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Abstract. Private Set Intersection (PSI) enables two parties, each hold-
ing a private set to securely compute their intersection without reveal-
ing other information. This paper considers settings of secure statistical
computations over PSI, where both parties hold sets containing identi-
fiers with one of the parties having an additional positive integer value
associated with each of the identifiers in her set. The main objective
is to securely compute some desired statistics of the associated values
for which its corresponding identifiers occur in the intersection of the
two sets. This is achieved without revealing the identifiers of the set in-
tersection. This has many useful business applications, for examples in
measuring effectiveness of advertising campaigns.

In many cases, the parties wish to know various statistical information
with regards to the set intersection and the associated integer values.
For instance, information relating to arithmetic mean, geometric mean,
harmonic mean, standard deviation, minimum, maximum, range or an
approximate distribution of the sum composition. A potential use case
is for a credit card company to provide the percentage of high spending
to a shopping mall based on their common customers. Therefore, in this
paper we introduce various mechanisms to enable secure computation of
statistical functions, which we collectively termed PSI-Stats. The pro-
posed protocols maintain strong privacy guarantee, that is computations
are performed without revealing the identifiers of the set intersection to
both parties. Implementations of our constructions are also carried out
based on a simulated dataset as well as on actual datasets in the business
use cases that we defined, in order to demonstrate practicality of our solu-
tion. To the best of our knowledge, our work is the first non-circuit-based
type which enables parties to learn more about the set intersection via
secure computations over a wide variety of statistical functions, without
requiring the machinery of fully homomorphic encryption.



1 Introduction

Private set intersection (PSI) enables two parties to learn the intersection of their
sets without exposing other elements (identifiers or items) that are not within
this intersection. This has wide-ranging applications in data sharing, private
contact discovery, private proximity testing [41], privacy-preserving ride-sharing
[30], botnet detection [40], human genomes testing [10] and more recently for
contact tracing [54] in the event of a pandemic such as COVID-19. We highlight
a number of notable work that have been achieved in this domain in Section 2.

The main problem statement of our work can be simply described as follows.
Two parties A and B hold sets of identifiers with party B additionally holds
positive integer values associated with each of the identifiers. Denote the sets held
by A, B to be X and Y respectively. The objective is for B to learn the desired
statistical output function of some collection (dependent on X) of the associated
values, while preserving certain private information about their respective sets.
More formally, B seeks to learn the value FD(X,Y ), where D is the decisional
rule and F is the desired statistical function computed over D. To preserve
privacy, A does not learn Y and D(X,Y ) while B does not learn X, D(X,Y ) and
|D(X,Y )|. In our context, D is the private set intersection (PSI) of the identifiers
contained in X and Y . In a reverse protocol, A learns FD(X,Y ) instead of B.
These settings arise in numerous business and practical applications.

1.1 Our Contributions

We present PSI-Stats to address this main problem statement. PSI-Stats is a col-
lection of protocols to support the secure computations of statistical functions
over PSI. These include a myriad of frequently applied standard statistical func-
tions such as various generalized means, standard deviation, variance, percentile
sum, etc. The proposed protocols achieve all the privacy requirements outlined
in the problem statement. The main contributions are summarized here.

– We introduce new approaches to securely compute various standard statis-
tical functions while maintaining the privacy guarantees as defined in the
main problem statement. The functions include arithmetic mean, geomet-
ric mean, harmonic mean, min, max, percentile sum, standard deviation,
variance, etc. Our techniques are also applicable to non-symmetric functions
such as weighted arithmetic mean.

– PSI-Stats can be enabled to securely compute multiple related statistical
functions (e.g. percentile sum, range and arithmetic mean) within a single
executed protocol with minimal additional communication and computa-
tional overhead.

– We provide formal security analysis of our protocols which are based upon
well-established hardness assumptions as well as standard security defini-
tions. The reliance of such hardness assumptions (e.g. integer factorization)
have been well studied by the cryptographic as well as the theoretical com-
puter science communities and are generally regarded to be valid. Our proto-
cols achieve strong security guarantees from statistical indistinguishability.
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Solutions based on well-established assumptions carry an additional subtle
importance that is often overlooked. This basis is generally a strong factor
in the driving force for adoption by industry stakeholders.

– Ion et al. (Google 2019) [33] recently deployed a scheme to solve the main
problem statement in the sole special case where F denotes the sum. It
should be noted that any natural attempts to convert the computation of
sum to arithmetic mean by sending the set intersection size to B violates the
privacy requirements of the problem statement. In contrast, our work here
provides solutions to a large class of statistical functions F . By doing so our
protocols provide more flexible and comprehensive utilities.

– A reverse protocol is presented in [33] for the functionality of intersection
sum. However, that protocol leaks size information of the set intersection to
both parties. PSI-Stats can be readily adapted to a reverse protocol without
revealing this size information to B, while still enabling support for the
outputs of various statistical functionalities.

– We carried out experiments of our protocols to determine their practicality
and feasibility. Our test input sizes range from small to large. The results
obtained are comparable to the recently deployed private intersection-sum
protocol of [33] both with regards to running time as well as communication
cost. The experimental results demonstrate that PSI-Stats is practical and
scales well for large input sizes.

In an interactive protocol, there are three factors in the overall measurement
of efficiency: the first relates to the communication overhead, the second relates
to the computational cost and the third relates to the number of communica-
tion rounds (or round complexity). The work in this paper does not claim to
outperform circuit-based PSI protocols across all the three factors above. As an
example, the current state-of-the-art for circuit-based PSI protocols is the very
recent work in [45] which we reckon to potentially attain the lowest computa-
tional cost (after the necessary circuit modifications in order to accommodate
outputs of statistical functions).

A goal of our work aims to present protocols with minimal communication
overhead based upon well-established, time-tested hardness assumptions while
concurrently ensuring that running times remain practical. To that end, the
PSI-Stats protocols in this paper incur the lowest communication overhead over
all circuit-based types (inclusive of the most recent state-of-the-art [45]) by sev-
eral factors. In that regard, PSI-Stats is especially relevant in settings where
communication cost comes at a premium or in instances where bandwidth is
limited.

Furthermore, for circuit-based PSI under the GMW [29] family (e.g. the
recent work [45] and others [31, 44, 46]), the round complexity is dependent on
the circuit depth which increases with increasing set sizes and/or increasing bit-
length of items. This can potentially be a bottleneck in high latency networks. By
contrast, the PSI-Stats protocols operate with a low constant round complexity
of 3 (and 4 in the reverse), independent of the input set sizes and the bit-length
of items.
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Our solutions avoid the use of computationally intensive fully homomorphic
encryption tools as well as communication expensive circuits mechanisms. To the
best of our knowledge, PSI-Stats is also the first non-circuit-based type which
enables parties to learn more about the set intersection via secure computations
over a wide variety of statistical functions, without requiring the machinery of
fully homomorphic encryption.

1.2 Use Cases

Our motivation lies in that different organisations are increasingly geared toward
sharing data among them in order to derive new insights and create new business
opportunities from the shared data. Here, we present two use cases that can
benefit from learning more than just the sum of the intersected set. For example,
to find min, max or threshold of values from the set. Certainly, a simple approach
to obtain the above result is to use existing state-of-the-art PSI protocol to find
the set intersection and then B computes the statistical functions on the values
associated to the identifiers in the intersection. Here, the main goal is to also
hide the identifiers in the set intersection from being known to both parties.
Hiding the elements in the set intersection can be useful to alleviate privacy
concerns from the participating parties especially when an organisation would
like to prevent the other party from learning some of their existing customers
based on the set intersection. We first look at an extension of the use case of the
Private Intersection-Sum protocol [33] between a merchant and an advertising
entities. By learning the min, max, or the percentage of small spending (or
large spending) after users viewed an advertisement, the merchant may use this
statistical information for targeted advertisement to advertise products within
the range of spending of the users. Alternatively, the merchant may devise new
reward scheme to encourage users to broaden their spending habits.

A second use case is data sharing between a mall and a credit card com-
pany with similar intent as the above use case. The proposed solution enables
the credit card company to match its customer to the mall’s customer, without
revealing the underlying individuals (not even the matched customers). This
prevents the credit card company (or the mall) from learning more information
such as which customers are also the customers of the mall (or credit card com-
pany), which can be a privacy concern to both participating parties. The credit
card company then reveals the min (or max) spending, or percentage of high
spending to the mall.The mall may market these insights to existing tenants or
attract new relevant tenants.

2 Related work

2.1 Existing PSI Protocols

An early PSI protocol is based upon the Diffie Hellman paradigm [38] which is
also applicable in elliptic curve cryptography. A similar idea can be traced back
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to [53] and also in [32]. That is based on the multiplicative property related
to the Diffie-Hellman key exchange. A method based on oblivious polynomial
evaluation was introduced in [26, 27]. An approach via blind RSA was presented
in [17]. All the above methods are based on public-key cryptography.

Oblivious transfer (OT) extension was first introduced in [34]. The main
objective of an OT extension is to enable the computation a large number of
OT based off a smaller number along with symmetric cryptographic operations
to achieve better running times. This technique engendered numerous OT-based
PSI protocols. The notion of garbled bloom filter based on OT extension was
coined in [20] and utilized to perform PSI. The main idea is to allow one of the
parties to learn the bit-wise AND of two Bloom filters via OT. This outcome
results in a valid Bloom filter for the set intersection. That was subsequently
optimized to some extent in [47]. There are a number of other notable OT-based
schemes presented in [37, 42, 44, 47, 48]. The particular work of [37] is based on
an OT extension protocol found in [36].

Generic multi-party protocols such as garbled circuits can also be used to
compute PSI. The first such protocol involving garbled circuit appeared in [31]
which was later improved in [47]. Other notable circuit-based PSI protocols
are presented in [16, 24, 44–46]. Circuit-based approaches can typically serve for
generic computation purposes. On the other hand, they result in larger commu-
nication overheads as compared to other custom based PSI protocols.

Unbalanced PSI refers to the setting where one party has a much smaller
set size compared to the other in the two-party scenario and the bandwidth be-
tween them is typically limited. As such, since PSI-Stats protocols incur minimal
communication overhead, they are also applicable in the context of unbalanced
PSI especially in low or limited bandwidth settings. A widespread application
arising from unbalanced PSI is that of private contact discovery. A user who
holds a small set of contacts wishes to learn which of these contacts also use a
particular service by a service provider. There are a few protocols which seek to
optimize existing generic PSI protocols to handle such settings [15, 46, 49]. The
current state-of-the-art of an unbalanced PSI protocol based upon fully homo-
morphic encryption is presented in [14] which is an improved follow-up of [15].
A recent finding in relation to private contact discovery for mobile systems is
given in [35]. The work of [49] based upon techniques of [10] attempts to reduce
the communication overhead of unbalanced PSI via a compression method but
in the process introduces a non-negligible false positive rate.

2.2 Private Intersection-Sum Protocol

The most related existing work in relation to this paper is that of Ion et al.
[33]. In a nutshell, the core of the protocol comprises of two main components.
The first is a PSI protocol that enables element hiding while the second is a
homomorphic encryption which has the additive property. By adjoining these two
components, the functionality of the intersection sum can be obtained. In that
work [33], several probable methods are proposed. They vary in accordance to the
types of PSI and additive homomorphic encryption schemes. The candidates for
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the various PSI schemes utilized are based upon Diffie-Hellman [32, 38], Random
Oblivious Transfer [44, 47, 50] as well as Bloom Filter [18, 20, 22]. The candidates
for the additive homomorphic encryption schemes are based upon Paillier [43],
Exponential ElGamal [23] and Ring-LWE [12, 13, 25, 28].

The eventual choice of deployment is the Diffie-Hellman based protocol due
to its communication efficiency. The Paillier encryption was chosen as the ho-
momorphic encryption scheme due to the overall consideration of two factors:
its underlying well established classical hardness assumption as well as its com-
putational cost. As such, the Diffie-Hellman based paradigm augmented with
Paillier encryption will also form the basis in the design of our protocols.

2.3 Commercial Solutions

Secure multiparty computing (MPC), while has been known to academia for a
few decades, is now starting to become commercially viable. With the increasing
demands of privacy protection in businesses, security and risk management lead-
ers have placed emphasis on not only data at rest and in transit, but also data
in use (e.g. while it is being processed by an application). It has recently been
reported by Gartner [55] that MPC-based technology has emerged in the market
to help businesses ensure data security and privacy in a more effective and effi-
cient manner. Gartner has seen a number of vendors, such as Unbound Tech [9],
Sharemind [8], Sepio [7], and Baffle [2], that leverage MPC to provide clients with
data and cloud security. These solutions typically focus on supporting standard
SQL queries over encrypted data or threshold-based key management. Moreover,
there exist private data linkage solutions, such as Anonos [1], Data Republic [3]
(which make use of conventional hash-based de-identification techniques), and
Privitar [6] (which is based on more modern PSI techniques).

Despite the commercial potential of MPC solutions, there are still privacy
concerns in data sharing applications particularly in terms of how much infor-
mation can be inferred by consumers of shared data. All the above-mentioned
commercial solutions do not protect the privacy of elements within the intersec-
tion of two or more datasets. The elements in the intersection, when combined
with auxiliary information, may lead to revelation of information that can be
used to re-identify specific individuals. In our work, we focus on a PSI-based
solution that addresses such privacy concerns.

3 Preliminaries

The security model in this paper operates in the semi-honest setting. In this
model, adversaries can attempt to obtain information from the execution of
the protocol but they are unable to perform any deviations from the intended
protocol steps. The semi-honest model is typically suited in scenarios where
execution of the software is ensured through software attestation or business
restrictions, without any assumption that an external untrusted party is unable
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to obtain the transcript of the protocol upon completion. Indeed, the majority of
the research in related domains also focus on solutions in the semi-honest model.

In this paper, we say an integer x is l-bit (length) if x ∈ Z∩ [2l−1, 2l− 1] and
x is at most l-bit (length) if x ∈ Z ∩ [0, 2l − 1]. The standard ceiling function
is given by d.e, where dxe represents the smallest integer greater than or equal
to x. The nearest integer function is denoted by b.e, log refers to the natural
logarithm, e is the standard mathematical constant (i.e. the base of the natural
logarithm) and lcm is a shorthand for the lowest common multiple. The second

Chebyshev function ψ(x) =
∑
pk≤x

log p computes the sum over all prime powers

not exceeding x.
For the remainder of this section, we review a number of technicalities which

are applicable in the construction of our protocols. We state the types of statisti-
cal functions which are supported by our protocols. The security assumptions of
the protocols are discussed and the settings of the participants are also provided.

3.1 Definitions & Building Blocks

The Decisional Diffie-Hellman assumption

Definition 1. Let G be an abelian group of prime order p and g a generator
of G. The Decisional Diffie-Hellman assumption states that for random a, b, c ∈
Z ∩ [1, p], the distributions (g, ga, gb, gab) and (g, ga, gb, gc) are computationally
indistinguishable.

The Decisional Composite Residuosity Problem

Definition 2. The decisional composite residuosity problem is hard if for all
polynomial-sized circuits C = {Ck} there exists a negligible function negl such
that

|Pr(A(A(N, x) = 1|x = yN (N + 1)r modN2)

−Pr(C(N, x) = 1| = yN modN2)| ≤ negl(k)

where N is a random RSA composite of length k-bit, r is selected randomly in
ZN and probabilities are taken over choices of r, y and N.

Partial Homomorphic Encryption

Simply stated, a probabilistic public key encryption E is additively homomor-
phic if E(m1 + m2) can be efficiently computable given E(m1) and E(m2) for
messages m1, m2 without knowledge of the private key.

A crucial building block of our protocols is a semantically secure additively
homomorphic encryption scheme. Any such general encryption scheme satisfy-
ing these properties is applicable in our protocols. In our implementations, we
choose the Paillier [43] encryption scheme described below for this purpose.

Paillier Encrytion Scheme. Let the public key N be a RSA composite; the
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private key be φ(N) where φ denotes the Euler’s totient function and m ∈ ZN
be a valid message. The encryption is given by

E(m, r) = rN (N + 1)m modN2 (1)

where r ∈ Z∗N is chosen at random. Given a ciphertext c ∈ Z∗N2 , its decryption
is given by

D(c) =
φ(N)−1

N

[(
cφ(N) modN2

)
− 1
]

modN. (2)

The Pallier encryption scheme is known to be semantically secure, assuming the
hardness of the decisional composite residuosity problem.

3.2 Statistical Functions

The main goals of this paper are to perform secure computations of various
statistical functions over two party private set intersection. The statistical func-
tions that we consider in this paper are those that are commonly applied on
databases such as arithmetic mean, geometric mean, harmonic mean, variance,
standard deviation, percentile, etc. Hereinafter, we shall simply refer to mean as
being arithmetic mean while references to other generalized means will be stated
explicitly. In addition, we also build upon our method of computing intersection
mean to compute other statistical quantities like skewness and kurtosis.

3.3 Security Assumptions

We refer to implicit information as the information for which the party who
knows the intersection sum (along with her private set of identifiers and associ-
ated values) can deduce certain aspects of the intersection content. For example,
if the output sum is an odd integer and there is only one associated odd value in
the set, then this information implicitly reveals that the identifier corresponding
to the odd associated value has to be in the intersection. The output sum also
reveals that no identifier with associated value greater than the output sum can
be in the intersection. Indeed, any generic black box construction which reveals
the output sum incurs this implicit information loss. In view of this, the security
assumptions in this work (as with [33]) do not take into account such implicit
information loss or inference attack from the output functionality. Nevertheless,
the security and privacy considerations are taken into account for all communi-
cations prior to the final output functionality. The security of all the protocols
described in this paper is based upon the validity of the Decisional Diffie-Hellman
assumption and the semantic security of the Paillier encryption scheme which
assumes the hardness of the Decisional Composite Residuosity problem.

3.4 Participants’ Setting

The participants’ setting for all our protocols in this paper is identical. We pro-
vide it here to serve as a convenient common reference.
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Notations
ai, bi: identifiers.
A holds X = {a1, a2, . . . , am}.
B holds Y = {(b1, t1), (b2, t2), . . . , (bn, tn)}, ti ∈ Z+.
Y ′ = {b1, b2, . . . , bn}.
E (.): Paillier encryption.
h(.): SHA-256 hash function.
G : a group of large prime order.

4 Private Set intersection-mean

This section describes a protocol to output only the intersection mean (i.e. with-
out disclosing intersection-sum nor intersection cardinality to B). Technically,
our protocol outputs an approximation to the intersection mean although we also
show that this approximation can be made arbitrary close to the exact mean.

PROTOCOL 1 (Private Set Intersection-Mean)

Input: A inputs set X ; B inputs set Y .
Output: A outputs |X ∩ Y ′|, B outputs intersection mean.

1. Setup: A and B jointly agree on E , a hash function h and a group G of large
prime order. B generates a public-private key pair of E , announces the public
key and keeps the private key to herself.
2. A’s encryption phase: A
(a) selects a random private exponent k1 ∈ G;
(b) computes h(ai)

k1 .
A sends h(ai)

k1 to B .
3. B ’s encryption phase: B
(a) selects a random private exponent k2 ∈ G;
(b) computes h(ai)

k1k2 ;
(c) computes {h(bj)

k2 , E(tj)}.
B returns h(ai)

k1k2 in shuffled order to A. B sends {(h(bj)
k2 , E(tj)} to A.

4. Matching & homomorphic computations: A
(a) computes {h(bj)

k2k1 , E(tj)};
(b) computes the set I of intersection indices where

I = {j : h(ai)
k1k2 = h(bj)

k2k1 for some i};

(c) samples a uniformly random 1024-bit value of r.
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(d) selects uniformly random integer values of r1, r2, where 0 ≤ r1 ≤ 2128 − 1,
2511 ≤ r2 ≤ 2512 − 1 with r1 satisfying

r1 ≡ r mod k

where k = |I|.
(e) additive homomorphically computes

E

(
r2 +

r − r1
k

∑
i∈I

ti

)
.

A sends r and E

(
r2 + r−r1

k

∑
i∈I

ti

)
to B .

5. B ’s decryption phase: B performs decryptions of the ciphertext received
from A and computes

1

|I|
∑
i∈I

ti ≈
1

r

(
r2 +

r − r1
k

∑
i∈I

ti

)
.

We show that the output of the protocol provides a close approximation to
the actual intersection mean.

Theorem 1. Protocol 1 correctly outputs a close approximation to the intersec-
tion mean.

Proof. We first note that A knows the value of |I| = k in Step 4 of the protocol.
We need to show that

1

|I|
∑
i∈I

ti ≈
1

r

(
r2 +

r − r1
k

∑
i∈I

ti

)
. (3)

For brevity of notation, let r′ = r−r1
k , where r′ � r1, r2. Thus, r can be expressed

as r = kr′ + r1. It follows that

1

r

(
r2 +

r − r1
k

∑
i∈I

ti

)
=

r2
r′ +

∑
i∈I

ti

r1
r′ + k

≈ 1

|I|
∑
i∈I

ti (4)

since r1
r′ ,

r2
r′ ≈ 0.

It remains to show that the above approximation is in fact close. Denote
the exact mean value to be M and its approximation be M ′. To achieve this, we
formalize the notion of closeness by showing that the absolute difference between
M and M ′ is within the value of M multiplied by a factor dependent on r which
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can be made arbitrary close to 0. More formally, M and M ′ are close if and only
if

|M −M ′| < M

f(r)
(5)

where f(r) is a monotonically increasing function of r such that lim
r→∞

1

f(r)
= 0.

This implies that M ′ can be made arbitrary close to M for corresponding
appropriate choices on the size of r. Applying a series of computations, we arrive
at

|M −M ′| =

∣∣∣∣∣∣∣∣
r2k − r1

∑
i∈I

ti

k(r′k + r1)

∣∣∣∣∣∣∣∣ <
max(r1, r2)

∑
i∈I

ti

rk
<

2512
∑
i∈I

ti

rk
=

M

f(r)
(6)

where f(r) = r
2512 . It is clear that f(r) is a monotonically increasing function

and that lim
r→∞

1

f(r)
= 0 which proves that M ′ is close to M . 2

4.1 On the chosen sizes of r, r1, r2

As shown earlier, the larger the value of r, the closer the approximation. More-
over, this approximation can be made arbitrary close for arbitrary large values
of r (along with corresponding large parameter sizes of E ). In practice, a suf-
ficiently large value of r already provides a very tight approximation. The size
choices of r1 and r2 are bounded below by 2128 to prevent exhaustive search
attacks. After the sizes of r1, r2 are set, the size of r can be chosen to sufficiently
overwhelm r1, r2. In our case, we set r to be of size 1024-bit which is sufficient
for M ′ to M to be extremely close. In particular,

|M −M ′| < 2−510M (7)

which suffices for all practical intent.

4.2 Flexibility of Protocol

It should be noted that the exact value of mean in fact reveals additional in-
formation about the sum or cardinality. For instance, if the mean is an integer
M then it follows that the sum is divisible by M . More generally, if the mean
is a rational number a

b with gcd(a, b) = 1, then the sum is divisible by a and
the cardinality is divisible by b. As discussed in the preliminary section, we
do not consider such implicit information which be can deduced from the out-
put functionality. Nevertheless, Protocol 1 has the added benefit of flexibility
which enables the adjustment of varying degrees of approximation tightness if
one wishes to circumvent the above issues. This can be achieved by adjusting
the size of a randomly sampled r. The approximation weakens with decreasing
sizes of r. More generally, for a random sample r of x-bit, x ≥ 515, the difference
yields

|M −M ′| < 2512−xM. (8)
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4.3 Security Analysis

The security arising from the communication in Step 2 and Step 3 follows from
the validity of the Decisional Diffie-Hellman assumption as well as the hardness
of the Decisional Composite Redisuosity Problem. Hence, the remaining secu-
rity and privacy aspects to consider occur in Step 4 where B receives r and

E

(
r2 + r−r1

k

∑
i∈I

ti

)
. Since r is sampled uniformly at random from a collec-

tion of 1024-bit integers, B is unable to distinguish r from a random uniformly
selected 1024-bit integer. As before, denote M to be the exact value of the in-

tersection mean. Thus, B obtains r2 + r−r1
k

∑
i∈I

ti = r2 + (r − r1)M . Moreover,

only r and M 4 are known to B and thus can only effectively compute r2− r1M .
Therefore, B is unable to solve for r1 and r2 explicitly since there are two un-
knowns in a single expression. This serves the purpose of hiding the cardinality
and intersection sum. In fact, we provide a stronger notion of security by showing
statistical indistinguishability. We begin with a standard security definition.

Definition 3. Let X and Y be two distributions over {0, 1}n. The statistical
distance of X and Y, denoted by ∆(X,Y ) is defined to be

∆(X,Y ) = max
U⊆{0,1}n

|Pr[X ∈ U ]− Pr[Y ∈ U ]|

=
1

2

∑
v∈Supp(X)∪Supp(Y )

|Pr[X = v]− Pr[Y = v]| . (9)

X is ε statistically indistinguishable from Y if ∆(X,Y ) ≤ ε.

In particular, we show that r2 − r1M is statistically indistinguishable from
uniformly distributed 512-bit integers, when M is a fixed positive integer. It can
be assumed here that the intersection mean M is at most 80-bit in all practical
settings. Denote random variables R1 = unif[0, c] and R2 = unif[a, b] to be the
discrete uniform distributions over Z∩ [0, c] and Z∩ [a, b] respectively such that
cM � a� b. We first establish the following.

Theorem 2.

∆(R2 −R1M,R2) =
cM

2(b− a+ 1)
. (10)

4 Technically only M ′, which is a close approximation to M can be computed by B .
In essence, this distinction is largely irrelevant in this specific context as we evaluate
a stronger security setting than required where B has the knowledge of both M and
M ′.
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Proof. Denote X = R2 − R1M . Upon a series of careful computations within
supp(X), we obtain the following.

P (X = i) =



c−j
(c+1)(b−a+1)

{
∀i ∈ [a− (j + 1)M,a− jM − 1],

∀j ∈ [0, c− 1]
1

b−a+1 ∀i ∈ [a, b− cM ]

c−j
(c+1)(b−a+1)

{
∀i ∈ [b− (c− j)M + 1, b− (c− j − 1)M ],

∀j ∈ [0, c− 1]

Moreover, since R2 = unif[a, b],

P (R2 = i) =
1

b− a+ 1
∀i ∈ [a, b]. (11)

The statistical distance of X and R2 can now be computed via

∆(X,R2) =
1

2

∑
v∈Supp(X)∪Supp(R2)

|Pr[X = v]− Pr[R2 = v]|

=
1

2

c−1∑
j=0

M(c− j)
(c+ 1)(b− a+ 1)

+
1

2

c−1∑
j=0

M

b− a+ 1
− M(c− j)

(c+ 1)(b− a+ 1)

=
cM

2(b− a+ 1)
.

2

In Protocol 1, a = 2511, b = 2512 − 1, c = 2128 − 1 and M is assumed to be
at most 80-bit. Hence in Protocol 1,

∆(R2 −R1M,R2) ≤ 2−300. (12)

This shows that r2− r1M is 2−300 statistically indistinguishable from uniformly
distributed 512-bit integers when M is a positive integer. In the case where
M = a

b is a non-integer positive rational number, a � r2, a similar argument
can be applied to show that r2b − r1a is statistically indistinguishable from
uniformly distributed 512-bit integers which are multiplied by a factor of b.

4.4 Geometric mean

Our method can be adapted to output the intersection geometric mean func-
tionality without revealing the intersection size to B . One such instance of this
statistical measure can arise in Econometrics as specified by the generalized
Cobb-Douglas production function [21], where its inputs can represent working
hours of labourers and each exponent is the reciprocal of the number of inputs.

The geometric mean of a data set {t1, t2, . . . , tk} is given by

(
k∏
i=1

ti

) 1
k

. A

natural line of approach is to replace additive homomorphic encryption with a
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multiplicative homomorphic encryption (e.g. EL-Gamal [23], RSA [51]) in view
of the multiplicative structure of the output. This works perfectly fine if the
intersection size is exposed to B . However, in the security model where the in-
tersection size is kept secret from B , there is no known efficient public-key based
protocol utilizing multiplicative homomorphic encryption which can achieve this
with reasonable accuracy. We present a method to attain this desired function-
ality using ideas based on our earlier approach for arithmetic mean.

Without being overly verbose, we do not detail the fully fledged protocol
but instead highlight the crucial steps. Suppose ti ∈ [1, t + 1]. We first seek
an injective function fc : ti → bc log tie for some positive integer constant c.
Here b.e denotes the nearest integer function in accordance with the most recent
IEEE Standard for floating-point arithmetic [4]. The value of c is chosen by
B , the party who holds the list of associated values. We show that fc can be
constructed by taking c ≥ t+ 1.

Theorem 3. fc is injective ∀ c ≥ t+ 1.

Proof. We first establish that

log

(
1 +

1

t

)
>

1

t+ 1
. (13)

The above can easily be shown by applying a change of variable t = 1−x
x and

deducing that ex < 1
1−x with a comparison of their respective Taylor series. It

follows that for all c ≥ t+ 1 and for all ti 6= tj ,

|c log ti − c log tj | ≥ c log(t+ 1)− c log t ≥ (t+ 1) log

(
1 +

1

t

)
> 1 (14)

=⇒ |bc log tie − |bc log tje| > 1 =⇒ bc log tie 6= bc log tje

which asserts that fc is injective. 2

The injectivity condition is stipulated to ensure that no two distinct values
of ti’s correspond to the same image under fc. The protocol for the intersection
geometric mean proceeds by replacing ti with bc log tie given in Protocol 1. One
other difference lies in the final decryption step performed by B . More specifically
in the final step, B obtains the intersection geometric mean by computing

e

1
cr

r2+ r−r1
k

∑
i∈I
bc log tie


≈ e

1
c|I|

∑
i∈I
bc log tie

≈ e

1
|I|

∑
i∈I

log ti

=

(∏
i∈I

ti

) 1
|I|

.

(15)
In general, larger values of c provide a greater precision. In practice, such large

values of c can always be chosen since the modulus of the Paillier encryption is
much larger than max{log ti}. The proof of correctness and security mirrors that
of the intersection mean.
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4.5 Extensions to Variance, Standard Deviation, Skewness and
Kurtosis

Our techniques presented in this section can be further extended to compute
various other statistical features of the associated values in the intersection. The
general overall idea is for B to receive the values of nth-order moment about the
origin in order to compute the nth central moment (without knowledge of the
intersection size). Our protocol can also be adapted to output an approximation
for each of these statistics. As discussed previously, the approximation can be
made arbitrary close to the exact value.

Let R be a random variable. In our context, R can be considered to be the
discrete uniform distribution over the associated values in the intersection. The
nth-order moment about the origin µ′n is defined to be µ′n = E[Rn]. The nth
central moment µn is defined to be µn = E[(R−E[R])n]. For example, the mean
in this case is µ′1 = E[R].

Variance and standard deviation provide a measure of the amount of disper-
sion of a list of values. A low standard deviation indicates that the values tend
to be clustered around its mean, while a high standard deviation indicates that
the values are dispersed over a wider range of values. In step 3 of the protocol,
B sends both E(tj) and E(t2j ) to A. This enables A to return close approximate

values of E[R] and E[R2] to B . The variance can then be simply computed by
Var(R) = E[R2]− (E[R])2 and standard deviation σ =

√
Var(R).

Skewness provides a measure of the asymmetry of the probability distribu-
tion of a random variable about its mean. A negative value indicates that the
probability density is larger on the left while a positive value indicates that
the probability density is larger on the right. In step 3 of Protocol 1, B sends
E(tj), E(t2j ) and E(t3j ) to A. This enables A to return close approximate values

of E[R], E[R2] and E[R3] to B . The skewness γ1 is given by γ1 = µ3

σ3 , where
µ3 = µ′3 − 3µ′1µ

′
2 + 2µ′31 .

Kurtosis provides a measure of outliers (i.e. if the list of values are light
tailed or heavy tailed). In step 3 of Protocol 1, B sends E(tj), E(t2j ), E(t3j )

and E(t4j ) to A. This enables A to return close approximate values of E[R],

E[R2], E[R3] and E[R4] to B . The kurtosis is given by Kurt[R] = µ4

σ4 , where
µ4 = µ′4 − 4µ′1µ

′
3 + 6µ′21 µ

′
2 − 3µ′41 .

5 Private Set Intersection-Percentile Sum

Intersection-percentile sum can be regarded as a generalization of Ion et al.’s
intersection-sum. Intersection-percentile sum provides an added flexibility of
computing the sum of the x-th percentile of associated values within the in-
tersection for any specified value of x. In the case of Ion et al.’s protocol, the
value of x is restricted to 100. Our generalized method also enables the output
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of the intersection range 5 when necessary. We first describe a protocol which
outputs the intersection sum and intersection range followed by a protocol which
outputs the percentile sum.

PROTOCOL 2 (Intersection-Sum & Range)

Input: A inputs set X ; B inputs set Y .
Output: A outputs |X∩Y ′|, B outputs intersection sum and intersection range.

1. Setup: Identical to Protocol 1.
2. A’s encryption phase: Identical to Protocol 1.
3. B ’s encryption phase: B
(a) selects a random private exponent k2 ∈ G;
(b) computes h(ai)

k1k2 ;
(c) computes {h(bj)

k2 , E(tj)}.
B returns h(ai)

k1k2 in shuffled order to A. B sends {h(bσ(j))
k2 , E(tσ(j))}nj=1 to

A, where σ is a permutation of j such that tσ(j) ≥ tσ(j+1).
4. Matching & homomorphic computations: A
(a) computes {h(bσ(j))

k2k1 , E(tσ(j))};
(b) computes the set I of intersection indices where

I = {σ(j) : h(ai)
k1k2 = h(bσ(j))

k2k1 for some i};

(c) determines jmin where jmin is the smallest value of j satisfying h(ai)
k1k2 =

h(bσ(j))
k2k1 for some i;

(d) determines jmax where jmax is the largest value of j satisfying h(ai)
k1k2 =

h(bσ(j))
k2k1 for some i;

(e) additive homomorphically computes E

(∑
i∈I

ti

)
.

A sends E

(∑
i∈I

ti

)
, E(tσ(jmin)) and E(tσ(jmax)) to B .

5. B ’s decryption phase: B performs decryptions of the ciphertexts received
from A to obtain the desired sum as well as the range given by

min
i∈I

ti = tσ(jmax) and max
i∈I

ti = tσ(jmin).

Protocol 2 can be generalized to output the intersection sum within any specified
range percentile. That is to output the sum of all associated values which fall
within the P1-th and P2-th percentile of the intersection. Here, 0 ≤ P1 < P2 ≤
100. We provide a condensed version of such a scheme given in Protocol 3.

5 A caveat in relation to the min and max outputs is that the identifiers with associated
integers corresponding to these min and max values can be potentially revealed to
B . As discussed before, this is implicit from the actual output functionality.
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PROTOCOL 3 (Intersection-Percentile Sum)

Input: A inputs set X ; B inputs set Y .
Output: A outputs |X ∩ Y ′|, B outputs intersection sum within the P1-th
percentile and the P2-th percentile.

1. Setup: Identical to Protocol 1.
2. A’s encryption phase: Identical to Protocol 1.
3. B ’s encryption phase: Identical to Protocol 2.
4. Matching & homomorphic computations: A
(a) computes {h(bσ(j))

k2k1 , E(tσ(j))};
(b) computes the set I of intersection indices where

I = {σ(j) : h(ai)
k1k2 = h(bσ(j))

k2k1 for some i};

(c) additive homomorphically computes

E

 d
kP2
100 e∑

i=d kP1
100 e

t′i


where k = |I| and {t′i}ki=1 is a permutation of {ti}i∈I such that t′i ≤ t′i+1.

A sends E

 d
kP2
100 e∑

i=d kP1
100 e

t′i

 to B .

5. B ’s decryption phase: B performs decryption of the ciphertext received
from A to obtain the desired intersection sum within the given percentile thresh-
olds.

5.1 A note on Intersection-Range Query Sum

Protocol 3 outputs the sum of the associated values that fall within a specified
percentile of the intersection. Here, we briefly outline an overview of a protocol
which outputs the intersection-sum of the associated values that fall within a
specified range. In this setting, the desired output is the sum of associated values
in the intersection such that each value composing of the sum lies within a
specified interval [a, b]. Party B holding the associated values truncates her set
to only include elements with associated values in the specified interval [a, b]. Ion
et al.’s protocol can then be applied to this truncated set to obtain the desired
output.

6 Intersection-Sum with Approximate Composition (1)

Trivially, the intersection sum output S reveals that there are less than l ele-
ments (or identifiers) in the intersection with associated values greater than S

l .
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In many scenarios, B wishes to know more about the composition of the sum.
In particular, given the intersection sum, B wishes to have an estimate of the
number of elements in the intersection with associated value of at most t̂ (i.e.
its approximate sum composition). This information cannot be captured merely
by the knowledge of intersection sum. To that end, we present two protocols,
labelled as type 1 and type 2 which enable the output of intersection sum along
with its approximate sum composition. Type 1 protocol incurs a lower commu-
nication cost (its communication overhead in addition to the intersection sum is
negligible) but is executed at a lower security setting compared to type 2 proto-
col.

PROTOCOL 4 (Sum Composition type 1)

Input: A inputs set X ; B inputs set Y .

Output: A outputs |X ∩ Y ′|, B outputs
∑
i∈I

ti and an upper bound for
∑
i∈I

1

ti
,

where I is the set of indices of bi ∈ X ∩ Y ′.

1. Setup: Identical to Protocol 1.
2. A’s encryption phase: Identical to Protocol 1.
3. B ’s encryption phase: B
(a) selects a random private exponent k2 ∈ G;
(b) computes h(ai)

k1k2 ;
(c) computes {h(bj)

k2 , E(tj)}.
B returns h(ai)

k1k2 in shuffled order to A. B sends {h(bσ(j))
k2 , E(tσ(j))}nj=1 to

A, where σ is a permutation of j such that tσ(j) ≥ tσ(j+1). B sends M to A
where

M ≥ max

{
tσ(j)

tσ(j+1)

}
.

4. Matching & homomorphic computations: A
(a) computes {(h(bj)

k2k1 , E(tj)};
(b) computes the set I of intersection indices where

I = {j : h(ai)
k1k2 = h(bj)

k2k1 for some i};

(c) additive homomorphically computes E

(∑
i∈I

ti

)
;

(d) samples uniformly random r, r1, r2 from a sufficiently large set of positive
integers such that r � r1, r2 and r1

r2
≥ k, where k = |I|;
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(e) computes r1 + rk(Mk − 1) and additive homomorphically computes

E

(
r2 + r(M − 1)

k∑
i=1

M i−1t′i

)
,

where {t′i}ki=1 is a permutation of {ti}i∈I s.t. t′i+1 ≤ t′i.

A sends E

(∑
i∈I

ti

)
, E

(
r2 + r(M − 1)

k∑
i=1

M i−1t′i

)
and r1 + rk(Mk − 1) to B .

5. B ’s decryption phase: B performs decryptions of the ciphertexts received

from A to obtain
∑
i∈I

ti and an upper bound for
∑
i∈I

1

ti
given by

∑
i∈I

1

ti
≤ r1 + rk(Mk − 1)

r2 + r(M − 1)

k∑
i=1

M i−1t′i

.

Theorem 4. Protocol 4 outputs
∑
i∈I

ti and an upper bound for
∑
i∈I

1

ti
.

Proof. It is clear from the final step of the protocol that
∑
i∈I

ti is an output.

Therefore, it remains to show that

∑
i∈I

1

ti
≤ r1 + rk(Mk − 1)

r2 + r(M − 1)

k∑
i=1

M i−1t′i

. (16)

Since{t′i}ki=1 is the permutation of {ti}i∈I ,

∑
i∈I

1

ti
=

k∑
i=1

1

t′i
. (17)

Note that 1
t′i
≤ 1

t′i+1
and t′i ≤Mt′i+1. The latter inequality implies that

t′1 ≤Mt′2 ≤M2t′3 ≤ · · · ≤Mk−1t′k. (18)

Hence by Chebyshev’s sum inequality,

k

[
k∑
i=1

M i−1t′i

(
1

t′i

)]
≥

(
k∑
i=1

M i−1t′i

)(
k∑
i=1

1

t′i

)
. (19)
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After a number of simplifications, it follows that

k∑
i=1

1

t′i
≤ k(Mk − 1)

(M − 1)

k∑
i=1

M i−1t′i

. (20)

Since r1
r2
≥ k from the choices of r1, r2,

r1
r2
≥ k ≥ k(Mk − 1)

(M − 1)

k∑
i=1

M i−1t′i

, (21)

which yields

r1
r2
≥ k(Mk − 1)

(M − 1)

k∑
i=1

M i−1t′i

⇐⇒ k(Mk − 1)

(M − 1)

k∑
i=1

M i−1t′i

≤ r1 + rk(Mk − 1)

r2 + r(M − 1)

k∑
i=1

M i−1t′i

and the result of (16) follows from (17) and (20). 2

6.1 Applicability of Sum Composition

Let the sum composition measure T be denoted to be

T =
r1 + rk(Mk − 1)

r2 + r(M − 1)

k∑
i=1

M i−1t′i

. (22)

Theorem 5. There are less than l elements in the intersection with associated
integer values of at most t̂ where t̂ ∈ Z+ satisfying t̂ < l

T .

Proof. The proof is straightforward. Suppose for a contradiction that there are
at least l elements in the intersection with associated integer values of at most
t̂. Then we have the following chain of inequalities:

T <
l

t̂
≤
∑
i∈I

1

ti
≤ T, (23)

a contradiction. 2
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For instance when l = 1, it can be established that there are no small asso-
ciated integer values under 1

T contained in the set intersection. In other words,
every element in the intersection has an associated value of at least 1

T .

It should be noted that the applicability of this measure of sum composition
is dependent on the distribution of the associated values held by B . Generally,
this output functionality is more useful when the spread of associated values
is sufficiently large. In practice, B who holds the associated values can decide
whether to initiate these two protocols based on her dataset.

7 Intersection-Sum with Approximate Composition (2)

Type 1 enables the transmission of an approximate sum composition without
any substantial increase in communication over the intersection-sum. However,
that requires B to reveal an upper bound of M to A. In this section, we describe
a protocol where communication cost is not an overriding consideration without
the need to disclose an upper bound of M to A . Type 2 also results in a tighter
output approximation compared to type 1. A key ingredient involves an injec-
tive mapping of the set of reciprocals of positive integers to the set of positive
integers which preserves addition. Denote fc to be such an injective map such

that fc : ti →
⌈
c
ti

⌉
for a suitable large constant c. The detailed selection of c

will be discussed later in this section.

PROTOCOL 5 (Sum Composition type 2)

Input: A inputs set X ; B inputs set Y .

Output: A outputs |X ∩ Y ′|, B outputs
∑
i∈I

ti and an upper bound for
∑
i∈I

1

ti
,

where I is the set of indices of bi ∈ X ∩ Y ′.

1. Setup: Identical to Protocol 1.
2. A’s encryption phase: Identical to Protocol 1.
3. B ’s encryption phase: B
(a) selects a random private exponent k2 ∈ G;
(b) computes h(ai)

k1k2 ;
(c) computes {h(bj)

k2 , E(tj), E(fc(tj))}.
B returns h(ai)

k1k2 in shuffled order to A. B sends {h(bj)
k2 , E(tj), E(fc(tj))}

to A.
4. Matching & homomorphic computations: A
(a) computes {h(bj)

k2k1 , E(tj), E(fc(tj))};
(b) computes the set I of intersection indices where

I = {j : h(ai)
k1k2 = h(bj)

k2k1 for some i};
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(c) additive homomorphically computes

E

(∑
i∈I

ti

)
and E

(∑
i∈I

fc(ti)

)
.

A sends E

(∑
i∈I

ti

)
and E

(∑
i∈I

fc(ti)

)
to B .

5. B ’s decryption phase: B performs decryptions of the ciphertexts received

from A to obtain
∑
i∈I

ti and an upper bound for
∑
i∈I

1

ti
given by

∑
i∈I

1

ti
≤ 1

c

∑
i∈I

fc(ti).

Theorem 6. Protocol 5 outputs
∑
i∈I

ti and an upper bound for
∑
i∈I

1

ti
.

Proof. As before, the protocol correctly executes
∑
i∈I

ti as an output. Moreover,

1
ti

= 1
c

(
c
ti

)
≤ 1

c

⌈
c
ti

⌉
. The result follows by summing over all i’s in I . 2

7.1 On the selection of c

Suppose the values of ti’s are bounded by x bits. We show that taking c to be of
size 2x bits admits fc to be injective. Indeed, let ti, tj be two distinct associated
values. Without loss of generality, assume ti < tj , Then∣∣∣∣ cti − c

tj

∣∣∣∣ = c

(
tj − ti
titj

)
≥ 1 (24)

since c is of size 2x bits. It follows that∣∣∣∣ cti − c

tj

∣∣∣∣ ≥ 1⇒
⌈
c

ti

⌉
6=
⌈
c

tj

⌉
(25)

which proves injectivity.

7.2 Comparisons between Type 1 & Type 2

Type 2 induces a larger communication overhead as compared to type 1. This
increase in communication essentially occurs in Step 3 of type 2 where B sends
an additional public key encryption E(fc(ti)) to A for each element in Y .
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Table 1: Recommended RSA key length from NIST

security level (κ) 80 112 128 192 256

RSA key length 1024 2048 3072 7680 15360

The NIST report [11] details the recommended RSA key length (in bits) to
achieve a κ-bit security as given in Table 1. In the case of E being the Paillier
encryption, a 2048-bit length modulus corresponds to a 112-bit security level.
This translates to a ciphertext of length 4096-bit for Paillier encryption. Thus,
this increase in communication overhead is approximately in the region of 4096n
bits.

On the other hand for large intersection sizes, type 2 is more practical and
has a lower computational cost. An added benefit of type 2 is that the quantity
M is not disclosed as compared to type 1.

7.3 Harmonic mean

The harmonic mean output functionality can be achieved using a combination
of techniques highlighted in Protocol 1 and Protocol 5. The harmonic mean of a

data set {t1, . . . , tk} is given by k

(
k∑
i=1

1

ti

)−1
. The initial steps of this protocol

follows that of Protocol 1 such that all instances of ti are replaced with
⌊
c
ti

⌉
. In

the final step, B obtains the harmonic mean by computing

k(
k∑
i=1

1

ti

) ≈ cr

r2 + r−r1
k

∑
i∈I
b cti e

. (26)

The proofs of correctness and security follows from the corresponding proofs
associated with Protocol 1. As with the geometric mean, larger values of c result
in higher precision.

In datasets where t = max{ti} is relatively small, the function fc can be
simplified to fc(ti) = c

ti
where c = lcm(1, 2, . . . , t). Clearly, fc remains injective

and its image is a subset of the positive integers. The only constraint is a practical
one and that is to ensure that the size of c for this simplified function has
to be well within the modulus of the Paillier encryption. Define the second
Chebyshev function ψ(t) to be the sum over all prime powers not exceeding t i.e.

ψ(t) =
∑
pk≤t

log p. Thus c can be expressed as c = eψ(t). Applying Theorem 12 of

[52], we obtain an upper bound c < e1.03883t. It can be deduced that c is within
the limits of a typical Paillier encryption modulus for relatively small values of
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t. As an example for t = 100,

c < e103.883 < 2150 (27)

which is much smaller than the modulus of a Paillier encryption of size well over
a thousand bits (e.g. the implementations of [33] as well as ours apply a modulus
of 1536 bits). Our computations estimate that t = 1000 can be supported for
the above given parameters. In settings where the values of t are large, one can

simply take fc(ti) =
⌊
c
ti

⌉
for a sufficiently large c as outlined earlier.

8 Reverse Intersection-Statistical Protocols

This section describes protocols for which the destination of the output is re-
versed (i.e. A obtains this output instead of B). The key differences between
our protocols presented in this section compared with [33] are that our proto-
cols enable the hiding of the intersection cardinality from B and also support
other statistical outputs apart from the sum. The trade-off is that an additional
round of communication is required. We present a general method of how the
output of general statistics (presented in this paper) can be reversed. An explicit
example of the reverse intersection-percentile sum protocol is provided as follows.

PROTOCOL 6 (Reverse Intersection-Percentile Sum)

Input: A inputs set X ; B inputs set Y .
Output: A outputs |X ∩ Y ′| and intersection percentile sum. B outputs ⊥.

1. Setup: Identical to Protocol 1.
2. A’s encryption phase: Identical to Protocol 1.
3. B ’s encryption phase: Identical to Protocol 2.
4. Matching & homomorphic computations: A
(a) samples a uniformly random 1024-bit value r;
(b) computes {h(bσ(j))

k2k1 , E(tσ(j))};
(c) computes the set I of intersection indices where

I = {σ(j) : h(ai)
k1k2 = h(bσ(j))

k2k1 for some i};

(d) additive homomorphically computes

E

r +

d kP2
100 e∑

i=d kP1
100 e

t′i


where k = |I| and {t′i}ki=1 is a permutation of {ti}i∈I such that t′i ≤ t′i+1.

A sends E

r +

d kP2
100 e∑

i=d kP1
100 e

t′i

 to B .
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5. B ’s decryption phase: B performs decryption of the ciphertext received to
obtain the plaintext S . B sends S to A.
6. A’s output: A obtains the intersection percentile sum by computing S − r.

For a general statistical measure S where E (S ) is sent to B (thereby B knowing
S as a consequence), the destination output can be reversed with A sending
E(r + S) instead for a suitable large random value of r. B who holds the pri-
vate key can then perform this decryption and sends the resulting r+S back to
A. A obtains the desired statistical measure output by subtracting her private
value of r from r + S. In the special case where the desired output of A is the
intersection mean, S can simply be taken to be the intersection sum. Indeed in
the reverse protocol, the intersection sum and intersection mean are equivalent
since the intersection cardinality is always known to A.

8.1 Security Analysis

Apart from the security based on the Decisional Diffie-Hellman assumption and
the hardness of the Decisional Composite Residuosity problem, our reverse pro-
tocols also have to take into account that the additional communication round
of sending E(r+S) to B (who holds the private key) preserves the privacy of S .
We go about this by showing how statistical indistinguishability can be achieved
in our protocols with the selection of random large r values.

Let S and S ′ be any fixed values, where S and S ′ refer to the same statistical
measure of size at most x-bit. Denote R to be the random variable uniformly
distributed among the y-bit integer. By taking X = R + S and Y = R + S′, it
can be computed that ∆(X,Y ) ≈ 2x−y.

This statistical distance can be made arbitrary small by selecting large values
of r (along with corresponding large parameter sizes of E ). In practice, it can be
assumed that any statistical measure S is at most 80-bit. Our protocol selects a
large 1024-bit value of r which provides a statistical security of 2−940.

9 Implementation & Performance

We implemented PSI-Stats in C++. The benchmark machine is desktop work-
station running on a single-thread with an Intel Core i7-7700 CPU @ 3.60GHz
and 28GB RAM. The bandwidth is 4867Mbps with round-trip time of 0.02ms.
As a measure of comparisons, we also run the intersection-sum implementation
of [33] with the results recorded in Table 2 under the ”Sum” column. The respec-
tive input sizes m, n are equal and the comparisons are based on the running
time (in seconds) as well as communication cost (in MB). All intersection sizes
are standardized at 200 unless otherwise stated. We set the value of c = 109 for
the geometric mean protocol. In running Protocol 1, we also provide the read-
ers with the results of the actual generalized means alongside the outputs that
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it obtained from the execution of the protocol. The output generalized means
values given in the tables are all rounded down to the nearest whole number.

Table 2: Performance of Intersection-Range/Sum protocol.

Sum [33] Sum & Range
Input Size Time(s) Comm.[MB] Time(s) Comm.[MB]

1000 7.88 0.6798 7.87 0.6809

2000 15.54 1.3588 15.50 1.3599

3000 23.29 2.0377 23.24 2.0389

4000 30.98 2.7167 30.97 2.7179

5000 38.78 3.3957 38.52 3.3969

10000 79.69 6.79 78.99 6.80

50000 387.88 33.95 385.53 33.96

100000 796.96 67.9 789.64 68

We apply similar parameters as with the experiments conducted in [33]. The
elements/identifiers in the generated datasets are 128-bit strings, with associated
values being at most 32 bits long (the specific testing range is set between 1 to
100). The sum of the associated values is also bounded by 32 bits. The input set
sizes range from 1000 to 100000. An elliptic curve with 224 bit group elements
constitute the group G . The hash function SHA-256 is utilized for h. The Paillier
encryption involves the product of two 768 bit primes which yields a plaintext
space of 1536 bits and ciphertext of length 3072 bits.

(a) Time (b) Communication

Fig. 1: Performance on Arithmetic Mean
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Table 3: Performance of Private Intersection-arithmetic mean protocol.

Time(s)
Comm.[MB] Actual Value Output (rounded down)

Input Size Offline Online Total

1000 6.11 1.94 8.05 0.6799 51.31 51

2000 12.32 3.25 15.57 1.3589 48.91 48

3000 18.52 4.87 23.39 2.0379 51.76 51

4000 24.34 6.71 31.05 2.7169 44.525 44

5000 30.76 8.04 38.8 3.3958 48.835 48

10000 62.3 19.18 81.48 6.80 51.64 51

50000 311.5 76.57 388.07 33.96 48.45 48

100000 627 186.65 813.65 68 50.83 50

Table 4: Performance of Private Intersection-geometric mean protocol.

Time(s)
Comm.[MB] Actual Value Output (rounded down)

Input Size Offline Online Total

1000 6.23 1.99 8.22 0.6799 37.84 37

2000 12.45 3.27 15.72 1.3589 38.07 38

3000 18.61 4.91 23.52 2.0379 36.71 36

4000 24.61 6.75 31.36 2.7169 36.58 36

5000 31.02 8.08 39.1 3.3958 42.288 42

10000 63.1 19.33 82.43 6.80 44.28 44

50000 312.8 77.07 389.87 33.96 43.04 43

100000 629 187.68 816.68 68 37.13 37

In addition, we have segmented the total time into disjoint durations of the
offline and online phases. The offline phase refers to the pre-computation process
where the parties can perform offline computations of their respective individual
dataset even before the initial round of communication commences. The online
phase begins from the initial round of communication to the end of the protocol.
In practice, the online phase duration generally provides a more relevant indica-
tor of practical performance as opposed to the total time taken. The results are
presented in Tables 3, 4 and illustrated in Figures 1 and 2.

From the tabulated results, we note that our PSI-Stats protocols have com-
parable running time and communication cost in relation to [33] which solely
computes the intersection sum. In fact, our protocol which outputs both the
sum and range functionality is observed to have a slightly lower running time
compared to [33] which only outputs the sum. This is attributed to the reason
that in the implementation of [33], an intended random shuffle is replaced with
a sort based on hash digests of associated values. Due to the properties of hash
functions, this does not affect the protocol of [33]. However, that incurs a slight
difference in their overall running time which explains the discrepancy.
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(a) Time
(b) Communication

Fig. 2: Performance on Geometric Mean

We also select a couple of actual datasets to conduct our experiments. The
dataset [39] taken from the UCI ML repository [19] relates to marketing cam-
paigns of a Portuguese banking institution. This dataset consists of a pair of sets:
one of which is a proper subset of the other. We extract the attribute of interest
corresponding to the yearly bank balance of bank’s clients. A holds the smaller
set of size 4521 while B holds the larger set of size 45211. To simulate a practical
setting, each input (representing a client) is assigned a kojin bangō which is a
unique 12-digit ID number issued to residents in Japan for taxation purpose.
Other identifiers such as the Social Security Number issued in the United States
can also be similarly assigned. The set size of A is then increased to 45211 to
match that of B by generating a distinct kojin bangō for each new client. Conse-
quently, the set size is 45211 for both parties and the intersection corresponds to
the original smaller set of size 4521. Related figures in the computation of mean
yearly balance of common clients between these two parties via PSI-Stats are
presented in Table 5. The second dataset involves spending from a mall taken
from Kaggle [5] which has an input size of 30000. We use the column labelled
”payment 2” as the set of corresponding associated values. The performance of
PSI-Stats of selected functionalities on the Kaggle dataset is recorded in Table 6.

Table 5: Performance of PSI-Stats on a UCI repository dataset.

Time(s)
Comm.[MB] Actual Mean Output (rounded down)

Input Size Offline Online Total

45211 281.6 68.77 350.37 30.74 1422.65 1422
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Table 6: Performance of PSI-Stats on a Kaggle dataset.

Sum & Range Mean
Actual Mean Output Mean (rounded down)

Input Size Total time(s) Comm.[MB] Total time(s) Comm.[MB]

30000 232 20.37 239 20.4 6317.035 6317

10 Conclusion

We present PSI-Stats which supports the secure computations of various statis-
tical functions in a privacy-preserving manner. Tables 7 and 8 provide a sum-
marized comparison of this paper with that of [33]. A tick denotes a party who
learns the output of the specified statistical functions or intersection cardinal-
ity at the end of the protocols while a cross denotes otherwise. A dash denotes
non-applicability.

Table 7: Functionality of
Protocols

Ion et al.’[33] Ours
A B A B

Sum × X – –

Sum & Range – – × X
Mean (inc. variance, s.d, etc.) – – × X

Geometric Mean – – × X
Harmonic Mean – – × X
Percentile Sum – – × X

Sum Composition Type 1 & 2 – – × X

Intersection Cardinality X × X ×
Communication Rounds 3 3

Table 8: Functionality of
Reverse Protocols

Ion et al.’[33] Ours
A B A B

Sum X × X ×
Sum & Range – – X ×

Mean (inc. variance, s.d, etc.) – – X ×
Geometric Mean – – X ×
Harmonic Mean – – X ×
Percentile Sum – – X ×

Sum Composition Type 1 & 2 – – X ×
Intersection Cardinality X X X ×
Communication Rounds 3 4

As shown in Table 7, our work here excludes a protocol for the sole output
of intersection sum as this was already presented in [33]. Instead, this paper
presents protocols which enable various statistical output functionalities in a
secure and privacy-preserving manner. With reference to Table 8, our reverse
protocols enable the hiding of the intersection cardinality from the party who
holds the associated values at the expense of an additional round of communi-
cation. This is achieved for all statistical functions discussed in this paper.

Our experimental results show that the running time and communication
cost of our protocols in the secure computations of various generalized means as
well as sum & range are comparable to the efficiency of the recently deployed
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intersection-sum protocol of [33]. Furthermore, we have noted from our exper-
iments that the running time of all protocols is dominated by the time taken
to perform encryption of each associated value. As such, all the protocols of
PSI-Stats are highly parallelizable and the performance can be further enhanced
when multi-threading is enabled. In addition, for instances where the intersec-
tion set of the identifiers between the two parties is null, party A can call for
an early abort of the protocol since the statistical outputs are irrelevant in such
cases.
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