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Abstract. SIDH is a post-quantum key exchange algorithm based on
the presumed difficulty of computing isogenies between supersingular
elliptic curves. However, the exact hardness assumption SIDH relies on is
not the pure isogeny problem; attackers are also provided with the action
of the secret isogeny restricted to a subgroup of the curve. Petit [21]
leverages this information to break variants of SIDH in polynomial time,
thus demonstrating that exploiting torsion-point information can lead
to an attack in some cases. The contribution of this paper is twofold:
First, we revisit and improve the techniques of [21] to span a broader
range of parameters. Second, we construct SIDH variants designed to be
weak against the resulting attacks; this includes weak choices of starting
curve under moderately imbalanced parameters as well as weak choices
of base field under balanced parameters. We stress that our results do
not reveal any weakness in the NIST submission SIKE [19]. However,
they do get closer than previous attacks in several ways and may have
an impact on the security of SIDH-based group key exchange [2] and
certain instantiations of B-SIDH [7].

1 Introduction

With the advent of quantum computers, currently deployed cryptographic pro-
tocols based on integer-factorization or discrete-logarithm problems will need to
∗ Author list in alphabetical order; see https://www.ams.org/profession/leaders/
culture/CultureStatement04.pdf. Péter Kutas and Christophe Petit were suppor-
ted by EPSRC grant EP/S01361X/1. Katherine E. Stange was supported by NSF-
CAREER CNS-1652238. This work was supported in part by the Commission of the
European Communities through the Horizon 2020 program under project number
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USEIT). Date of this document: 2020-05-27.
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be replaced by new post-quantum cryptographic algorithms. Isogeny-based cryp-
tography is a relatively new field within post-quantum cryptography. An isogeny
is a non-zero rational map between elliptic curves that also preserves the group
structure, and isogeny-based cryptography is based on the conjectured hardness
of finding isogenies between elliptic curves over finite fields.

In recent years, isogeny-based cryptography has been receiving increased in-
terest, partly due to the fact that isogeny-based key exchange has the smallest
key sizes of all current post-quantum candidates while still performing at a reas-
onable speed. Isogeny-based schemes also appear to be fairly flexible; for ex-
ample, a relatively efficient post-quantum non-interactive key exchange protocol
called CSIDH [5] is built on isogeny assumptions.

The Supersingular Isogeny Diffie–Hellman protocol, or SIDH, was the first
practical isogeny-based key-exchange protocol, proposed by Jao and De Feo in
2011 [14]. The most natural way to attack SIDH is to solve the following problem:

Problem 1. For a large prime p and smooth coprime integers A and B, given
two supersingular elliptic curves E0/Fp2 and E/Fp2 connected by a degree-A
isogeny φ : E0 → E, and given the action of φ on the B-torsion of E0, recover φ.5

Notice that this problem gives the attacker more information than the ‘pure’
isogeny problem, where the goal is to find an isogeny between two given curves
without any further hints. The best known way to break SIDH by treating it
as a pure isogeny problem is a claw-finding approach on the isogeny graph hav-
ing both classical and quantum complexity O(

√
A · polylog(p)) [15].6 However,

Problem 1 could be easier than finding isogenies in general, and indeed a line of
work started in [21] and continuing with this paper suggests that this may hold
at least for some instantiations.

The additional torsion-point information clearly does aid active attackers:
In 2016, Galbraith, Petit, Shani, and Ti [10] presented an active attack against
SIDH that sends manipulated key-exchange messages and checks whether the
key exchange succeeds, recovering the secret within O(logA) queries. To mit-
igate this attack, [10] proposes using the Fujisaki–Okamoto transform, which
generically renders a CPA-secure public-key encryption scheme CCA-secure and
therefore makes those so-called reaction attacks impossible. Supersingular Iso-
geny Key Encapsulation, or SIKE [13] for short, is essentially the result of ap-
plying (a variant of) the Fujisaki–Okamoto transform to SIDH. It is the only
isogeny-based submission to NIST’s standardization project for post-quantum
cryptography [19] and is currently a contender in Round 2 of the process.

A particular choice made in SIKE is that one of the two curves, the ‘starting
curve’ E0, is a special curve: It is defined over Fp and has small-degree non-
scalar endomorphisms, both of which are very rare properties within the set of all
5 These constraints do not necessarily uniquely determine φ, but any efficiently com-
putable isogeny from E0 to E is usually enough to recover the SIDH secret [10].

6 Note that the naïve meet-in-the-middle approach has prohibitively large memory
requirements. Collision finding à la van Oorschot–Wiener thus performs better in
practice, although its time complexity is worse in theory [1].
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possible supersingular curves defined over Fp2 . On its own, this fact does not seem
to have any negative security implications for SIKE, but [10] shows that given an
explicit description of both curves’ endomorphism rings, it is (under reasonable
heuristic assumptions) possible to recover the secret isogeny; hence, breaking
SIKE can be reduced to computing endomorphism rings of supersingular elliptic
curves in some sufficiently explicit representation.

In 2017, Petit [21] introduced a method to solve some instances of Problem 1
based on endomorphisms of the special starting curve. It uses the given action of
the secret isogeny on a large torsion subgroup to recover the isogeny itself, giving
a passive polynomial-time attack on non-standard variants of SIDH satisfying
B > A4 > p4. However, for efficiency reasons, both A and B are practically
taken to be about the size of √p; thus this attack does not apply to the SIKE
parameters.

1.1 Our contributions

We improve upon and extend Petit’s 2017 torsion-point attacks [21] in several
ways. We argue in Section 3 that the imbalance conditions can be relaxed to
B > A2 > p2 or B > A3 > p

3
2 , and that furthermore allowing for arbitrarily large

B/A gives an attack for AB ≈ p. We also show that even a mild imbalance of
parameters leads to a heuristic improvement over the generic meet-in-the-middle
or claw-finding attack, and we show the relationship between the extremity of
the imbalance and the estimated complexity of the torsion-point attack.

Recall also that in SIKE, the starting curve E0 is taken to be the curve with
j-invariant 1728.7 In Section 4 we introduce the notion of an ‘insecure’ starting
curve, of which the curve with j-invariant 1728 is not an example. We give
a heuristic polynomial-time torsion-point attack on SIDH instances using an
insecure starting curve for E0 with B > A2 (note the lack of condition of p), and
an attack of classical complexity O(p

2
5 · polylog(p)) and quantum complexity

O(p
1
8 · polylog(p)) on SIDH instances using an insecure starting curve for E0

with B ≈ A ≈ p
1
2 . Note that this is as in SIKE, but starting from an insecure

starting curve instead of the curve with j-invariant 1728; insecure curves could
potentially be utilized as backdoors. We also give the relationship between the
extremity of the imbalance of the parameters and the complexity of the torsion-
point attack applied to this case of insecure starting curves, and argue that we
expect there to be exponentially many insecure curves. Finally, we show that it
is possible to construct special primes p, together with an appropriate A and B,
for which torsion-point attacks are especially effective, even when using balanced
parameters A ≈ B and/or using a starting curve with j-invariant 1728.

We stress that none of our attacks apply to the NIST Round 2 candidate
SIKE: for each attack described in this paper one aspect of SIKE needs to be
changed (e.g., the balance of the degrees of the secret isogenies, the starting
curve, or the base field prime). There are, however, SIDH variants in the literat-
ure for which there are realistic parameter sets where our attacks may be more
7 One can also take a neighbour, but this does not affect the security analysis.
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relevant. For example, the recent n-party group key exchange proposal [2] can
be interpreted for cryptanalysis purposes as an unbalanced (two-party) SIDH in-
stance with B ≈ An−1 and AB ≈ p. The torsion-point attacks that we describe
in Section 3, specifically with the balance given in Heuristic 1 Equation (10), give
rise to, for example, a quantum attack of complexity O(A0.4 ·polylog(p)) on a 3-
party key exchange with AB ≈ p1.15, a 10-party key exchange with AB ≈ p1.04,
or a 100-party key exchange with AB ≈ p1.004. Furthermore, the attack variant
that allows the protocol to use an insecure curve as a starting curve is heurist-
ically classical polynomial-time for three or more parties. As a second example,
we consider the recent proposal B-SIDH [7]; we show that this could in unlucky
instances fall into the range in which torsion-point attacks are faster than meet-
in-the-middle or claw finding. In the case of B-SIDH, it is definitely possible to
use parameters for which our attacks do not apply, but care should be taken to
do this.

Acknowledgements. We thank Victoria de Quehen for her invaluable input,
especially for sharing her ideas from concurrent work and for her careful read-
ing and advice during editing. Thanks to Daniel J. Bernstein for his help with
Section 3.4, and to John Voight for answering a question concerning Section 4.3.
We would also like to thank the anonymous reviewers for their useful feedback.

2 Preliminaries

2.1 Notation

Throughout this paper, we will neglect factors polynomial in log p. Thus, we
abbreviate O(g · polylog(p)) as O∗(g). Similarly, ‘smooth’ without further qual-
ification always means polylog(p)-smooth. We let Bp,∞ denote the quaternion
algebra ramified at p and ∞, for which we use a fixed Q-basis 〈1, i, j, ij〉 such
that j2 = −p and i is a nonzero endomorphism of minimal norm with ij = −ji.

2.2 The Supersingular Isogeny Diffie–Hellman protocol

We give a high-level description of SIDH [14]. The public parameters of the
system are two smooth coprime numbers A and B, a prime p of the form p =
ABf−1, where f is a small cofactor, and a supersingular elliptic curve E0 defined
over Fp2 together with points PA, QA, PB , QB ∈ E0 such that E0[A] = 〈PA, QA〉
and E0[B] = 〈PB , QB〉.
The protocol then proceeds as follows:

1. Alice chooses a random cyclic subgroup of E0[A] as GA = 〈PA+[xA]QA〉 and
Bob chooses a random cyclic subgroup of E0[B] as GB = 〈PB + [xB ]QB〉.

2. Alice computes the isogeny φA : E0 → E0/〈GA〉 =: EA and Bob computes
the isogeny φB : E0 → E0/〈GB〉 =: EB .
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3. Alice sends the curve EA and the two points φA(PB), φA(QB) to Bob. Sim-
ilarly, Bob sends

(
EB , φB(PA), φB(QA)

)
to Alice.

4. Alice and Bob use the given torsion points to obtain the shared secret curve
E0/〈GA, GB〉. To do so, Alice computes φB(GA) = φB(PA)+[xA]φB(QA) and
uses the fact that E0/〈GA, GB〉 ∼= EB/〈φB(GA)〉. Bob proceeds analogously.

The SIKE proposal [13] suggests various choices of (p,A,B) depending on
the targeted security level: All parameter sets use powers of two and three for A
and B, respectively, with A ≈ B and f = 1. For example, the smallest parameter
set suggested in [13] uses p = 2216 · 3137 − 1. Other constructions belonging to
the SIDH ‘family tree’ of protocols use different types of parameters [7, 2, 23].

We may assume knowledge of End(E0): The only known way to construct
supersingular elliptic curves is by reduction of elliptic curves with CM by a small
discriminant (which implies small-degree endomorphisms), or by isogeny walks
starting from such curves (where knowledge of the path reveals the endomorph-
ism ring, therefore requiring a trusted setup). A common choice when p ≡ 3
(mod 4) is j(E0) = 1728 or a small-degree isogeny neighbour of that curve [13].

2.3 Petit’s torsion-point attacks

Most known attacks on SIDH proceed by solving the general isogeny problem, or
reduce to computing endomorphism rings. However, SIDH is based on Problem 1
introduced above, in which an adversary also gets the action of the secret isogeny
on the B-torsion of the starting curve E0.

Remark 1. Problem 1 is a slight generalization of the Computational Supersin-
gular Isogeny (CSSI) Problem introduced in [14]. Here we do not require A and B
to be prime powers (just smooth) and we do not require p to have a special form.
We remark that some instances of Problem 1 require superpolynomial space, as
the extension fields required to represent kerφ and E0[B] generally have degree
at least linear in A and B. Broadly speaking, the interesting cases are the ‘effi-
cient’ instantiations where computing φ and its action on E0[B] takes time and
space polynomial in log p, logA, and logB.

We outline Petit’s approach [21] to solve some instances of Problem 1. The
main steps are the following:

1. Compute a non-scalar θ ∈ End(E0) for which there exist d, e ∈ Z such that
deg(φ ◦ θ ◦ φ̂+ [d]) = Be with e smooth and relatively small.

2. Compute τ = φ ◦ θ ◦ φ̂+ [d] using the fact that the action of φ is known on
the B-torsion.

3. Compute ker(τ − [d]) ∩ E[A] and from that compute φ itself.

Notice that Step 1 can be done as precomputation as it only depends on E0, but
not on the particular public key under attack. (The degree of τ depends on the
degree of φ but not on which degree-A isogeny φ happens to be.)

First we address Steps 2 and 3. In Step 2, τ can be decomposed into isogenies
as η ◦ ψ, where the degree of ψ is B and the degree of η is e. The isogeny ψ can
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be computed since θ is known and we know the action of φ (and thus of φ̂) on
E0[B] (resp. E[B]). Then η can be found by meet-in-the-middle using O∗(

√
e)

operations. In Step 3 we have ker(φ̂) ⊆ ker(τ − [d]) ∩E[A], and in fact they are
usually equal. They are not equal if and only if ker(τ − [d]) contains E[M ] for
some divisor M of A; it is shown in [21, Section 4.3] how to resolve this issue.

The complexity of the algorithm clearly depends on the size of e, thus the
efficiency of the algorithm is dependent on the effectiveness of Step 1. While
the endomorphism ring of E0 is usually known, it is not obvious how to find
an element θ as above. For example, in SIKE, the starting curve has j-invariant
1728,8 whose endomorphism ring is (up to small denominators) generated by the
Frobenius π : (x, y) 7→ (xp, yp) and the automorphism ι : (x, y) 7→ (−x,

√
−1 ·y),

hence Step 1 reduces to solving the norm equation

A2(pa2 + pb2 + c2) + d2 = Be; (1)

the left-hand-side of this equation is just the degree of τ = φ ◦ θ ◦ φ̂+ [d] when
θ = aιπ+bπ+cι. Petit [21] gives an algorithm to solve Equation (1) when A > p
and B > A4: The main idea is to choose e such that Be is a square modulo
A2, solve for d modulo A2, and then solve for c modulo p. What remains is the
equation a2 + b2 = Be−d2−c2A2

pA2 , which can be solved efficiently by Cornacchia’s
algorithm if the right-hand side is efficiently factorizable; else the procedure is
restarted with a new choice of e. Under the conditions A > p and B > A4, this
algorithm can be expected to find a suitable solution in polynomial time. This
already suggests that there exist parameters for which Problem 1 is easier than
the general supersingular isogeny problem.

3 Improved torsion-point attacks

In this section we generalize and improve the torsion-point attacks from Petit’s
2017 paper [21]. Our setup is as in [21]: we study SIDH instances in which
Alice and Bob use E0/Fp : y2 = x3 + x as a starting curve, where p is a prime
congruent to 3 (mod 4),9 Alice’s secret isogeny has degree A ≈ pα, and Bob’s
secret isogeny has degree B ≈ pβ . SIKE consists of such instances with α ≈ β ≈
1/2 and α+ β < 1, but in our analysis we will allow α and β to vary. The case
α + β > 1 may seem artificial to readers mostly familiar with traditional SIDH
or SIKE [14, 12], but note that [21] and B-SIDH [7] propose cryptographically
interesting variants of SIDH with such parameters; furthermore, studying such
parameters helps to improve our understanding for the case α + β ≈ 1, cf.
Figure 3. We assume without loss of generality that A ≤ B and that we are
attacking Alice’s key, i.e., the secret isogeny is of degree A and we are given the
action of φ on the B-torsion of E0.
8 Note that the newest version of [13] changed the starting curve to a 2-isogenous
neighbour, but this does not affect the asymptotic complexity of the (in fact, any)
attack and thus we will stick with the original starting curve for simplicity.

9 More generally, these attacks apply for any ‘special’ starting curve in the sense of [17].
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Petit’s 2017 classical, polynomial-time attack [21] requires unbalanced para-
meters, unlike those in SIKE, namely β > 4α > 4. In this section, we argue that
even a mild imbalance between α and β may result in a better (quantum) attack
than the generic claw-finding/meet-in-the-middle algorithm, thus far considered
to be the best attack for any parameters not broken by [21]. We also reduce the
degree of imbalance needed for the polynomial-time algorithm to apply. Once
more, we stress that these results are based on heuristic assumptions and ig-
nore factors polynomial in log p. The results of this section are summarized in
Figures 1, 2, and 3 which will be justified by Heuristic 1. Note that Figures 1
and 2 represent a trade-off: The closer A and B are to each other, the bigger
their product AB must be for the attacks to apply, and conversely reducing
AB requires a stronger imbalance. Figure 3 shows that allowing for extremely
unbalanced parameters B � A, we approach an attack on AB ≈ p.

Our results suggest that the choice α ≈ β ≈ 1/2made in SIKE also minimizes
the applicability of the torsion-point attack avenue. As we will show in Section 4,
it is possible to improve on the meet-in-the-middle/claw-finding complexity for
balanced parameters with a different starting curve, but with the SIKE starting
curve it does not seem possible to get an attack via this method. However, since
any unbalance can lead to a lower attack complexity, our results do affect other
SIDH variants such as group key exchange [2]; see Figure 4.

Remark 2. A couple of notes on the choices made in Figures 1, 2, and 3:

– Algorithms with complexity polynomial in log p correspond to C = 0.
– The complexity of the attack is measured as a power of A, the degree of

Alice’s secret isogeny. Together with our assumption that A ≤ B, this allows
for easy comparison with the ‘generic attack’, i.e., classical or quantum claw
finding, both of which have complexity O∗(A1/2) [15].

1 2 3 4 5 α+ β

0.25

0.5

C

1 2 3 4 β/α

0.25

0.5

C

Figure 1. Attack complexity for α = 1/2 and varying β, given by O∗(AC ) = O∗(pC/2).
Red: Complexity of previous best known attack.
Yellow: Classical complexity of our attack, optimized for minimal α+ β with α = 1/2.
Green: Quantum complexity of our attack, optimized for minimal α+ β with α = 1/2.
Blue: SIKE parameters.
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1 2 3 4 5 α+ β

0.25

0.5

C

1 2 3 4 β/α

0.25

0.5

C

Figure 2. Attack complexity as α and β vary, given by O∗(AC ) = O∗(pα·C ).
Red: Complexity of previous best known attack.
Yellow: Classical complexity of our attack, optimized for minimal β/α.
Green: Quantum complexity of our attack, optimized for minimal β/α.
Blue: SIKE parameters.

1 2 3 4 5 6 7 β/α

1

2

α+β

1 2 3 4 5 6 7 β/α

1

2

α+β

Figure 3. Possible choices of α, β for a classical attack (left) of complexity O∗(AC )
for C = 0.5, 0.4, 0.3, 0.2, 0.1 and a quantum attack (right) of complexity O∗(AC ) for
C = 0.5, 0.4, 0.3, 0.2, 0.1, allowing α to be arbitrarily small.

3.1 Improved balance of the polynomial-time attack

Recall that in Figures 1 and 2 polynomial-time attacks correspond to the hori-
zontal line at C = 0: with this in mind, we see an improvement from a balance
of B > A4 > p4 as in [21] to a balance of B > A3 > p

3
2 or B > A2 > p2. This

improvement comes from one simple trick, explained below.
Petit’s attack solves Problem 1 (in which we want to compute the isogeny φ)

by computing θ ∈ End(E0) and a, b, c, d ∈ Z such that there exists a small
smooth integer e for which

A2(pa2 + pb2 + c2) + d2 = deg(φ ◦ θ ◦ φ̂+ [d]) = Be. (2)

The restrictions B > A4 and A > p are to ensure that Petit’s algorithm to find
a solution (a, b, c, d, e) terminates in polynomial time and outputs a sufficiently
small, smooth e.

We show in the following theorem that (2) can be relaxed to

A2(pa2 + pb2 + c2) + d2 = deg(φ ◦ θ ◦ φ̂+ [d]) = B2e.
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This in turn allows us to relax the balance of A and B to B > A3 > p
3
2 or

B > A2 > p2 to ensure that we find a sufficiently small solution (a, b, c, d, e),
just by applying the same algorithm as Petit [21]. We do not repeat the algorithm
here for conciseness, as we give a more general algorithm in the next section that
also encompasses our non-polynomial time attacks; the balance of A and B is
also addressed in the analysis in the following section.

Theorem 3. Let A,B be coprime smooth integers. Let E0 be a supersingular
elliptic curve defined over Fp2 . Let φ be a secret isogeny of degree A from E0

to some curve E, and suppose that we are given the action of φ on E0[B].
Furthermore, assume we are given a trace-zero endomorphism θ ∈ End(E0), an
integer d coprime to B, and a smooth integer e such that

deg(φ ◦ θ ◦ φ̂+ [d]) = B2e.

Then we can compute φ in time O∗(
√
e).

Proof. Let τ = φ ◦ θ ◦ φ̂+[d]. Since the degree of τ is B2e, it can be decomposed
as τ = ψ′ ◦ η ◦ψ where ψ and ψ′ are isogenies of degree B and η is an isogeny of
degree e. The isogeny ψ can be computed from the given action on the B-torsion
as in Section 2.3.

To compute the isogeny ψ′, we claim that ker(ψ̂′) contains τ(E[B]) with
index dividing two. Thus, we can first evaluate τ on the B-torsion using the
given action of θ, then find ker(ψ̂′) by potentially brute-forcing a 2-isogeny, and
finally compute ψ′ from ψ̂′ and run the rest of the algorithm for each choice of
ψ′ the brute-force-of-η step yields.

We now prove the claim: First, ψ̂′ ◦ τ = [B] ◦ η ◦ ψ establishes that ker ψ̂′ ⊇
τ(E[B]). We show that ker(τ) + E[m] for any m > 2 dividing B. Suppose that
τ decomposes as τ ′ ◦ [m] for τ ′ ∈ End(E), m ∈ Z. Then m divides trace(τ) = 2d,
but note that gcd(m, 2d) | 2 since d was assumed coprime to B. Thus, the
subgroup of E[B] killed by τ is isomorphic to Z/B × T with T ≤ Z/2, which
proves |τ(E[B])| ∈ {B,B/2} and therefore [ker(ψ̂′) : τ(E[B])] | 2.

Finally, for each choice of ψ′, we attempt to recover the isogeny η by a generic
meet-in-the-middle algorithm, which runs in time O∗(

√
e) since e is smooth. Note

that if e ∈ O∗(1), then the entire algorithm runs in time polylog(p). ut

For (a neighbour of) the initial curve used in SIKE [12] we deduce the following:

Corollary 4. Let p ≡ 3 (mod 4) and E0 a curve with j-invariant 1728. Con-
sider coprime smooth integers A,B and suppose that we are given an integer
solution (a, b, c, d, e), with e smooth, to the equation

A2(pa2 + pb2 + c2) + d2 = B2e . (3)

Then we can solve Problem 1 with the above parameters in time O∗(
√
e).

Proof. The left side of (3) is the norm form of an index-4 suborder of End(E0).
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3.2 Non-polynomial time torsion-point attacks

In this section we generalize Petit’s polynomial-time attack to allow for any at-
tacks with a better complexity than O∗(A1/2), that is, attacks that improve upon
the best known generic attack. Recall that A = pα and B = pβ are the degrees
of Alice and Bob’s secret isogenies respectively, and that we measure the com-
plexity of the overall attack relative to A by writing it as O∗(AC ). The attack,
following the approach of Petit [21] together with the improvements described
above, naturally splits into two stages: First, the ‘precomputation’ phase (Al-
gorithm 1) in which a solution to (3) is computed—notably, this depends only
on the parameters (p,A,B) and not on the concrete public key under attack.
Second, the ‘online’ phase (Algorithm 2) in which we utilize said solution to
recover the secret isogeny as in Theorem 3 for a specific public key. Our modi-
fications to Petit’s method come in three independent guises, and the resulting
algorithm is shown in Algorithm 3:

– Precomputation phase

• Larger d: When computing a solution to Equation (3), we fix e and
then try up to Aδ values for d until the equation has solutions. This
allows us to further relax the constraints between A, B and p, at the
price of an exhaustive search of cost O∗(Aδ) = O∗(pαδ).

– Online phase

• Larger e:We search for a solution to Equation (3) where e is any smooth
number ≤ Aε with ε ∈ [0, 1], whereas in [21] the integer e was required to
be polynomial in p. This relaxes the constraints on A and B, at a price
of a O∗(e

1
2 ) = O∗(p

1
2αε) computation (to retrieve the endomorphism η

defined in the proof of Theorem 3).
• Smaller A: We first naïvely guess part of the secret isogeny and then

apply Petit’s techniques only on the remaining part for each guess. More
precisely, we iterate through isogenies of degree Aγ | A, with γ ∈ [0, 1],
and for each possible guess we apply Petit’s techniques on Problem 1
with A′ := A1−γ = pα(1−γ) in place of A. The Diophantine equation to
solve thus turns into

A′2(pa2 + pb2 + c2) + d2 = B2e . (4)
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Algorithm 1 (Solving the norm equation; precomputation)

Input: SIDH parameters p,A = pα, B = pβ .
Input: Attack parameters δ, γ, ε ∈ [0, 1], with Aγ | A.
Output: A solution (a, b, c, d, e) to (4) with A′ = A1−γ and e ≤ Aε smooth.
1: Pick a smooth number e ≤ Aε which is a square modulo A′2.
2: Compute d0 as the smallest positive integer such that d20 ≡ eB2 (mod A′2).
3: for d′ = 1, 2, ..., bAδc such that d0 +A′2d′ <

√
eB do

4: Let d = d0 +A′2d′.
5: Find the smallest positive integer c such that c2A′2 = eB2−d2 (mod p),

or continue if no such c exists.

6: if eB2 > d2 + c2A′2 then
7: Try finding (a, b) such that a2 + b2 = eB2−d2−c2A′2

A′2p .
If a solution is found, return (a, b, c, d, e).

Algorithm 2 (Recovering the secret isogeny; online phase)

Input: All the inputs and corresponding output of Algorithm 1.
Input: An instance of Problem 1 with those parameters, namely a curve E and

points P,Q ∈ E[B] where there exists a degree-A isogeny ϕ : E0 → E and
P,Q are the images by ϕ of a canonical basis of E0[B].

Output: An isogeny ϕ matching the constraints given by the input.
1: for ϕg : E → E′ an Aγ-isogeny do
2: Compute P ′ = [A−γ mod B]ϕg(P ) and Q′ = [A−γ mod B]ϕg(Q).
3: Use Theorem 3 to compute ϕ′ : E0 → E′ of degree A′ = A1−γ , assuming

that P ′ and Q′ are the images by ϕ′ of the canonical basis of E0[B],
or conclude that no such isogeny exists.

4: if ϕ′ is found then
5: return ϕ = ϕ̂g ◦ ϕ′

Algorithm 3 (Solving Problem 1)

1: Invoke Algorithm 1 and then Algorithm 2.
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Heuristic 1. For C ∈ [0, 0.5] Algorithm 3 can be expected to terminate success-
fully in time O∗(AC ) = O∗(pα·C ) when

α+ β ≥ 2− C and β/α ≥ 3− 2 · C (5)

or
α+ β ≥ 3− C

1 + C
and β/α ≥ 2− C (6)

or
α+ β ≈ 1 + 2

1− C

β/α− 1 + 2C
(7)

when run on a classical computer, and

α+ β ≥ 2− 2 · C and β/α ≥ 3− 4 · C (8)

or
α+ β ≥ 3− 2 · C

1 + 2 · C
and β/α ≥ 2− 2 · C (9)

or
α+ β ≈ 1 + 2

1− 2C

β/α− 1 + 4C
(10)

when run on a quantum computer.

We will justify Heuristic 1 using Heuristic 2 and Lemma 5.

Heuristic 2. We expect Steps 1 to 7 above to produce a solution to Equation (3)
with A′ instead of A if and only if

2β + αε > max {4α− 4αγ + 2αδ, 2 + 2α− 2αδ − 2αγ} .

Justification. By construction we expect d0 ≈ A′2, d ≈ A′2Aδ ≈ A2(1−γ)+δ and
eB2 ≈ AεB2, so the ‘for’ loop in Algorithm 1 will run for Aδ iterations if

2α(2(1− γ) + δ) < αε+ 2β.

The value c is then computed as a square root modulo p. We therefore expect
c ≈ p most of the time, and c ≈ pA−δ with a probability A−δ, namely a constant
number of times over all possible choices for d. For this particular c, we have
c2A′2 ≈ p2A−2δA′2 ≈ p2−2αδ+2α(1−γ) and we expect to satisfy the second ‘if’
condition in Step 6 when

2− 2αδ + 2α(1− γ) < αε+ 2β.

The two inequalities together give Heuristic 2.

Lemma 5. Assume Heuristic 2 is satisfied.

1. The complexity of Algorithm 1 is O∗(Aδ) classically and O∗(A
δ
2 ) quantumly.

12



2. The complexity of Algorithm 2 is O∗(Aγ+
1
2 ε) classically and O∗(A

1
2 (γ+ε))

quantumly.

Proof. The loop in Algorithm 1 has Aδ steps, each with polynomial complexity
(use Cornacchia for Step 9). Quantumly this search takes a square root of the
classical cost. The loop in Algorithm 2 has approximately Aγ steps, and the
main cost in each step is a meet-in-the-middle attack to recover an isogeny
of smooth degree e ≈ Aε. On a classical computer the cost is approximately
O∗(Aγe

1
2 ) = O∗(Aγ+

1
2 ε). Using quantum search to guess the correct degree-Aγ

isogeny ϕg and claw-finding routines for brute-forcing the degree-e isogeny in
Step 13 (assuming only square-root complexity for the latter [15]), Algorithm 2
has quantum complexity O∗(A

1
2γe

1
2 ) = O∗(A

1
2 (γ+ε)). ut

Justification of Heuristic 1. Set C = δ/2. To get (5), plug in α = 1/2, γ = 0,
and ε = 2δ into Heuristic 2 and Lemma 5. To get (6), plug in α ≈ 1

1+δ , γ = δ,
ε = 0. To get (8), plug in α = 1/2, γ = δ, and ε = 0. To get (9), plug in α ≈ 1

1+δ ,
γ = δ, and ε = 0. To get (7) and (10), plug in α < 1

1+δ , γ = δ, ε = 0, and
β ≈ 1 + α(1− 2δ).

3.3 Impact on variants of SIDH

The group key exchange protocol in [2] with k parties can be broken by solving
an instance of Problem 1 with A ≈ p

1
k and B ≈ p

k−1
k . Although our attacks

only apply for AB > p, from Figure 3, or equivalently Heuristic 1 Equations (7)
and (10), we see that as the imbalance increases, the attack applies for AB
approaching p. In particular, for a large number of parties k, the product AB
does not have to be much larger than p for an (exponential) torsion-point attack
to apply.

Recently, Costello [7] suggested to use parameters such that AB is a large
divisor of p2−1, and potentially as large as p2−1, for his B-SIDH scheme. Suppose
that parameters A and B are chosen with AB ≈ p2, then a mild imbalance can
lead to an attack: For example, by Heuristic 1 Equation (9), if B > A

5
3 then

we have a quantum attack of complexity O∗(A
1
6 ). See Figure 4 for an image of

the parameters in which torsion-point attacks apply to this scheme. There are
many parameter sets for B-SIDH in which the user is safe from our torsion-point
attacks, so all that is necessary is for care to be taken to avoid such imbalanced
cases.

Our attacks apply to, at best, edge cases of each scheme: in group key ex-
change typically AB < p (unless an unorthodox choice is made) and in B-SIDH
typically A ≈ B (unless an unorthodox choice is made). However, it is not in-
feasible that someone implementing a group key exchange protocol may borrow
ideas from B-SIDH in order to improve the efficiency for certain parties in the
group key exchange, especially given the scarcity of appropriate base field primes
for group key exchange following [2]. Such a combined group key exchange with
ideas from B-SIDH could easily yield a torsion-point attack: For example, even
for 3 parties, parameters with AB ≈ p2 lead to an quantum attack of complexity
O∗(A1/8), a fourth-root improvement over the generic attack.

13



3.4 Improvement prospects

In this section we consider how future improvements on the resolution of Equa-
tion (3) might impact the hardness of Problem 1. We first estimate the minimal
size of e for a given set of parameters (p,A,B).

Heuristic 3. Solutions (a, b, c, d, e) to Equation (3) can be expected to satisfy

e2 ≥ A3p
B2 .

Justification. We consider solutions with e ≤M for some fixed bound M . Since
all summands on the left-hand side are non-negative, they cannot be bigger than
the upper bound MB2 of the right-hand side. This yields the bounds

a ≤
√
MB
A
√
p ; b ≤

√
MB
A
√
p ; c ≤

√
MB
A ; d ≤

√
MB .

Hence the number of possible assignments of the variables e, a, b, c, d is about

M ·
√
MB
A
√
p ·

√
MB
A
√
p ·

√
MB
A ·

√
MB = M3B4

A3p .

Heuristically modeling both left- and right-hand side as uniformly random in
the range {0, . . . ,MB2}, this implies the expected number of solutions is about

M3B4

A3p /(MB2) = M2B2

A3p .

Solving this for one expected solution yields the claimed estimate.

Heuristic 4. Assume that we are given a solution to Equation 3 for parameters
as in Heuristic 3. Then we expect to solve Problem 1

1. in classical time O∗(1) when B > p
1
2A

3
2 ,

2. with classical complexity O∗(A
1
2 ) when B > p

1
2A

1
2 , and

3. with quantum complexity O∗(A
1
2 ) when B > p

1
2 .

Justification. As we are given a solution to Equation (3), we no longer need the
precomputation steps of Algorithm 3. Heuristic 3 gives the constraint

2(β + αε) ≥ 1 + 3α(1− γ), (11)

which we now use in place of Heuristic 2 in our analysis to optimally balance
parameters.

1. For polynomial-time attacks we take ε = γ = 0. Plugging into Inequality (11)
gives 2β > 1 + 3α, hence the result.

2. Increasing either γ or ε will contribute to relaxing Inequality (11), and by
Lemma 5 we need γ + 1

2ε <
1
2 . Substituting γ for 1

2 (1− ε) in (11), gives

2β > 1 + α
(
3
2 −

ε
2

)
.

Taking ε ≈ 1, γ = 0 this simplifies to 2β > 1 + α, hence the result.
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3. Increasing either γ or ε will contribute to relaxing Inequality (11), and by
Lemma 5 we need γ + ε < 1. Substituting γ for 1− ε in (11), we get

2β > 1 + αε.

Taking ε = 0, γ ≈ 1
2 this simplifies to 2β > 1, hence the result. ut

Remark 6. In the group key exchange protocol [2] with k parties we have A ≈ p 1
k

and B ≈ p
k−1
k . A better solver for Equation (3) could give a quantum attack

when k > 2, a classical attack when k > 3, and a (classical) polynomial-time
attack when k > 5.

Remark 7. In contexts where several instances of Problem 1 need to be solved
with the same parameters, Algorithm 1 only needs to be executed once. In this
case the algorithm’s parameters can be tweaked to reduce the average cost per
instance.

1 2 3 α

1

2

3

4
β

1 2 3 α

1

2

3

4
β

Figure 4. Performance of our current attacks (left) and hypothetical attacks assuming
a polynomial-time solver for Equation 3 (right). Here A ≈ pα and B ≈ pβ . Parameters
(α, β) above the red, orange and yellow curves are parameters admitting a polynomial-
time attack, an improvement over the best classical attacks, and an improvement over
the best quantum attacks respectively. Parameters below the dashed lines are those
allowing AB | (p− 1) and AB | (p2 − 1) as in [12, 13, 7].

4 Insecure instances

In this section we give various new instances for which we can solve Problem 1.
Recall that we denote by A ≤ B the degrees of Alice’s and Bob’s secret isogenies
respectively, and we set A ≈ pα and B ≈ pβ . For all the instances studied in
Section 3, for our attack methods to give an improvement on the complexity of
meet-in-the-middle we need AB > p (see Figures 1, 2, 3, or 4). Furthermore, we
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only expect solutions to Equation 3 with polynomially small e10 when B > A3 >
p

3
2 or B > A2 > p2. However, so far we have only considered cases where the

starting curve has j-invariant 1728. In Section 4.1 we explore the question: for
given A,B do there exist other starting curves for which we can solve Problem 1
with a better balance? We will call such curves insecure curves (which we make
more precise in Definition 8), and quantify the number of insecure curves in
Section 4.3.

In Sections 4.4 and 4.5, we also consider insecure choices for p, A, and B for
which we can solve Problem 1 starting from the curve with j-invariant 1728.

4.1 Insecure curves

This section introduces the concept of insecure curves and how to find such
curves. Roughly speaking, these are curves which, if used as starting curves
for the SIDH protocol, would be susceptible to an attack utilizing the given
action on torsion points under only moderately imbalanced parameters A,B;
in particular, an imbalance which is independent of p. In fact, when we allow
for non-polynomial time attacks we get an asymptotic improvement on the best
known attack for balanced, SIDH parameters (starting of course from an insecure
curve, unlike in SIKE). If this attack was not known, these curves could have been
utilized as backdoor curves, for example by suggesting the use of such a curve
as a standardized starting curve. The notion of insecure curves is dependent on
the parameters A,B, which motivates the following definition:

Definition 8. Let p be a prime number and A,B be coprime positive integers.
Let E0 be a supersingular elliptic curve defined over Fp2 . Then we say that E0

is (A,B,C )-insecure if for any secret isogeny φ : E0 → E of degree A we can
compute φ in time O∗(AC ) given (E,A,B) and the action of φ on E0[B]. If we
can compute φ in polynomial time, then E0 is called (A,B)-insecure.

We summarize the complexity of our attack on SIDH instances starting at
insecure curves in Figure 5; this figure follows from Theorem 16. Note that these
attacks do apply to balanced parameters with AB ≈ p and give a significant
improvement on the meet-in-the-middle claw-finding complexity for these cases.
We stress however that this relies on using a weak starting curve and hence does
not give an attack on SIKE when using the proposed (neighbour of a) starting
curve with j-invariant 1728, unless there happens to be short path from this
starting curve to an insecure curve.

Algorithm 4 computes (A,B)-insecure curves in heuristic polynomial time,
under the assumption that we have a factoring oracle (see Theorem 9).

Theorem 9. For every A,B with the property that B > A2, given an oracle for
factoring, Algorithm 4 succeeds in heuristic polynomial time. Furthermore, the
representation of θ is efficient, i.e., one can evaluate θ on any point of the curve
in polynomial time.
10 Recall that this is necessary to obtain a polynomial-time online cost in our attack.
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1 2 3 4 β/α

0.25

0.5

C

Figure 5. Balance of A = pα and B = pβ for which we can find a (A,B,C )-insecure
curve E0 in time O∗(AC ). An SIDH instance starting at E0 has security O∗(AC ) against
our attack.
Red: Complexity of previous best known attack.
Yellow: Classical complexity of our attack when starting at a (A,B,C )-insecure curve.
Green: Quantum complexity of our attack when starting at a (A,B,C )-insecure curve.
Blue: SIKE parameters.
Orange: SIKE-like parameters, but starting instead from an (A,B,C )-insecure curve.

Algorithm 4 Computing (A,B)-insecure elliptic curves
Input: A prime p ≡ 3 (mod 4) and smooth coprime integers A,B with B > A2.
Output: A supersingular elliptic curve E0/Fp2 which is (A,B)-insecure, and

θ, d, e that satisfy the conditions of Theorem 3.
1: Set e := 1.
2: Find an integer d such that d2 ≡ B2e (mod A2).
3: if d is not coprime to B then
4: Set e to the next square and go to Step 2.
5: if B2e−d2

A2 is square modulo p then
6: Find rational a, b, c such that pa2 + pb2 + c2 = B2e−d2

A2 .
7: else
8: Set e to the next square and go to Step 2.
9: Set θ = aij+ bj+ ci.

10: Compute a maximal order O ⊆ Bp,∞ containing θ.
11: Compute an elliptic curve E0 whose endomorphism ring is isomorphic to O.

return j(E0), θ, d, e.

Remark 10. It is important that θ has an efficient representation as it might not
have a smooth degree.

Remark 11. This (im)balance is sufficient to break (in polynomial time) a variant
of the group key exchange protocol [2] for three or more parties starting at any
(A,B)-insecure curve (this does not break the protocol proposed in [2] as there
the starting curve has j-invariant 1728).

Before proving Theorem 9 we need the following easy lemma:
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Lemma 12. Let p be a prime congruent to 3 modulo 4. Let D be a positive
integer. Then the quadratic form Q(x1, x2, x3, x4) = px21 + px22 + x23 −Dx24 has
a nontrivial integer zero if and only if D is a quadratic residue modulo p.

Proof. The proof is essentially a special case of [25, Proposition 10] but we give
a brief sketch of the proof here. If D is a quadratic residue modulo p, then
px21 + px22 + x23 −Dx24 has a solution in Qp by setting x1 = x2 = 0, x4 = 1 and
applying Hensel’s lemma to the equation x23 = D. The quadratic form Q also has
local solutions everywhere else (the 2-adic case involves looking at the equation
mod 8 and applying a 2-adic version of Hensel’s lemma). If D is not a quadratic
residue modulo p then one has to choose x3 and x4 to be divisible by p. When
solving the equation Q(x1, x2, x3, x4) one divides by p, then the equation mod p
reduces to x21+x22q ≡ 0 (mod p). This does not have a solution as p is congruent
to 3 modulo 4. Finally, one can show that this implies that Q does not have a
zero in Qp. ut

Proof (of Theorem 9). The main idea is to apply Theorem 3 in the following
way: using Algorithm 4, we find integers D, d, and e, with e polynomially small
and D a quadratic residue mod p, such that A2D + d2 = B2e, and an element
θ ∈ Bp,∞ of trace zero and such that θ2 = −D. We then construct a maximal
order O ⊆ Bp,∞ containing θ and an elliptic curve E0 with End(E0) ∼= O.

Most steps of Algorithm 4 obviously run in polynomial time, although some
need further explanation. We expect d2 ≈ A4 since we solved for d modulo B2,
and we expect e to be small since heuristically we find a quadratic residue after a
small number of tries. Then the right-hand-side in Step 6 should be positive since
B > A2, so by Lemma 12 step 6 returns a solution using Simon’s algorithm [25],
assuming an oracle for factoring B2e−d2

A2 . For Step 10, we can apply either of
the polynomial time algorithms [11, 26] for finding maximal orders containing
a fixed order in a quaternion algebra, which again assume a factoring oracle.
Step 11 can be accomplished using the heuristically polynomial time algorithm
from [22, 9] which returns both E0 and an efficient representation of θ—the
endomorphism θ has large degree, so its representation as a rational function is
large, but it can be represented compactly as a linear combination of smooth-
degree endomorphisms. ut

Remark 13. The algorithm uses factorization twice. In Section B we discuss
how one can ensure in practice that the numbers to be factored have an easy
factorization.

Remark 14. Note that Theorem 9 is not an if-and-only-if statement. In particu-
lar, there might exist A and B and an elliptic curve E0 which is (A,B)-insecure
even if the above inequalities are not satisfied.

Remark 15. Weak curves also have a constructive application: An improvement
on the recent paper [8] using Petit’s attack to build a one-way function ‘SÉTA’.
In this scheme, the secret key is a secret isogeny to a curve Es that starts from
the elliptic curve with j-invariant 1728 and the message is the end point of a
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secret isogeny from Es to some curve Em, together with the image of some
torsion points. The reason for using j-invariant 1728 is in order to apply Petit’s
attack constructively. One could instead use a weak curve; this provides more
flexibility to the scheme as one does not need to disclose the starting curve and
the corresponding norm equation is easier to solve.

4.2 Non-polynomial time attacks for insecure curves

In this section we give a further generalization of Algorithm 3 to utilize some
extra techniques available to us when the starting curve E0 is an insecure curve.
Recall, as above, that A ≤ B are the degrees of Alice’s and Bob’s secret isogenies
respectively, and A ≈ pα and B ≈ pβ . Recall the definition of an (A,B,C )-
insecure curve E0 from Definition 8; in particular that such a curve gives rise to
a torsion point attack of complexity O∗(AC ).

We show in this section that for α ≈ β, we can modify Algorithm 4 to
compute a classically (A,B, 25 )-insecure curve or a quantumly (A,B, 14 )-insecure
curve. We also show how the attack on insecure curves improves for imbalanced
parameters; see Figure 5 for a comparison of previous results with Theorem 16.

Theorem 16. Following our notation convention, we write O∗(A0) time for
(heuristic) polynomial time and similarly (A,B,≈ 0)-insecure curve for (A,B)-
insecure curve.

– Let C ∈ [0, 0.4]. For every A, B such that B > A2− 5
2 ·C , a classical adversary

can compute a (A,B,C )-insecure curve in time O∗(AC ), assuming an oracle
for factoring.

– Let C ∈ [0, 0.25]. For every A, B such that B > A2−4·C , a quantum ad-
versary can compute a (A,B,C )-insecure curve in heuristic polynomial time.

Proof. Modify Algorithm 4 as follows:

– Assume that we will guess part of the isogeny with degree Aγ | A, and use
A′ = A1−γ instead of A.

– Instead of starting from e = 1, start the loop at e such that B2e > A′4.
– Choose Aε

′
random values of e ≤ Aε (note e is not necessarily an integer

square) until there exists d such that d2 = B2e mod (A′)2,

B2e− d2 > 0, (12)

and B2e− d2 is a square modulo p. Once these values of d and e are found,
continue like in Algorithm 4, Step 6.

The attacker can now follow Algorithm 2 to compute the secret isogeny, using
the endomorphism θ from Algorithm 4 for the necessary precomputed values.

We now analyze the complexity of running the modified Algorithm 4 followed
by Algorithm 2. The two quadratic residuosity conditions are heuristically satis-
fied one in four times, so we ignore them in this analysis. The cost of Algorithm 4
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modified in this way becomes O∗(Aε
′
) for a classical adversary and O∗(A

ε′
2 ) for

a quantum adversary.
Note also that by construction we have e ≤ Aε, so the cost of running Algo-

rithm 2 will be O∗(Aγ+
ε
2 ) for a classical adversary and O∗(A

γ+ε
2 ) for a quantum

adversary, following the same reasoning as in the complexity analysis of Algo-
rithm 3.

We now look at the conditions for existence of a solution in Algorithm 4.
Note that d is a priori bounded by (A′)2 = A2(1−γ). However, after trying Aε
values for e we may hope to find some d bounded by A2(1−γ)−ε. To satisfy (12)
we need

2β > α(4− 4γ − 2ε′ − ε),

and by construction we also need ε′ ≤ ε.
For a classical adversary, setting ε = ε′ = 2γ = C gives the result. For a

quantum adversary, setting ε = ε = 0 and γ = 2 · C gives the result. ut

Remark 17. We found these choices for ε, ε′, γ by solving the following optim-
ization problems for α = β = 1

2 , so at least in that case (which corresponds
to SIKE) we expect there to be no better choice with respect to overall com-
plexity: For the best classical attack when α = β = 1

2 we solved the following
optimization problem:11

min
4γ+2ε′+ε≥2,

ε≥ε′

max
{
ε′, γ +

ε

2

}
.

For the best quantum attack when α = β = 1
2 we solved the following optimiz-

ation problem:

min
4γ+2ε′+ε≥2

ε≥ε′

max

{
ε′

2
,
γ + ε

2

}
.

4.3 Counting insecure curves

Having shown how to find insecure curves and how to exploit them, a natural
question to ask is how many of these curves we can construct using the methods
of the previous section. Recall that the methods above search for an element
θ ∈ Bp,∞ with reduced norm D. Theorem 18, due to Onuki [20], suggests they
can be expected to produce exponentially (in logD) many different maximal
orders, and using Lemma 19 we prove this rigorously for the interesting case of
(A,B)-insecure curves with AB ≈ p and A2 < B < A3 (cf. Theorem 9).

We first recall some notation from [20]. The set ρ(È `(O)) consists of the
reductions modulo p of all elliptic curves over Q with complex multiplication
by O. Each curve E = E mod p in this set comes with an optimal embed-
ding ι : O ↪→ End(E), referred to as an ‘orientation’ of E, and conversely, [20,
Prop. 3.3] shows that—up to conjugation—each oriented curve (E, ι) defined
11 This can be done for example using https://online-optimizer.appspot.com/.
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over Fp is obtained by the reduction modulo p of a characteristic-zero curve; in
other words, either (E, ι) or (E(p), ι(p)) lies in ρ(È `(O)). Onuki proves:

Theorem 18 ([20, Theorem 3.4]). Let K be an imaginary quadratic field
such that p does not split in K, and O an order in K such that p does not divide
the conductor of O. Then the ideal class group cl(O) acts freely and transitively
on ρ(È `(O)).

Thus, it follows from well-known results about imaginary quadratic class num-
bers [24] that asymptotically, there are h(−D) ∈ Ω(D1/2−ε) many insecure
elliptic curves counted with multiplicities given by the number of embeddings
of O. However, it is not generally clear that this corresponds to many distinct
curves (or maximal orders). As an (extreme) indication of what could go wrong,
consider the following: there seems to be no obvious reason why in some cases
the entire orbit of the group action of Theorem 18 should not consist only of one
elliptic curve with lots of independent copies of O in its endomorphism ring.

We can however at least prove that this doesn’t always happen. In fact, in
the case that D is small enough relative to p, one can show that there cannot
be more than one embedding of O into any maximal order in Bp,∞, implying
that the h(−D) oriented supersingular elliptic curves indeed must constitute
h(−D) ≈

√
D distinct quaternion maximal orders:

Lemma 19. Let O be a maximal order in Bp,∞. If D ≡ 3, 0 (mod 4) is a pos-
itive integer smaller than p, then there exists at most one copy of the imaginary
quadratic order of discriminant −D inside O.

Proof. This follows readily from Theorem 2’ of [16].

This lemma together with Theorem 9 suffice to prove that there are Θ(h(−D))
many (A,B)-insecure maximal orders under the restrictions that B > A2 and
D < p. Consider the case (of interest) in which AB ≈ p: Following the same line
of reasoning as in the proof of Theorem 9 we have that B2/A2−A2 ≈ D, which
if D < p ≈ AB implies that B / A3. Hence, as advertised above, Lemma 19
suffices to prove that there are Θ(h(−D)) many (A,B)-insecure maximal orders
under the restriction that AB ≈ p and roughly A2 < B < A3. For larger choices
of B, it is no longer true that there is only one embedding of O into a quaternion
maximal order: indeed, at some point h(−D) will exceed the number Θ(p) of
available maximal orders, hence there must be repetitions. While it seems hard
to imagine cases where the orbit of cl(Z[θ]) covers only a negligible number of
curves (recall that θ was our endomorphism of reduced norm D), we do not
currently know how (and under which conditions) to rule out this possibility.

Remark 20. Having obtained any one maximal order O that contains θ, it is
efficient to compute more such orders (either randomly or exhaustively): For any
ideal a in Z[θ], another maximal order with an optimal embedding of Z[θ] is the
right order of the left ideal I = Oa. (One way to see this: a defines a horizontal
isogeny with respect to the subring O; multiplying by the full endomorphism ring
does not change the represented kernel subgroup; the codomain of an isogeny
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described by a quaternion left ideal has endomorphism ring isomorphic to the
right order of that ideal. Note that this is similar to a technique used by [6] in
the context O ⊆ Q(π).)

4.4 Insecure p for given A and B with starting vertex 1728

Another way of constructing insecure instances of an SIDH-style key exchange
is to keep the starting vertex as j = 1728 (or close to it), keep A and B smooth
or powersmooth but not necessarily only powers of 2 and 3 (as in SIKE), and
construct the base field prime p to make j = 1728 into an (A,B)-insecure curve.

An easy way of constructing such a p is to perform Steps 1 and 2 of Algo-
rithm 4, and then let D := B2e−d2

A2 . Allowing p to be a variable, we can solve

D = p(a2 + b2) + c2

in variables a, b, c, p ∈ Z, p prime, as follows. Factor D− c2 for small c until the
result is of the form pm where p is a large prime congruent to 3 modulo 4 and m
is a number representable as a sum of squares.12

Then θ = aj + bk + ci is in the endomorphism ring of the curve with j =
1728, hence this curve is (A,B)-insecure for such primes p. (Note that, in this
construction, we cannot expect to preserve a relationship such as p = ABf − 1,
for some small f ∈ Z.)

As an (unbalanced) example, let us choose A = 2216 and B = 3300 and e = 1.
Then we can choose d to be B modulo A2. Let D = B2−d2

A2 , and now produce two
primes. First we choose c = 53, thenD−c2 is a prime number (i.e., a = 1, b = 0).
For the second instance let c = 355, then D− c2 is 5 times a prime number (i.e.,
a = 2, b = 1). Both of these primes are congruent to 3 modulo 4.

For a powersmooth example, choose A to be the product of every second
prime from 3 up to 317, and B to be the product of the other odd primes ≤ 479.
With e = 4, we can choose d to equal B modulo A2 and D as described. Then
D − 1532 is a prime congruent to 3 modulo 4 (i.e. a = 1, b = 0).

4.5 Insecure A ≈ B for j = 1728

For A ≈ B, it seems difficult to find (A,B)-insecure curves. However, in this
section we show that certain choices of (power)smooth parameters A and B
allow us to find f such that j = 1728 is insecure over Fp with p = ABf − 1.

One approach to this is to find Pythagorean triples A2+d2 = B2 where A and
B are coprime and (power)smooth; these are insecure in the sense of the previous
sections, with e = c = 1, a = b = 0 and j = 1728. With this construction, we
can then use any p ≡ 3 (mod 4), in particular one of the form p = ABf − 1.

Problem 2. Find Pythagorean triples B2 = A2 + d2 such that A and B are
coprime and smooth (or powersmooth).
12 Some choices of A and B result in D ≡ 2 (mod 4) which is an obstruction to this

method.
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Pythagorean triples can be parameterized in terms of Gaussian integers. To
be precise, primitive integral Pythagorean triples a2 = b2 + c2 are in bijection
with the Gaussian integers z = m + ni with gcd(m,n) = 1 via the correspond-
ence (a, b, c) = (N(z),Re(z2), Im(z2)). The condition that m and n are coprime
is satisfied if we take z to be a product of split Gaussian primes, i.e. z =

∏
i wi

where N(w) ≡ 1 (mod 4) is prime, taking care to avoid simultaneously includ-
ing a prime and its conjugate. Thus the following method applies provided that
B is taken to be an integer divisible only by primes congruent to 1 modulo 4,
and B > A.

In order to guarantee that B = N(z) is powersmooth, one may take many
small wi. In order to guarantee that B is smooth, it is convenient to take z = wk

for a single small Gaussian prime w, and a large composite power k.
It so happens that the sequence of polynomials Re(zk) in variables n and m

(recall z = n+mi) factors generically into relatively small factors for composite
k, so that, when B2 = A2 + d2, we can expect that A is frequently smooth or
powersmooth. In practice, running a simple search using this method, one very
readily obtains example insecure parameters:

B = 5105

A = 22 · 11 · 19 · 29 · 41 · 59 · 61 · 139 · 241 · 281 · 419 · 421 · 839 · 2381 · 17921
· 21001 · 39761 · 74761 · 448139 · 526679 · 771961 · 238197121

d = 32 · 13 · 79 · 83 · 239 · 307 · 2801 · 3119 · 3361 · 3529 · 28559 · 36791 · 53759
· 908321 · 3575762705759 · 23030958433523039

For this example, if we take p = 105AB − 1, we obtain a prime which is 3
modulo 4. Note that here B ≈ 2244 and A ≈ 2238. Many other primes can easily
be obtained (replacing 105 with 214, 222, etc).

Remark 21. When choosing parameter sets to run B-SIDH [7], if the user is very
unlucky, they could hit upon an instance of a weak prime. With this in mind, it
would be prudent to check that a given combination of A, B, and p doesn’t fall
into this category before implementing such a B-SIDH instance.

5 Conclusion

Our results do not affect the security of SIKE, but we show that (under some
heuristics) Problem 1 is easier than the ‘pure’ isogeny problem in far more gen-
erality than previously known [21], and we give attacks that may apply to some
instantiations of SIDH variants [13, 7]. In particular, we have demonstrated, for
A and B the degrees of Alice’s and Bob’s secret isogenies respectively:

1. A heuristic polynomial-time attack when B > A2 > p2 or B > A3 > p
3
2 .

2. A heuristic argument that even a mild imbalance of parameters leads to a
improvement over the generic meet-in-the-middle or claw-finding attack.
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3. A heuristic argument that smaller solutions to Equation (3) should exist,
and that if future work yields an efficient method to find these solutions,
they can be exploited to get an attack for a further improved balance (in
particular including parameters satisfying AB | (p+1)).

4. A heuristic polynomial-time torsion-point attack on SIDH instances using an
insecure starting curve with B > A2, and an attack of classical complexity
O∗(p

2
5 ) and quantum complexity O∗(p

1
8 ) on SIDH instances using an insecure

starting curve with B ≈ A ≈ p 1
2 .

5. An argument that there are exponentially many insecure curves, and a proof
when A3 > B > A2.

6. The existence of special primes p, together with appropriate A and B, for
which torsion-point attacks are especially effective, even when using balanced
parameters A ≈ B and/or using a starting curve with j-invariant 1728.

As a result of this work, we recommend against instantiating supersingular-
isogeny algorithms with imbalanced parameters. Furthermore, caution is advised
if using a starting curve or base field prime of unknown or suspicious origin.
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A Additional examples of insecure primes

In the examples in Subsection 4.4, we let A = 2216, B = 3300, e = 1. We let d to
be B modulo A2, and D = B−d2

A2 , where

D = 16896420333246701930066245846797285820453043046692612 ...

... 34160275705261296847619733634147787139416180071370253 ...

... 151875694583397987452872630971686172791991823800180.

We first choose c = 53, then D − c2 is a prime number (i.e., a = 1, b = 0),

p = 16896420333246701930066245846797285820453043046692612 ...

... 34160275705261296847619733634147787139416180071370253 ...

... 151875694583397987452872630971686172791991823797371.

When c = 355, then D − c2 is 5 times a prime number, namely,

p = 33792840666493403860132491693594571640906086093385224 ...

... 68320551410522593695239467268295574278832360142740506 ...

... 30375138916679597490574526194337234558398364734831.

Both of these primes are congruent to 3 modulo 4.

We also give additional examples of Pythagorean triples as described in Sec-
tion 4.5. In particular, let

B = 1760,

A = 25 · 32 · 52 · 7 · 11 · 13 · 19 · 23 · 41 · 47 · 59 · 61 · 101 · 181 · 191 · 199 · 239 · 421
· 541 · 659 · 769 · 2281 · 16319 · 30119 · 285599 · 391679 · 1039081 · 1109159

For this, 177AB − 1 ≡ 3 (mod 4) is prime. Finally, a powersmooth example is
given by

B = 58 · 134 · 174 · 294 · 374 · 414 · 534 · 614 · 734 · 894 · 974,
A = 24 · 3 · 7 · 11 · 23 · 31 · 127 · 199 · 811 · 2903 · 155383 · 842041 · 933199 · 1900147

· 8333489 · 21629743 · 30583723 · 69375497

For this, 19AB − 1 ≡ 3 (mod 4) is prime.

B Implementation

In this section we report on computations regarding Algorithm 4 for some con-
crete parameters. We chose parameters A = 2216, B = 3300, p = AB · 277 − 1.
It is easy to see that we can choose e = 1 and d equal to B modulo A2. Now we
need to factor B

2−d2
A2 . The way we chose d makes it easy as B

2−d2
A2 = B−d

A2 (B+d).
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This is something which applies in other cases as well, and to make sure that
factorization is easy one can try choices of d until factoring B+d is feasible (e.g.,
B + d is a prime number). For completeness, the factorization of B

2−d2
A2 is

22 · 5 · 23 · 359 · 2089 · 39733 · 44059 · 74353 ·
37628724343042581190433455539389264355404578964704347 ...

... 59039416676945740598806299461624575502089058332472952 ...

... 9427908921244148421914499463.

Once the factorization is known one can apply Simon’s algorithm, implemen-
ted in Pari/GP [3] as qfsolve(), to compute a rational solution to the equation
pa2 + pb2 + c2 = B2−d2

A2 . A rational solution is given by

a = 32319123496536786843254458765608553095663568521872334 ...

... 297530315749275438736572/z

b = 37902893736016880777193854875253045553175457573067191 ...

... 2406340378400674751175560/z

c = 85437128777417136022423941321585505761757160615798739 ...

... 72406075696054195168847143870020389324092617191284723 ...

... 80905798835064955553407208320599901478282089806543945 ...

... 266931422175906643935346/z,
where
z = 87978348577011335417453239649099382225650021375809220 ...

... 4820354441211407993264179570949123846469170675585119.

Once θ is computed one has to compute an order O0 which contains θ. This
can be accomplished in various ways. One way is to find a θ′ such that θθ′+θ′θ =
0 and θ′2 is an integer multiple of the identity. This amounts to finding the kernel
of the linear map η 7→ θη + ηθ, which is a 2-dimensional vector space over Q
(i.e., one chooses an element in this kernel and then multiplies it with a suitable
integer). It is preferable to construct O0 in this way so that the discriminant of
the order is the square of the reduced norm of θθ′. In particular, if we choose
a θ′ whose norm is easy to factor, then the discriminant is also easy to factor.
One has a lot of flexibility in choosing θ′ and lattice reduction techniques help
finding one which is sufficiently small and has an easy factorization. Note that
the norm of θ′ will always be divisible by p since the discriminant of every order
is a multiple of p (and the norm of θ is coprime to p). Finally, one can compute
a maximal order containing O0 using MAGMA’s [4] MaximalOrder() function.

C Open problem: application to (less) imbalanced SIKE

Our attacks from Section 4.1 and 4.3 apply to insecure curves with balanced
parameters. It is an interesting question whether these can be used to solve
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Problem 1 starting from the curve with j-invariant 1728: a natural approach
here is to translate torsion information from the starting curve to an insecure
curve, solve Problem 1 on the insecure curve and use it to find the secret isogeny.
We state two easy propositions on when this is possible:

Proposition 22. Suppose that E is an (A,B,C )-insecure curve. Suppose fur-
thermore that there is an isogeny of degree M from E0 (the curve with j-in-
variant 1728) to E for which M and B are coprime. Then any SIDH private
key (for public parameters A,B and starting curve E0) can be recovered in time
O∗(M2AC ).

Proposition 23. Let E be an (A,B′)-insecure supersingular elliptic curve. Let
E0 be the elliptic curve with j-invariant 1728, and assume an isogeny ψ : E0 → E
of smooth degree d is given. Then for every B for which (B′ · d) | B the curve
E0 is (A,B)-insecure.

Proposition 22 can only be applied if M is small. If B is a power of 3, then
Proposition 23 can be applied if one can find a maximal order where the cor-
responding elliptic curve is close to the starting curve in the 3-isogeny graph.
If we are (un)lucky and there is a sufficiently insecure curve close to the el-
liptic curve with j-invariant 1728, then extending the techniques from [18] could
potentially lead to attacks against imbalanced SIDH, but with that imbalance
being independent of p.

Proof (of Proposition 23). First we show how to compute a basis of the B′-
torsion of E, which lies in the image of ψ. Let N = B′ · d. The conditions of the
propositions imply that N divides B. Let Pd be a generator of the kernel of ψ
and let PN ∈ E0 be a point of order N such that Pd = B′PN (such a PN can be
computed efficiently as B′ is smooth). Compute QN ∈ E0[N ] such that PN , QN
are a basis of the N -torsion. The order of ψ(PN ) is B′ as B′ψ(PN ) = ψ(Pd) = 0

and ψ̂ ◦ ψ = [d]. Similarly, the order of ψ(QN ) is a multiple of B′, thus there
exists an integer m such that the order of ψ(mQN ) is exactly B′. We show
that ψ(PN ) and ψ(mQN ) are Z/B′Z-independent and thus are a basis of E[B′].
Suppose there exist α, β ∈ Z/B′Z such that

αψ(PN ) + βψ(mQN ) = 0, (13)

then αPN + mβQN is in the kernel of ψ. Thus αPN + mβQN = B′γPN for
some γ ∈ Z/B′Z, which happens if and only if α ≡ B′γ (mod N) and mβ ≡ 0
(mod N). Now we are done since this implies that α ≡ 0 (mod B′), which by
(13) implies that βψ(mQN ) = 0, hence also β ≡ 0 (mod B′) (since the order of
ψ(mQN ) was B′).

Let φ : E0 → E be an isogeny of degree A. Then even though φ is not known
to us we can compute the isogeny ψ′ : E → E′ such that the kernel of ψ′ is
generated by φ(Pd) since d divides B. Suppose the kernel of φ is generated by
a point A (which is not known). Let φ′ : E → E′ be the isogeny whose kernel
is generated by ψ(A). If we can compute φ′ then we can also compute φ since
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the degree of ψ and φ are coprime (so [d]A generates the same subgroup as A).
In the first paragraph we have shown that we can compute the action of φ′ on
the B′-torsion of E. We can now compute φ′ in polynomial time since E was
(A,B′)-insecure (and the order of ψ(A) is A since A and d are coprime).
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