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Abstract. We show it is possible to build an RSA-type cryptosystem
by utilizing probable primes to base 2 numbers. Our modulus N is the
product n ·m of such numbers (so here both prime and some composite,
e.g. Carmichael or Fermat, numbers are acceptable) instead of prime
numbers. Moreover, we require for n and m to be co-prime only, and
so we don’t have to worry about whether any of the numbers n,m is
composite or not.
The encryption and decryption processes are similar as those in the RSA.
Hence, in this cryptosystem we may apply the above kind of numbers of
arbitrary length being still sure that the system works well. The price
for that is the size of words permitted by the new system: any message
M , as a number, must be smaller than log (in base 2) of n ·m.
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1 Introduction and the result

In this article, we present a variant of the RSA cryptosystem, based on probable
prime to base 2 numbers instead of prime numbers. We assume that the reader
is familiar with the classic RSA and knows the basic facts of cryptography, see
e.g. [4]. For K > 1 an integer, Z∗

K denotes the multiplicative group of the ring
ZK , i.e., Z∗

K consists of positive integers k < K co-prime to K, endowed with
multiplication modulo K.

1.1 Motivation and background

Let p, q be two co-prime prime numbers. Set N := p · q, and let ϕ and λ be the
Euler and Carmichael, respectively, functions on N : ϕ(N) = (p−1) · (q−1), and
λ(N) = lcm(p − 1, q − 1). The classic RSA cryptosystem, built on p, q and N ,
encrypts and decrypts a message M ∈ Z∗

N using functions E and D, respectively,
of the form:

E(M) = Me(mod N), and D(C) = Cd(mod N)), (1)

where e, d ∈ Z∗
λ(N) fulfill the congruence

e · d ≡ 1(mod λ(N)). (2)
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Since, by Euler’s formula

xϕ(N) ≡ 1 (mod N) for all x ∈ Z∗
N , (3)

λ(N) in (2) can be replaced by ϕ(N) because λ(N) is the least positive integer
t fulfilling the congruence

xt ≡ 1 (mod N) for all x ∈ Z∗
N . (4)

(and also ϕ(N) is trivially a multiple of λ(N)). The fact that E(D(M)) = M is
the result of congruences (1), (2) and (4)/(3).

The basis of this cryptosystem are two large prime numbers p, q. The problem
of primality of a given odd positive integer n is a fundamental issue in building
cryptosystems utilizing prime numbers. For this purpose, we can use either de-
terministic primality tests (based mainly on the Pockington test [6], or AKS [7,
Section 21]), or check the primality of n by a probabilistic test. (For a recent
review of the effectiveness of all known methods of such tests see the paper by
Albrecht, Massimo, Paterson, and Smorovsky [1].)

Each of these tests has both advantages and disadvantages. For example, de-
terministic tests are effective for particular kind of numbers or have other con-
strains, and probability tests may give erroneous results: in 2005, Bleichenbacher
[3] showed that the most popular probabilistic primality test, the Miller-Rabbin
test, if not well implemented, may pass composite numbers with probability 1.

Before proper testing the primality of n, we should do the ”zero test”: to
check that n has no small divisors, i.e., whether

gcd(n, T ) = 1, (5)

where T is the product of consecutive prime numbers with T ≈ n.

The simplest probabilistic test is based on Fermat’s little theorem: if the
number n is prime, then each integer a > 1 coprime to n fulfills the congruence:

an−1 ≡ 1(mod n); (6)

in particular (as n is odd by assumption),

2n−1 ≡ 1(mod n). (7)

Hence, congruence (6), as well as its particular form (7), is a necessary condition
for n to be prime.

1.2 Probable primes in base a

Simple probabilistic arguments show that if the number a is chosen randomly,
then the probability that n composite will pass the test (6) is ≤ 1/2. Thus, if n
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fulfills congruence (6) for a1, . . . , ak chosen randomly, then the probability that
n is prime is ≥ 1− (1/2)k and tends to 1 as k →∞.

Let n, a > 1 be two co-prime positive integers. Then n is said to be a probable
prime to base a (PRPa for short) if it fulfills the congruence

an−1 ≡ 1(mod n) . (8)

By the Fermat little theorem, congruence (8) holds true if n is prime; in partic-
ular, for a = 2 and every n odd prime. As it is well known, the set of all PRP2-
integers contains an infinite number of composite elements (e.g., Carmichael

numbers [2]), along with all Fermat numbers Fk = 22
k

+ 1, k = 1, 2, . . . (see [5,
Theorem 4.10]).

1.3 Construction of the new cryptosystem

Now, in a few simple steps, we shall present our idea of the new cryptosystem;
it is easy to see, it has most of the elements from the RSA cryptosystem.

Let us define a Carmichael-type function µ on pairs (n,m) of distinct odd
integers n,m > 1 by the formula

µ(n,m) = lcm(n− 1,m− 1) (9)

(hence µ equals the Carmichael function λ for n,m distinct primes). Now let n,m
be two co-prime PRP2-integers, and set N := n ·m. Since µ(n,m) = a ·(n−1) =
b · (m− 1) for some integers a, b ≥ 1, from the congruences

2n−1 ≡ 1(mod n) and 2m−1 ≡ 1(mod m) (10)

we obtain 2µ(n,m) ≡ 1(mod n) and 2µ(n,m) ≡ 1(mod m), i.e., the number
2µ(n,m) − 1 is divided by both n and m, and hence by N = n ·m:

2µ(n,m) ≡ 1(mod N). (11)

Now we define two parameters e and d – the encryption and decryption keys,
respectively – similarly as in the classic RSA system: we choose e, d > 1 from
the multiplicative group Z∗

µ(n,m) fulfilling the congruence

e · d ≡ 1(mod µ(n,m)), (12)

i.e.,

e · d = 1 + k · µ(n,m) for some integer k. (13)

Further, with N as above, we define two functions E and D acting from the set
of positive integers into positive real numbers:

E(x) = 2x·e(mod N), and D(y) = log2(yd(mod N)).
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We claim that E and D are well defined encryption and decryption functions
for all messages M less than log2N . (Notice, however, that D(y) is an integer if
and only if yd(mod N) is a power of 2, hence the proposed cryptosystem cannot
be applied to digital signing, in general.) This is stated in the theorem below,
and its proof is given in Section 3 of this paper.

Theorem. In the notation as above, for every integer/messageM with 1 < M <
log2N , we have E(D(M)) = M .

2 The Algorithm

In the description of the new algorithm we follow all steps of the RSA algorithm.

(KGA) Key Generation Algorithm

1. Generate two large co-prime PRP2-integers, n andm, of approximately equal
size such that their product N = n ·m is of the required bit length.

2. Compute N = m ·m and µ(n,m) = lcm(n− 1,m− 1).
3. Choose an integer 1 < e < µ(n,m) such that gcd(e, µ(n,m)) = 1.
4. Compute 1 < d < µ(n,m) such that ed ≡ 1(mod µ(n,m)).
5. The public key is (e,N) and the private key is (d,N).

(E) Encryption

Sender X does the following:

1. Obtains the recipient Y’s public key (N, e).
2. Represents the message as a positive integer M with 1 < M < log2N .
3. Computes C = E(M) = 2e·M (mod N).
4. Sends C to Y.

(D) Decryption

Recipient Y does the following:

1. Uses the private key (d,N) and computes the number M(2) = Cd(mod N).
2. Computes M = log2M(2).

Example. We give an example to show how the algorithm works in a concrete
case.

Step (KGA). We have generated two small composite co-prime PRP2-numbers
n = 341 and m = 645.

Hence N = 219 945 and µ(341, 645) = lcm(340, 644) = 54 740.
For e = 257, we obtain that d = 213 fulfills the congruence ed ≡ 1(mod 54 740).

Hence the public and private keys are (257, 219 945) and (213, 219 945), respec-
tively. The system accepts messages 1 < M < log2 219 945) = 17.74...

Step (E). Let M = 15. We encrypt M and compute C = E(M) =
2257·15(mod 219 945) = 175988.

Step (D). We compute M(2) = 175988213(mod 219 945) = 32768.
Finally, we compute log2M(2) = log2 32768 and obtain the sent message

M = 15.
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3 Correctness of the Algorithm – proof of the Theorem

Because the numbers M(2) = 2M and N are co-prime, the ’message’ M(2) lies
in the multiplicative group Z∗

N . Therefore every power of M(2) modulo N lies
in Z∗

N too. Hence, the result of E, C := E(M) = Me
(2)(mod N), belongs to Z∗

N .

Then the formula C → Cd(mod N) sends C into an element of Z∗
N , and the

final element equals 2M : by (11) and (13), we obtain

Cd ≡Med
(2) ≡M

1+k·µ(n,m)
(2) ≡ 2M+k·M ·µ(n,m) ≡

2M · (2µ(n,m)) ≡ 2M (mod N),

and the latter equals just 2M because 2M < N . Therefore D(E(M)) = log2 2M =
M , as claimed.
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