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Abstract. Private Set Intersection (PSI) enables two parties, each hold-
ing a private set to securely compute their intersection without revealing
other information. This paper considers settings of secure statistical com-
putations over PSI, where both parties hold sets containing identifiers
with one of the parties having an additional positive integer value asso-
ciated with each of the identifiers in her set. The main objective is to se-
curely compute some desired statistics of the associated values for which
its corresponding identifiers occur in the intersection of the two sets.
This is achieved without revealing the identifiers of the set intersection.
In this paper, we present protocols which enable the secure computations
of statistical functions over PSI, which we collectively termed PSI-Stats.
Implementations of our constructions are also carried out based on simu-
lated datasets as well as on actual datasets in the business use cases that
we defined, in order to demonstrate practicality of our solution. PSI-Stats
incurs 5× less monetary cost compared to the current state-of-the-art
circuit-based PSI approach due to Pinkas et al. (EUROCRYPT’19). Our
solution is more tailored towards business applications where monetary
cost is the primary consideration.

Keywords: Private set intersection · Homomorphic encryption · Statis-
tical functions

1 Introduction

Private set intersection (PSI) enables two parties to learn the intersection of their
sets without exposing other elements (identifiers or items) that are not within
this intersection. This has wide-ranging applications in data sharing, private
contact discovery, private proximity testing [37], privacy-preserving ride-sharing
[28], botnet detection [36] and human genomes testing [12]. We highlight a num-
ber of notable work that have been achieved in this domain in Section 6.

The main problem statement of our work can be simply described as follows.
Sender A and receiver B hold sets of identifiers with receiver B additionally
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holds positive integer values associated with each of the identifiers. Denote the
sets held by A, B to be X and Y respectively. The objective is for B to learn
the desired statistical output function of some collection (dependent on X) of
the associated values, while preserving certain private information about their
respective sets. More formally, B seeks to learn the value FD(X,Y ), where D
is the decisional rule and F is the desired statistical function computed over D.
To preserve privacy, A does not learn Y and D(X,Y ) while B does not learn X,
D(X,Y ) and |D(X,Y )|. In our context, D is the private set intersection (PSI) of
the identifiers contained in X and Y . These settings arise in numerous business
and practical applications.

1.1 Our Contributions

We present PSI-Stats to address this main problem statement. PSI-Stats is a
collection of protocols to support the secure computations of statistical func-
tions over PSI. These include a myriad of frequently applied standard statistical
functions such as various generalized means, standard deviation, variance, etc.
The proposed protocols achieve the privacy requirements outlined in the problem
statement. The main contributions are summarized here.

– PSI-Stats can be enabled to securely compute multiple related statistical func-
tions within a single executed protocol with minimal additional communica-
tion and computational overhead, while maintaining the privacy guarantees
as defined in the main problem statement. Our techniques are also applicable
to non-symmetric functions such as weighted arithmetic mean.

– It is undesirable in many instances for receiver B to know both the intersection
cardinality and the output functionality as the combination of these can reveal
some information about the intersection set. To address this issue, one key
contribution of our work is to restrict any such inference information to the
absolute possible bare minimum. This is achieved by hiding the intersection
cardinality from receiver B and thus only the desired output functionality
(and nothing more) is revealed to him.

– We carried out extensive experiments of our protocols to determine their prac-
ticality and feasibility. Our test input sizes range from small to large. The ex-
perimental results demonstrate that PSI-Stats is practical and scales well for
large input sizes. We also conducted experimental comparisons of our proto-
cols with the current state-of-the-art circuit-based PSI protocol due to Pinkas
et al. [42]. Our protocols incur 5× less monetary cost and 5.2× less commu-
nication overhead.

In an interactive protocol, there are three factors in the overall measurement
of efficiency: the first relates to the communication overhead, the second relates
to the computational cost and the third relates to the number of communica-
tion rounds (or round complexity). The work in this paper does not claim to
outperform circuit-based PSI protocols across all the three factors above. As
an example, the current state-of-the-art for circuit-based PSI protocols is the
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very recent work of Pinkas et al. [42] which we reckon to potentially attain the
lowest computational cost (after the necessary circuit modifications in order to
accommodate outputs of statistical functions).

A goal of our work aims to present protocols with minimal communication
overhead based upon well-established, time-tested hardness assumptions while
concurrently ensuring that running times remain practical. To that end, the PSI-
Stats protocols in this paper incur the lowest communication overhead over all
circuit-based types (inclusive of the most recent state-of-the-art [42]) by several
factors. In that regard, PSI-Stats is especially relevant in settings where com-
munication cost comes at a premium or instances where bandwidth is limited.

Circuit-based PSI approaches can generally be instantiated by either Yao’s
garbled circuit protocol [51] or the GMW protocol [27]. While Yao’s protocol pro-
vides a constant round complexity, the GMW protocol is typically the overall
preferred option as it has several advantages over the former. A comprehensive
comparison between Yao’s protocol and the GMW protocol can be found in [48].
However for circuit-based PSI under the GMW family, the round complexity is
dependent on the circuit depth which increases with increasing set sizes and/or
increasing bit-length of items. This can potentially be a bottleneck in high la-
tency networks. By contrast, the PSI-Stats protocols operate with a low constant
round complexity of 3, independent of the input set sizes and the bit-length of
items.

To the best of our knowledge, alternative approaches to solve the main prob-
lem statement beyond circuit-based methods are either less efficient in our con-
text or employ the usage of computationally intensive homomorphic encryption
schemes, such as [14, 16]. We resolve the problem without resorting to the ma-
chinery of such expensive approaches. It should be noted that our protocols
reveal the intersection size to sender A. However, this does not enable sender A
to apply any inference attack based on the associated values held by receiver B
as they all safeguarded by homomorphic encryptions in our protocols. On the
other hand, such attacks are relevant if this intersection cardinality is revealed
to receiver B as discussed. Hence, it is crucial that this information is hidden
from receiver B which our protocols attain.

2 Preliminaries

The security model in this paper operates in the semi-honest setting. In this
model, adversaries can attempt to obtain information from the execution of
the protocol but they are unable to perform any deviations from the intended
protocol steps. The semi-honest model is typically suited in scenarios where
execution of the software is ensured through software attestation or business
restrictions, without any assumption that an external untrusted party is unable
to obtain the transcript of the protocol upon completion. Indeed, the majority
of the research in related domains also focus on solutions in the semi-honest
model. Hereinafter, we shall simply refer to mean as being arithmetic mean
while references to other generalized means will be stated explicitly.
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In this paper, we say an integer x is l-bit (length) if x ∈ Z∩ [2l−1, 2l− 1] and
x is at most l-bit (length) if x ∈ Z ∩ [0, 2l − 1]. The standard ceiling function
is given by ⌈.⌉, where ⌈x⌉ represents the smallest integer greater than or equal
to x. The nearest integer function is denoted by ⌊.⌉, log refers to the natural
logarithm, e is the standard mathematical constant (i.e. the base of the nat-
ural logarithm) and lcm is a shorthand for the lowest common multiple. The

second Chebyshev function ψ(x) =
∑
pk≤x

log p computes the sum over all prime

powers not exceeding x. All proofs in this paper are provided in the Appendix.
The participants’ setting and notations in the description of our protocols in this
paper is identical. We provide it here to serve as a convenient common reference.

Notations
ai, bi: identifiers.
A holds X = {a1, a2, . . . , am}.
B holds Y = {(b1, t1), (b2, t2), . . . , (bn, tn)}, ti ∈ Z+.
Y ′ = {b1, b2, . . . , bn}.
E (.): Paillier encryption of a 3072-bit modulus.
h(.): SHA-256 hash function.
G : a multiplicative group of integers of large prime order.

3 Private Set Intersection-Mean

This section describes a protocol to correctly output only the intersection mean
(i.e. without disclosing intersection-sum nor intersection cardinality to B). There
are numerous flexible applications for the intersection mean functionality apart
from the secure computation over numerical values. For instance, records in a
dataset can be encoded as 0 or 1 to represent entries of a binary attribute such
as “gender”. The arithmetic mean of these encoded values can thus directly pro-
vide the percentages of “females” and “males” which belong in the intersection
of the two datasets. We provide concrete recommendations for the appropriate
sizes of the various parameter values for use in our protocols which we also show
to provide strong security guarantees satisfying statistical indistinguishability.

PROTOCOL 1 (Private Set Intersection-Mean)

Input: A inputs set X ; B inputs set Y .
Output: A outputs |X ∩ Y ′|, B outputs intersection mean.

1. Setup: A and B jointly agree on E , a hash function h and a group G of large
prime order. B generates a public-private key pair of E , announces the public
key and keeps the private key to herself.
2. A’s encryption phase: A
(a) selects a random private exponent k1 ∈ G;
(b) computes h(ai)

k1 .
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A sends h(ai)
k1 to B .

3. B ’s encryption phase: B
(a) selects a random private exponent k2 ∈ G;
(b) computes h(ai)

k1k2 ;
(c) computes {h(bj)k2 , E(tj)}.
B returns h(ai)

k1k2 in shuffled order to A. B sends {(h(bj)k2 , E(tj)} to A.
4. Matching & homomorphic computations: A
(a) computes {h(bj)k2k1 , E(tj)};
(b) computes the set I of intersection indices where

I = {j : h(ai)k1k2 = h(bj)
k2k1 for some i};

(c) samples a uniformly random 1024-bit value of r.
(d) selects uniformly random integer values of r1, r2, where 0 ≤ r1 ≤ 2128 − 1,
2511 ≤ r2 ≤ 2512 − 1 with r1 satisfying

r1 ≡ rmod k

where k = |I|.
(e) additive homomorphically computes

E

(
r2 +

r − r1
k

∑
i∈I

ti

)
.

A sends r and E

(
r2 +

r−r1
k

∑
i∈I

ti

)
to B .

5. B ’s decryption phase: B performs decryptions of the ciphertext received
from A and computes (division over real numbers)

1

|I|
∑
i∈I

ti ≈
1

r

(
r2 +

r − r1
k

∑
i∈I

ti

)
.

Theorem 1. Protocol 1 correctly outputs the intersection mean (and which can
also be made arbitrarily close to the exact value).

3.1 On the chosen sizes of r, r1, r2

The larger the value of r, the closer the approximation of output M′ is to the
exact mean value M. Moreover, this approximation can be made arbitrary close
for arbitrary large values of r (along with corresponding large parameter sizes
of E ). In practice, a sufficiently large value of r already provides a very tight
approximation. The size choices of r1, r2 are 128 bits and 511 bits respectively
to prevent exhaustive search attacks. After the sizes of r1, r2 are set, the size of r
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can be chosen to sufficiently overwhelm r1, r2. In our case, we set r to be of size
1024-bit which is sufficient for M′ to M to be extremely close. In particular,

|M−M′| < 2−512M (1)

which suffices for all practical intent.

3.2 Flexibility of Protocol

It should be noted that the exact mean value in fact reveals additional infor-
mation about the sum or cardinality. For instance, if the mean is an integer
M then it follows that the sum is divisible by M. More generally, if the mean
is a rational number a

b with gcd(a, b) = 1, then the sum is divisible by a and
the cardinality is divisible by b. As discussed in the preliminary section, we
do not consider such implicit information which can be deduced from the out-
put functionality. Nevertheless, Protocol 1 has the added benefit of flexibility
which enables the adjustment of varying degrees of approximation tightness if
one wishes to circumvent the above issues. This can be achieved by adjusting
the size of a randomly sampled r. The approximation weakens with decreasing
sizes of r. More generally, for a random sample r of x-bit, x ≥ 515, the difference
yields

|M−M′| < 2512−xM. (2)

3.3 Security Analysis

The security arising from the communication in Step 2 and Step 3 follows from
the validity of the Decisional Diffie-Hellman assumption as well as the hardness
of the Decisional Composite Redisuosity Problem. Hence, the remaining secu-
rity and privacy aspects to consider occur in Step 4 where B receives r and

E

(
r2 +

r−r1
k

∑
i∈I

ti

)
. Since r is sampled uniformly at random from a collec-

tion of 1024-bit integers, B is unable to distinguish r from a random uniformly
selected 1024-bit integer. As before, denote M to be the exact value of the in-

tersection mean. Thus, B obtains r2 +
r−r1
k

∑
i∈I

ti = r2 + (r − r1)M. Moreover,

only r and M5 are known to B and thus can only effectively compute r2 − r1M
which we show in the following is statistically indistinguishable from a uniformly
sampled 512-bit integer. This serves the purpose of hiding the cardinality and
intersection sum. We begin with a standard security definition.

5 Technically only M′, which is a close approximation to M can be computed by B .
In essence, this distinction is largely irrelevant in this specific context as we evaluate
a stronger security setting than required where B has the knowledge of both M and
M′.
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Definition 1. Let X and Y be two distributions over {0, 1}n. The statistical
distance of X and Y, denoted by ∆(X,Y ) is defined to be

∆(X,Y ) = max
U⊆{0,1}n

|Pr[X ∈ U ]− Pr[Y ∈ U ]|

=
1

2

∑
v∈Supp(X)∪Supp(Y )

|Pr[X = v]− Pr[Y = v]| . (3)

X is ϵ statistically indistinguishable from Y if ∆(X,Y ) ≤ ϵ.

In particular, we show that r2 − r1M is statistically indistinguishable from
uniformly distributed 512-bit integers, when M is a fixed positive integer. It can
be assumed here that the intersection mean M is at most 80-bit in all practical
settings. Denote random variables R1 = unif[0, c] and R2 = unif[a, b] to be the
discrete uniform distributions over Z∩ [0, c] and Z∩ [a, b] respectively such that
cM ≪ a≪ b. We first establish the following.

Theorem 2.

∆(R2 −R1M, R2) =
cM

2(b− a+ 1)
. (4)

In Protocol 1, a = 2511, b = 2512 − 1, c = 2128 − 1 and M is assumed to be
at most 80-bit. Hence in Protocol 1,

∆(R2 −R1M, R2) ≤ 2−300. (5)

This shows that r2− r1M is 2−300 statistically indistinguishable from uniformly
distributed 512-bit integers when M is a positive integer. Here, we simply apply
80-bit as a concrete upper bound of M in all practical use cases. It can in fact be
way larger than 80-bit subject to the corresponding constraints of (5). In cases
where M = a

b is a non-integer positive rational number such that a ≪ r2, a
similar argument can be applied to show that r2b− r1a is statistically indistin-
guishable from uniformly distributed 512-bit integers which are multiplied by a
factor of b.

3.4 Geometric mean

Our method can be adapted to output the intersection geometric mean func-
tionality without revealing the intersection size to B . One application arises in
the computation of the Atkinson index [11] of income inequality which is a func-
tion of both the geometric mean and arithmetic mean. Another such instance
of the geometric mean can arise in Econometrics as specified by the generalized
Cobb-Douglas production function [22], where its inputs can represent working
hours of labourers and each exponent is the reciprocal of the number of inputs.

The geometric mean of a data set {t1, t2, . . . , tk} is given by

(
k∏
i=1

ti

) 1
k

. A

natural line of approach is to replace additive homomorphic encryption with a
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multiplicative homomorphic encryption (e.g. RSA [46]) in view of the multiplica-
tive structure of the output. This works perfectly fine if the intersection size is
exposed to B . However, in the security model where the intersection size is kept
secret from B , there is no known efficient public-key based protocol utilizing
multiplicative homomorphic encryption which can achieve this with reasonable
accuracy. We present a method to attain this desired functionality using ideas
based on our earlier approach for arithmetic mean.

Without being overly verbose, we do not detail the fully fledged protocol
but instead highlight the crucial steps. Suppose ti ∈ [1, t + 1]. We first seek
an injective function fc : ti → ⌊c log ti⌉ for some positive integer constant c.
Here ⌊.⌉ denotes the nearest integer function in accordance with the most recent
IEEE Standard for floating-point arithmetic [4]. The value of c is chosen by
B , the party who holds the list of associated values. We show that fc can be
constructed by taking c ≥ t+ 1.

Theorem 3. fc is injective ∀ c ≥ t+ 1.

The injectivity condition is stipulated to ensure that no two distinct values of
ti’s correspond to the same image under fc. The protocol for the intersection
geometric mean proceeds by replacing ti with ⌊c log ti⌉ given in Protocol 1. One
other difference lies in the final decryption step performed by B . More specifically
in the final step, B obtains the intersection geometric mean by computing

e

1
cr

r2+ r−r1
k

∑
i∈I

⌊c log ti⌉


≈ e

1
c|I|

∑
i∈I

⌊c log ti⌉
≈ e

1
|I|

∑
i∈I

log ti

=

(∏
i∈I

ti

) 1
|I|

.

(6)
In general, larger values of c provide a greater precision. In practice, such large

values of c can always be chosen since the modulus of the Paillier encryption is
much larger than max{log ti}. The proofs of correctness and security mirror that
of the intersection mean.

3.5 Extensions to Variance & Standard Deviation

Our techniques presented in this section can be further extended to compute var-
ious other statistical functions of the associated values in the intersection. The
general overall idea is for B to receive the values of nth-order moment about
the origin in order to compute the nth central moment (without knowledge of
the intersection size). Let R be a random variable. In our context, R can be
considered to be the discrete uniform distribution over the associated values in
the intersection. The nth-order moment about the origin µ′

n is defined to be
µ′
n = E[Rn]. The nth central moment µn is defined to be µn = E[(R − E[R])n].

For example, the mean in this case is µ′
1 = E[R]. Variance and standard deviation

provide a measure of the amount of dispersion of a list of values. A low stan-
dard deviation indicates that the values tend to be clustered around its mean,
while a high standard deviation indicates that the values are dispersed over a
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wider range of values. In step 3 of the protocol, B sends both E(tj) and E(t2j )

to A. This enables A to return values of E[R] and E[R2] to B . The variance can
then be simply computed by Var(R) = E[R2]− (E[R])2 and standard deviation
σ =

√
Var(R). At the end of this protocol, B outputs the mean and standard

deviation (or variance). At the same time, B’s knowledge of E[R2] during this
process does not reveal any additional information since that quantity can be de-
rived from any generic protocol which outputs the mean and standard deviation
(or variance). The protocols for the skewness and kurtosis output functionalities
can be similarly constructed.

4 Intersection-Sum with Approximate Composition

Trivially, the intersection sum output S reveals that there are less than l ele-
ments (or identifiers) in the intersection with associated values greater than S

l .
In many scenarios, B wishes to know more about the composition of the sum.
In particular, given the intersection sum, B wishes to have an estimate of the
number of elements in the intersection with associated value of at most t̂ (i.e.
its approximate sum composition). This information cannot be captured merely
by the knowledge of intersection sum. To that end, we present two protocols,
labelled as type 1 and 2 which enable the output of intersection sum along with
its approximate sum composition.

PROTOCOL 2 (Sum Composition type 1)

Input: A inputs set X ; B inputs set Y .

Output: A outputs |X ∩ Y ′|, B outputs
∑
i∈I

ti and an upper bound for
∑
i∈I

1

ti
,

where I is the set of indices of bi ∈ X ∩ Y ′.

1. Setup: Identical to Protocol 1.
2. A’s encryption phase: Identical to Protocol 1.
3. B ’s encryption phase: B
(a) selects a random private exponent k2 ∈ G;
(b) computes h(ai)

k1k2 ;
(c) computes {h(bj)k2 , E(tj)}.
B returns h(ai)

k1k2 in shuffled order to A. B sends {h(bσ(j))k2 , E(tσ(j))}nj=1 to
A, where σ is a permutation of j such that tσ(j) ≥ tσ(j+1). B sends M to A
where

M ≥ max

{
tσ(j)

tσ(j+1)

}
.

4. Matching & homomorphic computations: A
(a) computes {(h(bj)k2k1 , E(tj)};
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(b) computes the set I of intersection indices where

I = {j : h(ai)k1k2 = h(bj)
k2k1 for some i};

(c) additive homomorphically computes E

(∑
i∈I

ti

)
;

(d) samples uniformly random r, r1, r2 from a sufficiently large set of positive
integers such that r ≫ r1, r2 and r1

r2
≥ k, where k = |I|;

(e) computes r1 + rk(Mk − 1) and additive homomorphically computes

E

(
r2 + r(M − 1)

k∑
i=1

M i−1t′i

)
,

where {t′i}ki=1 is a permutation of {ti}i∈I s.t. t′i+1 ≤ t′i.

A sends E

(∑
i∈I

ti

)
, E

(
r2 + r(M − 1)

k∑
i=1

M i−1t′i

)
and r1 + rk(Mk − 1) to B .

5. B ’s decryption phase: B performs decryptions of the ciphertexts received

from A to obtain
∑
i∈I

ti and an upper bound for
∑
i∈I

1

ti
given by

∑
i∈I

1

ti
≤ r1 + rk(Mk − 1)

r2 + r(M − 1)

k∑
i=1

M i−1t′i

.

Theorem 4. Protocol 2 outputs
∑
i∈I

ti and an upper bound for
∑
i∈I

1

ti
.

4.1 Applicability of Sum Composition

Let the sum composition measure T be denoted to be

T =
r1 + rk(Mk − 1)

r2 + r(M − 1)

k∑
i=1

M i−1t′i

. (7)

Theorem 5. There are less than l elements in the intersection with associated
integer values of at most t̂ where t̂ ∈ Z+ satisfying t̂ < l

T .

For instance when l = 1, it can be established that there are no small asso-
ciated integer values under 1

T contained in the set intersection. In other words,
every element in the intersection has an associated value of at least 1

T . It should
be noted that the applicability of this measure of sum composition is dependent
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on the distribution of the associated values held by B . Generally, this output
functionality is more useful when the spread of associated values is sufficiently
large. In practice, B who holds the associated values can decide whether to ini-
tiate these two protocols based on his dataset. Type 1 enables the transmission
of an approximate sum composition without any substantial increase in commu-
nication over the intersection-sum. However, that requires B to reveal an upper
bound of M to A. We describe a type 2 protocol where communication cost is
not an overriding consideration without disclosing an upper bound of M to A.
Type 2 also results in a tighter output approximation compared to type 1. A
key ingredient involves an injective mapping of the set of reciprocals of positive
integers to the set of positive integers which preserves addition. Denote fc to be

such an injective map such that fc : ti →
⌈
c
ti

⌉
for a suitable large constant c.

PROTOCOL 3 (Sum Composition type 2)

Input: A inputs set X ; B inputs set Y .

Output: A outputs |X ∩ Y ′|, B outputs
∑
i∈I

ti and an upper bound for
∑
i∈I

1

ti
,

where I is the set of indices of bi ∈ X ∩ Y ′.

1. Setup: Identical to Protocol 1.
2. A’s encryption phase: Identical to Protocol 1.
3. B ’s encryption phase: B
(a) selects a random private exponent k2 ∈ G;
(b) computes h(ai)

k1k2 ;
(c) computes {h(bj)k2 , E(tj), E(fc(tj))}.
B returns h(ai)

k1k2 in shuffled order to A. B sends {h(bj)k2 , E(tj), E(fc(tj))}
to A.
4. Matching & homomorphic computations: A
(a) computes {h(bj)k2k1 , E(tj), E(fc(tj))};
(b) computes the set I of intersection indices where

I = {j : h(ai)k1k2 = h(bj)
k2k1 for some i};

(c) additive homomorphically computes

E

(∑
i∈I

ti

)
and E

(∑
i∈I

fc(ti)

)
.

A sends E

(∑
i∈I

ti

)
and E

(∑
i∈I

fc(ti)

)
to B .
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5. B ’s decryption phase: B performs decryptions of the ciphertexts received

from A to obtain
∑
i∈I

ti and an upper bound for
∑
i∈I

1

ti
given by

∑
i∈I

1

ti
≤ 1

c

∑
i∈I

fc(ti).

Theorem 6. Protocol 3 outputs
∑
i∈I

ti and an upper bound for
∑
i∈I

1

ti
.

4.2 On the selection of c

Suppose the values of ti’s are bounded by x bits. We show that taking c to be
of size 2x + 1 bits admits fc to be injective. Indeed, let ti, tj be two distinct
associated values. Without loss of generality, assume ti < tj , Then∣∣∣∣ cti − c

tj

∣∣∣∣ = c

(
tj − ti
titj

)
≥ 1 (8)

since c is of size 2x+ 1 bits. It follows that∣∣∣∣ cti − c

tj

∣∣∣∣ ≥ 1 ⇒
⌈
c

ti

⌉
̸=
⌈
c

tj

⌉
(9)

which proves injectivity.

4.3 Comparisons between Type 1 & Type 2

Table 1: Recommended RSA key length from NIST

security level (κ) 80 112 128 192 256

RSA key length 1024 2048 3072 7680 15360

The NIST report [13] details the recommended RSA key length (in bits) to
achieve a κ-bit security as given in Table 1. In the case of E being the Paillier
encryption, a 2048-bit length modulus corresponds to a 112-bit security level.
This translates to a ciphertext of length 4096-bit for Paillier encryption. Thus,
this increase in communication overhead is approximately in the region of 4096n
bits. On the other hand for large intersection sizes, type 2 is more practical and
has a lower computational cost.
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Table 2: Performance of Private Intersection-arithmetic mean protocol.

Time(s)
Comm.[MB] Actual Value Output (rounded down)

Input Size Offline Online Total

1000 1.46 0.49 1.95 0.4997 51.31 51

2000 2.84 0.94 3.78 0.9994 48.91 48

3000 4.22 1.41 5.63 1.4991 51.76 51

4000 5.6 1.87 7.47 1.9988 44.525 44

5000 6.96 2.33 9.29 2.4985 48.835 48

10000 14.3 4.8 19.1 4.9976 51.64 51

50000 69.3 23.4 92.7 24.988 48.45 48

100000 142 48 190 49.976 50.83 50

5 Implementation & Performance

We implemented PSI-Stats in C++. The benchmark machine is desktop work-
station running on a single-thread with an Intel Core i7-7700 CPU @ 3.60GHz
and 28GB RAM. The bandwidth is 4867 Mbps with round-trip time of 0.02 ms.
The respective input sizes m, n are equal and the comparisons are based on the
running time (in seconds) as well as communication cost (in MB). All experi-
ments apart from the UCI and Kaggle datasets are run at full intersection sizes
(i.e. intersection size = m = n). We set the value of c = 109 for the geomet-
ric mean protocol. In running Protocol 1, we also provide the readers with the
results of the actual generalized means alongside the outputs that it obtained
from the execution of the protocol. The output generalized means values given
in the tables are all rounded down to the nearest whole number.

(a) Time (b) Communication

Fig. 1: Performance on Arithmetic Mean
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Table 3: Performance of Private Intersection-geometric mean protocol.

Time(s)
Comm.[MB] Actual Value Output (rounded down)

Input Size Offline Online Total

1000 1.53 0.52 2.05 0.4997 37.84 37

2000 2.93 0.99 3.92 0.9994 38.07 38

3000 4.31 1.48 5.79 1.4991 36.71 36

4000 5.88 1.91 7.79 1.9988 36.58 36

5000 7.01 2.38 9.39 2.4985 42.288 42

10000 15.2 5.2 20.4 4.9976 44.28 44

50000 70 24.2 94.2 24.988 43.04 43

100000 151 52 203 49.976 37.13 37

We apply similar parameters as with the experiments conducted in [30]. The
elements/identifiers in the generated datasets are 128-bit strings, with associated
values being at most 32 bits long (the specific testing range is set between 1 to
100). The sum of the associated values is also bounded by 32 bits. The input set
sizes range from 1000 to 100000. An elliptic curve with 256-bit group elements
constitute the group G . The hash function SHA-256 is utilized for h. The Paillier
encryption involves the product of two 768 bit primes which yields a plaintext
space of 1536 bits and ciphertext of length 3072 bits.

In addition, we have segmented the total time into disjoint durations of the
offline and online phases. The offline phase refers to the pre-computation process
where the parties can perform offline computations of their respective individual
dataset even before the initial round of communication commences. The online
phase begins from the initial round of communication to the end of the protocol.
In practice, the online phase duration generally provides a more relevant indica-
tor of practical performance as opposed to the total time taken. The results are
presented in Tables 2, 3 and illustrated in Figures 1 and 2, which highlight that
both the running time and communication cost in our protocols are linear with
respect to the input size.

Table 4: Performance of PSI-Stats on a UCI repository dataset.

Time(s)
Comm.[MB] Actual Mean Output (rounded down)

Input Size Offline Online Total

45211 63.17 20.78 83.95 22.591 1422.65 1422

We also select a couple of actual datasets to conduct our experiments. The
dataset [35] taken from the UCI ML repository [20] relates to marketing cam-
paigns of a Portuguese banking institution. This dataset consists of a pair of sets:
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(a) Time (b) Communication

Fig. 2: Performance on Geometric Mean

Table 5: Performance of PSI-Stats on a Kaggle dataset.

Time(s)
Comm.[MB] Actual Mean Output (rounded down)

Input Size Offline Online Total

30000 45.6 15.6 61.2 14.992 1422.65 1422

one of which is a proper subset of the other. We extract the attribute of interest
corresponding to the yearly bank balance of bank’s clients. A holds the smaller
set of size 4521 while B holds the larger set of size 45211. To simulate a practical
setting, each input (representing a client) is assigned a kojin bangō which is a
unique 12-digit ID number issued to residents in Japan for taxation purpose.
Other identifiers such as the Social Security Number issued in the United States
can also be similarly assigned. The set size of A is then increased to 45211 to
match that of B by generating a distinct kojin bangō for each new client. Conse-
quently, the set size is 45211 for both parties and the intersection corresponds to
the original smaller set of size 4521. Related figures in the computation of mean
yearly balance of common clients between these two parties via PSI-Stats are
presented in Table 7. The second dataset involves spending from a mall taken
from Kaggle [5] which has an input size of 30000. We use the column labelled
“payment 2” as the set of corresponding associated values. The performance of
PSI-Stats of selected functionalities on the Kaggle dataset is recorded in Table 5.

5.1 Comparisons with circuit-based PSI protocols

The main direct competitor to PSI-Stats is a general-purpose circuit-based PSI.
One advantage of PSI-Stats compared to existing circuit based approaches is that
it incurs the lowest communication overhead. This is particular crucial in low
bandwidth settings or where communication cost is at a premium. In this regard,
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Table 6: Comparisons of monetary cost (in cents)

Pinkas et al. [42] PSI-Stats
Input Size Time(s) Comm.[MB] Cost(cents) Time(s) Comm.[MB] Cost(cents)

5000 0.649 13.6 0.1063 9.29 2.5 0.0208

10000 1.042 26.3 0.2056 19.1 5.0 0.0417

20000 2.077 52.9 0.4136 37.7 10.0 0.0833

30000 3.105 79.2 0.6192 56.3 15.0 0.1249

220 107.96 2702 21.12 1902 524 4.36

we demonstrate the comparisons in two aspects. The first evaluation is based
on the monetary cost to run the protocols on an external cloud server which is
dependent on the computation and the communication cost. This provides a fair
universal comparison of protocols with varying computation and communication
cost. Such a mode of comparison was first introduced in [40] and also applied
in [15]. For this purpose, our reference cloud server is the Amazon Web Service
(AWS) with the reference price model6 of (0.005USD/hr, 0.08USD/GB). The
second evaluation is based on the run times of protocols when conducted at a
bandwidth setting of 1 Mbps with a round-trip time of 0.02 ms.

Table 7: Comparisons of run time at network bandwidth setting of 1 Mbps.

Pinkas et al. [42] PSI-Stats
Input Size Time(s) Comm.[MB] Input Size Time(s) Comm.[MB]

5000 113.48 13.6 5000 29.1 2.5

10000 222.60 26.3 10000 58.3 5.0

20000 444.01 52.9 20000 119.1 10.0

30000 666.23 79.2 30000 174.8 15.0

300,000 6529 776 220 6113 524

The current most efficient state-of-the-art circuit-based PSI protocol is the
recent work of Pinkas et al. [42]. While there are two main approaches for the
generic secure two-party computation of Boolean circuits, the GMW approach
is the better performing over Yao’s garbled circuit on the balance of both com-
munication and computational cost. Since one of our evaluations is based upon
monetary cost, we shall use the GMW approach of [42] to serve as a bench-
mark in the comparisons of PSI-Stats with circuit-based PSI approaches. We
run the “no stash” protocol of [42] along with the arithmetic mean protocol of
PSI-Stats. The results are reflected in Tables 6 & 7. It should be emphasized

6 https://aws.amazon.com/ec2/spot/pricing https://aws.amazon.com/cloudfront/pricing/
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that the “no stash” protocol outputs the set intersection (without payload) as
compared to the arithmetic mean of the set intersection given in the running
times of PSI-Stats. Substantial modifications have to be incorporated to the “no
stash” protocol to support secure post-processing of the output of the set in-
tersection (e.g. statistical functions) which incur additional communication and
computational overheads. Nevertheless, the results of [42] in Tables 6 & 7 serve
well as a lower bound reference for the output functionality of arithmetic mean.
Moreover, to optimize the efficiency when running the protocol of [42], we com-
pute in Matlab the minimal number of mega-bins B required such that each
mega-bin contains at most maxb ≤ 1024 elements with probability under 2−40

for various set sizes n. The probability that there exists a bin with at least maxb
elements given in [42] is bounded above by

B
3n∑

i=maxb

B−i
(
3n

i

)(
1− 1

B

)3n−i

.

Our computed minimum values ofB are 19, 38, 75, 113 for n = 5000, 10000, 20000,
30000 respectively.

From the experimental results, PSI-Stats has a lower communication over-
head by an average factor of 5.2× and incurs 5× less monetary cost compared
to [42] as evidenced by Table 6. The results of Table 7 also demonstrates a much
lower run time in a network bandwidth setting of 1 Mbps. Moreover, when the
round-trip time is increased from 0.02 ms to 100 ms, the run time of [42] increases
by 3.2s and 3.84s for set sizes of 212 and 216 respectively. In contrast, the run
time increase for PSI-Stats is merely 0.3s. Since the complexities of PSI-Stats
scale linearly with respect to computation and communication, the comparison
of monetary cost ratio is expected to be maintained at 5× for larger datasets.

6 Related work

6.1 Existing PSI Protocols

An early PSI protocol is based upon the Diffie Hellman paradigm [34] which is
also applicable in elliptic curve cryptography. A similar idea can be traced back
to [49]. A method based on oblivious polynomial evaluation was introduced in
[24, 25]. An approach via blind RSA was presented in [18]. All the above methods
are based on public-key cryptography.

Oblivious transfer (OT) extension was first introduced in [31]. The main
objective of an OT extension is to enable the computation a large number of
OT based off a smaller number along with symmetric cryptographic operations
to achieve better running times. This technique engendered numerous OT-based
PSI protocols. The notion of garbled bloom filter based on OT extension was
coined in [21] and utilized to perform PSI. The main idea is to allow one of the
parties to learn the bit-wise AND of two Bloom filters via OT. This outcome
results in a valid Bloom filter for the set intersection. That was subsequently
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optimized to some extent in [44]. There are a number of other notable OT-based
schemes presented in [26, 33, 38, 41, 44, 45]. The particular work of [33] is based
on an OT extension protocol found in [32].

Recently, threshold PSI protocols have been proposed [52, 53]. The earlier
work [52] leaks the intersection size, while the subsequent work [53] has no
such leakage. Instead of revealing computation results of associated values, they
suppress the output if the intersection set does not satisfy the agreed policy.

Generic multi-party protocols such as garbled circuits can also be used to
compute PSI. The first such protocol involving garbled circuit appeared in [29]
which was later improved in [44]. Other notable circuit-based PSI protocols are
presented in [23, 41–43]. The protocol of [17] can incorporate several approaches
of 2PC beyond garbled circuits. Circuit-based approaches can typically serve for
generic computation purposes. On the other hand, they result in larger commu-
nication overheads as compared to other custom-based PSI protocols.

The most related existing work in relation to this paper is that of Ion et
al. [30] which considers the single special case where F is the sum. It should be
noted that any natural attempts to convert the computation of sum to arithmetic
mean by sending the set intersection size to the receiving party B violates the
privacy requirements of the problem statement since the additional knowledge
of cardinality can induce an inference attack. In contrast, our work here provides
solutions to a large class of statistical functions F without this drawback. By
doing so our protocols provide more flexible and comprehensive utilities.

7 Conclusion

We present PSI-Stats which supports the secure computations of various statis-
tical functions in a privacy-preserving manner. The benefit of PSI-Stats having
a substantially lower monetary cost and communication cost compared to cir-
cuit based PSI approaches is desirable in many business applications. This is
also relevant in environments of low network bandwidths. We have noted from
our experiments that the run time of all of our protocols is dominated by the
time taken to perform encryption of each associated value. As such, PSI-Stats is
highly parallelizable and the performance can be further enhanced when multi-
threading is enabled. In addition, PSI-Stats can easily be extended to enable
statistical outputs only if the size of the intersection set exceeds a pre-defined
threshold value. In instances where the intersection set of the identifiers between
the two parties is null or under a specified threshold size, party A can call for an
early abort of the protocol. This feature has also appeared in [52] where a secret
key cannot be recovered if the size is not reached, thereby prompting an abort.
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A Statistical Functions & Assumptions

The main goals of this paper are to perform secure computations of various
statistical functions over private set intersection. The statistical functions that
we consider in this paper are those that are commonly applied on databases such
as arithmetic mean, geometric mean, harmonic mean, standard deviation, etc.

We refer to implicit information as the information for which the party who
knows the intersection sum (along with her private set of identifiers and associ-
ated values) can deduce certain aspects of the intersection content. For example,
if the output sum is an odd integer and there is only one associated odd value in
the set, then this information implicitly reveals that the identifier corresponding
to the odd associated value has to be in the intersection. The output sum also
reveals that no identifier with associated value greater than the output sum can
be in the intersection. Indeed, any generic black box construction which reveals
the output sum incurs this implicit information loss. In view of this, the security
assumptions in this work (as with [30]) do not take into account such implicit
information loss or inference attack from the output functionality. Nevertheless,
the security and privacy considerations are taken into account for all communi-
cations prior to the final output functionality. The security of all the protocols
described in this paper is based upon the validity of the Decisional Diffie-Hellman
assumption and the semantic security of the Paillier encryption scheme which
assumes the hardness of the Decisional Composite Residuosity problem.
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We elide the event where the intersection of the identifiers is a null set since
the statistical output is irrelevant in such an instance. In such a setting, party
A can simply call for an early abort of the protocol during the matching phase.

B Use Cases

Our motivation lies in that different organisations are increasingly geared toward
sharing data among them in order to derive new insights and create new business
opportunities from the shared data. Here, we present two use cases that can
benefit from learning more than just the sum of the intersected set. For example,
to find min, max or threshold of values from the set. Certainly, a simple approach
to obtain the above result is to use existing state-of-the-art PSI protocol to find
the set intersection and then B computes the statistical functions on the values
associated to the identifiers in the intersection. Here, the main goal is to also
hide the identifiers in the set intersection from being known to both parties.
Hiding the elements in the set intersection can be useful to alleviate privacy
concerns from the participating parties especially when an organisation would
like to prevent the other party from learning some of their existing customers
based on the set intersection. We first look at an extension of the use case of the
Private Intersection-Sum protocol [30] between a merchant and an advertising
entities. By learning the min, max, or the percentage of small spending (or
large spending) after users viewed an advertisement, the merchant may use this
statistical information for targeted advertisement to advertise products within
the range of spending of the users. Alternatively, the merchant may devise new
reward scheme to encourage users to broaden their spending habits.

A second use case is data sharing between a mall and a credit card com-
pany with similar intent as the above use case. The proposed solution enables
the credit card company to match its customer to the mall’s customer, without
revealing the underlying individuals (not even the matched customers). This
prevents the credit card company (or the mall) from learning more information
such as which customers are also the customers of the mall (or credit card com-
pany), which can be a privacy concern to both participating parties. The credit
card company then reveals the min (or max) spending, or percentage of high
spending to the mall.The mall may market these insights to existing tenants or
attract new relevant tenants.

A third use case arises in the sharing of sensitive data between a hospital
and insurance agency. In such a setting, the hospital holds personal identifier
information (PII) and the insurance agency having a list of potential clients
(obtained through survey or marketing means) containing PII together with
auxiliary information such as age, employment status among others. PSI-Stats
enables the insurance agency to determine the average age, age range percentile
of clients hospitalized as well as a percentage of hospitalized clients in certain
high risk professions to better formulate insurance policies. Moreover, our work
ensures the statistical aggregation of such data in a privacy-preserving manner
without exposing the identity of any individual.
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C Commercial Solutions

Secure multiparty computing (MPC), while has been known to academia for a
few decades, is now starting to become commercially viable. With the increasing
demands of privacy protection in businesses, security and risk management lead-
ers have placed emphasis on not only data at rest and in transit, but also data
in use (e.g. while it is being processed by an application). It has recently been
reported by Gartner [50] that MPC-based technology has emerged in the market
to help businesses ensure data security and privacy in a more effective and effi-
cient manner. Gartner has seen a number of vendors, such as Unbound Tech [9],
Sharemind [8], Sepio [7], and Baffle [2], that leverage MPC to provide clients with
data and cloud security. These solutions typically focus on supporting standard
SQL queries over encrypted data or threshold-based key management. Moreover,
there exist private data linkage solutions, such as Anonos [1], Data Republic [3]
(which make use of conventional hash-based de-identification techniques), and
Privitar [6] (which is based on more modern PSI techniques).

Despite the commercial potential of MPC solutions, there are still privacy
concerns in data sharing applications particularly in terms of how much infor-
mation can be inferred by consumers of shared data. All the above-mentioned
commercial solutions do not protect the privacy of elements within the intersec-
tion of two or more datasets. The elements in the intersection, when combined
with auxiliary information, may lead to revelation of information that can be
used to re-identify specific individuals. In our work, we focus on a PSI-based
solution that addresses such privacy concerns.

D Definitions & Building Blocks

The Decisional Diffie-Hellman assumption

Definition 2. Let G be an abelian group of prime order p and g a generator
of G. The Decisional Diffie-Hellman assumption states that for random a, b, c ∈
Z ∩ [1, p], the distributions (g, ga, gb, gab) and (g, ga, gb, gc) are computationally
indistinguishable.

The Decisional Composite Residuosity Problem

Definition 3. The decisional composite residuosity problem is hard if for all
polynomial-sized circuits C = {Ck} there exists a negligible function negl such
that

|Pr(Ck(N, x) = 1|x = yN (N + 1)r modN2)

−Pr(Ck(N, x) = 1|x = yN modN2)| ≤ negl(k)

where N is a random RSA composite of length k-bit, r is selected randomly in
ZN and probabilities are taken over choices of r, y and N.
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Partial Homomorphic Encryption. Informally, a probabilistic public key
encryption E is additively homomorphic if E(m1 +m2) can be efficiently com-
putable given E(m1) and E(m2) for messages m1, m2 without knowledge of the
private key.

A crucial building block of our protocols is a semantically secure additively
homomorphic encryption scheme. Any such general encryption scheme satisfy-
ing these properties is applicable in our protocols. In our implementations, we
choose the Paillier [39] encryption scheme described below for this purpose.

Paillier Encryption Scheme. Let the public key N be a RSA composite; the
private key be ϕ(N) where ϕ denotes the Euler’s totient function and m ∈ ZN
be a valid message. The encryption is given by

E(m, r) = rN (N + 1)m modN2 (10)

where r ∈ Z∗
N is chosen at random. Given a ciphertext c ∈ Z∗

N2 , its decryption
is given by

D(c) =
ϕ(N)−1

N

[(
cϕ(N) modN2

)
− 1
]
modN. (11)

The Paillier encryption scheme is known to be semantically secure, assuming the
hardness of the decisional composite residuosity problem.

E Batching Optimization

We outline a batching mechanism which can be adapted in our intersection-mean
protocols to further optimize the efficiency. The PSI-Stats implementations con-
ducted in the experiments detailed in Section 5 do not incorporate this mode
since our protocols already achieve favourable results when compared with the
state-of-the-art circuit based approaches with respect to communication cost
and monetary cost. Nevertheless, this discussion can be of interest to security
practitioners. The starting point is the utilization of the Damg̊ard-Jurik [19]
generalization of the Paillier encryption. The Damg̊ard-Jurik generalization en-
ables an expansion of the plaintext space by a positive integer exponent e. This
plaintext space of a generalized Paillier encryption can be divided into 2s − 1
partitions Pi each of length li bits, 1 ≤ i ≤ 2s − 1 such that Pi+1 contains the
more significant bits as compared to Pi. The encryption is performed whereby
an associated value is placed into each Pi, 1 ≤ i ≤ s. In this way, a single encryp-
tion contains a batch of s associated values. This is repeated until all associated
values are encrypted which are then transmitted to the sender. Upon identifying
the matching elements and the encrypted Pi locations of their corresponding
associated values, the sender applies homomorphic multiplication on all relevant
ciphertexts by appropriate powers of 2 such that these matching associated val-
ues are all in Ps. Denote these resulting ciphertexts to be cj . The sender then
proceeds with the operations as defined in Steps 4(c)-(e) of Protocol 1 where ti is
replaced with cj . The sender then applies a homomorphic addition of a random
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mask such that each value in Pi is masked by l1 bits with the exception of i = s
before sending this resulting encryption and r to the receiver. The receiver per-
forms a decryption and extracts the value contained in Ps which is then divided
by r to obtain the mean. In practice, suppose N is the product of two 768 bit
primes with exponent e = 3 and that the sum of all associated values is bounded
above by 32 bits with 72 bits of masking in Pi, i ̸= s. The plaintext space is
thus 4608 bits which can be divided into 2s − 1 partitions such that li = 1056
for i = s − 1, s, 2s − 1 and li = 72 otherwise. In this case, the value of s = 12
which enables the batching of 12 associated values into a single encryption.

F Semi-honest Security Model

We provide a formal description of the semi-honest security model and the cor-
responding simulation based security proof of PSI-Stats. The simulation based
proof of security for our arithmetic mean output functionality is given in The-
orem 7. Our proof is similar to that provided by [10, 30]. The result for other
generalized means can be similarly derived from Theorem 7.

Semi-honest security. Let viewAΠ(X,Y ) and viewBΠ(X,Y ) be the view
of A and B in the protocol Π, respectively. The protocol Π is secure in the
semi-honest model if there exists probabilistic polynomial time (PPT) simula-
tors SIMA and SIMB such that for all security parameters λ and all inputs X,Y ,
where |X| = m, |Y | = n,

viewΠA (X,Y ) ≈ SIMA(1λ, X, n,output);

viewΠB (X,Y ) ≈ SIMB(1λ, Y,m,output).

Theorem 7. There exist PPT simulators SIMA and SIMB such that for all
security parameters λ,

viewΠA ({ai}mi=1, {(bi, ti)}ni=1) ≈ SIMA(1λ, {ai}mi=1, n, k);

viewΠB ({ai}mi=1, {(bi, ti)}ni=1) ≈ SIMB(1λ, {(bi, ti)}ni=1,m,M′)

where Π is as described in Protocol 1 with M′ denoting the receiver’s output.

Proof. The simulator for A is constructed in the following steps.
1. Generate a key k1 ∈ G and public, private key pairs for the Paillier en-

cryption scheme.
2. Honestly generate and send {h(ai)k1}mi=1 as message of A in the first com-

munication round.
3. Generate a dummy set D = {gi}mi=1, where each gi is randomly selected

from G. Send {gk1i }mi=1 as message of B in Step 3 of Protocol 1.
4. Generate a dummy set D′ = {hj}nj=1 for B by setting hj = gj for j ∈ [k],

and each hj for j ∈ {k, . . . , n} is randomly selected from G.
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5. Send {(hj , E(0))}nj=1 in shuffled order as the message of B in Step 3 of
Protocol 1, such that each E(0) is freshly generated.

6. Honestly generate the message of A in Step 4 of Protocol 1 using the
dummy messages of B from the previous step.

7.Output the view of A in this simulated execution.

By applying a multi-step hybrid argument,

viewΠA ({ai}mi=1, {(bi, ti)}ni=1) ≈ SIMA(1λ, {ai}mi=1, n, k).

Define SIMB to perform the Setup step honestly as well honestly performing
the operations corresponding to B. SIMB simulates the messages sent by A in
the following manner. SIMB sends m random chosen elements of G instead of
{h(ai)k1}mi=1 in Step 2 of Protocol 1. In Step 4 of Protocol 1, SIMB sends r and a
fresh Paillier encryption of ⌊rM′⌉ where r is a randomly chosen 1024-bit value.
By a hybrid argument,

viewΠB ({ai}mi=1, {(bi, ti)}ni=1) ≈ SIMB(1λ, {(bi, ti)}ni=1,m,M′).

G Harmonic mean

The harmonic mean output functionality can be achieved using a combination
of techniques highlighted in Protocol 1 and Protocol 3. The harmonic mean of a

data set {t1, . . . , tk} is given by k

(
k∑
i=1

1

ti

)−1

. The initial steps of this protocol

follows that of Protocol 1 such that all instances of ti are replaced with
⌊
c
ti

⌉
. In

the final step, B obtains the harmonic mean by computing

k(
k∑
i=1

1

ti

) ≈ cr

r2 +
r−r1
k

∑
i∈I

⌊ cti ⌉
. (12)

The proofs of correctness and security follows from the corresponding proofs
associated with Protocol 1. As with the geometric mean, larger values of c result
in higher precision.

In datasets where t = max{ti} is relatively small, the function fc can be
simplified to fc(ti) =

c
ti

where c = lcm(1, 2, . . . , t). Clearly, fc remains injective
and its image is a subset of the positive integers. The only constraint is a practical
one and that is to ensure that the size of c for this simplified function has
to be well within the modulus of the Paillier encryption. Define the second
Chebyshev function ψ(t) to be the sum over all prime powers not exceeding t i.e.

ψ(t) =
∑
pk≤t

log p. Thus c can be expressed as c = eψ(t). Applying Theorem 12 of

[47], we obtain an upper bound c < e1.03883t. It can be deduced that c is within
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the limits of a typical Paillier encryption modulus for relatively small values of
t. As an example for t = 100,

c < e103.883 < 2150 (13)

which is much smaller than the modulus of a Paillier encryption of size well over
a thousand bits (e.g. the implementations of [30] as well as ours apply a modulus
of 1536 bits). Our computations estimate that t = 1000 can be supported for
the above given parameters. In settings where the values of t are large, one can

simply take fc(ti) =
⌊
c
ti

⌉
for a sufficiently large c as outlined earlier.

H Proofs

Theorem 1. Protocol 1 correctly outputs the intersection mean (and which can
also be made arbitrarily close to the exact value).

Proof. We first note that A knows the value of |I| = k in Step 4 of the protocol.
We need to show that

1

|I|
∑
i∈I

ti ≈
1

r

(
r2 +

r − r1
k

∑
i∈I

ti

)
. (14)

For brevity of notation, let r′ = r−r1
k , where r′ ≫ r1, r2. Thus, r can be expressed

as r = kr′ + r1. It follows that

1

r

(
r2 +

r − r1
k

∑
i∈I

ti

)
=

r2
r′ +

∑
i∈I

ti

r1
r′ + k

≈ 1

|I|
∑
i∈I

ti (15)

since r1
r′ ,

r2
r′ ≈ 0.

It remains to show that the above approximation is in fact close. Denote
the exact mean value to be M and the output to be M′. To achieve this, we
formalize the notion of closeness by showing that the absolute difference between
M and M′ is within the value of M multiplied by a factor dependent on r which
can be made arbitrary close to 0. More formally, M and M′ are close if and
only if

|M−M′| < M
f(r)

(16)

where f(r) is a monotonically increasing function of r such that lim
r→∞

1

f(r)
= 0.

This implies that M′ can be made arbitrary close to M for corresponding
appropriate choices on the size of r. Applying a series of computations, we arrive
at

|M−M′| =

∣∣∣∣∣∣∣∣
r2k − r1

∑
i∈I

ti

k(r′k + r1)

∣∣∣∣∣∣∣∣ <
max(r1, r2)

∑
i∈I

ti

rk
<

2512
∑
i∈I

ti

rk
=

M
f(r)

(17)
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where f(r) = r
2512 . It is clear that f(r) is a monotonically increasing function

and that lim
r→∞

1

f(r)
= 0 which proves that M′ is close to M. 2

Theorem 2.

∆(R2 −R1M, R2) =
cM

2(b− a+ 1)
. (18)

Proof. Denote X = R2 − R1M. Upon a series of careful computations within
supp(X), we obtain the following.

P (X = i) =



c−j
(c+1)(b−a+1)

{
∀i ∈ [a− (j + 1)M, a− jM− 1],

∀j ∈ [0, c− 1]
1

b−a+1 ∀i ∈ [a, b− cM]

c−j
(c+1)(b−a+1)

{
∀i ∈ [b− (c− j)M+ 1, b− (c− j − 1)M],

∀j ∈ [0, c− 1]

Moreover, since R2 = unif[a, b],

P (R2 = i) =
1

b− a+ 1
∀i ∈ [a, b]. (19)

The statistical distance of X and R2 can now be computed via

∆(X,R2) =
1

2

∑
v∈Supp(X)∪Supp(R2)

|Pr[X = v]− Pr[R2 = v]|

=
1

2

c−1∑
j=0

M(c− j)

(c+ 1)(b− a+ 1)
+

1

2

c−1∑
j=0

M
b− a+ 1

− M(c− j)

(c+ 1)(b− a+ 1)

=
cM

2(b− a+ 1)
.

2

Theorem 3. fc is injective ∀ c ≥ t+ 1.

Proof. We first establish that

log

(
1 +

1

t

)
>

1

t+ 1
. (20)

The above can easily be shown by applying a change of variable t = 1−x
x and

deducing that ex < 1
1−x with a comparison of their respective Taylor series. It

follows that for all c ≥ t+ 1 and for all ti ̸= tj ,

|c log ti − c log tj | ≥ c log(t+ 1)− c log t ≥ (t+ 1) log

(
1 +

1

t

)
> 1 (21)

=⇒ |⌊c log ti⌉ − |⌊c log tj⌉| > 1 =⇒ ⌊c log ti⌉ ≠ ⌊c log tj⌉
which asserts that fc is injective. 2
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Theorem 4. Protocol 2 outputs
∑
i∈I

ti and an upper bound for
∑
i∈I

1

ti
.

Proof. It is clear from the final step of the protocol that
∑
i∈I

ti is an output.

Therefore, it remains to show that∑
i∈I

1

ti
≤ r1 + rk(Mk − 1)

r2 + r(M − 1)

k∑
i=1

M i−1t′i

. (22)

Since{t′i}ki=1 is the permutation of {ti}i∈I ,∑
i∈I

1

ti
=

k∑
i=1

1

t′i
. (23)

Note that 1
t′i

≤ 1
t′i+1

and t′i ≤Mt′i+1. The latter inequality implies that

t′1 ≤Mt′2 ≤M2t′3 ≤ · · · ≤Mk−1t′k. (24)

Hence by Chebyshev’s sum inequality,

k

[
k∑
i=1

M i−1t′i

(
1

t′i

)]
≥

(
k∑
i=1

M i−1t′i

)(
k∑
i=1

1

t′i

)
. (25)

After a number of simplifications, it follows that

k∑
i=1

1

t′i
≤ k(Mk − 1)

(M − 1)

k∑
i=1

M i−1t′i

. (26)

Since r1
r2

≥ k from the choices of r1, r2,

r1
r2

≥ k ≥ k(Mk − 1)

(M − 1)

k∑
i=1

M i−1t′i

, (27)

which yields
r1
r2

≥ k(Mk − 1)

(M − 1)

k∑
i=1

M i−1t′i

⇐⇒ k(Mk − 1)

(M − 1)

k∑
i=1

M i−1t′i

≤ r1 + rk(Mk − 1)

r2 + r(M − 1)

k∑
i=1

M i−1t′i

and the result of (22) follows from (23) and (26). 2
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Theorem 5. There are less than l elements in the intersection with associated
integer values of at most t̂ where t̂ ∈ Z+ satisfying t̂ < l

T .

Proof. The proof is straightforward. Suppose for a contradiction that there are
at least l elements in the intersection with associated integer values of at most
t̂. Then we have the following chain of inequalities:

T <
l

t̂
≤
∑
i∈I

1

ti
≤ T, (28)

a contradiction. 2

Theorem 6. Protocol 3 outputs
∑
i∈I

ti and an upper bound for
∑
i∈I

1

ti
.

Proof. As before, the protocol correctly executes
∑
i∈I

ti as an output. Moreover,

1
ti

= 1
c

(
c
ti

)
≤ 1

c

⌈
c
ti

⌉
. The result follows by summing over all i’s in I . 2
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