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Abstract

This paper formulates, and studies, the problem of property transference in dual-mode
NIZKs. We say that a property P (such as soundness, ZK or WI) transfers, if, one of the
modes having P allows us to prove that the other mode has the computational analogue of P,
as a consequence of nothing but the indistinguishability of the CRSs in the two modes. Our
most interesting finding is negative; we show by counter-example that the form of soundness
that seems most important for applications fails to transfer. On the positive side, we develop
a general framework that allows us to show that zero knowledge, witness indistinguishability,
extractability and weaker forms of soundness do transfer. Our treatment covers conventional,
designated-verifier and designated-prover NIZKs in a unified way.
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1 Introduction

Non-interactive zero-knowledge (NIZK) systems [BFM88, BDSMP91] are blossoming. New appli-
cations are fueling the development of schemes that are not only more efficient than classical ones
but may also be simpler, more elegant and more powerful in application. One way this happens is
via the concept of dual mode [GOS06b, GOS06a, GOS12, AFH+16, HU19, LPWW20].

Background. Groth, Ostrovsky and Sahai [GOS06b, GOS06a, GOS12] build a pair of NIZK
systems Π0,Π1 such that (1) the prover and verifier are the same for both (2) the two systems
have CRSs that, although different, are computationally indistinguishable under the SubGroup
Decision or Decision Linear Assumptions, and (3) Π0 has perfect soundness while Π1 has perfect
zero-knowledge (ZK).

Why do this? GOS wanted a (single) NIZK system that was perfect ZK and computationally
sound. The claim would be that Π1 has these properties, because CRS indistinguishability, plus
the perfect soundness of Π0, would automatically imply computational soundness of Π1. In our
language, soundness has been “transferred” from Π0 to Π1, as a consequence of nothing but CRS
indistinguishability.

Recognition of the power of this technique lead to the formalization of dual-mode systems.
Rather than a single or accepted definition, however, there are many, with a common core and
varying peripherals [AFH+16, HU19, LPWW20]. At its core, a dual-mode system DΠ has a CRS
generator that takes an input µ ∈ {0, 1} (the desired mode), and the CRSs generated in the two
modes must be computationally indistinguishable. Proving and verification algorithms are as in a
(single mode) NIZK system. The modes are called binding and hiding, and the (varying) peripheral
requirements placed on them in prior works are summarized in Figure 1.

Looking across usage and applications in the literature, the value of dual-mode continues to
lie in transference, namely, being able to prove that if a property (like soundness) is present in
one mode then its computational analogue is also present in the other, as a consequence just of
the indistinguishability of the CRSs in the two modes. But there is growing recognition that
transference can be subtle and not as simple as it seems. For example, certain (weaker) forms
of soundness are proven to transfer, but for other (stronger) forms, the natural proof approach
fails, and whether or not the transference holds remains an open question [GOS12, LPWW20].
This lead GOS, in the journal version of their work [GOS12], to introduce culpable soundness, an
intermediate notion that they could show transfers.

Overview of our contributions. We want to understand the limitations and possibilities of
transference, including which properties transfer, which don’t, and why. We divide our contribu-
tions into the following parts.

. Definitions. We start by defining a dual-mode system DΠ in a different way; we ask only for
the (core) CRS indistinguishability requirement. Unlike prior works (cf. Figure 1), no requirements
are placed on the individual modes. We then define, in the natural way, the (single-mode) systems
DΠ0,DΠ1 induced by DΠ. A property P (soundness, ZK, WI, ...) is a requirement on a single-mode
system, not a dual-mode one. Transference of a property P is now the question: If DΠµ satisfies P,
does DΠ1−µ satisfy the computational analogue of P?

. Negative results. We show that certain strong (desirable, application-enabling) forms of
soundness fail to transfer. These negative results are established by giving explicit counter-examples
under standard assumptions (CDH, DDH). This shows that the difficulties noted in prior work with
regard to proving transference for certain forms of soundness [GOS12, LPWW20], are inherent.

. Positive results. We formalize a “property” P as a property specification PS and give
sufficient conditions on PS for it to successfully transfer. Through this we show that ZK, WI and
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Who Requirements for mode 0
Requirements

for mode 1

[AFH+16] perfect soundness and extractability perfect ZK and WI

[HU19] statistical soundness and extractability statistical WI

[LPWW20] statistical soundness statistical ZK

Our work None None

Figure 1: Requirements placed on the two modes in definitions of dual-mode systems.

extractability (we define them in strong ways that are application-enabling) do transfer, as do
weaker (as per what follows, not application-enabling) forms of soundness. Our framework may
have future value in helping evaluate or establish transference of the many definitional variants of
the basic properties that arise.

. Applicability assessment. It is desirable that the forms of soundness that transfer be
suitable for applications, leading us to ask, which are? We examine a canonical application of
NIZKs, the one to digital signatures [BG90, CDG+17], and find that the form of soundness it
needs is one that our negative results show does not transfer. Thus, our finding is that the most
application-enabling (stronger, desirable) forms of soundness fail to transfer, while weaker forms
do transfer.

. Unified treatment. We define single and dual-mode systems in a way that includes, as
special cases, the conventional [BFM88, BDSMP91], designated verifier [ES02, PsV06, DFN06]
and designated prover [KW18, KNYY19] settings. Our definition of CRS indistinguishability asks
that it hold even when the adversary knows the proving and verification keys (if any). Sound-
ness is required even in the presence of a verification oracle, to capture the reusable designated
verifier setting [LPWW20]. Our results apply to all these settings. The motivation for this broad
treatment is the many recent advances in settings beyond the conventional one [KW18, KNYY19,
LPWW20, BCGI18, BCG+19]. In the rest of this Introduction, however, we will for simplicity
confine discussion to the conventional setting.

Definitions. Recall that the syntax of a (classical, single-mode) NIZK system specifies three
polynomial-time algorithms: CRS-generator Π.C that produces the common reference string crs
←$ Π.C(1λ) from the (unary representation of the) security parameter λ; proof-generator Π.P that
produces the proof pf ←$ Π.P(1λ, crs, x, w) from an instance x and witness w; and verifier Π.V that
produces a boolean decision d ← Π.V(1λ, crs, x,pf) for a candidate proof pf. For such systems,
one can consider many security properties, including soundness, extractability, zero-knowledge and
witness indistinguishability. But each property has many variant forms (statistical, perfect, non-
adaptive, adaptive, single or multi-theorem, ...), and, even within these, differences in definitional
details, so that in the end there is a veritable zoo of notions.

We define a dual-mode proof system DΠ to have the same syntax as a (single-mode) proof system
except that the CRS generator DΠ.C takes an additional input µ ∈ {0, 1}, the desired mode. (Prover
algorithm DΠ.P and verifier algorithm DΠ.V remain as before.) The only semantic requirement
is mode indistinguishability, asking that the CRSs generated in modes 0, 1 be computationally
indistinguishable.

Next we define the induced (single-mode) proof systems DΠ0 and DΠ1. For both, the prover
algorithm is DΠ.P and the verifier algorithms is DΠ.V. The difference is their CRS generation
algorithms, that of DΠµ being DΠ.C with the mode input set to µ ∈ {0, 1}. Since the induced proof
systems are single-mode ones, one can speak of their having, or not having, a property P from the
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list above. Transference for a property P is now the following question: If DΠµ satisfies P, does
DΠ1−µ also satisfy P?

Transference intuition. One would imagine that any property P transfers, by the following
proof. Suppose P holds for one mode, wlog DΠ0. We want to show it also holds in DΠ1. Let A
be a PT (polynomial-time) adversary violating P in DΠ1. We build a PT adversary D violating
mode indistinguishability. As per the definition of the game for the latter, the input to D is a
crs of a challenge mode µ←$ {0, 1}, and D is trying to determine µ. Adversary D runs A on
input crs and tests if it violates P. If so, it predicts that µ = 1, else that µ = 0. The difficulty
is that “testing whether A violates P” may not be doable in polynomial-time. In particular, for
soundness (depending on the precise definition of the property as we consider below), it may involve
testing membership in the underlying language, which, for languages of interest, is not doable in
polynomial-time. This difficulty is recognized [GOS12, LPWW20]. However, it does not mean
that the property necessarily fails to transfer; it just means that the obvious proof approach fails.
Is there another, more clever one, that succeeds? We will answer this question negatively, giving
counterexamples to show non-transference for certain properties of interest in applications.

Soundness notions. The underlying NP-relation R defines a language LR(crs). (As per [Gro06],
and to cover systems in the literature, the language is allowed to depend on the CRS.) Soundness
of a (single-mode) proof system Π for R asks that an adversary given crs be unable to find an
x 6∈ LR(crs), and a proof pf, such that Π.V(1λ, crs, x,pf) = true. The difficulty, for transference, is
that testing whether the adversary wins seems to require testing that x 6∈ LR(crs), which is likely
not doable in PT. With attention drawn to this issue, however, one sees that whether or not the
test is required depends on exactly how the soundness game is defined. The broad format is that
the game picks and gives crs to the adversary, who then provides the game with x,pf, and the
game then performs a “winning test.” Now we consider two definitions: SND-P (penalty style) and
SND-E (exclusion style). (This follows the consideration of similar notions for IND-CCA encryption
in [BHK15].) In SND-P, the winning test is that x 6∈ LR(crs) and Π.V(1λ, crs, x,pf) = true, and
SND-P security asks that any PT adversary has negligible winning probability. In SND-E the
winning test is just that Π.V(1λ, crs, x,pf) = true, and SND-E security asks for negligible winning
probability, not for all adversaries, but for a subclass we call membership conscious: the probability
that the x they provide is in LR(crs) is negligible. (Membership consciousness is an assumption on
the adversary. Nothing in the game verifies it.) Clearly, SND-P is stronger: SND-P ⇒ SND-E.
(Any SND-P secure Π is also SND-E secure.) We can show that SND-E is strictly weaker: SND-E
6⇒ SND-P. (There exists a Π that is SND-E secure but not SND-P secure.)

Soundness transference. We show that (1) SND-E transfers, but (2) SND-P does not. The
first follows from general results we discuss below. With regard to the second, that the winning
test is not PT is an indication that transfer may fail, but not a proof that it does. (What it means
is that the particular, above-discussed approach to prove transference fails.) In Theorem 4.4, we
show non-transference via a counter-example. We give a dual-mode proof system DΠ and relation
R such that (2a) DΠ satisfies mode indistinguishability (2b) DΠ1 satisfies SND-P for R but (2c) DΠ0

does not satisfy SND-P for R. These results assume hardness of the DDH (Decision Diffie-Hellman)
problem in an underlying group. We show (2a) and (2b) by reductions to the assumed hardness of
DDH. We show (2c) by an attack, a description of an explicit PT adversary that, with probability
one, violates SND-P for DΠ0.

Penalty or exclusion? The lack of transference of SND-P is more than an intellectual curiosity;
it inhibits applicability. We consider building digital signatures from NIZKs, a canonical application
that originates in [BG90], and, with [CDG+17], is seeing renewed interest as a way to obtain efficient
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post-quantum signatures. We look closely at the proof to see that while SND-P suffices, SND-E
does not appear to do so. This phenomenon seems fairly general: applications of NIZKs that rely
on soundness seem to need SND-P, not SND-E.

Transference framework. We turn to positive results, proving that certain (important) prop-
erties P do transfer. We could give such proofs individually for different choices P, but this has a
few drawbacks. First, proofs which at heart are very similar will be repeated. Second, proofs will
be needed again for new or further property variants that we do not consider. Most important,
however, from our perspective, ad hoc proofs fail to yield theoretical understanding; exactly what
about a property allows it to transfer?

To address this we give a framework to obtain positive transference results. The intent is
to formalize the above-described transference intuition. We start with a definition, of an object,
denoted PS, that we call a property specification PS. While the game defining P would typically
pick crs by running Π.C, the corresponding property specification sees the game output (result, win
or not, of executing the game with an adversary) as a function of crs, effectively pulling the latter
out of the game. We then give a general result (Theorem 5.2, the Transfer Theorem) saying that
property specifications transfer successfully as long as they are polynomial time.

To apply this to show transference of a particular property P, we must specify the corresponding
property specification PS and show that it is polynomial time. We do it for SND-E, zero-knowledge,
witness indistinguishability and extractability to conclude that all these properties transfer success-
fully. (A property specification can be given for SND-P, but it is not polynomial time.)

Discussion and related work. It is valuable, for applications, to have proof systems satisfying
SND-P. The dual-system framework does not automatically provide this for its induced proof
systems, because these properties do not transfer. This does not, however, say whether or not the
induced proof systems have these properties for particular dual-mode systems in the literature. For
example, does the PZK mode of the [GOS06b] system satisfy SND-P? We have found neither an
attack to show it does not, nor a proof to show it does, and consider this an interesting question
to settle.

Broadly, our work calls for care in using dual-mode systems in applications. One needs to
check that the mode one is using has the desired properties, rather than expect that they arrive by
transference. Our Transfer Theorem can help with such checks.

In our Theorem 4.4 counter-example showing that SND-P does not transfer, the relation R is
CRS-dependent. To settle, by proof or counter-example, whether SND-P transfers for relations
that are not CRS-dependent, is an interesting open question.

Abe and Fehr (AF) [AF07] show that if Π is statistical ZK for an NP-complete relation for R
then it is unlikely that it can be proven SND-P via a certain restricted type of blackbox reduction
to what they call a standard decision problem. Now suppose DΠ is a dual-mode system for R such
that DΠ1 satisfies statistical ZK and DΠ0 satisfies SND-P. Then the AF result says that, if mode
indistinguishability is proven via a blackbox reduction to a standard decision problem, then one
will be unlikely to be able to give a blackbox proof that SND-P transfers to DΠ1. This however
does not rule out transference altogether; it rules out proving it in certain limited ways. (Possibly
transference could be shown via non-black box reductions, or assumptions that are not standard
decision problems.) In comparison, our Theorem 4.4 gives an example where transference not only
cannot be proven, but demonstrably fails.

In Appendix E, we survey related work in detail, discussing different models, and different
definitions of soundness, in the literature.
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Game Gcdh
GG,λ

Init():

1 (p,G, g)←$ GG(1λ)

2 a, b←$ Zp
3 Return (p,G, g, ga, gb)
Fin(C):

4 Return (C = gab)

Game Gddh
GG,λ

Init():

1 (p,G, g)←$ GG(1λ) ; d←$ {0, 1} ; a, b, c←$ Zp
2 If (d = 1) then C ← gab else C ← gc

3 Return (p,G, g, ga, gb, C)

Fin(d′):

4 Return (d′ = d)

Figure 2: Games defining the CDH and DDH assumptions for GG.

2 Preliminaries

Notation. If w is a vector then |w| is its length (the number of its coordinates) and w[i] is its i-th
coordinate. Strings are identified with vectors over {0, 1}, so that |Z| denotes the length of a string
Z and Z[i] denotes its i-th bit. By ε we denote the empty string or vector. By x‖y we denote the
concatenation of strings x, y. If x, y are equal-length strings then x⊕y denotes their bitwise xor. If
S is a finite set, then |S| denotes it size.

If X is a finite set, we let x←$ X denote picking an element of X uniformly at random and
assigning it to x. Algorithms may be randomized unless otherwise indicated. If A is an algorithm,
we let y ← AO1,...(x1, . . . ;ω) denote running A on inputs x1, . . . and coins ω, with oracle access
to O1, . . ., and assigning the output to y. By y←$AO1,...(x1, . . .) we denote picking ω at random
and letting y ← AO1,...(x1, . . . ;ω). We let [AO1,...(x1, . . .)] denote the set of all possible outputs
of A when run on inputs x1, . . . and with oracle access to O1, . . .. An adversary is an algorithm.
Running time is worst case, which for an algorithm with access to oracles means across all possible
replies from the oracles. We use ⊥ (bot) as a special symbol to denote rejection, and it is assumed
to not be in {0, 1}∗.

A function ν : N → N is negligible if for every positive polynomial p : N → R there is a λp ∈ N
such that ν(λ) ≤ 1/p(λ) for all λ ≥ λp. “PT” stands for “polynomial time.” By 1λ we denote the
unary representation of the integer security parameter λ ∈ N.

Games. We use the code-based game-playing framework of BR [BR06]. A game G (see Figure 2 for
examples) starts with an optional Init procedure, followed by a non-negative number of additional
procedures, and ends with a Fin procedure. Execution of adversary A with game G consists of
running A with oracle access to the game procedures (which accordingly are also called oracles),
with the restrictions that A’s first call must be to Init (if present), its last call must be to Fin,
and it can call these two procedures at most once each. The output of the execution is the output
of Fin. By Pr[G(A)⇒ y] we denote the probability that the execution of game G with adversary
A results in this output being y, and write just Pr[G(A)] for the probability that the execution of
game G with adversary A results in the output of the execution being the boolean true.

Note that our adversaries have no input or output. The role of what in other treatments is the
adversary input is, for us, played by the response to the Init query, and the role of what in other
treatments is the adversary output is, for us, played by the query to Fin.

Different games may have procedures (oracles) with the same names. If we need to disambiguate,
we may write G.O to refer to oracle O of game G.

In games, integer variables, set variables, boolean variables and string variables are assumed
initialized, respectively, to 0, the empty set ∅, the boolean false and ⊥.
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CDH and DDH assumptions. A group generator GG is a PT algorithm that takes as input a
security parameter 1λ and outputs a triple (p,G, g)←$ GG(1λ) consisting of a prime p, (a description
of) a group G of order p and a generator g ∈ G \ {1G} of G. We recall the Computational Diffie-
Hellman (CDH) and Decisional Diffie-Hellman (DDH) problems associated to GG via the games in
Figure 2. We define Advcdh

GG,λ(A) = Pr[Gcdh
GG,λ(A)] to be the cdh-advantage of an adversary A. The

CDH problem is hard for GG, or the CDH assumption holds for GG, if for every PT adversary A
the function λ 7→ Advcdh

GG,λ(A) is negligible. We define Advddh
GG,λ(A) = 2 Pr[Gddh

GG,λ(A)] − 1 to be
the ddh-advantage of an adversary A. The DDH problem is hard for GG, or the DDH assumption
holds for GG, if for every PT adversary A the function λ 7→ Advddh

GG,λ(A) is negligible.

3 Proof systems and Dual Mode proof systems

A proof system provides a way for one party (the prover) to prove some “claim” to another party
(the verifier). A claim pertains to membership of an instance x in an NP language, the latter
defined by an NP relation R.

NP relations. Following [Gro06], and to cover existing proof systems, we allow the relation to
depend on the CRS. Thus a relation is a function R : {0, 1}∗ × {0, 1}∗ × {0, 1}∗ → {true, false}
that takes the CRS crs, a instance x and a candidate witness w to return either true (saying w
is a valid witness establishing the claim) or false (the witness fails to validate the claim). For
crs, x ∈ {0, 1}∗ we let R(crs, x) = {w : R(crs, x, w) = true } be the witness set of x. R is said to
be an NP relation if it is PT and there is a polynomial R.wl : N→ N called the maximum witness
length such that every w in R(crs, x) has length at most R.wl(|crs|+ |x|) for all x ∈ {0, 1}∗. We let
LR(crs) = {x : R(crs, x) 6= ∅ } be the language associated to R and crs.

Proof systems. A proof system is the name of the syntax for the primitive that enables the
production and verification of such proofs, in the classical, single-mode sense. Soundness, zero-
knowledge and many other things will be security properties for such (single-mode) proof systems.
We give a general, unified syntax that allows us to recover, as special cases, various models such as
the common reference/random string (CRS) models [BFM88, BDSMP91, Dam00, FF00, Ps05], the
designated-verifier (DV) model [ES02, PsV06, DFN06], the designated-prover (DP) model [KW18,
KNYY19], and the preprocessing (PP) model [DMP90]. (Further discussion and history of these
models is provided in Appendix E.) Now proceeding formally, a proof system Π specifies the fol-
lowing PT algorithms:

- CRS generation. Via (crs, td, kP, kV)←$ Π.C(1λ), the crs-generation algorithm Π.C takes the
(unary representation of the) security parameter and returns an output crs called the common
reference string, a trapdoor td, a proving key kP and a verification key kV.

- Proof generation. Via pf ←$ Π.P(1λ, crs, kP, x, w) the proof generation algorithm Π.P takes the
unary security parameter, crs, a prover key kP, an instance x and a witness w to produce a
proof string.

- Proof verification. Via d← Π.V(1λ, crs, kV, x,pf) the deterministic proof verification algorithm
Π.V produces a decision d ∈ {true, false} indicating whether or not it considers pf valid.

We say that Π satisfies completeness for relation R if Π.V(1λ, crs, kV, x,pf) = true for all λ ∈ N, all
(crs, td, kP, kV) ∈ [Π.C(1λ)], , all x ∈ LR(crs), all w ∈ R(crs, x) and all pf ∈ [Π.P(1λ, crs, kP, x, w))].
This required completeness is perfect, but this can be relaxed if necessary.

Recovering the different models within our syntax. The common reference string model
(or CRS model) is the special case of our syntax in which Π.C always sets both the proving key
and verification key to the empty string, kP = kV = ε. In some constructions [PsV06, ES02], the
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Game Gmode
DΠ,λ

Init():

1 b←$ {0, 1}
2 (crs, td, kP, kV)←$ DΠ.C(1λ, b)

3 Return (1λ, crs, kP, kV)

Fin(b′):

4 Return (b′ = b)

Games Gsnd-p
Π,R,λ / Gsnd-e

Π,R,λ

Init():

1 (crs, td, kP, kV)←$ Π.C(1λ)

2 Return (1λ, crs, kP)

Vf(x,pf):

3 d← Π.V(1λ, crs, kV, x, pf)

4 If (x ∈ LR(crs)) then

5 bad← true ; Return d

6 If (d) then win← true

7 Return d

Fin():

8 Return win

Figure 3: Left: Game defining mode indistinguishability for a dual-mode proof system DΠ. Right: Games
defining SND-P and SND-E soundness of proof system Π for relation R.

verification key is dependent on both the crs and the trapdoor td, while in other constructions
[QRW19, LQR+19, LPWW20] it is dependent only on the crs. This distinction can be captured
as a condition on Π.C. The designated prover (DP) model corresponds to Π.C always setting the
verification key to the empty string, kV = ε. The preprocessing (PP) model is captured by our
syntax with no further restrictions. Here, the proving and verification keys may be dependent on
the crs [KNYY19], or it might even be that the crs and td are set to the empty string and the keys
do not depend on these parameters [KW18], all of which can be captured as conditions on Π.C.

Dual-mode systems. We define a dual-mode proof system DΠ as also specifying a PT CRS
generation algorithm DΠ.C, a PT proof generation algorithm DΠ.P and a PT deterministic proof
verification algorithm DΠ.V. The syntax of the last two is identical to that in a proof system as
defined above. The difference is the CRS generator DΠ.C, which now (in addition to 1λ) takes an
input µ ∈ {0, 1} called the mode, and returns a tuple (crs, td, kP, kV), as before.

For the common reference string model, the security requirement for a dual-mode proof sys-
tem would be that the common reference strings created in the two modes are computationally
indistinguishable. We suggest and introduce a generalization to our broader syntax, asking that
the common reference strings and the proving and verification keys created in the two modes are
indistinguishable. We call this mode indistinguishability. To formalize this, consider game Gmode

DΠ,λ

of Figure 3 associated to dual-mode proof system DΠ, and let the mode advantage of adversary A
be defined by Advmode

DΠ,λ(A) = 2 Pr[Gmode
DΠ,λ(A)]− 1. Mode indistinguishability asks that for all PT

adversaries A, the function λ 7→ Advmode
DΠ,λ(A) is negligible.

A dual-mode proof system DΠ gives rise to two (standard) proof systems that we call the
proof systems induced by DΠ and denote DΠ1 and DΠ0. Their proof generation and verification
algorithms are those of DΠ, meaning DΠµ.P = DΠ.P and DΠµ.V = DΠ.V, for both µ ∈ {0, 1}. The
difference between the two proof systems is in their CRS generation algorithms. Namely DΠµ.C is

defined by: (crs, td, kP, kV)←$ DΠ.C(1λ, µ); Return (crs, td, kP, kV).

Comparison with prior notions. Unlike prior definitions [AFH+16, HU19, LPWW20], we do
not tie to DΠ, or mandate for it, any properties like soundness or ZK. These properties are defined
(only) for (single-mode) proof systems. Accordingly, we can talk about whether or not the induced
proof systems meet them. This allows us to decouple the core dual-mode concept from particular
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properties.

Our definition of mode indistinguishability asks that (crs, kP, kV) be indistinguishable across the
two modes, while prior definitions asked only that crs be indistinguishable across the modes. For the
cases where dual-mode systems have been defined in the past, the two coincide. This is clearly true
for the common reference string model, since here kP, kV are ε. For the designated-verifier setting
of [LPWW20], our definition may at first seem different, but it isn’t, because in [LPWW20], kV

is determined from crs by a key-generation algorithm, and doesn’t depend on the trapdoor. (And
meanwhile, kP = ε.) A distinguisher can thus compute kP, kV from crs, making our definition
equivalent to that of [LPWW20] in this case. The case where our definition is different from asking
just for crs indistinguishability is when kP, kV depend on the coins underlying crs, td. Dual-mode
systems for this setting, however, do not seem to have been defined prior to our work.

4 A study in soundness

We study soundness transference, showing that whether or not it holds depends on exactly how
soundness is defined. We start thus with definitions.

SND-E and SND-P soundness. Soundness for a relation R asks that it be hard to create a valid
proof for x 6∈ LR(crs). We consider two ways to define this, namely the penalty style (SND-P)
and the exclusion style (SND-E). These two styles, and their issues, were first formally considered
in [BHK15] in the context of IND-CCA public-key encryption and KEMs. In the penalty style the
adversary is penalized by the game when it submits a verification query where the claim is in the
language, the game testing this and not allowing it to win in this case. In the exclusion style, the
adversary is simply prohibited from making queries with claims in the language, meaning a claim
of SND-E security quantifies only over the sub-class of adversaries that never make such queries
(or make them with negligible probability).

Consider the games in Figure 3. A verification oracle Vf is used to cover the designated-verifier
setting. Game Gsnd-p

Π,R,λ includes the boxed code, so that when the adversary submits x ∈ LR(crs)
to Vf, the oracle returns the output of the verification algorithm on the query without setting
the win flag. Otherwise, the game returns the decision taken by Π.V based on the instance x
(now known not to be in LR(crs)) and proof pf provided by the adversary, and only sets win if
the verifier algorithm returns true in this case. From the transference perspective, the relevant
fact is that the membership test will usually not be PT. We let Advsnd-p

Π,R,λ(A) = Pr[Gsnd-p
Π,R,λ(A)]

be the sndp-advantage of A. We say that Π is computational SND-P for R if for all PT A the
function λ 7→ Advsnd-p

Π,R,λ(A) is negligible; statistical SND-P if for all A, regardless of running time,
the function λ 7→ Advsnd-p

Π,R,λ(A) is negligible; perfect SND-P if for all A, regardless of running time,
Advsnd-p

Π,R,λ(A) = 0. Saying just that Π is SND-P means it could be any of the three, meaning the
default assumption is computational.

Game Gsnd-e
Π,R,λ excludes the boxed code. If the adversary submits x ∈ LR(crs) to Vf, the game

sets the flag bad but does nothing beyond that, so that, regardless of whether or not x is in LR(crs),
line 6 says that the adversary wins if the verifier decision d computed at line 3 is true. (Winning
by submitting x ∈ LR(crs) is excluded, not by the game, but by the restriction to membership
conscious adversaries discussed below.) The benefit, from the transference perspective, is that the
check is now PT. We let Advsnd-e

Π,R,λ(A) = Pr[Gsnd-e
Π,R,λ(A)] be the snde-advantage of A.

The flag bad does not influence the game outcome. It is there to allow us to make the following
definition: We say that an adversary A is membership conscious if the function λ 7→ Pr[Gsnd-e

Π,R,λ(A)
sets bad] is negligible. Now we say that Π is computational SND-E for R if for all PT, membership-
conscious A the function λ 7→ Advsnd-e

Π,R,λ(A) is negligible; statistical SND-E if for all membership-
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conscious A, regardless of running time, the function λ 7→ Advsnd-e
Π,R,λ(A) is negligible; perfect SND-E

if for all membership-conscious A, regardless of running time, Advsnd-e
Π,R,λ(A) = 0. Saying just that

Π is SND-E means it could be any of the three, meaning the default assumption is computational.
In SND-E, there is no check as to whether or not the adversary is membership conscious. The

quantification is simply restricted to ones that are.

Relations between definitions. To better understand the differences between the notions, we
briefly study some relations between them. The following says that SND-P always implies SND-E:

Proposition 4.1 Let Π be a proof system and R a relation. If Π is computational (respectively
statistical, perfect) SND-P then it is also computational (respectively statistical, perfect) SND-E.

The proof is simple. Let A be a membership-conscious adversary A that wins the SND-E game,
violating SND-E. Then it also wins the SND-P game. (Its advantage as measured in the SND-P
game can only be less than its advantage as measured in the SND-E game by a negligible amount.)
And since SND-P quantifies over all PT adversaries (whether membership conscious or not), we
have an adversary violating SND-P.

Another observation is that an unbounded adversary can check membership in the language.
Due to this, the two formulations of soundness coincide in the statistical and perfect cases:

Proposition 4.2 Let Π be a proof system and R a relation. Then (1) Π is statistically SND-P for
R iff it is statistically SND-E for R, and (2) Π is perfectly SND-P for R iff it is perfectly SND-E
for R.

The interesting case is the computational one. Here the two definitions do not coincide. We defer
the proof of the following to Appendix A.

Proposition 4.3 Assume there exists a group generator relative to which DDH is hard. Then there
exists a proof system Π and relation R such that (1) Π is SND-E for R but (2) Π is not SND-P for
R.

We will see in Section 6 that SND-P is what works for applications, SND-E being too weak. Thus,
it is desirable that SND-P transfer. Unfortunately, we show below that, in general, it does not.
Later, we will show that SND-E does, however, transfer.

Non-transference of SND-P. We give a counter-example to show that SND-P does not, in
general, transfer. The counter-example constructs an explicit relation R and dual-mode proof
system DΠ such that DΠ satisfies mode indistinguishability and SND-P holds in mode 1, but we
can give an attack showing it does not hold in mode 0. DΠ is a conventional (common reference
string model) system, meaning kP = kV = ε, which means the result holds also in the designated
verifier and prover settings. The proof of the following theorem, via a counter-example, is in
Appendix B.

Theorem 4.4 Assume there exists a group generator relative to which DDH is hard. Then there
exists a dual-mode proof system DΠ and relation R such that (1) DΠ satisfies mode indistinguisha-
bility and (2) DΠ1 satisfies SND-P for R, but (3) DΠ0 does not satisfy SND-P for R.

In Theorem 4.4, the SND-P in mode-1 is computational, not statistical or perfect. A good question
is, if mode-1 has statistical or perfect SND-P, then does it transfer, meaning does mode-0 have
computational SND-P? The difficulty of proving the answer is “yes” remains, namely that the PT
mode-indistinguishability adversary still has to test membership in the language, which may not
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be PT. We do not see a way in which stronger SND-P in mode-1 helps the transfer. But, for this
case, neither do we have a counter-example.

In Theorem 4.4, the relation R depends on the CRS. An interesting open question is whether
one can prove a similar negative result for a relation which does not depend on the CRS.

5 Transference framework and positive results

Let DΠ be a dual-mode proof system satisfying mode indistinguishability. Recall we say that a
“property” P (for example, zero-knowledge, soundness, extractability) transfers, if, for any µ ∈
{0, 1}, we have: If DΠµ satisfies P then DΠ1−µ satisfies the computational counterpart of P. In this
Section we want to give positive results, showing some properties P do transfer.

We could try to do this exhaustively for target properties P1,P2, . . .: prove P1 transfers; then
prove P2 transfers; and so on. This ad hoc approach has several drawbacks. First, proofs which
at heart are very similar will be repeated. Second, proofs will be needed again for new or further
properties that we do not consider. (Counting definitional variants in the literature, the number of
properties of interest, namely the length of the list above, is rather large.) Third, we’d like a better
theoretical understanding of what exactly are the attributes of a property that allow transference.

To address this, we give a framework to obtain positive transference results. We start by
formalizing what we call a property specification PS. While the game defining P will pick the
CRS and the proving and verification keys by running the CRS generator, PS will aim to see the
adversary advantage in this game as a function of an external choice of CRS and keys, effectively
pulling the choice of CRS and keys out of the game. We will then give a general result (the Transfer
Theorem) saying that polynomial-time property specifications transfer successfully. To apply this
to get a positive transfer result for some property P of interest, one then has to show that P can be
captured by a polynomial time property specification PS. We will illustrate such applications by
providing PS explicitly for a few choices of P. It will soon be easy to just look at the game defining
P and see from it whether or not P can be cast as a polynomial-time PS, making it simple to see
which properties transfer successfully.

When the property specification PS is not polynomial time, our Transfer Theorem does not
apply. This does not necessarily mean the property fails to transfer, but is an indication in that
direction. To show that a particular (non polynomial-time) property P fails to transfer, one can
give a counter-example, as with Theorem 4.4.

Property specifications. A property specification PS is a function that, given a proof system
Π, returns a triple ( PS.StI, PS[Π.P,Π.V].Or, PS.type ). The first component PS.StI is an algorithm
that we refer to as the state initializer, and, as the notation indicates, it does not depend on Π.
The second component PS[Π.P,Π.V].Or is an algorithm that we refer to as the oracle responder.
We require that it invokes the prover and verifier algorithms of Π as oracles, so that if two proof
systems have the same prover and verifier algorithms, the corresponding oracle responders are
identical. The final component PS.type ∈ {dec, ser} is a keyword (formally, just a bit), indicating
the type of problem, decision or search.

The state initializer takes the unary security parameter and a tuple (crs, kP, kV) ∈ [Π.C(1λ)]
to return an initial state, st ←$ PS.StI(1λ, crs, kP, kV). Then, given a string Oname ∈ PS.ONames
⊆ {0, 1}∗ called an oracle name, another string Oarg called an oracle argument, and also given a
current state st , the oracle responder returns a pair (Orsp, st)←$ PS[Π.P,Π.V].Or(Oname,Oarg,
st) consisting of an oracle response Orsp and an updated state. The finite set of oracle names
PS.ONames (also defined by PS but not allowed to depend on Π) must contain the special name
Fin, and it must be that the response Orsp is in the set {true, false} whenever (Orsp, st)←$
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PS[Π].Outcrs,kPkV,λ(A)

st ←$ PS.StI(1λ, crs, kP, kV)
Run AOr

Return out

Oracle Or(Oname,Oarg) // Oname ∈ PS.ONames

(Orsp, st)←$ PS[Π.P,Π.V].Or(Oname,Oarg, st)
If ((Oname = Fin) and (out = ⊥)) then

out ← Orsp
Return Orsp

Figure 4: Description of the execution of PS with a proof system Π, security parameter λ, input (crs, kP, kV)
∈ [Π.C(1λ)] and an adversary A.

PS[Π.P,Π.V].Or(Fin,Oarg, st).

A property specification PS is said to be polynomial time (PT) if for every proof system Π
there is a polynomial p such that algorithms PS.StI and PS[Π.P,Π.V].Or run in time bounded by p
applied to the lengths of their inputs.

We can run PS with a proof system Π, security parameter λ, input (crs, kP, kV) ∈ [Π.C(1λ)]
and an adversary A to get a boolean output, which is denoted PS[Π].Outcrs,λ(A). This output is
determined by the process on the left in Figure 4, the right showing the oracle provided to A. In
the figure, the execution initializes the state to st ← PS.StI(1λ, crs, kP, kV). Then it runs A with
access to the oracle Or shown on the right. Given the string naming an oracle, and an argument
for it, Or provides the response as defined by PS[Π.P,Π.V].Or. The first time the oracle named
Fin is called, the computed response is retained as out , and the latter becomes the output of the
execution, namely the value returned as PS[Π].Outcrs,kP,kV,λ(A). We define the ps-advantage of A,
depending on whether it is a search or decision problem, via

Advps
PS[Π],λ(A) = Pr

[
PS[Π].Outcrs,kP,kV,λ(A) : (crs, kP, kV)←$ Π.C(1λ)

]
if PS.type = ser, and

Advps
PS[Π],λ(A) = 2 · Pr

[
PS[Π].Outcrs,kP,kV,λ(A) : (crs, kP, kV)←$ Π.C(1λ)

]
− 1

if PS.type = dec. Here Pr
[
PS[Π].Outcrs,kP,kV,λ(A) : (crs, kP, kV)←$ Π.C(1λ)

]
is the probability

that the output of the property specification is true when the CRS and proving and verification keys
are chosen at random according to Π.C. We say that Π satisfies PS for a class (set) of adversaries
Aps

PS if for every adversary A ∈ Aps
PS, the function λ 7→ Advps

PS[Π],λ(A) is negligible. Parameterizing
the definition by a class of adversaries allows us to cover restrictions like membership-consciousness,
and to capture computational and statistical variants of a property.

The SND-E and SND-P property specifications. We pause to illustrate property specifica-
tions by an example before providing the Transfer Theorem. We describe the property specifications
PSsnde

R and PSsndp
R corresponding to the SND-E and SND-P properties for R, respectively, in Fig-

ure 5. The state initializer algorithms are the same for both, setting the initial state st to the
crs, proving key and verification key they are given as input, together with the security parameter.
The oracle responder algorithms differ only at line 6, which is included for SND-P and excluded
for SND-E. To each of the oracles Init,Vf,Fin in the games of Figure 3, we associate a string
naming it, these being Init,Vf,Fin, respectively, so that PSsnde

R .ONames = PSsndp
R .ONames = {Init,

Vf,Fin}. Passing the name of an oracle, and arguments for it, to the oracle responder, results in
the response of that oracle being returned. (Also returned is the state, which is updated here, but

may not be in other property specifications.) The problem type is PSsnde
R .type = PSsndp

R .type = ser,
meaning both are search problems. As this shows, there is a quite direct connection between the
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State initializer PSsndp
R .StI(1λ, crs, kP, kV) / PSsnde

R .StI(1λ, crs, kP, kV):

1 st ← (1λ, crs, kP, kV, false) ; Return st

PSsndp
R [Π.P,Π.V].Or(Oname,Oarg, st) / PSsnde

R [Π.P,Π.V].Or(Oname,Oarg, st):

2 (1λ, crs, kP, kV,win)← st

3 If (Oname = Init) then return ((1λ, crs, kP), st)

4 If (Oname = Vf) then

5 (x,pf)← Oarg

6 If (x ∈ LR(crs)) then return (Π.V(1λ, crs, kV, x, pf), st)

7 If (Π.V(1λ, crs, kV, x, pf)) then win← true ; st ← (1λ, crs, kP, kV,win)

8 Return (Π.V(1λ, crs, kV, x, pf), st)

9 If (Oname = Fin) then return (win, st)

Figure 5: Algorithms associated by the SND-P property specification PSsndp
R and the SND-E property

specification PSsnde
R to proof system Π, where R is an NP-relation. The boxed code is only included in the

SND-P specification.

games and the property specification, the key difference being that the latter has the CRS as input
while the former picks it internally.

We connect the actual properties with their formal property specifications via the following,
which says that, for x ∈ {e, p}, the sndx-advantage is identical to the corresponding ps-advantage.

Proposition 5.1 Let R be an NP-relation, Π a proof system and A an adversary. Then for all
λ ∈ N we have:

Advsnd-e
Π,R,λ(A) = Advps

PSsnde
R [Π],λ

(A) and Advsnd-p
Π,R,λ(A) = Advps

PSsndp
R [Π],λ

(A) .

In the case of SND-E, Proposition 5.1 does not restrict to membership conscious adversaries, even
though these are the ones of eventual interest; the claim of the Proposition is true for all adversaries.

The key difference between the two property specifications is in their running time. Property
specification PSsnde

R is polynomial time. But property specification PSsndp
R is only polynomial time

if testing membership of x in LR(crs) can be done in time polynomial in the lengths of x and crs,
which, for relations of interest, is usually not the case. Our Transfer Theorem applies to PSsnde

R

but, due to its not in general being polynomial time, not to PSsndp
R .

Transfer theorem. We are now ready to state the Transfer Theorem. Refer above for what it
means for a proof system Π to satisfy a property specification PS for a class of adversaries Aps

PS.
The following says that when this is true in one mode of a dual-mode proof system DΠ, then
its computational counterpart is true in the other mode. Below, we let APT be the class of all
polynomial-time adversaries; the intersection of Aps

PS with APT in the conclusion of the Theorem
captures that the transferred property is the computational counterpart of the original one. The
proof is in Appendix C.

Theorem 5.2 Let DΠ be a dual-mode proof system that is mode indistinguishable. Let µ ∈ {0, 1}.
Let PS be a polynomial-time property specification. Assume DΠµ satisfies PS for a class of adver-
saries Aps

PS. Then DΠ1−µ satisfies PS for the class of adversaries Aps
PS ∩ A

PT.

Transference of SND-E. We can apply this to conclude transference of SND-E as follows.
Let Asnde be the class of membership-conscious, PT adversaries. (Restricting, here, to PT only
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Game Gzk
Π,R,S,λ

Init():

1 (crs1, td1, kP, kV1)←$ Π.C(1λ)

2 (crs0, td0, kV0)←$ S.C(1λ)

3 b←$ {0, 1} ; crs← crsb ; kV ← kVb

4 Return (1λ, crs, kV)

Pf(x,w):

5 If (¬R(crs, x, w)) then return ⊥
6 If (b = 1) then

7 pf←$ Π.P(1λ, crs, kP, x, w)

8 Else pf←$ S.P(1λ, crs, kV, td0, x)

9 Return pf

Fin(b′):

10 Return (b′ = b)

State initializer PSzk
R,S.StI(1λ, crs, kP, kV):

1 b←$ {0, 1}
2 If (b = 0) then (crs, td, kV)←$ S.C(1λ)

3 st ← (1λ, crs, td, kP, kV, b) ; Return st

PSzk
R,S[Π.P,Π.V].Or(Oname,Oarg, st):

4 (1λ, crs, td, kP, kV, b)← st

5 If (Oname = Init) then

6 return (crs, kV, st)

7 If (Oname = Pf) then

8 (x,w)← Oarg

9 If (¬R(crs, x, w)) then

10 return (⊥, st)
11 If (b = 1) then

12 pf←$ Π.P(1λ, crs, kP, x, w)

13 Else pf←$ S.P(1λ, crs, kV, td, x)

14 Return (pf, st)

15 If (Oname = Fin) then

16 b′ ← Oarg ; Return ((b = b′), st)

Figure 6: Left: Game defining zero-knowledge (relative to simulator S) for proof system Π. Right: The state
initializer and oracle responder algorithms associated by the ZK property specification PSzk

R,S to proof system
Π, where R is an NP-relation and S is a simulator.

strengthens the result.) Let PS be PSsnde
R . Then combining Theorem 5.2 with Proposition 5.1 says

that if DΠµ is SND-E then so is DΠ1−µ.

This is however a simple case. For ZK, the property specification definition is more delicate,
and some work will be needed to check that it obeys the conditions required by the definition of a
property specification.

We now turn to establishing transference for other properties. We will give their definitions,
and the property specifications, side by side.

Zero knowledge. The property specification allowing showing transference for ZK is more inter-
esting, in part because it is a decision problem.

We formalize what is usually called adaptive zero knowledge, as the form most useful for ap-
plications. A simulator S specifies a PT algorithm S.C (the simulation CRS-generator) and a PT
algorithm S.P (the simulation proof-generator). Consider game Gzk

Π,R,S,λ specified in Figure 6. ZK-
adversary A can adaptively request proofs by supplying an instance and a valid witness for it. The
proof is produced either by the honest prover using the witness, or by the proof simulator S.P using
a simulation trapdoor td0. The adversary outputs a guess b′ as to whether the proofs were real or
simulated. Let Advzk

Π,R,S,λ(A) = 2 Pr[Gzk
Π,R,S,λ(A)]− 1 be its zk-advantage relative to S.

We say that Π is computational ZK for R if there exists a simulator S such that for all PT A the
function λ 7→ Advzk

Π,R,S,λ(A) is negligible; statistical ZK for R if there exists a simulator S such that
for all A, regardless of running time, the function λ 7→ Advzk

Π,R,S,λ(A) is negligible; and perfect ZK
for R if there exists a simulator S such that for all A, regardless of running time, Advzk

Π,R,S,λ(A) = 0.
Saying just that Π is ZK means it could be any of the three, meaning the default assumption is
computational.

We describe the property specification PSzk
R,S corresponding to the ZK property for relation R
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Game Gwi
Π,R,λ

Init():

1 (crs, td, kP, kV)←$ Π.C(1λ)

2 b←$ {0, 1}
3 Return (1λ, crs, kV)

Pf(x,w0, w1):

4 d0 ← R(crs, x, w0))

5 d1 ← R(crs, x, w1)

6 If (¬d0 or ¬d1) then return ⊥
7 pf←$ Π.P(1λ, crs, kP, x, wb)

8 Return pf

Fin(b′):

9 Return (b′ = b)

State initializer PSwi
R .StI(1λ, crs, kP, kV):

1 b←$ {0, 1} ; st ← (1λ, crs, kP, kV, b)

2 Return st

PSwi
R [Π.P,Π.V].Or(Oname,Oarg, st):

3 (1λ, crs, kP, kV, b)← st

4 If (Oname = Init) then return (crs, kV, st)

5 If (Oname = Pf) then

6 (x,w0, w1)← Oarg

7 If (¬R(crs, x, w0) or ¬R(crs, x, w1)) then

8 Return (⊥, st)
9 pf←$ Π.P(1λ, crs, kP, x, wb)

10 Return (pf, st)

11 If (Oname = Fin) then

12 b′ ← Oarg ; Return ((b = b′), st)

Figure 7: Left: Games defining witness indistinguishability of proof system Π. Right: The state initializer
and oracle responder algorithms associated by the WI property specification PSwi

R to proof system Π, where
R is an NP-relation.

and simulator S. Figure 6 shows the algorithms that it associates to a given proof system Π. While
game Gzk

Π,R,S of Figure 6 picks the CRS and the proving and verification keys via Π.C when b = 1,
state initializer PSzk

R,S.StI takes the CRS and the proving and verification keys as input and sets this
CRS as the CRS when b = 1. If b = 0, this CRS is overwritten at line 2. The state is the 6-tuple
at line 4. To each oracle Init,Pf,Fin in game Gzk

Π,R,S we associate a string naming it, these being
Init,Pf,Fin, respectively, so that PSzk

R,S.ONames = {Init,Pf,Fin}. Passing the name of an oracle,
and arguments for it, to PSzk

R,S[Π.P,Π.V].Or, results in the response of that oracle being returned.
(Also returned is the state, which here is not updated, but may be in other property specifications.)
The type is PSzk

R,S.type = dec, meaning this is a decision problem.

To connect the ZK property with the property specification PSzk
R,S, we see that the zk-advantage

is identical to the ps-advantage:

Proposition 5.3 Let R be an NP-relation, S a simulator, Π a proof system and A an adversary.
Then for all λ ∈ N we have:

Advzk
Π,R,S,λ(A) = Advps

PSzk
R,S[Π],λ

(A) .

From Figure 6, one can see that the ZK property specification PSzk
R,S is polynomial time. Combining

Theorem 5.2 with Proposition 5.3 thus says that the ZK property transfers.

Witness indistinguishability. This asks that, knowing x ∈ LR(crs) and knowing two witnesses
w0, w1 ∈ R(crs, x), it is hard to tell under which of the two a proof has been computed [FS90].
Consider game Gwi

Π,R,λ specified in Figure 7. Let Advwi
Π,R,λ(A) = 2 Pr[Gwi

Π,R,λ(A)]− 1. We say that
Π is computational WI for R if for all PT A the function λ 7→ Advwi

Π,R,λ(A) is negligible; statistical
WI if for all A, regardless of running time, the function λ 7→ Advwi

Π,R,λ(A) is negligible; perfect WI
if for all A, regardless of running time, λ 7→ Advwi

Π,R,λ(A) = 0. Saying just that Π is WI means it
could be any of the three, meaning the default assumption is computational.

We describe the algorithms of the property specification PSwi
R corresponding to the WI property

for the relation R in Figure 7. The type is PSwi
R .type = dec, meaning it is a decision problem.
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Game Gxt
Π,R,S,λ

Init():

1 (crs, td, kP, kV)←$ S.C(1λ)

2 Return (1λ, crs, kP)

Vf(x,pf):

3 Return Π.V(1λ, crs, kV, x, pf)

Fin(x,pf):

4 If (¬Π.V(1λ, crs, kV, x, pf)) then

5 return false

6 w←$ S.X(1λ, crs, td, x, pf)

7 Return ¬R(crs, x, w)

State initializer PSxt
R,S.StI(1λ, crs, kP, kV):

1 (crs′, td, k′P, k
′
V)←$ S.C(1λ)

2 st ← (1λ, crs′, td, k′P, k
′
V) ; Return st

PSxt
R,S[Π.P,Π.V].Or(Oname,Oarg, st):

3 (1λ, crs, td, kP, kV)← st

4 If (Oname = Init) then

5 Return ((1λ, crs, kP), st)

6 If (Oname = Vf) then

7 Return Π.V(1λ, crs, kV, x, pf)

8 If (Oname = Fin) then

9 (x,pf)← Oarg

10 If (Π.V(1λ, crs, kV, x, pf) = false) then

11 Return false

12 w←$ S.X(1λ, crs, td, x, pf)

13 Return ((R(crs, x, w) = false), st)

Figure 8: Left: Game defining XT extractability of a proof system Π for a relation R. Right: The state
initializer and oracle responder algorithms associated by the XT property specification PSxt

R,S[Π] to proof
system Π, where R is an NP-relation and S is a simulator.

Connecting the WI property with its property specification PSwi
R , we claim that the wi-advantage

is identical to the ps-advantage.

Proposition 5.4 Let R be an NP-relation, Π a proof system and A an adversary. Then for all
λ ∈ N we have:

Advwi
Π,R,λ(A) = Advps

PSwi
R [Π],λ

(A) .

Since PSwi
R is also PT, combining Theorem 5.2 with Proposition 5.4 thus says that the WI property

transfers.

XT extractability. The notion of Π being a proof of knowledge [GMR89, BG93, DP92] for
R requires that whenever a (potentially cheating) prover, modeled as the adversary, is able to
produce a valid proof, there is an extractor that, based on a trapdoor underlying the common
reference string, can extract the witness from the information available to the adversary. We
generalize extractability for the different models we consider along the lines of [CC18] (which defined
knowledge-extractability for DV-NIZKs). Our formalization is via game Gxt specified in Figure 3.
It is parameterized by an extractor S, an object that specifies algorithms S.C (the extraction-CRS
generator) and S.X (the extraction witness-generator). Let Advxt

Π,R,S,λ(A) = Pr[Gxt
Π,R,S,λ(A)] be

the xt-advantage of A.

The notion of Π being XT-secure would be that there exists a polynomial time extractor S such
that λ 7→ Advxt

Π,R,S,λ(A) is negligible for all polynomial time adversaries A.

The XT property specification. We describe the property specification PSxt
R,S corresponding

to the XT property for the relation R in Figure 8. The type is PSxt
R,S.type = ser, meaning it is a

search problem. Connecting the XT property with its property specification PSxt
R,S, we claim that

the xt-advantage is identical to the ps-advantage.
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Game Guf
DS,λ

Init():

1 (sk, vk)←$ DS.K(1λ) ; Return vk

Sign(m):

2 σ←$ DS.S(1λ, sk, vk,m)

3 S ← S ∪ {m} ; Return σ

Fin(m,σ):

4 vf ← DS.V(1λ, vk,m, σ)

5 Return ( vf and (m 6∈ S) )

Game Guf
F,λ

Init():

1 K←$ {0, 1}λ

Fn(m):

2 S ← S ∪ {m} ; Return F(1λ,K,m)

Fin(m,T ):

3 vf ← (F(1λ,K,m) = T )

4 Return ( vf and (m 6∈ S) )

Game Gbind
CS,λ

Init():

1 cp←$ CS.P(1λ) ; Return cp

Fin(K, d,K′, d′):

2 If (K = K′) then return false

3 c← CS.C(1λ, cp,K, d)

4 c′ ← CS.C(1λ, cp,K′, d′)

5 Return (c′ = c)

Game Ghide
CS,λ

Init():

1 cp←$ CS.P(1λ) ; b←$ {0, 1}
2 Return cp

CMT(K0,K1):

3 d←$ {0, 1}λ

4 c← CS.C(1λ, cp,Kb, d) ; return c

Fin(b′):

5 Return (b′ = b)

Figure 9: Top Left: Game defining UF security of a signature scheme DS. Top Right: Game defining UF
security for MAC F. Middle: Games defining BIND and HIDE security for commitment scheme CS.

Proposition 5.5 Let R be an NP-relation, Π a proof system and A an adversary. Then for all
λ ∈ N we have:

Advxt
Π,R,S,λ(A) = Advps

PSxt
R,S[Π],λ

(A) .

6 SND in application: A test case

The properties that one would most like to successfully transfer are the ones of most utility in
applications. Since whether or not soundness transfers depends on exactly how it is defined (recall
that SND-E transfers and SND-P does not) we would like to see which of the two is needed by
applications. To this end we examine here in detail one representative and canonical application
of NIZKs that uses soundness, namely the construction of a digital signature scheme from [BG90].
We find that the type of soundness needed is SND-P. SND-E does not appear to suffice. And
signatures do not seem like an anomaly in this regard; indeed it seems that applications usually
require SND-P, not SND-E. This makes the transference position for these two more of a concern.

We slightly strengthen the results of [BG90]. While they relied on statistical soundness, we only
assume computational (else the question of SND-P versus SND-E is moot due to Proposition 4.2),
and we use a MAC rather than a PRF. We also generalize the underlying NIZK proof system to be
in the designated-prover model. We can then capture the original CRS model setting by requiring
the proving key kP to be the empty string.

Digital signatures. A (digital) signature scheme DS specifies PT algorithms for key-generation,
signing and verifying, as follows. Via (sk, vk)←$ DS.K(1λ), the signer generates a secret signing
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Relation R(crs, (1λ, cp, c, Y,m), (K, d)):

1 d1 ← (CS.C(1λ, cp,K, d) = c) ; d2 ← (Y = F(1λ,K,m)) ; Return (d1 and d2)

Key-generation algorithm DS.K(1λ):

2 cp←$ CS.P(1λ) ; K←$ {0, 1}λ ; d←$ {0, 1}λ ; c← CS.C(1λ, cp,K, d)

3 (crs, td, kP, ε)←$ Π.C(1λ) ; sk ← (K, d, kP) ; vk ← (crs, cp, c) ; Return (sk, vk)

Signing algorithm DS.S(1λ, sk, vk,m):

4 (crs, cp, c)← vk ; (K, d, kP)← sk ; Y ← F(1λ,K,m) ; x← (1λ, cp, c, Y,m)

5 pf←$ Π.P(1λ, crs, kP, x, (K, d)) ; Return (Y, pf)

Verifying algorithm DS.V(1λ, vk,m, σ):

6 (crs, cp, c)← vk ; (Y, pf)← σ ; x← (1λ, cp, c, Y,m) ; Return Π.V(1λ, crs, ε, x,pf)

Figure 10: The relation R and the digital signature scheme DS for Theorem 6.1.

key sk and public verification key vk. Via σ←$ DS.S(1λ, sk, vk,m), the signer generates a signature
of a message m ∈ {0, 1}∗. Via vf ← DS.V(1λ, vk,m, σ), the verifier deterministically generates a
boolean decision as to the validity of σ. Correctness requires that DS.V(1λ, vk,m, σ) = true for all
λ ∈ N, all σ ∈ [DS.S(1λ, sk, vk,m)], all (sk, vk) ∈ [DS.K(1λ)] and all m ∈ {0, 1}∗.

The security metric is unforgeability (UF) [GMR88]. The game is in Figure 9. We let Advuf
DS,λ(A)

= Pr[Guf
DS,λ(A)] be the uf-advantage of adversary A. A signature scheme DS is said to be UF-secure

if for al PT adversaries A, the function λ 7→ Advuf
DS,λ(A) is negligible.

Building blocks. We give definitions for the building blocks we need, namely MACs and com-
mitment schemes.

A MAC is a PT deterministic algorithm F that takes 1λ, a key K ∈ {0, 1}λ and an input
m ∈ {0, 1}∗ to return an output F(1λ,K,m) ∈ {0, 1}∗. The security metric is again unforgeability:
A MAC is the symmetric analogue of a signature scheme. Consider the game Guf

F in Figure 9. The
uf-advantage of adversary A is Advuf

F,λ(A) = Pr[Guf
F,λ(A)]. We say that F is UF-secure if for all PT

adversaries A, the function λ 7→ Advuf
F,λ(A) is negligible.

A commitment scheme CS specifies a PT parameter generation algorithm CS.P and a de-
terministic commitment algorithm CS.C such that CS.C(1λ, cp, ·, ·) : {0, 1}∗ × {0, 1}λ → {0, 1}∗
for all λ ∈ N and for every cp ∈ [CS.P(1λ)]. The scheme is set up by generating parameters
cp←$ CS.P(1λ). Then via c← CS.C(1λ, cp,K, d), one generates a commitment to stringK ∈ {0, 1}∗
with randomly-chosen de-commitment key d←$ {0, 1}λ. The bind advantage of an adversary A is
Advbind

CS,λ(A) = Pr[Gbind
CS,λ(A)], where the game is in Figure 9. It is required that the d, d′ queried

by the adversary to Fin are in {0, 1}λ. We require perfect binding, namely that Advbind
CS,λ(A) = 0

for all adversaries A, regardless of their running time. The hide advantage of an adversary A is
Advhide

CS,λ(A) = 2 Pr[Ghide
CS,λ(A)]− 1, where the game is in Figure 9. We say that CS is hiding if for

all PT A the function λ 7→ Advhide
CS,λ(A) is negligible. (The hiding requirement is computational.)

Construction. With MAC F and commitment scheme CS as above, let R be the relation of
Figure 10. Then let Π be a proof system that satisfies completeness, SND-P for R and ZK for R,
and let DS be the signature scheme whose algorithms are shown in Figure 10. Theorem 6.1 says
that DS is UF secure. The proof of this theorem is in Appendix D.
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Theorem 6.1 Let F be a UF-secure MAC. Let CS be a commitment scheme that is perfectly binding
and (computationally) hiding. Let R be the relation of Figure 10. Let Π be a proof system that is
SND-P and ZK for R. Let DS be the signature scheme whose algorithms are shown in Figure 10.
Then DS is UF-secure.

The question that we now discuss is whether the SND-E soundness notion will suffice for this
application. Recall that SND-E requires adversaries to be membership-conscious. However, in
a reduction from an adversary to an adversary against SND-E, there is no clear way to ensure
that membership-consciousness holds, which indicates that SND-E might not be sufficient for this
application.
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A Proof of Proposition 4.3

In this appendix, we provide a counterexample to prove the separation between SND-E and SND-P
in the computational setting.

Proof of Proposition 4.3: Consider a proof system Π for the relation R, both of which are
described in Figure 11. We show that (1) Π is SND-E for R but (2) Π is not SND-P for R, assuming
DDH is hard relative to the group generator.

We provide an adversary strategy to show (2) in Figure 11. When µ = 1, the adversary wins the
SND-P game, and when µ = 0, it wins the SND-P game with negligible probability. Therefore, we
can conclude that:

Advsnd-p
Π,R,λ(Asnd-p) ≥ 1

2

We now show (1) via a sequence of games, described in Figure 11. First, notice that Advsnd-e
Π,R,λ(A) =

Pr [ G0(A) ]. Further, we have

Pr [ G0(A) ] = Pr [ G1(A) ] + Pr [ G2(A) ] + Pr [ G3(A) ] + Pr [ G4(A) ]

We can construct adversaries A1
ddh and A2

ddh against the DDH game (described in Figure 12) such
that

Pr [ G2(A) ]− Pr [ G1(A) ] ≤ Advddh
GG,λ(A1

ddh)

Pr [ G4(A) ]− Pr [ G3(A) ] ≤ Advddh
GG,λ(A2

ddh)

We can further write

Pr [ G1(A) ] = Pr [ G5(A) ] + Pr [ G6(A) ]

Pr [ G3(A) ] = Pr [ G7(A) ] + Pr [ G8(A) ]

Now, since the adversaries all must be membership-conscious (i.e. A ∈ Asnde), we know that

Pr [ G6(A) ] ≤ negl(λ) Pr [ G8(A) ] ≤ negl(λ)

We also construct adversaries A1
cdh and A2

cdh against the CDH game in Figure 12 such that

Pr [ G5(A) ] ≤ Advcdh
GG,λ(A1

cdh) Pr [ G7(A) ] ≤ Advcdh
GG,λ(A2

cdh)

Putting all this together, we get

Advsnd-e
Π,R,λ(A) ≤ Advddh

GG,λ(A1
ddh) + Advddh

GG,λ(A2
ddh)

+ 2Advcdh
GG,λ(A1

cdh) + 2Advcdh
GG,λ(A2

cdh) + negl(λ)

This shows that the scheme is SND-E secure assuming the hardness of the DDH and CDH assump-
tions relative to the group generator.
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Relation R((p,G, g, A,B,C), X,w):

1 Return (gw = A) ∧ (X 6= Bw) ∧ (X ∈ G)

Π.C(1λ):

1 (p,G, g)←$ GG(1λ) ; µ←$ {0, 1}
2 a, b←$ Zp
3 If (µ = 0) then c←$ Zp
4 Else c← ab mod p

5 A← ga ; B ← gb ; C ← gc

6 crs← (p,G, g, A,B,C)

7 td← ε ; kP ← ε ; kV ← ε

8 return (crs, td, kP, kV)

Π.P(1λ, (p,G, g, A,B,C), kP, X,w):

9 Return ε

Π.V(1λ, (p,G, g, A,B,C), kV, X, pf):

10 If (X /∈ G) then return false

11 Return true

Adversary Asnd-p:

1 (crs, kP)←$ Gsnd-p
Π,R,λ.Init

2 (p,G, g, A,B,C)← crs

3 Gsnd-p
Π,R,λ.Vf(C, ε) ; Gsnd-p

Π,R,λ.Fin

Games G0 - G8

Init():

1 (p,G, g)←$ GG(1λ)

2 µ←$ {0, 1} ; a, b←$ Zp
3 If (µ = 0) then c←$ Zp
4 Else c← ab mod p

5 A← ga ; B ← gb ; C ← gc

6 Return ((p,G, g, A,B,C), ε)

Fin():

7 Return win

Vf(X, pf):

8 If (X ∈ G \ {gab}) then bad← true

9 vf ← (X ∈ G) ; u1 ← (X = C) ; u2 ← (µ = 0)

10 If vf then win← true // G0

11 If (vf ∧ u1 ∧ u2) then win← true // G1

12 If (vf ∧ u1 ∧ ¬u2) then win← true // G2

13 If (vf ∧ ¬u1 ∧ u2) then win← true // G3

14 If (vf ∧ ¬u1 ∧ ¬u2) then win← true // G4

15 If (vf ∧ u1 ∧ u2 ∧ ¬bad) then win← true // G5

16 If (vf ∧ u1 ∧ u2 ∧ bad) then win← true // G6

17 If (vf ∧ ¬u1 ∧ u2 ∧ ¬bad) then win← true // G7

18 If (vf ∧ ¬u1 ∧ u2 ∧ bad) then win← true // G8

19 If vf then return true

20 Return false

Figure 11: Top: Relation R, proof system Π, and adversary Asnd-p for the proof of Proposition 4.3. Bottom:
Games for the proof of Proposition 4.3.
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Adversary A1
ddh:

1 (p,G, g, A,B,C)←$ Gddh
GG,λ.Init

2 AInit,Vf,Fin

Init():

3 Return ((p,G, g, A,B,C), ε)

Vf(X, pf):

4 If ((X ∈ G) ∧ (X = C)) then

5 win← true

6 Return (X ∈ G)

Fin():

7 If win then Gddh
GG,λ.Fin(1)

8 Else Gddh
GG,λ.Fin(0)

Adversary A2
ddh:

1 (p,G, g, A,B,C)←$ Gddh
GG,λ.Init

2 AInit,Vf,Fin

Init():

3 Return ((p,G, g, A,B,C), ε)

Vf(X, pf):

4 If ((X ∈ G) ∧ (X 6= C)) then

5 win← true

6 Return (X ∈ G)

Fin():

7 If win then Gddh
GG,λ.Fin(1)

8 Else Gddh
GG,λ.Fin(0)

Adversary A1
cdh:

1 (p,G, g, A,B)←$ Gcdh
GG,λ.Init

2 c←$ Zp ; C ← gc ; AInit,Vf,Fin

Init():

3 Return ((p,G, g, A,B,C), ε)

Vf(X, pf):

4 If ((X ∈ G) ∧ (X = C)) then

5 S ← S ∪ {X}
6 Return (X ∈ G)

Fin():

7 X←$ S ; Gcdh
GG,λ.Fin(X)

Adversary A2
cdh:

1 (p,G, g, A,B)←$ Gcdh
GG,λ.Init

2 c←$ Zp ; C ← gc ; AInit,Vf,Fin

Init():

3 Return ((p,G, g, A,B,C), ε)

Vf(X, pf):

4 If ((X ∈ G) ∧ (X 6= C)) then

5 S ← S ∪ {X}
6 Return (X ∈ G)

Fin():

7 X←$ S ; Gcdh
GG,λ.Fin(X)

Figure 12: More adversaries for the proof of Proposition 4.3.

B Proof of Theorem 4.4

Proof of Theorem 4.4: Let GG be a group generator relative to which DDH is hard. Consider
the relation R shown in Figure 13. Its first input is the CRS, which has the form (p,G, g, A,B,C),
where (p,G, g) ∈ [GG(1λ)] and A,B,C ∈ G. The second input X is the instance. The third input
w is the witness, which we assume is in Zp. Recall that dlogG,g(Y ) ∈ Zp is the discrete logarithm

of Y ∈ G to base g. Let a, b, c ∈ Zp be such that A = ga, B = gb and C = gc. The relation
tests three things, returning true iff all hold. The test that gw = A forces the witness w to be
a = dlogG,g(A), meaning it can have only one value. The third test requires X to be a group

element, and the second test then says that X may be any group element except Bw = gbw = gba.
Recall that the language associated to R, (p,G, g, A,B,C) is the set of all X for which there exists
a witness w making R((p,G, g, A,B,C), X,w) = true, so we have LR((p,G, g, A,B,C)) = G \ {gab},
meaning it is all group elements except gab. Since violating soundness requires submitting an
X 6∈ LR((p,G, g, A,B,C)), this means that there is only one choice of X that potentially violates
soundness, namely gab.

Now consider the dual-mode proof system DΠ whose algorithms DΠ.C, DΠ.P, DΠ.V are described
in Figure 13. The CRS generator picks a group G and returns CRS (p,G, g, A,B,C) such that,
again letting A = ga, B = gb and C = gc, if µ = 0 then (A,B,C) is a DH-tuple —meaning

25



Relation R((p,G, g, A,B,C), X,w):

1 Return (gw = A) ∧ (X 6= Bw) ∧ (X ∈ G)

DΠ.C(1λ, µ):

2 (p,G, g)←$ GG(1λ) ; a, b←$ Zp
3 If (µ = 1) then c←$ Zp
4 Else c← ab mod p

5 A← ga ; B ← gb ; C ← gc

6 crs← (p,G, g, A,B,C)

7 td← ε ; kP ← ε ; kV ← ε

8 Return (crs, td, kP, kV)

DΠ.P(1λ, crs, kP, X,w):

9 (p,G, g, A,B,C)← crs ; Return ε

DΠ.V(1λ, crs, kV, X, pf):

10 (p,G, g, A,B,C)← crs

11 If (X /∈ G) then return false

12 Else return true

Adversary A0:

1 (crs, kP)←$ Gsnd-p
DΠ0,R,λ

.Init

2 (p,G, g, A,B,C)← crs

3 Gsnd-p
DΠ0,R,λ

.Vf(C, ε) ; Gsnd-p
DΠ0,R,λ

.Fin

Adversary Addh:

1 (p,G, g, A,B,C)←$ Gddh
GG,λ.Init

2 AInit,Fin

Init:

3 Return ((p,G, g, A,B,C), ε, ε)

Fin(b′):

4 Gddh
GG,λ.Fin(1− b′)

Adversary Acdh:

1 (p,G, g, A,B)←$ Gcdh
GG,λ.Init

2 AInit,Vf,Fin

Init:

3 c←$ Zp ; C ← gc

4 Return ((p,G, g, A,B,C), ε)

Vf(X, pf):

5 S ← S ∪ {X}
6 If (X ∈ G) then return true

7 Return false

Fin():

8 X←$ S ; Gcdh
GG,λ.Fin(X)

Figure 13: Relation R, dual-mode proof system DΠ and various adversaries for the proof of Theorem 4.4.

C = gab— and if µ = 1 then A,B,C are uniform and independent group elements. Under the
DDH assumption, the two CRSs are indistinguishable, while the proving and verification keys are
identical in both modes since they are set to the empty string. Formally, this is claim (1) of the
theorem statement, which we show by a reduction from the mode-indistinguishability of DΠ to the
DDH assumption for the group generator GG. For this, let A be a PT adversary. We construct the
PT time adversary Addh shown in Figure 13. For all λ ∈ N we have

Advmode
DΠ,R,λ(A) ≤ Advddh

GG,λ(Addh) ,

which justifies claim (1). The other algorithms of DΠ perform trivially: The proof generator always
returns the empty string as the proof, and the verifier algorithm always accepts.

Let DΠ0 and DΠ1 be the induced proof systems of DΠ. We show claim (3) of the theorem by an
attack, namely an adversary violating SND-P for DΠ0. The adversary A0 is shown in Figure 13.
It starts, at line 1, by calling the Init oracle of its game Gsnd-p

DΠ0,R,λ
. The CRS (p,G, ga, gb, C) in

this game is generated by DΠ0.C, and hence C = gab. This gives the adversary an instance outside
the language LR((p,G, ga, gb, C)), namely X = C. It can now submit C to Vf at line 3. What
it submits as the proof does not matter (the choice made is the empty string) since DΠ.V always
accepts as long as the statement is in the group G; the challenge in violating SND-P was to find
an instance outside the language. This Vf query will set the win flag, and therefore this adversary
will win the game when it calls Fin. We have Advsnd-p

DΠ0,R,λ
(A0) = 1, establishing claim (3) of the
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Game Gd // d ∈ {0, 1}
Init():

1 (crs, td, kP, kV)←$ DΠ.C(1λ, d) ; st ←$ PS.StI(1λ, crs, kP, kV)

Or(Oname,Oarg):

2 (Orsp, st)←$ PS[DΠ.P,DΠ.V].Or(Oname,Oarg)

3 If ((Oname = Fin) and (out = ⊥)) then out ← Orsp

4 Return Orsp

Fin():

5 Return out

Adversary Aµ

1 (crs, kP, kV)←$ Gmode
DΠ,λ .Init ; st ← PS.StI(1λ, crs, kP, kV) ; Run AOr

2 If out then a← 1 else a← 0

3 Return (a⊕ µ)

Or(Oname,Oarg):

4 (Orsp, st)←$ PS[DΠ.P,DΠ.V].Or(Oname,Oarg)

5 If ((Oname = Fin) and (out = ⊥)) then out ← Orsp

6 Return Orsp

Figure 14: Top: Games for the proof of Theorem 5.2. Bottom: Adversary for the proof of Theorem 5.2.

theorem.

It remains to show claim (2), namely that DΠ1 does satisfy SND-P. This is true under the CDH
assumption on GG, which is implied by the DDH assumption we have made, and is proved by
reduction. Given a PT adversary A trying to win game Gsnd-p

DΠ1,R,λ
, we construct the PT cdh-

adversary Acdh shown in Figure 13. It is playing game Gcdh
GG,λ. From the Init oracle of that game,

it obtains (p,G, g, A,B), and then runs A, simulating A’s Init,Vf,Fin oracles as shown. When
A calls Init, our Acdh can return a legitimate mode-1 CRS by itself picking C at random and
returning (p,G, g, A,B,C). When A calls Vf with an argument X (and a proof pf which does not
matter) that, if it sets the win flag, will be gab, where A = ga and B = gb. If only one Vf query
was allowed, Acdh could call its own Fin oracle with X to also win. However, since multiple Vf
queries can be made, the best Acdh can do is to pick one of the statements queried to the Vf by
A at random to submit to its Fin oracle. This adds a multiplicative factor of the number of Vf
queries made by A, say q(λ), to the bound. For all λ ∈ N we have

Advsnd-p
DΠ0,R,λ

(A) ≤ q ·Advcdh
GG,λ(Acdh) .

This completes the proof of claim (3) and thus of the Theorem.

C Proof of Theorem 5.2

Proof of Theorem 5.2: Let A be a polynomial-time adversary. We build a polynomial-time
adversary Aµ such that for all λ ∈ N we have

Advps
PS[DΠ1−µ],λ

(A) ≤ Advps
PS[DΠµ],λ

(A) + 2 ·Advmode
DΠ,λ(Aµ) . (1)
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The theorem follows.

To establish Equation (1), recall that, as per the definition of a property specification, the oracle
responder algorithm depends only on the prover and verifier algorithms of the proof system it is
given, invoking these as oracles. But, by the definition of the proof systems induced proof by a
dual-mode proof system, for both DΠ0 and DΠ1, the prover algorithm is DΠ.P and the verifier
algorithm is DΠ.V. This means that the oracle responder algorithms corresponding to DΠ0 and
DΠ1 are identical, both being PS[DΠ.P,DΠ.V].Or.

With this, consider the games Gd, defined, for d ∈ {0, 1}, in Figure 14. At line 1, they generate
the CRS and the proving and verification keys in mode d, and then run the state initializer (we use
here the fact that it does not depend on the proof system) to get an initial state. In responding to
Or queries at line 2, they use the oracle responder with prover and verifier algorithms set to those
of the dual-mode proof system, as per the above. Then for both d = 0 and d = 1 we have

Advps
PS[DΠd],λ

(A) =

{
Pr[Gd(A)] if type = ser
2 Pr[Gd(A)]− 1 if type = dec.

Thus if type = ser we have

Advps
PS[DΠ1−µ],λ

(A) = Pr[G1−µ(A)] = Pr[Gµ(A)] + ( Pr[G1−µ(A)]− Pr[Gµ(A)] )

= Advps
PS[DΠµ],λ

(A) + ( Pr[G1−µ(A)]− Pr[Gµ(A)] ) .

And if type = dec we have

Advps
PS[DΠ1−µ],λ

(A) = 2 Pr[G1−µ(A)]− 1

= 2 Pr[Gµ(A)]− 1 + 2 · ( Pr[G1−µ(A)]− Pr[Gµ(A)] )

= Advps
PS[DΠµ],λ

(A) + 2 · ( Pr[G1−µ(A)]− Pr[Gµ(A)] ) .

We build PT mode indistinguishability adversary Amode so that

Pr[G1−µ(A)]− Pr[Gµ(A)] ≤ Advmode
DΠ,λ(Aµ) .

The adversary Aµ is shown at the bottom in Figure 14. At line 1 it obtains a CRS and proving
and verification keys from its own Init oracle. It then runs A and simulates the Or oracle of the
latter as shown. Let b be the randomly chosen bit in Gmode

DΠ,λ . Then

Advmode
DΠ,λ(Aµ) = Pr [ a⊕µ = 1 | b = 1 ]− Pr [ a⊕µ = 1 | b = 0 ] .

Let us consider the two cases depending on whether µ is 0 or 1.

µ = 0 : Advmode
DΠ,λ(A0) = Pr [ a = 1 | b = 1 ]− Pr [ a = 1 | b = 0 ]

= Pr[G1(A)]− Pr[G0(A)]

µ = 1 : Advmode
DΠ,λ(A1) = Pr [ a = 0 | b = 1 ]− Pr [ a = 0 | b = 0 ]

= Pr [ a = 1 | b = 0 ]− Pr [ a = 1 | b = 1 ]

= Pr[G0(A)]− Pr[G1(A)]

We can combine the two cases together as follows:

Advmode
DΠ,λ(Aµ) = Pr[G1−µ(A)]− Pr[Gµ(A)] .
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Games G0,G1,G2

Init():

1 cp←$ CS.P(1λ) ; K←$ {0, 1}λ ; d←$ {0, 1}λ ; c← CS.C(1λ, cp,K, d)

2 (crs, td, ε, ε)←$ Π.C(1λ) ; vk ← (crs, cp, c) ; return vk

Sign(m):

3 Y ← F(1λ,K,m) ; pf←$ Π.P(1λ, crs, ε, (1λ, cp, c, Y,m), (K, d))

4 σ ← (Y, pf) ; S ← S ∪ {m} ; Return σ

Fin(m,σ):

5 (Y, pf)← σ

6 If (m ∈ S) then return false

7 vf ← Π.V(1λ, crs, ε, (1λ, cp, c, Y,m), pf) // Game G0

8 vf ← ∃(K′, d′) : (CS.C(1λ, cp,K′, d′) = c) ∧ (F(1λ,K′,m) = Y ) // Gm G1

9 vf ← (F(1λ,K,m) = Y ) // Game G2

10 Return vf

Games G3,G4

Init():

1 cp←$ CS.P(1λ) ; K,K′←$ {0, 1}λ ; d←$ {0, 1}λ ; (crs, td, ε)←$ S.C(1λ)

2 c← CS.C(1λ, cp,K, d) // Game G3

3 c← CS.C(1λ, cp,K′, d) // Game G4

4 vk ← (crs, cp, c) ; return vk

Sign(m):

5 Y ← F(1λ,K,m) ; pf←$ S.P(1λ, crs, td, ε, (1λ, cp, c, Y,m))

6 σ ← (Y, pf) ; S ← S ∪ {m} ; Return σ

Fin(m,σ):

7 (Y, pf)← σ

8 If (m ∈ S) then return false

9 vf ← (F(1λ,K,m) = Y ) ; Return vf

Figure 15: Games for proof of Theorem 6.1.

This completes the proof.

D Proof of Theorem 6.1

Proof of Theorem 6.1: Let ADS be a polynomial time adversary. Then we construct PT
adversaries Asndp,Azk,Ahide,Auf (shown explicitly in Figures 16 and 17) such that

Advuf
DS,λ(ADS) ≤ Advsnd-p

Π,R,λ(Asndp) + Advzk
Π,R,S,λ(Azk)

+ Advhide
CS,λ(Ahide) + Advuf

F (Auf) .

The theorem then follows.

Consider the games of Figure 15. Games G0, G1, G2 differ only in one line, the ones used, respec-
tively, in these games, being lines 8,9,10, which change how the game decides whether or not the
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Adversary Azk:

1 cp←$ CS.P(1λ) ; K←$ {0, 1}λ ; d←$ {0, 1}λ

2 (crs, ε)←$ Gzk
Π,R,S,λ.Init ; c← CS.C(1λ, cp,K, d)

3 vk ← (crs, cp, c) ; AInit,Sign,Fin
ds

Init:

4 Return vk

Sign(m):

5 Y ← F(1λ,K,m)

6 pf←$ Gzk
Π,R,S,λ.Pf((1

λ, cp, c, Y,m), (K, d))

7 σ ← (Y, pf) ; S ← S ∪ {m} ; Return σ

Fin(m,σ):

8 (Y, pf)← σ

9 If (m ∈ S) then Gzk
Π,R,S,λ.Fin(0)

10 If (F(1λ,K,m) = Y ) then b′ ← 1 else b′ ← 0

11 Gzk
Π,R,S,λ.Fin(b

′)

Adversary Asndp:

1 cp←$ CS.P(1λ) ; K←$ {0, 1}λ

2 d←$ {0, 1}λ ; c← CS.C(1λ, cp,K, d)

3 (crs, kP)←$ Gsnd-p
Π,R,λ.Init

4 vk ← (crs, cp, c) ; AInit,Sign,Fin
DS

Init:

5 Return vk

Sign(m):

6 Y ← F(K,m) ; x← (1λ, cp, c, Y,m)

7 pf←$ Π.P(1λ, crs, kP, x, (K, d))

8 Return (Y, pf)

Fin(m,σ):

9 (Y, pf)← σ ; Gsnd-p
Π,R,λ.Vf((1λ, cp, c, Y,m), pf)

10 Gsnd-p
Π,R,λ.Fin()

Figure 16: Adversaries for the proof of Theorem 6.1.

adversary’s forgery attempt should let it win the game. We have

Advuf
DS(ADS) = Pr[G0(ADS)]

= Pr[G1(ADS)] + (Pr[G0(ADS)]− Pr[G1(ADS)]) .

We claim to have designed the Figure 16 adversary Asndp so that

Pr[G0(ADS)]− Pr[G1(ADS)] ≤ Advsnd-p
Π,R,λ(Asndp) .

Notice first that the condition setting vf in G1 (line 8) is exactly the test for membership in LR(crs).
For brevity, we let x denote the (1λ, cp, c, Y,m) tuple corresponding to the (m,σ) pair queried to
the Fin procedure by the adversary ADS in games G0 and G1. Then

Pr[G0(ADS)] = Pr[Π.V(1λ, crs, ε, x, pf)] and Pr[G1(ADS)] = Pr[x ∈ LR(crs)] .

This gives us (let χ = Pr[G0(ADS)]− Pr[G1(ADS)])

χ = Pr[Π.V(1λ, crs, ε, x, pf)]− Pr[x ∈ LR(crs)]

= Pr[Π.V(1λ, crs, ε, x, pf) ∧ (x /∈ LR(crs))]

+ Pr[Π.V(1λ, crs, ε, x, pf) ∧ (x ∈ LR(crs))]− Pr[(x ∈ LR(crs))]

≤ Pr[Π.V(1λ, crs, ε, x, pf) ∧ (x /∈ LR(crs))]

= Advsnd-p
Π,R,λ(Asndp)

We now show by explicitly providing the adversaries Azk, Ahide, and Auf , that

Pr[G1(ADS)] ≤ Advzk
Π,R,S,λ(Azk) + Advhide

CS,λ(Ahide) + Advuf
F (Auf) . (2)

We have

Pr[G1(ADS)] = Pr[G2(ADS)] + (Pr[G1(ADS)]− Pr[G2(ADS)]) .
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Adversary Ahide:

1 cp←$ Ghide
CS,λ.Init ; K,K′←$ {0, 1}λ

2 c←$ Ghide
CS,λ.CMT(K,K′)

3 (crs, td, ε)←$ S.C(1λ)

4 vk ← (crs, cp, c) ; AInit,Sign,Fin
ds

Init:

5 Return vk

Sign(m):

6 S ← S ∪ {m} ; Y ← F(1λ,K,m)

7 x← (1λ, cp, c, Y,m)

8 pf←$ S.P(1λ, crs, td, ε, x)

9 σ ← (Y, pf) ; return σ

Fin(m,σ):

10 (Y, pf)← σ

11 If (m ∈ S) then Ghide
CS,λ.Fin(0)

12 If ((F(1λ,K,m) = Y )) then b′ ← 1

13 Else b′ ← 0

14 Ghide
CS,λ.Fin(b

′)

Adversary Auf :

1 cp←$ CS.P(1λ) ; K′←$ {0, 1}λ

2 d←$ {0, 1}λ ; (crs, td, ε)←$ S.C(1λ)

3 c← CS.C(1λ, cp,K′, d)

4 vk ← (crs, cp, c)

5 Guf
F,λ.Init ; AInit,Sign,Fin

ds

Init:

6 Return vk

Sign(m):

7 Y ← Guf
F,λ.Fn(m)

8 x← (1λ, cp, c, Y,m)

9 pf←$ S.P(1λ, crs, td, ε, x)

10 Return (Y, pf)

Fin(m,σ):

11 (Y, pf)← σ ; Guf
F,λ.Fin(m,Y )

Figure 17: More adversaries for the proof of Theorem 6.1.

The assumption that CS is perfectly binding implies that

Pr[G1(ADS)] = Pr[G2(ADS)] .

Next we have

Pr[G2(ADS)] = Pr[G3(ADS)] + (Pr[G2(ADS)]− Pr[G3(ADS)]) .

We claim to have designed the Figure 16 adversary Azk so that

Pr[G2(ADS)]− Pr[G3(ADS)] ≤ Advzk
Π,R,S,λ(Azk) .

Next we have

Pr[G3(ADS)] = Pr[G4(ADS)] + (Pr[G3(ADS)]− Pr[G4(ADS)]) .

We claim to have designed the Figure 17 adversaries Ahide and Auf so that

Pr[G3(ADS)]− Pr[G4(ADS)] ≤ Advhide
CS,λ(Ahide) ,

Pr[G4(ADS)] ≤ Advuf
F (Auf) .

Putting these together gives us the inequality (2).

This completes the proof.

E Related Work

It has been shown that non-interactive zero-knowledge proof systems for languages outside of
BPP cannot exist in the plain model [GO94]. The existing literature instead considers a variety of
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different models under which they provide constructions achieving non-interactive zero knowledge.

The Common Reference String (CRS) model. This widely used model is also known as the
auxiliary string model [Dam00] or the public-parameter model [FF00, Ps05]. In this model, there
is assumed to exist a trusted party that generates a common reference string which is available to
both the prover and the verifier. The common random string model [BFM90] can be considered to
be a special case of the CRS model, in which the common string generated by the trusted party is
sampled from a uniform distribution.

The Preprocessing model [DMP90]. In this model, there is assumed to be an initial, statement-
independent trusted setup (preprocessing) phase, that results in the generation of a proving key
(which will be needed to generate proofs) and a verification key (which is needed to verify proofs).
Soundness is now required to hold even against a prover with oracle access to the verifier (but
no access to the verification key), while zero-knowledge is required to hold against a verifier with
oracle access to the prover (but no access to the proving key).

The Designated Verifier and Designated Prover models.
The designated verifier (DV) model (introduced in [JSI96] for interactive proofs and in [ES02,
PsV06, DFN06] for non-interactive proofs) and the designated prover (DP) model [KW18, KNYY19]
can be studied as special cases of the preprocessing model. In the DV model, the proving key is
considered to be empty, so that any party can generate a proof of a statement, but verification
can only be done by the party with the secret verification key. Analogously, in the DP model, the
verification key is considered to be empty, so that any party can verify a proof of a statement, but
proof generation can only be done by the party with the secret proving key.

Dual-Mode NIZKs. The abstraction of the dual-mode cryptosystem was first considered in
[PVW08] for the setting of oblivious transfer. A similar technique named “parameter switching”
was used in [GOS06b] in the context of non-interactive zero-knowledge. Though this technique was
used in multiple constructions [Gro06, GOS06a, GOS06b, GS08], the term “dual-mode NIZK” was
first used in [AFH+16] as one of the building blocks for multilinear maps. Dual-mode NIZKs have
been constructed from obfuscation in [HU19], while [LPWW20] constructs dual-mode NIZKs in
the designated verifier model from different assumptions. The works of [CCH+19, PS19] also con-
struct NIZK systems that can be used in two modes, but do not explicitly consider the dual-mode
abstraction.

We now examine the definitions of soundness in papers that use the dual-mode within our
notation to see whether they transfer. Let R be a relation and Π a proof system.

[GOS06b]. They call their definition non-adaptive computational soundness. It requires that for
all non-uniform PT adversaries A and all x /∈ LR (the language here does not depend on the CRS)—

Pr
[
(crs, ε, ε, ε)←$ Π.C(1λ) ; pf ←$ A(x, crs) : Π.V(1λ, crs, ε, x, pf) = false

]
≈ 1 .

The “≈ 1” above is shorthand for saying there is a negligible function ν such that the probability
on the left is ≥ 1 − ν(λ). Now there is some ambiguity in the definition, namely that it is not
clear how ν is quantified. Does it depend on A? On x? The meaningful choice here is to assume
the authors meant it to depend on A but not on x, so that the definition becomes that for all
non-uniform PT adversaries A there exists a negligible function ν such that for all x /∈ LR and all
λ—

Pr
[
(crs, ε, ε, ε)←$ Π.C(1λ) ; pf ←$ A(x, crs) : Π.V(1λ, crs, ε, x, pf) = true

]
≤ ν(λ) .

This notion of soundness does transfer. The proof relies, however, crucially on non-uniformity;
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mode indistinguishability must be assumed for non-uniform adversaries. This, however, is indeed
the setting of the paper, so we conclude that soundness as per [GOS06b] transfers successfully,
supporting the claim made (without explicit proof) in the paper.

However, this non-adaptive definition of soundness is not well suited (too weak) for some ap-
plications, because it does not allow x to depend on the CRS. This arises for example in the
application to signatures we discussed in Section 6 . Also the definition does not seem written
to allow dependence of the language on the CRS, yet in their system to prove that a ciphertext
encrypts a bit, the language does depend on the CRS.

[GOS06a, Gro06, GS08, HHNR17]. All of these works use equivalent definitions for (perfect)
soundness for a non-interactive proof system Π for relation R. They require that for all non-uniform
adversaries A and all λ—

Pr

[
(crs, ε, ε, ε)←$ Π.C(1λ);

: Π.V(1λ, crs, x,pf) = false if x /∈ LR(crs)
(x, pf)←$ A(crs)

]
= 1 .

The computational variant would presumably be that for all non-uniform PT adversaries A there
exists a negligible function ν such that for all λ—

Pr

[
(crs, ε, ε, ε)←$ Π.C(1λ);

: Π.V(1λ, crs, ε, x, pf) = false if x /∈ LR(crs)
(x, pf)←$ A(crs)

]
≥ 1− ν(λ) .

Again, there is some ambiguity, namely as to the meaning of the “if.” We would expect that
what is written after the colon, here “Π.V(1λ, crs, ε, x, pf) = false if x /∈ LR(crs),” is an event
in the probability space described by what precedes the colon, and in this light have trouble
understanding the “if.” Our best interpretation was to view the “if” as an implication. That is,
“Π.V(1λ, crs, ε, x, pf) = false if x /∈ LR(crs)” becomes “(x /∈ LR(crs)) =⇒ (Π.V(1λ, crs, ε, x, pf) =
false),” which in turn becomes “(Π.V(1λ, crs, ε, x, pf) = false) or (x ∈ LR(crs)).” The condition
above now becomes

Pr

[
(crs, ε, ε, ε)←$ Π.C(1λ);

: (Π.V(1λ, crs, ε, x, pf) = true) ∧ (x /∈ LR(crs))
(x, pf)←$ A(crs)

]
≤ ν(λ) .

This definition is equivalent to the SND-P notion of soundness we give in Figure 3. As we have
shown in Theorem 4.4, this notion of soundness need not in general transfer, so that the soundness
definition of [GOS06a, Gro06, GS08, HHNR17] also fails in general to transfer. Note Theorem 4.4
holds in both the uniform and non-uniform settings; unlike for the [GOS06b] definition discussed
above, non-uniformity does not seem aid transfer here. All this is with the caveat that we may be
mis-interpreting the “if.”

On the other hand, the soundness in this definition is adaptive, making it good for applications,
as we indicate via Section 6 . The pattern we see is that weak (less application-enabling) soundness
transfers and strong (more application-enabling) soundness does not transfer.

[AFH+16, FHHL18]. This work uses a definition of perfect soundness for a non-interactive proof
system. Their definition implies that for all λ—

Pr

[
(crs, td, ε, ε)←$ Π.C(1λ);

: (Π.V(1λ, crs, ε, x, pf) = true) ∧ (x /∈ LR(crs))
(x,pf)←$ A(crs)

]
= 0 .

This corresponds to the SND-P notion of soundness, which, as we have seen, does not in general
transfer. However, the definition (and its computational variant, which is not defined in the paper)
is adaptive, which is application-enabling.

[HU19]. Their requirement of (statistical) soundness is that for all non-uniform adversaries A there
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exists a negligible function ν such that—

Pr

[
(crs, ε, ε, ε)←$ Π.C(1λ);

: (Π.V(1λ, crs, ε, x, pf) = true) ∧ (x /∈ LR(crs))
(x, pf)←$ A(crs)

]
≤ ν(λ) .

The computational version is presumably that for all PT non-uniform adversaries there exists a
negligible function ν such that for all λ the same equation above holds. This definition is equivalent
to the SND-P notion of soundness we define in Figure 3. As we have shown in Theorem 4.4, this
notion of soundness does not in general transfer. However it is a strong, application-enabling
definition.

[CCH+19, PS19] These works consider two definitions of soundness, in the statistical case and in
the computational case. The statistical soundness definition is the stronger, adaptive version, and
corresponds to the SND-P notion of soundness in Figure 3. However, computational soundness
has a weaker, non-adaptive definition (corresponding to the SND-E notion). This corresponds
implicitly to our result that the transference would only hold for the weaker SND-E notion but not
for the SND-P notion.

[LPWW20]. Note that this work, unlike the previous works, is in the designated-verifier model.
It too, defines two forms of soundness, an adaptive version, and a non-adaptive version and points
out the difficulty in arguing what corresponds to the transference of the SND-P notion. It therefore
uses the weaker non-adaptive version for computational soundness.
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