π) successfully. If ch = 1, then the verifier accepts if and only if the n bit
commitments are opened as all 1’s that correspond to an n-cycle.

Figure 14: A variant of Blum’s protocol which achieves quantum proof-of-knowledge

the responses w.r.t. the challenge 0 and 1, respectively. Informally, we construct the knowledge
extractor KP ∗

as below:

1. Perform the operation U on the initial system to obtain the (quantum) commitments.

2. Perform the operation U0 to obtain the response w.r.t. the challenge 0.

3. Check whether the (honest) verifier will accept w.r.t. the challenge 0: if “yes”, then measure
the response to obtain a permutation π; otherwise, output “⊥” and halt.

4. Rewind P ∗ by performing the operation U †
0 , the inverse of the unitary U0.

5. Perform the operation U1 to obtain the response w.r.t. the challenge 1.

6. Check whether the (honest) verifier will accept w.r.t. the challenge 1: if “yes”, then measure
the response to obtain an n-cycle π(hc); otherwise, output “⊥” and halt.

7. Compute a Hamiltonian cycle from the two responses obtained from steps 3 respective 6 and
check10 if it is indeed a Hamiltonian cycle of the input graph G: if “yes”, then output it;
otherwise, output “⊥” and halt.

The knowledge extractor KP ∗
is formally illustrated in Figure 15 (without the last classical

step), with its explanations as below.
For the quantum registers used by the KP ∗

:

• There are in total 2n2 copies of the quantum register pairs (C, R), where the upper n2 copies
of the register pair (C,R) are used for committing (the adjacency matrix of) the permuted

10When the binding error of the quantum bit commitment scheme plugged in is non-zero, it is possible that this
check will fail.
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Figure 15: The canonical knowledge extractor KP ∗
without the last (classical) step for a variant

of Blum’s protocol

input graph, while the lower n2 copies of the register pair (C,R) are used for committing the
permutation.

• The opening register D is used to store the classical response w.r.t. the challenge 0 or 1.

• The register S is P ∗’s workspace.

There are two verifications within the KP ∗
. The verification V 0

pok is specialized from the general
verification depicted in Figure 5 as follows:

• Plug in m = 2n2.

• The predicate check verifies that the opening register D contains a permutation π, while the
commitment check verifies that all (in total 2n2) quantum bit commitments are opened as
(π(G), π) successfully.

• The classical bit acc0 indicates whether the verifier is to accept or not w.r.t. the challenge 0.

The verification V 1
pok (split into three boxes as depicted in Figure 15) is specialized from the general

verification depicted in Figure 5 as follows:

• Plug in m = 2n2.

• The predicate check verifies that (the position of) an n-cycle is stored in the opening regis-
ter D. The commitment check verifies that the n quantum bit commitments to the entries
corresponding to this cycle are all opened as 1’s.

• The classical bit acc1 indicates whether the verifier is to accept or not w.r.t. the challenge 1.

7.2 The analysis of quantum proof-of-knowledge

In the special case in which the quantum bit commitment scheme plugged in is perfectly binding,
we show that the knowledge extractor KP ∗

constructed above indeed works by two steps:

1. We show that conditioned on both verifications (V 0
pok and V 1

pok, as illustrated in Figure 15)

accepting, the knowledge extractor KP ∗
will output a Hamiltonian cycle with certainty.
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2. We prove a lower bound of the probability that both verifications accept.

The security w.r.t. the perfectly-binding quantum bit commitment can be lifted to the case of
statistically-binding quantum bit commitment by applying Lemma 8.

We first prove a lemma as below that will conclude the step 1.

Lemma 15 Suppose that the quantum bit commitment scheme (Q0, Q1) is perfectly binding. If
both the events acc0 = 1 and acc1 = 1 happen during an execution of the knowledge extractor (as
illustrated in Figure 15), then it will output a Hamiltonian cycle of the input graph G with certainty.

Proof: The key observation is that by the virtue of (quantum) perfect binding, the honest com-
mitment to a bit b ∈ {0, 1} has no chance of being opened as 1 − b. This guarantees that the
n-cycle obtained from measuring the response posterior to the V 1

pok can be “embedded” into the
graph π(G) for some permutation π that is obtained from measuring the response posterior to the
V 0
pok. In more detail, if the event acc0 = 1 happens, then after the measurement of the response

posterior to the V 0
pok, the state of the 2n2 copies of the commitment register C will collapse to the

honest commitment to (the adjacency matrix of) the graph π(G). By perfect binding, only those
bit commitments to 1-entries of the adjacency matrix (corresponding to edges of the graph π(G))
can later be opened as 1 successfully. Henceforth, the event acc1 = 1 happening later (conditioned
on acc0 = 1) implies that the edges of the n-cycle obtained from the measurement of the response
posterior to the V 1

pok should also be the edges of the graph π(G). As such, the knowledge extractor

can output a Hamiltonian cycle by applying the permutation π−1 to this n-cycle. ■

Remark. We stress that the argument in the proof above no longer holds when the binding error
is non-zero (i.e. the quantum bit commitment scheme used is only statistically binding). This
is because in that case, the honest commitments to some 0-entries of the adjacency matrix that
correspond to non-edges of the graph π(G) might be (with some positive probability) opened as
1’s that correspond to edges of the n-cycle.

Next, we prove a lower bound of the probability Pr[acc0 = 1∧acc1 = 1] in the following lemma,
which will conclude the step 2 of the analysis.

Lemma 16 Suppose that the quantum bit commitment scheme (Q0, Q1) is perfectly binding. If a
prover P ∗ can convince the verifier to accept with probability 1/2+ δ in an execution of the protocol
described in Figure 14, where δ > 0, then Pr[acc0 = 1 ∧ acc1 = 1] ≥ δ2 for an execution of the
knowledge extractor as illustrated in Figure 15.

Proof: To simplify the notation, we introduce an random indicator variable acc such that acc = 1
if and only if both events acc0 = 1 and acc1 = 1 happen. We will define a sequence of games for
the analysis. Let Game 0 denote an execution of the knowledge extractor KP ∗

(without the last
classical step), as illustrated in Figure 15; our goal is to lowerbound Pr[acc = 1 : Game 0]. We
will introduce new games to gradually remove the two intermediate measurements of the opening
register D, in such a way that for any two consecutive games i and i + 1, Pr[acc = 1 : Game i] =
Pr[acc = 1 : Game i + 1]. If we can do this, then we are sufficient to lowerbound Pr[acc = 1] for
the last game, where there are no intermediate measurements other than that of the acc0 and acc1.
With respect to this game, we can apply the weak quantum rewinding lemma (Lemma 10), which
will yield a desired lower bound.

Specifically, we define a sequence games as follows such that the description of each game will
only contain the changes w.r.t. the proceeding game:
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• Game 0. An execution of the knowledge extractor KP ∗
(without the last classical step), as

illustrated in Figure 15.

• Game 1. Remove the second measurement of the register D, as illustrated in Figure 16.
Clearly, removing this post-verification measurement will not affect Pr[acc = 1]. We thus
have Pr[acc = 1 : Game 1] = Pr[acc = 1 : Game 0].

acc0
KS

acc1
KS

C⊗n2

U

V 0
pok

V 1
pok

C⊗n2

R⊗n2

U0 U1(U0)
†

V 1
pok

R⊗n2

D  V 1
pok

π
��

S

Figure 16: Game 1 for the proof of Lemma 16

• Game 2. At the moment posterior to the verification V 0
pok, instead of measuring the opening

register D, now we perform the commitment measurement Π on each of the lower n2 copies
of the commitment register C. This game is illustrated in Figure 18.

acc0
KS

acc1
KS

C⊗n2

U

V 0
pok

V 1
pok

π
KS

C⊗n2
Π⊗n2

R⊗n2

U0 U1(U0)
†

V 1
pok

R⊗n2

D V 1
pok

S

Figure 17: Game 2 for the proof of Lemma 16

Conditioned on acc0 = 1, due to the (quantum) perfect binding of the scheme (Q0, Q1), the
measurement of the opening register D and the commitment measurements Π⊗n2

performing
on the lower n2 copies of the commitment register C are equivalent. Then Lemma 2 ensures
us that this replacement of measurements will not change anything; in particular, Pr[acc1 =
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1|acc0 = 0 : Game 2] = Pr[acc1 = 1|acc0 = 0 : Game 1]. Hence, Pr[acc = 1 : Game 2] =
Pr[acc = 1 : Game 1].

• Game 3. Remove the commitment measurement Π⊗n2
on the lower n2 copies of the commit-

ment register C. This game is illustrated in Figure 18.
acc0
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acc1

KS

C⊗n2

U

V 0
pok

V 1
pok

C⊗n2

R⊗n2

U0 U1(U0)
†

V 1
pok

R⊗n2

D V 1
pok

S

Figure 18: Game 3 for the proof of Lemma 16

Since this measurement comes after the first verification V 0
pok, and is not touched by the

second verification V 1
pok, removing it will not affect Pr[acc = 1]. We thus have Pr[acc = 1 :

Game 3] = Pr[acc1 = 1 : Game 2].

We are left to prove Pr[acc = 1 : Game 3] ≥ δ2. To this end, we apply the weak quantum
rewinding lemma (Lemma 10). In more detail, we do the following replacements:

• Plug in k = 2, η = 1/2− δ.

• Identify the space X in the lemma with the space induced by the 2n2 copies of the commitment
register C, and the space Y with the space induced by the residual system.

• Replace U1 and U2 in the lemma with U0 and U1 here (i.e. the prover P ∗’s operations w.r.t.
the challenge 0 and 1, respectively).

• Replace Γ1 and Γ2 in the lemma with V 0
pok and V 1

pok here (which represent two verifications
w.r.t. the challenge 0 and 1, respectively).

• Identify the unit vector |ψ⟩ in the lemma with the state of the whole system at the moment
immediately after the operation U is applied in Game 3.

Then from the hypothesis that the prover P ∗ can convince the verifier to accept with probability
1/2 + δ, i.e.

1

2

(∥∥V 0
pokU0 |ψ⟩

∥∥2 + ∥∥V 1
pokU1 |ψ⟩

∥∥2) = 1/2 + δ,

applying the weak quantum rewinding lemma, we have∥∥∥U †
1V

1
pokU1 · U †

0V
0
pokU0 |ψ⟩

∥∥∥ ≥ 1−

√
2

(
1

2
− δ

)
≥ δ. (12)
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Note that the probability

Pr[acc = 1 : Game 3] =
∥∥∥V 1

pokU1 · U †
0V

0
pokU0 |ψ⟩

∥∥∥2 ,
which happens to be equal to the square of l.h.s. of the inequality (12) (within which the leftmost

unitary transformation U †
1 does not affect the vector norm of the whole expression). It follows that

Pr[acc = 1 : Game 3] ≥ δ2. This concludes the proof of the lemma. ■

The following corollary is immediate from Lemma 15 and Lemma 16.

Corollary 17 Suppose that the quantum bit commitment scheme (Q0, Q1) is perfectly binding and
plug it in the modified Blum’s protocol as described in Figure 14. The resulting protocol gives rises
to a quantum proof-of-knowledge with knowledge error 1/2.

Proof: Suppose that a prover P ∗ can convince the verifier to accept with probability 1/2 + δ,
where δ > 0. Combing Lemma 15 and Lemma 16, the knowledge extractor KP ∗

will output a
Hamiltonian cycle of the input graph with probability at least δ2. Hence, the resulting protocol
gives rise to a quantum proof-of-knowledge with knowledge error 1/2. ■

Last, we can lift the corollary above to the case of statistically-binding quantum bit commitment
scheme, i.e. the step 3 of the analysis.

Corollary 18 Suppose that the quantum bit commitment scheme (Q0, Q1) is statistically binding
and plug it in the modified Blum’s protocol as described in Figure 14. The resulting protocol is
quantum proof-of-knowledge with the knowledge error 1/2.

Proof: Suppose that the binding error of the scheme (Q0, Q1) is ϵ. Let (Q̃0, Q̃1) be the perturbed
scheme as guaranteed by Lemma 8. Assume that a prover P ∗ can convince the verifier to accept
with probability 1/2 + δ, where δ > 0. Since there are at most 2n2 quantum bit commitments
opened in an execution of the modified Blum’s protocol, by Corollary 9, if the (honest) verifier
uses the scheme (Q̃0, Q̃1) rather than (Q0, Q1) in the verification, then he/she will accept with
probability at least 1/2 + δ − 20n2

√
ϵ.

Now that the scheme (Q̃0, Q̃1) is perfectly binding, if we use the scheme (Q̃0, Q̃1) rather than
(Q0, Q1) in the knowledge extractor KP ∗

(as illustrated in Figure 15), then it will succeed (i.e.
output a Hamiltonian cycle of the input graph) with probability at least

(
δ − 20n2

√
ϵ)2 (combing

Lemma 15 and Lemma 16).
We finally lowerbound the success probability of the knowledge extractor KP ∗

in which the
scheme (Q0, Q1) is used. Since the there are at most 2n2 + n quantum bit commitments opened in
an execution of the knowledge extractorKP ∗

(within the V 0
pok and V

1
pok), applying Corollary 9 again,

the knowledge extractor KP ∗
will succeed with probability at least

(
δ− 20n2

√
ϵ)2− (20n2+10)

√
ϵ,

which is δ2 −O(n2
√
ϵ). This finishes the proof of the corollary. ■

The completeness and quantum (computational) zero-knowledge of Blum’s protocol with a
generic perfectly/statistically-binding quantum bit commitment scheme plugged in extend straight-
forwardly to the variant described in Figure 15. Combined with Corollary 17 and Corollary 17, we
arrive at Theorem 3.
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8 Conclusion and future work

In this work, we propose a general framework for basing quantum security on the perfect/statistical
binding property of quantum bit commitments. We also devise several techniques/tricks to sup-
port this framework. For applications, we plug a generic perfectly/statistically-binding quantum
bit commitment scheme in three well-known constructions and establish their security. Our re-
sults demonstrate that though the quantum binding property may appear relatively weak, it still
provides strong enough security such that quantum bit commitment could be useful in quantum
cryptography.

For future work, it is interesting and seemingly more challenging to explore the possibility of
basing quantum security on the quantum computational binding property of quantum bit commit-
ments. In particular, can we construct quantum zero-knowledge argument based on (statistically-
hiding) computationally-binding quantum bit commitment? We note that most of techniques/tricks
devised here do not extend to the computational case straightforwardly, in particular the “commit-
ment measurement”.
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A The cheating sender’s attack of quantum bit commitments

In this section, we take a closer look at the cheating sender’s most general behavior, so as to
understand its possible superposition attack.

For simplicity, we treat both the classical and quantum messages in a uniform way; that is,
any classical message can be viewed as a quantum message that will be sent through the quantum
channel, and the honest receiver will measure it (in the standard basis) immediately upon receiving
it. For each party’s computation, as discussed, we can assume that it consists of two kinds of
operations, unitary transformation and projective measurement.

The cheating sender’s possible superposition attack. We consider a typical commit-and-
open process in applications, and examine the cheating sender’s most general behavior when a
quantum bit commitment scheme is used. To better understand the discussion in the below, we
consider it will be helpful to keep in one’s mind Blum’s zero-knowledge protocol for the language
Hamiltonian Cycle.
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Suppose that the sender is to commit an m-bit string in an arbitrary application; then he/she
will commit it bitwisely. We assume that a generic quantum bit commitment scheme represented
by the quantum circuit pair (Q0, Q1) is used (Definition 1). There will be two stages, a commit
stage followed by a reveal stage.

In the commit stage, the cheating sender’s attack can be modeled by first either preparing
an arbitrary quantum state in or performing an arbitrary unitary transformation on the whole
system in its hands. Then the commitment register C⊗m, which is expected to hold m quantum
bit commitments, will be sent to the receiver. Among others, a particularly interesting attack by
the sender is to commit “honestly” to a superposition of a bunch of (even exponentially many)
different m-bit strings. Or put it formally, the sender may prepare a quantum state in its system
of the form ∑

s∈{0,1}m
αs |s⟩D ⊗ (Qs |0⟩)C

⊗mR⊗m
, (13)

where the coefficients αs’s are arbitrary such that
∑

s∈{0,1}m |αs|2 = 1. (Recall that the Qs denotes
the quantum circuit to commit the string s (Subsection 2.1).)

In the reveal stage later, things will become complicated. The sender’s attack can be modeled by
an arbitrary unitary transformation on the whole system in its hands, which in particular includes
the decommitment register R⊗m and the opening register D, but not the commitment register C⊗m

(which is in the receiver’s hands). In a simplest case, which is also the case studied before where
the parallel composition of quantum bit commitments is treated as a stand-alone object [CDMS04],
the opening register D is expected to store the string value (an m-bit string) to reveal, and will
be sent together with all decommitment register R’s to the receiver. For example, if the sender
attacked in the commit stage by preparing the quantum state as described in the equation (13),
then in the reveal stage he/she may do nothing but just sending the quantum registers R⊗m and D
to the receiver; upon receiving them, the receiver will check and accept with certainty. Observe that
this is already a superposition attack on the revealed value of quantum bit commitments; different
strings may be revealed when the receiver measures the opening register D.

The fact is, the cheating sender can attack in a more complicated way when quantum bit
commitments are used within a larger protocol. Recall that in some two-party protocol, e.g. Blum’s
zero-knowledge protocol for the language Hamiltonian Cycle [Blu86], not all bit commitments are
necessary to open; sometimes, it is the cheating sender him/herself who sends a message to instruct
the receiver which bit commitments are to open. Since this message itself could be in a superposition,
the cheating sender may mount a corresponding superposition attack on positions of quantum bit
commitments to open. However, one difficulty of mounting such a superposition attack seems that
if only a subset of the quantum bit commitments are to open, then which decommitment register
R’s are to send? Note that this subset only becomes determined after the receiver measures it;
but before that moment, all quantum bit commitments have a chance to be opened! However,
the sender cannot send all m decommitment register R’s to the receiver (according to the larger
two-party protocol)!

Suppose that the cardinality of the subset which indicates which quantum bit commitments
are to open is at most l(≤ m). To address the difficulty above to mount a superposition attack
of the positions of quantum bit commitments to open, the sender can introduce l copies of the
register R̂ which has the same dimension as the decommitment register R and is initialized in the
state |0⟩. In the reveal stage before sending decommitment registers, the sender first swaps the
content of the decommitment register R’s corresponding to quantum bit commitments that will not
be opened with that of the register R̂’s, under the control of the description of the subset (stored
in the opening register D). Then all decommitment register R’s together with the opening register
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D will be sent to the receiver. In this way, for those quantum bit commitments that are to open,
the corresponding decommitment register R’s hold the desired decommitments, whereas for those
are not to open, the corresponding decommitment register R’s are just junk (i.e. in the state |0⟩).

Seeing from the discussion above, by themost general attack a cheating sender is able to entangle
the opening register D, the commitment registers C⊗m, as well as the decommitment registers R⊗m

in such a complicated way that the information about which quantum bit commitments are to open
as what value could be in an arbitrary superposition, whereas the receiver will accept with certainty
in the reveal stage.

A simplification for analyzing the security against the cheating sender. In the discussion
above, the cheating sender may introduce additional register R̂’s so as to mount a superposition
attack on the positions of quantum bit commitments to open. Interestingly, it turns out that for the
purpose of the security analysis, these additional registers R̂ are really not needed. This is because
regarding the security against the cheating sender, the receiver is honest, and the sender can just
send all decommitment register R’s to the receiver, who then performs the verification on quantum
registers (D,C⊗m,R⊗m). After that, we let the receiver send back the unused decommitment
register R’s to the sender. In this way, we can get rid of the additional register R̂’s for the security
analysis11.

B Omitted proofs in Section 4

B.1 Omitted proofs in Subsection 4.1

Lemma 19 (A restatement of Lemma 3) Let X ,Y be two Hilbert spaces. Unit vectors |φ0⟩ , |φ1⟩ ∈
X ⊗ Y. Let ρ0 and ρ1 be the reduced states of |φ0⟩ and |φ1⟩ in the Hilbert space X , respectively;
their fidelity F(ρ0, ρ1) = ϵ ≥ 0. Then there exists a projective measurement Π = {Π0,Π1} on the
Hilbert space X such that

1.
∥∥(ΠX

0 ⊗ 1Y ) |φ0⟩
∥∥2 = Tr(Π0ρ0) ≥ 1− ϵ,

∥∥(ΠX
1 ⊗ 1Y ) |φ1⟩

∥∥2 = Tr(Π1ρ1) ≥ 1− ϵ.

2.
∥∥|φ0⟩ − (ΠX

0 ⊗ 1Y ) |φ0⟩
∥∥ ≤

√
2ϵ,

∥∥|φ1⟩ − (ΠX
1 ⊗ 1Y ) |φ1⟩

∥∥ ≤
√
2ϵ.

In particular, when F(ρ0, ρ1) = 0, i.e. ρ0 = ρ1, we have Tr(ΠX
0 ρ

X
0 ) = 1, Tr(ΠX

1 ρ
X
1 ) = 1, |φ0⟩ =

(ΠX
0 ⊗ 1Y ) |φ0⟩, and |φ1⟩ = (ΠX

1 ⊗ 1Y ) |φ1⟩.

Proof: The projective measurement {Π0,Π1} is constructed as below. Since ρ0−ρ1 is Hermitian,
consider its spectral decomposition

ρ0 − ρ1 =
∑
j

λjxjx
†
j ,

where the λj ∈ R is an eigenvalue (counted with multiplicity) and the xj is the corresponding
eigenvector. Define orthogonal projectors

Π0 =
∑

j:λj≥0 xjx
†
j , Π1 = 1−Π0 =

∑
j:λj<0 xjx

†
j .

From the assumption that F(ρ0, ρ1) = ϵ, by Fuchs-van de Graaf inequalities, we have ∥ρ0 − ρ1∥1 =
2 ·TD(ρ0, ρ1) ≥ 2(1− ϵ); that is,

∑
j |λj | ≥ 2(1− ϵ). Together with Tr(ρ0 − ρ1) = 0, it follows that∑

j:λj≥0 λj ≥ 1− ϵ,
∑

j:λj<0(−λj) ≥ 1− ϵ.

11We remark that this simplification is already implicitly used without explanation in [YWLQ15].
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Thus, Tr(Π0(ρ0 − ρ1)) ≥ 1− ϵ and Tr(Π1(ρ1 − ρ0)) ≥ 1− ϵ. From that both ρ0 and ρ1 are positive
semidefinite, we have Tr(Π0ρ0) ≥ 1− ϵ and Tr(Π1ρ1) ≥ 1− ϵ. This proves the item 1.

For the item 2, since the unit vector |φ0⟩ is a purification of the state ρ0, we have∣∣⟨φ0| (ΠX
0 ⊗ 1Y ) |φ0⟩

∣∣ = Tr((ΠX
0 ⊗ 1Y ) |φ0⟩ ⟨φ0|) = Tr(Π0ρ0) ≥ 1− ϵ.

It follows that∥∥|φ0⟩ − (ΠX
0 ⊗ 1Y ) |φ0⟩

∥∥ =

√
1−

∣∣⟨φ0| (ΠX
0 ⊗ 1Y ) |φ0⟩

∣∣2 ≤ √
1− (1− ϵ)2 ≤

√
2ϵ.

We can similarly prove that
∥∥|φ1⟩ − (ΠX

1 ⊗ 1Y ) |φ1⟩
∥∥ ≤

√
2ϵ. This finishes the proof of the item 2.

■

B.2 Omitted proofs in Subsection 4.2

Lemma 20 (A restatement of Lemma 6) Suppose that the quantum bit commitment scheme
(Q0, Q1) is perfectly binding. The procedure of opening a quantum bit commitment with a posterior
measurement of the opening information is depicted in Figure 6a, where the quantum circuit V sup

com

(which represents opening a quantum bit commitment without measuring the opening information)
is as depicted in Figure 2. By introducing a pre-opening commitment measurement, we obtain the
quantum circuit as depicted in Figure 6b. Then we have:

1. Perform the quantum circuit depicted in Figure 6b on an arbitrary system. Conditioned on
acc = 1 and a = 1 (i.e. the quantum bit commitment is opened successfully), the revealed
value should be the same as the outcome of the (pre-verification) commitment measurement.

2. If we perform the two quantum circuits depicted in Figure 6a respective Figure 6b on the same
system, then

(a) Pr[ok = 1 : Figure 6a] = Pr[ok = 1 : Figure 6b]. That is, introducing the commitment
measurement will not change the probability of the event that either the quantum bit
commitment is opened successfully or not opened.

(b) conditioned on ok = 1 and a = 1, the two corresponding final states of the system will be
the same. That is, introducing commitment measurement will not affect the post-opening
state of the system conditioned on a successful opening.

Proof: We first prove the item 1. Plugging in the expression of the V sup
com (expression (2)), we have

V sup
comΠC

0 = (|0⟩ ⟨0|)A ⊗ΠC
0 + (|1⟩ ⟨1|)A ⊗

(
(|0⟩ ⟨0|)B ⊗ (Q0 |0⟩ ⟨0|Q†

0)
CRΠC

0

+(|1⟩ ⟨1|)B ⊗ (Q1 |0⟩ ⟨0|Q†
1)

CRΠC
0

)
= (|0⟩ ⟨0|)A ⊗ΠC

0 + (|1⟩ ⟨1|)A ⊗ (|0⟩ ⟨0|)B ⊗ (Q0 |0⟩ ⟨0|Q†
0)

CR, (14)

where in the second equality we use equations in (5). We can similarly show that

V sup
comΠC

1 = (|0⟩ ⟨0|)A ⊗ΠC
1 + (|1⟩ ⟨1|)A ⊗ (|1⟩ ⟨1|)B ⊗ (Q1 |0⟩ ⟨0|Q†

1)
CR. (15)

Now consider the scenario when the quantum circuit depicted in Figure 6b is performed on
an arbitrary system. Without loss of generality, assume that the outcome of the commitment
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measurement is 0; the case for the outcome 1 can be established symmetrically. Conditioned on
acc = 1, the state of the system at the moment immediately after the circuit V sup

com is performed
should collapse to the subspace induced by the projector (14). Next, measurements of qubits A
and B are performed. Seeing from the projector (14), whenever a = 1 is obtained, b = 0, which is
equal to the outcome of the commitment measurement. This finishes the proof of the item 1.

We next prove the item 2(a). Let |ψ⟩ be the initial quantum state of the whole system. Then

Pr[ok = 1 : Figure 6b] =
∥∥V sup

comΠC
0 |ψ⟩

∥∥2 + ∥∥V sup
comΠC

1 |ψ⟩
∥∥2 .

Plugging in expressions (14) and (15) and applying Pythagorean theorem in various places, the
r.h.s. of the equation above∥∥V sup

comΠC
0 |ψ⟩

∥∥2 + ∥∥V sup
comΠC

1 |ψ⟩
∥∥2

= ∥(|0⟩ ⟨0| ⊗Π0) |ψ⟩∥2 +
∥∥∥( |1⟩ ⟨1| ⊗ |0⟩ ⟨0| ⊗Q0 |0⟩ ⟨0|Q†

0

)
|ψ⟩

∥∥∥2
+ ∥(|0⟩ ⟨0| ⊗Π1) |ψ⟩∥2 +

∥∥∥( |1⟩ ⟨1| ⊗ |1⟩ ⟨1| ⊗Q1 |0⟩ ⟨0|Q†
1

)
|ψ⟩

∥∥∥2
= ∥(|0⟩ ⟨0|) |ψ⟩∥2 +

∥∥∥(|1⟩ ⟨1|)⊗ (
|0⟩ ⟨0| ⊗Q0 |0⟩ ⟨0|Q†

0 + |1⟩ ⟨1| ⊗Q1 |0⟩ ⟨0|Q†
1

)
|ψ⟩

∥∥∥2
=

∥∥∥(|0⟩ ⟨0|)A ⊗ 1BCR + (|1⟩ ⟨1|)A ⊗
(
(|0⟩ ⟨0|)B ⊗

(
Q0 |0⟩ ⟨0|Q†

0

)CR
+ (|1⟩ ⟨1|)B ⊗

(
Q1 |0⟩ ⟨0|Q†

1

)CR
)
|ψ⟩

∥∥∥2
= ∥V sup

com |ψ⟩∥2 = Pr[ok = 1 : Figure 6a],

where in the second “=” we additionally use the fact that Π0 +Π1 = 1. This finishes the proof of
item 2(a).

Lastly, we prove the item 2(b). Let |ψ⟩ be the initial quantum state of the whole system.
We consider the scenario in which both acc = 1 and a = 1, and a bit b ∈ {0, 1} is revealed.
Then the system on which the quantum circuit depicted in Figure 6a is performed will collapse to
the (unnormalized) state

(
(|1⟩ ⟨1|)A ⊗ (|b⟩ ⟨b|)B

)
V sup
com |ψ⟩, with probability the square of its norm.

Similarly, the system on which the quantum circuit depicted in Figure 6b is performed will collapse
to the (unnormalized) state

(
Πb(|1⟩ ⟨1|)A ⊗ (|b⟩ ⟨b|)B

)
V sup
com |ψ⟩, with probability the square of its

norm. We thus suffice to show that

ΠC
b

(
(|1⟩ ⟨1|)A ⊗ (|b⟩ ⟨b|)B

)
V sup
com =

(
|1⟩ ⟨1|)A ⊗ (|b⟩ ⟨b|)B

)
V sup
com. (16)

Indeed, plugging in the expression (2),(
|1⟩ ⟨1|)A ⊗ (|b⟩ ⟨b|)B

)
V sup
com = |1⟩ ⟨1| ⊗ |b⟩ ⟨b| ⊗Qb |0⟩ ⟨0|Q†

b. (17)

Thus,

ΠC
b

(
|1⟩ ⟨1|)A ⊗ (|b⟩ ⟨b|)B

)
V sup
com = |1⟩ ⟨1| ⊗ |b⟩ ⟨b| ⊗

(
ΠC

b Qb |0⟩ ⟨0|Q†
b

)
= |1⟩ ⟨1| ⊗ |b⟩ ⟨b| ⊗Qb |0⟩ ⟨0|Q†

b,

where in the second “=” we use equations in (5). Combined with the equation (17), this proves
the equation (16), and in turn the item 2(b). ■

Corollary 21 (A restatement of Corollary 7) Suppose that the quantum bit commitment scheme
(Q0, Q1) is perfectly binding. A typical verification involving opening quantum bit commitments with
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a posterior measurement of the opening register is depicted in Figure 7. For the i-th (1 ≤ i ≤ m)
copy of the U sup

com, let ai and bi denote the bits (which can be computed from the opening information
d; recall the second remark in subsection 3.2) indicating whether the i-th quantum bit commitment
is to open and what value is to reveal, respectively. By introducing a commitment measurement on
the commitment register C prior to each copy the U sup

com, we obtain the quantum circuit depicted in
Figure 8. Then we have:

1. Perform the quantum circuit depicted in Figure 8 on an arbitrary quantum system. Condi-
tioned on acc = 1 and ai = 1, the revealed value bi should be the same as the outcome of the
corresponding commitment measurement.

2. If we perform the two quantum circuits depicted in Figure 7 respective Figure 8 on the same
system, then

(a) Pr[acc = 1 : Figure 7] = Pr[acc = 1 : Figure 8]. That is, introducing commitment
measurements will not change the success probability of the verification.

(b) conditioned on acc = 1 and a1 = a2 = · · · = am = 1, the two corresponding final states
of the system will be the same. That is, introducing commitment measurements will
not affect the post-verification state of the system conditioned on that the verification
succeeds and all quantum bit commitments are opened.

Proof: We introduce measurements of qubits okpred and all oki’s (1 ≤ i ≤ m) to both quantum
circuits depicted in Figure 7 and Figure 8; moreover, since now each qubit oki is measured, we can
simplify each copy of the U sup

com to V sup
com. (Recall the third remark in Subsection 3.2.) The resulting

quantum circuits are depicted in Figure 19 and Figure 20, respectively. When the quantum circuits
depicted in Figure 7 or Figure 8 are performed on an arbitrary system, since the event acc = 1
implies that okpred = 1 and ok1 = ok2 = · · · = okm = 1, Lemma 2 ensures that introducing
measurements as above will affect nothing conditioned on the event acc = 1 happening. Moreover,
since the opening register D is measured, combining the third remark in Subsection 3.2 and Lemma
2, we can assume without loss of generality that the control qubits A and B for each copy of the
V sup
com within the quantum circuits depicted in Figure 19 and Figure 20 are measured at moment

immediately after the corresponding V sup
com is performed. We thus suffice to prove that both items of

the corollary hold with respect to the quantum circuits depicted in Figure 19 and Figure 20, instead
of the ones depicted in Figure 7 and Figure 8, respectively. The benefit of introducing additional
measurements is so that we can prove the corollary using a simple hybrid argument together with
Lemma 6. Detail follows.

For the item 1 with respect to the quantum circuit depicted Figure 20, we can view each
copy of the V sup

com, together with the corresponding commitment measurement prior to it and the
measurements of its control bits A and B posterior to it, are performed one by one sequentially.
For the i-th such performance, applying the item 1 of Lemma 6 will yield that conditioned on
oki = 1 and ai = 1, the revealed value bi should be the same as the outcome of the corresponding
commitment measurement. Combined with the observation that acc = 1 implies oki = 1 for all i’s
where 1 ≤ i ≤ m, this proves the item 1.

For the item 2 with respect to the quantum circuits depicted in Figure 19 respective Figure
20, we use a simple hybrid argument. Specifically, we define the Hybrid 0 as the quantum circuit
depicted in Figure 19; the Hybrid i (1 ≤ i ≤ m) is obtained from the Hybrid i − 1 by additionally
performing the commitment measurement Π prior to the i-th copy of the V sup

com. It is easy to see
that the Hybrid m is just the quantum circuit depicted in Figure 8. It then suffice to prove that
the item 2 of the corollary hold with respect to Hybrid i and Hybrid i+ 1 for each i (1 ≤ i ≤ m).
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Figure 19: The quantum circuit obtained from the one depicted in Figure 7 by introducing more
measurements
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Figure 20: The quantum circuit obtained from the one depicted in Figure 8 by introducing more
measurements

Now let us fix an arbitrary i such that 0 ≤ i ≤ m−1. The Hybrid i can be viewed as proceeding
in two steps:

1. Perform the quantum circuit corresponding to the Hybrid i, with the (i + 1)-th copy of the
V sup
com as well as the measurements of its corresponding control bits A and B removed.

2. Perform the measurements removed in the first step.

Compared with the Hybrid i, the Hybrid i + 1 only differs in the second step, where an additional
commitment measurement Π is performed prior to the (i+1)-th copy of the V sup

com. Now we consider
the state of the quantum system at the end of the step 1 conditioned on okpred = 1 and each okj = 1
except for j = i+1. Then we plug the (i+1)-th copy of quantum registers (A, B, C, R) in Lemma
6, and apply the item 2(a) of Lemma 6 to finish the proof of the item 1 (i.e. the probabilities of
the event acc = 1 happening are the same if we perform the Hybrid i respective the Hybrid i + 1
on the same system); if we further condition on oki+1 = 1 and ai+1 = 1, then simply applying the
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item 2(b) of Lemma 6 will finish the proof of the item 2(b) (i.e. the final states are the same if we
perform the Hybrid i respective the Hybrid i+ 1 on the same system). ■

B.3 Omitted proofs in Subsection 4.3

Lemma 22 (A restatement of Lemma 8) Suppose that the quantum bit commitment scheme
(Q0, Q1) is statistically ϵ-binding. Then there exists a perfectly-binding scheme (Q̃0, Q̃1) which
approximates the scheme (Q0, Q1) in the following sense. Consider an arbitrary quantum security
game in which there are in total m (counted with repetitions12) quantum bit commitments opened.
Let ρ and ρ̃ be the output quantum states of the games when the schemes (Q0, Q1) and (Q̃0, Q̃1)
are used in opening quantum bit commitments, respectively. Then TD(ρ, ρ̃) ≤ 10m

√
ϵ.

Proof: To bound the perturbation incurred by replacing the scheme (Q0, Q1) with the scheme
(Q̃0, Q̃1) in the security game, we proceed in two steps:

1. Purify all (non-unitary) operations (if any) in the security game in the standard way;

2. Show that the operator norm of the difference between the unitary transformations induced
by the original purified game respective the perturbed one is statistically negligible.

For the step 1, by the quantum computational model we have chosen, the only possible non-
unitary operations appeared in any security game are projective measurements, which can be
purified in a standard way. In particular, similar to the U sup

com (illustrated in Figure 4) that is a
unitary simulation of the V sup

com (illustrated in Figure 2), we let the Ũ sup
com be a unitary simulation of

the Ṽ sup
com (illustrated in Figure 9) illustrated in Figure 21. Correspondingly, the expression of the

Ũ sup
com can be obtained by adapting the one for U sup

com (the equation (3)), which is given by

Ũ sup
com = (|0⟩ ⟨0|)A ⊗ 1BCR ⊗XO (18)

+ (|1⟩ ⟨1|)A ⊗
(
1B ⊗ UCRO

M|0⟩

)((
(|0⟩ ⟨0|)B ⊗ (Q†

0R
†
0)

CR + (|1⟩ ⟨1|)B ⊗ (Q†
1R

†
1)

CR
)
⊗ 1O

)
.

A • • • • •

B • •

C /

R†
0 Q†

0 R†
1 Q†

1
UM|0⟩R /

O ok

Figure 21: Quantum circuit Ũ sup
com that is a unitary simulation of Ṽ sup

com.

For the step 2, the (purified) quantum circuit corresponding the security game is only perturbed
at places where the quantum circuit U sup

com occurs. Since Ṽ sup
com is an approximation of V sup

com, it is not
hard to see that Ũ sup

com is also an approximation of U sup
com, as formally stated in the following claim.

Claim 23
∥∥∥U sup

com − Ũ sup
com

∥∥∥ ≤ 4
√
ϵ.

12We note that a quantum bit commitment may be opened several times in a sequence of verifications, e.g. referring
to Section 7.
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Proof: Plugging in equations (3) and (18),∥∥∥U sup
com − Ũ sup

com

∥∥∥ =
∥∥∥(|0⟩ ⟨0|)B ⊗Q†

0(1−R†
0) + (|1⟩ ⟨1|)B ⊗Q†

1(1−R†
1)
∥∥∥

≤
∥∥∥1−R†

0

∥∥∥+
∥∥∥1−R†

1

∥∥∥ .
Since the eigenvalues of the rotation by an angle θ are given by cos θ ± i sin θ, it follows that

the eigenvalues of 1−R†
b are 1− cos θb ± i sin θb, where b ∈ {0, 1}. Therefore,∥∥∥1−R†

b

∥∥∥ =

√
(1− cos θb)2 + sin2 θb =

√
2− 2 cos θb ≤

√
2− 2

√
1− ϵ ≤ 2

√
ϵ,

where in the first ”≤” we use the inequality (6). The claim then follows immediately. ■

In a purified security game in which at most m quantum bit commitments are opened, the
quantum circuit U sup

com is performed at most m times. Let PG and P̃G denote the quantum circuits
corresponding to the purified security game and the perturbed one, respectively. Combing Claim

23 and the triangle inequality of the operator norm, we know that
∥∥∥PG− P̃G

∥∥∥ ≤ 4m
√
ϵ.

Let |ψ⟩ and |ψ̃⟩ be the final states of the whole system corresponding to the purified security

game and the perturbed one, respectively. From the inequality
∥∥∥PG− P̃G

∥∥∥ ≤ 4m
√
ϵ, we know

that
∥∥ |ψ⟩ − |ψ̃⟩

∥∥ ≤ 4m
√
ϵ, hence

∣∣⟨ψ|ψ̃⟩∣∣ ≥ 1− 8m2ϵ. We thus have

TD(ρ, ρ̃) ≤ TD(|ψ⟩ , ˜|ψ⟩) = 2

√
1−

∣∣⟨ψ|ψ̃⟩∣∣2 ≤ 10m
√
ϵ.

This finishes the proof of the lemma. ■

Corollary 24 (A restatement of Corollary 9) Consider an arbitrary quantum security game
in which there are in total m (counted with repetitions) quantum bit commitments are opened and
which outputs just one classical bit. Let p0 and pϵ denote the probabilities of this classical bit being
one when a perfectly-binding and a statistically ϵ-binding quantum bit commitment schemes are
used, respectively. Then |pϵ − p0| ≤ 10m

√
ϵ.

Proof: Denote the statistically ϵ-binding quantum bit commitment scheme by (Q0, Q1) and its
approximation as guaranteed in Lemma 8 by (Q̃0, Q̃1). Note that the scheme (Q̃0, Q̃1) is perfectly
binding. Since the quantum security game outputs just a classical bit, it can be represented by a
mixed quantum state; denote this state by ρϵ and ρ0 when the schemes (Q0, Q1) and (Q̃0, Q̃1) are
used, respectively. Then

|pϵ − p0| = TD(ρϵ, ρ0) ≤ 10m
√
ϵ.

■

B.4 Omitted proofs in Subsection 4.4

Lemma 25 (A restatement of Lemma 10) Let X and Y be two Hilbert spaces. Unit vector
|ψ⟩ ∈ X ⊗ Y. Orthogonal projectors Γ1, . . . ,Γk perform on the space X ⊗ Y, and unitary trans-

formations U1, . . . , Uk perform on the space Y. If 1/k ·
∑k

i=1

∥∥Γi(Ui ⊗ 1X) |ψ⟩
∥∥2 ≥ 1 − η, where

0 ≤ η ≤ 1, then∥∥∥(U †
k ⊗ 1X)Γk(Uk ⊗ 1X) · · · (U †

1 ⊗ 1X)Γ1(U1 ⊗ 1X) |ψ⟩
∥∥∥ ≥ 1−

√
kη.
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Proof: From the assumption that 1/k ·
∑k

i=1 ∥ΓiUi |ψ⟩∥2 ≥ 1− η, we have

η ≥ 1− 1

k

k∑
i=1

∥ΓiUi |ψ⟩∥2 =
1

k

k∑
i=1

(
1− ∥ΓiUi |ψ⟩∥2

)
=

1

k

k∑
i=1

∥ΓiUi |ψ⟩ − Ui |ψ⟩∥2

=
1

k

k∑
i=1

∥∥∥U †
i ΓiUi |ψ⟩ − |ψ⟩

∥∥∥2 ,
where the second ”=” is by noting that 1− ∥ΓiUi |ψ⟩∥2 is equal to the square of the projection of
Ui |ψ⟩ on the subspace 1− Γi. Rearranging terms, we get

k∑
i=1

∥∥∥U †
i ΓiUi |ψ⟩ − |ψ⟩

∥∥∥2 ≤ kη. (19)

We claim that∥∥∥|ψ⟩ − (U †
kΓkUk) · · · (U †

1Γ1U1) |ψ⟩
∥∥∥2 ≤ k∑

i=1

∥∥∥U †
i ΓiUi |ψ⟩ − |ψ⟩

∥∥∥2 . (20)

If this is true, then combining inequalities (19) and (20), we have∥∥∥|ψ⟩ − (U †
1Γ1U1) · · · (U †

kΓkUk) |ψ⟩
∥∥∥ ≤

√
kη.

Applying the triangle inequality to the left hand side of the inequality above and rearranging terms,
we arrive at ∥∥∥(U †

1Γ1U1) · · · (U †
kΓkUk) |ψ⟩

∥∥∥ ≥ 1−
√
kη,

as desired.

We are left to prove the inequality (20), which will be done by induction on the k.
1. k = 1. The “=” of the inequality (20) holds trivially.

2. Suppose that the inequality (20) holds for k − 1. We prove that it also holds for the k.∥∥∥|ψ⟩ − (U †
kΓkUk) · · · (U †

1Γ1U1) |ψ⟩
∥∥∥2

=
∥∥∥|ψ⟩ − (U †

kΓkUk) |ψ⟩
∥∥∥2 + ∥∥∥(U †

kΓkUk) |ψ⟩ − (U †
kΓkUk) · · · (U †

1Γ1U1) |ψ⟩
∥∥∥2

≤
∥∥∥|ψ⟩ − (U †

kΓkUk) |ψ⟩
∥∥∥2 + ∥∥∥|ψ⟩ − (U †

k−1Γk−1Uk−1) · · · (U∗
1Γ1U1) |ψ⟩

∥∥∥2
≤

∥∥∥|ψ⟩ − (U †
kΓkUk) |ψ⟩

∥∥∥2 + k−1∑
i=1

∥∥∥U †
i ΓiUi |ψ⟩ − |ψ⟩

∥∥∥2
=

k∑
i=1

∥∥∥U †
i ΓiUi |ψ⟩ − |ψ⟩

∥∥∥2 .
where the first “=” follows from Pythagorean theorem by observing that subspaces U †

kΓkUk and

1− U †
kΓkUk are orthogonal; in the second “≤”, we use the induction hypothesis. This finishes the

proof of the inequality (20), and thus that of the lemma. ■
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