Two-Round Oblivious Linear Evaluation from
Learning with Errors

Pedro Branco* Nico Déttling' Paulo Mateus*

Abstract

Oblivious Linear Evaluation (OLE) is a simple yet powerful cryp-
tographic primitive which allows a sender, holding an affine function
f(x) = a+ bx over a finite field, to let a receiver learn f(w) for a w
of the receiver’s choice. In terms of security, the sender remains oblivi-
ous of the receiver’s input w, whereas the receiver learns nothing beyond
f(w) about f. In recent years, OLE has emerged as an essential build-
ing block to construct efficient, reusable and maliciously-secure two-party
computation.

In this work, we present efficient two-round protocols for OLE based on
the Learning with Errors (LWE) assumption. Our first protocol for OLE
is secure against malicious unbounded receivers and semi-honest senders.
The receiver’s first message is reusable, meaning that it can be reused over
several executions of the protocol, and it may carry information about a
batch of inputs, and not just a single input. We then show how we can
extend the above protocol to provide malicious security for both parties,
albeit at the cost of reusability.

1 Introduction

Oblivious Linear Evaluation (OLE) is a cryptographic primitive between a
sender and a receiver, where the sender inputs an affine function f(z) = a + bx
over a field F, the receiver inputs an element w € [, and in the end the receiver
learns f(w). The sender remains oblivious of the receiver’s input w and the
receiver learns nothing beyond f(w) about f. OLE can be seen as a general-
ization of the well-known Oblivious Transfer (OT) primitiveE In fact, just as
secure computation of Boolean circuits can be based on OT, secure computation
of arithmetic circuits can be based on OLE [GMWST, TPS09].

In recent years, OLE has emerged as one of the most promising avenues
to realize efficient two-party secure computation in different settings [IPS09]

*SQIG - IT, IST - University of Lisbon.

fHelmholtz Center for Information Security (CISPA).

¥SQIG - IT, IST - University of Lisbon.

Tt is easy to see that, if we consider the affine function f : {0,1} — {0,1} such that
f(b) = mg + b(m1 — mo), OLE trivially implements OT.

ADIT17, [DGN™17, BCGIIS, [HIMVTI9, ICDIT19]. Interestingly, OLE has found
applications, not just in the secure computation of generic functions, but also in
specific tasks such as Private Set Intersection [GN19)[GS19] or Machine Learning
related tasks [MZ17, JVCIS].

One aspect which sets OLE apart from OT is reusability, meaning that
the first message of a protocol is reusable across multiple executions. While
two-party reusable non-interactive secure computation (NISC) is impossible in
the OT-hybrid model |[CDIT19|, reusable NISC for general Boolean circuits
is known to be possible in the (reusable) OLE-hybrid model assuming one-way
functions [CDIT19]. The result stated above is meaningful only if we have access
to a reusable two-round OLE protocol. However, the only efficient realizations
of this primitive are based on the Decisional Composite Residuosity (DCR)
and the Quadratic Residuosity assumptions [CDI"19] and thus insecure in the
presence of a quantum computer.

Given this state of affairs and the importance of OLE in constructing two
-party secure computation protocols, we ask the following question:

Can we build efficient and reusable two-round OLE protocols from (presumed)
post-quantum hardness assumptions?

1.1 Owur Results

In this work, we partially answer the question above. Specifically, we present
two simple, efficient and round-optimal protocols for OLE based on the hardness
of the Learning with Errors (LWE) assumption |[Reg05] with super-polynomial
modulus-to-noise ratio, which is conjectured to be post-quantum secure.

Before we start we clarify what type of OLE we obtain. OLE comes in many
flavors, one of the most useful being vector OLE where the sender inputs two
vectorsa =a,b=Db € Fg and the receiver obtains a linear combination of them
z=a+wbe€ IE‘f; [BCGIIg|. For simplicity, we just refer to this variant as OLE.

Both of our protocols implement the functionality in just two-rounds and
have the following properties:

e Our first protocol (Section) for OLE achieves statistical security against
a corrupted receiver and computational semi-honest security against a
corrupted sender. Additionally, the receiver’s first message is reusable in
the sense of |CDIT19]. This means that the first message sent by the
receiver can be reused across several runs of the protocol. Additionally,
we show how we can extend this protocol to implement batch reusable
OLE, a functionality similar to OLE where the receiver can input a batch
of values {z;};c[, instead of just one value.

e We then show how to extend the above protocol to provide malicious se-
curity for both parties, at the cost of reusability (Section. The protocol
makes A invocations of a two-round Oblivious Transfer protocol (which
exists under LWE [PVWO0S|, IDGH"20]), where A is the security param-

eter. Instantiate the OT with the LWE-based protocol of [PVW0S], we
preserve statistical security against a malicious receiver.

1.2 Related Work and Comparison

In the following, we briefly review some proposals from prior work and compare
them with our proposal. We only consider schemes that are provable UC-secure
as our protocols. OLE can be trivially implemented using Fully/Somewhat
Homomorphic Encryption (e.g., [JVCIS]) or using generic solutions for two-
party secure computation (such as [GS18, BL18]). However, these solutions fall
short in achieving a decent level of security and/or efficiency.

The work of Doéttling et al. [DKM12, DKMQ12] proposed an OLE protocol
with unconditional security, in the stateful tamper-proof hardware model. The
protocol takes only two rounds, however further interaction with the token is
needed by the parties.

In [TPS09], a semi-honest protocol for oblivious multiplication was proposed,
which can be easily extended to a OLE protocol. The protocol is based on noisy
encodings. Based on the same assumption, [GNNI17] proposed a maliciously-
secure OLE protocol, which extends the techniques of [IPS09]. However, their
protocol takes eight rounds of interaction.

Chase et al. [CDI"19] presented a round-optimal reusable OLE protocol
based on the Decisional Composite Residuosity (DCR) and the Quadratic Resid-
uosity (QR) assumptions. The protocol is maliciously-secure and, to the best of
our knowledge, it is the most efficient protocol for OLE proposed so far. How-
ever, it is well-known that both the DCR and the QR problems are quantumly
insecure.

We also remark that our protocols implement vector OLE where the sender’s
input are vectors over a field, as in [GNN17].

In Table[l} a brief comparison between several UC-secure OLE protocols is
presented.

Aifir;?zn Ass?f::iion Rounds | Reusability Security
IPS09 Noisy OT 3 - semi-honest
: Encodings
Stateful tamper ..
[DKM12] 2 proof hardware - - malicious
[GNN17] Enlj(())zisiigs oT 8 - malicious
| [CDIT19] || DCR & QR CRS 2 v/ malicious
malicious
This work LWE CRS 2 v receiver
LWE CRS & OT 2 X malicious

Table 1: Comparison between different OLE schemes.

1.3 Open Problems

Our fully maliciously-secure protocol (in Section [5)) does not have reusability of
the first message. Hence, the main open problem left in our work is the following;:
Can we construct a reusable maliciously-secure two-round OLE protocol based
on the LWE assumption?

Also, remark that our protocols are secure assuming the hardness of LWE
with super-polynomial modulus-to-noise ratio. Can we build an efficient and
reusable OLE protocol whose hardness is based on the LWE with polynomial
modulus-to-noise ratio?

2 Technical Outline

In this section, we give a brief overview of our protocols.

2.1 A Two-Round Semi-Honest Protocol

In our protocol, both the sender S and the receiver R have access to a common
reference string crs = A < Z’;X”. The core idea of our protocol is the following:

1. R computes a’ = xA + e where e is a short noise vector and the ¢-th
coordinate x; € Z, of x corresponds to its input.

2. S samples a short matrix R and computes the pair (sp = a’'R,s; = a;R)
where a; is the i-th row of A. It sends A_;R to the receiver, where A_;
is the matrix A with the i-th row removed.

3. R computes y = x_;C where x_; is the vector x with the i-th coordinate
removed.

Observe that

5’ = X,Z'C = X,Z‘A,,L'R = (XA — xlal)R
= (xA +e)R— (7;a,)R—eR =sp + 255, +¢€

for some short vector €. Hence, the vector obtained by R is a linear combination
of (sp,s1) up to some noise, which can be corrected using an error-correcting
code (ECC) as we will see below.

We can extend this idea into a fully functional protocol as follows, by making
additional use of a linear error correcting code (ECC) against short errors in
the euclidean norm.

1. R chooses a random x <s Z’; such that z; (i.e., the i-th coordinate of x)
corresponds to R’s input and compute an LWE sample a’ = xA + e for
an error vector e.

2. Upon receiving a’ from R, S chooses a short matrix R and computes
so = a’'R and s; = a;R. Moreover, it sends C = A_;R, to = sg + € + Zg
and t1 = sy + Z; where (2o, 21) is an encoding of S’s inputs (zg, z1).

3. Upon receiving C, R computes
y = X_Z‘C — (to — IIZitl) = (20 + xlil) —+ e'.
Then, it decodes y to obtain y.

Security against a semi-honest sender can be routinely established from the
LWE assumption. To argue that the protocol is secure against a semi-honest
receiver, we can show that conditioned on y = zg + x;z1 the values (zg,z1) are
statistically hidden from the view of R. This argument relies on the fact that
a’ = xA + e is well-formed, that C = A_;R is statistically close to uniform
(which can be established via the Smoothing Lemma [MROT7]), and that the
error term € drowns the residual term eR. But this means that € needs to be
sampled from a super-polynomially wider distribution than eR, which is the
reason why we need a super-polynomial modulus-to-noise ratio.

A closer inspection at the protocol reveals that, in fact, security holds even
against an unbounded malicious receiver. In order to prove UC-security, we
need to construct a simulator which extracts R’s input [Can01]. By generating
a matrix A in the CRS along with a 1attice—trapd001E| tda in the sense of
[GPVO0S, MP12], the simulator can extract x from a’ = xA + e, provided that e

is short. However, if e is too large and the extraction fails, we will be able to rely
on the fact that the lattice Aj(A’) generated by the row-span of A’ = <§>
has no short vectors. The smoothing lemma [MRO7] guarantees that if R is
sampled according to a discrete Gaussian distribution (with a properly chosen
parameter), then the distribution of the product A’R is statistically close to
uniform. Thus, in this case, R just obtains random garbage and the simulation

succeeds.

Reusability and batch reusable OLE. An important feature of the proto-
col described above is that it has reusability in the sense of [CDIT19]. Reusabil-
ity (in a two-round protocol) means that the first message sent by the receiver
can be reused in a polynomial number of executions of the protocol. This makes
our protocol a perfect fit to be used as a building block in NISC protocols
[ICDI™19).

We also define a new OLE functionality that we called batch reusable OLE. In
this functionality, the receiver commits to a batch of inputs {xi}ie[k/]. Later, the
sender can send its inputs (2o, z1) together with an index j € [k’] corresponding
to which input the receiver is using in this execution of the OLE. The receiver
outputs the linear combination zy + ;2.

A slight variant of the OLE protocol described above implements this func-
tionality: In the first round, R chooses x € Z’; such that, say, the first &’
coordinates correspond to its inputs (z1,...,z), and computes a’ = xA + e.

2Recall that a lattice trapdoor tda (as in [GPV0S|, [MP12]) can be generated along with a
matrix A such that it allows to invert LWE samples. That is, given xA + e for a short vector
e, tda allows to recover x.

Then, along with its message, the sender S sends a position j € [k] to indicate
which is the receiver’s input being used in that execution of the protocol.

This variant improves in communication efficiency since, if R has several
inputs, the parties don’t need to run the protocol multiple times in parallel.
Instead, they can just use the same message a’ for several inputs of the receiver,
as long as the LWE assumption holds for dimension k — k’.

Comparison with previous works. The idea of removing a row to a matrix
A to hide something and then recovering it during decryption was already used
in a previous work [DGHM18] to construct Hash with Encryption. However, in
[IDGHM18], the value to hash is chosen selectively by the adversary and thus
security follows easily from the Extended LWE assumption [AP12].

Our case presents much more subtle technical challenges since the value a’
sent by the receiver is chosen after seeing the matrix A, and thus it has an
adaptive flavor.

2.2 Extending to Malicious Adversaries

In the scheme above, it is information-theoretically impossible for a UC-simulator
to extract the sender’s input. In this section, we show how to modify the scheme
to support UC-security against malicious senders.

In a nutshell, the idea to make the protocol secure against corrupted senders
is to use a cut-and-choose-style approach using a two-round OT protocol, which
exist under various assumptions [PVWO08, [DGH™20|. Using the OT, the receiver
is able to check if the matrices C; = A_;R; sent by the sender are well-formed.
More precisely, our protocol works as follows:

1. R computes a’ = xA + e as in the previous protocol and, additionally, it
sends A first-messages of the OT run in parallel (playing the role of the
receiver) with input bits (by,...,by) where half of them are equal to 0 and
the remaining are equal to 1.

2. For j € [A], S computes the matrix C; = A_;R; for a short matrix
R;. It chooses two random vectors (ug j,us ;) and inputs two messages
(MO,ijl,j) in the OT, where MOJ' = Rj and Ml,j = (toﬁj,tld‘,uO’j +
Zp, Uuy,; +Z1) where t(]’j = a’Rj + éj + flo’j and tl,j = aZ-Rj + fll’j, where
Up ; and 1, are the encodings of ug ; and ug j;, respectively.

3. When b; = 0, R can check that the matrix C; is indeed well-formed.
When b; = 1, R can use M; ; to compute the same linear combination
w = zo+1,;2; for every position j (it aborts if there is at least one different
from the others).

Security against an unbouded receiver in the OT-hybrid model essentially
follows the same reasoning as in the previous protocol.

We now argue how we can build the simulator Sim against a corrupted
sender. By simulating the OT functionality, the simulator Sim can extract the

sender’s input using a single position j for which S inputs the right messages
Moy, ; and M ;. This event always happens, except with negligible probability.
Moreover, if R accepts the messages M j, when b; = 1, then this means that S
input the same pair (zg,z1) in these positions given that the LWE assumption
holds.

The main drawback of this approach is that we lose reusability. It is trivial to
see that this extraction strategy fails if S knows which are the bits that R sends
to the OT functionality. Moreover, after several executions of the protocol, S
is able to correctly guess the values of these bits. In fact, it is known that
reusability is impossible in the OT-hybrid model |[CDI™19).

Instantiating the OT functionality. When we instantiate our protocol
with the OT scheme from [PVWO0S8] we obtain several nice properties for the
OLE scheme, namely: i) The protocol is still two-round. ii) The protocol pre-
serves statistical security against a corrupted receiver, since the OT of [PVW08]
is also statistically secure against a corrupted receiver. And iii) the OLE scheme
is secure based solely on the LWE assumption.

3 Preliminaries

Throughout this work, A denotes the security parameter and PPT stands for
”probabilistic polynomial-time”.

Let A € Z’;X" and x € Zy;. We denote by A_; the matrix A with the
i-th row removed. Similarly, x_; denotes the vector x with the i-th coordinate
removed. Moreover, ||x|| denotes the usual {2 norm of a vector x. For a vector
b € {0,1}*, we denote its weight, that is the number of non-null coordinates,
by wt(b).

If S is a (finite) set, we denote by = <= S the denotes an element z € S
sampled according to a uniform distribution. Moreover, we denote by U(.S) the
uniform distribution over S. If D is a distribution over S, x <—s D denotes an
element x € S sampled according to D. If A is an algorithm, y < A(z) denotes
the output y after running A on input x.

A negligible function negl(n) in n is a function that vanishes faster than any
polynomial in n.

Given two distributions D; and Do, we say that they are e-statistically
indistinguishable, denoted by D ~. Ds, if the statistical distance is at most €.

For two random variable X,Y (possibly correlated), we denote the min-
entropy of X by Ha(X) and the conditional-average min-entropy by He(X|Y)
(see [DORSO0S]).

Lemma 1 (Leftover Hash Lemma). Let n,k,q € N such that n > k. Then, for
a random variable x € Zy and A <s Z’;X” we have that

(A7 AX? Y) ;\\J/E (A7 u7 Y)

where € = y/qF - 2~ Hoc(xIY) | 14— Z¥ and Y is a random variable (possibly)
correlated with x.

Error-Correcting Codes. We define Error-Correcting Codes (ECC). An
ECC over Z, is composed by the following algorithms ECC, ;, s = (Encode, Decode)
such that: i) ¢ < Encode(m) takes as input a message m € Zf; and outputs a
codeword ¢ € Z%. ii) m + Decode(€) takes as input corrupted codeword ¢ € Z%
and outputs a message m € Z{ if ||¢ — c|| < § where ¢ + Encode(m). In this
case, we say that ECC corrects up to § errors. We say that ECC is linear if any
linear combination of codewords of ECC is also a codeword of ECC.

3.1 Universal Composability

UC-framework [Can01] allows to prove security of protocols even under arbitrary
composition with other protocols. Let F be a functionality, m a protocol that
implements F and Z be a environment, an entity that oversees the execution
of the protocol in both the real and the ideal worlds. Let IDEALf sim z be a
random variable that represents the output of Z after the execution of F with
adversary Sim. Similarly, let REALg) A,z be arandom variable that represents
the output of Z after the execution of 7 with adversary A and with access to
the functionality G.

A protocol m UC-realizes F in the G-hybrid model if for every PPT adversary
A there is a PPT simulator Sim such that for all PPT environments £, the dis-
tributions IDEAL 7 sim,z and REAL% A,z are computationally indistinguishable.

We now present the ideal functionalities that we will use in this work.

CRS functionality. This functionality generates a crs and distributes it be-
tween all the parties involved in the protocol. Here, we present the ideal func-
tionality as in [PVWOS].

Gcrs functionality

Parameters: An algorithm D.

e Upon receiving (sid, P;, P;) from P;, Gers runs crs <— D(1%) and returns
(sid, crs) to P;.

e Upon receiving (sid, P;, P;) from P;, Gcrs returns (sid, crs) to P;.

OT functionality. Oblivious Transfer (OT) can be seen as a particular case
of OLE. We show the ideal OT functionality below.

For functionality

Parameters: sid € N known to both parties.

e Upon receiving (sid, (Mo, My)) from S, Fort stores (Mo, M;) and ig-
nores future messages from S with the same sid;

e Upon receiving (sid,b € {0,1}) from R, For checks if it has recorded
(sid, (Mo, My)). If so, it returns (sid, M) to R and (sid, receipt) to S,
and halts. Else, it sends nothing but continues running.

OLE functionality. We now present the OLE functionality. This function-
ality involves two parties: the sender S and the receiver R.

FoLe functionality

Parameters: sid,q,k € N and a finite field F; known to both parties.

e Upon receiving (sid, (a,b) € IF’; X IF’;) from S, FoLe stores (a,b) and
ignores future messages from S with the same sid;

e Upon receiving (sid,x € Fy) from R, FoLe checks if it has recorded
(sid, (a,b)). If so, it returns (sid,z = a + zb) to R and (sid, receipt) to
S, and halts. Else, it sends nothing but continues running.

Reusable OLE functionality. We now present the reusable OLE function-
ality as it was presented in |[CDIT19].

FroLe functionality
Parameters: sid,q,k € N and a finite field FF; known to both parties.

Setup phase: Upon receiving (sid,z € F,) from R, FroLe sends (sid, init)
to the adversary and ignores future messages from R with the same sid.

Send phase:

e Upon receiving (sid7 i,(a,b) € IF’; X IF’;) from S, FoLe sends
(sid, i, sent) to the adversary and ignores future messages from S with
the same sid and i € N.

e Upon receiving (sid, 4, deliver) from the adversary, FoLe checks if it
has stored (sid,z) from R and (sid,i, (a,b)) from S. If so, it sends
(sid,z = a+ zb) to R.

Batch reusable OLE functionality. Here we define a batch version of the
functionality defined above. In this functionality, the receiver inputs several

OLE inputs at the same time. The sender can then input an affine function
together with an index corresponding to which input the receiver should receive
the linear combination.

]-"fr,OLE functionality
Parameters: sid, ¢, k, k' € N and a finite field F, known to both parties.

Setup phase: Upon receiving (sid, {z;};ep € IF’;/) from R, ft])Cr/OLE sends
(sid, init) to the adversary and ignores future messages from R with the same
sid.

Send phase:

e Upon receiving (sid7i,(a, b) €]F’qc X F’;,j) from S,]—'fr'oLE sends
(sid,i,sent, j) to the adversary and ignores future messages from S
with the same sid and i € N.

e Upon receiving (sid, i, deliver, j) from the adversary,]:t]fr/OLE checks if it
has stored (sid, {x;} ;) from R and (sid, 4, (a, b),j) from S. If so, it
sends (sid,z = a+ z,;b) to R.

3.2 Lattices and Hardness Assumptions

Notation. Let B € R*¥*" be a matrix. We denote the lattice generated by B
by A=AB)={xB:x € Zk} The dual lattice A* of a lattice A is defined
by A*={xeR":Vy € A,x-y € Z}. Tt holds that (A*)* = A.

A lattice A is said to be g-ary if (¢Z)™ C A C Z". For every g-ary lattice A,
there is a matrix A € ZZX” such that

Aj(A)={yeZ":Ix e Z’,}y =xA mod g}.

The orthogonal lattice Aql is defined by {y € Z? : Ay" =0 mod ¢}. It holds
that 1A; = A;

Let ps(x) be probability distribution of the Gaussian distribution over R™
with parameter s and centered in 0. We define the discrete Gaussian distribution
Dg s over S and with parameter s by the probability distribution ps(x)/p(S)
for all x € S (where ps(S) = D cgPs(X)).

For ¢ > 0, the smoothing parameter 7.(A) of a lattice A is the least real
o > 0 such that p;/,(A*\ {0}) < e [MROT].

Useful Lemmata. The following lemmas are well-known results on discrete
Gaussians over lattices.

3The matrix B is called a basis of A(B).

10

Lemma 2 ([Ban93|). Let o > 0 and x <—s Dzn ,. Then we have that

Pr [|x]| > oy/] < negl(n).

The following lemma states how we can statistically hide an error vector
with a sample from a much wider distribution.

Lemma 3. Let q, B, o such that ¢ = A*Y) and o/B= XM Then the distribu-
tions D, and D, +e are statistically close, where e is sampled from a B-bounded
distribution.

The next lemma gives us a lower-bound on the min-entropy of a discrete
Gaussian distribution.

Lemma 4 ([PROG, [GPV0S8|). For a lattice A of dimension n, ¢ > 0 and o >
2n:(A), we have that

1+¢
D o <2TL—17
Ao(x) < -

for allx € A. In particular, Hoo(Dp,o) > n—1, ife <1/3.

For A = Z™, we just need to consider o > w(logn) [GPV0§| in order to have
Hoo(DA,a) >n—1.

Finally, the next lemma is a consequence of the smoothing lemma [MR07]

and it tells us that Ae is uniform, when e comes from a discrete Gaussian and
for a proper choice of parameters.

Lemma 5 ([GPV08]). Let g € N and A € ZE*™ be a matriz whose columns gen-
erate Z . Moreover, let e € (0,1/2) and o > n-(A}(A)). Then, for e <= Dym o,

Ae mod q=~5.u

where u <—s Z’;.

LWE Assumption. The Learning with Errors assumption was first presented
in [Reg05]. The assumption roughly states that it should be hard to solve a set
linear equations by just adding a little noise to it.

Definition 1 (Learning with Errors). Let ¢,k € N where k = k(\), A € Z’;X"
and B € R. For any n = poly(klogq), the LWEy g, assumption holds if for
every PPT algorithm A we have

|Pr{l <+ A(A,sA +e)] —Pr[l + A(A,y)]| < negl())
for s «s{0,1}*, e < Dzn g and y +s{0,1}".

Regev proved in [Reg05] that there is a (quantum) worst-case to average-case
reduction from some problems on lattices which are believed to be hard even in
the presence of a quantum computer.

11

Trapdoors for Lattices. Recent works [GPV0S8, [MP12] have presented trap-
doors functions based on the hardness of LWE.

Lemma 6 ([GPV08, MP12]). Let 7(k) € w(yIogk) be a function and T a
sufficiently large constant. There is a pair of algorithms (TdGen, Invert) such
that if (A, td) < TdGen(q, k) then:

o A € Zk*™ where n € O(klogq) is a matriz whose distribution is 27% close
to the uniform distribution over Z’;X”.

e Foranys € Z) and e € L} such that |le| < q/(v/n7(k)), we have that

s < Invert(sA + e, td).

Observe that, if (A,tda) < TdGen(1*,n, k, q), then A(A) has no short vec-
tors. That is, for all y € A(A), then |ly| > B = ¢/(v/n7(k)) [MP12]. If this
does not happen, then the algorithm Invert would not output the right s for a
non-negligible number of cases.

4 Reusable Oblivious Linear Evaluation Secure
Against Corrupted Receiver

In this section, we present a semi-honest protocol for OLE based on the hardness
of the LWE assumption. The protocol is reusable, meaning that it implements
functionality F,oLg defined in Section

4.1 Protocol

We begin by presenting the protocol.

Construction 1. The protocol is composed by the algorithms (GenCRS, Ry, S, Ry).
Let k,n, 0,0 q € Z such that ¢ = 2*0°8Y) s a prime and n = poly(klogq), and

let 8,00,01,€ € R such that \/ﬁ%(k) > 08>0 > 1 (where (k) = w(y/logk), as

m Lemma@ and ﬁg—‘i" = negl(\). We present the protocol in full detail.
GenCRS(17):
o Sample A s Z’;X".
e Choose a linear ECC ECCy g ¢ = (ECC.Encode, ECC.Decode) over Z,.
o Output crs = (A,ECCy ¢ ¢).

12

Ri (crs,z € Zy):
e Parsecrs as (A,ECCy p¢).

o Sample x = (x1,..., 7)) < Z’; such that x; = x and a small error vector
e <sDyn g, for a uniformly chosen index i <—s [k].

e Compute a’ = xA +e.

e Output ole; = (a’,4) and st = x.

S (CFS, (2o,21) € (Zf,')Q,mR):
e Parse crs as (A,ECCy o ¢) and oley as (&',1).
o Sample R € ZZ” where each column r() s Dyn 5, for j € [{].

e Compute sg,81 € Zg such that so = a’R, s; = —a;R, and C = A_,R €
Z(kfl)xl
q .

e Compute to = sg + & + ECC.Encode(zg) and t; = s; + ECC.Encode(z;),
where € <—s Dy g, .

e Output oley = (C, tg,t1).

Ra(crs, st,ms):
e Parse crs as (A,ECCy), oley as (C,to,t1) and st as x € Zf.

e Compute y = x_;C — (tg + x;t1) and then run y + ECC.Decode(y). If
y =L, abort the protocol.

o Outputy € 7! .

4.2 Analysis of the Protocol

Theorem 1 (Correctness). Let ECCpr g ¢ be a linear ECC where &€ > V€(Bdon +
01). Then the protocol presented in C’onstructz’on 18 correct.

Proof. To prove correctness, we have to prove that Ry outputs zg + z;21, where
(20, 21) is the input of S.
First, note that

X_iC = X_iA_iR
= (xA —z;a;)R
= (xA+e)R— (r;a)R—eR =sp+z;5 +¢€

where ¢’ = —eR is a small error vector. The receiver computes

y =x_;,C — (to + z;t;) = ECC.Encode(zg + x;z1) + €”

13

where ¢ = —eR — & and the last equality holds because ECC is linear.
Finally, by Lemma [2, we have that |le| < By/n. Moreover, if r¥ is a
column of R, then Hr(i) < dpv/n. Therefore, each coordinate of €' has norm
at most [le] - [[r™|| < Bdn. On the other hand, |[&|| < 61v¢ We conclude that
le”|| < VE(BSon + 7). Since ECC corrects up to & > V0(Bdgn + 81) errors, the
output of ECC.Decode(y) is exactly zg + ;2. O

Theorem 2 (Security). Assume that the LWEy g 4 assumption holds, \/ﬁ%(k) >

B > 6o > 1 (where 7(k) = w(y/l1ogk) as in Lemma @, and 603/91 = negl(N).
The protocol presented in Construction[] securely realizes the functionality FroLe
in the Gers-hybrid model against:

e a semi-honest sender given that the LWEy g , assumption holds;
e q static malicious recetver where security holds statistically.

Proof. We begin by proving security against a computationally unbounded cor-
rupted receiver.

Simulator for corrupted receiver: We describe the simulator Sim. Let
(TdGen, Invert) be the algorithms described in Lemma [6]

e CRS generation: Sim generates (A,tda) < TdGen(1*, ¢, k,n). It chooses
an ECC ECCy ¢ ¢. It publishes crs = (A, ECC) and keeps tda to itself.

e Upon receiving a message a’ from R, Sim runs X < Invert(tda,a’). There
are two cases to consider:

— If x =1, then Sim samples tg, t1 s Zg and C +s ZZ’lxe. It sends
O|62 = (C,to,tl).

— Else if, x #.1, then Sim sets © = x; where z; is the i-th coordinate
of x. It sends = to FoLe. Whenever it receives a y from F,oE,
Sim chooses uniformly at random two vectors zg,z;, € Zg/ such that
zo + xz1 = y. Then, it samples a uniform matrix U <s Z’;XE and an
error vector € <—s Dz ,, and sets

C=U_
to = XU + &€ + ECC.Encode(z)
t; = —u; + ECC.Encode(z;)

where u; is the i-th row of U. It sends oley = (C, tg, t1).

We now proceed to show that the real-world and the ideal-world executions
are indistinguishable. The following lemma shows that the CRS generated in the
simulation is indistinguishable from one generated in the real-world execution.
Then, the next two lemmas deal with the two possible cases in the simulation.

14

Lemma 7. The CRS generated above is statistically indistinguishable from a
CRS generated according to GenCRS.

The only thing that differs in both CRS’s is that the matrix A is generated
via TdGen in the simulation (instead of being chosen uniformly). By Lemma
[6] it follows that the CRS is statistically indistinguishable from one generated
using GenCRS. O

Lemma 8. Assume that x =1. Then, the simulated execution is indistinguish-
able from the real-world execution.

We prove that no (computationally unbounded) adversary can distinguish
both executions, except with negligible probability. First, note that, if 1= X «
Invert(tda,a’), then a’ = xA + e where ||e| > S+y/n since only in this case

algorithm Invert fails to invert a’.

Consider the matrix A’ = (3) If a’ is of the form described above, then

the matrix A’ has no short vectors in its row-span. In other words, there is no
vector v # 0 in the row-span of A’ such that ||v|| < 8y/n. This comes from the
fact that A has no short vectors whose norm is smaller than 8+v/n

Hence pg(Aq(A’) \ {0}) < negl()X). Moreover, we have that

ps(Ag(A)\ {0}) > ps, (Ag(A)\ {0})
> prys, (Ag(A)\ {0})
> p1/tas) (Mg (A7) {0)
= p1ys, (ahg(A)\ {0))
— P15, (AL(A))"\ {0})

where the first and the second inequalities hold because 8 > Jy > 1 by hypoth-
esis and the last equality holds because éA;- (A") = Ay(A')*. Since

p1/so (Ag (A))"\ {0}) < negl(})

then 6y > n.(A+(A’)), for e = negl()\), and the conditions of Lemma are met.

Therefore, we can switch to a hybrid experiment where A’R mod q is re-
placed by U «sZ*+1)*¢ incurring only negligible statistical distance. That
is,

C A, 0 0
t; | = a; R+ Z Rnegl(M) U+ Z Snegl(M) U
to a’ Zo + € Zo+ €

where 2; is the encoding of ECC.Encode(z;) for j € {0,1}.

We conclude that, in this case, the real-world and the ideal-world execution
(where Sim just sends a uniformly chosen triple (C,tg,t1)) are statistically
indistinguishable. O

15

Lemma 9. Assume that X 1. Then, the simulated execution is indistinguish-
able from the real-world execution.

The proof follows the following sequence of hybrids:

Hybrid #y. This is the real-world protocol. In particular, in this hybrid, the
simulator behaves as the honest sender and computes

to = a’R + & + ECC.Encode(zy) = xAR + eR + & + ECC.Encode(zg) mod ¢
t; = a,R 4+ ECC.Encode(z;) mod ¢
C=A_ R modgq.

Hybrid H;. This hybrid is similar to the previous one, except that Sim com-
putes to as xAR + & + ECC.Encode(zg) mod ¢, where & <—s Dz 5, .

Claim 1. |[Pr[l « A: A plays Ho] — Pr [l < A: A plays Hi]| < negl(X).

This claim holds statistically and it is a direct consequence of Lemma [3]since
80/61 = negl(X) by hypothesis.

Hybrid H, This hybrid is similar to the previous one, except that Sim com-
putes to as U+&+ECC.Encode(zg), C by U_; and t; by u; + ECC : Encode(z;),
where u; is the i-th row of U s Zk*‘.

Note that this hybrid is similar to the simulator for the corrupted receiver.

Claim 2. |[Pr[l <+ A: A plays H1] — Pr[l < A: A plays Ha]| < negl(}).

By Lemma [4] each column of R has min-entropy of at least (n — 1). Thus,
by the Leftover Hash Lemma (Lemma [I) and given that n = poly(klogq), the
claim holds statistically.

Claim 3. Let R be any receiver. The values (zg,z1) are perfectly hidden from
R given that zog + xx1 =y.

To see this, consider again the values computed by Sim in this hybrid

C=U_;
to = XU + € + ECC.Encode(z)
t; = —u; + ECC.Encode(z1)

There are two cases to consider: either x; = 0 or x; # 0. In the first case,
neither C nor t(carry information about u;, which is a uniformly chosen vector.
Hence, z; is perfectly hidden from R.

When z; # 0, consider another pair (z(,z;) such that zg + x;21 = z{ + 2,2} .
Then, the probability that Sim runs the protocol on input (zg,z1) or (z,z])
is exactly the same from the point-of-view of R, given that U < Z’;M. To
see this, note that given C,tg,t;, we can set u; = s; — ECC.Encode(z]) =

16

z; ' (s_ECC.Encode(z))), which is uniform in Z, since g is prime. A simple
calculation shows that correctness still holds in this case.

Simulator for corrupted sender. We describe how the simulator Sim pro-
ceeds: It takes S’s inputs (zp,z1) and sends them to the ideal functionality
FroLE, which returns nothing. It simulates the dummy R by sampling a’ < Ly
and sending it to the corrupted sender.

It is trivial to see that both the ideal and the real-world executions are
indistinguishable given that the LWE; , g assumption holds. O

4.3 Batch Reusable OLE

We now show how we can extend the protocol described above in order to
implement a batch reusable OLE protocol, that is, in order to implement the
functionality FpoLe described in Section

This variant improves the efficiency of the protocol since the receiver R can
commit to a batch of inputs {z;};c[x], and not just one input, using the same
first message of the two-round OLE. Hence, the size of the first message can
be amortized over the number of R’s inputs, to achieve a better communication
complexity.

Construction 2. The protocol is composed by the algorithms (GenCRS, R1,S, Ry).
Let k,n, 0,0 q,k' € Z such that ¢ = 2°0°8Y) s a prime and n = poly(klogq),

and let B3,0¢,01,& € R such that #(k) > 08 >00>1 (where (k) = w(y/logk),

as in Lemma@ and ﬁé—‘i" = negl ().
GenCRS(1*): This algorithm is similar to the one described in Construction .

Ri (crs, {z;}jep) € Zq): The algorithm is similar to the one described in Con-
struction except that it outputs ole; = (a’, k') and st = x, where a’ = xA + e
and (x1,...,xp) corresponds to the first k' of x.

S (crs, (20,21) € (Zgl)Q,mR,j € [k’}): This algorithm is similar to the one de-
scribed in Construction[1], except that it additionally uses j as the index i and

that it outputs j (which corresponds to which x; the receiver R is supposed to
use in that particular execution of the protocol).

Ra(crs,st,ms): This algorithm is similar to the one described in Construction
except that it outputs zg + xj21 =y < ECC.Decode(x_;C — (to + z;t1)).

It is clear that correctness still holds.

Theorem 3 (Security). Assume that the \WWEy,_y g, assumption holds, \/ﬁ%(k) >
B >y > 1 (where (k) = w(+/logk) as in Lemma @, and 0o /61 = negl(X).
The protocol presented in Constmction securely realizes the functionality FE o ¢
in the Gers hybrid model against:

17

e a semi-honest sender given that the IWEy_js g 4 assumption holds;
e q static malicious recetver where security holds statistically.

The proof of the theorem stated above essentially follows the same blueprint
as the proof of Theorem [3| except that the simulator for the corrupted receiver
extracts the first &’ coordinates {z;} ;c[3) of x and sends these values to Fyrore-
From now on, it behaves exactly as the simulator in the proof of Theorem [3]
Indistinguishability of executions follows exactly the same reasoning.

4.4 Parameters to Implement the OLE.

Our protocol assumes the hardness of LWE with a super-polynomial modulus-
to-noise ratio. This implies that the modulus ¢ needs to be chosen as 2¢(°g)
Thus, our protocol implements OLE for fields of size super-polynomial in the
security parameter.

5 OLE from LWE secure against Malicious Ad-
versaries

In this section, we extend the construction of the previous section to support
malicious sender. The idea is to use a cut-and-choose approach via the use of an
OT scheme in two rounds and extract the sender’s input via the OT simulator.

5.1 Protocol

Construction 3. The protocol is composed by the algorithms (GenCRS, Ry, S, Rp).
Let k,n, 0,0, q € 7 such that ¢ = 2°0°8N) is a prime and n = poly(klogq), and
let B3,00,01,& € R such that m > B> 6 > 1 (where (k) = w(y/logk), as

in Lemma@ and ’%0 = negl(\). For is the OT functionality as in Section @
We now present the protocol in full detail.

GenCRS(1*):
e Sample A < Z’;X".
e Choose a linear ECC ECCy 4 = (ECC.Encode, ECC.Decode, §) over Z,.
o Output crs = (A, ECCyp v ¢).

Ry (crs, @ € Zy):
e Parse crs as (A,ECCpr ¢).

o Sample x = (x1,...,2Tk) s Z’qC such that x; = x and a small error vector
e <s X}, for some index i <s [k].

18

e Compute a’ = xA +e.

e Additionally choose uniformly at random b = (by,...,by) +s{0,1}* such
that the weight wt(b) = A\/2 (i.e., half of the coordinates are 0). Send
{bj}jepn to the OT functionality Fot.

e Output ole; = (i,a’) and st = (x,4,{b;};c)-

S (CI’S, (ZQ,Zl) S Zg,,olel):
e Parsecrs as (A,ECCp g ¢) and oley as (3,a’).
e For all j € [A], do the following:

— SampleR; € ZZM where each column is sampled according to Dz s, .

— Compute sg j,81,; € Zg such that so; = a'R;, s1; = a,R;, and
Cj = A_iRj S ngil)xe.

— Compute tg j = so j+€+ECC.Encode(ug ;) andt, ; = s; ;+ECC.Encode(u, ;),
for uniformly chosen ug j,uy j <= Zf; and € <—s Dy 5, .

— Send MO,ijl,j to fOT where MOJ' = Rj and M17j = (t07j,t17j,u07j+
Zo, lllyj + Zl).

o Output ole; = {C;} ¢y

Ra(crs, st, oley):
e Parse crs as (A,ECCp), oles as {C;}jen and st as (x,4,{b;}je)-
o If any of the matrices C; is not full-rank, abort the protocol.
e For all j € [\, do the following:

— Recover My, ; from For.

— Ifbj =0, parse Mo; = R;. If C; # A_;R; and R; is not small,
abort the protocol.

- [[b] = 1,~parse Ml)j as (Eo,j7E1,j;‘~’O,j7‘~’1,j)- Compute S’j = X,Z‘Cj —
(to,; + xit1,;) and then run y; < ECC.Decode(y;). If y; =L, abort
the protocol. Else, compute W; = Vo j +2;V1; — Yj-

o Check if wj = wy for all (j,7') such that b; = by = 1. If the test fails,
abort the protocol.

o For any j such that b; =1, set w = w;. Output w € Zél.

19

5.2 Analysis

We now proceed to the analysis of the protocol described above.

Theorem 4 (Correctness). Let ECCy 4 ¢ be a linear ECC where § > VE(BSon+
01). Then the protocol presented in C’onstruction@ is correct.

Proof. From the proof of Theorem we have that y; = ug j+z;u ;, except with
negligible probability, when b; = 1. Hence w; = vo ; + 2;V1; —y; = Zo + %21,
which is equal to every other w;; when b; = b; = 1. O

Theorem 5 (Security). Assume that the LWE,, i 3 4 assumption holds \/ﬁ%(k) >

B > 6o > 1 (where 7(k) = w(y/1ogk) as in Lemma @, and 603/01 = negl(N).
The protocol presented in Construction[3 securely realizes the functionality FoLe
in the (Gers, Fot)-hybrid model against static malicious adversaries where:

o Security against corrupted sender holds given that the L\WE,, 1, 5,4 assump-
tion holds.

e Security against a corrupted receiver holds statistically in the (Gers, FoT)-
hybrid model.

Proof. In order to prove security against a static malicious receiver we have to
show that there is a simulator that can simulate the view of the adversary in
the ideal world.

Simulator for corrupted receiver: The proof is essentially the same as the
proof of Theorem (3| Still, we present the simulator.
Let (TdGen, Invert) be the algorithms described in Lemma [6]

e CRS generation: Sim behaves as the simulator of the proof of Theorem
B] and additionally simulates For.

e Upon receiving a message a’ from R and {b;} ;¢\ through For, Sim runs
X < Invert(tda,a’). There are two cases to consider:

— If x =1, then for each j € [\] Sim does the following:
* If b; = 0, then Sim computes C; = A_;R;. It sets My; = R;
and My ; s Z x 7! x 78 < 7t
* Ifb; = 1, then Sim sets C; <—s Z’;’lxe, My j s Zg‘” and M ; <s Zflx
¢ o o
Lig X Ly X Ly -

— Else if x #.1, then Sim sets x = z; where x; is the i-th coordinate of
x. It sends x to FoLe. Upon receiving a y from Forg, Sim chooses
uniformly at random two vectors zg, z; € Zg such that zg +zz; = y.
Then, for every j € [A], it does the following:

* If b; = 0, then Sim computes C; = A_;R;. It sets My ; = R;
and My j s Z! x 2! x 2t x 7.

20

x If b; = 1, then Sim samples a uniform matrix Uj < Z’;Xé and

an error vector €; <—s Dz ,, and sets

Cj=U.ij
to = XU, + €; + ECC.Encode(uy ;)
t; = —u; ; + ECC.Encode(u, ;)

where u; ; is the i-th row of Uj. It sets My ; < ngz and
My j = (to, t1,u0j + Zo, w1 j + 21).
* It sends oleg = {Cj},

The proof of indistinguishability of executions is essentially the same as the
proof in Theorem [3| We stress that security still holds statistically in the For

model.

Simulator for corrupted sender: We describe the simulator Sim against a
corrupted sender.

e CRS generation: Sim generates crs as in GenCRS.

e Sim computes a’ = xA + e € Z; for a uniformly chosen x ¢ Z’; and
e <sDyn g, i < [k] and sends (i,a’) to the sender.

e Upon receiving (My j, My ;) from the sender (a message intended to For),
Sim does the following:

It chooses a partition of size A\/2 of [A]. Let us denote this partition
by Io @] Il = [)\]

It parses My ; as R; and My ; as (to;,t1,4, V0,5, V1,j)-

It checks if C; = A_;R; for j € Iy. If this does not happen for at
least one index j € I, it aborts.

Similarly, it checks if w; = w, for any pair of indices (j, j') € Iy x I,
where W, = Vo4 + TiVij — ECC.Decode(x,iCj — (tO,j + xitl,j))~ If
this does not happen for at least one pair of indices, it aborts.

Check if there are positions j for which both My ; and M, ; values
are correct, meaning that the honest receiver does not abort for any
of these values. Let j' be one of these positions. Then, Sim extracts
Zo,%1 in the following way: It computes sg ;, which allows to com-
putes ug ;. Finally, it recovers zg from ug ; + z9. The value z; can
be recovered similarly. It sends zy,2z1 to FoLe.

We first show that the Sim described above is correct and efficient.

Lemma 10. Sim succeeds in extracting a unique pair (zo,21), except with neg-
ligible probability.

21

The probability of Sim not extracting any pair (zo, z1) is equal to the proba-
bility of not existing any position j’ such that both values in the OT are correct
given that Sim has not aborted before.

Note that this case only happens if the corrupted sender inputs malformed
values for My ; in A\/2 positions and malformed values for M; ; in the remaining
A/2 positions. Let E be the event where Sim aborts given this scenario. This
happens with probability

Pr(E]=1—-Pr[X =0

where X <—s HyperGeom(\/2, A/2, \) where HyperGeom is a hypergeometric dis-
tribution with parameters (A/2,A/2, A). Thus,

()\/2) (A /2)
PriE] =1- 25220 — 1~ negl()).
(x/2)
We conclude that Sim aborts, except with negligible probability. Thus, it ex-
tracts a pair (zg, z1), except with negligible probability. O

Lemma 11. The estracted pair (zo,z1) is unique, gien that the LWEy ,, g4
assumption holds.

Assume that there is an adversary A corrupting the sender that is able to
embed two pairs (zo,21) # (2(,2}) such that zg + 2,21 = 2z + z;2z} in the
execution of the protocol, with non-negligible probability €. We show that,
if this happens, then we can build an algorithm B that attacks the LWEy g 4.

The algorithm B takes as input an LWE challenge (A,a’) € Z]; x(na/ 6), parses
A = (Ay]...]Ay/) and @' = (aj]...[a),). Now, B runs \/e executions of
A in parallel where, at each execution j € [A/e], it embeds A, in the crs and
simulate the receiver in the protocol by sending (i,a}), for i s [k].

Then, B extracts two different pairs (z¢,2z1) # (2, z}) while simulating For
and computes for which z; we have zg + 2,21 = z{ + x;2]. If a’ = xA + e,
then after repeating this process \/e, we get that x; is expected to be the same
in A executions. If this happens, then output 1. Else if a’ < Zq there is no
information about x (and thus x;). Hence the probability of extracting the same
z; in \/e executions is A/(e|Z,|) = negl(X).

Hence, the advantage of B is non-negligible in attacking the LWE g ,. O

Lemma 12. The ideal-world and real-world executions are indistinguishable,
given that the LWEy, 5 4 assumption holds.

The simulator behaves and aborts with exactly the same probability as the
real-world receiver. O

22

5.3 Instantiating the Functionality For

Several two-round OT protocols exist in the literature that are proven to be
UC-secure [PVWO08, [DGH™20]. When we instantiate our protocol with the OT
scheme from [PVWO0S8] we obtain several nice properties for the OLE scheme,

namely:

1. The protocol is still two-round.

2. The protocol preserves statistical security against a corrupted receiver,
since the OT of [PVWO0S] is also statistically secure against a corrupted
receiver.

3. The OLE scheme is secure based only on the LWE assumption.

Acknowledgment

Pedro Branco thanks the support from DP-PMI and FCT (Portugal) through
the grant PD/BD/135181/2017.

References

[ADI*17]

[AP12]

[Ban93]

[BCGI18]

Benny Applebaum, Ivan Damgard, Yuval Ishai, Michael Nielsen,
and Lior Zichron. Secure arithmetic computation with constant
computational overhead. In Jonathan Katz and Hovav Shacham,
editors, Advances in Cryptology — CRYPTO 2017, Part I, volume
10401 of Lecture Notes in Computer Science, pages 223-254, Santa
Barbara, CA, USA, August 2024, 2017. Springer, Heidelberg, Ger-

many.

Jacob Alperin-Sheriff and Chris Peikert. Circular and KDM se-
curity for identity-based encryption. In Marc Fischlin, Johannes
Buchmann, and Mark Manulis, editors, PKC 2012: 15th Interna-
tional Conference on Theory and Practice of Public Key Cryptog-
raphy, volume 7293 of Lecture Notes in Computer Science, pages
334-352, Darmstadt, Germany, May 21-23, 2012. Springer, Heidel-
berg, Germany.

W. Banaszczyk. New bounds in some transference theorems in
the geometry of numbers. Mathematische Annalen, 296(4):625-636,
1993.

Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Com-
pressing vector OLE. In David Lie, Mohammad Mannan, Michael
Backes, and XiaoFeng Wang, editors, ACM CCS 2018: 25th Con-
ference on Computer and Communications Security, pages 896-912,
Toronto, ON, Canada, October 15-19, 2018. ACM Press.

23

[BL1S]

[Can01]

[CDI*19]

[DGH*20]

[DGHM18]

[DGN*17]

[DKM12]

Fabrice Benhamouda and Huijia Lin. k-round multiparty computa-
tion from k-round oblivious transfer via garbled interactive circuits.
In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in
Cryptology — EUROCRYPT 2018, Part II, volume 10821 of Lec-
ture Notes in Computer Science, pages 500-532, Tel Aviv, Israel,
April 29 — May 3, 2018. Springer, Heidelberg, Germany.

Ran Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In 42nd Annual Symposium on Founda-
tions of Computer Science, pages 136-145, Las Vegas, NV, USA,
October 14-17, 2001. IEEE Computer Society Press.

Melissa Chase, Yevgeniy Dodis, Yuval Ishai, Daniel Kraschewski,
Tianren Liu, Rafail Ostrovsky, and Vinod Vaikuntanathan.
Reusable non-interactive secure computation. In Alexandra
Boldyreva and Daniele Micciancio, editors, Advances in Cryptol-
ogy — CRYPTO 2019, Part III, volume 11694 of Lecture Notes in
Computer Science, pages 462-488, Santa Barbara, CA, USA, Au-
gust 18-22, 2019. Springer, Heidelberg, Germany.

Nico Déttling, Sanjam Garg, Mohammad Hajiabadi, Daniel Masny,
and Daniel Wichs. Two-round oblivious transfer from CDH or LPN.
In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptol-
ogy — EUROCRYPT 2020, pages 768-797, Cham, 2020. Springer
International Publishing.

Nico Dottling, Sanjam Garg, Mohammad Hajiabadi, and Daniel
Masny. New constructions of identity-based and key-dependent
message secure encryption schemes. In Michel Abdalla and Ricardo
Dahab, editors, PKC 2018: 21st International Conference on The-
ory and Practice of Public Key Cryptography, Part I, volume 10769
of Lecture Notes in Computer Science, pages 3—-31, Rio de Janeiro,
Brazil, March 25-29, 2018. Springer, Heidelberg, Germany.

Nico Doéttling, Satrajit Ghosh, Jesper Buus Nielsen, Tobias Nilges,
and Roberto Trifiletti. TinyOLE: Efficient actively secure two-party
computation from oblivious linear function evaluation. In Bha-
vani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan
Xu, editors, ACM CCS 2017: 24th Conference on Computer and
Communications Security, pages 2263-2276, Dallas, TX, USA, Oc-
tober 31 — November 2, 2017. ACM Press.

Nico Dottling, Daniel Kraschewski, and Jorn Miller-Quade. Sta-
tistically secure linear-rate dimension extension for oblivious affine
function evaluation. In Adam Smith, editor, ICITS 12: 6th Interna-
tional Conference on Information Theoretic Security, volume 7412
of Lecture Notes in Computer Science, pages 111-128, Montreal,
QC, Canada, August 15-17, 2012. Springer, Heidelberg, Germany.

24

[DKMQ12] Nico Déttling, Daniel Kraschewski, and Jorn Miiller-Quade. David

[DORS08]

[GMWS7]

[GN19]

[GNN17]

[GPV08]

[GS18]

[GS19]

& Goliath oblivious affine function evaluation - asymptotically op-
timal building blocks for universally composable two-party com-
putation from a single untrusted stateful tamper-proof hardware
token. Cryptology ePrint Archive, Report 2012/135, 2012. https:
//eprint.iacr.org/2012/135.

Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith.
Fuzzy extractors: How to generate strong keys from biometrics and
other noisy data. STAM J. Comput., 38(1):97-139, March 2008.

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any
mental game or A completeness theorem for protocols with honest
majority. In Alfred Aho, editor, 19th Annual ACM Symposium on
Theory of Computing, pages 218-229, New York City, NY, USA,
May 2527, 1987. ACM Press.

Satrajit Ghosh and Tobias Nilges. An algebraic approach to mali-
ciously secure private set intersection. In Yuval Ishai and Vincent
Rijmen, editors, Advances in Cryptology — EUROCRYPT 2019,
Part III, volume 11478 of Lecture Notes in Computer Science, pages
154-185, Darmstadt, Germany, May 19-23, 2019. Springer, Heidel-
berg, Germany.

Satrajit Ghosh, Jesper Buus Nielsen, and Tobias Nilges. Maliciously
secure oblivious linear function evaluation with constant overhead.
In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryp-
tology — ASTACRYPT 2017, Part I, volume 10624 of Lecture Notes
in Computer Science, pages 629-659, Hong Kong, China, Decem-
ber 3-7, 2017. Springer, Heidelberg, Germany.

Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors
for hard lattices and new cryptographic constructions. In Richard E.
Ladner and Cynthia Dwork, editors, 40th Annual ACM Symposium
on Theory of Computing, pages 197-206, Victoria, BC, Canada,
May 17-20, 2008. ACM Press.

Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty
secure computation from minimal assumptions. In Jesper Buus
Nielsen and Vincent Rijmen, editors, Advances in Cryptology — EU-
ROCRYPT 2018, Part II, volume 10821 of Lecture Notes in Com-
puter Science, pages 468-499, Tel Aviv, Israel, April 29 — May 3,
2018. Springer, Heidelberg, Germany.

Satrajit Ghosh and Mark Simkin. The communication com-
plexity of threshold private set intersection. In Alexandra
Boldyreva and Daniele Micciancio, editors, Advances in Cryptology

25

https://eprint.iacr.org/2012/135
https://eprint.iacr.org/2012/135

[HIMV19]

[IPS09)]

[JVC18]

[MP12]

[MRO7]

[MZ17]

[PROG]

[PVWO8]

-~ CRYPTO 2019, Part II, volume 11693 of Lecture Notes in Com-
puter Science, pages 3—29, Santa Barbara, CA, USA, August 18-22,
2019. Springer, Heidelberg, Germany.

Carmit Hazay, Yuval Ishai, Antonio Marcedone, and Muthuramakr-
ishnan Venkitasubramaniam. LevioSA: Lightweight secure arith-
metic computation. In Lorenzo Cavallaro, Johannes Kinder, Xi-
aoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019: 26th
Conference on Computer and Communications Security, pages 327—
344. ACM Press, November 11-15, 2019.

Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arith-
metic computation with no honest majority. In Omer Reingold,
editor, Theory of Cryptography, pages 294-314, Berlin, Heidelberg,
2009. Springer Berlin Heidelberg.

Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chan-
drakasan. GAZELLE: A low latency framework for secure neu-
ral network inference. In William Enck and Adrienne Porter Felt,
editors, USENIX Security 2018: 27th USENIX Security Sympo-
stum, pages 1651-1669, Baltimore, MD, USA, August 15-17, 2018.
USENIX Association.

Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Sim-
pler, tighter, faster, smaller. In David Pointcheval and Thomas
Johansson, editors, Advances in Cryptology — EUROCRYPT 2012,
volume 7237 of Lecture Notes in Computer Science, pages 700-718,
Cambridge, UK, April 15-19, 2012. Springer, Heidelberg, Germany.

Daniele Micciancio and Oded Regev. Worst-case to average-case re-
ductions based on gaussian measures. SIAM Journal on Computing,
37(1):267-302, 2007.

Payman Mohassel and Yupeng Zhang. SecureML: A system for
scalable privacy-preserving machine learning. In 2017 IEEE Sym-
posium on Security and Privacy, pages 19-38, San Jose, CA, USA,
May 22-26, 2017. IEEE Computer Society Press.

Chris Peikert and Alon Rosen. Efficient collision-resistant hashing
from worst-case assumptions on cyclic lattices. In Shai Halevi and
Tal Rabin, editors, TCC 2006: 3rd Theory of Cryptography Con-
ference, volume 3876 of Lecture Notes in Computer Science, pages
145-166, New York, NY, USA, March 4-7, 2006. Springer, Heidel-
berg, Germany.

Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A frame-
work for efficient and composable oblivious transfer. In David Wag-
ner, editor, Advances in Cryptology — CRYPTO 2008, volume 5157

26

[Reg05]

of Lecture Notes in Computer Science, pages 554-571, Santa Bar-
bara, CA, USA, August 17-21, 2008. Springer, Heidelberg, Ger-

many.

Oded Regev. On lattices, learning with errors, random linear codes,
and cryptography. In Harold N. Gabow and Ronald Fagin, editors,
37th Annual ACM Symposium on Theory of Computing, pages 84—
93, Baltimore, MA, USA, May 22-24, 2005. ACM Press.

27

	Introduction
	Our Results
	Related Work and Comparison
	Open Problems

	Technical Outline
	A Two-Round Semi-Honest Protocol
	Extending to Malicious Adversaries

	Preliminaries
	Universal Composability
	Lattices and Hardness Assumptions

	Reusable Oblivious Linear Evaluation Secure Against Corrupted Receiver
	Protocol
	Analysis of the Protocol
	Batch Reusable OLE
	Parameters to Implement the OLE.

	OLE from LWE secure against Malicious Adversaries
	Protocol
	Analysis
	Instantiating the Functionality FOT

