
Two-Round Oblivious Linear Evaluation from

Learning with Errors

Pedro Branco1, Nico Döttling2, and Paulo Mateus1

1IT, IST - University of Lisbon
2Helmholtz Center for Information Security (CISPA)

Abstract

Oblivious Linear Evaluation (OLE) is a simple yet powerful cryp-
tographic primitive which allows a sender, holding an affine function
f(x) = a + bx over a finite field, to let a receiver learn f(w) for a w
of the receiver’s choice. In terms of security, the sender remains oblivi-
ous of the receiver’s input w, whereas the receiver learns nothing beyond
f(w) about f . In recent years, OLE has emerged as an essential build-
ing block to construct efficient, reusable and maliciously-secure two-party
computation.

In this work, we present efficient two-round protocols for OLE based on
the Learning with Errors (LWE) assumption. Our first protocol for OLE
is secure against malicious unbounded receivers and semi-honest senders.
The receiver’s first message may carry information about a batch of inputs,
and not just a single input. We then show how we can extend the above
protocol to provide malicious security for both parties.

1 Introduction

Oblivious Linear Evaluation (OLE) is a cryptographic primitive between a
sender and a receiver, where the sender inputs an affine function f(x) = a+ bx
over a finite field F, the receiver inputs an element w ∈ F, and in the end the
receiver learns f(w). The sender remains oblivious of the receiver’s input w and
the receiver learns nothing beyond f(w) about f . OLE can be seen as a gener-
alization of the well-known Oblivious Transfer (OT) primitive.1 In fact, just as
secure computation of Boolean circuits can be based on OT, secure computation
of arithmetic circuits can be based on OLE [GMW87, IPS09].

In recent years, OLE has emerged as one of the most promising avenues
to realize efficient two-party secure computation in different settings [IPS09,
ADI+17, DGN+17, BCGI18, HIMV19, CDI+19]. Interestingly, OLE has found

1It is easy to see that, if we consider the affine function f : {0, 1} → {0, 1} such that
f(b) = m0 + b(m1 −m0), OLE trivially implements OT.

1

applications, not just in the secure computation of generic functions, but also in
specific tasks such as Private Set Intersection [GN19, GS19] or Machine Learning
related tasks [MZ17, JVC18].

Other aspects that set OLE apart from OT are reusability, meaning that the
first message of a protocol is reusable across multiple executions,2 and the fact
that even a semi-honest secure OLE can be used to realize maliciously secure
two-party computation [HIMV19].

Although OLE secure against semi-honest adversaries is complete for maliciously-
secure two-party computation [HIMV19], this comes at the cost of efficiency
and, thus, is it always preferable to start with a maliciously-secure one. More-
over, some applications of OLE even ask specifically for a maliciously-secure one
[GN19]. Given this state of affairs and the importance of OLE in constructing
two-party secure computation protocols, we ask the following question:

Can we build efficient and maliciously-secure two-round OLE protocols from
(presumed) post-quantum hardness assumptions?

1.1 Our Results

In this work, we give an affirmative answer to the question above. Specifically,
we present two simple, efficient and round-optimal protocols for OLE based on
the hardness of the Learning with Errors (LWE) assumption [Reg05], which is
conjectured to be post-quantum secure.

Before we start, we clarify what type of OLE we obtain. OLE comes in
many flavors, one of the most useful being vector OLE where the sender inputs
two vectors a = a, b = b ∈ F` and the receiver obtains a linear combination of
them z = a +wb ∈ F` [BCGI18]. For simplicity, we just refer to this variant as
OLE.

Both of our protocols implement the functionality in just two-rounds and
have the following properties:

• Our first protocol (Section 5) for OLE achieves statistical security against
a corrupted receiver and computational semi-honest security against a
corrupted sender. Additionally, we show how we can extend this protocol
to implement batch OLE, a functionality similar to OLE where the receiver
can input a batch of values {xi}i∈[k′], instead of just one value.

• We then show how to extend the above protocol to provide malicious
security for both parties (Section 6). The protocol makes λ invocations of a
two-round Oblivious Transfer protocol (which exists under LWE [PVW08,
DGH+20]), where λ is the security parameter. By instantiating the OT

2While two-party reusable non-interactive secure computation (NISC) is impossible in the
OT-hybrid model [CDI+19], reusable NISC for general Boolean circuits is known to be possible
in the (reusable) OLE-hybrid model assuming one-way functions [CDI+19]. The result stated
above is meaningful only if we have access to a reusable two-round OLE protocol. The
only efficient realizations of this primitive are based on the Decisional Composite Residuosity
(DCR) and the Quadratic Residuosity assumptions [CDI+19].

2

with the LWE-based protocols of [PVW08, Qua20], we preserve statistical
security against a malicious receiver.

1.2 Related Work and Comparison

In the following, we briefly review some proposals from prior work and compare
them with our proposal. We only consider schemes that are provable UC-secure
as our protocols. OLE can be trivially implemented using Fully/Somewhat
Homomorphic Encryption (e.g., [JVC18]) but these solutions are usually just
proven secure against semi-honest adversaries and it is unclear how to extend
security against malicious adversaries without relying on generic approaches
such as Non-Interactive Zero-Knowledge (NIZK) proofs.3 OLE can also be
trivially implemented using generic solutions for two-party secure computation
(via OT) such as [GS18, BL18]. However, these solutions fall short in achieving
an acceptable level of efficiency.

The work of Döttling et al. [DKM12, DKMQ12] proposed an OLE protocol
with unconditional security, in the stateful tamper-proof hardware model. The
protocol takes only two rounds, however further interaction with the token is
needed by the parties.

In [IPS09], a semi-honest protocol for oblivious multiplication was proposed,
which can be easily extended to a OLE protocol. The protocol is based on noisy
encodings. Based on the same assumption, [GNN17] proposed a maliciously-
secure OLE protocol, which extends the techniques of [IPS09]. However, their
protocol takes eight rounds of interaction.

Chase et al. [CDI+19] presented a round-optimal reusable OLE protocol
based on the Decisional Composite Residuosity (DCR) and the Quadratic Resid-
uosity (QR) assumptions. The protocol is maliciously-secure and, to the best of
our knowledge, it is the most efficient protocol for OLE proposed so far. How-
ever, it is well-known that both the DCR and the QR problems are quantumly
insecure.

We also remark that our protocols implement vector OLE where the sender’s
input are vectors over a field, as in [GNN17].

In Table 1, a brief comparison between several UC-secure OLE protocols is
presented.

1.3 Open Problems

Our first protocol is secure against semi-honest senders and, thus, it is trivially
reusable. However, our fully maliciously-secure protocol (in Section 6) does not
have reusability of the first message. Hence, the main open problem left in our
work is the following: Can we construct a reusable maliciously-secure two-round
OLE protocol based on the LWE assumption?

3As an example consider the work of [CDI+19], where the Paillier cryptosystem is extended
into an OLE protocol with malicious security and the construction is highly non-trivial.

3

Hardness
Assumption

Setup
Assumption

Rounds Reusability Security

[IPS09]
Noisy

Encodings
OT 3 - semi-honest

[DKM12] -
Stateful tamper
proof hardware

2 - malicious

[GNN17]
Noisy

Encodings
OT 8 - malicious

[CDI+19] DCR & QR CRS 2 3 malicious

This work
LWE CRS 2 3

malicious
receiver

LWE CRS & OT 2 7 malicious

Table 1: Comparison between different OLE schemes.

2 Technical Outline

In this section, we give a brief overview of our protocols.

2.1 A Two-Round Semi-Honest Protocol

In our protocol, both the sender S and the receiver R have access to a common
reference string crs = A←$Zk×nq . The core idea of our protocol is the following:

1. R computes a′ = xA + e where e is a short noise vector and the i-th
coordinate xi ∈ Zq of x corresponds to its input.

2. S samples a short matrix R and computes the pair (s0 = a′R, s1 = aiR)
where ai is the i-th row of A. It sends A−iR to the receiver, where A−i
is the matrix A with the i-th row removed.

3. R computes ỹ = x−iC where x−i is the vector x with the i-th coordinate
removed.

Observe that

ỹ = x−iC = x−iA−iR = (xA− xiai)R
= (xA + e)R− (xiai)R− eR = s0 + xis1 + e′

for some short vector e′. Hence, the vector obtained by R is a linear combination
of (s0, s1) up to some noise, which can be corrected using an error-correcting
code (ECC) as we will see below.

We can extend this idea into a fully functional protocol as follows, by making
additional use of a linear error correcting code (ECC) against short errors in
the euclidean norm.4

4We can use the decoder of [MP12] as an ECC in our construction.

4

1. R chooses a random x←$Zkq such that xi (i.e., the i-th coordinate of x)5

corresponds to R’s input and compute an LWE sample a′ = xA + e for
an error vector e.

2. Upon receiving a′ from R, S chooses a short matrix R and computes
s0 = a′R and s1 = aiR. Moreover, it sends C = A−iR, t0 = s0 + ẑ0 and
t1 = s1 + ẑ1 where (ẑ0, ẑ1) is an encoding of S’s inputs (z0, z1).

3. Upon receiving C, R computes

ỹ = x−iC− (t0 − xit1) = (ẑ0 + xiẑ1) + e′.

Then, it decodes ỹ to obtain y.

Security. Security against a semi-honest sender can be routinely established
from the LWE assumption.

To argue that the protocol is secure against a semi-honest receiver, we can
show that conditioned on y = z0 + xiz1 the values (z0, z1) are statistically
hidden from the view of R. This argument relies on the fact that a′ = xA +
e is well-formed and that C = A−iR is statistically close to uniform even
given the residual term eR (which can be established via the Partial Smoothing
Lemma [BD18]).

A closer inspection at the protocol reveals that, in fact, security holds even
against an unbounded malicious receiver. In order to prove UC-security, we
need to construct a simulator which extracts R’s input [Can01]. By generating
a matrix A in the CRS along with a lattice-trapdoor6 tdA in the sense of
[GPV08, MP12], the simulator can extract x from a′ = xA + e, provided that
e is short.

If extraction fails, meaning that e is too large, we have to consider two
different cases. Either i) the vector a′ is not close to the row-span of A, or ii)
a′ is close to the row-span of A. In the first (and easier) case we will be able to

rely on the fact that the lattice Λq(A
′) generated by the row-span of A′ =

(
A
a′

)
has no short vectors. The Smoothing Lemma [MR07] guarantees that if R is
sampled according to a discrete Gaussian distribution (with a properly chosen
parameter), then the distribution of the product A′R is statistically close to
uniform. Thus, in this case, R just obtains random garbage and the simulation
succeeds.

We now turn our attention to the most interesting case of our security proof
where extraction fails but a′ is close to the row-span of A. First, note that if

5Here, the index i can be adversarially chosen by the receiver since the security does not
depend on the distribution of i. We remark that i can also be fixed (e.g., i = 1). However,
we choose to use this notation because we later want to batch several receiver’s input into a
single message of the same form.

6Recall that a lattice trapdoor tdA (as in [GPV08, MP12]) can be generated along with a
matrix A such that it allows to invert LWE samples. That is, given xA+ e for a short vector
e, tdA allows to recover x.

5

this is the case, then a′ must be of the form a′ = α(xA + e′) for α ∈ Zq and a
short error e′. If the modulus q is polynomial in the security parameter, then
the extraction technique of [GPV08, PVW08], which tries to decode every q− 1
multiples of a′, can be used. However, this would restrict the OLE functionality
since the protocol could only be performed for fields Zq of polynomial size.
Hence, we devise a method to extract x successfully that works independently
of the modulus q.

Extraction of the receiver’s input. Recall that tdA is a short square matrix
T ∈ Zn×nq such that AT = 0 [MP12]. If we multiply a′ by T we obtain

a′T = α(xA + e′)T = α · e′T = α · f = y

where f = e′T is a short vector. Thus, it suffices to build an algorithm that
recovers f = (f1, . . . , fn) ∈ Znq given y = (y1, . . . , yn) ∈ Znq .

From the equation y = αf , we have that fj − (yj/y1)f1 = 0 for j = 2, . . . , n.
Therefore, it is enough to find f1, since all other coordinates of f are determined
by it.

To find the first coordinate f1, we rely on the fact that solving the Shortest
Vector Problem (SVP) in a two-dimensional lattice can actually be done in
polynomial time (and independently of the modulus q) [LP94]. Consider the
lattice generated by the two dimensional vector bj = (−yj/y1, 1). By applying

a SVP solver, we are able to find the shortest solution gj = (g
(1)
j , g

(2)
j) such

that bj · gj = 0. Observe that f1 must be a multiple of g
(1)
j for all j = 2, . . . , n

(otherwise, gj would not be the shortest solution of the SVP instance). Hence,

f1 can be computed by taking the least common multiple of g
(1)
1 , . . . , g

(1)
n .

Comparison with previous extraction techniques. All in all, the algo-
rithm constructed above yields if a target vector a′ is close to the row-span
of A or not, given a matrix A and the corresponding trapdoor tdA. This al-
gorithm greatly improves upon previous extraction techniques such as the one
from [PVW08] and we believe that it is of independent interest.

Recall that in [PVW08], the extraction is done by checking if any multiple
of a′ is invertible. This immediately imply a polynomial bound on the modulus
q, otherwise the simulation would not be efficient. In our case, we avoid this
restriction on q and are able to extract the receiver’s input independently of the
modulus q. In the OLE setting, this is of utmost importance since we want to
be able to perform OLE over any field Zq.

The recent work of Quach [Qua20] devised an extraction method for super-
polynomial modulus q by using Hash Proof Systems (HPS). However, the use
of HPS in the lattice setting comes at the cost of efficiency.7

7Despite numerous efforts, HPS in the lattice setting fall short in efficiency when comparing
to their group-based counterpart.

6

2.2 Batch OLE.

We define a new OLE functionality that we called batch OLE. In this function-
ality, the receiver commits to a batch of inputs {xi}i∈[k′]. Later, the sender can
send its inputs (z0, z1) together with an index j ∈ [k′] corresponding to which
input the receiver is using in this execution of the OLE. The receiver outputs
the linear combination z0 + xjz1.

A slight variant of the OLE protocol described above implements this func-
tionality: In the first round, R chooses x ∈ Zkq such that, say, the first k′

coordinates correspond to its inputs (x1, . . . , xk′), and computes a′ = xA + e.
Then, along with its message, the sender S sends a position j ∈ [k′] to indicate
which is the receiver’s input being used in that execution of the protocol.

This variant improves in communication efficiency since, if R has several
inputs, the parties don’t need to run the protocol multiple times in parallel.
Instead, they can just use the same message a′ for several inputs of the receiver,
as long as the LWE assumption holds for dimension k − k′.

2.3 Comparison with Previous Works.

The idea of removing a row to a matrix A to hide something and then recovering
it during decryption was already used in a previous work [DGHM18] to construct
Hash with Encryption. However, in [DGHM18], the value to hash is chosen
selectively by the adversary and thus security follows easily from the Extended
LWE assumption [AP12].

Our case presents much more subtle technical challenges since the value a′

sent by the receiver is chosen after seeing the matrix A, and thus, it has an
adaptive flavor.

2.4 Extending to Malicious Adversaries

In the scheme above, it is information-theoretically impossible for a UC-simulator
to extract the sender’s input. In this section, we show how to modify the scheme
to support UC-security against malicious senders.

In a nutshell, the idea to make the protocol secure against corrupted senders
is to use a cut-and-choose-style approach using a two-round OT protocol, which
exists under various assumptions [PVW08, DGH+20]. Using the OT, the re-
ceiver is able to check if the matrices Cj = A−iRj sent by the sender are
well-formed. More precisely, our protocol works as follows:

1. R computes a′ = xA + e as in the previous protocol. Additionally, it runs
λ instances of the OT in parallel (playing the role of the receiver), with
input bits (b1, . . . , bλ), where half of them are equal to 0 and the remaining
are equal to 1; and sends the first messages of each instance.

2. For j ∈ [λ], S computes the matrix Cj = A−iRj for a short matrix
Rj . It chooses two random vectors (u0,j ,u1,j) and inputs two messages
(M0,j ,M1,j) in the OT, where M0,j = Rj and M1,j = (t0,j , t1,j ,u0,j +

7

z0,u1,j + z1) where t0,j = a′Rj + ẽj + û0,j and t1,j = aiRj + û1,j , where
û0,j and û1,j are the encodings of u0,j and u0,j , respectively.

3. When bj = 0, R can check that the matrix Cj is indeed well-formed.
When bj = 1, R can use M1,j to compute the same linear combination
w = z0+xiz1 for every position j (it aborts if there is at least one different
from the others).

Security against an unbouded receiver in the OT-hybrid model essentially
follows the same reasoning as in the previous protocol.

We now argue how we can build the simulator Sim against a corrupted
sender. By simulating the OT functionality, the simulator Sim can extract the
sender’s input using a single position j for which S inputs the right messages
M0,j and M1,j . This event always happens, except with negligible probability.
Moreover, if R accepts the messages M1,j , when bj = 1, then this means that S
input the same pair (z0, z1) in these positions given that the LWE assumption
holds.

The main drawback of this approach is that we loose reusability.8 It is
trivial to see that this extraction strategy fails if S knows which are the bits
that R sends to the OT functionality. Moreover, after several executions of the
protocol, S is able to correctly guess the values of these bits. In fact, it is known
that reusability is impossible in the OT-hybrid model [CDI+19].

Instantiating the OT functionality. When we instantiate our protocol
with the OT schemes from [PVW08, Qua20] we obtain several nice properties
for the OLE scheme, namely: i) The protocol is still two-round; ii) the proto-
col preserves statistical security against a corrupted receiver (since the OT of
[PVW08, Qua20] is also statistically secure against a corrupted receiver); and
iii) the OLE scheme is secure based solely on the LWE assumption.

3 Preliminaries

Throughout this work, λ denotes the security parameter and PPT stands for
“probabilistic polynomial-time”.

Let A ∈ Zk×nq and x ∈ Znq . We denote by A−i the matrix A with the
i-th row removed. Similarly, x−i denotes the vector x with the i-th coordinate
removed. Moreover, ‖x‖ denotes the usual `2 norm of a vector x. For a vector
b ∈ {0, 1}k, we denote its weight, that is the number of non-null coordinates,
by wt(b).

If S is a (finite) set, we denote by x←$S an element x ∈ S sampled according
to a uniform distribution. Moreover, we denote by U(S) the uniform distribution
over S. If D is a distribution over S, x←$D denotes an element x ∈ S sampled
according to D. If A is an algorithm, y ← A(x) denotes the output y after
running A on input x.

8Remark that reusability is trivially achieved when the sender is semi-honest.

8

A negligible function negl(n) in n is a function that vanishes faster than the
inverse of any polynomial in n.

Given two distributions D1 and D2, we say that they are ε-statistically
indistinguishable, denoted by D1 ≈ε D2, if the statistical distance is at most ε.

Error-Correcting Codes. We define Error-Correcting Codes (ECC). An
ECC over Zq is composed by the following algorithms ECC`,k,δ = (Encode,Decode)
such that: i) c ← Encode(m) takes as input a message m ∈ Z`q and outputs a

codeword c ∈ Zkq ; ii) m← Decode(c̃) takes as input corrupted codeword c̃ ∈ Zkq
and outputs a message m ∈ Z`q if ‖c̃− c‖ ≤ δ where c ← Encode(m). In this
case, we say that ECC corrects up to δ errors. We say that ECC is linear if any
linear combination of codewords of ECC is also a codeword of ECC.

An example of such code is the primitive lattice of [MP12] which allows for
efficient decoding and fulfills all the properties that we need.

3.1 Universal Composability

UC-framework [Can01] allows to prove security of protocols even under arbitrary
composition with other protocols. Let F be a functionality, π a protocol that
implements F and Z be a environment, an entity that oversees the execution
of the protocol in both the real and the ideal worlds. Let IDEALF,Sim,Z be a
random variable that represents the output of Z after the execution of F with
adversary Sim. Similarly, let REALGπ,A,Z be a random variable that represents
the output of Z after the execution of π with adversary A and with access to
the functionality G.

A protocol π UC-realizes F in the G-hybrid model if for every PPT adversary
A there is a PPT simulator Sim such that for all PPT environments E , the dis-
tributions IDEALF,Sim,Z and REALGπ,A,Z are computationally indistinguishable.

In this work, we only consider static adversaries. That is, parties involved
in the protocol are corrupted at the beginning of the execution.

We now present the ideal functionalities that we will use in this work.

CRS functionality. This functionality generates a crs and distributes it be-
tween all the parties involved in the protocol. Here, we present the ideal func-
tionality as in [PVW08].

GCRS functionality

Parameters: An algorithm D.

• Upon receiving (sid,Pi,Pj) from Pi, GCRS runs crs← D(1κ) and returns
(sid, crs) to Pi.

• Upon receiving (sid,Pi,Pj) from Pj , GCRS returns (sid, crs) to Pj .

9

OT functionality. Oblivious Transfer (OT) can be seen as a particular case
of OLE. We show the ideal OT functionality below.

FOT functionality

Parameters: sid ∈ N known to both parties.

• Upon receiving (sid, (M0,M1)) from S, FOT stores (M0,M1) and ig-
nores future messages from S with the same sid;

• Upon receiving (sid, b ∈ {0, 1}) from R, FOT checks if it has recorded
(sid, (M0,M1)). If so, it returns (sid,Mb) to R and (sid, receipt) to S,
and halts. Else, it sends nothing, but continues running.

OLE functionality. We now present the OLE functionality. This function-
ality involves two parties: the sender S and the receiver R.

FOLE functionality

Parameters: sid, q, k ∈ N and a finite field F known to both parties.

• Upon receiving
(
sid, (a,b) ∈ Fk × Fk

)
from S, FOLE stores (a,b) and

ignores future messages from S with the same sid;

• Upon receiving (sid, x ∈ F) from R, FOLE checks if it has recorded
(sid, (a,b)). If so, it returns (sid, z = a + xb) to R and (sid, receipt) to
S, and halts. Else, it sends nothing but continues running.

Batch OLE functionality. Here we define a batch version of the functional-
ity defined above. In this functionality, the receiver inputs several OLE inputs
at the same time. The sender can then input an affine function together with
an index corresponding to which input the receiver should receive the linear
combination.

FbOLE functionality

Parameters: sid, q, k, k′ ∈ N and a finite field F known to both parties.

• Upon receiving
(
sid, {(ai,bi)}i∈[k′] ∈ Fk × Fk

)
from S, FbOLE stores

{(ai,bi)}i∈[k′] and ignores future messages from S with the same sid;

• Upon receiving (sid, {xi}i∈[k′]) from R, where xi ∈ F, FbOLE

checks if it has recorded
(
sid, {(ai,bi)}i∈[k′]

)
. If so, it returns(

sid, {zi = ai + xibi}i∈[k′]
)

to R and (sid, receipt) to S, and halts. Else,
it sends nothing but continues running.

10

3.2 Lattices and Hardness Assumptions

Notation. Let B ∈ Rk×n be a matrix. We denote the lattice generated by B
by Λ = Λ(B) = {xB : x ∈ Zk}.9 The dual lattice Λ∗ of a lattice Λ is defined
by Λ∗ = {x ∈ Rn : ∀y ∈ Λ,x · y ∈ Z}. It holds that (Λ∗)∗ = Λ.

We denote by γB the ball of radius γ centered on zero. That is

γB = {x ∈ Zn : ‖x‖ ≤ γ}.

A lattice Λ is said to be q-ary if (qZ)n ⊆ Λ ⊆ Zn. For every q-ary lattice Λ,
there is a matrix A ∈ Zk×nq such that

Λ = Λq(A) = {y ∈ Zn : ∃x ∈ Zkq ,y = xA mod q}.

The orthogonal lattice Λ⊥q is defined by {y ∈ Znq : AyT = 0 mod q}. It holds

that 1
qΛ⊥q = Λ∗q

Let ρs(x) be probability distribution of the Gaussian distribution over Rn
with parameter s and centered in 0. We define the discrete Gaussian distribution
DS,s over S and with parameter s by the probability distribution ρs(x)/ρ(S)
for all x ∈ S (where ρs(S) =

∑
x∈S ρs(x)).

For ε > 0, the smoothing parameter ηε(Λ) of a lattice Λ is the least real
σ > 0 such that ρ1/σ(Λ∗ \ {0}) ≤ ε [MR07].

Useful Lemmata. The following lemmas are well-known results on discrete
Gaussians over lattices.

Lemma 1 ([Ban93]). Let σ > 0 and x←$DZn,σ. Then we have that

Pr
[
‖x‖ ≥ σ

√
n
]
≤ negl(n) .

The next lemma is a consequence of the smoothing lemma [MR07] and it
tells us that AeT is uniform, when e is sampled from a discrete Gaussian with
a proper choice of parameters.

Lemma 2 ([GPV08]). Let q ∈ N and A ∈ Zk×nq be a matrix whose columns gen-

erate Zkq . Moreover, let ε ∈ (0, 1/2) and σ ≥ ηε(Λ⊥q (A)). Then, for e←$DZm,σ,

AeT mod q ≈2ε uT mod q

where u←$Zkq .

The partial smoothing lemma tells us that the famous smoothing lemma
[MR07] still holds even given a small leak.

Lemma 3 (Partial Smoothing [BD18]). Let q ∈ N, γ > 0 be a real number, A ∈
Zk×nq and σ, ε > 0 be such that ρq/σ(Λq(A) \ γB) ≤ ε. Moreover, let D ∈ Zm×kq

be a full-rank matrix with Λ⊥q (D) = {x ∈ Zn : x · y = 0,∀y ∈ Λq(A) ∩ γB}.
Then we have that

AxT mod q ≈ε A(x + u)T mod q

where x←$DZn,σ and u←$ Λ⊥q (D) mod q.
9The matrix B is called a basis of Λ(B).

11

LWE Assumption. The Learning with Errors assumption was first presented
in [Reg05]. The assumption roughly states that it should be hard to solve a set
linear equations by just adding a little noise to it.

Definition 1 (Learning with Errors). Let q, k ∈ N where k ∈ poly(λ), A ∈ Zk×nq

and β ∈ R. For any n = poly(k log q), the LWEk,β,q assumption holds if for every
PPT algorithm A we have

|Pr [1← A(A, sA + e)]− Pr [1← A(A,y)]| ≤ negl(λ)

for s←$ {0, 1}k, e←$DZn,β and y←$ {0, 1}n.

Regev proved in [Reg05] that there is a (quantum) worst-case to average-case
reduction from some problems on lattices which are believed to be hard even in
the presence of a quantum computer.

Trapdoors for Lattices. Recent works [GPV08, MP12] have presented trap-
doors functions based on the hardness of LWE.

Lemma 4 ([GPV08, MP12]). Let τ(k) ∈ ω
(√

log k
)

be a function. There is a
pair of algorithms (TdGen, Invert) such that if (A, td)← TdGen(q, k) then:

• A ∈ Zk×nq where n ∈ O(k log q) is a matrix whose distribution is 2−k close

to the uniform distribution over Zk×nq .

• For any s ∈ Zkq and e ∈ Znq such that ‖e‖ < q/(
√
nτ(k)), we have that

s← Invert(td, sA + e).

In the lemma above, td corresponds to a short matrix T ∈ Zn×nq (that is,

maxi∈[n]{t(i)} < B, where t(i) is the i-th column of T, for some B ∈ N) such
that AT = 0 and T−1 is easily computed. To invert a sample of the form
y = sA + e, we simply compute yT = sAT + eT = eT. The error vector e can
be easily recovered by multiplying by T−1.

Observe that, if (A, tdA)← TdGen(1λ, n, k, q), then Λ(A) has no short vec-
tors. That is, for all y ∈ Λ(A), then ‖y‖ > B = q/(

√
nτ(k)) [MP12]. If this

does not happen, then the algorithm Invert would not output the right s for a
non-negligible number of cases.

4 Finding Short Vectors in a Lattice with a Trap-
door

In this section, we build an algorithm that, given a matrix A together with
the corresponding trapdoor tdA (in the sense of Lemma 4), we can decide if a
vector a is close to the row-span of A and even find the corresponding linear
combination.

To build our algorithm, we need an additional tool. The following lemma
states that, for two-dimensional lattices, we can efficiently find the shortest
vector of the lattice.

12

Lemma 5 ([LP94]). There exists an algorithm SolveSVP that takes as input
two-dimensional lattice generated by a ∈ Z2

q and outputs the shortest vector

e ∈ Z2 such that aeT = 0. Such an algorithm runs it time O(log q).

The following algorithm allows us to solve an equation of the form r · e = y
for a short vector e. This algorithm will be instrumental to the main result of
this section.

Lemma 6. Let q ∈ N be a prime number. There exists an algorithm RecoverError
that takes as input a vector y ∈ Znq and a bound B. The vector y is of the form
y = re for some r ∈ Zq and e ∈ Znq with ‖e‖ ≤ B. It outputs (r, e). The
algorithm runs in polynomial time in n.

Proof. To prove the lemma above, we first present how the algorithm works.

Construction 1. Let q ∈ N be a prime number and n = poly(λ). For the sake
of simplicity, we assume that no coordinate of y is equal to zero.

RecoverErrorq,n(y, B):

• Parse y ∈ Znq as (y1, . . . , yn) and B > 0. If ‖y‖ ≤ B output y.

• For all i = 2, . . . , n, compute vi = yi/y1. Consider the lattice Λq(ai)
generated by the vector ai = (−vi, 1). Apply SolveSVP(ai) to obtain ei ∈
Z2
q such that ei = (e

(1)
i , e

(2)
i) ∈ Λ⊥q (ai).

• Compute e1 = lcm(e
(1)
1 , . . . , e

(1)
n), where lcm is the least common multiple

function.

• For all i = 2, . . . , n, compute ei = vie1.

• If ‖e‖ < B, output (r, e) where e = (e1, . . . , en) and r = y1/e1. Else,
output ⊥.

We now proceed to analyze the algorithm above. Again, we assume that all
coordinates of y are non-zero. If this is not the case, then we set ei = 0 for all
i where yi = 0 and apply the algorithm to the remaining coordinates. Assume
that y = r · e, that is, (y1, . . . , yn) = (re1, . . . , ren). If we divide all coordinates
i ≥ 2 by the first coordinate rei, we obtain the following equations

e2 − (y2/y1)e1 = 0

...

en − (yn/y1)e1 = 0.

(1)

Set vi = yi/y1 and consider the vector ai = (−vi, 1). After applying SolveSVP to

ai we obtain the shortest vector e′i = (e
(1)
i , e

(2)
i) such that aie

′
i = 0. Note that,

since ai has dimension 2, then SolveSVP runs in time O(log q) by Lemma 5.

13

We claim that e1 = tie
(1)
i for all i and ti ∈ Z, that is, e1 is a multiple of e

(1)
i .

To see this note that e′i is sampled from Λ⊥q (ai). Thus

ei − vie1 = e
(2)
i − vie

(1)
i = 0

e1/e
(1)
i = ei/e

(2)
i

e1 = (ei/e
(2)
i)e

(1)
i .

Given that e1, ei, e
(1)
i , e

(2)
i ∈ Z and that e

(1)
i and e

(2)
i are coprime (otherwise, it

would not be the shortest solution) then we must have (e
(2)
i /ei) ∈ Z.

Therefore, taking the least common multiple of e
(1)
i ’s yields the shortest

possible value e1 that fulfills all equations.
By the system of equations 1, it is enough to find e1 to recover the whole

vector e since all other coordinates are determined by e1.

We now present the main result of this section. The lemma states that we
can decide if a given vector a is close to the row-span of A, if A is generated
together with a trapdoor.

Lemma 7. Let q ∈ N be a prime number and TdGen be the algorithm from 4.
Let (A, tdA) ← TdGen(q, k). There exists an algorithm InvertCloseVector that
takes as input a trapdoor tdA, a vector a ∈ Znq and a bound B > 0. If there are

x ∈ Zkq and r ∈ Zq such that xA + ra = e for some e ∈ Znq such that ‖e‖ < B,
the algorithm outputs (x, r, e). Else, it outputs ⊥.

Proof. We present the construction of the new algorithm InvertCloseVector

Construction 2. Let (A, tdA)← TdGen and let RecoverError be the algorithm
from Lemma 6.

InvertCloseVector(tdA,a, B) :

• Parse tdA = T ∈ Zn×nq , a ∈ Znq and B > 0.

• Compute z = aT.

• Apply (r, e′)← RecoverErrorq,n(z, B). Compute e = e′T−1

• Check if ‖e‖ < B and recover x′ such that x′A + r · e. Set x = r−1x

• If ‖e‖ > B output ⊥. Else, output (x, r, e).

We have two cases to consider: Either the vector a is close to the row-span
of A or it is not.

We begin by analyzing the first case. If a is close to the row-span of A,
then there exists x and α such that xA + αa = e for some e ∈ Znq such that
‖e‖ < B. This means that a is a multiple of a point close to the row-span of
A, i.e., a = x′A + r · e for some x′ and r.

14

Parsing tdA as T ∈ Zn×nq and multiplying by a, we obtain

aT = x′AT + reT = r.e′

where e′ = eT such that ‖e′‖ < B′ for some B′ > 0 and where the last equality
holds because AT = 0.

Now, by Lemma 6, we recover (r, e′) after running RecoverError. From this,
we can recover e = e′T−1 and x = r−1x′, where x′A = a− re.

5 Oblivious Linear Evaluation Secure Against a
Corrupted Receiver

In this section, we present a semi-honest protocol for OLE based on the hardness
of the LWE assumption. The protocol implements functionality FOLE defined
in Section 3.

5.1 Protocol

We begin by presenting the protocol.

Construction 3. The protocol is composed by the algorithms (GenCRS,R1,S,R2).
Let k, n, `, `′, q ∈ Z such that q is a prime and n = poly(k log q), and let
β, δ, ξ ∈ R such that q√

nτ(k)
> β (where τ(k) = ω(

√
log k) as in Lemma 4),

δ > β > 1 and β > q/δ. We present the protocol in full detail.

GenCRS(1λ):

• Sample A←$Zk×nq .

• Choose a linear ECC ECC`′,`,ξ = (ECC.Encode,ECC.Decode) over Zq.

• Output crs = (A,ECC`′,`,ξ).

R1 (crs, x ∈ Zq):

• Parse crs as (A,ECC`′,`,ξ).

• Sample x = (x1, . . . , xk)←$Zkq such that xi = x and a small error vector
e←$DZn,β, for a uniformly chosen index i←$ [k].

• Compute a′ = xA + e.

• Output ole1 = (a′, i) and st = (x, i).

15

S
(
crs, (z0, z1) ∈ (Z`′q)2,mR

)
:

• Parse crs as (A,ECC`′,`,ξ) and ole1 as (a′, i).

• Sample R ∈ Zn×`q where each column r(j)←$DZn,δ for j ∈ [`].

• Compute s0, s1 ∈ Z`q such that s0 = a′R, s1 = −aiR, and C = A−iR ∈
Z(k−1)×`
q .

• Compute t0 = s0 + ECC.Encode(z0) and t1 = s1 + ECC.Encode(z1).

• Output ole2 = (C, t0, t1).

R2(crs, st,mS):

• Parse crs as (A,ECC`′,`,ξ), ole2 as (C, t0, t1) and st as (x ∈ Zkq , i).

• Compute ỹ = x−iC − (t0 + xit1) and then run y ← ECC.Decode(ỹ). If
y =⊥, abort the protocol.

• Output y ∈ Z`′q .

5.2 Analysis of the Protocol

Theorem 1 (Correctness). Let ECC`′,`,ξ be a linear ECC where ξ ≥ 2
√
`βδn.

Then the protocol presented in Construction 3 is correct.

Proof. To prove correctness, we have to prove that R2 outputs z0 +xiz1, where
(z0, z1) is the input of S.

First, note that

x−iC = x−iA−iR

= (xA− xiai)R
= (xA + e)R− (xiai)R− (e + ẽ)R

= s0 + xis1 + e′

where e′ = −(e + ẽ)R is a small error vector. The receiver computes

ỹ = x−iC− (t0 + xit1)

= ECC.Encode(z0 + xiz1) + e′

where the second equality holds because ECC is linear.
Finally, by Lemma 1, we have that ‖e‖ , ‖ẽ‖ ≤ β

√
n. Moreover, if r(i) is a

column of R, then
∥∥r(i)∥∥ ≤ δ

√
n. Therefore, each coordinate of e′ has norm

at most (‖e‖ + ‖ẽ‖) ·
∥∥r(i)∥∥ ≤ βδn. We conclude that ‖e′‖ ≤ 2

√
`βδn. Since

ECC corrects up to ξ ≥ 2
√
`βδn errors, the output of ECC.Decode(ỹ) is exactly

z0 + xiz1.

16

Theorem 2 (Security). Assume that the LWEk,β,q assumption holds, q√
nτ(k)

>

β (where τ(k) = ω(
√

log k) as in Lemma 4), δ > β > 1 and β > q/δ. The
protocol presented in Construction 3 securely realizes the functionality FOLE in
the GCRS-hybrid model against:

• a semi-honest sender given that the LWEk,β,q assumption holds;

• a malicious receiver where security holds statistically.

Proof. We begin by proving security against a computationally unbounded cor-
rupted receiver.

Simulator for corrupted receiver: We describe the simulator Sim. Let
(TdGen, Invert) be the algorithms described in Lemma 4 and InvertCloseVector
be the algorithm of Lemma 7.

• CRS generation: Sim generates (A, tdA)← TdGen(1λ, q, k, n). It chooses
an ECC ECC`′,`,ξ. It publishes crs = (A,ECC) and keeps tdA to itself.

• Upon receiving a message a′ from R, Sim runs (x̃, α, e)← InvertCloseVector(tdA,a
′, B)

where B = β
√
n. There are two cases to consider:

– If x̃ =⊥, then Sim samples t0, t1←$Z`q and C←$Zk−1×`q . It sends
ole2 = (C, t0, t1).

– Else if x̃ 6=⊥, then Sim sets x = xi where xi is the i-th coordinate of
x̃. It sends x to FOLE. When it receives a y from FOLE, Sim chooses
uniformly at random two vectors z0, z1 ∈ Z`′q such that z0 +xz1 = y.

Then, it samples a uniform matrix U←$Zk×`q and a matrix R ∈ Zn×`q

where each column r(j)←$DZn,δ for j ∈ [`] and sets

C = U−i

t0 = αx̃U + αeR + ECC.Encode(z0)

t1 = −ui + ECC.Encode(z1)

where ui is the i-th row of U. It sends ole2 = (C, t0, t1).

We now proceed to show that the real-world and the ideal-world executions
are indistinguishable. The following lemma shows that the CRS generated in the
simulation is indistinguishable from one generated in the real-world execution.
Then, the next two lemmas deal with the two possible cases in the simulation.

Lemma 8. The CRS generated above is statistically indistinguishable from a
CRS generated according to GenCRS.

Proof. The only thing that differs in both CRS’s is that the matrix A is gen-
erated via TdGen in the simulation (instead of being chosen uniformly). By
Lemma 4, it follows that the CRS is statistically indistinguishable from one
generated using GenCRS.

17

Lemma 9. Assume that x̃ =⊥. Then, the simulated execution is indistinguish-
able from the real-world execution.

Proof. We prove that no (computationally unbounded) adversary can distin-
guish both executions, except with negligible probability. First, note that, if
⊥= x̃← Invert(tdA,a

′), then a′ = xA + e where ‖e‖ > β
√
n since only in this

case algorithm Invert fails to invert a′.

Consider the matrix A′ =

(
A
a′

)
. If a′ is of the form described above, then

the matrix A′ has no short vectors in its row-span. In other words, there is
no vector v 6= 0 in the row-span of A′ such that ‖v‖ ≤ β

√
n. This is a direct

consequence of the definition of algorithm InvertCloseVector of Lemma 7.
Hence ρβ(Λq(A

′) \ {0}) ≤ negl(λ). Moreover, we have that

ρβ(Λq(A
′) \ {0}) ≥ ρ1/β(Λq(A

′) \ {0})
≥ ρ1/δ(Λq(A′) \ {0})
≥ ρ1/(qδ)(Λq(A′) \ {0})
= ρ1/δ(qΛq(A

′) \ {0})
= ρ1/δ((Λ

⊥
q (A′))∗ \ {0})

where the first and the second inequalities hold because δ > β > 1 by hypothesis
and the last equality holds because 1

qΛ⊥q (A′) = Λq(A
′)∗. Since

ρ1/δ((Λ
⊥
q (A′))∗ \ {0}) ≤ negl(λ)

then δ ≥ ηε(Λ⊥(A′)), for ε = negl(λ), and the conditions of Lemma 2 are met.
Therefore, we can switch to a hybrid experiment where A′R mod q is re-

placed by U←$Z(k+1)×` incurring only negligible statistical distance. That
is, C

t1
t0

 =

A−i
ai
a′

R +

 0
ẑ1

ẑ0 + ẽ

 ≈negl(λ) U +

 0
ẑ1

ẑ0 + ẽ

 ≈negl(λ) U

where ẑj is the encoding of ECC.Encode(zj) for j ∈ {0, 1}.
We conclude that, in this case, the real-world and the ideal-world execution

(where Sim just sends a uniformly chosen triple (C, t0, t1)) are statistically
indistinguishable.

Lemma 10. Assume that x̃ 6=⊥. Then, the simulated execution is indistin-
guishable from the real-world execution.

Proof. The proof follows the following sequence of hybrids:

18

Hybrid H0. This is the real-world protocol. In particular, in this hybrid, the
simulator behaves as the honest sender and computes

t0 = a′R + ECC.Encode(z0) = αx̃AR + αeR + ECC.Encode(z0) mod q

t1 = aiR + ECC.Encode(z1) mod q

C = A−iR mod q

for some α ∈ Zq \ {0}.

Hybrid H1. This hybrid is similar to the previous one, except that Sim
computes t0 as αxU + αeR + ECC.Encode(z0), C by U−i and t1 by ui +
ECC.Encode(z1), where ui is the i-th row of U←$Zk×`q .

This hybrid corresponds to the simulator for the corrupted receiver.

Claim 1. |Pr [1← A : A plays H0]− Pr [1← A : A plays H1]| ≤ negl(λ).

To prove this claim, we will resort to the partial smoothing lemma (Lemma
3). Using the same notation as in Lemma 3, consider γ = β

√
n. Then, we have

that
negl(λ) ≥ ρβ(Λq(A

′) \ γB) ≥ ρq/δ(Λq(A′) \ γB)

since, by assumption, β > q/δ.
Hence, by applying Lemma 3, we obtain

AR mod q ≈negl(λ) A(R + X) mod q

for X←$ Λ⊥(e) (here, in the notation of Lemma 3, we consider D = e).
We now argue that AX mod q ≈negl(λ) U for U←$Zk×`q . Let B ∈ Zn×k′q

be a basis of Λ⊥(e), that is, eB = 0. Let us assume for the sake of contradiction
that AB does not have full rank (hence, AX mod q is not uniform over Zk×`q).

Then, there is a vector v ∈ Zkq such that vAB = 0.

Since B is a basis of Λ⊥(e), this means that vB ∈ (Λ⊥(e))⊥ = Λ(e). In
other words, vA = t · e for some t ∈ Zq. Consequently, we have e = t−1vA and
thus e is in the row-span of A, that is, A has a vector of norm shorter than β

√
n

in its row-span. However, this happens only with negligible probability over the
uniform choice of A and, thus, we reach a contradiction. We conclude that AB
needs to have full rank. Now, since X is sampled uniformly from Λ⊥(e), we have
that AX is uniform over Zk×`q . Thus, AX mod q ≈negl(λ) U where U←$Zk×`q .

Claim 2. Let R be any receiver. The values (z0, z1) are perfectly hidden from
R given that z0 + xx1 = y.

To see this, consider again the values computed by Sim in this hybrid

C = U−i

t0 = αx̃U + αẽ + ECC.Encode(z0)

t1 = −ui + ECC.Encode(z1)

19

where ẽ = αeR.
There are two cases to consider: either xi = 0 or xi 6= 0. In the first case,

neither C nor t0 carry information about ui, which is a uniformly chosen vector.
Hence, z1 is perfectly hidden from R.

When xi 6= 0, consider another pair (z′0, z
′
1) such that z0 +xiz1 = z′0 +xiz

′
1.

Then, the probability that Sim runs the protocol on input (z0, z1) or (z′0, z
′
1)

is exactly the same from the point-of-view of R, given that U←$Zk×`q . To
see this, note that given C, t0, t1, we can set ui = s1 − ECC.Encode(z′1) =
αx−1i (s0 − ECC.Encode(z′0)), which is uniform in Zq since q is prime. A simple
calculation shows that correctness still holds in this case.

This concludes the description of the simulator for the corrupted receiver.
We now resume the proof of Theorem 2 by presenting the simulator for the
semi-honest sender.

Simulator for corrupted sender. We describe how the simulator Sim pro-
ceeds: It takes S’s inputs (z0, z1) and sends them to the ideal functionality FOLE,
which returns nothing. It simulates the dummy R by sampling a′←$Znq and
sending it to the corrupted sender.

It is trivial to see that both the ideal and the real-world executions are
indistinguishable given that the LWEk,q,β assumption holds.

5.3 Batch OLE

We now show how we can extend the protocol described above in order to
implement a batch reusable OLE protocol, that is, in order to implement the
functionality FbOLE described in Section 3.

This variant improves the efficiency of the protocol since the receiver R can
commit to a batch of inputs {xi}i∈[k′], and not just one input, using the same
first message of the two-round OLE. Hence, the size of the first message can
be amortized over the number of R’s inputs, to achieve a better communication
complexity.

Construction 4. The protocol is composed by the algorithms (GenCRS,R1,S,R2).
Let k, n, `, `′, q, k′ ∈ Z such that q is a prime and n = poly(k log q), and let
β, δ, ξ ∈ R such that q√

nτ(k)
> β (where τ(k) = ω(

√
log k) as in Lemma 4),

δ > β > 1 and β > q/δ.

GenCRS(1λ): This algorithm is similar to the one described in Construction 3.

R1

(
crs, {xj}j∈[k′] ∈ Zq

)
: The algorithm is similar to the one described in Con-

struction 3, except that it outputs ole1 = (a′, k′) and st = x, where a′ = xA + e
and (x1, . . . , xk′) corresponds to the first k′ of x.

20

S
(
crs, (z0, z1) ∈ (Z`′q)2,mR, j ∈ [k′]

)
: This algorithm is similar to the one de-

scribed in Construction 3, except that; i) it additionally uses j as the index i;
ii) it outputs j (which corresponds to which xj the receiver R is supposed to use
in that particular execution of the protocol).

R2(crs, st,mS): This algorithm is similar to the one described in Construction
3, except that it outputs z0 + xjz1 = y← ECC.Decode(x−jC− (t0 + xjt1)).

It is clear that correctness still holds.

Theorem 3 (Security). Assume that the LWEk,β,q assumption holds, q√
nτ(k)

>

β (where τ(k) = ω(
√

log k) as in Lemma 4), δ > β > 1 and β > q/δ. The
protocol presented in Construction 4 securely realizes the functionality FbOLE in
the GCRS-hybrid model against:

• a semi-honest sender given that the LWEk−k′,β,q assumption holds;

• a malicious receiver where security holds statistically.

The proof of the theorem stated above essentially follows the same blueprint
as the proof of Theorem 2, except that the simulator for the corrupted receiver
extracts the first k′ coordinates {xj}j∈[k′] of x and sends these values to FbOLE .
From now on, it behaves exactly as the simulator in the proof of Theorem 2.
Indistinguishability of executions follows exactly the same reasoning.

6 OLE from LWE secure against Malicious Ad-
versaries

In this section, we extend the construction of the previous section to support
malicious sender. The idea is to use a cut-and-choose approach via the use of an
OT scheme in two rounds and extract the sender’s input via the OT simulator.

6.1 Protocol

Construction 5. The protocol is composed by the algorithms (GenCRS,R1,S,R2).
Let k, n, `, `′, q ∈ Z such that q is a prime and n = poly(k log q), and let
β, δ, ξ ∈ R such that q√

nτ(k)
> β (where τ(k) = ω(

√
log k) as in Lemma 4),

δ > β > 1 and β > q/δ. FOT is the OT functionality as in Section 3. We now
present the protocol in full detail.

GenCRS(1λ):

• Sample A←$Zk×nq .

• Choose a linear ECC ECC`′,`,ξ = (ECC.Encode,ECC.Decode) over Zq.

• Output crs = (A,ECC`′,`,ξ).

21

R1 (crs, x ∈ Zq):

• Parse crs as (A,ECC`′,`,ξ).

• Sample x = (x1, . . . , xk)←$Zkq such that xi = x and a small error vector
e←$χnβ, for some index i←$ [k].

• Compute a′ = xA + e.

• Additionally choose uniformly at random b = (b1, . . . , bλ)←$ {0, 1}λ such
that the weight wt(b) = λ/2 (i.e., half of the coordinates are 0). Send
{bj}j∈[λ] to the OT functionality FOT.

• Output ole1 = (a′, i) and st =
(
x, i, {bj}j∈[λ]

)
.

S
(
crs, (z0, z1) ∈ Z`′q , ole1

)
:

• Parse crs as (A,ECC`′,`,ξ) and ole1 as (a′, i).

• For all j ∈ [λ], do the following:

– Sample Rj ∈ Zn×`q where each column is sampled according to DZn,δ.

– Compute s0,j , s1,j ∈ Z`q such that s0,j = a′Rj, s1,j = aiRj, and

Cj = A−iRj ∈ Z(k−1)×`
q .

– Compute t0,j = s0,j+ECC.Encode(u0,j) and t1,j = s1,j+ECC.Encode(u1,j),
for uniformly chosen u0,j ,u1,j ←$Z`q.

– Send M0,j ,M1,j to FOT where M0,j = Rj and M1,j = (t0,j , t1,j ,u0,j+
z0,u1,j + z1).

• Output ole2 = {Cj}j∈[λ].

R2(crs, st, ole2):

• Parse crs as (A,ECC`′,`,ξ), ole2 as {Cj}j∈[λ] and st as
(
x, i, {bj}j∈[λ]

)
.

• If any of the matrices Cj is not full-rank, abort the protocol.

• For all j ∈ [λ], do the following:

– Recover Mbj ,j from FOT.

– If bj = 0, parse M0,j = R̃j. If Cj 6= A−iR̃j and R̃j is not small,
abort the protocol.

– If bj = 1, parse M1,j as (t̃0,j , t̃1,j , ṽ0,j , ṽ1,j). Compute ỹj = x−iCj−
(t̃0,j + xit̃1,j) and then run yj ← ECC.Decode(ỹj). If yj =⊥, abort
the protocol. Else, compute wj = ṽ0,j + xiṽ1,j − yj.

• Check if wj = wj′ for all (j, j′) such that bj = bj′ = 1. If the test fails,
abort the protocol.

• For any j such that bj = 1, set w = wj. Output w ∈ Z`′q .

22

6.2 Analysis

We now proceed to the analysis of the protocol described above.

Theorem 4 (Correctness). Let ECC`′,`,ξ be a linear ECC where ξ ≥
√
`βδn.

Then the protocol presented in Construction 5 is correct.

Proof. From the proof of Theorem 1, we have that yj = u0,j+xiu1,j , except with
negligible probability, when bj = 1. Hence wj = ṽ0,j + xiṽ1,j − yj = z0 + xiz1,
which is equal to every other wj′ when bj = bj′ = 1.

Theorem 5 (Security). Assume that the LWEk,β,q assumption holds, q√
nτ(k)

>

β (where τ(k) = ω(
√

log k) as in Lemma 4), δ > β > 1 and β > q/δ. The
protocol presented in Construction 5 securely realizes the functionality FOLE in
the (GCRS,FOT)-hybrid model against static malicious adversaries where:

• Security against corrupted sender holds given that the LWEk,β,q assumption
holds.

• Security against a corrupted receiver holds statistically in the (GCRS,FOT)-
hybrid model.

Proof. In order to prove security against a static malicious receiver we have to
show that there is a simulator that can simulate the view of the adversary in
the ideal world.

Simulator for corrupted receiver: The proof is essentially the same as the
proof of Theorem 2. Still, we present the simulator.

Let (TdGen, Invert) be the algorithms described in Lemma 4 and InvertCloseVector
the algorithm of Lemma 7.

• CRS generation: Sim behaves as the simulator of the proof of Theorem
2 and additionally simulates FOT.

• Upon receiving a message a′ from R and {bj}j∈[λ] through FOT, Sim runs
(x̃, α, e)← InvertCloseVector(tdA,a

′). There are two cases to consider:

– If x̃ =⊥, then for each j ∈ [λ] Sim does the following:

∗ If bj = 0, then Sim computes Cj = A−iRj . It sets M0,j = Rj

and M1,j ←$Z`q × Z`q × Z`′q × Z`′q .

∗ If bj = 1, then Sim sets Cj ←$Zk−1×`q , M0,j ←$Zn×`q andM1,j ←$Z`q×
Z`q × Z`′q × Z`′q .

– Else if x̃ 6=⊥, then Sim sets x = xi where xi is the i-th coordinate of
x̃. It sends x to FOLE. Upon receiving a y from FOLE, Sim chooses
uniformly at random two vectors z0, z1 ∈ Z`′q such that z0 +xz1 = y.
Then, for every j ∈ [λ], it does the following:

∗ If bj = 0, then Sim computes Cj = A−iRj . It sets M0,j = Rj

and M1,j ←$Z`q × Z`q × Z`′q × Z`′q .

23

∗ If bj = 1, then Sim samples a uniform matrix Vj ←$Zk×`q and a

matrix Rj ∈ Zn×`q where each column r(κ)←$DZn,δ for κ ∈ [`]
and sets

Cj = V−i,j

t0 = αx̃Vj + αeRj + ECC.Encode(u0,j)

t1 = −vi,j + ECC.Encode(u1,j)

where vi,j is the i-th row of Vj , and V−i,j is the matrix Vj

with the i-th row removed. It sets M0,j ←$Zn×`q and M1,j =
(t0, t1,u0,j + z0,u1,j + z1).

∗ It sends ole2 = {Cj}.

The proof of indistinguishability of executions is essentially the same as the
proof in Theorem 2. We stress that security still holds statistically in the FOT

model.

Simulator for corrupted sender: We describe the simulator Sim against a
corrupted sender.

• CRS generation: Sim generates crs as in GenCRS.

• Sim computes a′ = xA + e ∈ Znq for a uniformly chosen x←$Zkq and
e←$DZn,β , i←$ [k] and sends (i,a′) to the sender.

• Upon receiving (M0,j ,M1,j) from the sender (a message intended to FOT),
Sim does the following:

– It chooses a partition of size λ/2 of [λ]. Let us denote this partition
by I0 ∪ I1 = [λ].

– It parses M0,j as Rj and M1,j as (t0,j , t1,j ,v0,j ,v1,j).

– It checks if Cj = A−iRj for j ∈ I0. If this does not happen for at
least one index j ∈ I0, it aborts.

– Similarly, it checks if wj = wj′ for any pair of indices (j, j′) ∈ I1×I1,
where wj = v0,j + xiv1,j − ECC.Decode(x−iCj − (t0,j + xit1,j)). If
this does not happen for at least one pair of indices, it aborts.

– Check if there are positions j for which both M0,j and M1,j values
are correct, meaning that the honest receiver does not abort for any
of these values. Let j′ be one of these positions. Then, Sim extracts
z0, z1 in the following way: It computes s0,j , which allows to compute
u0,j . Finally, it recovers z0 from u0,j + z0. The value z1 can be
recovered similarly. It sends z0, z1 to FOLE.

We first show that the Sim described above is correct and efficient.

Lemma 11. Sim succeeds in extracting a pair (z0, z1), except with negligible
probability.

24

Proof. The probability of Sim not extracting any pair (z0, z1) is equal to the
probability of not existing any position j′ such that both values in the OT are
correct given that Sim has not aborted before.

Note that this case only happens if the corrupted sender inputs malformed
values for M0,j in λ/2 positions and malformed values for M1,j in the remaining
λ/2 positions. Let E be the event where Sim aborts given this scenario. This
happens with probability

Pr [E] = 1− Pr [X = 0]

where X ←$ HyperGeom(λ/2, λ/2, λ) where HyperGeom is a hypergeometric dis-
tribution with parameters (λ/2, λ/2, λ). Thus,

Pr [E] = 1−

(
λ/2
0

)(
λ/2
λ/2

)(
λ
λ/2

) = 1− negl(λ) .

We conclude that Sim aborts, except with negligible probability. Thus, it ex-
tracts a pair (z0, z1), except with negligible probability.

Lemma 12. The extracted pair (z0, z1) is unique, given that the LWEk,n,β,q
assumption holds.

Proof. Assume that there is an adversary A corrupting the sender that is able
to embed two pairs (z0, z1) 6= (z′0, z

′
1) such that z0 + xiz1 = z′0 + xiz

′
1 in the

execution of the protocol, with non-negligible probability ε. We show that, if
this happens, then we can build an algorithm B that attacks the LWEk,β,q. The
reduction works by running several copies of A simultaneously in parallel and
by checking if the outputs of A in each of these executions are consistent with
one another or if they are completely independent.

The algorithm B takes as input an LWE challenge (A,a′) ∈ Zk×(nλ/ε)q , parses
A = (A1| . . . |Aλ/ε) and a′ = (a′1| . . . |a′λ/ε). Now, B runs λ/ε executions of A in

parallel where, at each execution j ∈ [λ/ε], it embeds Aj in the crs and simulate
the receiver in the protocol by sending (a′j , i), for i←$ [k] (the index i is the same
across all executions j). Then, B extracts two different pairs (z0, z1) 6= (z′0, z

′
1)

while simulating FOT and computes for which xi we have z0 +xiz1 = z′0 +xiz
′
1.

If the extracted value xi is the same in d ≈ λ executions, then B outputs 1.
Else, it outputs 0.

We now analyze success probability of B. If

a′ = xA + e =
(
xA1 + e1| . . . |xAλ/ε + eλ/ε

)
for some error vectors e1, . . . , eλ/ε, then after repeating this process λ/ε, we get
that the extracted value xi is expected to be the same in λ executions. In this
case, B outputs 1. Else if a′←$Znq , then the vector x (and thus the extracted
xi) is independent of a′. Hence the probability of extracting the same xi in λ/ε
executions is |Zq|−λ/ε = negl(λ). In this case, B outputs 0 guessing that a′ is a
uniform vector.

Hence, the advantage of B in attacking the LWEk,β,q is non-negligible.

25

Lemma 13. The ideal-world and real-world executions are indistinguishable,
given that the LWEk,β,q assumption holds.

Proof. The simulator behaves and aborts with exactly the same probability as
the real-world receiver.

The theorem follows from the lemmas above.

6.3 Instantiating the Functionality FOT

Several two-round OT protocols exist in the literature that are proven to be
UC-secure [PVW08, DGH+20]. When we instantiate our protocol with the OT
schemes from [PVW08, Qua20] we obtain several nice properties for the OLE
scheme, namely:

1. The protocol is still two-round.

2. The protocol preserves statistical security against a corrupted receiver,
since the OT of [PVW08, Qua20] is also statistically secure against a
corrupted receiver.

3. The OLE scheme is secure based only on the LWE assumption.

Acknowledgment

Pedro Branco thanks the support from DP-PMI and FCT (Portugal) through
the grant PD/BD/135181/2017. This work is supported by Security and Quan-
tum Information Group of Instituto de Telecomunicações, by the Fundação para
a Ciência e a Tecnologia (FCT) through national funds, by FEDER, COMPETE
2020, and by Regional Operational Program of Lisbon, under UIDB/50008/2020.

References

[ADI+17] Benny Applebaum, Ivan Damg̊ard, Yuval Ishai, Michael Nielsen,
and Lior Zichron. Secure arithmetic computation with constant
computational overhead. In Jonathan Katz and Hovav Shacham,
editors, Advances in Cryptology – CRYPTO 2017, Part I, volume
10401 of Lecture Notes in Computer Science, pages 223–254, Santa
Barbara, CA, USA, August 20–24, 2017. Springer, Heidelberg, Ger-
many.

[AP12] Jacob Alperin-Sheriff and Chris Peikert. Circular and KDM se-
curity for identity-based encryption. In Marc Fischlin, Johannes
Buchmann, and Mark Manulis, editors, PKC 2012: 15th Interna-
tional Conference on Theory and Practice of Public Key Cryptog-
raphy, volume 7293 of Lecture Notes in Computer Science, pages

26

334–352, Darmstadt, Germany, May 21–23, 2012. Springer, Heidel-
berg, Germany.

[Ban93] W. Banaszczyk. New bounds in some transference theorems in
the geometry of numbers. Mathematische Annalen, 296(4):625–636,
1993.

[BCGI18] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Com-
pressing vector OLE. In David Lie, Mohammad Mannan, Michael
Backes, and XiaoFeng Wang, editors, ACM CCS 2018: 25th Con-
ference on Computer and Communications Security, pages 896–912,
Toronto, ON, Canada, October 15–19, 2018. ACM Press.

[BD18] Zvika Brakerski and Nico Döttling. Two-message statistically
sender-private OT from LWE. In Amos Beimel and Stefan Dziem-
bowski, editors, TCC 2018: 16th Theory of Cryptography Confer-
ence, Part II, volume 11240 of Lecture Notes in Computer Science,
pages 370–390, Panaji, India, November 11–14, 2018. Springer, Hei-
delberg, Germany.

[BL18] Fabrice Benhamouda and Huijia Lin. k-round multiparty computa-
tion from k-round oblivious transfer via garbled interactive circuits.
In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in
Cryptology – EUROCRYPT 2018, Part II, volume 10821 of Lec-
ture Notes in Computer Science, pages 500–532, Tel Aviv, Israel,
April 29 – May 3, 2018. Springer, Heidelberg, Germany.

[Can01] Ran Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In 42nd Annual Symposium on Founda-
tions of Computer Science, pages 136–145, Las Vegas, NV, USA,
October 14–17, 2001. IEEE Computer Society Press.

[CDI+19] Melissa Chase, Yevgeniy Dodis, Yuval Ishai, Daniel Kraschewski,
Tianren Liu, Rafail Ostrovsky, and Vinod Vaikuntanathan.
Reusable non-interactive secure computation. In Alexandra
Boldyreva and Daniele Micciancio, editors, Advances in Cryptol-
ogy – CRYPTO 2019, Part III, volume 11694 of Lecture Notes in
Computer Science, pages 462–488, Santa Barbara, CA, USA, Au-
gust 18–22, 2019. Springer, Heidelberg, Germany.

[DGH+20] Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, Daniel Masny,
and Daniel Wichs. Two-round oblivious transfer from CDH or LPN.
In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptol-
ogy – EUROCRYPT 2020, pages 768–797, Cham, 2020. Springer
International Publishing.

[DGHM18] Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, and Daniel
Masny. New constructions of identity-based and key-dependent
message secure encryption schemes. In Michel Abdalla and Ricardo

27

Dahab, editors, PKC 2018: 21st International Conference on The-
ory and Practice of Public Key Cryptography, Part I, volume 10769
of Lecture Notes in Computer Science, pages 3–31, Rio de Janeiro,
Brazil, March 25–29, 2018. Springer, Heidelberg, Germany.

[DGN+17] Nico Döttling, Satrajit Ghosh, Jesper Buus Nielsen, Tobias Nilges,
and Roberto Trifiletti. TinyOLE: Efficient actively secure two-party
computation from oblivious linear function evaluation. In Bha-
vani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan
Xu, editors, ACM CCS 2017: 24th Conference on Computer and
Communications Security, pages 2263–2276, Dallas, TX, USA, Oc-
tober 31 – November 2, 2017. ACM Press.

[DKM12] Nico Döttling, Daniel Kraschewski, and Jörn Müller-Quade. Sta-
tistically secure linear-rate dimension extension for oblivious affine
function evaluation. In Adam Smith, editor, ICITS 12: 6th Interna-
tional Conference on Information Theoretic Security, volume 7412
of Lecture Notes in Computer Science, pages 111–128, Montreal,
QC, Canada, August 15–17, 2012. Springer, Heidelberg, Germany.

[DKMQ12] Nico Döttling, Daniel Kraschewski, and Jörn Müller-Quade. David
& Goliath oblivious affine function evaluation - asymptotically op-
timal building blocks for universally composable two-party com-
putation from a single untrusted stateful tamper-proof hardware
token. Cryptology ePrint Archive, Report 2012/135, 2012. https:

//eprint.iacr.org/2012/135.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any
mental game or A completeness theorem for protocols with honest
majority. In Alfred Aho, editor, 19th Annual ACM Symposium on
Theory of Computing, pages 218–229, New York City, NY, USA,
May 25–27, 1987. ACM Press.

[GN19] Satrajit Ghosh and Tobias Nilges. An algebraic approach to mali-
ciously secure private set intersection. In Yuval Ishai and Vincent
Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019,
Part III, volume 11478 of Lecture Notes in Computer Science, pages
154–185, Darmstadt, Germany, May 19–23, 2019. Springer, Heidel-
berg, Germany.

[GNN17] Satrajit Ghosh, Jesper Buus Nielsen, and Tobias Nilges. Maliciously
secure oblivious linear function evaluation with constant overhead.
In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryp-
tology – ASIACRYPT 2017, Part I, volume 10624 of Lecture Notes
in Computer Science, pages 629–659, Hong Kong, China, Decem-
ber 3–7, 2017. Springer, Heidelberg, Germany.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors
for hard lattices and new cryptographic constructions. In Richard E.

28

https://eprint.iacr.org/2012/135
https://eprint.iacr.org/2012/135

Ladner and Cynthia Dwork, editors, 40th Annual ACM Symposium
on Theory of Computing, pages 197–206, Victoria, BC, Canada,
May 17–20, 2008. ACM Press.

[GS18] Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty
secure computation from minimal assumptions. In Jesper Buus
Nielsen and Vincent Rijmen, editors, Advances in Cryptology – EU-
ROCRYPT 2018, Part II, volume 10821 of Lecture Notes in Com-
puter Science, pages 468–499, Tel Aviv, Israel, April 29 – May 3,
2018. Springer, Heidelberg, Germany.

[GS19] Satrajit Ghosh and Mark Simkin. The communication com-
plexity of threshold private set intersection. In Alexandra
Boldyreva and Daniele Micciancio, editors, Advances in Cryptology
– CRYPTO 2019, Part II, volume 11693 of Lecture Notes in Com-
puter Science, pages 3–29, Santa Barbara, CA, USA, August 18–22,
2019. Springer, Heidelberg, Germany.

[HIMV19] Carmit Hazay, Yuval Ishai, Antonio Marcedone, and Muthuramakr-
ishnan Venkitasubramaniam. LevioSA: Lightweight secure arith-
metic computation. In Lorenzo Cavallaro, Johannes Kinder, Xi-
aoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019: 26th
Conference on Computer and Communications Security, pages 327–
344. ACM Press, November 11–15, 2019.

[IPS09] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arith-
metic computation with no honest majority. In Omer Reingold,
editor, Theory of Cryptography, pages 294–314, Berlin, Heidelberg,
2009. Springer Berlin Heidelberg.

[JVC18] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chan-
drakasan. GAZELLE: A low latency framework for secure neu-
ral network inference. In William Enck and Adrienne Porter Felt,
editors, USENIX Security 2018: 27th USENIX Security Sympo-
sium, pages 1651–1669, Baltimore, MD, USA, August 15–17, 2018.
USENIX Association.

[LP94] Mody Lempel and Azaria Paz. An algorithm for finding a shortest
vector in a two-dimensional modular lattice. Theoretical Computer
Science, 125(2):229 – 241, 1994.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Sim-
pler, tighter, faster, smaller. In David Pointcheval and Thomas
Johansson, editors, Advances in Cryptology – EUROCRYPT 2012,
volume 7237 of Lecture Notes in Computer Science, pages 700–718,
Cambridge, UK, April 15–19, 2012. Springer, Heidelberg, Germany.

[MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case re-
ductions based on gaussian measures. SIAM Journal on Computing,
37(1):267–302, 2007.

29

[MZ17] Payman Mohassel and Yupeng Zhang. SecureML: A system for
scalable privacy-preserving machine learning. In 2017 IEEE Sym-
posium on Security and Privacy, pages 19–38, San Jose, CA, USA,
May 22–26, 2017. IEEE Computer Society Press.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A frame-
work for efficient and composable oblivious transfer. In David Wag-
ner, editor, Advances in Cryptology – CRYPTO 2008, volume 5157
of Lecture Notes in Computer Science, pages 554–571, Santa Bar-
bara, CA, USA, August 17–21, 2008. Springer, Heidelberg, Ger-
many.

[Qua20] Willy Quach. UC-secure OT from LWE, revisited. In Clemente
Galdi and Vladimir Kolesnikov, editors, Security and Cryptography
for Networks, pages 192–211, Cham, 2020. Springer International
Publishing.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes,
and cryptography. In Harold N. Gabow and Ronald Fagin, editors,
37th Annual ACM Symposium on Theory of Computing, pages 84–
93, Baltimore, MA, USA, May 22–24, 2005. ACM Press.

30

	Introduction
	Our Results
	Related Work and Comparison
	Open Problems

	Technical Outline
	A Two-Round Semi-Honest Protocol
	Batch OLE.
	Comparison with Previous Works.
	Extending to Malicious Adversaries

	Preliminaries
	Universal Composability
	Lattices and Hardness Assumptions

	Finding Short Vectors in a Lattice with a Trapdoor
	Oblivious Linear Evaluation Secure Against a Corrupted Receiver
	Protocol
	Analysis of the Protocol
	Batch OLE

	OLE from LWE secure against Malicious Adversaries
	Protocol
	Analysis
	Instantiating the Functionality FOT

