
Mixed-Technique Multi-Party Computations
Composed of Two-Party Computations

Erik-Oliver Blass1 and Florian Kerschbaum2

1 Airbus erik-oliver.blass@airbus.com,
2 University of Waterloo florian.kerschbaum@uwaterloo.ca

Abstract. Protocols for secure multi-party computation are commonly com-
posed of different sub-protocols, combining techniques such as homomorphic
encryption, secret or Boolean sharing, and garbled circuits. In this paper, we
design a new class of multi-party computation protocols which themselves
are composed out of two-party protocols. We integrate both types of composi-
tions, compositions of fully homomorphic encryption and garbled circuits with
compositions of multi-party protocols from two-party protocols. As a result,
we can construct communication-efficient protocols for special problems. Fur-
thermore, we show how to efficiently ensure security of composed protocols
against malicious adversaries by proving in zero-knowledge that conversions
between individual techniques are correct. To demonstrate the usefulness of
this approach, we give an example scheme for private set analytics, i.e., private
set disjointness. This scheme enjoys lower communication complexity than
a solution based on generic multi-party computation and lower computation
cost than fully homomorphic encryption. So, our design is more suitable for de-
ployments in wide-area networks, such as the Internet, with many participants
or problems with circuits of moderate or high multiplicative depth.

1 Introduction

Whereas secure two-party computations are deployed in practice [61], designing
and deploying practical secure multi-party computation is still an open challenge.
Communication latency is a typical bottleneck for many multi-round protocols, and
in response constant-round multi-party computations [30, 39, 40] based on Beaver
et al.’s technique [3] have been designed. Their deployment is lacking due to challenges
from implementation complexity, communication bandwidth, and memory require-
ments. To address these challenges, protocols using fully-homomorphic encryption
(FHE) [9, 20] and dual execution can be used. Yet, designing efficient homomorphic
encryption schemes (for arithmetic circuits) is also an open challenge. Circuits with
high multiplicative depth, the reason for a high number of rounds in many multi-party
computation protocols, imply large computation costs.

In this paper, we present a design alternative. We specifically consider multi-
party computations that can at least partially be decomposed into a sequence of
two-party computations (2PCs). We first evaluate 2PCs using garbled circuits and
then combine output and continue computation using FHE evaluation. The idea of
our mixed-technique protocols is to exploit advantages of each technique, for exam-
ple, binary vs. arithmetic circuits, typical in application domains such as machine



learning [10, 17, 26, 44]. For fully malicious security, we show how to convert between
outputs of garbled circuits and FHE ciphertexts using efficient zero-knowledge proofs.
This is a conversion which has not been considered in previous work. The first phase
of 2PC reduces multiplicative depth for the following FHE evaluation phase, but
remains small enough to have low communication complexity. Such a combined
protocol keeps a constant number of rounds and can still be secure in the malicious
model. Due to their lower communication requirements, combined protocols have the
potential for deployment in wide area networks.

The composition of 2PC protocols into a multi-party protocol can take many forms.
In order to demonstrate the advantages of our constructions, we design and investigate
a combined protocol for multi-party set analytics. This protocol follows a star topology
of communication where each party Pi engages in 2PC with a central party P1. Driven
by the use case of sharing Indicators of Compromise (IoCs), where multiple parties
try to determine whether they have been subject to a common attack, we design a
maliciously-secure protocol which determines whether the multi-party set intersection
is empty. A non-empty intersection would be grounds for further investigation. With
each party’s set holding n elements, our set disjointness protocol runs in 9 rounds, needs
O(n) broadcasts, and has a message complexity linear in the number of comparisons
required to compare all parties’ inputs. We have implemented a semi-honest version
of this protocol and show that our design offers performance improvements over
other multi-party computation protocols in the semi-honest model. Using our zero-
knowledge proofs, our protocol can also be made secure in the malicious model.

In summary, the major contributions of this paper are:

– A construction for mixed-technique MPC composed from 2PC which features a
constant number of rounds, low communication complexity, and malicious security.
This construction is exemplified using a multi-party protocol for set disjointness.

– Efficient zero-knowledge proofs, included in this construction, converting between
garbled circuit outputs and homomorphic encryption with malicious security.

We also present (Appendix A) a technique replacing standard verification of
hash-based commitments during 2PC by a white-box use of garbled circuits. We use
this technique to reduce communication overhead in our conversion, but the idea is
general, applicable to other scenarios, and of independent interest.

2 Conversion between 2PC and Homomorphic Encryption

To simplify exposition, we start with a motivation and an overview of our conversion
for the special case of d = 2 parties. Later in Section 3.4, we present an extension
for any d ≥ 2 parties.

Parties P1 and P2 want to jointly compute function F(I1, I2) = O on their
respective input bit strings I1 and I2 to receive output string O = (o1, · · · , oN). For
security reasons, P1 should only learn some subset of bit string O, but nothing else
(for example not P2’s input). Similarly, P2 should only learn the other bits of O, but
nothing else. To enable secure computation of F , parties can revert to two standard
approaches. Parties could express F as a Boolean circuit and evaluate this circuit
using maliciously-secure two-party garbled circuit computation (2PC). Alternatively,



parties express F as an arithmetic circuit, compute a shared private key of a fully
homomorphic encryption (FHE), and encrypt their inputs with the corresponding
public-key. Parties then evaluate the circuit homomorphically and jointly decrypt the
final result such that each party only learns their output bits.

Yet, each of the two approaches comes with performance issues. On the one hand,
FHE evaluation of arithmetic circuits with large multiplicative depth is computation-
ally expensive. On the other hand, evaluating Boolean circuits with 2PC for large
circuits is expensive regarding the amount of communication.

So, a third alternative and the focus of this paper is for parties to evaluate F using
a mix of both techniques. Parties evaluate F as a circuit decomposed into a sequence of
sub-circuits F(I1, I2) = (C1◦· · ·◦Cm)(I1, I2). Some sub-circuits Ci are Boolean, while
others are arithmetic. Parties agree that Boolean sub-circuits of function F will be
evaluated using garbled circuit 2PC, and arithmetic sub-circuits of F will be evaluated
using FHE. Output of 2PC will serve as input to FHE and vice versa. The goal of such
a mixed-techniques approach is to optimize overall performance by reducing multiplica-
tive depth of FHE circuits and communication complexity of 2PC circuits. For clarity,
we now denote Boolean (sub-)circuits Ci by CBool

i and arithmetic (sub-)circuits Ci by
CArith
i . Assume that P1 and P2 have initially computed a public and private key pair for

a homomorphic encryption Enc, where the private key is shared among both parties.

2.1 Malicious Security

Achieving malicious security for conversion is difficult. For example, let P1 be the
garbler and P2 the evaluator during 2PC evaluation of a simple sub-circuit CBool

i

with two input and two output bits (x, y) = CBool
i (a, b). Evaluator P2 receives both

output bits x, y and must convert them into correct homomorphic encryptions Enc(x)
and Enc(y). This is hard to achieve against malicious adversaries. As P2 could be
malicious, P2 must prove to P1 that ciphertexts Enc(x) and Enc(y) are correctly
encrypting outputs x and y received during 2PC. Worse, P2 should not even learn
x and y, as they are an intermediate result of C’s evaluation or maybe output
bits for P1. Instead, P2 should receive related information during 2PC which then
allows P2 to indirectly generate homomorphic encryptions Enc(x) and Enc(y). Simply
implementing homomorphic encryption Enc inside a 2PC circuit is too expensive.

Similarly, we need to convert FHE ciphertexts output by circuits CArith
i into

input for 2PC garbled circuits with malicious security. Moreover, if P1 and P2’s 2PC
computation was part of a larger MPC computation involving d ≥ 2 parties, we also
need to consider the case where both are malicious, so they must prove to all parties
that their encrypted shares are correct. Finally, the private key is shared among all
d parties which impedes easy zero-knowledge (ZK) proofs.

Remarks This paper targets secure output conversion between 2PC and FHE. To
actually evaluate Boolean a sub-circuit CBool

i , we assume existence of any maliciously
secure 2PC scheme as a building block. Several different approaches exist which
achieve maliciously secure 2PC in practice, see [37, 38, 47, 59] for an overview.

For secure evaluation of arithmetic sub-circuits CArith
i , any FHE scheme could

serve as building block. FHE is maliciously secure by default, as long as parties eval-
uate the same circuit on the same ciphertexts, respectively. However, our conversion



requires the FHE scheme to also support distributed key generation and certain
ZK proofs. There exist several efficient lattice-based FHE schemes with support for
both [5, 6, 8, 14, 15, 45, 56], and there are even efficient schemes which allow proving
general, arbitrary ZK statements in addition to distributed key generation [2]. While
describing details of our techniques, we use any of these as an underlying building
block, e.g., the one by Asharov et al. [2].

2.2 Solution High-Level Overview

There are two different cases for conversion we have to consider in a mixed-technique
setting. First, parties convert output bits (oi,1, . . . , oi,n) = CBool

i (Ii,1, Ii,2) from 2PC
evaluation of circuit CBool

i on input strings Ii,1 and Ii,2 into n homomorphic en-
cryptions Enc(oi,j). Knowing encryptions Enc(oi,j), each party then evaluates the
subsequent arithmetic circuit CArith

i+1 , respectively.
Second, parties convert a sequence of ciphertexts Enc(bi), homomorphic encryp-

tions of bits bi (or integers, see Appendix E) into input for a 2PC Boolean circuit
evaluation. That is, both parties have evaluated arithmetic sub-circuit CArith

i and
computed ciphertexts Enc(bi), respectively. These ciphertexts will now be converted
into input for 2PC evaluation of sub-circuit CBool

i+1 .
Actual evaluation of circuits is then secure by definition, as we rely on standard

maliciously-secure 2PC. For arithmetic sub-circuits, both parties evaluate FHE ci-
phertexts on their own. A honest party will automatically compute correct output
ciphertexts as long as input ciphertexts are correct.

Parties will also need to securely convert both parties’ plain input into either
FHE encryptions or 2PC inputs. Yet, that part is trivial: if the first sub-circuit is
an arithmetic circuit, a party sends homomorphic encryptions of each input bit. If
the first circuit is Boolean, we rely on whatever technique the underlying maliciously
secure 2PC offers. Finally, at the end of the last circuit evaluation, FHE ciphertexts
or 2PC output has to be decrypted. Again, this is fairly simple, and we skip details
for now. We only consider the first two cases of converting 2PC output to FHE input
and FHE output to 2PC input.

Our conversions focuses on Boolean sub-circuits CBool
i . We design mechanisms

which either convert 2PC output of CBool
i to FHE ciphertexts serving as input to

CArith
i+1 or convert FHE ciphertexts coming from CArith

i−1 into input to CBool
i . Each of our

two conversions first modifies CBool
i and evaluates the modified circuit using three new

cryptographic building blocks which we call ZK Protocol (1), ZK Protocol (2), and ZK
Protocol (3). Each ZK Protocol takes as input a Boolean circuit andP1’s andP2’s input
bits. ZK Protocol (1) and ZK Protocol (2) also take FHE ciphertexts as inputs. Each
ZK Protocol again modifies the input circuit internally, 2PC-evaluates the modified ver-
sion, and outputs 2PC output together with a ZK proof which proves certain relations
between input and output in zero-knowledge for malicious security. As ZK Protocols
are general, their interesting property is to be stackable, i.e., they can be combined with
each other. Their internal circuit modification schemes will be merged, and only ZK
proofs enclosing circuit modification have to be adapted, which is rather mechanical.

ZK Protocols Let γ be any Boolean circuit defined by its input and output bits as
(ω1, . . . , ωn) = γ((ι1,1, . . . , ι1,`1), (ι2,1, . . . , ι2,`2)). Parties P1 and P2 want to evaluate



this circuit with 2PC. Bits ι1,i are inputs of P1. Bits ι2,i are inputs of P2, and ωi will
be output bits known to P2. From a high-level, our three ZK Protocols implement:

ZK Protocol (1) P1 sends homomorphic ciphertexts c1,i ← Enc(ι1,i), encrypting their
input bits ι1,i to P2. Circuit γ is evaluated, and P2 receives output. P1 proves in ZK
to P2 that c1,i encrypts ι1,i, used during 2PC evaluation of γ.

ZK Protocol (2) P2 sends homomorphic ciphertexts c2,i ← Enc(ι2,i), encrypting their
input bits ι2,i to P1. Circuit γ is evaluated, and P2 receives output. P2 proves in ZK
to P1 that ci encrypts ι2,i, used during 2PC evaluation of γ.

ZK Protocol (3) Circuit γ is evaluated, and P2 receives output ωi. Party P2 sends
homomorphic ciphertext cω,i ← Enc(ωi) and proves in ZK to P1 that cω,i really
encrypts ωi received during 2PC evaluation to P1.

Note the different notation we use for describing circuits. Boolean sub-circuits
of function F are written as CBool

i , while Boolean circuits we use within our ZK
Protocol building blocks are written with the Greek letter γ.

Conversion The main idea behind the actual conversion is to modify a circuit CBool
i

into γ which takes shares of CBool
i ’s original input as its input and outputs shares of

CBool
i ’s original output. For example, to convert a 2PC output bit ω1 of CBool

i to an
FHE ciphertext Enc(ω1), we do not evaluate CBool

i , but γ which outputs share ω1⊕ s
to P2, and s to P1. Both parties encrypt their shares, exchange resulting ciphertexts,
and homomorphically compute an XOR to get Enc(ω1). During this conversion, ZK
Protocols prove correctness of operations.

In conclusion, we design conversion schemes combining multiple 2PC circuit modi-
fication techniques with efficient ZK proofs. Together, modifications and proofs prove
correctness of output conversion between outputs of 2PC and FHE circuit evaluation.

Semi-Honest Security Our presentation concentrates on the case of fully malicious
security. Nevertheless, even the semi-honest version of our conversion is of interest, as
it enjoys the same properties as the fully-malicious version, e.g., O(1) rounds, support
for d ≥ 2 parties, and moreover its performance is competitive when compared to
related work, see Section 4.2. Essentially, the semi-honest version is just the fully-
malicious one as described in the next section, but does not include the actual FHE
ZK proofs inside ZK Protocols.

3 Technical Details

For simplicity, we keep describing details for d = 2 parties and extend to d ≥ 2 parties
in Section 3.4.

For their input bit strings I1, I2 ∈ {0,1}∗ and function F , parties P1 and P2

want to compute O = F(I1, I2),O ∈ {0,1}∗. Function F is represented as a circuit
composition of Boolean and arithmetic sub-circuits F = (Cm ◦ · · · ◦ C1). Observe
that if the ith sub-circuit is Boolean, then the i+ 1th is arithmetic and the other way
around. We now turn toward technical details on how we enable maliciously-secure
mixed-technique evaluation of sub-circuits. That is, we show how to convert 2PC
evaluation output of a Boolean sub-circuit CBool

i into input for a following arithmetic
sub-circuit CArith

i+1 for FHE evaluation and the other way around.



P1 P2
(input ι1,1, . . . , ι1,`1, c1,1 ← Enc(ι1,1), . . . , (input ι2,1, . . . , ι2,`2,
c1,1 ← Enc(ι1,1), . . . , c1,1, . . . , c1,`1)
c1,`1 ← Enc(ι1,`1))

∀i ∈ {1, . . . , `1} :

µi,1, . . . , µi,λ
$← {0,1}λ σi,1, . . . , σi,λ

$← {0,1}λ

mi,1 ← Enc(µi,1), . . . , Ri,1, . . . ,Ri,λ
$← {0,1}λ

2

mi,λ ← Enc(µi,λ) Comi,1 = Commit(σi,1,Ri,1), . . . ,
Comi,λ = Commit(σi,λ,Ri,λ)

∀j∈{1,...,λ}:
mi,j−−−−−→

Comi,j←−−−−−
2PC of γ(1)⇐=====⇒

∀i ∈ {1, . . . , `1} :
∀j∈{1,...,λ}:
Ri,j,σi,j←−−−−−

if [∃j : Commit(σi,j,Ri,j) 6= Comi,j]
then abort
∀j : if σi,j = 0 then open
Enc(ιi,j ⊕ µi,j) else open mi,j

λ ZK proofs for
ciphertextsi,j−−−−−→

if ciphertexti,j does not
match ti,j then abort

Fig. 1. ZK Protocol (1) for circuit γ

2PC output bits for P1 In a typical garbled circuit evaluation of Ci, only P2 receives
output, i.e., bits oj. If a specific bit oj is a secret output bit for P1, then a standard trick
is denying P2 to open the last wire label for oj and forwarding the label to P1. As P1

knows both possible labels for oj, they can recover bit oj. Also, this ensures that P1 re-
ceives the correct output bit o′j from P2, i.e., ensure authenticity [4]. We silently rely on
this trick for secure computation of all of P1’s plain output bits for the rest of the paper.

Notation Let Commit denote a computationally hiding and binding commitment
scheme. For some bit string B ∈ {0,1}∗, computational security parameter λ′, and
randomness R ∈ {0,1}λ′

, Commit(B,R) outputs a commitment Com. In Appendix A,
we show how to efficiently realize commitments with a white-box use of wire labels
in garbled circuits. Encryption Enc over plaintext space M is fully (or somewhat)
homomorphic. Both parties have already set up a key pair, where the public key is
known to both parties, but the private key is shared. For homomorphic operations on
ciphertexts, we use the intuitive notation of “+” for homomorphic addition, “·” for
scalar multiplication, and ⊕ for homomorphic XOR. So for example, if x and y are
from M, then Dec(Enc(x) + Enc(y)) = x+ y. During conversion, we will randomly
select scalars from Zp, where p is a prime of λ bits.

Let Π be the set of two single bit permutations π : {0,1} → {0,1}. That is,
Π = {π0, π1} with π0(x) = x and π1(x) = 1− x.

3.1 ZK Protocols

Let (ω1, . . . , ωn) = γ((ι1,1, . . . , ι1,`1), (ι2,1, . . . , ι2,`2)) be any Boolean circuit which
parties P1 and P2 want to evaluate using maliciously secure 2PC. Bits ι1,i are P1’s
input, and bits ι2,i are P2’s input.



Input to γ(1)

P1 P2

ι1,1, . . . , ι1,`1 ,1 ≤ i ≤ `1 : [µi,1, . . . , µi,λ, ι2,1, . . . , ι2,`2 ,1 ≤ i ≤ `1 : [σi,1, . . . , σi,λ,
Comi,1, . . . ,Comi,λ] Ri,1, . . . ,Ri,λ]

Output of γ(1)

1 if ∀i, j,1 ≤ i ≤ `1,1 ≤ j ≤ λ : Comi,j = Commit(σi,j,Ri,j) then
2 α = 1;
3 (ω1, . . . , ωn) = γ((ι1,1, . . . , ι1,`1), (ι2,1, . . . , ι2,`2));
4 for i = 1 to `1 and j = 1 to λ do
5 if σi,j = 0 then ti,j = ι1,i ⊕ µi,j else ti,j = µi,j;
6 else α = ω1 = . . . = ωn = t1,1 = . . . = t`1,λ = 0;
7 output α,ω1, . . . , ωn, t1,1, . . . , t`1,λ;

Fig. 2. Definition of circuit γ(1)

ZK Protocol (1) In this protocol, P1 proves to P2 that homomorphic ciphertexts
c1,i ← Enc(ι1,i) encrypt all of P1’s input bits ιi,i used during a 2PC evaluation of γ.
Assume that P1 has already sent the c1,i to P2.

The protocol is depicted in Figure 1 and consists of two core building blocks: first,
parties evaluate a modification of circuit γ which we call γ(1). We define circuit γ(1)

by specifying its input and output in Figure 2. The second building block is an actual
three move ZK proof which encompasses γ(1).

First, P1 selects a random masking bit µi and sends both c1,i and mi ← Enc(µi)
to P2. At the same time, P2 selects a random choice bit σi. Then, both parties use
maliciously-secure 2PC and evaluate γ(1) which internally computes γ as a sub-routine.
Party P1 is the garbler and P2 the evaluator. In addition to outputting the same bits
as γ, it also outputs bit ti = ι1,i ⊕ µi (if σi = 0) or ti = µi (if σi = 1) to P2.

After 2PC, P2 reveals their choice σi. If σi = 0, then P1 proves in ZK that
the homomorphic XOR of ciphertexts c1,i and mi to Enc(ι1,i ⊕ µi) really encrypts
ti = ι1,i ⊕ µi. If σi = 1, then P1 proves that mi encrypts ti = µi. Output bit α = 0
in γ(1) only serves to indicate protocol failure, i.e., non-matching commitments.

We remind the reader that in Appendix A we replace commitments by the white-
box use of wire labels in garbled circuits. If σi,j = 0, then P1 and P2 homomorphically
compute ciphertexti,j = Enc(ι1,i⊕µi,j) out of c1,i andmi,j. If choice bit σi,j = 1, then
both parties set ciphertexti,j = mi,j. Party P1 then sends a ZK proof that ciphertexti,j
really encrypts ti,j to P2, e.g., by applying an efficient framework for ZK proofs [2].

Note the general structure of ZK Protocol (1), which is similar in the other
two ZK Protocols. Each ZK Protocol comprises a circuit modification technique,
here converting γ to γ(1), and a surrounding ZK proof. When we will combine ZK
Protocols later, we merge circuit modifications, i.e., output of one ZK Protocol’s circuit
modification will be input into another. Only surrounding ZK proofs require adoption.

ZK Protocol (2) This protocol reverses P1’s and P2’s roles in ZK Protocol (1).
So, circuit γ(2) is similar to γ(1), with P1 having choice bits (and randomness for
commitments to them) as additional input, and P2 has masking bits and commitments
to choice bits as input. During 2PC, P1 is the garbler and P2 the evaluator. Also,
the actual three-move protocol from ZK Protocol (1) is reversed, i.e., it is P2 who



P1 P2
(input ι1,1, . . . , ι1,`1) (input ι2,1, . . . , ι2,`2)

∀i ∈ {1, . . . , n} :
Γi,0,0 ← Enc(0), Γi,1,0 ← Enc(1)
∀j ∈ {1, . . . , λ} :
[vi,0,j, vi,1,j

$← {0,1}2
Γi,0,j ← Enc(vi,0,j)

Γi,1,j ← Enc(vi,1,j)]
∀j∈{0,...,λ}:Γi,0,j,Γi,1,j−−−−−→

2PC of γ(3)(see text)⇐=====⇒
∀i ∈ {1, . . . , n} :

Γi,2,0 ← Enc(ωi),∀j ∈ {1, . . . , λ} :
[Γi,2,j ← Enc(vi,ωi,j)]

∀j∈{0,...,λ}:Γi,2,j←−−−−−
Γi,0 =

∑λ
j=0 (2

λ−j · Γi,0,j) Γi,0 =
∑λ
j=0 (2

λ−j · Γi,0,j)
Γi,1 =

∑λ
j=0 (2

λ−j · Γi,1,j) Γi,1 =
∑λ
j=0 (2

λ−j · Γi,1,j)
Γi,2 =

∑λ
j=0 (2

λ−j · Γi,2,j) Γi,2 =
∑λ
j=0 (2

λ−j · Γi,2,j)
∆i,0 = Γi,0 − Γi,2 ∆i,0 = Γi,0 − Γi,2
∆i,1 = Γi,1 − Γi,2 ∆i,1 = Γi,1 − Γi,2

ai
$← Zp, π

$← Π
∆′i,0 = ai ·∆i,0,∆′i,1 = ai ·∆i,1

if ZK proofs do

∆′
i,0,∆

′
i,1,∆

′
i,π(0),∆

′
i,π(1)

ZK proof Scalari,ZK proof Shufflei←−−−−−
not verify then abort

jointly decrypt∆′
i,π(0),∆

′
i,π(1)⇐=====⇒

if none or both decrypt
to 0 then abort

Fig. 3. ZK Protocol (3)

starts by sending encryptions of input bits and masking bits. We omit further details
to avoid repetition and refer to Figure 1.

ZK Protocol (3) In this protocol, party P2 proves to P1 that encryptions cω,i ←
Enc(ωi) are really encryptions of P2’s output bits ωi. As ZK Protocol (3) is more
involved, Figure 3 starts by presenting a slightly simpler version with a ZK proof
which is only Honest-Verifier-Zero-Knowledge (HVZK), and details for fully-malicious
security follow.

As part of ZK Protocol (3), P1 and P2 run 2PC on a modification of circuit γ
called γ(3), defined in Figure 4.

Before 2PC, P1 selects for an output bit ωi two random bit strings v0,1 . . . v0,λ
and v1,1 . . . v1,λ and sets V0 = 0||v0,1 . . . v0,λ, V1 = 1||v1,1 . . . v1,λ. Here, “||” denotes
concatenation, and λ is a statistical security parameter. Then, P1 encrypts and sends

Input to γ(3)

P1 P2

ι1,1, . . . , ι1,`1 ,1 ≤ i ≤ n : [vi,0,1, . . . , vi,0,λ, vi,1,1, . . . , vi,1,λ] ι2,1, . . . , ι2,`2

Output of γ(3)

1 (ω1, . . . , ωn) = γ((ι1,1, . . . , ι1,`1), (ι2,1, . . . , ι2,`2));
2 for i = 1 to n do output ωi||vi,ωi,1 · · ·vi,ωi,λ;

Fig. 4. Definition of circuit γ(3)



ciphertexts Γ0 = Enc(V0) and Γ1 = Enc(V1) to P2. Circuit γ(3) does not output ωi
to P2, but instead outputs Vωi to P2, i.e., either bit string V0 or bit string V1.

The first bit of strings V0, V1 is output bit ωi. So, Γωi encrypts a bit string, where
the first bit represents P2’s output bit ωi. So, after evaluating γ(3), P2 gets ωi and
a length λ bit string (vωi,1, . . . , vωi,λ).

The trick is now that P2 proves in ZK to P1 that it knows a string Vωi which
is either V0 or V1 and which matches encryption cω,i. Recall that the private key for
homomorphic encryption Enc is shared between P1 and P2, so none of the two parties
can decrypt a ciphertext alone. After evaluating γ(3), party P2 sends λ+1 ciphertexts
cω,i ← Enc(ωi),Enc(vωi,1, . . . ,Enc(vωi,λ)) to P1. Both parties use these ciphertexts
to homomorphically generate Γ2 = Enc(Vωi), an encryption of the concatenation of
P2’s λ+ 1 bits Vωi. As both parties know Γ0 and Γ1, they both homomorphically
compute ∆0 = Enc(Vωi − V0) and ∆1 = Enc(Vωi − V1). Observe that, if Vωi is either
V0 or V1, then one of ∆0,∆1 encrypts a 0. Consequently, P2 proves to P1 in ZK that
either ∆0 or ∆1 is an encryption of 0 as shown in Figure 3. If P1 successfully verifies
proofs, parties jointly decrypt ∆′i,π(0) and ∆′i,π(1). Note that decryption must include

a ZK proof by P2 about correct (partial) decryption [2, 5, 8].
We run the above techniques for each output bit ωi in parallel.

HVZK to Fully-Malicious Security For fully-malicious security, we replace 2PC
evaluation of γ(3) from Figure 3 by using ZK Protocol (1). More specifically, instead
of 2PC evaluation of γ(3), we run ZK Protocol (1) for circuit γ(3) with both the ι1,i and
the vi,0,j, vi,1,j as P1’s input bits, and the ι2,i as P2’s input bits. To run ZK Protocol (1),
P1 sends encryptions Γi,0,j, Γi,1,j to P2 (as well as dummy encryptions of the ι1,i). As
a result of running ZK Protocol (1) of γ(3) instead of direct 2PC of γ(3), P2 can verify
that the Γi,0, Γi,1 are correct encryptions ofP1’s input to γ(3). Note that the output bits
received by P2 after running ZK Protocol (1) comprise all output bits of circuit γ(3).

3.2 Composition of ZK Protocols

Our ZK Protocols can be composed in a natural way, i.e., ZK Protocol (1), (2),
and (3) can be jointly used on a single circuit γ. Protocol steps before and after
2PC evaluation of the modified circuit γ are simply executed in parallel. Different
modifications of ZK Protocols (1) to (3) to circuit γ are merged into one large garbled
circuit. This large circuit comprises γ’s and all modifications’ functionality and uses
P1’s and P2’s input sets once. That is, inputs ι1,i and ι2,i are only used once and
their wires are connected to all sub-functions of the large circuit. Obviously, all other
necessary inputs µi,j, σi,j, and vω,j are present for their respective input and outputs.
This ensures the same functionality of the large circuit as the sub-functions due to
its security against malicious adversaries. Protocol steps outside of 2PC operate on
distinct inputs and hence are non-interfering under parallel composition.

3.3 Conversion

FHE to 2PC Conversion Let ciphertexts ci be homomorphic encryptions of bits
bi. Parties P1 and P2 know the ci, but not the bi and want to evaluate Boolean circuit
CBool
j (b1, . . . , b`) which outputs (o1, . . . , on). Figure 5 presents conversion details. For

each ci, P1 randomly chooses bit si and sends Enc(si) to P2. As both parties know



P1 P2
(input c1, . . . , c`) (input c1, . . . , c`)
∀i ∈ {1, . . . , `} :
si

$← {0,1}, c′i ← Enc(si)
c′i−−−−−−→

c′′i = ci ⊕ c′i c′′i = ci ⊕ c′i
jointly decrypt c′′i⇐=====⇒ receives s′i = si ⊕ bi

composition of ZK Protocols
(1) and (2) of γShare,j⇐=====⇒ o1, . . . , on (see text)

Fig. 5. Conversion from FHE to 2PC for CBool
j

ci, they both homomorphically compute Enc(si ⊕ bi) and jointly decrypt such that
only P2 receives plaintext bit s′i with s′i = bi ⊕ si. As a result, both parties know
shares of each bit bi. Ciphertexts c′i are encryptions of P1’s share, and c′′i are P2’s
share. As part of the joint decryption of c′′i , where only P2 learns s′i, P1 must prove
that its participation to decryption is correct [2, 5, 8].

To compute output bits (o1, . . . , on) = CBool
j (b1, . . . , b`), both parties agree to

evaluate Boolean circuit γShare,j, defined as

γShare,j((s1, . . . , s`), (s
′
1, . . . , s

′
`)) = CBool

j (s1 ⊕ s′1, . . . , s` ⊕ s′`) = (o1, . . . , on).

To make sure that P1 uses inputs si matching homomorphic encryption ci in γShare, we
apply ZK proof (1). The proof uses circuit γShare,j with inputs (s1, . . . , s`), (s′i, . . . , s

′
`)

and ciphertexts (c1, . . . , c`). Also, P2 must prove that they use s′i, matching c′′i during
the 2PC part of ZK proof (1). Therefore, we run a composition of ZK proof (1) and ZK
proof (2) on circuit γShare,j. Output bits oi of γShare,j are the same bits output by CBool

j .

However, if CBool
j is not the last sub-circuit of F , but another arithmetic circuit CArith

j+1

is following, γShare,j cannot output the oi in the clear. Instead, we transform output
bits into FHE encryptions, which is part of the 2PC to FHE conversion in Section 3.3.

2PC to FHE Conversion Parties want to evaluate CBool
j ((ι1,1, . . . , ι1,`1), (ι2,1, . . . ,

ι2,`2)) which outputs (o1, . . . , on) in a way that only FHE ciphertexts Enc(oi) are
known to both parties. Observe that bits ι1,i and ι2,i are either plain inputs bits from
P1 and P2 or shares from the above FHE to 2PC conversion.

Figure 6 depicts conversion details. The idea behind 2PC to FHE conversion is
essentially the opposite of the sharing approach from above. First, P1 selects for each
output bit oi a random share bit si, homomorphically encrypts it and sends resulting

P1 P2
(input i1,1, . . . , i1,`1) (input i2,1, . . . , i2,`2)
∀i ∈ {1, . . . , n} :
si

$← {0,1}, ci ← Enc(si)
ci−−−−−−→

composition of ZK Protocols (1)

and (3) of γShare
′

receives c′1 = Enc(s′1), ⇐=====⇒ receives s′1 = o1 ⊕ s1, . . . ,
. . . , c′n = Enc(s′n) s′n = on ⊕ sn, c′1, . . . , c′n
∀i ∈ {1, . . . , n} :
c′′i = ci ⊕ c′i c′′i = ci ⊕ c′i

Fig. 6. Conversion from 2PC to FHE for CBool
j



ciphertext Enc(si) to P2. Parties then evaluate circuit γShare
′, defined as

γShare
′((ι1,1, . . . , ι1,`, s1, . . . , sn), (ι2,1, . . . , ι2,`)) =

(s1, . . . , sn)⊕CBool
i ((ι1,1, . . . , ι1,`), (ι2,1, . . . , ι2,`)) = (s1 ⊕ o1, . . . , sn ⊕ on) = (s′1, . . . , s

′
n)

such that P2 receives output s′i. So, parties know shares s′i and s′i of output bit oi
and will now compute Enc(si ⊕ s′i).

First, to prove correctness of all si and ci, P1 could run ZK Protocol (1) for γShare
′.

This is, however, not enough. Circuit γShare
′ outputs s′i to P2, so P2 additionally

computes c′i ← Enc(s′i), sends c′i to P1, and proves correctness. To achieve both,
parties compose ZK Protocol (1) and ZK Protocol (3) on circuit γShare

′. Note that
P2 computes the c′i as part of ZK Protocol (3). Both parties then compute all n
encryptions c′′i = Enc(oi) = Enc(si ⊕ s′i) using ci and c′i and the homomorphic
property of Enc to continue evaluation.

3.4 d ≥ 2 Parties

Secure multi-party computation can be constructed from secure two-party compu-
tations in various ways. One standard way is a star topology as we will present in
our example in Section 4. The main idea is that each party Pi engages in secure
two-party computation with a central party P1 to compute some functionality. Such
a centralized approach works for certain functionalities, e.g., equality of inputs, as
equality is symmetric and transitive. If Pi’s input is equal to P1’s and Pj’s input is
equal to P1’s, then Pi’s input is also equal to Pj’s. Hence, computation of the joint
result using homomorphic encryption can leverage this relation.

However, this approach does not apply to other functionalities, e.g., larger-than
comparison. If Pi’s input is larger than P1’s, and Pj’s input is larger than P1’s, then
we cannot imply any larger-than relation between Pi’s and Pj’s input. Consequently
in this case, the alternative to maintain constant-round complexity is to engage all par-
ties in pair-wise comparisons. This has been previously considered, e.g., in the context
of sealed-bid auctions [7]. However, the result of each pairwise comparison is leaked in
previous work, reducing security to a level comparable with order-preserving encryp-
tion. In contrast, constructions in this paper enable computing the auction result, e.g.,
the largest input, using homomorphic encryption with constant round complexity.

In summary, there exist several practically relevant protocols with arithmetic
relations between inputs which can be decomposed into an initial two-party phase fol-
lowed by a combination phase of the inputs. We use secure two-party protocols during
the first phase to achieve efficient implementations in a constant number of (com-
munication) rounds. Similarly, to evaluate low multiplicative depth sub-circuits, we
use homomorphic encryption efficiently. Our ZK protocols ensure that the conversion
is secure against malicous adversaries.

3.5 Security Analysis

ZK Protocols (1) to (3) prove that the plaintext of an FHE ciphertext (under a shared
key) and the input or output, respectively, of a 2PC are identical. They hence enable
to compose FHE computations with 2PC protocols in a joint, maliciously secure
protocol. For space reasons, we defer the proof of Theorem 1 below to Appendix B.



Theorem 1. ZK Protocols (1) to (3) are (a) complete, i.e., an honest verifier accepts
the proof, if the prover provides consistent input, (b) zero-knowledge, i.e., any verifier
learns nothing about the prover’s witness except that it satisfies the proof, and (c)
sound, i.e., an honest verifier rejects the proof with overwhelming probability in the
security parameter λ, if the prover’s secret input is not a witness for the proof.

4 Application to Private Set Disjointness

To indicate their usefulness, we apply our mixed-technique conversions to the area of
private set analytics. In particular, we design a new solution to the problem of securely,
yet efficiently computing private set disjointness (PSD). In PSD, parties compute
whether their sets’ intersection is empty. While protocols computing PSD have been
presented before [16, 19, 25, 31, 32, 41, 60], our new solution features several advantages
which, in combination, is unique: any number of d ≥ 2 parties, fully-malicious security,
circuit-based computations, and high efficiency (also due to a constant number of
rounds). Computing PSD with a circuit-based approach is of special interest, as
variations of PSD, like whether the size of the intersection is larger than a threshold,
or other set statistics can then be computed easily, see discussions in [49, 51].

Each party Pi has an n element input set Si = {ei,1, . . . , ei,n} with elements
ei,j ∈ {0,1}`. We present a protocol where parties securely compute whether the

intersection of the Si is empty, i.e., |
⋂d
i=1 Si|

?
= 0. Crucially, we do not leak the

size of the intersection or any other information about the intersection or elements
ei,j. Assume that parties have previously computed a distributed private key with
corresponding public key for a fully or somewhat homomorphic encryption scheme.
Separately, each party Pi has a public-private key pair, where the public key is known
to all parties. So, parties can securely communicate.

4.1 PSD Protocol Overview

We present a new circuit-based approach to compute PSD. At its core, parties compare
their elements by evaluating a Boolean sub-circuit with pairwise 2PC in a star topology.
The outcome of 2PC comparisons then serves as input to FHE evaluations.

Hash Table Preparation Initially, parties hash their input elements into hash
tables. This is a typical approach of recent protocols for PSI, see Pinkas et al. [50] for
an overview. Specifically, each party Pi starts by creating an empty hash table Ti with
m ∈ O( n

logn) buckets. To cope with possible hash collisions with very high probability,

each bucket comprises a total of β ∈ O(logn) entries [52, 54]. Each entry has space to
store ` bits. Let Ti[j, k] denote the kth entry in the jth bucket Ti[j] of Pi’s hash table Ti.

After initializing hash table Ti, each party Pi iterates over their input elements,
writing element ei,j into bucket Ti[h(ei,j), u], where u is the first empty entry in Ti’s
mth bucket. All remaining entries in the hash table are filled with random bit strings.

Mixed-Circuit Evaluation Parties elect a leader, w.l.o.g. the leader is P1. The
main idea to compute PSD is that, for a randomly chosen r, the following function
F is evaluated securely:

F = r ·
m∑
j=1

β∑
k=1

d∏
i=2

[
β∨
u=1

(T1[j, k]
?
= Ti[j, u])

]
.



Ours

n d 2PC BC
FHE

Total
SPDZSH SPDZ BMR FHE

Comp Total Total Total Total

32

5 2.2 1.1 1.0 4.3 10.1 16.4 8.5 141.7
10 3.9 1.8 1.8 7.5 13.8 33.1 24.3 283.0
20 7.6 5.5 3.6 16.6 48.8 50.3 Crash 565.5
40 14.8 17.6 7.1 39.5 130.3 215.7 Crash DNF

64

5 4.7 1.4 2.3 8.4 22.7 35.6 18.5 406.9
10 9.0 3.4 4.4 16.8 32.6 72.4 66.6 813.1
20 18.0 10.7 8.6 37.3 101.5 248.2 Crash DNF
40 35.9 40.9 17.0 93.8 265.8 784.3 Crash DNF

128

5 10.7 2.2 5.4 18.3 52.3 117.5 43.0 DNF
10 20.8 6.6 10.3 37.7 84.6 356.7 Crash DNF
20 41.8 24.2 20.1 86.1 358.1 675.8 Crash DNF
40 83.3 95.3 39.7 218.3 546.3 DNF Crash DNF

1024 5 121.2 17.5 61.6 200.4 727.3 DNF DNF DNF
2048 5 265.0 37.5 135.5 438.0 DNF DNF DNF DNF

Table 1. Online time (s) to evaluate F , our scheme vs semi-honest and maliciously secure
SPDZ vs BMR vs FHE. 2PC: communication time for circuit evaluation of all mβd circuits
((γShare

′(1))(3))(1), BC: communication time for broadcasting shares and partial decryptions,
FHE Comp: computation time for arithmetic part, DNF: does not finish in 15min

Function F implements PSD, as sets Si are disjoint iff F evaluates to 0. The rationale
behind F is that the intersection is not empty if and only if there is exists an entry in a
bucket of P1’s table which equals an entry of the same bucket in all other parties’ tables.

We already define F using a mixed arithmetic and Boolean notation, suggesting
a direct application of our mixed-techniques for 2PC-FHE evaluation. To securely
evaluate F , we set up a simple star topology where leader P1 interacts pairwise with

each other party Pi to compute inner parts fi,j,k =
[∨β

u=1(T1[j, k]
?
= Ti[j, u])

]
with

2PC. That is, for the kth entry in their jth bucket T1[j, k], P1 evaluates with Pi a
separate 2PC circuit which implements fi,j,k. Using our 2PC to FHE conversion,
output of each fi,j,k 2PC evaluation is a homomorphic encryption of its output bit
which we denote by Enc(fi,j,k). After all 2PC computations, P1 sends the Enc(fi,j,k)
to all other parties which continue computing F homomorphically.

The final multiplication of the output by (a random) r in the encrypted domain

is realized by each party Pi randomly selecting ri
$←M and sending Enc(ri) to other

parties. All parties homomorphically compute Enc(r) =
∑d
i=1 Enc(ri) and multiply

the output by Enc(r) to get Enc(F). This ciphertext Enc(F) is then jointly decrypted.
Without multiplying by r, parties would learn the size of the intersection.

Although 2PC, our conversion, and homomorphic evaluations are secure against
malicious adversaries, we need to extend our current security model from two parties
to the case of d parties. For space reasons, we defer details to Appendix C. There,
we show that adding our ZK protocols leads to a multi-party protocol secure in the
malicious model, despite the fact that both parties of a two-party computation can
be malicious (including the leader). We also analyze the complexity of our composed
protocol and compare with related work in Appendix D.



4.2 Implementation

We have implemented our private set disjointness variant with 2PC to FHE conver-
sion and performed micro-benchmarks in a security setting we dub “semi-malicious”.
While our implementation of 2PC-part fi,j,k in the framework by Wang et al. [59] is
maliciously secure, none of the common FHE libraries (HELib, PALISADE, SEAL,
TFHE) provides all features we need for maliciously-secure conversion. Moreover, the
implementation of a FHE scheme with threshold decryption and ZK proofs, e.g., based
on the one by Asharov et al. [2], deserves its own paper. Thus, for the arithmetic part
of F , we have only implemented and benchmarked arithmetic operations with FHE
(using TFHE [12, 13]), but not FHE ZK proofs, i.e., semi-honestly secure conversion.

More specifically, we have implemented the actual circuit which is evaluated as
part of the 2PC to FHE conversion of fi,j,k, namely ((γShare

′(1))(3))(1). Here, circuit
γShare

′ is the modification to fi,j,k due to conversion, γShare
′(1) is the modification

implied by ZK Protocol (1) on top of that, (γShare
′(1))(3) the modification by ZK Pro-

tocol (3) on top of that, and ((γShare
′(1))(3))(1) the modification by ZK Protocol (1)

running inside ZK Protocol (3).

For all benchmarks, we set m = n
2 , β = logn, and consider ` = 32 bit integers as

the elements in each party’s set. It is well known that communication time due to la-
tency between parties is a dominating factor regarding total runtime, especially for the
2PC part. For example, raw computation time of evaluating a single ((γShare

′(1))(3))(1)
circuit for β = 5 takes only 1.2 ms on a single 1.6 GHz Core i5, but all computations
can run in parallel on different cores. So, an Amazon EC2 C5d instance with 96
cores computes 80,000 circuits per second. However, network traffic, i.e., exchanging
177 KByte of data between P1 and Pi during evaluation of that circuit, cannot be
parallelized. Instead, we can only sequentially send all data for all circuits, and network
latency is here the crucial parameter. While latency of (intercontinental) WAN traffic
is often unstable and can go over 250 ms [58], we run benchmarks on one machine
to better control network behavior and use netem [46] to set latency to a modest
70 ms. As a result of this latency, we measured data goodput over TCP to be only
330 MBit/s on the localhost network (a higher latency would imply less goodput).

In Table 1, 2PC denotes the time to compute all ((γShare
′(1))(3))(1). BC denotes

the time for all broadcasts of shares ci, c
′
i after 2PC to all parties (one TFHE cipher-

text has size 2.5 KByte) plus the time to broadcast a partial decryption of the final
result after FHE from each party (a partial decryption is one TFHE ciphertext). FHE
Comp is the time, for each party, to compute the arithmetic part of F in TFHE.

For comparison, we have also implemented F in the popluar MP-SPDZ frame-
work [29] and benchmarked with both their semi-honest (SPDZSH) and maliciously
secure SPDZ variants as well as BMR [30]. SPDZ Total and BMR Total are their total
(online) times to compute F . FHE Total is the total time of a semi-honest “pure-FHE”
implementation of F with TFHE, including broadcasting each party’smβ` ciphertexts
to all other parties. Note that BMR crashes even for a small number of parties, e.g.,
n = 128, d = 10, or quickly runs out of memory (> 32 GByte) for d ≥ 20 parties.

Looking at Table 1, our implementation outperforms semi-honest and maliciously
secure SPDZ, BMR, and FHE in all considered settings. While SPDZ and BMR are
competitive for a small number of parties, BMR fails due to its memory consumption,



and our composition from 2PC clearly shows better scalability than SPDZ for larger
numbers of parties.

While timings for our semi-malicious implementation look promising regarding a
potential maliciously secure implementation, we do not have such an implementation
for the above stated reasons. However, observing that our techniques outperform even
semi-honest SPDZ while offering stronger security guarantees leads to an interesting
conclusion of our evaluation. Our mixed-techniques protocols might already serve as
an alternative to standard semi-honest MPC in scenarios with a star topology, i.e.,
where a multi-party protocol can be decomposed into multiple 2PC protocols.

5 Related Work

Mixed-Techniques MPC Several previous works combine different MPC tech-
niques to mitigate individual techniques’ drawbacks. Kolesnikov et al. are among the
first to present a conversion between garbled circuits and (additively) homomorphic
encryption in the two-party semi-honest model [33, 35]. Extending their conversion
to also support fully-malicious adversaries is non-trivial: in Appendix D of [34], they
present honest-verifier zero-knowledge proofs which render the protocol secure only
if at most one party is malicious. However, HVZK is insufficient, if proofs are part of
a scenario with more than two parties where more than one party can be malicious.

A long line of research has focused on making mixed-techniques practical and
efficient. Henecka et al. [24] design practical tools for conversion between garbled
circuits and additively homomorphic encryption. Their conversion targets semi-honest
adversaries and circuits for two parties. Demmler et al. [17] present a two party
framework to convert between arithmetic sharing, Boolean sharing, and garbled
circuits in the semi-honest model, and so do Riazi et al. [53]. Mohassel and Rindal
[44] extend to three parties with malicious security. Again in the semi-honest model
for two parties, Juvekar et al. [28] switch between garbled circuits and additively
homomorphic encryption, and Büscher et al. [10] switch between arithmetic and
Boolean sharing. Rotaru and Wood [55] and Aly et al. [1] convert between MPC
based on arithmetic secret sharing and garbled circuits with malicious security.

In conclusion, this paper fills a gap with a solution which converts between FHE
and garbled circuits, supports any number of parties, and provides malicious security.

(Multi-Party) PSI and Disjointness While seminal works in PSI are based on
dedicated protocols [42], recent papers use a circuit-based approach (see Pinkas
et al. [48] for an overview), culminating in solutions with asymptotically optimal
communication complexity and practical constants [51]. In theory, such circuit-based
approaches can be used to also compute disjointness, but they all focus on the
two-party setting with semi-honest security.

Hazay and Venkitasubramaniam [23] present a maliciously-secure multi-party
PSI protocol based on oblivious polynomial evaluation (OPE). Similar to previous
ideas [19], OPE could then be combined with a maliciously-secure 2PC to compute
disjointness. However, already computing the intersection is expensive with this
approach, requiring O(n2) modular exponentiations. Kolesnikov et al. [36] present
an efficient multi-party PSI protocol in the semi-honest model using only symmetric



encryption. However, PSI protocols cannot be easily converted into PSI analytics
protocols while maintaining efficiency [49, 51]. Other works have considered computing
set disjointness, but these target semi-honest security and/or only two parties [16, 19,
25, 31, 32, 41, 60]

In conclusion, this paper presents the first multi-party PSI analytics protocol whose
communication complexity scales only quadratically in the number of participants
d. Furthermore, it is also secure in the malicious model.



Bibliography

[1] A. Aly, E. Orsini, D. Rotaru, N. Smart, and T. Wood. Zaphod: Efficiently
Combining LSSS and Garbled Circuits in SCALE. In Proceedings of the
7th ACM Workshop on Encrypted Computing & Applied Homomorphic
Cryptography, WAHC@CCS 2019, London, UK, November 11-15, 2019 , pages
33–44. ACM, 2019.

[2] G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan, and D. Wichs.
Multiparty Computation with Low Communication, Computation and Interac-
tion via Threshold FHE. In Advances in Cryptology - EUROCRYPT 2012 - 31st
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Cambridge, UK, April 15-19, 2012. Proceedings, pages 483–501, 2012.

[3] D. Beaver, S. Micali, and P. Rogaway. The Round Complexity of Secure Protocols
(Extended Abstract). In 22nd Annual ACM Symposium on Theory of Computing,
STOC, May 13-17, 1990, Baltimore, Maryland, USA, pages 503–513, 1990.

[4] M. Bellare, V. Hoang, and P. Rogaway. Foundations of garbled circuits. In the
ACM Conference on Computer and Communications Security, CCS’12, Raleigh,
NC, USA, October 16-18, 2012 , pages 784–796, 2012.

[5] R. Bendlin and I. Damg̊ard. Threshold Decryption and Zero-Knowledge Proofs
for Lattice-Based Cryptosystems. In Theory of Cryptography, 7th Theory of
Cryptography Conference, TCC 2010, Zurich, Switzerland, February 9-11, 2010.
Proceedings, pages 201–218, 2010.

[6] F. Benhamouda, J. Camenisch, S. Krenn, V. Lyubashevsky, and G. Neven.
Better Zero-Knowledge Proofs for Lattice Encryption and Their Application
to Group Signatures. In Advances in Cryptology - ASIACRYPT 2014 - 20th
International Conference on the Theory and Application of Cryptology and
Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014.
Proceedings, Part I , pages 551–572, 2014.

[7] E. Blass and F. Kerschbaum. Strain: A Secure Auction for Blockchains. In Com-
puter Security - 23rd European Symposium on Research in Computer Security,
ESORICS 2018, Barcelona, Spain, September 3-7, 2018, Proceedings, Part I , vol-
ume 11098 of Lecture Notes in Computer Science, pages 87–110. Springer, 2018.

[8] D. Boneh, R. Gennaro, S. Goldfeder, A. Jain, S. Kim, P. Rasmussen, and
A. Sahai. Threshold Cryptosystems from Threshold Fully Homomorphic
Encryption. In Advances in Cryptology - CRYPTO 2018 - 38th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 19-23,
2018, Proceedings, Part I , pages 565–596, 2018.

[9] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic
encryption without bootstrapping. In Innovations in Theoretical Computer
Science 2012, ITCS 2012, Cambridge, MA, USA, January 8-10, 2012 , pages
309–325, 2012.

[10] N. Büscher, D. Demmler, S. Katzenbeisser, D. Kretzmer, and T. Schneider.
HyCC: Compilation of Hybrid Protocols for Practical Secure Computation.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and



Communications Security, CCS 2018, Toronto, ON, Canada, October 15-19,
2018 , pages 847–861. ACM, 2018.

[11] O. Catrina and S. de Hoogh. Improved Primitives for Secure Multiparty Integer
Computation. In Security and Cryptography for Networks, 7th International Con-
ference, SCN 2010, Amalfi, Italy, September 13-15, 2010. Proceedings, volume
6280 of Lecture Notes in Computer Science, pages 182–199. Springer, 2010.

[12] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. TFHE: Fast Fully
Homomorphic Encryption Library, 2016. https://tfhe.github.io/tfhe/.

[13] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. TFHE: Fast Fully
Homomorphic Encryption Over the Torus. J. Cryptology, 33(1):34–91, 2020.

[14] I. Damg̊ard and A. López-Alt. Zero-Knowledge Proofs with Low Amortized
Communication from Lattice Assumptions. In Security and Cryptography for
Networks - 8th International Conference, SCN 2012, Amalfi, Italy, September
5-7, 2012. Proceedings, pages 38–56, 2012.

[15] I. Damg̊ard, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty Computation
from Somewhat Homomorphic Encryption. In Advances in Cryptology -
CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA,
USA, August 19-23, 2012. Proceedings, pages 643–662, 2012.

[16] A. Davidson and C. Cid. An Efficient Toolkit for Computing Private Set
Operations. In Information Security and Privacy - 22nd Australasian Conference,
ACISP 2017, Auckland, New Zealand, July 3-5, 2017, Proceedings, Part II ,
pages 261–278, 2017.

[17] D. Demmler, T. Schneider, and M. Zohner. ABY - A Framework for Efficient
Mixed-Protocol Secure Two-Party Computation. In 22nd Annual Network and
Distributed System Security Symposium, NDSS 2015, San Diego, California,
USA, February 8-11, 2015. The Internet Society, 2015.

[18] Efficient Multi-Party Computation Toolkit. EMP-ag2pc, 2019.
https://github.com/emp-toolkit/emp-ag2pc.

[19] M. Freedman, K. Nissim, and B. Pinkas. Efficient Private Matching and Set
Intersection. In Advances in Cryptology - EUROCRYPT 2004, International
Conference on the Theory and Applications of Cryptographic Techniques,
Interlaken, Switzerland, May 2-6, 2004, Proceedings, pages 1–19, 2004.

[20] C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings
of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009,
Bethesda, MD, USA, May 31 - June 2, 2009 , pages 169–178, 2009.

[21] S. Goldfeder. A Boolean Circuit for SHA-256 , 2019. http:

//stevengoldfeder.com/projects/circuits/sha2circuit.html.
[22] S. Goldwasser and Y. Lindell. Secure Multi-Party Computation without

Agreement. J. Cryptology, 18(3):247–287, 2005.
[23] C. Hazay and M. Venkitasubramaniam. Scalable Multi-party Private Set-

Intersection. In Public-Key Cryptography - PKC 2017 - 20th IACR International
Conference on Practice and Theory in Public-Key Cryptography, Amsterdam,
The Netherlands, March 28-31, 2017, Proceedings, Part I , pages 175–203, 2017.

[24] W. Henecka, S. Kögl, A. Sadeghi, T. Schneider, and I. Wehrenberg. TASTY:
tool for automating secure two-party computations. In Proceedings of the
17th ACM Conference on Computer and Communications Security, CCS 2010,
Chicago, Illinois, USA, October 4-8, 2010 , pages 451–462. ACM, 2010.

https://github.com/emp-toolkit/emp-ag2pc
http://stevengoldfeder.com/projects/circuits/sha2circuit.html
http://stevengoldfeder.com/projects/circuits/sha2circuit.html


[25] S. Hohenberger and S. Weis. Honest-Verifier Private Disjointness Testing
Without Random Oracles. In Privacy Enhancing Technologies, 6th International
Workshop, PET 2006, Cambridge, UK, June 28-30, 2006, Revised Selected
Papers, pages 277–294, 2006.

[26] M. Ishaq, A. Milanova, and V. Zikas. Efficient MPC via Program Analysis:
A Framework for Efficient Optimal Mixing. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2019,
London, UK, November 11-15, 2019 , pages 1539–1556, 2019.

[27] M. Jawurek, F. Kerschbaum, and C. Orlandi. Zero-knowledge using garbled
circuits: how to prove non-algebraic statements efficiently. In 2013 ACM
SIGSAC Conference on Computer and Communications Security, CCS’13,
Berlin, Germany, November 4-8, 2013 , pages 955–966, 2013.

[28] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan. GAZELLE: A Low
Latency Framework for Secure Neural Network Inference. In 27th USENIX
Security Symposium, USENIX Security 2018, Baltimore, MD, USA, August
15-17, 2018 , pages 1651–1669. USENIX Association, 2018.

[29] M. Keller. MP-SPDZ: A versatile framework for multi-party computation.
Cryptology ePrint Archive, Report 2020/521, 2020. https://eprint.iacr.org/
2020/521, source v0.1.4 at https://github.com/data61/MP-SPDZ.

[30] M. Keller and A. Yanai. Efficient Maliciously Secure Multiparty Computation
for RAM. In Advances in Cryptology - EUROCRYPT 2018 - 37th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part III , volume
10822 of Lecture Notes in Computer Science, pages 91–124. Springer, 2018.

[31] A. Kiayias and A. Mitrofanova. Testing Disjointness of Private Datasets. In
Financial Cryptography and Data Security, 9th International Conference, FC
2005, Roseau, The Commonwealth of Dominica, February 28 - March 3, 2005,
Revised Papers, pages 109–124, 2005.

[32] L. Kissner and D. X. Song. Privacy-Preserving Set Operations. In Advances in
Cryptology - CRYPTO 2005: 25th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 14-18, 2005, Proceedings, pages
241–257, 2005.

[33] V. Kolesnikov, A. Sadeghi, and T. Schneider. Improved Garbled Circuit Building
Blocks and Applications to Auctions and Computing Minima. In Cryptology
and Network Security, 8th International Conference, CANS 2009, Kanazawa,
Japan, December 12-14, 2009. Proceedings, volume 5888 of Lecture Notes in
Computer Science, pages 1–20. Springer, 2009.

[34] V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. From dust to dawn:
Practically efficient two-party secure function evaluation protocols and
their modular design. Cryptology ePrint Archive, Report 2010/079, 2010.
https://eprint.iacr.org/2010/079.

[35] V. Kolesnikov, A. Sadeghi, and T. Schneider. A systematic approach to
practically efficient general two-party secure function evaluation protocols and
their modular design. Journal of Computer Security, 21(2):283–315, 2013.

[36] V. Kolesnikov, N. Matania, B. Pinkas, M. Rosulek, and N. Trieu. Practical
Multi-party Private Set Intersection from Symmetric-Key Techniques. In 2017

https://eprint.iacr.org/2020/521
https://eprint.iacr.org/2020/521
https://github.com/data61/MP-SPDZ
https://eprint.iacr.org/2010/079


ACM SIGSAC Conference on Computer and Communications Security, CCS
2017, Dallas, TX, USA, October 30-November 03, 2017 , pages 1257–1272, 2017.

[37] V. Kolesnikov, J. Nielsen, M. Rosulek, N. Trieu, and R. Trifiletti. DUPLO:
Unifying Cut-and-Choose for Garbled Circuits. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2017,
Dallas, TX, USA, October 30 - November 03, 2017 , pages 3–20. ACM, 2017.

[38] Y. Lindell. Fast Cut-and-Choose-Based Protocols for Malicious and Covert
Adversaries. J. Cryptology, 29(2):456–490, 2016.

[39] Y. Lindell, N. Smart, and E. Soria-Vazquez. More Efficient Constant-Round
Multi-party Computation from BMR and SHE. In Theory of Cryptography
- 14th International Conference, TCC 2016-B, Beijing, China, October 31
- November 3, 2016, Proceedings, Part I , volume 9985 of Lecture Notes in
Computer Science, pages 554–581, 2016.

[40] Y. Lindell, B. Pinkas, N. Smart, and A. Yanai. Efficient Constant-Round
Multi-party Computation Combining BMR and SPDZ. J. Cryptology, 32(3):
1026–1069, 2019.

[41] L. Marconi, M. Conti, and R. D. Pietro. CED2: Communication Efficient Disjoint-
ness Decision. In Security and Privacy in Communication Networks - 6th Iterna-
tional ICST Conference, SecureComm 2010, Singapore, September 7-9, 2010. Pro-
ceedings, volume 50 of Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering, pages 290–306. Springer, 2010.

[42] C. Meadows. A More Efficient Cryptographic Matchmaking Protocol for Use
in the Absence of a Continuously Available Third Party. In Proceedings of the
1986 IEEE Symposium on Security and Privacy, Oakland, California, USA,
April 7-9, 1986 , pages 134–137. IEEE Computer Society, 1986.

[43] C. A. Melchor, M. Killijian, C. Lefebvre, and T. Ricosset. A Comparison of
the Homomorphic Encryption Libraries HElib, SEAL and FV-NFLlib. In
Innovative Security Solutions for Information Technology and Communications
- 11th International Conference, SecITC 2018, Bucharest, Romania, November
8-9, 2018, Revised Selected Papers, volume 11359 of Lecture Notes in Computer
Science, pages 425–442. Springer, 2018.

[44] P. Mohassel and P. Rindal. ABY3: A Mixed Protocol Framework for Machine
Learning. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2018, Toronto, ON, Canada, October 15-19,
2018 , pages 35–52. ACM, 2018.

[45] S. Myers, M. Sergi, and A. Shelat. Threshold Fully Homomorphic Encryption
and Secure Computation. IACR Cryptology ePrint Archive, 2011:454, 2011.
URL http://eprint.iacr.org/2011/454.

[46] Netem. netem, 2019. https://wiki.linuxfoundation.org/networking/netem.

[47] J. Nielsen and C. Orlandi. LEGO for Two-Party Secure Computation. In
Theory of Cryptography, 6th Theory of Cryptography Conference, TCC 2009,
San Francisco, CA, USA, March 15-17, 2009. Proceedings, volume 5444 of
Lecture Notes in Computer Science, pages 368–386. Springer, 2009.

[48] B. Pinkas, T. Schneider, G. Segev, and M. Zohner. Phasing: Private Set
Intersection Using Permutation-based Hashing. In 24th USENIX Security

http://eprint.iacr.org/2011/454
https://wiki.linuxfoundation.org/networking/netem


Symposium, USENIX Security 15, Washington, D.C., USA, August 12-14, 2015 ,
pages 515–530. USENIX Association, 2015.

[49] B. Pinkas, T. Schneider, C. Weinert, and U. Wieder. Efficient Circuit-Based
PSI via Cuckoo Hashing. In Advances in Cryptology - EUROCRYPT 2018
- 37th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings,
Part III , pages 125–157, 2018.

[50] B. Pinkas, T. Schneider, and M. Zohner. Scalable Private Set Intersection Based
on OT Extension. ACM Trans. Priv. Secur., 21(2):7:1–7:35, 2018.

[51] B. Pinkas, T. Schneider, O. Tkachenko, and A. Yanai. Efficient Circuit-Based
PSI with Linear Communication. In Advances in Cryptology - EUROCRYPT
2019 - 38th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings,
Part III , volume 11478 of Lecture Notes in Computer Science, pages 122–153.
Springer, 2019.

[52] M. Raab and A. Steger. “Balls into Bins” - A Simple and Tight Analysis. In
Randomization and Approximation Techniques in Computer Science, Second
International Workshop, RANDOM’98, Barcelona, Spain, October 8-10, 1998,
Proceedings, pages 159–170, 1998.

[53] M. Riazi, C. Weinert, O. Tkachenko, E. Songhori, T. Schneider, and F. Koushan-
far. Chameleon: A Hybrid Secure Computation Framework for Machine
Learning Applications. In Proceedings of the 2018 on Asia Conference on
Computer and Communications Security, AsiaCCS 2018, Incheon, Republic
of Korea, June 04-08, 2018 , pages 707–721. ACM, 2018.

[54] P. Rindal and M. Rosulek. Malicious-Secure Private Set Intersection via Dual
Execution. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, Dallas, TX, USA, October 30 -
November 03, 2017 , pages 1229–1242, 2017.

[55] D. Rotaru and T. Wood. MArBled Circuits: Mixing Arithmetic and Boolean
Circuits with Active Security. In Progress in Cryptology - INDOCRYPT 2019
- 20th International Conference on Cryptology in India, Hyderabad, India,
December 15-18, 2019, Proceedings, volume 11898 of Lecture Notes in Computer
Science, pages 227–249. Springer, 2019.

[56] M. Strand. A Verifiable Shuffle for the GSW Cryptosystem. In Financial
Cryptography and Data Security - FC 2018 International Workshops, BITCOIN,
VOTING, and WTSC, Nieuwpoort, Curaçao, March 2, 2018, Revised Selected
Papers, pages 165–180, 2018.

[57] M. Varia, S. Yakoubov, and Y. Yang. HEtest: A Homomorphic Encryption
Testing Framework. In Financial Cryptography and Data Security - FC 2015
International Workshops, BITCOIN, WAHC, and Wearable, San Juan, Puerto
Rico, January 30, 2015, Revised Selected Papers, volume 8976 of Lecture Notes
in Computer Science, pages 213–230. Springer, 2015.

[58] Verizon. IP Latency Statistics, 2020. https://enterprise.verizon.com/
terms/latency/.

[59] X. Wang, S. Ranellucci, and J. Katz. Authenticated Garbling and Efficient
Maliciously Secure Two-Party Computation. In Proceedings of the 2017 ACM

https://enterprise.verizon.com/terms/latency/
https://enterprise.verizon.com/terms/latency/


SIGSAC Conference on Computer and Communications Security, page 21–37,
New York, NY, USA, 2017. Association for Computing Machinery. ISBN
9781450349468.

[60] Q. Ye, H. Wang, J. Pieprzyk, and X.-M. Zhang. Efficient Disjointness Tests for
Private Datasets. In Information Security and Privacy, pages 155–169, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-70500-0.

[61] M. Yung. From Mental Poker to Core Business: Why and How to Deploy Secure
Computation Protocols? In 22nd ACM SIGSAC Conference on Computer and
Communications Security, CCS’15, Denver, CO, USA, October 12-16, 2015 ,
pages 1–2, 2015.

A Replacing Hash-based Commitments

In compositions of multi-party protocols from two-party protocols, an important
application of our conversions can be used which is of independent interest. In general,
when there are multiple two-party protocols by one party within a composed protocol,
this one party may need to commit to its input before all two-party protocols and
prove that all two-party protocols use the same input by opening the commitment in
the 2PC. The common technique to implement this is to use hash-based commitments
and verify hashes during 2PC. This requires about 22000 AND gates for each 256
input bits using SHA2 [21]. Our construction below omits hash verification inside
the circuit and can be used as an alternative.

Details We describe how this technique is applied to ZK Protocols (1) and (2), but
stress that it is general and can be applied in other scenarios, too. More specifically,
the costliest operation during garbled circuit 2PC evaluation in ZK Protocols (1)
and (2) is verification of commitments Comi,j. For hash-based commitments, γ(1) and
γ(2) would need to comprise sub-circuits recomputing, e.g., expensive SHA2 hashes.

However with a white-box use of garbled circuits, verifying commitments is unnec-
essary. Consider, first, ZK Protocol (1): instead of re-computing commitments in γ(1),
evaluator P2 simply retrieves wire labels Li,j of their input wire σi,j from garbler P1.
During evaluation of γ(1), P1 does not send the standard “translation-table” which
opens the label of output wire ti,j by mapping the label to a 0 or 1. Instead, P1 only
sends a commitment to the table. After 2PC evaluation, P2 sends label Li,j, σi,j, and
Ri,j to P1, P1 verifies Comi,j, checks whether Li,j is the right label, and then sends
the translation table.

In case of ZK Protocol (2) the situation is more subtle. P1 needs to reveal both
wire labels for σi,j = 0 and σi,j = 1 in order to prove integrity of its input. However,
P1 can only do so after P2 has revealed output ti,j, but before P2 has opened the
ciphertexts. Hence, another half communication round is necessary where P2 sends ti,j
after evaluating the protocol. This order of operations is similar to the zero-knowledge
proof technique using garbled circuits by Jawurek et al. [27], where the garbler opens
the circuit after a commitment to the output by the evaluator. Note that our protocols
secure the garbled circuit computation (in combination with conversion from and
to FHE) whereas Jawurek et al. only construct a single ZKP using garbled circuits.



B Proof of Theorem 1

Proof. Completeness of ZK Protocols (1) to (3) follows immediately from their
construction, so we focus on Zero-Knowledge and Soundness.

Zero-Knowledge To prove zero-knowledge, we construct simulators in the hybrid
model which do not know the witness of the individual ZK Protocols (ZKPs), create
views for the adversary which are indistinguishable from the real protocol, and make
the verifier accept the proofs. In the hybrid model, simulators can simulate any ZK
sub-proofs invoked during the protocol.

First, observe that all messages from the prover to the verifier are semantically-
secure ciphertexts, random numbers or other zero-knowledge proofs.

In ZKP (1) and (2), the simulator randomly chooses inputs ι1,i (or ι2,i) and
masking bits µi,j as their input into 2PC. The verifier inputs σi,j to the 2PC. After
the 2PC, the simulator either receives verification bits ti,j (ZKP (1)) or outputs
random verification bits (ZKP (2)).

In the last step, we make use of the hybrid model. The simulator invokes the
simulator of the ZKP for correct decryption using those (random) verification bits
and the committed (random) input and masking ciphertexts, simulating a consistent
execution of the ZKP.

In ZKP (3), the simulator does not have to output verification bits vi,ωi,j, but the
verification is done using ZK proofs Scalari and Shufflei. Hence, the simulator for ZK
Protocol (3) chooses a random ωi and invokes the simulators for Scalari and Shufflei.

Soundness To prove soundness for ZKP (1) and (2), we construct extractors. We
construct an extractor only for ZKP (1), but stress that the extractor for (2) is
equivalent. The extractor starts the ZK proof and lets the prover commit to their
inputs via homomorphic ciphertexts c1,j (for a known shared key). Then the extractor
chooses challenge bits σi,j and sends them to the 2PC. The prover outputs verification
bits ti,j. The extractor rewinds the prover to just before they received the challenge
bits for the 2PC. The extractor negates all challenge bits to ¬σi,j, sends them to
the 2PC and continues the protocol. Let the prover’s verification bits after rewinding
be t′i,j. We assume that the prover has consistent inputs and hence these inputs are
extractable: the prover’s inputs in ZKP (1) are ti,j ⊕ t′i,j.

The soundness of ZKP (3) is a special case of authenticity of garbled circuits [4].
The challenge bits, vi,0,j and vi,1,j, are input to the 2PC. Note that the soundness of
the ZKP (1) ensures that the entire execution of the verifier is secure against malicious
behaviour, including its conversion of the challenge bits from FHE to 2PC. The
output depends on the output of the 2PC. Since the prover only evaluates the garbled
circuit, it is bound to the correct or no output due to the authenticity property of
garbled circuits. It can hence only produce one consistent set of output labels vi,ωi,j.

This completes our security proof. Note that only the proof of ZKP (3) is recursive
to the proof of ZKP (1), and hence all proofs are valid if ordered from (1) to (3). ut

C Malicious Security for PSD

So far, our conversion is secure only for the case of d = 2 parties, where at most one
party is malicious. Recall that after 2PC to FHE conversion, both parties P1 and Pi



have proven to each other correct computation of c = Enc(s) and c′ = Enc(s′). They
homomorphically combine c and c′ to Enc(fi,j,k) = Enc(s⊕ s′). The new challenge
when dealing with d > 2 parties is that both P1 and Pi can be malicious, fabricate
various different Enc(fi,j,k), and send different Enc(fi,j,k) to different other parties.

To mitigate, one could somehow run ZK proofs in public such that all other parties
automatically observe the correct Enc(fi,j,k), but this is expensive. A more elegant solu-
tion would be that both parties P1 and Pi sign Enc(fi,j,k) at the end of their conversion,
and Pi sends their signature to P1. Then, P1 could use a secure echo broadcast [22]
to send Enc(fi,j,k) and both signatures of Enc(fi,j,k) to all parties. As a result, all
parties would receive the same Enc(fi,j,k) and verify that P1 and Pi have agreed on it.

P1 and Pi malicious However, an interesting new challenge occurs when both P1

and Pi are malicious and agree on a wrong Enc(fi,j,k). For example, P1 and Pi could
agree on Enc(0) even though Pi has an entry ei,u in its jth bucket which equals an
entry e1,k in P1’s j

th bucket. Note that this is not an attack, as the adversary can
anyways control Pi’s input and set it to arbitrary values. So, the above case would
be equivalent to the adversary setting Pi’s input ei,u to something different from e1,k
in the first place. The only property P1 and Pi have to prove to all other parties is
that ciphertext Enc(fi,j,k) encrypts a bit.

As neither P1 nor Pi know fi,j,k, we use a different strategy. Party P1 proves in
ZK that c encrypts a bit, and Pi proves that c′ encrypts a bit. Parties broadcast c and
c′ with both proofs. Using c and c′ all parties compute Enc(fi,j,k) homomorphically.

Finally, to force P1 to always use the same inputs during pairwise comparisons
with different Pi, we require P1 to initially commit to its input using FHE ciphertexts
and securely broadcast those ciphertexts to all other parties. The consistency of
inputs can then be verified using ZK Protocol (1).

Joint decryption Recall that the 2PC to FHE conversion internally runs ZK Protocol
(3) and requires a joint decryption between P1 and Pi. In the case of d > 2 parties,
joint decryption is still possible, but involves all d parties. So, both P1 and Pi broad-
cast a request to decrypt the current ∆′i,π(0) and ∆′i,π(1), and all parties reply to P1

with their share of the decryption (plus proof of correct decryption). Note that this
does not change our total message complexity. We need to run O(1) broadcasts for
each fi,j,k anyways.

D Complexity Analysis

We present and compare complexities of our mixed-techniques approach for evaluating
F with related schemes. As there is no dedicated protocol for multi-party maliciously-
secure PSD, we compare complexities with those for evaluating F using general MPC
techniques SPDZ [15], constant-round MPC [39], and (semi-honest) FHE. Table 2
shows results of “online” phases only (SPDZ, constant-round MPC, our techniques).
We stress that in contrast to our more detailed explanations below, Table 2 presents
only a summary, focussing on those costs which dominate computation and commu-
nication. For example for the FHE-based approach, we silently ignore the n FHE
additions in the outer part of F , as O(d`n logn) FHE multiplications will dominate
total computation time. As mentioned above, we set m ∈ O( n

logn) and β ∈ O(logn).



Comp. / party Comm. / party Rounds
FHE O(I) · CFHE∗ O(`n) ·BC|FHE| O(1)

Constant
Round MPC [39]

O(I) · CFHE∗ O(I) ·BC|FHE| O(1)

SPDZ [15] O(dI) · CGF(2`+λ)∗
O(dI) · |SYM|+

O(n) ·BC|GF(2`+λ)|
O(logd+ log logn)

This paper O(I) · CFHE∗
O(I) · |FHE|+
O(n) ·BC|FHE|

O(1)

Table 2. Complexities for Multi-Party Maliciously-Secure PSD using different techniques.
Table shows only online phases (if applicable). Table lists only dominating computation or
communication costs, see text. λ: statistical security parameter, κ: computational security
parameter, I : total number of comparisons (I = d`n logn), d: number of parties, n : elements
per party, ` : input length, CGF(2`+λ)∗: comp. cost for GF(2`+λ) multiplication, H: comp.

cost for hash evaluation, |SYM|: size of symmetric ciphertext of GF(2`+λ) element, |H|: size
of a hash, |FHE|: size of a FHE ciphertext, BCx: secure broadcast of x bit, I : total number
of bit comparisons (I = d`n logn). For practical scenarios, we simplify: O(n`) · BCκ ⊆
O(I) ·BC|FHE|, `d3 ∈ O(dI), λI

logn
+ dnλ2 ∈ O(I), O(I + ndλ · (`+ λ)) ·H ⊆ O(I) · CFHE∗,

O(n · (` · (logn+ λ) + λ2)) · |H| ⊆ O(I) · |FHE|, O(nd(λ`+ λ2)) · |FHE| ⊆ O(I) · |FHE|,
O(`) ·BC|H| ⊆ O(nd) ·BC|FHE|.

To implement secure broadcast, we use the standard echo broadcast [15, 22, 39, 40]
which has message complexity O(d2).

(Semi-Honest) FHE Let CFHE∗ be the computational complexity for a FHE multi-
plication and CFHE+ the computational complexity for a FHE addition. A standard
FHE implementation arithmetizes F ’s inner part fi,j,k. There, two ` Bit elements
are compared with O(`) multiplications (implementing XNORs and ANDs), followed
by logn multiplications to realize

∨
. Finally, d multiplications are necessary for∏

. In total, FHE requires O(d`n logn) · CFHE∗ homomorphic multiplications with a
multiplicative circuit depth of log `+ log logn+ logd+ 1. Even for reasonable values
` = 32, d = 10, n = 220, the multiplicative depth is already 14 which leads to huge run-
times in practice [43]. Note that homomorphic additions also increase ciphertext noise.
While noise increased by additions is roughly one order of magnitude less than with
multiplications [57], and we do not count additions in our comparison, we stress that
additive noise requires FHE parameter selection to result in even slower computations.

Communication complexity with FHE comprises securely broadcasting all (m·β) ∈
O(n) input elements encrypted bit by bit and partial decryptions for the final ` Bit
output. Such a standard FHE evaluation of F leads to a constant round complexity.

Constant-Round MPC An implementation based on recent constant-round MPC
protocols [30, 39, 40] replaces F ’s arithmetic operators with Boolean operators, i.e.,
the

∏
by

∧
and each

∑
by

∨
. The result is a circuit with dn` input wires, n` per

party, one output wire, and d`n logn gates. This circuit is then evaluated in an online
phase having the following complexities: (I) For each input wire of each party Pi, Pi
broadcasts one PRG seed of length κ (security parameter), and all parties perform
a distributed decryption, also broadcasting partial decryptions. (II) For each gate, all
parties perform a distributed decryption. Together, per party, this requires a total of



O(d`n logn) broadcasts of size comparable to a FHE ciphertext and O(n`) broadcasts
of PRG seeds. Lindell et al. [39] require 9 rounds and a FHE multiplicative depth of 3.

SPDZ Comparing two ` Bit integers is implemented in SPDZ [15] by Catrina and
de Hoogh [11]’s arithmetization. For statistical security parameter λ, each comparison
requires d · ` multiplications in GF(2`+λ) per party, in a constant number of rounds.
The following

∨
requires logn and the

∏
requires d multiplications. Opening the

final output requires O(` · d3) multiplications per party. So in total, F ’s evalua-
tion requires O(ndlognd` + `d3) = O(d2`n logn + `d3) multiplications per party
in O(logd+ log logn) rounds. This is also the amount of shares which have to be
securely exchanged between two parties. Initial sharing of O(n) elements of each
party requires O(n) secure broadcasts.

Our Mixed-Technique (FHE) Let C2PC denote the computational complexity for
computing the 2PC sub-protocol for inner circuits fi,j,k of F . For P1, computational
complexity for evaluating F is O(nd) · C2PC plus O(nd) · CFHE∗ plus O(n) · CFHE+.
m ∈ O( n

logn) and β ∈ O(logn), So, the computational complexity is in O(n ·(CFHE++

d · (C2PC + CFHE∗))).
In summary, C2PC implies 2PC evaluation of a circuit of O(`·(logn+λ)+λ2) gates.

We use the scheme by Wang et al. [59] as 2PC building block, which implements
evaluation of each circuit with O(` · (logn+ λ) + λ2) calls to a cryptographic hash
function. There are d parties and O( n

logn) hash table buckets of O(logn) entries,

leading to a total of O(n · (` · (logn+ λ) + λ2)) hashes per party.

Regarding the FHE part of the conversion, we need O(λ(`+ λ)) FHE multiplica-
tions CFHE∗, O(λ(`+ λ)) encryptions, one decryption, one ZK proof Scalar, and one
ZK proof Shuffle per comparison. Assuming the computational cost of decryptions
and ZK proofs to be comparable to FHE multiplications up to constant factors,
then all comparisons together cost a total of O(dnλ(`+ λ)) · CFHE∗. Multiplicative
depth remains at 1. Evaluation of F ’s remaining (outer) arithmetic part adds dn
FHE multiplications which, however, increase multiplicative circuit depth to 2 + logd.
Note that this is a significant improvement over the pure FHE approach above. For
example, with d = 10 parties, multiplicative depth is only 6, independent of n.

For comparisons fi,j,k, we send O(n · (` · (logn+ λ) + λ2)) hash values per party
and O(nd(λ`+ λ2)) FHE ciphertexts for party P1 for the conversion. In total, P1

also broadcasts O(nd) FHE ciphertexts and O(`) commitments to their input.

The total number of rounds is asymptotically constant in d, `, λ, and n, and it
is low in practice: only 6 rounds are necessary for the online phase. To construct
authenticated garbled tables, efficient implementations [18] realize preprocessing in
3 rounds, resulting in a total of 9 rounds.

The comparison of the complexities of our protocol confirms our assessment.
FHE is the most communication efficient approach, but the evaluation shows that
its running times are not yet practical for deep circuits. SPDZ’s [15] deployment is
challenged by its communication complexity and constant-round MPC protocols [39]
are complex and require large amounts of memory. Our protocol and composition
technique strikes a balance of communication cost and computational efficiency.



E Supporting Larger Plaintext Spaces

Our presentation above describes arithmetic sub-circuits CArith
i operating over single

bits. That is, each ciphertext encrypts a single bit and homomorphic operations
are over bits. This can be inefficient as parties often want to compute on larger
integers, e.g., 32 Bit integers. Homomorphic encryption schemes anyways operate
over large plaintext spaces, where addition of a large, multiple bit integer is a single
homomorphic operation. A large plaintext space also allows for SIMD techniques.

To improve performance, we can extend conversion from operating over GF(2)
plaintexts to operate over plaintexts of arbitrary fields GF(q) by instituting the
following two modifications. In our conversions, ZK Protocols, and ZK proofs, we
replace using XORs to share a single bit or combine two shares to a bit by additions
and subtractions over GF(q). Random bits serving as a share for a party become
random elements of GF(q). Second, n single bit encryptions ci = Enc(bi) output by
our 2PC to FHE conversion are combined to a single n bit encrypted integer by each
party computing

∑n−1
i=0 2i · ci+1.


	Mixed-Technique Multi-Party Computations Composed of Two-Party Computations

