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Abstract

Flush based cache attacks like Flush+Reload and Flush+Flush
are one of the highly effective cache attacks. In fact, the
Flush+Flush attack is stealthy too. Most of the flush based at-
tacks provide high accuracy in controlled environments where
attacker and victim are the only two processes that are running
on a system by sharing OS pages. However, we observe that
these attacks lose their effectiveness (prone to low accuracy)
on a noisy multi-core system where co-running applications
run along with the attacker and the victim. Two root causes
for the varying accuracy of flush based attacks are: (i) the
dynamic nature of core frequencies that fluctuate depending
on the system load, and (ii) the relative placement of victim
and attacker threads in the processor (same logical core, same
physical core, different physical cores). The variation in the
processor frequencies and placement of threads affect one of
the critical attack steps (the cache latency calibration step as
the latency threshold set to distinguish a cache hit from a miss
becomes inaccurate).

We propose a set of refinements (DABANGG refine-
ments) to make existing flush attacks resilient to frequency
changes and thread placement in the processor, and there-
fore system noise. We propose refinements to pre-attack
and attack steps and make it conscious about the latency
change. We evaluate DABANGG-enabled Flush+Reload and
Flush+Flush attacks (DABANGG+Flush+Reload and DA-
BANGG+Flush+Flush, respectively) against the standard
Flush+Reload and Flush+Flush attacks across four scenar-
ios for eight different combinations of system noise capturing
different levels of compute, memory, and I/O noise intensities:
(i) a side-channel attack based on user input (single-character
and multi-character key-logging), (ii) a side-channel on AES,
(iii) a covert-channel, and a (iv) transient execution attack
in the form the Spectre attack. For all the scenarios, DA-
BANGG+Flush+Reload and DABANGG+Flush+Flush out-
perform the standard Flush+Reload and Flush+Flush attacks
in terms of F1 score and accuracy.

1 Introduction
On-chip caches on the modern processors provide a per-

fect platform to mount side-channel and covert-channel at-
tacks as attackers exploit the timing difference between a
cache hit and a cache miss. A miss in the Last-level Cache
(LLC) requires data to be fetched from the DRAM, provid-
ing a measurable difference in latency compared to a hit in
the LLC. Some of the common cache attacks follow one of
the following protocols: (i) flush based attacks in the form
of Flush+Reload [23] and Flush+Flush [6] and (ii) eviction
based attacks [13], [7], [18]. Compared to eviction based
attacks, flush based attacks provide better accuracy as flush
based attacks demand the notion of OS page sharing between
the attacker and the victim, and the attacker can precisely
flush (with the clflush instruction) and reload a particular
cache line. Like any other cache attacks, flush based cache at-
tacks rely on the calibration of cache latency. The calibration
provides a threshold that can differentiate a cache hit from a
cache miss. As the clflush instruction flushes (invalidates)
the cache line from the entire cache hierarchy, a typical event
that drives the threshold is the LLC miss latency.
The problem: One of the subtle problems with the flush
based attacks is its low effectiveness in the presence of sys-
tem noise in the form of compute noise, memory noise, and
the noise from I/O. To understand the effect of these sys-
tem noises on the effectiveness of flush based attacks, we
perform simple side-channel, covert channel, and transient at-
tacks that use clflush.On average, across eight possible combi-
nations of compute, memory, and I/O noise, a single-character
based key-logging attack using LLC as a side-channel show
that Flush+Reload and Flush+Flush provide F1 scores of
42.8% and 8.1%, respectively. In a covert channel attack,
Flush+Reload and Flush+Flush attacks suffer from maxi-
mum error rates of 45% and 53%, respectively. In contrast,
Flush+Reload and Flush+Flush provide high accuracy and F1
scores in controlled environments where only the attacker and
the victim run concurrently. We discuss more about these at-
tacks in Section 7. One of the primary reasons for this trend is
that with the system noise, existing latency calibration mech-
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Figure 1: Variation in reload cache hit latency with sleep()
system call invoked every 100 thousandth iteration.

anisms fail to provide a precise cache access time threshold.
Prior works [4, 17] try to improve Flush+Reload attacks and
noise in the covert channel attacks. Maurice et al. [17] tackle
noise in covert-channel attacks only, which cannot be trans-
lated to side-channel attacks. Through this paper, we try to
propose a generic approach to handle the system noise.
The details: To understand the subtleties, we perform the
Flush+Reload attack in a highly controlled environment (with
no noise from co-running threads). We perform the following
steps: (i) Flush a cache line, (ii) Wait for the victim’s access
by yielding the processor (sleeping), and (iii) Reload the same
cache line that is flushed in step (i). We perform these three
steps for thousands of attack iterations, where one iteration
involves the above mentioned three steps. Figure 1 shows
the variation in execution latency of a reload cache hit with
the movl instruction. For the rest of the paper, we refer to
it as the reload instruction due to its utility in the reload
step of Flush+Reload attack. We use the rdtsc instruction
to measure the execution time of instructions. We sleep for
one second (using sleep() system call) on every 100 thou-
sandth iteration resulting the black curve. Note that in a real
attack, an attacker will not sleep for one second. Next, we fix
the processor frequency at 4.3 GHz (higher than the base fre-
quency of 3.7 GHz but lower than the maximum Turbo Boost
frequency of 4.5 GHz) and repeat the same experiment. The
latency remains constant, mostly at around 100 cycles. We
perform this extreme experiment to showcase the point which
connects to the ineffectiveness of calibration techniques.

It is clear from Figure 1 that the reload latency increases
drastically just after the sleep() system call. The increase
in latency happens due to a change in processor frequency,
which is triggered by the underlying dynamic voltage and
frequency scaling (DVFS) [22] controller. If an attacker sets
a latency threshold to distinguish a cache hit from a miss
anywhere between 100 to 400 cycles, this results in false pos-
itives and reduce the effectiveness of flush based attacks. This
frequency-oblivious latency threshold leads to low accuracy
in flush based cache attacks. Moreover, even if we fix the
frequency of all the cores, the latency of reload cache hit
is still dependent on where the victim and attacker threads
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Figure 2: Variation in reload cache hit latency with relative
placement of attacker and victim processes. All cores run at
the (fixed) base frequency.

are located in the processor (refer Figure 2). The reload hit
latency when the two threads run on the same physical core
is different from when they run on different physical cores.

This experiment sets the tone for the rest of the paper. In
a noisy system with different applications running with dif-
ferent levels of compute, memory, and I/O load, the DVFS
controller comes into the picture and throttles up and down
the processor frequency accordingly. However, instructions
such as rdtsc that measure the timing are unaffected by the
change in the processor frequencies (DVFS controller). The
consequence is, when the processor runs at a lower frequency,
rdtsc still returns timing information based on a constant fre-
quency that is unaffected by the DVFS controller, generating
higher latency numbers even in case of a cache hit. This is
further complicated by the relative placement of victim and
attacker threads on the processor.
Our goal is to improve the effectiveness of flush based attacks
and make it resilient to the effect of frequency, and thread
placement changes so that flush based attacks will be effective
even in the presence of extreme system noise.
Our approach: We propose a few refinements that make
sure the cache access latency threshold remains consistent
and resilient to system noise by improving the latency calibra-
tion technique and the attacker’s waiting (sleeping) strategy.
We name our refinements as DABANGG 1. Overall, our key
contributions are as follows:

• We motivate for noise resilient flush attacks (Section 4),
identify and analyze the major shortcomings of existing
flush based attacks (Section 5).

• We propose DABANGG refinements that makes the
flush attacks resilient to processor frequency, thread
placement, and therefore, system noise (Section 6).

• We evaluate flush based attacks in the presence of dif-
ferent levels of compute, memory, and I/O system noise
(Section 7).

1DABANGG is a Hindi word that means "fearless". We envision DAB-
NAGG refinements will make a flush based attacker fearless of the system
noise.
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2 Background
2.1 Cross-core Flush Based Cache Attacks

As per the Intel manual [10], a clflush instruction does the
following: it "Invalidates from every level of the cache hierar-
chy in the cache coherence domain the cache line that con-
tains the linear address specified with the memory operand.
If that cache line contains modified data at any level of the
cache hierarchy, that data is written back to memory. The
source operand is a byte memory location. The clflush
instruction can be used at all privilege levels and is subject
to all permission checking and faults associated with a byte
load (and besides, a clflush instruction is allowed to flush
a linear address in an execute-only segment".

Cross-core flush based attacks such as Flush+Reload and
Flush+Flush use clflush instruction to invalidate cache
block(s) from all levels of caches. The clflush instruction
"Invalidates from every level of the cache hierarchy in the
cache coherence domain, the cache line that contains the lin-
ear address specified with the memory operand. If that cache
line contains modified data at any level of the cache hierarchy,
that data is written back to memory." [10]. In a cross-core
flush based attack, the attacker core flushes (using clflush
instruction) a cache line address(es) from all levels of caches
including remote cores’ caches and the shared LLC. Later the
attacker core reloads (Flush+Reload) or flushes (Flush+Flush)
the same line address(es).
The three phases: Flush+Reload and Flush+Flush work in
three phases: (i) flush phase, where the attacker core flushes
(using clflush instruction) the cache line address(es) of inter-
ests. (ii) Wait phase, where the attacker waits for the victim to
access the flushed address as the flushed cache line address is
not present in the entire cache hierarchy. If the victim accesses
the flushed address, then it loads the address into the shared
LLC. (iii) Reload (Flush in case of Flush+Flush) phase, where
the attacker reloads or flushes the flushed cache line address
and measures the latency. If the victim accesses the cache
line between phase I and III, then in case of Flush+Reload
attack, the attacker core gets an LLC hit (LLC access la-
tency), else an LLC miss (DRAM access latency). In case of
Flush+Flush attack, the attacker core gets a clflush hit if the
victim accesses the cache line between phase I and III, else a
clflush miss. Since no memory accesses are performed in
the case of Flush+Flush, Flush+Flush attack is stealthier than
Flush+Reload attack.
Latency threshold and sleep time: The crux of flush based
attacks lies in the difference in execution latency of clflush
and reload instructions depending on whether they get a
cache hit or a miss for the concerned address(es), and identify-
ing the latency difference precisely. Additionally, the attacker
waits (sleeps) in between phase I and phase III to provide ade-
quate time for the victim to access the cache. Sleep time plays
an important role in the overall effectiveness of flush based
attacks. Usually, the three phases are executed step-by-step

in an infinite loop, which we shall refer to as the attack loop.
The attack may be synchronous or asynchronous, wherein the
victim program runs synchronously or asynchronously with
the spy program.

2.2 Dynamic Voltage & Frequency Scaling
Frequency and voltage are the two important run-time pa-
rameters managed through DVFS, as a function of perceived
system usage. Specialized hardware and software components
work cooperatively to realize this scheme.
Hardware support: A majority of modern processors are
capable of operating in various clock frequency and volt-
age combinations referred to as the Operating Performance
Points (OPPs) or Performance states (P-states) in Advanced
Configuration and Power Interface (ACPI) terminology [19].
Conventionally, frequency is the variable which is actively
manipulated by the software component. Therefore, perfor-
mance scaling is sometimes referred to as frequency scaling.
The P-states can be managed through kernel-level software,
in which case power governors and scaling drivers are cen-
tral to provide optimum efficiency. They can also be man-
aged directly through a hardware-level subsystem, termed
Hardware-managed P-states (HWP). Intel uses the Enhanced
SpeedStep technology [2], and AMD uses Cool’n’Quiet and
PowerNow! [1] technologies for HWP. In this case, the soft-
ware driver usually relies on the processor to select P-states,
although the driver can still provide hints to the hardware. The
exact nature of these hints depends on the scaling algorithm
(power governor). Another technology of interest is Intel’s
Turbo Boost [9] (and analogously, AMD’s Turbo Core [3])
technology, which allows to temporarily boost the processor’s
frequency to values above the base frequency.

Depending on the processor model, Intel processor pro-
vides core-level granularity of frequency-scaling termed as
the Per-Core P-State (PCPS), which independently optimizes
frequency for each physical core [8]. This feature is available
in higher-end models, one of which is our test processor, the
Xeon W-2145 Skylake CPU. Another model, which is familiar
in the consumer-level market (Intel i7 6700 Skylake) CPU,
does not have PCPS support and all the cores in this processor
change their frequencies simultaneously.
Software support: The software stack component responsi-
ble for coordinating frequency scaling is the CPUFreq subsys-
tem in Linux, which is accessible by a privileged user via the
/sys/devices/system/cpu/ policy interface. In a compute-
intensive workload without a lot of I/O requirements, the user
might want to constrain the processor to higher (and possibly,
the highest) P-states only. Servers, on the other hand, may
benefit from not running at a high frequency for sustained per-
formance [5] without exerting excess strain on the hardware.
Fine-tuning of this interface is possible through the sysfs
interface objects. Modern Intel processors come with pstate
drivers providing fine granularity of frequency scaling. It
works at a logical CPU level, that is, a system with eight phys-
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ical cores with hyper-threading enabled (two logical cores per
one physical core) has 16 CPUFreq policy objects.

2.3 Timekeeping mechanism
Most of the x86 based processors use the
IA32_TIME_STAMP_COUNTER Model-Specific Register
(MSR) to provide a timekeeping mechanism. Different
processor families increment the counter differently. There
are two modes of incrementing TSC: (i) to increment at
the same rate as the processor clock and (ii) to increment
at a rate independent of the processor clock. Modern Intel
processors use the latter mode. The constant TSC behavior is
unaffected even if the processor core changes its frequency.
Processors with x86 ISA provide several instructions
like rdtsc, rdtscp, and cpuid, that can read TSC value
accurately to provide a timestamp. The rdtsc instruction is
not a serializing instruction. It does not necessarily wait until
all previous instructions have been executed before reading
the counter. Similarly, subsequent instructions may begin
execution before the read operation is performed. rdtsc
is also the most commonly used instruction to measure
execution latency. However, for high precision, the attacker
uses mfence followed by lfence for proper serialization and
in-order execution. The rdtscp instruction reads the TSC
value as well as the contents of the IA32_TSC_AUX register,
which contains useful information such as the processor ID. It
measures the execution latency in a similar way to the rdtsc
instruction. The cpuid instruction is extremely versatile
and can be used to return the TSC value. It is a serializing
instruction. However, its implementation varies in virtual
environments, where it may be emulated in software, and
it also takes more time to commit, making it an unpopular
choice due to portability issues [23].
3 Experimental Setup

Table 1 shows the system configuration that we use to
conduct our experiments and mount attacks. Though we
use an Intel machine, we perform our experiments and find
our proposal is equally effective on AMD based x86 ma-
chines like AMD A6-9220 RADEON R4 and macOS X (Ver-
sion: 10.15.4). We use the stress tool to generate compute-
intensive and IO-intensive noise, and SPEC 2017 mcf [16]
benchmark to generate memory-intensive noise. mcf is a fa-
mous benchmark used in the computer architecture commu-
nity for memory systems research, with an LLC misses per
kilo instructions (MPKI) of over 100. Table 2 shows eight
possible combinations of noise levels (L-L-L to H-H-H) com-
prising compute, memory, and IO, where L refers to low noise
level, and H refers to high noise level.

At the high noise level (H-H-H), eight CPU-intensive, eight
IO-intensive and eight memory-intensive threads are running
concurrently, pushing the core runtime-usage to 100% on
all cores (observed using htop). Figure 3 shows core-wise
run-time usage for 8 noise levels. High level of compute-
intensive noise results in high core frequencies on which

Ubuntu 18.04.1 LTS, 8 Hyper-Threaded Intel Xeon W-2145 Skylake cores
Base (minimum) frequency: 3.7 (1.2) GHz and Turbo Frequency: Up to 4.5 GHz

L1-D and L1-I: 32KB, 8 way, L2: 1 MB, 16-way
Shared L3: 11MB, 11-way, DRAM: 16 GB

Table 1: System configuration for our experiments.

Noise Level stress mcf stress
C-M-I #CPU hogs #Mem hogs #IO hogs
L-L-L 0 0 0
L-L-H 0 0 8
L-H-L 0 8 0
L-H-H 0 8 8
H-L-L 8 0 0
H-L-H 8 0 8
H-H-L 8 8 0
H-H-H 8 8 8

Table 2: Eight combinations of system noise. C-M-I: compute-
memory-io. CPU/Mem/IO hogs of eight corresponds to eight
threads running compute/memory/IO intensive code.

the relevant code executes. High level of memory-intensive
noise causes a dip in the core frequencies. In contrast, a high
level of IO-intensive noise does not result in sustained high
core frequencies, because IO-intensive applications sleep and
wake up on interrupts. Power governors take clues from IO-
intensive behavior to not increase frequency due to repeated
system-calls which subsequently yield the CPU. Repeatedly
yielding the CPU also reduces the CPU utilization, since the
application spends less time on the CPU and more time wait-
ing for an interrupt. We perform the following attacks using
Flush+Reload and Flush+Flush: (i) keylogging, (ii) AES se-
cret key extraction, (iii) covert channel, and (iv) Spectre [12].
We use metrics like True Positive Rate (TPR), False Posi-
tive Rate (FPR), accuracy, and the F1 score to evaluate the
effectiveness of various flush based attacks.

4 Motivation
4.1 The Curious Case of Accuracy
The flush based attacks rely on the execution timing
difference between a cache hit and a miss. Ideally, setting
appropriate thresholds after calibration should be enough
to distinguish a hit from a miss. Experiments, however, do
not precisely agree. To emphasize this point, we perform a
single character keylogging experiment where a synchronous
spy process monitors a cache line accessed by the victim.
In contrast, the victim processes a character (refer Section
7.1 for details). Even at the L-L-L noise level, the standard
Flush+Flush attack provides poor TPR of 4.4%. The
TPR does not improve with an increase in noise levels.
Flush+Reload attack performs appreciably with high TPR of
more than 94% at all noise levels.

One might be tempted to write off the Flush+Flush
attack as inferior to the Flush+Reload attack, but that is
not always the case. In our asynchronous AES secret key
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Figure 3: Logical core utilization at different noise levels.

extraction experiment (refer Section 7.2 for details), both
Flush+Flush and Flush+Reload attacks are capable of
providing more than 90% average accuracy across noise
levels. However, the number of encryptions (analogous to
attack loop iterations) taken to achieve this is quite different
for each attack. Clearly, given the right circumstances,
Flush+Flush attack can deliver high accuracy even at high
noise levels. Finally, the flush based attacks exhibit high
variation in accuracy. In our Spectre attack experiment
(refer Section 7.4 for details), the accuracy of Flush+Flush
attack ranges from 25% to 91%, with an average accuracy
of just 41%. Clearly, such an attack is not reliable. These
considerations lead us to ask the following questions:
Question #1: Why is there a drastic difference in TPR in
two representative attacks which rely on the cache-timing
difference of ISA-level instructions?
Question #2: If the Flush+Flush attack is not inherently
inferior, what are the runtime changes that affect its accu-
racy?

Question #3: What is the root cause for varying accuracy,
and can we do better than the standard attacks without
using privileged operations?

We now uncover the root cause, which guides us to the
shortcomings of the existing flush based attacks. We aim to
produce uniformly high accuracy irrespective of system noise
levels and without using any privileged operations.

4.2 The Root Cause
Flush+Flush attack: Figure 4(a) shows the latency of
clflush instruction (in a system with L-L-L noise level)
as a function attack-loop iterations. The frequency steps up
slowly as the attacker code iterates through the attack loop.
The processor does not step up to the maximum frequency
(enabling the lowest latency in execution) if the code and data
footprint of the program is minimal. The stepped increase
in frequency gives rise to the distinct steps in the latency vs.
iterations plot. An important point to be noted is that a single
threshold value is not effective in distinguishing a clflush
cache hit from a miss. For example, let us take 340 cycles as
our threshold. Every clflush miss before 20,000 iterations

are not identified correctly, driving the FPR up, thereby re-
ducing the accuracy of the attack. It is an effective threshold
after the cores have stabilized to a higher frequency, which is
achieved after 75,000 iterations, taking up 335 million cycles
(where one iteration is close to 4,500 cycles). 335 million
cycles take about 84 milliseconds, which is comparable to the
execution time of various cryptographic encryption suites.
Flush+Reload attack: Figure 4(b) shows the variation of
reload latency over attack-loop iterations. If the threshold to
distinguish a reload cache hit from a miss is set at 300 cycles,
all of the reload cache hits after 5,000 iterations are accu-
rately detected. The reload cache hit latency stagnates to 100
cycles within 15,000 iterations, while clflush takes close
to 75,000 iterations to stagnate. As a result, Flush+Reload
attack is more resilient to frequency changes.

In addition to frequency changes, both the attacks are
equally susceptible to different placement of victim and at-
tacker threads on the processor for each given frequency.

5 Analysis & Insights
5.1 Shortcomings of State-of-the-Art attacks

Figure 4(c) illustrates the effect of different core frequencies
on the clflush cache hit latency. If per-core P-states (Intel
PCPS) is supported, the attacker and victim cores usually run
at high frequencies while other cores run at lower frequencies.
The cores running compute-intensive applications increase
their frequency, while the idling cores do not save power,
resulting in core-wise different frequencies. The power
governors decide the core-wise frequency. If all cores run at a
low frequency, then the measured clflush cache hit latency
is high.

If all frequencies of all cores step up or step down
simultaneously, all cores run at a particular frequency
depending on overall CPU utilization. Moreover, the OS
scheduling policy may decide to change the logical CPU
for the victim and attacker programs. Consequently, the
corresponding frequencies change, depending on run-time
usage and efficiency factors. This poses another fundamental
issue, as we show that clflush takes different execution
time even at a fixed frequency depending on whether the
victim and attacker program run in the same physical core or
not (refer Section 5.3 for details).

Moreover, the standard flush-based attacks simply
yield the processor in phase II, using the sched_yield()
function, which causes the attacker thread to relinquish
the CPU, allowing a new thread to run. The attacks
cooperatively yield as much as 30 times in-between
two probes [6], which impedes the ability of the core
to run at higher frequencies, making a reliable latency
measurement difficult. We find the following shortcomings.
Shortcoming #1: Different cores may be at different
frequencies at a given point of time, severely affecting
clflush and reload cache hit latency.
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Figure 4: (a) and (b) show the variation of clflush and reload latency, respectively, with default power scaling settings. (c)
shows variation of clflush hit latency with various relative core frequencies. (d) shows variation of clflush miss latency at
different processor frequencies where all cores run at the mentioned frequency.

Shortcoming #2: The attacker and victim threads may be
part of the same process, or reside in same logical core,
same physical core, or different physical cores. This has a
measurable effect on clflush latency.

Shortcoming #3: The attacker cooperatively yields the
CPU in-between probes, which can adversely affect the
core frequency, ultimately degrading the attack accuracy.

5.2 Frequency Based Variation of clflush
In this section, we capture the variation of clflush latency
as a function of processor frequency. We can capture the fre-
quency directly by using the /proc/cpuinfo utility in Linux.
However, this requires making a system call on every attack
loop iteration. We, therefore, use an economical substitute.
We plot the clflush latency at every attack loop iteration
(same as Figure 4(a)).

The lowest available frequency on our processor under nor-
mal operating conditions is 1.2 GHz across all cores. The
highest stable frequency is 4.3 GHz across all cores. Note
that the maximum Turbo Boost frequency of 4.5 GHz is avail-
able for a short period, and the core then stabilizes at 4.3
GHz under sustained load. We pin the attacker to core #0 and
the victim to core #1. In the Simultaneous Multi-Threading
(SMT) processor that we use, pairs of logical cores #0 and #8,

#1 and #9, and so on, reside in the same physical core. We pin
the attacker and victim to different physical cores since this is
usually how the Linux scheduler schedules the processes for
maximum performance [15]. At 1.2 GHz, a clflush cache
miss has a latency of 1,500 cycles compared to 575 cycles
when all the cores run at 4.5 GHz (refer Figure 4(d)), a signif-
icant variation.
Explanation: A processor running at low frequency takes
more time to execute the same instruction than a processor
running at high frequency. Our processor increments the Time
Stamp Counter (TSC) at a rate independent of the processor
clock (refer Section 2.3 for details). Therefore, assuming the
TSC is incremented every t nanoseconds (ns), the latency of
clflush at 1.2 GHz is 1,500t ns and that at 4.5 GHz is 575t
ns. The latency decreases by 1500×t

575×t ≈ 2.6×. However, the
frequency of the core increases by 4.5GHz

1.2GHz ≈ 3.7×. Clearly,
there is a non-linearity between the increase in frequency
and decrease in latency. The non-linearity can be attributed
to the multi-cycle path that is not exact divisible by newer
clock period. We suspect that clflush being a complex in-
struction, cannot execute with lower latency as it encounters a
multi-cycle path at higher frequencies. This multi-cycle path
represents a lower bound to the latency of clflush instruc-
tions, and is unaffected by a further increase in frequency.
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Configuration Victim Attacker’s Reload
1 No victim access attacker misses during reload
2 victim runs on C0 attacker gets a reload hit
3 victim runs on C1 attacker gets a reload hit
4 victim runs on C0 and C1 attacker gets a reload hit
5 victim runs on C1, C2 and C3 attacker gets a relaod hit
6 victim runs on C0, C1, C2 C3 attacker gets a reload hit

Table 3: Different combinations of attacker and victim on a
four-core SMT system. The attacker runs on core-0 (C0).

Higher frequencies significantly decrease execution latency.
The execution latency depends on both the critical path and
frequency of the core. The latency varies non-linearly with
frequency. The frequency-specific thresholds can be arranged
in an array, indexed by a function of iteration number, to
access the correct threshold for the given frequency. It is a
relatively simple solution where the non-linearity is hidden
behind heuristics-based indexing of an array of thresholds.

5.3 Core-based Variation of clflush La-
tency

It is crucial to understand the intricacies associated with the
relative positioning of the victim and attacker processes on a
physical processor. Figure 5 shows the variation in clflush
latency at different relative frequencies, marked by their con-
figurations on the horizontal axis. Table 3 shows various
configurations for a four-core SMT system. In all the configu-
rations, the attacker runs on core #0. Based on Figure 5, we
can see at 1.2 GHz, If an attacker and the victim reside on the
same physical core (configuration 2), it takes 843 cycles on
average for clflush instruction to commit. This is consider-
ably lower than when victim and attacker reside on different
physical cores (configuration 3 to 6), in which case it takes
936 cycles on average. Certainly, the scheduling of victim
and attacker processes play an important role in determining
the timing measurement.

Note that if the PCPS support is present on a system with
low noise levels, the scheduler tries to place attacker and
victim processes in different physical cores and steps up the
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Figure 6: Execution timing of 30 sched_yield() function
calls at various frequencies, averaged over 100 thousand data
points at each frequency.

frequency of these cores to provide maximum performance.
Therefore, the most relevant point for our study is the curve
of 4.3 GHz in Figure 5, where the victim and attacker cores
run at 4.3 GHz on different physical cores, while the rest run
at a common lower frequency which is fixed at 1.2 GHz.
Explanation: The number of cycles taken by an instruction
to commit, increases when the cached memory address is not
present in the attacker core and is rather present in another
physical core. Note that clflush invalidates the cache line
in the entire cache coherence domain (which includes cache
lines present in remote core’s caches too). If the attacker core
gets a hit in its local caches, it invalidates the cache line from
its L1/L2 without waiting for the other cores in the cache
coherence domain to signal their respective hit or miss, and
the instruction is committed [20]. However, in case of a miss
in the calling core, the cache line is first searched in L1, then
L2, and then the instruction waits for the invalidation signal
(or lack thereof in case of a miss) from other cores for the
particular cache line. The increase in latency due to explicit
wait for other cores to register their invalidation signals is the
reason for the increase in clflush latency.

5.4 Cooperative Yielding of Processor
We now focus on phase II of the attack loop, where the at-
tacker yields the CPU and waits for the victim’s access. Figure
6 shows the average cycles taken to yield the CPU 30 times,
which is employed in standard flush attacks. The cycles taken
go down with the increase in the processor frequency. We
explain the trend using a non-linear approximation (quadratic
in the figure). We refer to yielding using sched_yield()
function call as cooperative yielding because the attacker vol-
untarily relinquishes the CPU. The yield based waiting mech-
anism between two probes is subject to scaling governor as
well. The performance power governor is aggressive in step-
ping up the frequency, while the powersave governor is more
reserved. The waiting time-gap in phase II is deterministic
for a given frequency. The function call to sched_yield()
initiates a system call, which invokes the scaling driver to
lower the processor frequency. The inadvertent behavior of
sched_yield() further complicates the attack loop, since the
core frequency can be different before the next iteration of the
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ALGORITHM 1: Compute_Heavy_Code2

1 Input: wait_gap
2 Initialization: (a, b) = (5, 6)
3 while (wait_gap) do // compute-intensive code
4 wait_gap -= 1
5 (a, b) = ( a×b

4×a+1 , a
b+2.5 )

6 if (wait_gap%7 = 0) then
7 (a, b) = (0.11×b, 23×a)
8 else if (wait_gap%20 = 0 ) then
9 (a, b) = (b%3, a%14)

10 else
11 (a, b) = (2×b, 3.6×a)

attack loop. Frequency changes in the hardware are not spon-
taneous. The apparent core frequency visible through sysfs
interface is an approximation of current frequency, made by
the Linux Kernel given the last known frequency reading
and the hint for the next frequency value. The frequency can
only be stepped up (or down) in increments of 100 MHz (in
our system configuration), the apparent reading in between
is merely an average calculated by the software. If the Linux
scheduler is called proactively by the attacker, it may hint the
power governor to lower the frequency, while also loading the
next program’s PCB onto the processor. The actual stepping
down of the frequency is, as mentioned, non-spontaneous and
can affect the frequency at which the next program operates.
It is pragmatic to replace the sched_yield() based coop-
erative approach with a more aggressive compute-intensive
approach. We run compute intensive operations in a busy-wait
type loop, which steps up the processor frequency. It allows
the execution latency of instructions to stagnate quickly. It
also provides control over the waiting time-gaps for phase
II of the attack loop. Next, we showcase that we can uti-
lize a compute-intensive code segment as a replacement of
sched_yield(), taking care not to make many memory ref-
erences. Algorithm 1 shows an example code segment. The
wait_gap deals with the number of attack loop iterations for
the compute-intensive code segment. This code segment takes
approximately 20,000 cycles at 1.2 GHz, and around 5,000
cycles at 3.4 GHz for wait_gap = 200. Crucially, the program
execution time is known for a particular frequency. This pro-
vides finer granularity for the waiting time-gap control. Usage
of compute-heavy code, therefore, can resolve two problems:
(i) the attack loop is unambiguously reflected to power gover-
nors as a compute-intensive program, which helps in ramping
up the core frequency quickly. (ii) Once the core reaches a
stable frequency, the code segment provides excellent control
over the waiting period as a function of wait_gap.

It is important to make sure our waiting time-gap remains
approximately constant. If an address is accessed multiple
times by the victim in a gap period, there is no way to ascertain
one access from the other. On the other hand, if the attacker

2The numbers in Algorithm 1 do not serve any special purpose. The aim
is to use the CPU’s compute units.

flushes the addresses in rapid succession, a true cache-hit may
be missed due to overlap with phase-I of the attack. A suitable
gap period is therefore, empirically derived. Existing litera-
ture [4] suggests that a gap period of 5,000 to 10,000 cycles is
sufficient to detect individual cache accesses in many impor-
tant flush based attacks. We can apply the mentioned analysis
to the phase-II of synchronous attacks. In the case of asyn-
chronous attacks, we don’t need to wait a lot between probes.
In that case, however, to eliminate the frequency-induced vari-
ation in latency, we run the compute-intensive loop for a few
million cycles to stabilize the core at high frequency. We call
the Compute_Heavy_Code() function once before going into
the attack loop with wait_gap≈ 105. Note that this approach
will not work for synchronous attacks since the victim can
start the relevant execution at any moment. In a nutshell, the
attack loop must be aware of the change in thresholds caused
by variable frequency of the cores and relative core allocation
of victim and attacker threads. We observe that the thresholds
can be captured by the calibration tools in an array indexed
by the iteration number of the attack loop. The waiting period
(phase-II) requires a compute intensive approach. In the fol-
lowing Section, we outline these refinements and describe the
modified attack loop.
6 DABANGG Attack Refinements

Taking into account the insights uncovered in previous sec-
tions, we outline three refinements over standard flush attacks.
We call these refinements as the DABANGG refinements.
Refinement #1: To capture the stepped frequency distribu-
tion of the processor while distinguishing a cache hit from
a miss, we use comprehensive calibration tools.

Refinement #2: To identify the victim’s memory access
pattern in the attack loop, we use victim-specific parame-
ters.
Refinement #3: To provide a better grip over waiting pe-
riod of attack loop, we use compute-intensive function
instead of cooperatively yielding the processor.

These refinements make the attacker frequency-aware and
victim-aware. Note that even the standard flush based
attacked are aware victim programs as the attacker flushes
the critical memory addresses. With our refinements, we
make the attacker aware of victim’s behavior that will help in
increasing the effectiveness of the attack.

6.1 Pre-Attack Steps
In the pre-attack step, the attacker calibrates for cache latency
with DABANGG refinements to become frequency-aware.
The attacker also profiles the victim application to identify
the access pattern for the target memory address. Table 4
provides the details of all the parameters that DABANGG
attack loop uses. We refer Table 4 throughout this section for
different parameters of interest. We now explain the pre-attack
steps briefly for the DABANGG+Flush+Reload attack.
Calibration: We derive attacker-specific parameters from the
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Parameters Name Description
Attacker-Specific T_array An array with each entry stores a tuple of lower and upper latency thresholds <TL,TH>.

regular_gap Regular waiting period of attacker in Phase II.
step_width Average width of a step in terms of number of attack loop iterations in latency vs #iterations plot.

Victim-Specific acc_interval Average number of attack loop iterations between two victim accesses without considering
burst-mode accesses in between.

burst_seq In case of burst-mode access sequence by victim, number of victim accesses to target memory
address in a single burst.

burst_wait Waiting time gap in terms of attack loop iterations before discarding an incomplete burst-mode
access sequence as a false positive.

burst_gap Reduced waiting time gap to monitor burst-mode access sequence.
Runtime Variables
in Algorithm 2 iter_num A counter that counts the number of attack loop iterations.

<TL,TH> Pair of lower (TL) and upper (TH) latency threshold to detect cache hit.
reload_latency Execution latency of reload instruction in processor cycles.

last_hit
Number of attack loop iterations since last true cache hit. A true cache hit is recorded by attacker
when victim access interval (acc_interval) and victim burst-mode access sequence (burst_seq)
criteria are satisfied, in addition to reload_latency ∈ [TL,TH].

potential_hit Number of attack loop iterations since last potential cache hit. A potential hit may be either a
false positive or a part of burst-mode access sequence by victim application.

seq_id Sequence identifier, stores the number of potential cache hits which, if it forms a burst-mode access
sequence, implies a true cache hit.

Table 4: Specifications of parameters and runtime variables used by DABANGG attack loop (refer Algorithm 2).
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Figure 7: Variation of reload hit latency with attack iterations.

latency vs iterations behavior. We use Figure 7 for our refer-
ence (a fine-grained version of Figure 4(b)). The reload hit
latency represents a stepped distribution. Multiple pairs of
<TL,TH> are stored as tuples in T_array. T_array captures
the frequency distribution in the attack loop. From Figure 7,
four distinct steps are visible. The width of each step (that is,
step_width) is 4000 attack loop iterations. For iter_num
∈ [0,4000], we use TL = 375 and TH = 400. Therefore,
T_array[0] = <375,400>. Similarly, we add three more tu-
ples to T_array. These parameters are independent of victim
applications. regular_gap parameter depends on the type
of attack mounted. regular_gap = 200 provides a waiting
period of 5,000 to 10,000 cycles (refer to Section 5.4 for
details).

Profiling: We derive victim-specific parameters by observ-
ing the memory access pattern for target address of the vic-
tim application (for example, the acc_interval parameter).
If the victim application accesses the critical memory ad-
dress once in one million cycles on average, and an attack-
loop iteration takes 20,000 cycles at low processor frequency,
then acc_interval = 1,000,000

20,000 = 50. A burst-mode access

sequence occurs when the target address is inside a loop and
gets accessed several times within a small interval. Consider
that the victim accesses the address 50 times within 40,000
cycles, for example. Then, burst_seq ≤ 50 and waiting pe-
riod when a burst is detected should be ≤ 40,000

50 = 800 cycles.
This implies a burst_gap ≈ 20, which increases attack gran-
ularity to identify the burst-access sequence. In practice, to
reduce false negatives, we tolerate some missed cache-hits to
determine the sequence, burst_seq = 50

x and burst_wait
= x where x is relatively small number compared to 50. For
example, burst_seq = 25 for burst_wait = 2.

6.2 Attack Loop
A self-contained Algorithm 2 explains the DABANGG refine-
ments. Line 1 initializes the runtime variables of interest, refer
Table 4 for details. Line 3 increments the iteration number.
Line 4 updates <TL, TH> through a simple indexing mech-
anism. iter_num divided by step_width linearly indexes
T_array to provide a single pair of thresholds per step. Line
5 starts the attack and flushes the shared memory address.
Lines 6 to 12 represent the waiting phase of the attack. Ap-
proximately once every 400 iterations, the attack loop verifies
the current value of <TL,TH>. The Verify-Threshold()
function, given in Algorithm 3, checks if the current tuple of
thresholds, <TL,TH> accurately detect a cache hit at the cur-
rent frequency. Lines 2 and 3 of Algorithm 3 measure the accu-
rate access latency for target memory address. If ∆ ∈[TL,TH],
the function returns without making any changes. However,
if ∆ /∈ [TL,TH] (Line 4), then the tuple is updated. This is
done by looking up T_array such that ∆ ∈[TLnew,THnew]
and T_array[i] = <TLnew,THnew> (Line 5). Lines 6 and 7
update the tuple and iter_num, respectively. After verifying
thresholds, the control flow returns to Algorithm 2, Line 8.
sched_yield() function yields the processor cooperatively
(once in a while based on the condition in Line 6) to pre-
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ALGORITHM 2: DABANGG+FLUSH+RELOAD
1 Initialization: last_hit, potential_hit, iter_num, seq_id = 0
2 while true do
3 iter_num += 1
4 <TL, TH> = T_array[ iter_num

step_width ] // update <TL,TH>

5 clflush(addr) // PHASE-I: Flush
// PHASE-II: Wait

6 if (!rand()%400) then // branch taken 0.25% of time
7 Verify_Threshold(iter_num, addr) // Algorithm 3
8 sched_yield() // cooperatively yield the CPU

9 else if (seq_id > 0) then// burst sequence detected
10 Compute_Heavy_Code(burst_gap) // Algorithm 1
11 else
12 Compute_Heavy_Code(regular_gap) // Algorithm 1

// PHASE-III: Reload
13 reload_latency = Measure_Reload_Latency(addr)
14 if (reload_latency ∈ [TL,TH]) and ( last_hit > acc_interval)

and (seq_id > burst_seq)) then // true hit
15 last_hit, seq_id = 0 // reset variables
16 print "low reload latency, it is a cache hit!"
17 else if (reload_latency ∈ [TL, TH]) then// potential hit
18 potential_hit = last_hit
19 seq_id += 1 // increment sequence identifier

20 else
21 last_hit += 1 // +1 iteration since last hit
22 print "high reload latency, it is a cache miss!"
23 if ((last_hit - potential_hit) > burst_wait) then
24 seq_id = 0 // discard seq as false positive

ALGORITHM 3: Verify_Threshold
1 Input: iter_num, addr
2 reload(addr)
3 ∆ = Measure_Reload_Latency(addr)
4 if (∆ /∈ [TL,TH]) then

// T_array[i].TL < ∆ < T_array[i].TH
5 ∃<TLnew,THnew> = T_array[i] : ∆ ∈[TLnew,THnew]
6 <TL,TH> = <TLnew,THnew>
7 iter_num = step_width×i
8 end

vent detection of an attack loop based on continuous usage of
computationally heavy code.

Most of the time, however, the attacker runs a compute-
heavy code (Lines 10 and 12). The wait_gap for Algorithm
1 is appropriately chosen. Line 9 checks if an active burst
sequence is present (that is, seq_id > 0), and uses burst_gap
to reduce the waiting period of the attack loop.

We now move to the third phase of the attack. Line 14
performs the reload and calculates its execution latency.
Line 15 checks for a true cache hit. Here, in addition to
reload_latency ∈ [TL,TH], last_hit > acc_interval,
checks if access interval since the last true cache hit is ade-
quate and seq_id > burst_seq checks if the burst sequence
pattern is identified. In this case, the variables are reset in Line
16 and a true cache hit is registered in Line 17. Line 18 deals
with a potential cache-hit, wherein Line 20 increments the
sequence identifier and potential_hit variable is updated.

Line 22 increments the last_hit variable if

Attack Parameter Value
D+F+F T_array {<650,675>,<530,560>,<440,460>, <340,370>,<230,255>}

step_width 4000
D+F+R T_array {<375,400>,<235,255>,<150,165>, <95,105>}

step_width 4000

Table 5: Attacker-specific parameters

reload_latency /∈ [TL,TH]. Line 23 records a cache-miss
for the current iteration of the loop. However, instead of
resetting the sequence identifier (that is, seq_id) right away,
awaiting window of burst_wait attack loop iterations exists
(in Line 24). The waiting window allows us to account for
cache-hits missed by the attack loop. A cache-hit missed
by the attacker occurs due to overlapping in phase I (Flush
phase) of the attack loop with access to monitored cache
line by the victim, wherein the attack loop flushes the line
right after the victim accesses it. Line 25 resets seq_id to
zero if the waiting window is exceeded. This concludes an
attack loop iteration, and the control switches back to Line 3
of the attack. Flush+Flush attack can similarly be extended
to become DABANGG+Flush+Flush. Note that in all the
refinements, we do not use or demand privileged operations.

In the following section, we evaluate the DABANGG re-
fined attacks in many real-world scenarios and compare the
TPR, FPR, Accuracy, and F1 Score with standard Flush+Flush
and Flush+Reload attacks.
7 Evaluation of Flush based Attacks

We evaluate DABANGG refined flush based attacks in four
experiments: (i) side-channel attack based on user input (key-
logging), (ii) side-channel attacks on T-Tables based AES, (iii)
covert-channel attack, and (iv) Spectre-based attack. For all
experiments, we use the attacker-specific parameters specified
in Table 5. For the rest of the paper, all the Tables use F+F,
F+R, D+F+R, and D+F+F for Flush+Flush, Flush+Reload,
DABANGG+Flush+Reload, DABANGG+Flush+Flush, re-
spectively. The parameter regular_gap depends on the type
of attack (synchronous/ asynchronous) and is therefore speci-
fied separately for each attack.

7.1 Side-channel Attack based on Keylogging
The objective of this attack is to infer specific or multiple
characters (keys) processed by the victim program. We use
an array of 1024 characters. The distribution of characters
is uniform and random. The victim program takes as input
a character from a set of accepted characters, and for each
character, calls a unique function that runs a loop a few thou-
sand times. The victim program processes multiple characters
every second, with a waiting period between two characters
to emulate the human typing speed.

Threat model: As all the flush based attacks demand page
sharing between the victim and the attacker, the attacker maps
the victim program’s binary (using mmap() function) and dis-
assembles the victim program’s binary through gdb tool to
find out the addresses of interest. The attacker then monitors
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Lookup Type Parameter D+F+F D+F+R
Single & Multiple
Characters acc_interval 1000 1000

burst_seq 15 20
burst_wait 3 2
burst_gap 40 30

Single Character regular_gap 400 200
Multiple Characters 100 50

Table 6: Parameters for keylogging attack.

the character(s) and infers if the specified character (or charac-
ters, each having unique addresses) is processed by the victim.
The attacker tries Flush+Reload and Flush+Flush techniques
to infer the keys.

We profile the victim to determine the average waiting
period between two accesses and the number of accesses to
the target address in burst-mode inside the loop. We derive
the parameters specified in Table 6. We calculate the victim
specific parameters are calculated as per the pre-attack steps
(section 6.1).

The regular_gap parameter is reduced in multiple char-
acter lookup to monitor four target addresses iteratively. In
general, if there are n addresses to be monitored, we set
regular_gapmultiple_chars = regular_gapsingle_char

n . The wait-
ing period for a particular address, therefore, remains constant.

7.1.1 Single character lookup

We compare the DABANGG-enabled attacks (DA-
BANGG+Flush+Flush and DABANGG+Flush+Reload) with
the standard Flush+Flush and Flush+Reload attacks. The
power-scaling settings are set to default state. We evaluate
our attack as follows. The attacker outputs the timestamp,
T , of the specific character processed by the victim. If T
lies within N cycles of the timestamp obtained from the
victim program, Treal , we conclude it to be a True Positive.
The N cycle window takes into account the mechanism in
DABANGG-enabled attacks, which makes it necessary for
the attacker to take multiple observations to avoid false
positives. Empirically, we choose N = 150,000 cycles to
ascertain a real positive. The victim program waits for
hundreds of millions of cycles after processing each character
(to emulate human typing speed). Therefore the attacker must
accurately determine T of the character input (that is, T must
lie within N cycles of Treal) to register a true positive in our
experiment.

Table 7 shows the results for different system noise levels.
The DABANGG enabled attack outperforms both standard
attacks in all three measurement criteria, namely the TPR,
FPR and F1 Score. The trend is visible at different noise
levels. Refer to Section 3 for CPU utilization at various noise
levels.

Compute noise assists the standard attacks because it in-
creases the core frequencies. The Flush+Flush attack, for
example, improves its TPR from 4.4% at L-L-L noise level
to 15.8% at the H-H-H noise level because the cores are

Noise Attack TPR FPR F1
Score

L-L-L F+F 4.4% 27.2% 9.1%
D+F+F 97.6% 0.3% 81.3%
F+R 99.6% 6.9% 54.3%
D+F+R 91.3% 2.8% 98.7%

L-L-H F+F 9.9% 29.4% 8.3%
D+F+F 72.6% 9% 72.8%
F+R 100% 25.8% 43.3%
D+F+R 100% 0% 100%

L-H-L F+F 7.9% 30.5% 6.9%
D+F+F 76.6% 7.6% 76.4%
F+R 99.6% 24.4% 42.1%
D+F+R 99.6% 0.01% 99.6%

L-H-H F+F 7.9% 30.1% 4.4%
D+F+F 88.5% 3.8% 88.8%
F+R 99.6% 21.6% 38.9%
D+F+R 100% 0% 100%

H-L-L F+F 12.3% 37.2% 7.6%
D+F+F 79.4% 8% 77.4%
F+R 99.6% 25.9% 45.8%
D+F+R 100% 0% 99.1%

H-L-H F+F 6.3% 28.1% 5.4%
D+F+F 99.2% 0.3% 80.5%
F+R 94% 6.6% 41.1%
D+F+R 99.6% 0.9% 98.9%

H-H-L F+F 8.7% 29.8% 8.2%
D+F+F 85.7% 4.4% 85.7%
F+R 99.2% 11.5% 36.2%
D+F+R 98.8% 0.4% 98.8%

H-H-H F+F 15.8% 27.5% 14.7%
D+F+F 51.6% 51% 51%
F+R 99.6% 17.5% 40.5%
D+F+R 98.2% 0.3% 99.2%

Table 7: TPR, FPR, and F1 scores of Flush+Flush,
DABANGG+Flush+Flush, Flush+Reload, and DA-
BANGG+Flush+Reload attacks for single character
lookup.

already at high frequencies and the thresholds set for the
attack are relatively accurate. However, IO-intensive noise,
which is interrupt-driven, does not increase the processor
frequency. The standard attacks struggle when IO-intensive
noise is present. Lack of victim-specific parameters impacts
the accuracy of Flush+Flush and Flush+Reload negatively,
leading to high FPR in the presence of noise. For example, the
FPR of Flush+Reload attack increases from 6.9% at L-L-L
noise level to an average of 19% across all the other seven
noise levels.

At all noise levels, the DABANGG+Flush+Flush attack
accurately determines True Positives and maintains the
right balance between precision and recall. In contrast, the
Flush+Flush attack fails to capture the true positives due to
lack of comprehensive attacker-specific parameters, namely
the dynamic thresholds. The DABANGG+Flush+Reload at-
tack decreases the FPR (lower is better) over Flush+Reload
due to victim-specific parameters. We now separately look
at: (i) advantages of using compute-intensive loop and (ii) ad-
vantages of using victim-specific parameters, and (iii) To test
our refinements in extreme conditions, we also showcase the
effect of aggressive thread migration. This analysis provides
a breakdown of the strengths of DABANGG-enabled attacks.
We conduct (i) and (iii) at L-L-L noise level while we conduct
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Figure 8: Utility of (a) Compute-intensive code and (b) Victim-specific parameters on DABANGG+Flush+Flush attack.
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Figure 9: Effect of thread migration based on
CHANGE_AFFINITY_FACTOR.

(ii) at all eight noise levels.
Utility of compute-intensive loop: Figure 8(a) shows

the advantage of compute-intensive loops over cooperative-
yielding loops. The DABANGG+Flush+Flush attack utilizing
sched_yield() suffers from excessively yielding the CPU,
reducing the accuracy considerably. Note that the attacks
corresponding to zero sched_yield() function calls and
regular_gap = 0 are equivalent. It might be tempting to
omit phase (ii) of the attack loop altogether given the high
accuracy achieved in this experiment at regular_gap = 0.
However, it must be noted that doing so increases the prob-
ability of overlap of victim cache line access with a phase
(i) (clflush) of the attack loop. We avoid this possibility
by keeping regular_gap ≈ 102 in other experiments. The
compute-intensive loop maintains reasonably high accuracy
(>90%) over a comprehensive range of regular_gap, from
60 (≈1,000 cycles) to over 8,000 (≈120,000 cycles). This
is achieved with increased accounting capabilities enabled
by utilizing more thresholds, in conjunction with a tight grip
over the waiting period.

Utility of victim-specific parameters: Figure 8(b) illustrates
the importance of victim-specific parameters along with the
compute-intensive loop. There are two issues with standard
attacks: (i) a single cache hit in a victim where burst-mode

access is present does not signify a true hit; it may be a false
positive, and (ii) if we keep count of burst-mode accesses, a
nearly correct sequence may be discarded by the attack loop
due to a missed cache-hit. This reduces the accuracy of the at-
tack. DABANGG refined attacks resolve these problems by (i)
identifying burst-mode sequence (seq_id variable) and corre-
lating it with victim-specific expected sequence (burst_seq
parameter) and memory access interval (acc_interval pa-
rameter), and (ii) allowing missed cache-hits in the attack by
keeping a waiting window of burst_wait iterations.

Effect of thread migration: Figure 9 corresponds to a
thread migration analysis. An attack resilient to frequent core
switches is desirable, as the latency changes based on the
relative positioning of the victim and attacker programs on
the processor cores. We artificially migrate the attacker core
randomly, essentially de-scheduling the process from the cur-
rent core and scheduling it on the intended core. We run
a single character lookup experiment with all four attacks.
DABANGG+Flush+Flush attack, whose accuracy is more de-
pendent on processor frequency, is more affected by random
core migrations compared to DABANGG+Flush+Reload at-
tack. The number of attack loop iterations that are allowed
to elapse before changing the core affinity is marked by the
CHANGE_AFFINITY_FACTOR, which we vary and record the
corresponding attack accuracy. The Linux scheduler may
change the program core within a few 10s of milliseconds,
which corresponds to CHANGE_AFFINITY_FACTOR of around
104. However, we test for CHANGE_AFFINITY_FACTOR rang-
ing from 100 (≈10 microseconds) to 109 (≈few hours). We
also experiment with hardware prefetchers ON/OFF at L1
and L2 levels, and we find it has a negligible effect on the
DABANGG refinements.

The DABANGG refined attacks provide higher accu-
racy at each CHANGE_AFFINITY_FACTOR. The general trend
obtained signifies that the accuracy increases with larger
CHANGE_AFFINITY_FACTOR, which translates to more time
available to stabilize the core frequency.
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7.1.2 Multiple character lookup

In this experiment, We reproduce multiple characters pro-
cessed by the victim program. We label each character and its
identifying memory address AM , and monitor all the addresses
iteratively. A hit in the address is interpreted through its la-
bel. We utilize the Levenshtein distance (Lev) algorithm [14]
to compare the accuracy of various attacks at all the system
noise levels. The Lev algorithm compares the actual input
sequence with the sequence observed by the attacker and com-
putes accuracy based on the number of insertion, substitution
and deletion operations.

DABANGG-refined attacks produce accurate results, as is
evident from Table 8. The refined attacks are also more noise-
tolerant than the standard attacks, especially the Flush+Flush
attack, which suffers from yielding the CPU too often and
highly variable clflush latency. DABANGG refined attacks
produce more than 90% accuracy irrespective of the noise
level, attesting to the robustness provided by DABANGG.
The relative increase in attack accuracy with an increase in
compute-intensive noise, especially compared to IO-intensive
noise, exemplifies the effect of frequency.

The key takeaways from the keylogging experiments are:
(i) DABANGG significantly improves the TPR, FPR, F1
score, and accuracy, and (ii) DABANGG is robust to different
noise levels. DABANGG+Flush+Flush uplifts the standard
Flush+Flush attack to high accuracy levels of around 95% in
single and multiple characters lookup, irrespective of noise
levels, making the attacks highly feasible on a real system
with high system noise. DABANGG+Flush+Reload also pro-
vides better accuracy than the standard Flush+Reload attack
with a moderate boost in accuracy across noise levels. We
now move on to a real cryptosystem to evaluate our attacks.

7.2 AES Key Extraction in OpenSSL
The OpenSSL library no longer uses the T-Table based imple-
mentation of AES, as it is known to be susceptible to cache
side-channel attacks. The T-Table based implementation ex-
ists to compare new and existing side-channel attacks. We
build the library from source and enable this implementation
through configuration options.

We briefly explain the T-Table based implementation of
AES [21]. Eight pre-computed lookup tables exist in T-Table
based implementation of AES, T0 to T3, and T (10)

0 to T (10)
3 .

Each lookup table contains 256 4-byte words. A 16-byte
secret key k is expanded into 10 round keys, K(r), ∀r ∈ [1,10],
each of which is divided into 4 words of 4-bytes each. Given a
16-byte plaintext p, the encryption computes an intermediate
state, x(r) = (x(r)0 , ..,x(r)15 ) at every r. The x(r) is initialized

as x(0)i = pi⊕ ki∀i ∈ [0,15] The calculation of x(r) requires
access to Ti, i ∈ [0,3]∀r ∈ [1,9], and that for r = 10 requires
access to T (10)

i , i ∈ [0,3]. The x(10) obtained at the end of 10th

round is the ciphertext, c.
Threat model: We mount an asynchronous attack, where

the victim finishes execution before the attacker evalu-
ates the memory addresses. The average execution time of
AES_Encrypt is 750 cycles, too small a window for paral-
lel execution of an attacker program. We monitor the first
memory address of T (10)

i , i ∈ [0,3]. Since this is known ci-
phertext attack, we only need to flush one cache line before
every encryption, without requiring the plaintext. This pro-
vides us with the reload-frequency of the ciphertext (c) bytes,
(c0, ..,c15). We then determine the correct secret key (k) bytes.
The algorithm for ciphertext determination and consequent
key determination is outlined by G. Irazoqui et al [11]. The
parameters specific to this attack are specified in Table 9. We
do not need to monitor any burst-mode sequences since this
is an asynchronous attack. We aim to minimize the number of
AES_Encrypt function calls, that perform the 10 AES rounds.
We intend to recover the full 128 bit private key with a rea-
sonably high prediction accuracy of ≥90%. We again use
the Levenshtein distance to determine accuracy over 1000
runs of the standard attacks- Flush+Flush and Flush+Reload,
and their DABANGG refinements. We vary the number of
AES_Encrypt function calls, each on randomly generated
plaintext and the same secret key, from 102 to 4×105 function
calls for the attacks.

Figures 10(b) and 10(d) quantify time-domain boost
achieved by integrating refinements #1 and #2 (refer Section
6) to the standard Flush+Reload attack. The Flush+Reload
attack achieves an average accuracy of ≥90% at the 100,000
encryptions. The same threshold of accuracy is met by DA-
BANGG+Flush+Reload attack at 20,000 encryption mark.
This is a 5× improvement. We achieve this due to the
dynamic thresholds, which distinguish a reload cache-
hit from a cache-miss accurately early on when the fre-
quency isn’t stable. The lower number of encryptions re-
quired also increases the stealth of Flush+Reload attack.
If software countermeasures are implemented to flag con-
centrated calls to AES_Encrypt within a short period, DA-
BANGG+Flush+Reload is much more likely to evade detec-
tion.

Figures 10(a) and 10(c) illustrate the much quicker rise
in accuracy as a function of the number of encryptions by
integrating refinement #3 to the standard Flush+Flush attack.
The key reason behind the effectiveness of employing the
compute-intensive loop is the extremely variable latency of
clflush instruction. Instead of wasting compute cycles to
determine a proper threshold corresponding to the encryp-
tion iteration number, we simply insert the compute-intensive
code to increase the processor frequency sufficiently, thereby
stabilizing the execution latency of clflush cache-hit and
miss, thus improving the true-positive detection rate.

While the number of AES_Encrypt function calls is higher
than Flush+Reload attack for both variants of Flush+Flush
attack, the DABANGG+Flush+Flush attack achieves 90%
accuracy in 200,000 encryptions, twice as quick than
the 400,000 encryptions required for Flush+Flush. DA-
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Figure 10: Accuracy comparison of Flush+Reload, Flush+Flush, DABANGG+Flush+Reload, and DABANGG+Flush+Flush
attacks. (a) and (b) show the accuracy for different number of encryptions at various noise levels. (c) and (d) show the accuracy
with different number of encryptions and vertical spread of curves of a particular attack gives the range of accuracy at the given
number of encryptions.
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Attack L-L-L L-L-H L-H-L L-H-H H-L-L H-L-H H-H-L H-H-H
F+F 37.2% 21.1% 31.4% 16.7% 36.4% 27.2% 19.7% 34.6%

D+F+F 94.5% 92% 94.1% 92.2% 95.4% 94.6% 93.2% 96.7%
F+R 84.2% 69.3% 74.9% 82.5% 85.1% 75.4% 71.6% 78.2%

D+F+R 99.6% 91.2% 97.2% 96.5% 98.5% 97.2% 99.2% 98.1%

Table 8: Accuracy of various flush based attacks on multiple character key-logging.

Parameter D+F+F D+F+R
acc_interval, burst_seq,
and burst_wait 0 0
burst_gap and regular_gap 400 400

Table 9: Parameters for AES attack.

Parameter acc_interval burst_seq burst_wait burst_gap regular_gap
D+F+F 10 2 1 5 20
D+F+R 10 2 1 5 20

Table 10: Parameters for covert channel attack.

BANGG+Flush+Flush attack also produces a decent accu-
racy of more than 50% on average at the 15,000 encryption
mark, far lower than 100,000+ encryptions required by the
Flush+Flush attack. We again see a stealthier attack that is
more likely to evade detection due to a lesser number of calls
to the encryption function.

7.3 Covert Channel Attack
Threat model: We use a sender-receiver model where the
sender core sends a bit-stream through a socket, which is
monitored by the receiver using a flush-based covert channel.
The presence of the cache line corresponding to the mem-
ory address of the socket is interpreted as a set bit by the
receiver, while the lack of such a cache line is interpreted as a
reset bit. Thus, a covert communication channel is established
without any explicit link between the programs. It must be
noted that the socket does not establish any direct connection
between the programs, and is used by the sender to send the
bit-stream. The size of the bit-stream is fixed at 1000 bytes
for our experiment. Table 10 shows the parameters of interest.

Figure 11 illustrates the error rate of these attacks at various
noise levels. We also plot the bandwidth of different attacks
in Figure 12. The bandwidth increases as the average core
frequency (that is, compute or memory-intensive noise level)
increases. We obtain a peak bandwidth of 217 KBps using the
DABANGG+Flush+Reload attack, with an overall error-rate
of 0.01%. This is enough to transfer a decently large image
file within a second. While bandwidth increases across the
board as noise levels increase, a consistent low error rate is
crucial for the practical feasibility of the covert channel, which
is provided by the DABANGG refinements. The bandwidth
increases at higher noise levels (that is, L-H-H, H-L-H, H-H-
L, and H-H-H levels) because all core of our PCPS-enabled
processor run at high frequency at these noise levels (refer
to Section 3 for details). This allows the programs to send
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Figure 11: Error rates of different attacks in covert channel
scenario at various noise levels.
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Figure 12: Bandwidth of different attacks in covert channel
scenario at various noise levels.

and receive more bits per second due to decreased execution
latency (refer to 5.2 for details).

7.4 Transient Execution Attack
Spectre [12] is a transient-execution attack that relies on the
microarchitectural covert-channels and exploits speculative
execution.

1 i f ( i n d e x < a r r a y _ s i z e ) :
2 a c c e s s ( a r r a y [ i n d e x ] )

Listing 1: Target code segment for Spectre attack.

Consider the code segment in Listing 1. If an index >
arr_size, we expect the program to not execute line no. 2,
since the branch at line no. 1 resolves to not be taken. How-
ever, modern processors may speculatively execute instruc-
tion 2, resulting in the data element array[index] being
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Figure 13: Error rates of Flush+Flush and DA-
BANGG+Flush+Flush attacks for Spectre attack at
various noise levels.

cached. In Spectre attack, the cache is usually profiled us-
ing the Flush+Reload attack. Flush+Flush attack is rarely
employed to mount the Spectre attack in particular and tran-
sient execution attacks in general due to its low accuracy.
We, therefore, focus on the Flush+Flush attack in this experi-
ment. While we omit the details of performing Flush+Reload
attack for brevity, the Flush+Reload attack produces an av-
erage error rate of 7.4% (ranging from 13% to 2%), and the
DABANGG+Flush+Reload attack pushes it to an average
error-rate of 1.9% (ranging from 3% to 1%).

Threat model: We mount an asynchronous attack. The
data segment of the program stores a 160 bytes long secret-
character array. We maintain an attacker array in the data
segment. We manipulate the index of attacker array to bring
the secret array’s data speculatively to the cache. We access
an out-of-bounds index of the attacker array, once in five legal
accesses. We also flush all elements of the attacker array, and
the variable containing its size, to increase the transient exe-
cution window. We infer secret array’s data by profiling the
cache for hits after each instance of speculative execution us-
ing Flush+Flush attack. If a data element in the secret array is
already present in the cache, it registers a clflush instruction
hit when we speculatively access the location using attacker
array, indicating the presence of secret data at the element’s
address. The base code is optimized to provide the most likely
outcome for each secret character. The parameters for this
experiment are same as AES attack (Table 9).

We conduct 1000 runs of each experiment, the result of
which is the inferred secret array of characters. We then use
Levenshtein distance to determine the accuracy of the attack
by comparing it against the real secret character array. The
profiling phase is done using both the standard Flush+Flush
attack and the DABANGG+Flush+Flush attack. The principle
refinement for this attack is refinement #3. It steps up the
processor frequency.

Figure 13 shows the error rates of the attack at vari-
ous noise levels. The DABANGG refinements significantly
improve the error rate by stabilizing the core at high fre-
quency and eliminating the false positives. As a result, at

very high noise levels (HHH), the error-rate drops signifi-
cantly from 72% in the standard Flush+Flush attack to 1% in
DABANGG+Flush+Flush attack. Relatively high accuracy
is achieved using Flush+Flush attack at noise levels, which
ramp up the processor frequency. Error rate suffers at noise
levels that do not let the processor frequency stabilize, like
I/O intensive noise. DABANGG+Flush+Flush eliminates the
difference in processor frequency using compute-intensive
code segment, thereby producing a uniformly low error rate
of less than 10%.
8 Mitigation Techniques

As DABANGG refined flush attacks are fundamentally
flush based attacks. All the mitigation techniques discussed in
Flush+Reload [23] and Flush+Flush [6] that are applicable to
flush based attacks, are also applicable to DABANGG refined
attacks.
9 Conclusion

In this paper, we uncovered the dependence of the accuracy
of flush based attacks on the threshold set to distinguish
a cache hit from a miss. We showcase that dynamic core
frequencies, induced by system noise due to Dynamic Voltage
and Frequency Scaling (DVFS) Power Governors, result in
varying clflush and reload instruction latencies. We also
reveal the change in latency due to the relative positioning of
attacker and victim programs on CPU cores. To make flush
based attacks resilient to frequency changes and therefore sys-
tem noise, we proposed a set of three refinements, and named
it as DABANGG refinements, over existing Flush+Flush
and Flush+Reload attacks. We outline the algorithm so that
the attack loop can dynamically change the thresholds and
employ a dynamic busy-waiting period. We also take into
account the victim-specific parameters in our algorithm. We
tested DABANGG-enabled attacks on four experiments: (i)
side-channel based keylogging, (ii) AES secret key extraction,
(iii) covert channel, and (iv) Spectre attack, and showed
the effectiveness across different system noise levels. The
improved, noise resilient DABANGG-enabled attacks pose
a significant challenge to the micro-architectural security
community. DABANGG-enabled attacks have all of the perks
of flush based attacks while being significantly more accurate
and precise, making the flush based attacks more practical.
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