
The Direction of Updatable Encryption does not Matter Much

Yao Jiang

Norwegian University of Science and Technology, NTNU, Norway.
yao.jiang@ntnu.no

June 11, 2020

Abstract

Updatable encryption schemes allow for key rotation on ciphertexts. A client outsourcing storage
of encrypted data to a cloud server can change its encryption key. The cloud server can update the
stored ciphertexts to the new key using only a token provided by the client.

This paper solves two open problems in updatable encryption, that of uni-directional vs. bi-
directional updates, and post-quantum security.

The main result in this paper is to analyze the security notions based on uni- and bi-directional
updates. Surprisingly, we prove that uni- and bi-directional variants of each security notion are
equivalent.

The second result in this paper is to provide a new and highly efficient updatable encryption
scheme based on the Decisional Learning with Error assumption. This gives us post-quantum secu-
rity. Our scheme is bi-directional, but because of our main result, this is sufficient.

1

Contents

1 Introduction 3
1.1 Related Work . 4
1.2 Our Contributions . 5
1.3 Open Problems . 5
1.4 Organization . 5

2 Preliminaries 6
2.1 Notations . 6
2.2 Security Notions for Encryption Schemes . 6
2.3 Updatable Encryption . 7
2.4 Hardness Assumptions – Learning With Errors . 7
2.5 Leftover Hash Lemma . 8

3 Security Notions for Updatable Encryption 9
3.1 Notations of the Leakage Sets . 10
3.2 Six Variants of Security Notions . 12

4 Leakage Sets and Trivial Win Conditions 13
4.1 Epoch Leakage Sets of Keys, Tokens and Ciphertexts 13
4.2 Properties of Key Updates . 14
4.3 Trivial Win Conditions . 16

4.3.1 Checking Trivial Win Conditions at the End of a Game 16
4.3.2 Checking Trivial Win Conditions while Running a Game 17

4.4 Trivial Win Equivalences in the Uni- and Bi-Directional Update Setting 19

5 Relations between Security Notions 22
5.1 Relations between the Uni- and Bi-Directional Update Variants of Security Notions . . . 23
5.2 Relations between the No-Directional and the Directional Variants of Security Notions . 24

5.2.1 General Relations . 24
5.2.2 Relations between Confidentiality Notions . 24
5.2.3 Relations between Integrity Notions . 26

6 LWE-based PKE Scheme 28
6.1 PKE Construction . 28
6.2 Correctness and Security . 29

7 LWE-based Updatable Encryption Scheme 30
7.1 UE Construction . 30
7.2 Construction Challenges in LWE-based UE Schemes 30
7.3 Correctness . 31
7.4 Challenges of the Security Proof in LWE-based UE Schemes 32
7.5 Security . 33

7.5.1 Technical Simulations in the Proof . 33
7.5.2 LWEUE is randIND-UE-CPA . 33

7.6 Generic UE Constructions from PKE Schemes . 40

2

1 Introduction

Consider the following scenario: a client wishes to outsource data to a cloud storage provider with
a cryptoperiod (client key lifetime). The cryptoperiod is decided by the client or the cloud storage
provider or both. If the key lifetime is expired, the old key is no longer available for either encryption
or decryption, a new key must be used in the new cryptoperiod. However, the client might still want
to keep the data in the cloud storage in the new cryptoperiod and needs to update the data. The above
requirement implies a need to update ciphertext from the old key to the new key. During this process,
it is also reasonable to expect that no information of plaintexts are leaked while updating. Another
benefit to consider in such a scenario is that it can be used to protect the data and reduce the risk of key
compromise over time.

Key rotation is the process of generating a new key and altering ciphertexts from the old key to the
new key without changing the underlying massage.

Key rotation can be done by downloading the old ciphertext, decrypting with the old key, re-
encrypting with a new key and reuploading the new ciphertext. However, this is expensive. Updatable
encryption (UE) [BLMR13, EPRS17, LT18a, KLR19, BDGJ19, BEKS20] provides a better solution for
key rotation. A client generates an update token and send it to the cloud server, the cloud server can
use this update token to update the ciphertexts from the old key to the new key. In recent years there
has been considerable interest in understanding UE, including defining the security notions for UE and
constructing UE schemes (we make a detailed comparison of related work in Section 1.1).

Consider the following two variants of UE schemes: ciphertext-dependent schemes and ciphertext-
independent schemes. If the generation of update token depends on the ciphertext to be updated then
the UE scheme is ciphertext-dependent. In ciphertext-dependent schemes, the updating process of a
ciphertext requires a specific token which forces the client to download the old ciphertext before this
token can be generated. Therefore, ciphertext-dependent schemes are less practical. If the token is
independent of the old ciphertext then the UE scheme is ciphertext-independent. Hence, a single token
can be used to update all ciphertexts a client owns. As ciphertext-independent schemes are considerably
more efficient than ciphertext-dependent schemes, in terms of bandwidth, most recent works [BLMR15,
LT18a, KLR19, BDGJ19] focus on ciphertext-independent schemes. In this paper, we will focus on
such schemes.

Consider the following four variants of update setting for ciphertext-independent UE schemes: uni-
directional ciphertext updates, bi-directional ciphertext updates, uni-directional key updates and bi-
directional key updates. If the update token can only move ciphertexts from the old key to the new
key then ciphertext updates in such UE schemes are uni-directional. If the update token can additionally
downgrade ciphertexts from the new key to the old key then ciphertext updates in such UE schemes are
bi-directional. On the other hand, the update token can potentially be used to derive keys from other keys.
In the uni-directional key update setting, the update token can only infer the new key from the old key.
While in the bi-directional key update setting, the update token can both upgrade and downgrade keys.
Prior works [BLMR15, LT18a, KLR19, BDGJ19] focus on UE schemes with bi-directional updates, and
no security notion was introduced in uni-directional update setting. We close this gap. Intuitively, UE
schemes with uni-directional updates are desirable, such schemes leak less ciphertext/key information
to an adversary compared to schemes with bi-directional updates. In this paper, we analyze the relation-
ship between security notions with uni- and bi-directional updates. We show that the (confidentiality
and integrity) security of UE schemes are not influenced by uni- or bi-directional updates.

No-directional key updates is another key update setting to consider, where the update token cannot
be used to derive keys. We show that the security notion in such key update setting is strictly stronger
than the same security notion with uni- and bi-directional updates.

While the study of security notions appears promising, existing ciphertext-independent UE schemes
are either vulnerable to quantum computers or only achieve weak security. The schemes of Lehmann
and Tackmann [LT18a], Klooß et al. [KLR19] and Boyd et al. [BDGJ19] base their security on the
DDH problem, and thus are only secure in the classical setting. Boneh et al. [BLMR13] constructed key

3

homomorphic PRFs, based on the learning with errors (LWE) problem, and it can be used to construct
UE schemes. However, all of these schemes of Boneh et al. [BLMR13] cannot achieve any strong
security.

In this work, we construct a post-quantum secure UE scheme and the security of our construction
is based on hard lattice problems. In particular, our scheme provides the randIND-UE-CPA security
(introduced in [BDGJ19]).

Efficiency. All of the previous known ciphertext-independent UE schemes with security proofs (RISE,
E&M, NYUE (NYUAE), SHINE) have computation cost that are comparable to PKE schemes that rely
on the DDH problem, while our scheme has a computation cost that is comparable to PKE schemes that
rely on lattice problems.

1.1 Related Work

Security Notions. Boneh et al. [BLMR13] introduced a security definition for UE, however, this no-
tion is less adaptive than the later works [LT18a, KLR19, BDGJ19] which allows the adversary to
adaptively corrupt epoch keys and update tokens at any point in the game.

In the ciphertext-dependent setting, Everspaugh et al. [EPRS17] provided two security notions, a
weak form of ciphertext integrity and re-encryption indistinguishability, that strengthen the security
notion in [BLMR13]. Recently, Boneh et al. [BEKS20] introduced new definitions for updatable en-
cryption in the ciphertext-dependent setting to further strengthen the confidentiality property and the
integrity definition in [EPRS17]. Boneh et al. [BEKS20] stated that for authenticated updatable encryp-
tion schemes it is necessary to expect that ciphertexts will not reveal how many times they have been
updated, which was a desired property independently presented in [BDGJ19].

Lehmann and Tackmann [LT18a] introduced two notions to achieve CPA security for ciphertext-
independent UE schemes. Their IND-ENC notion requires that ciphertexts output by the encryption
algorithm are indistinguishable from each other. Their IND-UPD notion ensures ciphertexts output by
the update algorithm are indistinguishable from each other.

Klooß et al. [KLR19] attempted to provide stronger security notions for ciphertext-independent UE
than LT18, specifically, CCA security and integrity protection.

Boyd et al. [BDGJ19] provided a new notion IND-UE which states that a ciphertext output by the
encryption algorithm is indistinguishable from a ciphertext output by the update algorithm. They showed
that the new notion is strictly stronger than any combinations of prior notions, both under CPA and CCA.
They also tweak the CTXT and CCA notions in [KLR19] and showed the following generic composition
result: CPA + CTXT =⇒ CCA.

Constructing Ciphertext-Independent Updatable Encryption Schemes. The UE scheme BLMR
in [BLMR13] is an application of key homomorphic PRFs, however, the encrypted nonce in the cipher-
text can be decrypted by an update token which makes it impossible for BLMR to achieve IND-UPD.

In the classical setting, RISE in [LT18a] is built from (public-key) ElGamal encryption, which only
uses the public key in the update token. The security of RISE is based on the DDH assumption. Klooß
et al. [KLR19] provided two generic constructions, based on encrypt-and-MAC (E&M) and the Naor-
Yung paradigm (NYUE and NYUAE). The security of E&M is based on the DDH assumption, and the
security of NYUE and NYUAE are based on the SXDH assumption. Boyd et al. [BDGJ19] constructed
three permutation-based UE schemes, SHINE, which achieves strong security notions based on DDH.

Post-Quantum Secure Schemes. In the past decade, much work has been done on constructing
lattice-based post-quantum secure PKE schemes, specifically the NIST Post-Quantum Standardization
Project, round 2, submissions: CRYSTALS-KYBER [ABD+b], FrodoKEM [ABD+a], LAC [LLJ+],
NewHope [ADPS16], NTRU [CDH+, BCLvV17], Round5 [OZS+], SABER [DKSRV18] and Three
Bears [Ham]. A natural question is if we can turn a PKE scheme into an UE scheme, where the security

4

of the UE follows from the PKE. We provide a specific UE scheme, that is built form a PKE scheme,
and prove the security, and we give a generic construction that abstracts both our construction and RISE.

1.2 Our Contributions

Our first contribution is defining six variants of security notions (a combination of three versions of key
updates and two versions of ciphertext updates) for updatable encryption and analyzing the relations
among these six variants of the same notion.

Our main result is that we demonstrate that our security notions with uni- and bi-directional updates
are equivalent. When we analyze the security, we can treat UE schemes with uni-directional updates
as with bi-directional updates, the security will not be influenced by the update direction. This means
that UE schemes with uni-directional updates will not provide more security than UE schemes with bi-
directional updates. This is a surprising result.1 This result implies that the search for uni-directional
updatable encryption scheme seems less important.

Furthermore, we show that security notions with no-directional key updates are strictly stronger
than uni- and bi- directional update variants of the corresponding notions. Finding UE schemes with
no-directional key updates would be good, but it is much more challenge than finding UE schemes with
uni-directional key updates (which is already believed to be difficult). We leave this as an open problem.

Our second major contribution is constructing an efficient post-quantum secure UE scheme. We
analyze how to construct LWE-based updatable encryption schemes and provide one construction. Our
construction follows the re-randomization idea of RISE, using public key in the update token to update
ciphertexts. We build a suitable post-quantum secure PKE scheme to construct our UE scheme so that
the encryption and update algorithms can use a public key as input instead of the secret key. We also
show the difficulties of turning a PKE scheme into an UE scheme.

We show that our LWE-based UE scheme is randIND-UE-CPA secure under the DLWE assumption.
In the randomized update setting, we show the difference between previous work (RISE, NYUE,NYUAE)
and our scheme, and state that the method used in proving the security of LWE-based updatable encryp-
tion scheme is different from the previous approach.

1.3 Open Problems

Ideally we want UE schemes with no-directional key updates, no such UE schemes have been con-
structed so far. Whether such UE schemes exist and how to construct such UE schemes are still open
problems.

Furthermore, not that many efficient UE schemes with strong security exist so far. It remains an
open challenge to construct UE schemes with chosen ciphertext2 post-quantum security.

1.4 Organization

We provide preliminaries and notations in Section 2. In Section 3 we define the six variants of security
notions for UE schemes. In Section 4 we analyze the trivial win conditions in security notions, which
will be used to prove the relations among the six variants of security notions in Section 5.

1It is possible to construct a scenario where this result will not be true. Let’s assume there exists an UE scheme with a
leakage function that helps the adversary win the security game. This leakage function could, for example, give the adversary
information about plaintexts when it knows enough keys. In this scenario, an UE scheme with uni-directional updates has
better security than an UE scheme with bi-directional updates. Because the scheme with uni-directional updates has less key
leakage and the leakage function provides less data to the adversary. However, this and similar constructions cannot capture
the security we wish to have for UE schemes. In terms of the security expectation of key rotation, the keys used in the past
should not reveal any data.

For constructions that do follow the security model and update mechanism for UE schemes, we have this surprising result.
2It is ideal to achieve detIND-UE-CCA security for UE schemes with deterministic updates and to achieve INT-PTXT and

randIND-UE-CCA security for UE schemes with randomized updates.

5

In Section 6 we construct a LWE-based PKE scheme LWEPKE and prove that it is secure, this PKE
scheme will be used to construct an UE scheme. We then construct a LWE-based UE scheme LWEUE
in Section 7, and include the restrictions we encountered when constructing a secure UE scheme from a
PKE scheme.

2 Preliminaries

2.1 Notations

Let λ be the security parameter throughout the paper. Let negl denote as a negligible function. The
notation X

s
≈ Y (X

c
≈ Y , resp.) means X is statistically indistinguishable (computationally indistin-

guishable, resp.) from Y . Let U(S) denote the uniform distribution over set S.

2.2 Security Notions for Encryption Schemes

We describe the real or random variant of indistinguishability under chosen-plaintext attack (IND$-CPA)
for public key encryption (PKE) and symmetric key encryption (SKE). Note that IND$-CPA implies
IND-CPA.

Definition 1. [The IND$-CPA notion for PKE] Let PKE = (PKE.KG,PKE.Enc, PKE.Dec) be a public
key encryption scheme. The IND$-CPA advantage of any adversary A against PKE is

AdvIND$-CPA
PKE, A (1λ) =

∣∣∣Pr[ExpIND$-CPA-1
PKE, A = 1]− Pr[ExpIND$-CPA-0

PKE, A = 1]
∣∣∣ ,

where the experiment ExpIND$-CPA-b
PKE, A is given in Figure 1.

Definition 2. [The IND$-CPA notion for SKE] Let SKE = (SKE.KG, SKE.Enc, SKE.Dec) be a sym-
metric key encryption scheme. The IND$-CPA advantage of any adversary A against SKE is

AdvIND$-CPA
SKE, A (1λ) =

∣∣∣Pr[ExpIND$-CPA-1
SKE, A = 1]− Pr[ExpIND$-CPA-0

SKE, A = 1]
∣∣∣ ,

where the experiment ExpIND$-CPA-b
SKE, A is given in Figure 2.

ExpIND$-CPA-b
PKE, A :

(s,p)← PKE.KG
(m, state)← A(p)
if b = 0 then
c← PKE.Enc(p,m)

else
c

$←− CS
b′ ← A(state, c)
return b′

Figure 1: The experiment ExpIND$-CPA-b
PKE, A for a

PKE scheme PKE.

ExpIND$-CPA-b
SKE, A :

s← SKE.KG
(m, state)← A(1λ)
if b = 0 then
c← SKE.Enc(s,m)

else
c

$←− CS
b′ ← A(state, c)
return b′

Figure 2: The experiment ExpIND$-CPA-b
SKE, A for a

SKE scheme SKE.

Definition 3. [Correctness of a PKE] Let PKE = (PKE.KG,PKE.Enc,PKE.Dec) be a public key en-
cryption scheme. We say PKE has (1−ε)-correctness if: for any message m, any key (s,p)← PKE.KG

Pr[PKE.Dec(s,PKE.Enc(p,m)) = m] ≥ 1− ε.

6

2.3 Updatable Encryption

Updatable encryption (UE) scheme is parameterized by a tuple of algorithms {UE.KG,UE.TG,UE.Enc,
UE.Dec,UE.Upd} that operate in epochs, the epoch starts at 0. The key generation algorithm UE.KG
outputs an epoch key ke. The token generation algorithm UE.TG takes as input two epoch keys ke and
ke+1 and outputs an update token ∆e+1, the update token can be used to move ciphertexts from epoch e
to e+ 1. The encryption algorithm UE.Enc takes as input an epoch key ke and a message m and outputs
a ciphertext ce. The decryption algorithm UE.Dec takes as input an epoch key ke and a ciphertext ce
and outputs a message m′. The update algorithm UE.Upd takes as input an update token ∆e+1 and a
ciphertext ce from epoch e and outputs an updated ciphertext ce+1.

We stress that an update token can be computed via two consecutive epoch keys by token generation
algorithm in this paper.

In the updatable encryption setting, the total number of epoch will be a comparatively small integer
in practice, we consider the total number of epoch to be bounded in this paper. In particular, we denote
l as an upper bound on the last epoch.

Definition 4 (Correctness of an UE). Let UE = {UE.KG,UE.TG,UE.Enc, UE.Dec,UE.Upd} be an
updatable encryption scheme. We say UE has (1− ε)-correctness if: for any message m and any epochs
e1 ≤ e2 ≤ l, we have

Pr[UE.Dec(ke2 , ce2) = m] ≥ 1− ε,

where ke1 , ...,ke2
$←− UE.KG(1λ), ce1

$←− UE.Enc(ke1 ,m), and

∆j ← UE.TG(kj−1,kj), cj ← UE.Upd(∆j , cj−1), for j ∈ {e1 + 1, ..., e2}.

2.4 Hardness Assumptions – Learning With Errors

Regev [Reg05] introduced the learning with error (LWE) problem, where is as follows. For a secret
element s and an error distribution X , the problem is to distinguish m pairs (ai,ai · s + ei) from
uniformly random pairs, where ai are uniformly random elements and the eis are sampled from the
error distribution X .

Definition 5. [Learning With Errors] Let n, q = q(n) ≥ 2, m = poly(n) be positive integers, X =
X (n) be an error distribution over Z. The decision learning with errors problem DLWEn,q,X is to
distinguish between the following pairs of distributions: {A,A · s + e mod q} and {A,u}, where

A
$←− Zm×nq , s $←− Znq , e← Xm and u

$←− Zmq . The advantage of an adversary A against DLWEn,q,X is
defined as

AdvDLWE
n,q,X (A) =

∣∣Pr[s
$←− Znq ,A

$←− Zm×nq , e← Xm : A(A,A · s + e mod q) = 1]

−Pr[A
$←− Zm×nq ,u

$←− Zmq : A(A,u) = 1]
∣∣.

We say that the DLWEn,q,X problem is hard if AdvDLWE
n,q,X (A) is negligible for any PPT adversary A.

Regev [Reg05] showed that, for some parameter setting, LWE problem is as hard as some hard
lattice problem, namely the worst-case SIVP and GapSVP, under a quantum reduction.

Another variant of the LWE problem is described in the work of Peikert et al. [PVW08], where

secret key s is not a vector but a randomly chosen matrix. Specifically, A $←− Zm×nq , S $←− Zn×lq and

E← Xm×l, the problem is to distinguish {A,A ·S+E} from {A,U}, where U $←− Zm×lq . We denote
this problem as DLWEn,l,q,X . Peikert et al. [PVW08, Lemma 7.3] proved that DLWEn,l,q,X is hard if
DLWEn,q,X is hard.

7

Gaussian Distribution. Let DZn,α denote the n-dimensional discrete Gaussian distribution with stan-
dard deviation α. We let DLWEn,q,α denote the LWE problem DLWEn,q,DZn,α using a (discrete) Gaus-
sian distribution as the error distribution.

The following three lemmas regarding discrete Gaussian distribution we will frequently use in this
paper. The first lemma states that the discrete Gaussian distribution is spherical. The second lemma
shows the discrete Gaussian distribution is statistical close to its (short distance) translated discrete
Gaussian distribution. The third lemma describes the sum of two discrete Gaussian distributions is
statistical close to another discrete Gaussian distribution.

Lemma 2.1. [Brakerski and Vaikuntanathan [BV11]] Let n ∈ N. For any real number α = ω(
√

log n),
we have Pr[‖x‖ > α ·

√
n | x← DZn,α] ≤ 2−n+1.

Lemma 2.2. [Brakerski and Vaikuntanathan [BV11]] Let n ∈ N. For any real number α = ω(
√

log n),
any c ∈ Zn, then the statistical distance between DZn,α and DZn,α,c is at most ‖c‖/α.

Lemma 2.3. [Gentry [Gen09]] Let n ∈ N. For any real number α, β > 0 satisfies (αβ)/
√
α2 + β2 =

ω(
√

log n), then DZn,α +DZn,β (and DZn,α −DZn,β) is statistical to DZn,
√
α2+β2 .

Next we show a lemma that states that if a LWE problem with small standard deviation is hard, then
the corresponding LWE with a big standard deviation is hard.

Lemma 2.4. Let n ∈ N. For any real number α, β > 0 satisfies α/β = negl(n) then for any adversary
A against DLWEn,q,β , there exists an adversary B against DLWEn,q,α such that

AdvDLWE
n,q,β (A) ≤ AdvDLWE

n,q,α (B) + negl(n).

Proof. We construct a reduction B plays DLWEn,q,α game by running adversaryA. When the reduction
receives a DLWEn,q,α pair (A,p), it samples a big error e′ ← Dm

Z,β and sends (A,p + e′ mod q) to
A. If (A,p) is a real DLWEn,q,α sample, by Lemma 2.2, we have (A,p+e′ mod q) is statistical close
to a real DLWEn,q,β sample. If (A,p) is a random DLWEn,q,α sample, then (A,p + e′ mod q) is a
random DLWEn,q,β sample as well. So the reduction B perfectly simulate DLWEn,q,β game to A except
for a negligible probability.

2.5 Leftover Hash Lemma

We use a variant of Leftover Hash Lemma, showed by Goldwasser et al. [GKPV10]. We will use this
lemma to prove our LWE-based PKE scheme is IND$-CPA-secure in Section 6.

Lemma 2.5. [Leftover Hash Lemma] Let D be a distribution over Znq with min-entropy k. For any
ε > 0 and l ≤ (k − 2 log(1/ε) − O(1))/ log(q), the joint distribution of (C,Cs) is ε-close to the

uniform distribution over Zl×nq × Zlq, where C
$←− Zl×nq and s← D.

We prove that when we reuse C to generate t samples, the above result is still hold.

Lemma 2.6. [Matrix Variant of Leftover Hash Lemma] Let D be a distribution over Znq with min-
entropy k. For any ε > 0 and l ≤ (k − 2 log(1/ε) − O(1))/ log(q), the joint distribution of (C,C · S)

is tε-close to the uniform distribution over Zl×nq × Zl×tq , where C
$←− Zl×nq and S← Dt.

Proof. The proof method is the same as the proof of Lemma 7.3 stated by Peikert et al. [PVW08].
Consider hybrid distributions H0, H1, ..., Ht for the pair (C,B): in Hi the entire matrix C and the first
i columns of B are all uniformly random. Then H0 is the joint distribution of (C,C · S), Ht is the
uniform distribution over Zl×nq × Zl×tq .

Hence,∣∣Pr[(C,B)← H0 : A(C,B) = 1]−Pr[(C,B)← Ht : A(C,B) = 1]
∣∣

≤
∑

1≤i≤t

∣∣Pr[(C,B)← Hi−1 : A(C,B) = 1]−Pr[(C,B)← Hi : A(C,B) = 1]|.

8

We construct a reduction B trying to simulate distribution Hi−1 or Hi by contacting with an oracle
O. The oracle O returns a sample either from the distribution of (C,C · s) or the uniform distribution
over Zl×nq × Zlq, where s is chosen from D. B simulates a distribution in the following way:

1. B queries oracle O to obtain a sample (C,p), sets pi ← p.

2. For j > i, B samples sj ← D and computes pj ← C · sj .

3. For j < i, B samples pj
$←− Zlq.

4. B sets pj as the j-th column of B.

5. B outputs (C,B).

Note that B can perfectly simulate the distribution Hi−1 if it receives a sample from the distribution
of (C,C · s), that is Pr[(C,B) ← Hi−1 : A(C,B) = 1] = Pr[(C,C · s) ← O : B(C,C · s) = 1].
Otherwise, B can perfectly simulate the distribution Hi, that is Pr[(C,B) ← Hi : A(C,B) = 1] =
Pr[(C,u)← O : B(C,u) = 1].

3 Security Notions for Updatable Encryption

Klooß et al. [KLR19] and Boyd et al. [BDGJ19] defined the confidentiality and the integrity notions for
updatable encryption schemes using experiments that are running between an adversary and a challenger.
In each experiment, the adversary may send a number of oracle queries. The main differences between
an experiment running the confidentiality game and one running the integrity game are the challenge and
win condition. In the confidentiality game, the adversary tries to distinguish a fresh encryption from an
updated ciphertext. In the integrity game, the adversary attempts to provide a valid forgery. At the end
of an experiment the challenger evaluates whether or not the adversary wins, if a trivial win condition
was triggered the adversary will always lose.

We follow the notation of security notions from Boyd et al. [BDGJ19]. An overview of the oracles
the adversary has access to in each security game is given in Fig. 3. A generic description of all confi-
dentiality experiments and integrity experiments described in this paper is detailed in Fig. 4 and Fig. 5,
resp.. Our oracle algorithms, see Fig. 6, are stated differently than in [BDGJ19] and [KLR19], however,
conceptually they are the same. The oracles we use in our security games are as follows, encryptO.Enc,
decryptO.Dec, move to the next epochO.Next, update ciphertextO.Upd, corrupt key or tokenO.Corr,
ask for the challenge ciphertext O.Chall, get an updated version of the challenge ciphertext O.UpdC̃,
or test if a ciphertext is a valid forgery O.Try. The detailed discussion of trivial win conditions are
discussed in Section 4.

Notions O.Enc O.Dec O.Next O.Upd O.Corr O.Chall O.UpdC̃ O.Try
detIND-UE-CPA X × X X X X X ×
randIND-UE-CPA X × X X X X X ×
detIND-UE-CCA X X X X X X X ×
randIND-UE-CCA X X X X X X X ×
INT-CTXT X × X X X × × X
INT-PTXT X × X X X × × X

Figure 3: Oracles given to the adversary in different security games for updatable encryption schemes.
× indicates the adversary does not have access to the corresponding oracle, X indicates the adversary
has access to the corresponding oracle.

9

ExpxxIND-UE-atk-b
UE, A :

do Setup; phase← 0
b′ ← Aoracles(1λ)

if
(

(K∗ ∩ C∗ 6= ∅) or
(
xx=det and

(ẽ∈T ∗ or O.Upd(c̄) is queried)
))

then
twf ← 1

if twf = 1 then
b′

$←− {0, 1}
return b′

Figure 4: Generic description of the confidentiality
experiment ExpxxIND-UE-atk-b

UE, A for updatable encryp-
tion scheme UE and adversaryA, for xx ∈ {det, rand}
and atk ∈ {CPA,CCA}. The flag phase tracks
whether or not A has queried the O.Chall oracle, ẽ
denotes the epoch in which the O.Chall oracle hap-
pens, and twf tracks if the trivial win conditions are
triggered. Fig. 3 shows the oracles the adversary have
access to in a specific security game. How to compute
the leakage setsK∗, T ∗, C∗ are discussed in Section 4.

ExpINT-atk
UE, A

do Setup; win← 0
Aoracles(1λ)
if twf = 1 then
win← 0

return win

Figure 5: Generic description of the in-
tegrity experiment ExpINT-atk

UE, A for updatable
encryption scheme UE and adversary A, for
atk ∈ {CTXT,PTXT}. The flag win tracks
whether or not the adversary provided a valid
forgery and twf tracks if the trivial win con-
ditions are triggered. Fig. 3 shows the ora-
cles the adversary have access to in a specific
security game.

For the confidentiality game we have the following additional definitions that we will frequently use.
While the security game is running, the adversary may queryO.Enc orO.Upd oracles or corrupt tokens
to know some (updated) versions of ciphertexts, we call them non-challenge ciphertexts. In addition,
the adversary may query O.Chall or O.UpdC̃ oracles or corrupt tokens to infer some (updated) versions
of the challenge ciphertext, we call them challenge-equal ciphertexts.

3.1 Notations of the Leakage Sets

In this section, we describe the definition of leakage sets given by [LT18a] and [KLR19], these sets will
later be used to check whether the leaked information will allow the adversary trivially win the security
game. We analyze the properties of leakage sets and trivial win conditions in Section 4.

Epoch Leakage Sets. We use the following sets that track epochs in which the adversary corrupted a
key or a token, or learned a version of challenge-ciphertext.

• K: Set of epochs in which the adversary corrupted the epoch key (from O.Corr).

• T : Set of epochs in which the adversary corrupted the update token (from O.Corr).

• C: Set of epochs in which the adversary learned a challenge-equal ciphertext (from O.Chall or
O.UpdC̃).

We use K∗, T ∗ and C∗ as the extended sets of K, T and C in which the adversary has learned or
inferred information via its known tokens. We show how to compute K∗, T ∗ and C∗ in Section 4.1.

Information Leakage Sets. We use the following sets to track ciphertexts and their updates that can
be known to the adversary.

• L: Set of non-challenge ciphertexts (c, c, e;m), where query identifier c is a counter incremented
with each new O.Enc query. The adversary learned these ciphertexts from O.Enc or O.Upd.

10

Setup(1λ)

k0
$←− UE.KG(1λ)

∆0 ←⊥; e, c, twf ← 0
L, L̃, C,K, T ← ∅

O.Enc(m) :
c← c + 1

c
$←− UE.Enc(ke,m)

L←L∪{(c, c, e;m)}
return c

O.Dec(c) :
m′ or ⊥ ← UE.Dec(ke, c)

if
(

(xx = det and (c, e) ∈ L̃∗) or

(xx = rand and (m′, e) ∈ Q̃∗)
)

then
twf ← 1

return m′ or ⊥

O.Next() :
e← e + 1

ke
$←− UE.KG(1n)

∆e←UE.TG(ke-1,ke)
if phase = 1 then
c̃e ← UE.Upd(∆e, c̃e-1)

O.Upd(ce−1) :
if (j, ce−1, e− 1;m) /∈ L then

return ⊥
ce ← UE.Upd(∆e, ce−1)
L ← L ∪ {(j, ce, e;m)}
return ce

O.Corr(inp, ê) :
if ê > e then

return ⊥
if inp = key then
K ← K ∪ {ê}
return kê

if inp = token then
T ← T ∪ {ê}
return ∆ê

O.Chall(m̄, c̄) :
if phase = 1 then

return ⊥
phase← 1; ẽ← e
if (·, c̄, ẽ− 1; m̄1) /∈ L then

return ⊥
if b = 0 then
c̃ẽ ← UE.Enc(kẽ, m̄)

else
c̃ẽ ← UE.Upd(∆ẽ, c̄)
C ← C ∪ {ẽ}
L̃ ← L̃ ∪ {(c̃ẽ, ẽ)}
return c̃ẽ

O.UpdC̃ :
if phase 6= 1 then

return ⊥
C ← C ∪ {e}
L̃ ← L̃ ∪ {(c̃e, e)}
return c̃e

O.Try(c̃) :
m′ or ⊥ ← UE.Dec(ke, c̃)

if
(
e ∈ K∗ or (atk = CTXT and (c̃, e) ∈ L∗) or

(atk = PTXT and (m′, e) ∈ Q∗)
)

then
twf ← 1

if m′ 6= ⊥ then
win← 1

Figure 6: Oracles in security games for updatable encryption. How to compute the leakage sets
K∗, T ∗, C∗, L̃∗, Q̃∗,L∗,Q∗ are discussed in Section 4.

11

• L̃: Set of challenge-equal ciphertexts (c̃e, e). The adversary learned these ciphertexts fromO.Chall
or O.UpdC̃.

In the deterministic update setting, we use L∗ and L̃∗ as the extended (ciphertext) sets of L and L̃ in
which the adversary has learned or inferred ciphertexts via its known tokens. In particular, we only use
partial information of L∗: the ciphertext and the epoch. Hence, we only track the set L∗ = {(c, e)}.

In the randomized update setting, we useQ∗ and Q̃∗ as the extended (plaintext) sets of L and L̃, that
contains messages that the adversary can provide a ciphertext of - i.e. a forgery. Similarly, only partial
information is needed: the plaintext and the epoch. Hence, we track sets Q∗ and Q̃∗ as follows.

• Q∗: Set of plaintexts (m, e). The adversary learned or was able to create a ciphertext in epoch e
with the underlying message m.

• Q̃∗: Set of challenge plaintexts {(m̄, e), (m̄1, e)}, where (m̄, c̄) is the input of challenge query
O.Chall and m̄1 is the underlying message of c̄. The adversary learned or was able to create a
challenge-equal ciphertext in epoch e with the underlying message m̄ or m̄1.

Remark 3.1. Based on the definition of these sets, we have

a. (c̃e, e) ∈ L̃ ⇐⇒ e ∈ C,

b. (c̃e, e) ∈ L̃∗ ⇐⇒ e ∈ C∗ ⇐⇒ (m̄, e), (m̄1, e) ∈ Q̃∗.
We will discuss how to compute L∗, L̃∗, Q∗ and Q̃∗ in Section 4.3.

3.2 Six Variants of Security Notions

The Uni- and Bi-Directional Update Variants of Security Notions. In the uni-directional key update
setting, an update token can only derive the new key from the old key. In the bi-directional key update
setting, an update token can additionally derive the old key from the new key. Similar derivation is
considered for ciphertext updates. In schemes with uni-directional ciphertext updates, an update token
can move ciphertexts from the old key to the new key. In schemes with bi-directional ciphertext updates,
an update token can additionally downgrade ciphertexts from the new key to the old key.

The No-Directional Key Update Variants of Security Notions. We denote a key update setting, for
an UE scheme, as no-directional key update setting if an update token cannot up or downgrade any epoch
keys. In other words, UE schemes with no-directional key updates satisfies K∗ = K.

An UE scheme with optimal leakage, discussed in [LT18a], is a scheme where no token inference
(no token can be inferred via keys), keys cannot be updated via a token, and ciphertext updates are only
uni-directional. We do not consider no token inference, instead in this work an update token can be
computed via two consecutive epoch keys. We will show that the security of an UE scheme is strictly
stronger if the key update setting is no-directional.

For kk ∈ {no, uni, bi} and cc ∈ {uni, bi}, we define (kk, cc)- variants of security notions, where kk
refers to UE schemes with kk-directional key updates and cc to cc-directional ciphertext updates. We
will compare the relationship between all these variants of each security notion in Section 5.1.

Definition 6 (The (kk, cc)- variant of confidentiality notions). Let UE = {UE.KG, UE.TG,UE.Enc,
UE.Dec,UE.Upd} be an updatable encryption scheme. Then the (kk, cc)-notion advantage, for kk ∈
{no, uni, bi}, cc ∈ {uni, bi} and notion ∈ {detIND-UE-CPA, randIND-UE-CPA, detIND-UE-CCA,
randIND-UE-CCA}, of an adversary A against UE is defined as

Adv
(kk,cc)-notion
UE, A (1λ) =

∣∣∣Pr[Exp
(kk,cc)-notion-1
UE, A = 1]−Pr[Exp

(kk,cc)-notion-0
UE, A = 1]

∣∣∣,
where the experiment Exp

(kk,cc)-notion-b
UE, A is the same as the experiment Expnotion-b

UE, A (see Fig. 4 and
Fig. 6) except for all leakage sets are both in the kk-directional key update setting and cc-directional
ciphertext update setting.

12

Remark 3.2. We compute all leakage sets with kk-directional key updates and cc-directional ciphertext
updates in Section 4.

Remark 3.3. The security notion RCCA, which we denote as randIND-UE-CCA, is from [KLR19]. In
our definition of this notion is stronger - the adversary has fewer trivial win restrictions - we discuss this
difference in Remark 4.3.

Definition 7 (The (kk, cc)- variant of integrity notions). Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd}
be an updatable encryption scheme. Then the (kk, cc)-notion advantage, for kk ∈ {no, uni, bi}, cc ∈
{uni, bi} and notion ∈ {INT-CTXT, INT-PTXT}, of an adversary A against UE is defined as

Adv
(kk,cc)-notion
UE, A (1λ) = Pr[Exp

(kk,cc)-notion
UE, A = 1],

where the experiment Exp
(kk,cc)-notion
UE, A is the same as the experiment Expnotion

UE, A (see Fig. 5 and Fig. 6)
except for all leakage sets are both in the kk-directional key update setting and cc-directional ciphertext
update setting.

4 Leakage Sets and Trivial Win Conditions

4.1 Epoch Leakage Sets of Keys, Tokens and Ciphertexts

We follow the bookkeeping techniques and notations of Lehmann and Tackmann [LT18a]. Suppose a
security game ends at epoch l, then, for any sets K, T , C ⊆ {0, ..., l}, the following algorithms show
how to compute the extended sets K∗, T ∗ and C∗ in different update settings.

Key Leakage. The adversary learned all keys in epochs in K. In the no-directional key update setting,
the adversary does not have more information about keys except for this set. In the uni-directional key
update setting, if the adversary knows a key ke and an update token ∆e+1 then it can infer the next
key ke+1. In the bi-directional key update setting, the adversary can additionally downgrade a key by a
known token. In the kk-directional key update setting, for kk ∈ {no, uni, bi}, denote the set K∗kk as the
extended set of corrupted key epochs. We compute these sets as follows.

No-directional key updates: K∗no = K.
Uni-directional key updates:

K∗uni ← {e ∈ {0, ..., l}|CorrK(e) = true}
true← CorrK(e) ⇐⇒ (e ∈ K) ∨ (CorrK(e-1) ∧ e ∈ T). (1)

Bi-directional key updates:

K∗bi ← {e ∈ {0, ..., l}|CorrK(e) = true}
true← CorrK(e) ⇐⇒

(e ∈ K) ∨ (CorrK(e-1) ∧ e ∈ T) ∨ (CorrK(e+1) ∧ e+1 ∈ T). (2)

Token Leakage. A token is known to the adversary is either a corrupted token or a token inferred from
two consecutive epoch keys, so the extended set of corrupted token epochs is computed by information
in set T and set K∗kk. The set K∗kk is computed as above depending on the key updates is no- or uni- or
bi-directional. Hence, we denote T ∗kk as the extended set of corrupted token epochs.

T ∗kk ← {e ∈ {0, ..., l}|(e ∈ T) ∨ (e ∈ K∗kk ∧ e-1 ∈ K∗kk)}. (3)

13

Challenge-Equal Ciphertext Leakage. The adversary learned all challenge-equal ciphertexts in epochs
in C. Additionally, the adversary can infer challenge-equal ciphertexts via tokens. In the uni-directional
ciphertext update setting, the adversary can upgrade ciphertexts. In the bi-directional ciphertext update
setting, the adversary can additionally downgrade ciphertexts.

We compute the extended set of challenge-equal epochs using the information contained in C and
T ∗kk. The set T ∗kk is computed as above depending on the key updates is no- or uni- or bi-directional. In
the cc-directional ciphertext update setting, for cc ∈ {uni, bi}, denote the set C∗kk,cc as the extended set
of challenge-equal epochs. We compute these sets as follows.

Uni-directional ciphertext updates:

C∗kk,uni ← {e ∈ {0, ..., l}|ChallEq(e) = true}
true← ChallEq(e) ⇐⇒ (e ∈ C) ∨ (ChallEq(e-1) ∧ e ∈ T ∗kk). (4)

Bi-directional ciphertext updates:

C∗kk,bi ← {e ∈ {0, ..., l}|ChallEq(e) = true}
true← ChallEq(e) ⇐⇒

(e ∈ C) ∨ (ChallEq(e-1) ∧ e ∈ T ∗kk) ∨ (ChallEq(e+1) ∧ e+1 ∈ T ∗kk). (5)

4.2 Properties of Key Updates

In this section, we look at some properties of sets K, T ,K∗ and T ∗ in terms of uni- and bi-directional
key updates.

Firewall and Insulated Region. We first describe the definition of firewall and insulated region, which
will be widely used in this paper. Firewall technique (see [LT18a, KLR19, BDGJ19]) is used for do-
ing cryptographic seperation. We follow the firewall definition in [BDGJ19] and use firewall set FW
(defined in [BDGJ19]) to track each insulated region and its firewalls.

Definition 8. An insulated region with firewalls fwl and fwr is a consecutive sequence of epochs
(fwl, . . . , fwr) for which:

• no key in the sequence of epochs (fwl, . . . , fwr) is corrupted, i.e. {fwl, . . . , fwr} ∩ K = ∅;

• the tokens ∆fwl and ∆fwr+1 are not corrupted (if they exist), i.e.fwl, fwr + 1 /∈ T ;

• all tokens (∆fwl+1, . . . ,∆fwr) are corrupted, i.e.{fwl + 1, . . . , fwr} ⊆ T .

Remark 4.1. Based on Definition 8, we know that all firewalls or all insulated regions (in other words,
setFW) are uniquely determined byK and T . In particular, we denote the union of all insulated regions
as set IR, i.e. IR = ∪(fwl,fwr)∈FW{fwl, ..., fwr}.

Then we look at the structure of the set IR. Lemma 4.1 states that IR is the complementary set
of K∗bi. Furthermore, Lemma 4.3 shows that the complementary set of IR is the union of two types of
epoch sets (see Definition 9 and Definition 10).

Lemma 4.1. For any sets K, T ⊆ {0, ..., l}, we have K∗bi = {0, ..., l} \ IR.

Proof. Note that ∆0 and ∆l+1 do not exist, however, 0 and l can possibly be firewalls. For convenience,
we just assume ∆0 and ∆l+1 exist and the adversary is not allowed to corrupt these two tokens. Thus
the set of epochs in which the adversary never corrupted the update token is: {0, ..., l+1}\T = {ē0 :=
0, ē1, ..., ēt, ēt+1 := l + 1}, where t ≥ 0.

In the bi-directional key update setting, if the adversary has corrupted a key in an epoch e, where
e ∈ {ēi−1, ..., ēi − 1}, then the adversary can infer all keys from epoch ēi−1 to epoch ēi − 1, that

14

is {ēi−1, ..., ēi − 1} ⊆ K∗bi, because all tokens from epoch ēi−1 + 1 to epoch ēi − 1 are corrupted.
Otherwise, when no key in the sequence of epochs {ēi−1, ..., ēi−1} is corrupted, then {ēi−1, ..., ēi−1}
is an insulated region . Therefore, for any i, {ēi−1, ..., ēi− 1} is either an insulated region or a subset of
K∗bi.

Epoch {0} 1 2 3 {4 5} 6 7 8
K × × X × × × X X ×
T × × X X × X × × X ×
K∗bi × X X X × × X X X
T ∗bi × × X X × X × X X ×

Figure 7: An example of Lemma 4.1, where K = {2, 6, 7} and T = {2, 3, 5, 8}. So {0, ..., l+ 1}\T =
{0, 1, 4, 6, 7, 9}, insulated regions are {0} and {4, 5}. IR = {0, 4, 5} and K∗bi = {1, 2, 3, 6, 7, 8}. ×
indicates the keys/tokens are not revealed to the adversary, X indicates the keys/tokens are revealed to
the adversary.

We define two types of epoch sets in Definition 9 and Definition 10, which will later be used to
analyze the structure of IR. An overview of the corruption model of these two epoch sets are shown in
Fig. 8.

Definition 9. A set of type1 epochs is a consecutive sequence of epochs (estart, . . . , eend) for which:

• no key in the sequence of epochs {estart, . . . , eend−1} is corrupted, i.e.{estart, . . . , eend−1}∩K =
∅;

• the key in epoch eend is corrupted, i.e.eend ∈ K;

• all tokens {∆estart+1, . . . ,∆eend} are corrupted, i.e. {estart + 1, . . . , eend} ⊆ T .

Definition 10. A set of type2 epochs is a consecutive sequence of epochs (estart, . . . , eend) for which:

• {estart, . . . , eend} ⊆ K∗uni;

• {estart + 1, . . . , eend} ⊆ T ∗uni.

Epoch estart estart+1 ... eend−1 eend
K × × ... × X
T X X ... X X

Epoch estart estart+1 ... eend
K∗uni X X ... X
T ∗uni X X ... X

Figure 8: Type 1 set of epochs (left), type 2 set of epochs (right). × indicates the keys/tokens are not
revealed to the adversary, X indicates the keys/tokens are revealed to the adversary.

The following Lemma explains that if a key is revealed in the bi-directional key update setting but
not in the uni-directional key update setting then the revealed key epoch can stretch to a type 1 epoch
set. We use this property to prove Lemma 4.3.

Lemma 4.2. If e ∈ K∗bi \ K∗uni, then there exists an epoch (say eu) after e such that eu ∈ K, {e,
. . . , eu − 1} ∩ K = ∅ and {e + 1, ..., eu} ⊆ T .

Proof. As the assumption and Equations (1, 2), we have e ∈ K∗bi is inferred from the next epoch key
ke+1 via token ∆e+1. That is e+1 ∈ K∗bi and e+1 ∈ T . If e+1 6∈ K∗uni, then e+2 ∈ K∗bi and e+2 ∈ T .
Iteratively, we know that there exists an epoch after e, say eu, such that {e, . . . , eu − 1} ∩ K∗uni = ∅,
eu ∈ K∗uni and e+1, ..., eu ∈ T . Hence, {e, . . . , eu−1}∩K ⊆ {e, . . . , eu−1}∩K∗uni = ∅. In particular,
we know that eu ∈ K since eu − 1 6∈ K∗uni.

15

Lemma 4.3. For any sets K, T ⊆ {0, ..., l}, we have {0, ..., l} \ IR = (∪type 1{estart, ..., eend}) ∪
(∪type 2{estart, ..., eend}), where the two types of epoch sets are defined in Definition 9 and Definition 10.

Proof. Suppose e ∈ {0, ..., l} \ IR, by Lemma 4.1, we have e ∈ K∗bi. If e 6∈ K∗uni, we can apply
Lemma 4.2 and have a set of type 1 epochs, assume {e, ..., eu}. For all e ∈ K∗bi \K∗uni, we can find a set
of type 1 epochs. Hence, the rest epochs are in the type 2 epoch sets.

Remark 4.2. As a conclusion of Lemma 4.1 and Lemma 4.3, we have the sequence of all epochs
are a union of three types of epoch sets, that are insulated regions, type 1 epochs and type 2 epochs.
{0, ..., l} = (∪(fwl,fwr)∈FW{fwl, ..., fwr}) ∪ (∪type 1{estart, ..., eend}) ∪ (∪type 2{estart, ..., eend}).

4.3 Trivial Win Conditions

The main benefit of using ciphertext-independent updatable encryption scheme is that it offers an effi-
cient way for key rotation, where a single token can be used to update all ciphertexts. However, this
property provides the adversary more power, the tokens can be used to gain more information, and
gives the adversary more chances to win the security games. We again follow the trivial win analysis
in [LT18a, KLR19, BDGJ19] and exclude these trivial win conditions in the security games for UE. An
overview of the trivial win conditions the challenger will check in each security game is given in Fig. 9.

Notions “K
∗ ∩
C
∗ 6=
∅"

“ẽ
∈T
∗ or

O
.U
pd

(c̄
)

is
qu

er
ie

d"

“(
c,
e)
∈
L̃
∗ "

“(
m
′ , e

)
∈
Q̃
∗ "

“e
∈
K
∗ "

“(
c̃,
e)
∈
L
∗ "

“(
m
′ , e

)
∈
Q
∗ ”

detIND-UE-CPA X X × × × × ×
randIND-UE-CPA X × × × × × ×
detIND-UE-CCA X X X × × × ×
randIND-UE-CCA X × × X × × ×
INT-CTXT × × × × X X ×
INT-PTXT × × × × X × X

Figure 9: Trivial win conditions considered in different security games for updatable encryption
schemes. × indicates the security notion does not consider the corresponding trivial win condition,
X indicates the security notion considers the corresponding trivial win condition.

4.3.1 Checking Trivial Win Conditions at the End of a Game

Trivial Wins via Keys and Ciphertexts. The following is used for analyzing all confidentiality games.
If there exists an epoch e ∈ K∗ ∩ C∗ in which the adversary knows the epoch key ke and a valid update
of the challenge ciphertext c̃e, then the adversary can use this epoch key to decrypt the challenge-equal
ciphertext and know the underlying challenge plaintext to win the confidentiality game. The trivial win
condition “K∗ ∩ C∗ 6= ∅” is checked in the end of a confidentiality game.

Trivial Wins via Direct Updates. The following is used for analyzing all confidentiality games with
deterministic updates. If the adversary knows the update token ∆ẽ in the challenge epoch ẽ or the
adversary queried an update oracle on the challenge input ciphertextO.Upd(c̄) in epoch ẽ, then it knows
the updated ciphertext of c̄ in epoch ẽ and it can compare the updated ciphertext with the challenge
ciphertext to win the confidentiality game. The trivial win condition “ẽ∈T ∗ or O.Upd(c̄) is queried” is
checked in the end of a confidentiality game.

16

4.3.2 Checking Trivial Win Conditions while Running a Game

The following overview of trivial win conditions are checked by an oracle. The sets L̃∗, Q̃∗,K∗,L∗ and
Q∗ are defined in Section 3.1.

• “(c, e) ∈ L̃∗” are checked by O.Dec oracles in the detIND-UE-CCA game,

• “(m′, e) ∈ Q̃∗” are checked by O.Dec oracles in the randIND-UE-CCA game,

• “e ∈ K∗” are checked by O.Try oracles in the INT-CTXT game or the INT-PTXT game,

• “(c, e) ∈ L∗” are checked by O.Try oracles in the INT-CTXT game

• “(m′, e) ∈ Q∗” are checked by O.Try oracles in the INT-PTXT game.

General Idea. At the moment when the adversary queries a decryption query O.Dec or a try query
O.Try, the challenger computes the knowledge the adversary currently has, which is used to check if
the adversary can trivially win a security game. More precisely, the challenger uses information in the
sets L, L̃, C,K, T to compute the leakage sets L̃∗, Q̃∗,K∗,L∗ and Q∗. Note that the sets L, L̃, C,K, T
contains information the adversary learns at such a moment.

Trivial Wins via Decryptions in the Deterministic Update Setting. The following is used for ana-
lyzing the detIND-UE-CCA security notion. In the deterministic update setting, if the adversary knows
a challenge-equal ciphertext (c̃e0 , e0) ∈ L̃ and tokens from epoch e0 + 1 to epoch e, then the adver-
sary can compute the updated challenge-equal ciphertext c̃e and send it to the decryption oracle to get
the underlying message. Eventually, the adversary compares the received message with the challenge
plaintexts to trivially win the security game.

We use the set L̃∗ to check this trivial win condition, recall that L̃∗ includes all challenge-equal
ciphertexts the adversary has learned or inferred. Suppose the adversary queries a decryption oracle
O.Dec(c) in epoch e, if (c, e) ∈ L̃∗ then the response of the decryption oracle leads to a trivial win to
the adversary, hence, the challenger will set the trivial win flag to be 1.

By Remark 3.1, we have (c̃e, e) ∈ L̃∗ ⇐⇒ e ∈ C∗, using this method we can easily compute the
set L̃∗. In Fig. 10 we show how the set L̃∗ is computed, where the set C∗ is computed by the algorithms
discussed in Section 4.1.

for i ∈ {0, ..., e} do
if i ∈ C∗kk,cc then
L̃∗kk,cc ← L̃∗kk,cc ∪ {(c̃i, i)}

Figure 10: Algorithm for computing the set L̃∗kk,cc,
where kk ∈ {no, uni, bi} and cc ∈ {uni, bi}.

for i ∈ {0, ..., e} do
if i ∈ C∗kk,cc then
Q̃∗kk,cc ← Q̃∗kk,cc ∪ {(m̄, i)} ∪ {(m̄1, i)}

Figure 11: Algorithm for computing the set Q̃∗kk,cc,
where kk ∈ {no, uni, bi} and cc ∈ {uni, bi}.

Trivial Wins via Decryptions in the Randomized Update Setting. The following is used for ana-
lyzing the randIND-UE-CCA security notion. In the randomized update setting, if the adversary knows
a challenge-equal ciphertext (c̃e0 , e0) ∈ L̃ and tokens from epoch e0 + 1 to epoch e, then the adversary
can create arbitrary number of ciphertexts by updating c̃e0 from epoch e0 to epoch e. Let ce denote a
ciphertext generated in such a way. Notice that the ciphertext ce has the same underlying message as
the challenge-equal ciphertext c̃e0 . The adversary can send the computed ciphertext ce to the decryption
oracle to get the underlying message and trivially win the security game.

We use the set Q̃∗ to check this trivial win condition, recall that Q̃∗ includes information about
challenge plaintexts that the adversary has learned or can create challenge-equal ciphertexts of. Suppose
the adversary queries a decryption oracleO.Dec(c) in epoch e, if UE.Dec(ke, c) = m′ and (m′, e) ∈ Q̃∗

17

then the response of the decryption oracle leads to a trivial win to the adversary, hence, the challenger
will set the trivial win flag to be 1.

By Remark 3.1, we have (m′, e) ∈ Q̃∗ ⇐⇒ e ∈ C∗, using this method we can easily compute the
set Q̃∗. Suppose the challenge input is (m̄, c̄) and the underlying message of c̄ is m̄1. In Fig. 11 we
show how the set Q̃∗ is computed.

Remark 4.3. Our definition of this trivial win restriction is more generous than that of [KLR19], they
disallow the decryption of any ciphertext that decrypts to either of the two challenge plaintexts. We
allow the decryption of a ciphertext that decrypts to a challenge plaintext as long as the adversary cannot
learn (from O.Chall or O.UpdC̃) or infer (from tokens) a valid ciphertext of challenge plaintext in that
epoch.

Trivial Forgeries by Keys. The following is used for analyzing all integrity games. If the adversary
knows an epoch key ke, then the adversary can create arbitrary number of valid forgeries of arbitrary
messages under this epoch key ke.

We use the setK∗ to check this trivial win condition, recall thatK∗ includes all epochs the adversary
learned or inferred an epoch key. Suppose the adversary queries a try oracle O.Try(c) in epoch e,
if e ∈ K∗ then the challenger will set the trivial win flag to be 1. We use algorithms discussed in
Section 4.1 to compute the set K∗.

Trivial Ciphertext Forgeries by Tokens. The following is used for analyzing the INT-CTXT security
notion. From [KLR19] we know that only UE schemes with deterministic updates can possibly achieve
INT-CTXT. In the deterministic update setting, if the adversary knows a ciphertext (c, c, e0;m) ∈ L
and tokens from epoch e0 + 1 to epoch e, then the adversary can create a valid updated ciphertext by
updating c from epoch e0 to epoch e.

We use the set L∗ to check this trivial win condition, recall that L∗ includes all ciphertexts that can
be known or inferred to the adversary. Suppose the adversary queries a try oracle O.Try(c) in epoch e,
if (c, e) ∈ L∗ then the challenger will set the trivial win flag to be 1. In Fig. 12 we show how the set L∗
is computed.

for i ∈ {0, ..., e} do
for (·, c, i; ·) ∈ L do
L∗kk,cc ← L∗kk,cc ∪ {(c, i)}

if i ∈ T ∗kk then
for (ci−1, i− 1) ∈ L∗kk,cc do
ci ← UE.Upd(∆i, ci−1)
L∗kk,cc ← L∗kk,cc ∪ {(ci, i)}

if cc = bi then
for (ci, i) ∈ L∗kk,cc do
ci−1 ← UE.Upd−1(∆i, ci)
L∗kk,cc ← L∗kk,cc ∪ {(ci−1, i− 1)}

Figure 12: Algorithm for computing the set
L∗kk,cc, where kk ∈ {no, uni, bi} and cc ∈
{uni, bi}.

for i ∈ {0, ..., e} do
for (·, ·, i;m) ∈ L do
Q∗kk,cc ← Q∗kk,cc ∪ {(m, i)}

if i ∈ T ∗kk then
for (m, i− 1) ∈ Q∗kk,cc do
Q∗kk,cc ← Q∗kk,cc ∪ {(m, i)}

if cc = bi then
for (m, i) ∈ Q∗kk,cc do
Q∗kk,cc ← Q∗kk,cc ∪ {(m, i− 1)}

Figure 13: Algorithm for computing the set
Q∗kk,cc, where kk ∈ {no, uni, bi} and cc ∈
{uni, bi}.

Trivial Plaintext Forgeries by Tokens. The following is used for analyzing the INT-PTXT security
notion. In the randomized update setting, if the adversary knows a ciphertext (c, c, e0;m) ∈ L and
tokens from epoch e0 + 1 to epoch e, then the adversary can create arbitrary number of valid forgeries
of message m by updating c from epoch e0 to epoch e.

18

We use the set Q∗ to check this trivial win condition, recall that Q∗ includes information about
plaintexts that the adversary has learned or can create ciphertexts of. Suppose the adversary queries a
try oracle O.Try(c) in epoch e, if UE.Dec(ke, c) = m′ and (m′, e) ∈ Q∗ then the challenger will set
the trivial win flag to be 1. In Fig. 13 we show how the set Q∗ is computed.

4.4 Trivial Win Equivalences in the Uni- and Bi-Directional Update Setting

In this section we show seven equivalences of the trivial win conditions. As a result, we have that in
any security game if the trivial win conditions in the uni-directional update setting are triggered then the
same trivial win conditions in the bi-directional update setting would be triggered as well. We will use
these trivial win equivalences to prove the relation between uni- and bi-directional variants of security
notions in Theorem 5.1.

The following two lemmas show that UE schemes with uni-directional updates has less leakage than
UE schemes with bi-directional updates.

Lemma 4.4. For any sets K, T , C and any kk ∈ {uni, bi}, we have C∗kk,uni ⊆ C∗kk,bi, L̃∗kk,uni ⊆ L̃∗kk,bi,
Q̃∗kk,uni ⊆ Q̃∗kk,bi, L∗kk,uni ⊆ L∗kk,bi, and Q∗kk,uni ⊆ Q∗kk,bi.

Proof. For any fixed kk-directional key updates, uni-directional ciphertext updates has less leakage than
bi-directional ciphertext updates. More precisely, for any K, T , C and a fixed kk, we compute K∗kk,
T ∗kk, C∗kk,uni and C∗kk,bi using Equations (1, 2, 3, 4, 5). Then we have C∗kk,uni ⊆ C∗kk,bi. Furthermore, we
use algorithms discussed in Section 4.3.2 to compute ciphertext/message leakage sets L̃∗, Q̃∗,L∗,Q∗.
Similarly we get L̃∗kk,uni ⊆ L̃∗kk,bi, Q̃∗kk,uni ⊆ Q̃∗kk,bi, L∗kk,uni ⊆ L∗kk,bi, and Q∗kk,uni ⊆ Q∗kk,bi.

Lemma 4.5. For any sets K, T , C and any cc ∈ {uni, bi}, we have K∗uni ⊆ K∗bi, T ∗uni ⊆ T ∗bi , C∗uni,cc ⊆
C∗bi,cc, L̃∗uni,cc ⊆ L̃∗bi,cc, Q̃∗uni,cc ⊆ Q̃∗bi,cc, L∗uni,cc ⊆ L∗bi,cc and Q∗uni,cc ⊆ Q∗bi,cc.

Proof. The proof is similar to the proof of Lemma 4.4. For any fixed cc-directional ciphertext updates,
uni-directional key updates has less leakage than bi-directional key updates. More precisely, for any
K, T , C and a fixed cc, we compute K∗uni, K∗bi, T ∗uni, T ∗bi , C∗uni,cc and C∗bi,cc using Equations (1, 2, 3, 4, 5).
Then we have K∗uni ⊆ K∗bi, T ∗uni ⊆ T ∗bi , and therefore C∗uni,cc ⊆ C∗bi,cc. Furthermore, we use algorithms
discussed in Section 4.3.2 to compute ciphertext/message leakage sets L̃∗, Q̃∗,L∗,Q∗. Similarly we get
L̃∗uni,cc ⊆ L̃∗bi,cc, Q̃∗uni,cc ⊆ Q̃∗bi,cc, L∗uni,cc ⊆ L∗bi,cc and Q∗uni,cc ⊆ Q∗bi,cc.

Equivalence for Trivial Win Condition “ K∗ ∩ C∗ 6= ∅”.

Lemma 4.6. For any sets K, T , C ⊆ {0, ..., l}, we have K∗uni ∩ C∗uni,uni 6= ∅ ⇐⇒ K∗bi ∩ C∗bi,bi 6= ∅.

Proof. For any K, T , C, we compute K∗uni, C∗uni,uni,K∗bi and C∗bi,bi using Equations (1, 2, 4, 5).
Note that K∗uni ⊆ K∗bi and C∗uni,uni ⊆ C∗bi,bi, so K∗uni ∩ C∗uni,uni ⊆ K∗bi ∩ C∗bi,bi. It suffices to prove

K∗bi ∩ C∗bi,bi 6= ∅ =⇒ K∗uni ∩ C∗uni,uni 6= ∅.

SupposeK∗bi∩C∗bi,bi 6= ∅. We know that firewalls provide cryptographic separation, which make sure
insulated regions are isolated from other insulated regions and the complementary set of all insulated
regions. If the adversary never asks for any challenge-equal ciphertext in an epoch in the set {0, ..., l} \
IR, then the adversary cannot infer any challenge-equal ciphertext in this set even in the bi-directional
update setting. That is, C∗bi,bi∩ ({0, ..., l}\IR) = ∅. However, {0, ..., l}\IR Lemma 4.1

= K∗bi, thenK∗bi∩
C∗bi,bi = ∅, which contradicts with the assumption. Therefore, there exists an epoch e′ ∈ {0, ..., l} \ IR
such that the adversary has asked for a challenge-equal ciphertext in this epoch, that is e′ ∈ C.

By Lemma 4.3, we know that e′ is located in an epoch set which is either type 1 or type 2. Suppose
e′ ∈ {estart, ..., eend}, we know that the epoch key keend is known to the adversary even in the uni-
directional key update setting, i.e. eend ∈ K∗uni. Furthermore, all tokens ∆e′+1, ...,∆eend are known to the

19

adversary even in the uni-directional key update setting. Hence, the adversary can update the challenge-
equal ciphertext c̃e′ from epoch e′ to epoch eend to know c̃eend . Which means eend ∈ K∗uni ∩ C∗uni,uni, we
have K∗uni ∩ C∗uni,uni 6= ∅.

As a corollary of Lemma 4.4 to 4.6, we have the following equivalence. We only provide Corol-
lary 4.1 with a fully detailed proof, since we will use similar proof techniques for Corollary 4.2 to 4.5.

Corollary 4.1. For any sets K, T , C ⊆ {0, ..., l}, we have K∗uni ∩ C∗uni,uni 6= ∅ ⇐⇒ K∗uni ∩ C∗uni,bi 6=
∅ ⇐⇒ K∗bi ∩ C∗bi,uni 6= ∅ ⇐⇒ K∗bi ∩ C∗bi,bi 6= ∅.

Proof. By Lemma 4.4, we have C∗uni,uni ⊆ C∗uni,bi. By Lemma 4.5, we have C∗uni,bi ⊆ C∗bi,bi. Hence,
K∗uni ∩ C∗uni,uni ⊆ K∗uni ∩ C∗uni,bi ⊆ K∗bi ∩ C∗bi,bi. By Lemma 4.6, we have K∗uni ∩ C∗uni,uni 6= ∅ ⇐⇒
K∗bi ∩ C∗bi,bi 6= ∅ ⇐⇒ K∗uni ∩ C∗uni,bi 6= ∅.

Similarly, we have K∗uni ∩ C∗uni,uni
Lemma 4.5
⊆ K∗bi ∩ C∗bi,uni

Lemma 4.4
⊆ K∗bi ∩ C∗bi,bi and therefore K∗uni ∩

C∗uni,uni 6= ∅ ⇐⇒ K∗bi ∩ C∗bi,bi 6= ∅ ⇐⇒ K∗bi ∩ C∗bi,uni 6= ∅.

Remark 4.4. If the trivial win condition “K∗ ∩ C∗ 6= ∅” is never triggered in the uni- or bi-directional
update setting, then by Corollary 4.1 we have K∗bi ∩ C∗bi,bi = ∅. By Lemma 4.1, we have {0, ..., l} \
K∗bi = IR. Therefore, C∗uni,uni ⊆ C∗bi,bi ⊆ {0, ..., l} \ K∗bi = IR. The relationship among the sets
C∗uni,uni, C∗bi,bi, IR,K∗uni,K∗bi is shown in Fig. 14.

K∗bi IRK∗uni C∗bi,biC∗uni,uni

Figure 14: The relationship among the sets C∗uni,uni, C∗bi,bi, IR,K∗uni,K∗bi if the trivial win condition
“K∗kk ∩ C∗kk,cc 6= ∅” is never triggered for any kk, cc ∈ {uni, bi}.

Equivalence for Trivial Win Condition “ ẽ∈T ∗ or O.Upd(c̄) is queried”. The event “O.Upd(c̄) is
queried” is independent of the key and ciphertext updates, so this trivial win condition is either triggered
or not triggered in all variants of a security notion. The following Lemma shows that if the challenge
token is known to the adversary in the bi-directional key update setting, then it is also known to the
adversary in the uni-directional key update setting.

Lemma 4.7. For any K, T , C. Suppose K∗kk ∩ C∗kk,cc = ∅, where kk, cc ∈ {uni, bi}, then ẽ∈T ∗no ⇐⇒
ẽ∈T ∗uni ⇐⇒ ẽ∈T ∗bi

Proof. We know that the challenge epoch ẽ ∈ C, so ẽ 6∈ K∗kk for any kk-key updates, where kk ∈
{uni, bi}. Since the adversary does not know the key kẽ, which is needed to infer the update token ∆ẽ,
so token ∆ẽ cannot be inferred by the adversary. Therefore, ẽ ∈ T ∗kk if and only if ẽ ∈ T . Hence
ẽ ∈ T ⇐⇒ ẽ∈T ∗no ⇐⇒ ẽ∈T ∗uni ⇐⇒ ẽ∈T ∗bi .

From now on until the end of this section, we assume the adversary queries a decryption oracle
O.Dec(c) or a try oracle O.Try(c) in epoch e. We consider trivial win conditions which are checked in
these oracles.

Equivalence for Trivial Win Condition “ (c, e) ∈ L̃∗”.

Lemma 4.8. For any sets K, T , C ⊆ {0, ..., e}. Suppose K∗bi ∩ C∗bi,bi = ∅, then (c, e) ∈ L̃∗uni,uni ⇐⇒
(c, e) ∈ L̃∗bi,bi.

20

Proof. By Remark 4.4 we have C∗uni,uni ⊆ C∗bi,bi ⊆ IR. By Remark 3.1 we have (c̃e, e) ∈ L̃∗ ⇐⇒ e ∈
C∗. Therefore, if (c, e) ∈ L̃∗uni,uni we have e ∈ C∗uni,uni ⊆ C∗bi,bi and (c, e) ∈ L̃∗bi,bi.

If (c, e) ∈ L̃∗bi,bi, then e ∈ C∗bi,bi ⊆ IR. Suppose {fwl, ..., e} is the last insulated region. If the
adversary never asks for any challenge-equal ciphertext in this region, then {fwl, ..., e} ∩ C∗bi,bi = ∅,
which contradicts with e ∈ C∗bi,bi ∩ {fwl, ..., e}. Hence, {fwl, ..., e} ∩ C 6= ∅, and we can assume
e′ ∈ {fwl, ..., e}∩C.By the definition of insulated region we have {fwl+1, ..., e} ⊆ T , and the adversary
can update the challenge-equal ciphertext c̃e′ from epoch e′ to epoch e to know c̃e, i.e. e ∈ C∗uni,uni.
Therefore, (c, e) ∈ L̃∗uni,uni as well.

As a corollary of Lemma 4.4, Lemma 4.5 and Lemma 4.8, we have the following result. The proof
is similar to the proof of Corollary 4.1.

Corollary 4.2. For any sets K, T , C ⊆ {0, ..., e}. Suppose K∗bi ∩ C∗bi,bi = ∅, then (c, e) ∈ L̃∗uni,uni ⇐⇒
(c, e) ∈ L̃∗uni,bi ⇐⇒ (c, e) ∈ L̃∗bi,uni ⇐⇒ (c, e) ∈ L̃∗bi,bi.

Equivalence for Trivial Win Condition “ (m′, e) ∈ Q̃∗”.

Lemma 4.9. For any sets K, T , C ⊆ {0, ..., e}. Suppose K∗bi ∩ C∗bi,bi = ∅, then (m′, e) ∈ Q̃∗uni,uni ⇐⇒
(m′, e) ∈ Q̃∗bi,bi.

Proof. The proof is similar to the proof of Lemma 4.8. We use the property that (m′, e) ∈ Q̃∗ ⇐⇒
e ∈ C∗.

As a corollary of Lemma 4.4, Lemma 4.5 and Lemma 4.9, we have the following result. The proof
is similar to the proof of Corollary 4.1.

Corollary 4.3. For any sets K, T , C ⊆ {0, ..., e}. Suppose K∗bi ∩C∗bi,bi = ∅, then (m′, e)∈Q̃∗uni,uni ⇐⇒
(m′, e)∈Q̃∗uni,bi ⇐⇒ (m′, e)∈Q̃∗bi,uni ⇐⇒ (m′, e)∈Q̃∗bi,bi.

Equivalence for Trivial Win Condition “ e ∈ K∗”.

Lemma 4.10. For any sets K, T , C ⊆ {0, ..., e}, we have e ∈ K∗uni ⇐⇒ e ∈ K∗bi.

Proof. The adversary never knows any information in the future, that is, the adversary does not know a
key in an epoch ê > e. If the adversary knows the current epoch key ke, then it is either a corrupted key
or a key inferred from prior epoch key, thus e ∈ K∗uni ⇐⇒ e ∈ K∗bi.

Equivalence for Trivial Win Condition “ (c, e) ∈ L∗”.

Lemma 4.11. For any sets K, T , C ⊆ {0, ..., e}. Suppose e 6∈ K∗bi, then (c, e) ∈ L∗uni,uni ⇐⇒ (c, e) ∈
L∗bi,bi.

Proof. By assumption and Lemma 4.10 the current epoch e 6∈ K∗kk for any kk ∈ {uni, bi}. We know
that, by Remark 4.2, e is located in an insulated region, assume it is in {fwl, ..., e}. Thus tokens
∆fwl+1, ...,∆e are known to the adversary in any update setting, that is, {fwl + 1, ..., e} ⊆ T ⊆
T ∗uni ⊆ T ∗bi . If the adversary never asks for any ciphertext in this region, then there is no ciphertext
in epoch e located in the set L∗kk,cc for any (kk, cc). For all ciphertexts the adversary learns in an
epoch i with i ∈ {fwl, ..., e}, the adversary can update them to epoch e using tokens. Hence, we have
(c, e) ∈ L∗uni,uni ⇐⇒ (c, e) ∈ L∗bi,bi.

As a corollary of Lemma 4.4, Lemma 4.5 and Lemma 4.11, we have the following result. The proof
is similar to the proof of Corollary 4.1.

Corollary 4.4. For any setsK, T , C ⊆ {0, ..., e}. Suppose e 6∈ K∗bi, then (c, e) ∈ L∗uni,uni ⇐⇒ (c, e) ∈
L∗uni,bi ⇐⇒ (c, e) ∈ L∗bi,uni ⇐⇒ (c, e) ∈ L∗bi,bi.

21

Equivalence for Trivial Win Condition “ (m′, e) ∈ Q∗”.

Lemma 4.12. For any sets K, T , C ⊆ {0, ..., e}. Suppose e 6∈ K∗bi, then (m′, e) ∈ Q∗uni,uni ⇐⇒
(m′, e) ∈ Q∗bi,bi.

Proof. The proof is similar to the proof of Lemma 4.11. As e 6∈ K∗kk for any kk ∈ {uni, bi}, we know
that e is located in an insulated region. Assume it is in {fwl, ..., e}, then the adversary has corrupted
the tokens ∆fwl+1, ...,∆e. If the adversary never asks for any ciphertext with the underlying message
m′ in this region, then (m′, e) 6∈ Q∗kk,cc for any (kk, cc). Otherwise, suppose (·, ci, i;m′) ∈ L with
i ∈ {fwl, ..., e}, then the adversary can update ci, via tokens ∆i+1, ...,∆e, to a ciphertext in epoch e
with the underlying message m′ and we have (m′, e) ∈ Q∗kk,cc for any (kk, cc).

As a corollary of Lemma 4.4, Lemma 4.5 and Lemma 4.12, we have the following result. The proof
is similar to the proof of Corollary 4.1.

Corollary 4.5. For any sets K, T , C ⊆ {0, ..., e}. Suppose e 6∈ K∗bi, then (m′, e) ∈ Q∗uni,uni ⇐⇒
(m′, e) ∈ Q∗uni,bi ⇐⇒ (m′, e) ∈ Q∗bi,uni ⇐⇒ (m′, e) ∈ Q∗bi,bi.

5 Relations between Security Notions

In Fig. 15, Fig. 16 and Fig. 17, we show the relationship among six variants of the same security notion
for UE schemes.

Fig. 15 demonstrates that the uni- and bi-directional update variants of the same security notion are
equivalent, which means that the security notions (confidentiality and integrity) in the uni-directional
update setting are not strictly stronger than the corresponding security notions in the bi-directional up-
date setting. Hence, the security of an UE scheme is not influenced if the update setting is uni- or
bi-directional. In terms of confidentiality and integrity, when we analyze the security of an UE scheme
we can analyze the security based on the UE scheme with bi-directional updates.

The six variants of confidentiality notions have the relationship shown in Fig. 16, where we present
that the (no, uni)- variant of any confidentiality notion is strictly stronger than the other five variants of
the corresponding confidentiality notion.

The six variants of integrity notions have the relationship shown in Fig. 17. No-directional key
update variants of the same integrity notion is strictly stronger than the uni- or bi-directional key update
variants. However, the two variants of no-directional key update notions are equivalent, that is, for the
integrity notions uni- or bi-directional ciphertext update setting (with no-directional key updates) does
not matter much.

It is ideal to construct an efficient UE scheme with no-directional key updates and uni-directional
ciphertext updates. However, whether such a scheme exists is an open problem.

(bi, bi)-notion (bi, uni)-notion (uni, bi)-notion (uni, uni)-notion
Thm. 5.1 Thm. 5.1Thm. 5.1

Figure 15: Relations among the uni- and bi-directional update variants of the same security no-
tion, where notion ∈ {detIND-UE-CPA, randIND-UE-CPA, detIND-UE-CCA, randIND-UE-CCA,
INT-CTXT, INT-PTXT}.

(no, uni)-notion (no, bi)-notion (kk, cc)-notion
Lem. 5.1

Thm. 5.2

Lem. 5.2

\

Thm. 5.3

Figure 16: Relations between the six variants of the same confidentiality notion, where kk, cc ∈ {uni, bi}
and notion ∈ {detIND-UE-CPA, randIND-UE-CPA, detIND-UE-CCA, randIND-UE-CCA}.

22

(no, uni)-notion (no, bi)-notion (kk, cc)-notion
Lem. 5.2

Thm. 5.4

Lem. 5.1

\

Thm. 5.5

Figure 17: Relations between the six variants of the same integrity notion, where kk, cc ∈ {uni, bi} and
notion ∈ {INT-CTXT, INT-PTXT}.

Remark 5.1 (Informal intuition of these relations). Consider the following confidentiality game, where
we have an adversary against some variant of the confidentiality game for an UE scheme. The adversary
corrupts a key k1 and a token ∆2, and asks for a challenge ciphertext in epoch 2. For all uni- and
bi-directional update settings, the adversary can move the key k1 to epoch 2 and decrypt the challenge
ciphertext to trivially win the confidentiality game. If the UE scheme has no-directional key updates
and bi-directional ciphertext updates, the adversary can move the challenge ciphertext back to epoch 1
and decrypt it to trivially win the confidentiality game. However, if the UE scheme has no-directional
key updates and uni-directional ciphertext updates, the adversary cannot trivially win the confidentiality
game in this action.

Similarly, we consider the following integrity game, where we have an adversary against some
variant of the integrity game for an UE scheme. The adversary corrupts a key k1 and a token ∆2, and
queries a try oracle in epoch 2. For all uni- and bi-directional update settings, the adversary can move
the key k1 to epoch 2 and provide forgeries in epoch 2 to trivially win the integrity game. However, if
the UE scheme has no-directional key updates the adversary does not know k2, and cannot trivially win
the integrity game.

Remark 5.2. We can define six variants of the IND-ENC and the IND-UPD notions3 and can extend the
result in Fig. 15 and Fig. 16 for notion ∈ {IND-ENC, IND-UPD}.

5.1 Relations between the Uni- and Bi-Directional Update Variants of Security Notions

We will only provide Theorem 5.1 with a fully detailed proof, since we will use similar proof techniques
for Lemmas 5.1, 5.2 and Theorems 5.2, 5.4.

The following Theorem shows that for any kk, cc, kk′, cc′ ∈ {uni, bi}, (kk′, cc′)-notion implies
(kk, cc)-notion. Consequently, all four uni- and bi-directional update variants of the same notion are
equivalent.

Theorem 5.1. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an updatable encryption
scheme and notion ∈ {detIND-UE-CPA, randIND-UE-CPA, detIND-UE-CCA, randIND-UE-CCA,
INT-CTXT, INT-PTXT}. For any kk, cc, kk′, cc′ ∈ {uni, bi} and any (kk, cc)-notion adversary A
against UE, there exists a (kk′, cc′)- notion adversary B5.1 against UE such that

Adv
(kk,cc)-notion
UE, A (1λ) = Adv

(kk′,cc′)-notion
UE, B5.1 (1λ).

Proof. We construct a reduction B5.1 running the (kk′, cc′)-notion experiment which will simulate the
responses of queries made by the (kk, cc)-notion adversary A. The reduction will send all queries
received from A to its (kk′, cc′)-notion challenger, and forwarding the responses to A. Eventually, the
reduction receives a guess fromA and forwards it to its own challenger. In the end, the (kk′, cc′)-notion
challenger evaluates whether or not the reduction wins, if a trivial win condition was triggered the
reduction is considered as lose the game. This final win evaluation will be passed to the adversary A.

By the analysis of trivial win equivalences in Section 4.4 (Corollary 4.1 to 4.5, Lemma 4.7 and
Lemma 4.10), we have that if A does not trigger the trivial win conditions in the (kk, cc)-notion
game, then the reduction will not trigger the trivial win conditions in the (kk′, cc′)-notion game ei-
ther. Similarly, if A does trigger the trivial win conditions in the (kk, cc)-notion game, then the re-
duction will also trigger the trivial win conditions in the (kk′, cc′)-notion game. Hence, the reduction

3Note that IND-ENC and IND-UPD are introduced in [LT18a]

23

perfectly simulates the (kk, cc)-notion game to adversary A. And we have Adv
(kk′,cc′)-notion
UE, B5.1 (1λ) =

Adv
(kk,cc)-notion
UE, A (1λ).

Remark 5.3. For any security notion notion ∈ {detIND-UE-CPA, randIND-UE-CPA, detIND-UE-CCA,
randIND-UE-CCA, INT-CTXT, INT-PTXT}, all four uni- and bi-directional update variants of the
same notion are equivalent. We will use the (bi, bi)-notion variant to prove notion security for a specific
UE schemes. For simplicity, we will denote the notion (bi, bi)-notion as notion.

5.2 Relations between the No-Directional and the Directional Variants of Security No-
tions

5.2.1 General Relations

We prove (no, bi)-notion implies (bi, bi)-notion in Lemma 5.1, combining this result with Theorem 5.1
we have that (no, bi)-notion implies any (kk, cc)-notion, where kk, cc ∈ {uni, bi}.

Lemma 5.1. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an updatable encryption scheme
and notion ∈ {detIND-UE-CPA, randIND-UE-CPA, detIND-UE-CCA, randIND-UE-CCA, INT-CTXT,
INT-PTXT}. For any (bi, bi)-notion adversary A against UE, there exists an (no, bi)-notion adversary
B5.1 against UE such that

Adv
(bi,bi)-notion
UE, A (1λ) ≤ Adv

(no,bi)-notion
UE, B5.1 (1λ).

Proof. The proof is similar to the proof of Theorem 5.1, we construct a reduction B5.1 running the
(no, bi)-notion experiment which will simulate the responses of queries made by the (bi, bi)-notion
adversaryA. Consider the leakage sets. For bi-directional ciphertext updates, no-directional key updates
has less leakage than bi-directional key updates.

If A does not trigger the trivial win conditions in the (bi, bi)-notion game, then the reduction will
not trigger the trivial win conditions in the (no, bi)-notion game either. Hence the reduction has as least
Adv

(bi,bi)-notion
UE, A (1λ) advantage to win its (no, bi)-notion game.

The following lemma shows that (no, uni)-notion implies (no, bi)-notion.

Lemma 5.2. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an updatable encryption scheme.
For any (no, bi)-notion adversaryA against UE, where notion ∈ {detIND-UE-CPA, randIND-UE-CPA,
detIND-UE-CCA, randIND-UE-CCA, INT-CTXT, INT-PTXT} there exists an (no, uni)-notion adver-
sary B5.2 against UE such that

Adv
(no,bi)-notion
UE, A (1λ) ≤ Adv

(no,uni)-notion
UE, B5.2 (1λ).

Proof. The proof is similar to the proof of Theorem 5.1, we construct a reduction B5.2 running the
(no, uni)-notion experiment which will simulate the responses of queries made by the (no, bi)-notion
adversary A. Consider the leakage sets. For no-directional key updates, uni-directional ciphertext up-
dates has less leakage than bi-directional ciphertext updates.

If A does not trigger the trivial win conditions in the (no, bi)-notion game, then the reduction will
not trigger the trivial win conditions in the (no, uni)-notion game either. Hence the reduction has as least
Adv

(no,bi)-notion
UE, A (1λ) advantage to win its (no, uni)-notion game.

5.2.2 Relations between Confidentiality Notions

Before we start to prove any relation in this section, we consider the equivalences for the following
trivial win conditions “K∗∩C∗ 6= ∅”, “ ẽ∈T ∗ or O.Upd(c̄) is queried” (already discussed on page 20),
“ (c, e) ∈ L̃∗” and “ (m′, e) ∈ Q̃∗”. These results will be used to prove Theorem 5.2.

24

Lemma 5.3. For any sets K, T , C ⊆ {0, ..., l}, we have K∗no ∩ C∗no,bi 6= ∅ ⇐⇒ K∗uni ∩ C∗uni,bi 6= ∅.

Proof. Similar to the proof of Lemma 4.6, it suffices to prove

K∗uni ∩ C∗uni,bi 6= ∅ =⇒ K∗no ∩ C∗no,bi 6= ∅.

Suppose K∗uni ∩ C∗uni,bi 6= ∅, as the analysis of Lemma 4.6, there exists an epoch e′ ∈ {0, ..., l} \ IR
such that the adversary has asked for a challenge-equal ciphertext in this epoch, that is e′ ∈ C. By
Lemma 4.3, we know that e′ is located in an epoch set which is either type 1 or type 2. Suppose
e′ ∈ {estart, ..., eend} is the biggest such set around epoch e′.

If e′ is located in a type 1 epoch set, then keend and ∆e′+1, ...,∆eend are corrupted. Hence, the
adversary can update the challenge-equal ciphertext c̃e′ from epoch e′ to epoch eend to know c̃eend .
Which means eend ∈ K∗no ∩ C∗no,bi.

If e′ is located in a type 2 epoch set, we claim that any epoch e ∈ {estart, ..., eend} is either in K or
T or both, because revealed epoch keys in the uni-directional update setting is either a corrupted key or
a key inferred from prior epoch via a corrupted update token. Furthermore, we claim that estart ∈ K.
Otherwise, we have estart ∈ T and estart−1 ∈ K∗uni (in this situation, kestart is inferred from kestart−1) and
find a bigger type 2 set, which is contradict with the assumption that {estart, ..., eend} is the biggest type
2 set around epoch e′. Then we discuss the joint setK∗no∩C∗no,bi. If e′ ∈ K, then we have e′ ∈ K∗no∩C∗no,bi.
If e′ 6∈ K, then e′ ∈ T . Iteratively, we can find an epoch es < e′ such that es ∈ K and es + 1, ..., e′ ∈ T .
Hence, the adversary can reversely update the challenge-equal ciphertext c̃e′ from epoch e′ to epoch es
to know c̃es . Then we have es ∈ K∗no ∩ C∗no,bi.

The proof of the following lemma is similar to the proof of Lemma 4.8.

Lemma 5.4. For any sets K, T , C ⊆ {0, ..., e}. Suppose K∗bi ∩ C∗bi,bi = ∅, then (c, e) ∈ L̃∗uni,bi ⇐⇒
(c, e) ∈ L̃∗no,bi.

The proof of the following lemma is similar to the proof of Lemma 4.9.

Lemma 5.5. For any sets K, T , C ⊆ {0, ..., e}. Suppose K∗bi ∩ C∗bi,bi = ∅, then (m′, e) ∈ Q̃∗uni,bi ⇐⇒
(m′, e) ∈ Q̃∗no,bi.

The following theorem shows that the (uni, bi)- variant of confidentiality notions implies the (no, bi)-
variant of the corresponding confidentiality notions. Combining this result with Theorem 5.1 we have
that any (kk, cc)- variant of confidentiality notions implies the (no, bi)- variant of the corresponding
confidentiality notions, where kk, cc ∈ {uni, bi}.

Theorem 5.2. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an updatable encryption
scheme and notion ∈ {INT-CTXT, INT-PTXT, detIND-UE-CPA, randIND-UE-CPA, detIND-UE-CCA,
randIND-UE-CCA}. For any (no, bi)-notion adversary A against UE, there exists a (uni, bi)-notion ad-
versary B5.2 against UE such that

Adv
(no,bi)-notion
UE, A (1λ) = Adv

(uni,bi)-notion
UE, B5.2 (1λ).

Proof. The proof is similar to the proof of Theorem 5.1, we construct a reduction B5.2 running the
(uni, bi)-notion experiment which will simulate the responses of queries made by the (no, bi)-notion
adversary A.

By the analysis of trivial win equivalences (Lemmas 5.3, 4.7, 5.4 and 5.5), we have that if A does
not trigger the trivial win conditions in the (no, bi)-notion game, then the reduction will not trigger the
trivial win conditions in the (uni, bi)-notion game either.

Hence, the reduction perfectly simulates the (no, bi)-notion game to adversary A. And we have
Adv

(no,bi)-notion
UE, A (1λ) = Adv

(uni,bi)-notion
UE, B5.2 (1λ).

The following Theorem states that the (no, bi)- variant of confidentiality notions do not imply the
(no, uni)- variant of the corresponding confidentiality notions.

25

Theorem 5.3. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an updatable encryption
scheme. Let αnotion be the (no, bi)-notion advantage of an adversary A against UE, where notion ∈
{detIND-UE-CPA, randIND-UE-CPA, detIND-UE-CCA, randIND-UE-CCA}. Then there exists a mod-
ified scheme UEnew

1 , detailed in Fig. 18, such that the (no, bi)-notion advantage of A against UEnew
1 is

αnotion + lAdvIND$-CPA
SKE , and there exists an (no, uni)-notion adversary B5.3 against UEnew

1 that wins
with probability 1.

Proof technique of Theorem 5.3. For a confidentiality notion notion, we use a (no, bi)-notion secure
UE scheme UE to construct a new UE scheme UEnew

1 , which is still (no, bi)-notion secure but not
(no, uni)-notion secure. As a result, (no, uni)-notion is strictly stronger than (no, bi)-notion.

UEnew
1 .KG(1λ) :

k
$←− UE.KG(1λ)

return k

UEnew
1 .TG(ke,ke+1) :

∆e+1 ← UE.TG(ke,ke+1)
return ∆e+1

UEnew
1 .Enc(ke,m) :

c1
e

$←− UE.Enc(ke,m)

c2
e

$←− CS
return (c1

e , c
2
e)

UEnew
1 .Dec(ke, ce) :

m′ or ⊥ ← UE.Dec(ke, ce)
return m′

UEnew
1 .Upd(∆e+1, ce) :

parse ce = (c1
e , c

2
e)

c1
e+1 ← UE.Upd(∆e+1, c

1
e)

c2
e+1 ← SKE.Enc(∆e+1, c

1
e)

return (c1
e+1, c

2
e+1)

Figure 18: Updatable encryption scheme UEnew
1 for proof of Theorem 5.3, built from IND$-CPA-secure

SKE SKE and updatable encryption scheme UE.

Proof. UEnew
1 is not (no, uni)-notion secure. If a challenge-equal ciphertext c̃e+1 and the correspond-

ing epoch update token ∆e+1 are corrupted then the adversary can compute the prior challenge-equal
ciphertext c̃e by using ∆e+1 to decrypt c̃2

e+1. Then the adversary can corrupt a key ke to win the
(no, uni)-notion game without trigger the trivial win conditions.

UEnew
1 is (no, bi)-notion secure. All algorithms for UEnew

1 are the same as for UE, except for UEnew
1 .Enc

and UEnew
1 .Upd, where we use a SKE scheme SKE to make the UEnew

1 scheme has bi-directional cipher-
text updates. This does not affect an adversary’s ability to win the (no, bi)-notion game. The additional
advantage term lAdvIND$-CPA

SKE is because if the adversary knows a challenge-equal ciphertext, but not
a token, then the second challenge-equal ciphertext term will not leak the prior challenge-equal cipher-
text.

5.2.3 Relations between Integrity Notions

The following Theorem states that the (no, bi)- variant of an integrity notion implies the (no, uni)-
variant of the same integrity notion.

Theorem 5.4. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an updatable encryption
scheme. For any (no, uni)-notion adversary A against UE, where notion ∈ {INT-CTXT, INT-PTXT},
there exists an (no, bi)-notion adversary B5.4 against UE such that

Adv
(no,uni)-notion
UE, A (1λ) ≤ Adv

(no,bi)-notion
UE, B5.4 (1λ).

Proof. In the no-directional key update setting, K∗no = K. The proof is similar to the proof of Theo-
rem 5.1, we construct a reduction B5.4 running the (no, bi)-notion experiment which will simulate the

26

responses of queries made by the (no, uni)-notion adversary A. Suppose A queries a O.Try oracle
in epoch e. Notice that for any sets K, T , C ⊆ {0, ..., e}, (c, e) ∈ L∗no,uni ⇐⇒ (c, e) ∈ L∗no,bi
and (m′, e) ∈ Q∗no,uni ⇐⇒ (m′, e) ∈ Q∗no,bi, because such ciphertexts or plaintexts cannot be in-
ferred from future ciphertexts or plaintexts. Hence, ifA does not trigger the trivial win conditions in the
(no, uni)-notion game, then the reduction will not trigger the trivial win conditions in the (no, bi)-notion
game either.

However, (uni, bi)- variant of integrity notions do not imply the (no, bi)- variant of the corresponding
integrity notions. Combining this result with Theorem 5.1 we have that the (no, bi)- variant of integrity
notions are strictly stronger than any (kk, cc)- variant of the corresponding integrity notions, where
kk, cc ∈ {uni, bi}.

Theorem 5.5. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an updatable encryption
scheme. Let αnotion be the (uni, bi)-notion advantage of an adversary A against UE, where notion ∈
{INT-CTXT, INT-PTXT}. Then there exists a modified scheme UEnew

2 , detailed in Fig. 19, such
that the (uni, bi)-notion advantage of A against UEnew

2 is αnotion + lAdvIND$-CPA
SKE , and there exists

an (no, bi)-notion adversary B5.5 against UEnew
2 that wins with probability 1.

Proof technique of Theorem 5.2. We use a (uni, bi)-notion secure UE scheme UE to construct a new
UE scheme UEnew

2 , which is still (uni, bi)-notion secure but not (no, bi)-notion secure. As a result,
(no, bi)-notion notion is strictly stronger than (uni, bi)-notion notion.

UEnew
2 .KG(1λ) :

k
$←− UE.KG(1λ)

return k

UEnew
2 .TG(ke,ke+1) :

∆t
e+1 ← UE.TG(ke,ke+1)

∆c
e+1 ← SKE.Enc(ke,ke+1)

∆e+1 ← (∆t
e+1,∆

c
e+1)

return ∆e+1

UEnew
2 .Enc(ke,m) :

ce
$←− UE.Enc(ke,m)

return ce

UEnew
2 .Dec(ke, ce) :

m′ or ⊥ ← UE.Dec(ke, ce)
return m′

UEnew
2 .Upd(∆e+1, ce) :

parse ∆e+1 = (∆t
e+1,∆

c
e+1)

ce+1 ← UE.Upd(∆t
e+1, ce)

return ce+1

Figure 19: Updatable encryption scheme UEnew
2 for proof of Theorem 5.5, built from IND$-CPA-secure

symmetric key encryption (SKE) scheme SKE and updatable encryption scheme UE.

Proof. UEnew
2 is not (no, bi)-notion secure. If a key ke and the next epoch update token ∆e+1 are cor-

rupted then the adversary can compute the next epoch key ke+1 by decrypting ∆c
e+1 using ke. The

adversary can compute a forgery ce+1 in an integrity game to win the security game (no, bi)-notion
without trigger the trivial win conditions.

UEnew
2 is (uni, bi)-notion secure. All algorithms for UEnew

2 are the same as for UE, except for UEnew
2 .TG,

where we use a SKE scheme SKE to make the UEnew
2 scheme has uni-directional key updates. This

does not affect an adversary’s ability to win the (uni, bi)-notion game. The additional advantage term
lAdvIND$-CPA

SKE is because if the adversary knows a token, but not the prior epoch key, then the second to-
ken value ∆c

e+1 is computationally indistinguishable from a random element. Which makes sure that the
second token term will not leak information that would help the adversary win this security game.

27

6 LWE-based PKE Scheme

In this section, we look at a LWE-based PKE scheme LWEPKE, which is detailed in Fig. 20. We prove
that LWEPKE is IND$-CPA-secure, if the underlying LWE problem is hard. We will later use this PKE
scheme to construct an updatable encryption scheme in Section 7.

6.1 PKE Construction

In the setup phase, the scheme LWEPKE randomly chooses a matrix A
$←− Zm×nq . The key generation

algorithm samples a secret s from the uniform distribution U(Znq) and computes p = A · s + e, where
the error e is chosen from the discrete Gaussian distribution Dm

Z,α. The matrix A and the vector p

form the public key. Encryption takes a bit string m ∈ {0, 1}1×t as input, and outputs a ciphertext
(Aᵀ ·R,pᵀ ·R + e′ + q

2m mod q). Decryption is performed by computing d = c2 − sᵀ · C1. For
each entry di of d, the decryption algorithm outputs 0 if di is close to 0 mod q, and outputs 1 if di is
close to q

2 mod q.

LWEPKE.Setup(1λ) :

A
$←− Zm×nq

LWEPKE.KG(1λ) :
s← U(Znq)
e← Dm

Z,α
p← A · s + e mod q
return (s,p)

LWEPKE.Enc(p,m) :

R← Dtr
e′ ← D1×t

Z,β
C1 ← Aᵀ ·R
c2 ← pᵀ ·R + e′ + q

2m mod q
return (C1, c2)

LWEPKE.Dec(s, c) :
parse c = (C1, c2)
d← c2 − sᵀ ·C1

parse d = (d1, ..., dt)
for i ∈ {1, 2, ..., t} do

if di ∈ (3q
8 ,

5q
8) then

m′i ← 1
else if di ∈ (− q

8 ,
q
8) then

m′i ← 0
else

return ⊥
m′ ← (m′1, ...,m′t)
return m′

Figure 20: The algorithms of the LWE-based LWEPKE scheme. The randomness distribution Dr is
defined over Zmq . DZ,α, DZ,β are discrete Gaussian distributions. The message m lies in {0, 1}1×t.

Parameter Setting. The parameter setting of the scheme LWEPKE is as follows:

• n = λ is the security parameter,

• q = q(n) ≥ 2 be a prime,

• m = poly(n) and t = poly(n) be two integers,

• Dr be a distribution over Zmq with min-entropy k such that n ≤ (k − 2 log(1/ε)−O(1))/ log(q)
for negligible ε > 0, the infinite norm of the vector outputted by this distribution is at most
B = poly(n) with overwhelming probability,

• α, β > 0 be two numbers such that β ≤ q
8 and αB/β = negl(n).

• DZ,α and DZ,β be two discrete Gaussian distributions.

Remark 6.1. We specify that all operations in this paper are done in field Zq, and stop writing mod q
for the rest of this paper.

28

6.2 Correctness and Security

Correctness. We claim that LWEPKE.Dec decrypts correctly with overwhelming probability. The
decryption algorithm computes d = c2− sᵀ ·C1 = eᵀ ·R+ e′+ q

2m, and outputs m if eᵀ ·R+ e′ has
distance at most q8 from 0 mod q.

Let R = [r1, ..., rt]. By Lemma 2.1, we have that each entry of e have size at most α with over-
whelming probability. As each entry of R has size at most B, then each entry of eᵀ · R has size at
most α · B with overwhelming probability. That is, for all 1 ≤ j ≤ t, |eᵀ · rj | ≤ α · B. Hence,
|eᵀ · rj |/β ≤ α ·B/β = negl(n) is negligible, and by Lemma 2.2 we have that DZ,β and DZ,β + eᵀ · rj
are statistically close. Therefore, D1×t

Z,β is statistically close to D1×t
Z,β + eᵀ · R, so eᵀ · R + e′

s
≈ e′.

By Lemma 2.1, we have that each entry of e′ has size at most β with overwhelming probability. Since
β ≤ q

8 , we have the desired result.

Security. We now show that LWEPKE is IND$-CPA-secure under the assumption that the DLWEn,q,α
problem is hard.

Theorem 6.1. Let LWEPKE be the public key encryption described in Fig. 20, using the parameter
setting described in Section 6.1. Then for any adversary IND$-CPA A against LWEPKE, there exists an
adversary B against DLWEn,q,α such that

AdvIND$-CPA
LWEPKE, A(1λ) ≤ tε+ AdvDLWE

n,q,α (B) + negl(n).

Proof. The proof of theorem 6.1 consists of a sequence of games. Denote Ei be the event that the
adversary’s guess b′ = 1 in game i.

Game 0

The first game is the experiment ExpIND$-CPA-0
LWEPKE, A , given in Fig. 1. Then we have

Pr[E0] = Pr[ExpIND$-CPA-0
LWEPKE, A = 1].

Game 1

We consider a modified game, which is the same as Game 0 except for the second component of the
challenge ciphertext (c2) is generated as sᵀ ·C1 + e′ + q

2m instead of pᵀ ·R + e′ + q
2m.

In game 0, c2 − q
2m = pᵀ · R + e′ = (A · s + e)ᵀ · R + e′ = sᵀ · Aᵀ · R + eᵀ · R + e′ =

sᵀ · Aᵀ · R + eᵀ · R + e′ = sᵀ · C1 + eᵀ · R + e′. Similar to the correctness analysis, we know by
Lemma 2.1 and Lemma 2.2 that eᵀ ·R + e′

s
≈ e′. Thus,

|Pr[E0]−Pr[E1]| ≤ negl(n).

Game 2

We consider a modified game that is the same as Game 1, except that the first component of the challenge
ciphertext (C1) is sampled from the uniform distribution over Zn×tq .

From the leftover hash lemma (Lemma. 2.6) we know that the joint distribution of (A,Aᵀ ·R) is
tε-close to the uniform distribution over Zm×nq ×Zn×tq , since the min-entropy of ri is at least n log(q) +

2 log(1/ε) +O(1). That is, (A,C1)
c
≈ (A,U1), for a uniformly random matrix U1, and we have

|Pr[E1]−Pr[E2]| ≤ tε.

29

Game 3

We consider a modified game that is the same as Game 2, except that the second component of the
ciphertext (c2) is sampled from the uniform distribution over Z1×t

q .
Since the DLWEn,q,α problem is hard, the DLWEn,q,β problem is also hard by Lemma 2.4. Therefore,

the joint distribution of (C1, s
ᵀ ·C1 + e′) is computationally indistinguishable from the uniform distri-

bution over Zn×tq ×Z1×t
q , under the DLWEn,q,β problem is hard. That is, (C1, s

ᵀ ·C1 + e′)
c
≈ (C1,u2),

for a uniformly random vector u2, and we have

|Pr[E2]−Pr[E3]| ≤ AdvDLWE
n,q,α (B) + negl(n).

We know that Pr[E3] = Pr[ExpIND$-CPA-1
LWEPKE, A = 1]. By Definition 1, we have AdvIND$-CPA

LWEPKE, A(1λ) =
|Pr[E3]− Pr[E0]|, which concludes the proof.

7 LWE-based Updatable Encryption Scheme

We construct a LWE-based updatable encryption scheme LWEUE and prove that it is randIND-UE-CPA
secure if the underlying LWE problem is hard.

7.1 UE Construction

We now introduce our updatable encryption scheme LWEUE, which is parameterized by a LWE-based
PKE scheme LWEPKE (see Fig. 20). LWEUE uses algorithms from LWEPKE to do key generation,
encryption and decryption. To generate a new key from an old key in the next algorithm, our UE
scheme uses the homomorphic property of the LWE pairs. In particular, suppose the old key is (se,pe),
LWEUE.KG samples a new pair of LWE pairs (∆s

e+1,∆
p
e+1) and sets (se + ∆s

e+1,pe + ∆p
e+1) as the

new epoch key, where (∆s
e+1,pe + ∆p

e+1) is the update token. To update ciphertexts, LWEUE uses
the re-randomization idea that was similar to the idea from RISE in the work by Lehmann and Tack-
mann [LT18a]. As the ciphertext can be re-randomized by the update token, the update algorithm uses
the update token to update ciphertext from an old one to a new one. More precisely, the scheme LWEUE
is described in Fig. 21.

Parameter Setting We use the parameter setting of the scheme LWEPKE, described in Section 6.1.
Additionally, we require β ≤ q

8
√
l
, where l = poly(n) is an upper bound on the last epoch.

7.2 Construction Challenges in LWE-based UE Schemes

In this section, we discuss leakage from tokens due to bad UE construction and show how to solve this
leakage problems.

Secret Key Distribution. We first state that a binary secret does not work in the UE scheme, as an
update token might reveal the secret information. Suppose an entry of the update token ∆s

e+1(= se+1 −
se) is -1 (1, resp.), then we can conclude the corresponding entry of the previous secret se is 1 (0, resp.)
and the corresponding entry of the new secret se+1 is 0 (1, resp.).

We choose that secret keys and update tokens are sampled from the uniform distribution over Znq ,
which ensures that any corrupted token will not reveal any information about the relevant secret keys.

Epoch Key Generation. Intuitively, it is natural to consider generating the epoch keys by sampling a
secret si ← U(Znq) and setting the public key to be pi = A · si+ei, where ei ← Dm

Z,α. Then the update
token is set as ∆i = (si − si−1,pi).

In a confidentiality game for such UE schemes, suppose the adversary knows two consecutive tokens
∆i−1 and ∆i. Using these tokens the adversary can compute pi−pi−1−A ·∆s

i = ei−ei−1, and knows

30

Setup(1λ) :

A← LWEPKE.Setup(1λ)

LWEUE.KG(1λ) :
if e = 0 then

(s0,p0)← LWEPKE.KG(1λ)
else

parse ke−1 = (se−1,pe−1)
(∆s

e,∆
p
e)← LWEPKE.KG(1λ)

se ← se−1 + ∆s
e

pe ← pe−1 + ∆p
e

ke ← (se,pe)
return ke

LWEUE.TG(ke,ke+1) :
parse ke = (se,pe)
parse ke+1 = (se+1,pe+1)
∆s

e+1 ← se+1 − se
∆e+1 ← (∆s

e+1,pe+1)
return ∆e+1

LWEUE.Enc(ke,m) :
parse ke = (se,pe)
ce ← LWEPKE.Enc(pe,m)
return ce

LWEUE.Dec(ke, ce) :
parse ke = (se,pe)
m′ ← LWEPKE.Dec(se, ce)
return m′

LWEUE.Upd(∆e+1, ce) :
parse ∆e+1 = (∆s

e+1,pe+1)
parse ce = (C1

e , c
2
e)

(C1, c2)
$←− LWEPKE.Enc(pe+1,0)

C1
e+1 ← C1

e + C1

c2
e+1 ← c2

e + (∆s
e+1)ᵀ ·C1

e + c2

ce+1 ← (C1
e+1, c

2
e+1)

return ce+1

Figure 21: The algorithms of LWE-based updatable encryption scheme LWEUE, which is parameterized
by a LWE-based PKE scheme LWEPKE.

ei − ei−1. Which means if the adversary knows a set of consecutive tokens ∆i,∆i+1, ...,∆i+j then it
will also knows {ei+1 − ei, ei+2 − ei, ..., ei+j − ei}, the values in this set are sampled from a discrete
Gaussian distribution centered at ei. Through evaluating these errors the adversary can possibly find the
error value ei and therefore knows the secret value si. Furthermore, the adversary is allowed to ask for a
challenge-equal ciphertext in epoch i, which will not trigger the trivial win condition, and can therefore
break this confidentiality game. The above attack shows that this epoch key generation approach is not
safe, it might leak the secret epoch key information.

We choose to generate a fresh pair (∆s
e+1,∆

p
e+1) to compute the new epoch key and the update

token, which makes sure the update token ∆e+1 = (∆s
e+1,pe+1) is independent from the previous

epoch key. Additionally, this pair is computationally indistinguishable from a uniformly random pair as
long as the underlying LWE problem is hard.

7.3 Correctness

Errors in updated ciphertexts increase when they are updated. Since the total number of epoch is bounded
with a comparatively small integer l, the UE scheme supports a limited number of ciphertext updates.
As a result, errors in updated ciphertexts will not grow too big and the decryption will be correct with
overwhelming probability for some parameter setting.

Following the correctness analysis of the underlying PKE scheme, encrypted ciphertexts decrypt to
the correct message with overwhelming probability. So, we only need to consider if updated ciphertexts
will decrypt to the correct message.

First, assume a ciphertext is encrypted in epoch e and that it will be updated from epoch e to epoch
e + 1. For any m ∈ M, suppose pe = A · se +

∑e
i=0 ei, pe+1 = A · se+1 +

∑e+1
i=0 ei, (C1

e , c
2
e) =

31

(Aᵀ ·Re,p
ᵀ
e ·Re + e′e + q

2m) and (C1, c2) = (Aᵀ ·Re+1,p
ᵀ
e+1 ·Re+1 + e′e+1). Then

C1
e+1 = C1

e + C1 (6)

= Aᵀ ·Re + Aᵀ ·Re+1

= Aᵀ · (Re + Re+1),

and

c2
e+1 = c2

e + (∆s
e+1)ᵀ ·C1

e + c2

= pᵀ
e ·Re + e′e +

q

2
m + (se+1 − se)

ᵀ · (Aᵀ ·Re) + pᵀ
e+1 ·Re+1 + e′e+1

= pᵀ
e ·Re + pᵀ

e+1 ·Re+1 + (se+1 − se)
ᵀ ·Aᵀ ·Re + e′e + e′e+1 +

q

2
m

= pᵀ
e+1 · (Re+1 + Re)− eᵀe+1 ·Re + e′e + e′e+1 +

q

2
m

s
≈ pᵀ

e+1 · (Re+1 + Re) + (e′e + e′e+1) +
q

2
m (7)

= (pᵀ
e+1 ·Re + e′e) + c2 +

q

2
m. (8)

Note that by Lemma 2.1 and Lemma 2.2, Equation (7) holds. Notice that the updated ciphertext is
of the same shape as the encrypted ciphertext with the new randomness (Re + Re+1) and new error
(e′e +e′e+1). Which means when we update a ciphertext multiple times the updated ciphertext will keep
the same shape as well, only with a bigger randomness and bigger error.

Iteratively, we consider ciphertext ce′ to be an updated ciphertext updated from epoch e to epoch e′,
where 0 ≤ e′− e < l. Assume ce is the original encryption. For 0 ≤ i ≤ e′− e, let the re-randomization
performed in epoch e + i outputs (Aᵀ ·Re+i,p

ᵀ
e+1 ·Re+i + e′e+i). Then

C1
e′ = Aᵀ ·

e′−e∑
i=0

Re+i,

and

c2
e′ = pᵀ

e′ ·
e′−e∑
i=0

Re+i +

e′−e∑
i=0

e′e+i +
q

2
m− (

e′−e∑
i=1

eᵀe+i · (
i−1∑
j=0

Re+j))

s
≈ pᵀ

e′ ·
e′−e∑
i=0

Re+i +

e′−e∑
i=0

e′e+i +
q

2
m. (9)

By Lemma 2.1 and Lemma 2.2, Equation (9) holds. Then we have c2
e′ − sᵀe′ · C

1
e′

s
≈
∑e′

i=0 e
ᵀ
i ·∑e′−e

i=0 Re+i +
∑e′−e

i=0 e′e+i + q
2m

s
≈
∑e′−e

i=0 e′e+i + q
2m. By Lemma 2.3, each entry of

∑e′−e
i=0 e′e+i is of

the size at most
√
e′ − e ·β with overwhelming probability, which has distance at most q8 from 0 mod q

because β ≤ q

8
√
l

and e′ − e < l. In summary, LWEUE.Dec decrypts correctly with overwhelming
probability.

7.4 Challenges of the Security Proof in LWE-based UE Schemes

In this section we highlight the difficulties when proving that LWEUE is a secure UE scheme, specifi-
cally, our UE scheme has a randomized update algorithm. Lehmann and Tackmann [LT18a] and Klooß et
al. [KLR19] both describes a method, similar to each other, to prove that updatable encryption schemes
with randomized update algorithms are secure. Their technique can be seen when they prove that RISE
and NYUE (NYUAE) are secure, resp. However, this method can not be directly used to prove that
LWEUE is secure. The method introduced requires that UE schemes has perfect re-encryption, which

32

means the distribution of updated ciphertexts has the same distribution as fresh encryptions. In their
proof, they replace updated ciphertexts by fresh encryptions of the underlying messages. However, in
the LWEUE scheme, we cannot simply replace updated ciphertexts by a fresh encryption because the
randomness terms and the error terms grow while updating and an updated ciphertext does not have the
same distribution as a fresh encryption.

7.5 Security

If LWEPKE is IND$-CPA-secure then the output of the encryption algorithm is computationally indistin-
guishable from a pair of uniformly random elements. Hence, the fresh encryption in the LWEUE scheme
is computationally indistinguishable from a pair of uniformly random elements as well. Furthermore,
the update algorithm LWEUE.Upd runs the encryption algorithm of LWEPKE to re-randomize the old
ciphertext to a new ciphertext, therefore, the updated ciphertext is also computationally indistinguishable
from a pair of uniformly random elements. So, a fresh encryption is computationally indistinguishable
from an updated ciphertext and LWEUE is randIND-UE-CPA-secure. This provides the underlying in-
tuition for the security proof.

7.5.1 Technical Simulations in the Proof

Simulate Public Keys. Suppose p0 = A ·s0 +e0 and (∆s
i ,∆

p
i) = (∆s

i ,A ·∆s
i +ei) for i > 0, where

s0,∆
s
i ← U(Znq) and ei ← Dm

Z,α. Then

pe = pe−1 + A ·∆s
e + ee

= pj + A · (
e∑

i=j+1

∆s
i) +

e∑
i=j+1

ei (10)

= A · (s0 +
e∑
i=1

∆s
i) +

e∑
i=0

ei

= A · se +
e∑
i=0

ei. (11)

Equation (10) shows that any public key can be simulated by any other public key and tokens. Equa-
tion (11) shows that any public key can be simulated by the corresponding secret key.

Simulate Updated Ciphertexts. Then we consider how to simulate updated ciphertexts by only using
public keys. We will have a bookkeeping in set L to track the randomness R and the big error e′.
Specifically, we record L as L ← L ∪ {(c, ce, e;Re, e

′
e,m)}.

To simulate an updated ciphertext from epoch e to epoch e + 1, suppose (c, ce, e;Re, e
′
e,m) ∈ L,

and the new public key is pe+1. We use the new public key to perform the re-randomization, to produce
(C1, c2). Suppose (C1, c2) = (Aᵀ ·R,pᵀ

e+1 ·R + e′), then we use Equations (6) and (8) to simulate
the updated ciphertext ce+1 = (C1

e+1, c
2
e+1), where C1

e+1 = C1
e + C1 and c2

e+1 = (pᵀ
e+1 ·Re + e′e +

q
2m) + c2. After simulation, the set L will store the updated ciphertext with the updated randomness
Re +R and the updated error e′e + e′, i.e. L ← L∪{(c, ce+1, e+ 1;Re +R, e′e + e′,m)}. We use the
re-randomization algorithm reR described in Fig. 22 to simulate updated ciphertexts.

7.5.2 LWEUE is randIND-UE-CPA

Theorem 7.1 (LWEUE is randIND-UE-CPA). Let LWEUE be the updatable encryption scheme de-
scribed in Fig. 21, using parameter setting described in Section 7.1. For any randIND-UE-CPA adversary
A against LWEUE, there exists an adversary B7.1 against DLWEn,q,α such that

AdvrandIND-UE-CPA
LWEUE, A (1λ) ≤ 2(l + 1)3 ·

(
tε+ 3AdvDLWE

n,q,α (B7.1) + negl(n)
)
.

33

reR(pe+1, ce = (C1
e , c

2
e);Re, e

′
e,m) :

R← Dtr
e′ ← D1×t

Z,β
C1 ← Aᵀ ·R
c2 ← pᵀ

e+1 ·R + e′

C1
e+1 ← C1

e + C1

c2
e+1 ← (pᵀ

e+1 ·Re + e′e + q
2m) + c2

Re+1 ← Re + R
e′e+1 ← e′e + e′

return (ce+1;Re+1, e
′
e+1)

Figure 22: Algorithm reR, used to simulate updated ciphertexts.

Overview of the Security Proof. We now explain how we bound the advantage of any adversary
playing the randIND-UE-CPA game for LWEUE by the DLWE advantage.

To prove the security, we play a hybrid game over epochs, where the reduction constructs one hybrid
for each epoch. In hybrid i, to the left of epoch i the game returns real challenges, to the right of
epoch i the game returns random ciphertexts. This means we have one hybrid for each epoch, moving
real-to-random across the epoch space.

In each hybrid, we play an intermediate sequence of games. In the first game, we apply the fire-
wall technique to set up a modified hybrid game. This modification ensures that the reduction (we will
construct this reduction later) can simulate the modified hybrid game because it can provide valid keys
and tokens to the adversary and easily check the trivial win conditions. In the second game, we change
how the update algorithm runs by only using the public key without the update token (see the technique
in Supplementary Materials Section 7.5.1), which helps the reduction to simulate updated ciphertexts.
It is impossible to simulate updated ciphertext across firewalls, if the token is needed when updating,
as the reduction does not know tokens in both firewalls. Our scheme makes it possible to generate
updated ciphertexts using only the public key. In the third game, we change how public keys are gen-
erated, which makes sure that the reduction can simulate valid public keys. Eventually, we construct a
reduction playing the IND$-CPA (the IND$-CPA advantage is upper bounded by the DLWE advantage)
game by simulating the third game to an adversary. The IND$-CPA game moves the real challenge-
equal ciphertext in epoch i to a random ciphertext, which means the fresh encryption is computationally
indistinguishable from the updated ciphertext.

Proof. In this proof, we use three steps to reach our desired goal. In the first step, we use a sequence of
hybrid gamesHi to bound the randIND-UE-CPA advantage. In the second step, we bound the advantage
of each hybrid game to the advantage of a modified hybrid game Gi. In the third step, we bound the
advantage of the modified hybrid game Gi to the DLWE advantage, using an intermediate sequence of
games.

Step 1. For b ∈ {0, 1}, we construct a sequence of hybrid games Hb
0 , ..., Hb

l+1. In game Hb
i , if the

adversary asks for a challenge-equal ciphertext by theO.Chall query or aO.UpdC̃ query, with challenge
input (m̄, c̄), in epoch j:

• if j < i, then return a real challenge-equal ciphertext, which is (updated from) the encryption of
m̄ if b = 0 or an updated ciphertext of c̄ if b = 1,

• if j ≥ i, return a random ciphertext.

Thus Hb
l+1, i = l + 1, is ExprandIND-UE-CPA-b

LWEUE,A , i.e. all challenge responses are real challenge-equal
ciphertexts. Notice that H0

0 = H1
0 , i = 0, because all challenge responses are random ciphertexts. We

34

have

AdvrandIND-UE-CPA
LWEUE, A (1λ) =

∣∣Pr[H1
l+1 = 1]−Pr[H0

l+1 = 1]
∣∣

≤
l+1∑
i=1

|Pr[H1
i = 1]−Pr[H1

i−1 = 1]|

+
l+1∑
i=1

|Pr[H0
i = 1]−Pr[H0

i−1 = 1]|.

Step 2. In Hybrid i, for b ∈ {0, 1}, let A′i be an adversary trying to distinguish game Hb
i from game

Hb
i−1. For all queries concerning epochs other than i the responses will be equal in either game, so

we assume that A′i asks for a challenge-equal ciphertext in epoch i, therefore there exist two epochs4

(denote fwl, fwr) around the epoch i such that no key in the sequence of epochs (fwl, ..., fwr) and no
token in epochs fwl and fwr + 1 are corrupted.

Furthermore,Hb
j = Hb

0 , for all j < ẽ, since the adversary never asks for a challenge-equal ciphertext
before the challenge epoch (ẽ). So we assume i ≥ ẽ.

Define a new game Gb
i that is the same as gameHb

i , except for the game randomly picks two numbers

fwl, fwr
$←− {0, ..., l}. If the adversary corrupts a key in the sequence of epochs (fwl, ..., fwr) or a token

in epochs fwl and fwr + 1, the game aborts. This loss is upper bounded by (l + 1)2. Then we have

|Pr[Hb
i = 1]−Pr[Hb

i−1 = 1]| ≤ (l + 1)2|Pr[Gb
i = 1]−Pr[Gb

i−1 = 1]|.

Step 3. In this step, we will prove that |Pr[Gb
i = 1]−Pr[Gb

i−1 = 1]| is upper bounded by the DLWE
advantage.

Claim 7.1.1. For any b ∈ {0, 1}, there exists an adversary B7.1 against DLWEn,q,α such that

|Pr[Gb
i = 1]−Pr[Gb

i−1 = 1]| ≤ tε+ 3AdvDLWE
n,q,α (B7.1) + negl(n).

Proof of Claim 7.1.1. Assume Ai is an adversary trying to distinguish Gb
i from Gb

i−1, and Ai asks
for a challenge-equal ciphertext in epoch i (i ≥ ẽ). The proof of Claim 7.1.1 consists of the following
sequence of games.

Game 0

The game flips a coin d
$←− {0, 1}, if d = 0 it plays game Gb

i−1 (responses a real challenge-equal
ciphertext in epoch i) toAi, if d = 1 it plays game Gb

i (responses a random ciphertext in epoch i) toAi.
Denote Ei be the event that the adversary succeeds in guessing d in game i.

Then we have
Pr[E0] = |Pr[Gb

i = 1]−Pr[Gb
i−1 = 1]|.

Game 1

We consider a modified game that is the same as Game 0, except for the updated ciphertext is generated
by using only public key without the secret token. More precisely, the game running the update algorithm
as follows.

4This observation was introduced in the work of Lehmann and Tackmann [LT18a], Klooß et al. [KLR19] provided an
extended description of this key insulation technique, and Boyd et al. [BDGJ19] formally defined it as firewall technique.

35

O.Upd(ce−1) :
if (·, ce−1, e− 1;Re−1, e

′
e−1,m) 6∈ L then

return ⊥
(ce;Re, e

′
e)← reR(pe, ce−1;Re−1, e

′
e−1,m)

L ← L ∪ {(·, ce, e;Re, e
′
e,m)}

return ce

The re-randomization algorithm reR is described in Fig. 22. By the analysis in Section. 7.5.1, we
have

|Pr[E1]−Pr[E0]| ≤ negl(n).

Game 2

We consider a modified game that is the same as Game 1, except for the public key in epoch fwl is
generated with one additional error and the public key in epoch fwr + 1 is generated with one error less.
In particular, let ∆s

fwl,∆
s
fwr+1 ← U(Znq) and efwl, e← Dm

Z,α, these public keys are generated as follows.

pfwl = pfwl−1 + A ·∆s
fwl + efwl + e,

pfwr+1 = pfwr + A ·∆s
fwr+1 − e.

We claim that, in Game 2, all public key distributions except for pfwl are equal to the corresponding
real public key distributions. Furthermore, the public key pfwl produced in Game 2 is computationally
indistinguishable from the real public key pfwl.

Any public key that is in an epoch smaller than fwl, or greater than fwr+1, are generated by algorithm
LWEUE.KG in both games. So we only consider public keys from epoch fwl to epoch fwr + 1. In Game
2, the public keys from epoch fwl to epoch fwr + 1 are computed as follows.

pfwl = pfwl−1 + A ·∆s
fwl + efwl + e, (12)

...

pi = pi−1 + A ·∆s
i + ei, (13)

...

pfwr = pfwr−1 + A ·∆s
fwr + efwr, (14)

pfwr+1 = pfwr + A ·∆s
fwr+1 − e. (15)

Based on Equation (13), (14), and (15), we know that public keys pfwl+1, ..., pfwr,pfwr+1 are gen-
erated as real public keys by running algorithm LWEUE.KG. Furthermore, note that A ·∆s

fwl + efwl is
computationally indistinguishable from a uniform random element in Zmq . Therefore, the public value
pfwl in both games are computationally indistinguishable from a uniform random element in Zmq , under
the DLWEn,q,α problem. Then we have

|Pr[E2]−Pr[E1]| ≤ 2 ·AdvDLWE
n,q,α .

Now we are almost finished, all we need to prove now is that Pr[E2] ≤ AdvIND$-CPA
LWEPKE, B̃7.1

(1λ) +

negl(n), which we claim is true in Claim 7.1.2. Finally, by Theorem 6.1, we get Pr[E2] ≤ tε +
AdvDLWE

n,q,α + negl(n), which concludes the proof of Claim 7.1.1.

Claim 7.1.2. Pr[E2] ≤ AdvIND$-CPA
LWEPKE, B̃7.1

(1λ) + negl(n).

36

Proof of Claim 7.1.2. Before we start constructing a reduction to simulate Game 2 we need the fol-
lowing equations, describing the public key in an epoch j:

• For fwl < j ≤ fwr, we have

pj = pj−1 + A ·∆s
j + ej

= pfwl + A · (
j∑

k=fwl+1

∆s
k) +

j∑
k=fwl+1

ek

= (pfwl−1 + A ·∆s
fwl + efwl + e) + A · (

j∑
k=fwl+1

∆s
k) +

j∑
k=fwl+1

ek

= e + A · (s0 +

j∑
k=1

∆s
k) +

j∑
k=0

ek

= (A · sj + e) +

j∑
k=0

ek, (16)

Equation (16) also holds for j = fwl, it follows from Equation (11) and (12). This equation will
be used to simulate the public key in epoch i.

• For i < j ≤ fwr, we have

pj = pi +
(
A · (

j∑
k=i+1

∆s
k) +

j∑
k=i+1

ek
)
. (17)

• Similarly, for fwl ≤ j < i, we have

pj = pi −
(
A · (

i∑
k=j+1

∆s
k) +

i∑
k=j+1

ek
)
. (18)

• For j = fwr + 1, we have

pfwr+1 = pfwr + A ·∆s
fwr+1 − e

= (A · sfwr + e +
fwr∑
k=0

ek) + A ·∆s
fwr+1 − e

= A · sfwr+1 +

fwr∑
j=0

ej . (19)

We construct a reduction B̃7.1, detailed in Fig. 23, that is playing the IND$-CPA game and will
simulate the responses of queries made by adversary Ai in game 2. Initially, the reduction guesses two
numbers fwl, fwr. If Ai corrupts kfwl, ...,kfwr, ∆fwl, or ∆fwr+1 the reduction aborts the game.

A summary of the technical simulations are as follows.

• In the setup phrase,

– B̃7.1 samples errors and tokens as follows.

∗ For j ∈ {0, ..., fwr} ∪ {fwr + 2, ..., n}, B̃7.1 samples each error as ej ← Dm
Z,α,

∗ For j ∈ {fwl + 1, ..., fwr}, B̃7.1 samples each token as ∆s
j ← U(Znq).

37

For b ∈ {0, 1}, B̃7.1 plays IND$-CPA game
by running Ai :
receive (A,p)
do Setup
b′ ← Aoraclesi (1λ)
if ABORT occurred or C∗ ∩ K∗ 6= ∅
or i /∈ {fwl, ..., fwr} or i < ẽ then
b′

$←− {0, 1}
return b′

if b′ = b then
return 0

else
return 1

Setup(1λ)
∆0 ←⊥; e← 0; phase, twf ← 0;
L, L̃, C,K, T ← ∅
fwl, fwr

$←− {0, ..., l}
for j ∈ {0, ..., n}†† do
ej ← Dm

Z,α
for j ∈ {fwl+1, ..., fwr} do

∆s
j ← U(Znq)

for j∈{0, ..., fwl-1}∪{fwr+1, ..., n} do
sj ← U(Znq);

∆s
j ← sj-s

†
j-1;

pj ← A · sj+
∑j

k=0 e
††
k

pi ← p+
∑i

k=0 ek
for j∈{fwl, ..., i-1} do
pj ← p-A ·

∑i
k=j+1 ∆s

k+
∑j

k=0 ek
for j∈{i+1, ..., fwr} do
pj ← p+A ·

∑j
k=i+1 ∆s

k+
∑j

k=0 ek

O.Enc(m) :
c← c+1
ce ← LWEUE.Enc(pe,m)
L ← L ∪ {(c, ce, e;Re, e

′
e,m)}

return ce

O.Next :
e← e+1

O.Upd(ce-1) :
if (·, ce-1, e-1;Re-1, e

′
e-1,m) 6∈ L then

return ⊥
(ce;Re, e

′
e)← reR(pe, ce-1;Re-1, e

′
e-1,m)

L ← L ∪ {(·, ce, e;Re, e
′
e,m)}

return ce

O.Corr(inp, ê) :
if ê > e then

return ⊥
if inp = key then

if ê ∈ {fwl, ..., fwr} then
ABORT

else
K ← K ∪ {ê}
return kê

if inp = token then
if ê ∈ {fwl, fwr+1} then
ABORT

else
T ← T ∪ {ê}
return ∆ê

O.Chall(m̄0, c̄) :
if phase = 1 then

return ⊥
phase← 1; ẽ← e
if (·, c̄=(C̄1, c̄2), ẽ-1;Rẽ-1, e

′
ẽ-1, m̄1) 6∈L then

return ⊥
Send m̄b to the IND$-CPA challenger, get (X,y)
if ẽ = i then

if b = 0 then
c̃ẽ ← (X,y)

else
c̃ẽ ← (X+C̄1,y+pᵀ

ẽ ·Rẽ-1+e′ẽ-1)
else

if b = 0 then
c̃ẽ ← LWEUE.Enc(pẽ, m̄0)

else
(c̃ẽ;Rẽ, e

′
ẽ)← reR(pẽ, c̄;Rẽ-1, e

′
ẽ-1, m̄1)

for j ∈ {ẽ+1, ..., i-1} do
(c̃j ;Rj , e

′
j)← reR(pj , c̃j-1;Rj-1, e

′
j-1, m̄b)

c̃i ← (X+C̃1
i-1,y+pᵀ

i ·Ri-1+e′i-1)
for j ∈ {i+1, ..., n} do
c̃j

$←− CS
C ← C ∪ {ẽ}
L̃ ← L̃ ∪ {(c̃ẽ, ẽ)}
return c̃ẽ

O.UpdC̃ :
if phase 6= 1 then

return ⊥
C ← C ∪ {e}
L̃ ← L̃ ∪ {(c̃e, e)}
return c̃e

Figure 23: Reduction B̃7.1 for proof of Claim 7.1.2. † indicates ∆0 and ∆fwr+1 are skipped in the
computation. †† indicates efwr+1 is skipped in the computation.

38

– B̃7.1 generates all keys and tokens, except for kfwl, ...,kfwr,∆fwl,∆fwr+1, as follows.

∗ B̃7.1 generates the initial key by running the key generation algorithm. In particular,
k0 ← LWEUE.KG(1λ) is computed as: randomly sample a secret key s0 ← U(Znq), set
k0 ← (s0,A · s0 + e0).
∗ For j ∈ {1, ..., fwl − 1} ∪ {fwr + 2, ..., n}, B̃7.1 generates the epoch key and update

token by running the key generation algorithm and the token generation algorithm. In
particular, kj ← LWEUE.KG(1λ) and ∆j ← LWEUE.TG(kj−1,kj) are computed as:
randomly sample a secret key sj ← U(Znq), set token ∆s

j ← sj − sj−1 and public key
pj ← A · sj +

∑j
k=0 ek

5.

∗ B̃7.1 generates kfwr+1 by using Equation (19): randomly sample a secret key sfwr+1 ←
U(Znq), set public key pfwr+1 ← A · sfwr+1 +

∑fwr
k=0 ek.

– B̃7.1 generates public keys pfwl, ...,pfwr as follows.

∗ B̃7.1 generates pi by using Equation (16): embed the public key p received from its
IND$-CPA challenger to pi, set pi ← p +

∑i
k=0 ek

6.
∗ For fwl ≤ j < i, pj is generated by using Equations (16,18): set public key pj ←
p−A ·

∑i
k=j+1 ∆s

j +
∑j

k=0 ek.
∗ For i < j ≤ fwr, pj is generated by using Equations (16,17): set public key pj ←

p + A ·
∑j

k=i+1 ∆s
j +

∑j
k=0 ek.

• To simulate non-challenge ciphertexts: B̃7.1 uses public keys to simulate encrypted ciphertexts
and updated ciphertexts. In particular, B̃7.1 runs the re-randomization algorithm reR to simulate
updated ciphertexts.

• To simulate challenge-equal ciphertexts in an epoch that is:

– to the left of epoch i: B̃7.1 uses public keys to simulate encryption and updating. When B̃7.1

runs update algorithm, it performs re-randomization using algorithm reR, which is described
in Fig. 22.

– epoch i: B̃7.1 embeds the challenge ciphertext (X,y) received from its IND$-CPA chal-
lenger to the challenge-equal ciphertext in epoch i. Using (X,y) as the re-randomization
component or the random encryption component. More precisely, suppose B̃7.1 receives
a challenge query O.Chall with input (m̄0, c̄) in challenge epoch ẽ, where the underlying
message of c̄ is m̄1. B̃7.1 sends m̄b to its IND$-CPA challenger and obtains (X,y). Hence,
(X,y) is either an output of LWEPKE.Enc(p, m̄b)7 or a random ciphertext.
For b = 1. In the former case, based on Equations (6, 8), we know that (C̃1

i , c̃
2
i) = (C̃1

i−1 +
X, (pᵀ

i ·Ri−1 + e′i−1) + y) is a valid simulation of the challenge-equal ciphertext in epoch
i. In the latter case, (C̃1

i , c̃
2
i) = (C̃1

i−1 +X, (pᵀ
i ·Ri−1 +e′i−1) +y) is a random ciphertext.

For b = 0. The analysis is similar to the discussion when b = 1.

– to the right of epoch i: B̃7.1 samples a random ciphertext.

Eventually, B̃7.1 receives the output bit fromAi. IfAi guesses that it receives a real challenge-equal
ciphertext in epoch i, then B̃7.1 guesses that it has seen the real encryption (returns 0 to its IND$-CPA
challenger). Otherwise, B̃7.1 guess it has seen a random ciphertext (returns 1 to its IND$-CPA chal-
lenger).

Note that B̃7.1 perfectly simulates the responses of queries made by adversary Ai in game 2 except
for a negligible probability. Then we have that Pr[E2] ≤ AdvIND$-CPA

LWEPKE, B̃7.1
(1λ) + negl(n).

5If j > fwr + 1, skip efwr+1 in the computation. This computation is based on Equations (11,19)
6set A · si + e← p
7y is statistically close to the second component of LWEPKE.Enc(pi, m̄b) in this case.

39

Remark 7.1. Klooß et al. [KLR19] introduced a generic construction of transforming CPA-secure UE
schemes to UE schemes with PTXT and RCCA security. The main idea is to use the extended Naor-
Yung (NY) CCA-transform [NY90] (for public-key schemes). The NY approach is to encrypt a message
under two (public) keys of a CPA-secure encryption scheme. The extended NY approach additionally
includes a proof that shows the owner knows a valid signature that contains the NY ciphertext pair and
the underlying message. A potential future work would be to incorporate LWEUE to their construction
to create an UE scheme that achieves PTXT and RCCA security.

7.6 Generic UE Constructions from PKE Schemes

In this section, we discuss the generic idea of how to re-randomize a ciphertext and how to use this tech-
nique to create a secure UE scheme. Consider a UE scheme which is parameterized by a homomorphic
PKE scheme PKE, ⊕C and ⊕M are operations on the ciphertext space and plaintext space, resp. To
update a ciphertext, the update algorithm do as follows:

(1) it uses the update token to move a ciphertext, Cold = Encpkold(m), from the old key to the new
key, Cmid = Encpknew(m);

(2) it generates a random ciphertext Crand = Encpknew(u) using the new public key and the plaintext
u = 0 if ⊕M is addition and u = 1 if ⊕M is multiplication;

(3) it outputs the sum of the above two ciphertexts Cnew = Cmid⊕C Crand as the updated ciphertext.

Note that Cmid may not be independent from Cold, the output is possible to be deterministic. The
first step might be enough for constructing a secure UE scheme, like SHINE, where the public keys used
in the first step are secret keys. However, for schemes like RISE and LWEUE, only using the first step is
not enough to construct a secure UE scheme. More precisely, we show how step (1) works for specific
schemes as follows.

• For SHINE we only do step (1) and the public keys used in the first step are secret keys. The
update algorithm outputs Cnew = Cmid = C∆

old.

• For RISE the update algorithm computes ciphertexts Cold = (C1, C2) = (pkrold, g
rm), Cmid =

(C∆
1 , C2) = (pkrnew, g

rm). The second entry of Cold and Cmid are the same.

• For LWEUE Cold = (C1, c2) = (Aᵀ ·R, pkᵀold ·R+e′+ q
2m), Cmid = (C1, c2 + (∆s)ᵀ ·C1) =

(Aᵀ ·R, pkᵀnew ·R + e′′ + q
2m). The first entry of Cold and Cmid are the same.

For RISE and our LWE-based UE LWEUE, they only use the idea of step (1) to construct an UE scheme
that cannot even achieve IND-UPD security, because one entry of the updated ciphertext remains the
same as the old ciphertext. That is why we need the re-randomization procedure (Step (2) and (3)).
Using the homomorphic property of the PKE scheme we get an output that is a valid ciphertext with the
same plaintext of the old ciphertext under the new public key. Since Crand is a random ciphertext, Cnew
is a random ciphertext as well that potentially ensures the security of UE. Using this method, we can
possibly construct an secure UE scheme where the security of this UE scheme follows from the security
of the underlying homomorphic encryption scheme.

Acknowledgements. We would like to thank Gareth T. Davies and Herman Galteland for a number of
useful suggestions for improvement, and Kristian Gjøstian for fruitful discussions in this work.

References

[ABD+a] Erdem Alkim, Joppe W. Bos, Léo Ducas, Karen Easterbrook, Brian LaMacchia, Patrick
Longa, Ilya Mironov, Valeria Nikolaenko, Chris Peikert, Ananth Raghunathan, and

40

Douglas Stebila. FrodoKEM: Learning With Errors Key Encapsulation. https://
frodokem.org/files/FrodoKEM-specification-20190330.pdf. Sub-
mission to the NIST Post-Quantum Standardization project, round 2.

[ABD+b] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyuba-
shevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé.
CRYSTALS-Kyber (version 2.0). https://pq-crystals.org/kyber/data/
kyber-specification-round2.pdf. Submission to the NIST Post-Quantum
Standardization project, round 2.

[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum Key
Exchange - A New Hope. In USENIX Security Symposium, pages 327–343. USENIX
Association, 2016.

[BCLvV17] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Christine van Vre-
dendaal. NTRU Prime: Reducing attack surface at low cost. In SAC, volume 10719 of
Lecture Notes in Computer Science, pages 235–260. Springer, 2017.

[BDGJ19] Colin Boyd, Gareth T. Davies, Kristian Gjøsteen, and Yao Jiang. Fast and Secure Up-
datable Encryption. Cryptology ePrint Archive, Report 2019/1457, 2019. https:
//eprint.iacr.org/2019/1457.

[BEKS20] Dan Boneh, Saba Eskandarian, Sam Kim, and Maurice Shih. Improving Speed and Secu-
rity in Updatable Encryption Schemes. IACR Cryptology ePrint Archive, 2020:222, 2020.

[BLMR13] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Key ho-
momorphic PRFs and their applications. In Proceedings of CRYPTO 2013 I, volume 8042
of LNCS, pages 410–428. Springer, 2013.

[BLMR15] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Key
homomorphic PRFs and their applications. IACR Cryptology ePrint Archive, 2015:220,
2015.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Fully Homomorphic Encryption from Ring-
LWE and Security for Key Dependent Messages. In Phillip Rogaway, editor, Advances
in Cryptology - CRYPTO 2011 - 31st Annual Cryptology Conference, Santa Barbara, CA,
USA, August 14-18, 2011. Proceedings, volume 6841 of Lecture Notes in Computer Sci-
ence, pages 505–524. Springer, 2011.

[CDH+] Cong Chen, Oussama Danba, Jeffrey Hoffstein, Andreas Hülsing, Joost Rijneveld, John M.
Schanck, Peter Schwabe, William Whyte, and Zhenfei Zhang. NTRU. https://ntru.
org/f/ntru-20190330.pdf. Submission to the NIST Post-Quantum Standardiza-
tion project, round 2.

[DKSRV18] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik Vercauteren.
Saber: Module-LWR Based Key Exchange, CPA-Secure Encryption and CCA-Secure
KEM. In Antoine Joux, Abderrahmane Nitaj, and Tajjeeddine Rachidi, editors, Progress in
Cryptology – AFRICACRYPT 2018, pages 282–305, Cham, 2018. Springer International
Publishing.

[EPRS17] Adam Everspaugh, Kenneth G. Paterson, Thomas Ristenpart, and Samuel Scott. Key
rotation for authenticated encryption. In Proceedings of CRYPTO 2017 III, volume 10403
of LNCS, pages 98–129. Springer, 2017.

[Gen09] Craig Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis, Stanford, CA, USA,
2009. AAI3382729.

41

https://frodokem.org/files/FrodoKEM-specification-20190330.pdf
https://frodokem.org/files/FrodoKEM-specification-20190330.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round2.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round2.pdf
https://eprint.iacr.org/2019/1457
https://eprint.iacr.org/2019/1457
https://ntru.org/f/ntru-20190330.pdf
https://ntru.org/f/ntru-20190330.pdf

[GKPV10] Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikuntanathan. Robust-
ness of the learning with errors assumption. In Andrew Chi-Chih Yao, editor, Innovations
in Computer Science - ICS 2010, Tsinghua University, Beijing, China, January 5-7, 2010.
Proceedings, pages 230–240. Tsinghua University Press, 2010.

[Ham] Mike Hamburg. Three Bears. https://sourceforge.net/projects/
threebears/. Submission to the NIST Post-Quantum Standardization project, round
2.

[KLR19] Michael Klooß, Anja Lehmann, and Andy Rupp. (R)CCA secure updatable encryption
with integrity protection. In Proceedings of EUROCRYPT 2019 I, volume 11476 of LNCS,
pages 68–99. Springer, 2019.

[LLJ+] Xianhui Lu, Yamin Liu, Dingding Jia, Haiyang Xue, Jingnan He, Zhenfei Zhang, Zhe Liu,
Hao Yang, Bao Li, and Kunpeng Wang. LAC Lattice-based Cryptosystems. Submission
to the NIST Post-Quantum Standardization project, round 2.

[LT18a] Anja Lehmann and Björn Tackmann. Updatable encryption with post-compromise se-
curity. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology -
EUROCRYPT 2018 - 37th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings,
Part III, volume 10822 of Lecture Notes in Computer Science, pages 685–716. Springer,
2018.

[LT18b] Anja Lehmann and Björn Tackmann. Updatable encryption with post-compromise secu-
rity. In Proceedings of EUROCRYPT 2018 III, volume 10822 of LNCS, pages 685–716.
Springer, 2018.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In Harriet Ortiz, editor, Proceedings of the 22nd Annual ACM Symposium
on Theory of Computing, May 13-17, 1990, Baltimore, Maryland, USA, pages 427–437.
ACM, 1990.

[OZS+] Garcia-Morchon Oscar, Zhang Zhenfei, Bhattacharya Sauvik, Rietman Ronald, Tolhuizen
Ludo, Torre-Arce Jose-Luis, Baan Hayo, Saarinen Markku-Juhani O., Fluhrer Scott,
Laarhoven Thijs, Player Rachel, Cheon Jung, Hee, and Son Yongha. Round5. https:
//round5.org. Submission to the NIST Post-Quantum Standardization project, round
2.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and
composable oblivious transfer. In David A. Wagner, editor, Advances in Cryptology -
CRYPTO 2008, 28th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 17-21, 2008. Proceedings, volume 5157 of Lecture Notes in Computer Sci-
ence, pages 554–571. Springer, 2008.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Harold N. Gabow and Ronald Fagin, editors, Proceedings of the 37th Annual ACM
Symposium on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005, pages 84–
93. ACM, 2005.

42

https://sourceforge.net/projects/threebears/
https://sourceforge.net/projects/threebears/
https://round5.org
https://round5.org

	Introduction
	Related Work
	Our Contributions
	Open Problems
	Organization

	Preliminaries
	Notations
	Security Notions for Encryption Schemes
	Updatable Encryption
	Hardness Assumptions – Learning With Errors
	Leftover Hash Lemma

	Security Notions for Updatable Encryption
	Notations of the Leakage Sets
	Six Variants of Security Notions

	Leakage Sets and Trivial Win Conditions
	Epoch Leakage Sets of Keys, Tokens and Ciphertexts
	Properties of Key Updates
	Trivial Win Conditions
	Checking Trivial Win Conditions at the End of a Game
	Checking Trivial Win Conditions while Running a Game

	Trivial Win Equivalences in the Uni- and Bi-Directional Update Setting

	Relations between Security Notions
	Relations between the Uni- and Bi-Directional Update Variants of Security Notions
	Relations between the No-Directional and the Directional Variants of Security Notions
	General Relations
	Relations between Confidentiality Notions
	Relations between Integrity Notions

	LWE-based PKE Scheme
	PKE Construction
	Correctness and Security

	LWE-based Updatable Encryption Scheme
	UE Construction
	Construction Challenges in LWE-based UE Schemes
	Correctness
	Challenges of the Security Proof in LWE-based UE Schemes
	Security
	Technical Simulations in the Proof
	LWEUE is randIND-UE-CPA

	Generic UE Constructions from PKE Schemes

