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Abstract. We show it is possible to build an RSA-type cryptosystem
by utilizing probable primes to base 2 numbers. Our modulus N is the
product n ·m of such numbers (so here both prime and some composite,
e.g. Carmichael or Fermat, numbers are acceptable) instead of prime
numbers. Moreover, we require for n and m to be distinct only, not
necessarily coprime, and so we don’t have to worry about whether any
of the numbers n,m is composite or not.

The encryption and decryption processes are similar as those in the RSA.
Hence, in this cryptosystem we may apply the above kind of numbers of
arbitrary length being still sure that the system works well. The price
for that is the size of words permitted by the new system: any message
M , as a number, must be smaller than log2(n ·m).
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1 Introduction and the result

In this article we present a variant of the RSA cryptosystem, based on probable
prime to base 2 numbers instead of prime numbers. We assume that the reader
is familiar with the classic RSA and knows the basic facts of cryptography, see
e.g. [2].

Let n, a > 1 be two coprime positive integers. Then n is said to be a probable
prime to base a (PRPa for short) if it fulfills the congruence

an−1 ≡ 1(mod n) . (1)

By the Fermat little theorem, congruence (1) holds true if n is prime; in partic-
ular, for a = 2 and every n odd prime. As it is well known, the set of all PRP2-
integers contains an infinite number of composite elements (e.g., Carmichael

numbers [1]), along with all Fermat numbers Fk = 22
k

+ 1, k = 1, 2, . . . (see [3,
Theorem 4.10]).

Now, in a few simple steps, we shall present our idea of the new cryptosystem;
it is easy to see, it has most of the elements from the RSA cryptosystem.



2 M. Wójtowicz

Let us define a Carmichael-type function µ on pairs (n,m) of distinct odd
integers n,m > 1 by the formula

µ(n,m) = lcm(n− 1,m− 1) (2)

(hence µ equals the Carmichael function λ for n,m distinct primes). Now let n,m
be two distinct PRP2-integers, and set N := n ·m. Since µ(n,m) = a · (n− 1) =
b · (m− 1) for some integers a, b ≥ 11, from the congruences

2n−1 ≡ 1(mod n) and 2m−1 ≡ 1(mod m) (3)

we obtain 2µ(n,m) ≡ 1(mod n) and 2µ(n,m) ≡ 1(mod m), i.e., the number
2µ(n,m) − 1 is divided by both n and m, and hence by N = n ·m:

2µ(n,m) ≡ 1(mod N). (4)

Now we define two parameters e and d – the encryption and decryption keys,
respectively – similarly as in the classic RSA system: we choose e, d > 1 from
the multiplicative group Z∗

µ(n,m) fulfilling the congruence

e · d ≡ 1(mod µ(n,m)), (5)

i.e.,
e · d = 1 + k · µ(n,m) forsomeinteger k. (6)

Further, with N as above, we define two functions E and D acting from the set
of positive integers into positive real numbers:

E(x) = 2x·e(mod N), and D(y) = log2(yd(mod N)).

We claim that E and D are well defined encryption and decryption functions
for all messages M less than log2N . (Notice, however, that D(y) is an integer if
and only if yd(mod N) is a power of 2, hence the proposed cryptosystem cannot
be applied to digital signing, in general.) This is stated in the theorem below,
and its proof is given in Section 3 of this paper.

Theorem. In the notation as above, for every integer/messageM with 1 < M <
log2N , we have E(D(M)) = M .

2 The Algorithm

In the description of the new algorithm we follow all steps of the RSA algorithm.

(KGA) Key Generation Algorithm

1. Generate two large PRP2-integers, n and m, of approximately equal size
such that their product N = m ·m is of the required bit length.

2. Compute N = m ·m and µ(n,m) = lcm(n− 1,m− 1).
3. Choose an integer 1 < e < µ(n,m) such that gcd(e, µ(n,m)) = 1.
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4. Compute 1 < d < µ(n,m) such that ed ≡ 1(mod µ(n,m)).

5. The public key is (e,N) and the private key is (d,N).

(E) Encryption

Sender X does the following:

1. Obtains the recipient Y’s public key (N, e).

2. Represents the message as a positive integer M with 1 < M < log2N .

3. Computes C = E(M) = 2e·M (mod N).

4. Sends C to Y.

(D) Decryption

Recipient Y does the following:

1. Uses the private key (d,N) and computes the number M(2) = Cd(mod N).

2. Computes M = log2M(2).

Example. We give an example to show how the algorithm works in a concrete
case.

Step (KGA). We have generated two small composite PRP2-numbers n = 341
and m = 645.

Hence N = 219 945 and µ(341, 645) = lcm(340, 644) = 54 740.

For e = 257, we obtain that d = 213 fulfills the congruence ed ≡ 1(mod 54 740).
Hence the public and private keys are (257, 219 945) and (213, 219 945), respec-
tively. The system accepts messages 1 < M < log2 219 945) = 17.74...

Step (E). Let M = 15. We encrypt M and compute C = E(M) =
2257·15(mod 219 945) = 175988.

Step (D). We compute M(2) = 175988213(mod 219 945) = 32768.

Finally, we compute log2M(2) = log2 32768 and obtain the sent message
M = 15.

3 Correctness of the Algorithm – proof of the Theorem

Because the numbers M(2) = 2M and N are coprime, the ’message’ M(2) lies in
the multiplicative group Z∗

N . Hence, the result of E, CM := E(M) = Me
(2)(modN),

lies in Z∗
N too. Then the formula CM → CdM (mod N) sends CM into an element

of Z∗
N , and the final element equals 2M . Therefore D(E(M)) = log2 2M = M ,

as claimed.
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