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Abstract. In this manuscript, we review lattice-based public-key encryption with the keyword search against
inside keyword guess attacks (IKGAs) proposed by Zhang et al. in IEEE Transactions on Dependable and
Secure Computing in 2019. We demonstrate that this scheme is insecure for IKGAs, although Zhang et al.
demonstrated a secure proof.
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1 Introduction

Public-key encryption with keyword search (PEKS), which was first proposed by Boneh et al. [3], allows a data
sender to generate a ciphertext for a specific keyword, and then only the data receiver can generate a valid trapdoor
for testing. Since third parties cannot obtain any information about the keyword from the ciphertext; thus, the
PEKS scheme is suitable for cloud storage scenarios.

However, Byun [4] demonstrated that a malicious insider (e.g., cloud server) may offline guess the keyword from
the trapdoor, which is referred to as insider keyword guessing attacks (IKGA). The malicious server can adaptively
encrypt a random keyword to generate a searchable ciphertext and test it using the trapdoor received from the data
receiver. If the test passes, the malicious insider can obtain the keyword selected by the data receiver.

Recently, Zhang et al. proposed forward-secure public-key encryption with searchable encryption (FS-PEKS)
that resists IKGA [12]. Unfortunately, we found some flaws in their work that made their scheme actually cannot
withstand IKGA. More preciously, although the security proof is provided in the work, the IKGA security model
defined by Zhang et al. cannot capture the concept of IKGA; thus, the adversary can still obtain the information
about keyword from the trapdoor. In this manuscript, we present the steps to attack Zhang et al.’s scheme [12] and
demonstrate that their scheme cannot resist IKGA.

The remainder of this manuscript is organized as follows. In Section 2, we review basic preliminary knowledge,
including notations, lattice, and the definition of FS-PEKS. In Section 3, we summarize the PS-PEKS scheme
proposed by Zhang et al. In Sections 4 and 5, we demonstrate that this scheme is susceptible to IKGA and discuss
the reasons for this susceptibility, respectively. Finally, conclusion are presented in Section 6.

2 Preliminaries

Here, we review notations, the lattice concept, and the definition of FS-PEKS.

2.1 Notations

Let Z and R denotes a set of integer and rational numbers, respectively. For prime q, Zq denotes a finite field (or
Galois field) with order q. For an element e and finite set S, e← S indicates that e is selected uniformly at random
from S. Moreover, for a ∈ R, bac is rounded down to the closest integer of a. Finally, ||A|| represents the l2 norm
of A.
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2.2 Lattice

Here, we briefly summarize the lattice concept.

Given n,m, q ∈ Z and A ∈ Zn×mq , we can define two lattices as follows:

– Λq(A) = {y ∈ Zmq |∃z ∈ Znq , y = A>z mod q};
– Λ⊥q (A) = {e ∈ Zmq |Ae = 0 mod q}.

In addition, we can further define a coset

Λuq (A) = {e ∈ Zm|Ae = u mod q},

where u ∈ Znq .

Discrete Gaussian Let σ be a positive real number and x ∈ Zm. Here, we define the Gaussian distribution of
Dσ with parameter σ by the probability distribution function ρσ(x) = exp(−π · ‖x‖2/σ2). Furthermore, for any set
L ⊂ Zm, we define ρσ(L) =

∑
x∈L ρσ. Then, the discrete Gaussian distribution over L with parameter σ is defined

as follows: for all x ∈ L, DL,σ = ρσ(x)/ρσ(L).

Lattice with Trapdoors Here, we introduce the algorithms related to the lattice trapdoor [1,2,5] used in Zhang
et al.’s scheme [12].

1. TrapGen(1n, 1m, q) → (A, TA): For input n,m, q ∈ Z, this algorithm outputs matrix A ∈ Zn×mq with its corre-
sponding trapdoor TA ∈ Zm×mq , and the following property holds:

{A : (A, TA)← TrapGen(1n, 1m, q)} ≈ {A : A← Zn×mq }.

2. SamplePre(A, TA, µ, σ)→ t: For an input matrix A ∈ Zn×mq and its trapdoor TA ∈ Zm×mq , a vector µ ∈ Znq , and
parameter σ ∈ R, this algorithm outputs sample t ∈ Zmq such that At = µ and t is distributed in DZm,σ.

3. NewBasisDel(A,R, TA, δ) → TB : For an input matrix A ∈ Zn×mq , Zq-invertible matrix R ← Dm×m, trapdoor

TA, and parameter δ ∈ R, this algorithm outputs random matrix TB ∈ Λ⊥q (B), where B = AR−1.

2.3 Forward Secure Public-key Encryption with Keyword Search

Here, we summarize the definition of the FS-PEKS scheme that resists IKGA [12]. The FS-PEKS scheme comprises
five algorithms, i.e., the Setup, KeyUpdate, PEKS, Trapdoor, and Test algorithms, and three entities, i.e., a cloud
server, the data owner, and the data receiver. These algorithms and entities are described as follows.

– Setup: For an input secure parameter κ, this probabilistic polynomial-time (PPT) algorithm outputs system
parameter Σ and the initial public/private key pair of the data sender (PKs‖1, SKs‖1) and data receiver
(PKr‖1, SKr‖1), respectively. Note that the system parameter Σ will implicit include in the following algorithms.

– KeyUpdate: For an input key pair (PKs‖i, SKs‖i) of the data sender, time period i, this PPT algorithm outputs
an updated key pair (PKs‖j , SKs‖j) in time period j, where i < j. Note that the data receiver can also update
their key pair using the KeyUpdate algorithm.

– PEKS: For an input public/private key pair of the data sender (PKs‖j , SKs‖j), the public key of the data receiver
PKr‖j , current time period j, keyword w, this PPT algorithm outputs a forward-secure PEKS ciphertext CTj
associated with keyword w.

– Trapdoor: For an input public/private key pair (PKr‖j , SKr‖j) of the data receiver in current time period j
and a keyword w, this PPT algorithm outputs a trapdoor tw‖j for keyword w.

– Test: For an input trapdoor tw‖j in time period j and forward-secure PEKS ciphertext CTj , this deterministic
polynomial-time algorithm outputs 1 if CTj and tw‖j contain the same keyword w; otherwise, this algorithm
outputs 0.

Definition 1 (Correctness of FS-PEKS). An FS-PEKS scheme is correct if, for all security parameters κ, (Σ,
PKr‖1, SKr‖1, PKs‖1, SKs‖1) ← Setup(κ), any time period j, and any keyword w, the following requirement holds:

Test(tw‖j , CTj) = 1,

where tw‖j ← Trapdoor(w, SKr‖j, PKr‖j, j), CTj ← PEKS(PKs‖j, SKs‖j, PKr‖j, j, w), and (PKr‖j , SKr‖j)
and (PKs‖j , SKs‖j) are updated from (PKr‖i, SKr‖i) and (PKs‖i, SKs‖i) for some time period i < j using the
KeyUpdate algorithm.
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Security Requirements A secure FS-PEKS scheme must satisfy ciphertext indistinguishability under the chosen
keyword attacks. This security captures the keyword hiding from the ciphertext. In other words, any polynomial-time
adversary cannot obtain any information about the keyword from the ciphertext. For further security requirements,
PEKS should consider IKGA. More precisely, after receiving the trapdoor from the data receiver, a malicious insider
(e.g., a cloud server) may adaptively encrypt the keyword using the data receiver’s public key, and then test whether
the ciphertext and trapdoor match. As discussed in the literature [4], in real-world scenarios, the keyword space is
not sufficient large; thus, there is a high probability that a malicious insider can obtain keyword information from
the trapdoor.

IKGA Security Model in Zhang et al.’s Scheme Here, we briefly describe the IKGA security model defined
by Zhang et al. [12]. This security model is a game operated interactively by a challenger C and adversary A.

Game - IKGA:

– Setup Phase: C runs the Setup algorithm to generate system parameter Σ and the public/private key pairs of
the data sender and data receiver. Then, C sends the public keys of the data sender and receiver to A.

– Query Phase: In this phase, A can adaptively query the following oracles.
• Hash oracle: A is allowed to query hash oracles in time period j = 1, · · · , η, where η is the total number of

time periods. Then, C responds with the corresponding hash value.
• Trapdoor oracle: A can query this oracle for any keyword w in time period j. C executes the Trapdoor

algorithm to generate a valid trapdoor, and returns it to A.
• Searchable ciphertext oracle: A can query this oracle for any keyword w in time period j. Here, to achieve

forward security, the only restriction is j > j∗, where j∗ is the break-in time. C executes the PEKS algorithm
to generate a valid ciphertext and returns it to A.

– Break-in Phase: In this phase, C sends the private keys for time period k = j∗+ 1, · · · , η to A. Here, j∗ is the
break-in time period.

– Forgery Phase: In this phase, A outputs a forged searchable ciphertext associated with w∗ in time period j∗,
which could pass the testing process.

In this security model, the adversary is considered to have won the game if and only if the adversary is able to
generate a valid searchable ciphertext, rather than just get the information about the keywords. Thus, we emphasize
that the security model in the scheme proposed by Zhang et al. cannot capture the IKGA concept.

3 The FS-PEKS scheme by Zhang et al.

In this section, we review the FS-PEKS scheme proposed by Zhang et al. to resist IKGA [12].

– Setup: For an input security parameter κ, this algorithm runs the following steps:
• Initialize a discrete Gaussian distribution χ;
• Select security Gaussian parameters δ = (δ1, · · · , δη), σ = (σ1, · · · , ση) for each time period (1, · · · , η);
• Randomly select a uniformly vector µ← Znq ;

• Select three secure hash functions H1 : Zn×mq × {0, · · · , η} → Zm×mq , H2 : {0, 1}`1 × {0, · · · , η} → Zn×mq ,

H3 : Zm×`q × {0, 1}` → Znq , where the output of H1 and H2 are distributed in Dm×m;
• Generate the data receiver’s public-private key pair (Ar, Tr)← TrapGen(n, 1m, q);
• Generate the data sender’s public-private key pair (As, Ts)← TrapGen(1n, 1m, q);
• Output the system parameter

Σ = (µ,H1, H2, H3, χ, δ, σ)
and public-private key pair of data sender (As, Ts) and data receiver (Ar, Tr).

– KeyUpdate: For an input public/private key pair (Ar, Tr) in the previous time period i and current time period
j, the data receiver runs the following steps:
• Compute Rr‖i = H1(Ar‖i) + · · ·+H1(Ar‖1) ∈ Zm×mq , and Ar‖i = Ar(Rr‖i)

−1 ∈ Zn×mq ;
• Compute Rr‖i→j = H1(Ar‖j) + · · ·+H1(Ar‖i+ 1) ∈ Zm×mq ;
• Compute Tr‖j = NewBasisDel(Ar‖i, Rr‖i→j , Tr‖i, δj), where Ar‖j = Ar‖i(Rr‖i→j)

−1 = Ar(Rr‖j)
−1 ∈ Zn×mq ;

• Output the data receiver’s public/private key pair (Ar‖j , Tr‖j) for time period j.
Note that the data sender can use the same steps to generate their public/private key pair (As‖j , Ts‖j) for time
period j.
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– PEKS: For an input data sender’s public/private key pair (As‖j , Tr‖j) for time period j, the data receiver’s

public key Ar‖j for time period j, the current time period j, and keyword w ∈ {0, 1}`1 , the data sender runs
the following steps to generate a searchable ciphertext:
• Choose a random binary string γj = (γj1 , · · · , γj`) ∈ {0, 1}`;
• Randomly select a uniform matrix Bj ← Zn×`q ;
• Select noise ej = (ej1 , · · · , ej`), where ej1 , · · · , ej` ← Zq according to χ;
• Select noise vj = (vj1 , · · · , vj`), where vj1 , · · · , vj` ← Zmq according to χ;
• Compute βj = H2(w‖j);
• Compute CTj1 = µ>Bj + ej + (γj1 , · · · , γj`)bq/2c, CTj2 = (Ar‖jβ

−1
j )Bj + vj ;

• Compute hj = H3(CTj2‖γj) ∈ Znq , and generate ζj ← SamplePre(As‖j , Ts‖j , hj , σj);
• Output searchable ciphertext

CTj = (CTj1 , CTj2 , ζj).
– Trapdoor: For an input public/private key pair (Ar‖j , Tr‖j) of the data receiver in the current time period j

and a keyword w, the data receiver runs the following steps to generate a trapdoor:
• Compute βj = H2(w‖j), and compute Tw‖j ← NewBasisDel(Ar‖j , βj , Tr‖j , δj);

• Compute tw‖j ← SamplePre(Ar‖jβ
−1
j , Tw‖j , µ, σj) ∈ Zmq ;

• Output a trapdoor tw‖j for keyword w and time period j.
– Test: For an input trapdoor tw‖j from the data receiver and a ciphertext CTj in the current time period j, the

cloud server runs as follows:
• Compute γj = (γj1 , · · · , γj`)← CTj1 − t>w‖jCTj2 ;

• For k = 1, · · · , `, if |γjk − bq/2c| < bq/4c, set γjk = 1; otherwise, set rjk = 0. Then, update γj ;
• Compute hj = H3(CTj2‖γj) ∈ Znq ;
• If As‖jζj = hj and ζj is distributed in D

Λ
hj
q (As‖j),σj

, the cloud server outputs 1; otherwise, it outputs 0.

4 Cryptanalysis of FS-PEKS Scheme

In this section, we describe how the FS-PEKS scheme proposed by Zhang et al. [12] is susceptible to IKGA.

Lemma 1. The FS-PEKS is vulnerable to IKGA.

Proof. In this proof, we describe the steps performed by a malicious insider A.

– Step 1: After receiving trapdoor tw‖j from the data receiver, A first randomly selects a binary string γ ∈ {0, 1}`
and other parameters required by the PEKS algorithm.

– Step 2: A selects a possible keyword w′ and generates CTj1 and CTj2 as described in Section 3, except to
generate ζj .

– Step 3: Using the trapdoor, A generates a random binary string γ′j by computing CTj1 = t>w‖jCTj2 .

– Step 4: If γj = γ′j , the guessed keyword w′ is a valid keyword w; otherwise, A returns to Step 2 and continues
to select and test other keywords.

Therefore, if the keyword is common, there is a high probability that A will obtain the information of the
keyword hidden by the trapdoor. ut

5 Discussion and Future Work

Recently, Huang and Li [7] proposed an effective method against IKGA, called “public-key authenticated encryption
with keyword search”. In this method, the data sender encrypts the keyword, and authenticates the ciphertext. For
the Test algorithm, the trapdoor tests whether its keyword corresponds to the ciphertext generated by the sender,
and tests that the ciphertext was generated by the data sender. Therefore, a malicious insider cannot generate a
ciphertext that can be verified to guess the keywords selected by the data receiver.

In the following, we discuss why Zhang et al.’s work [12] cannot withstand IKGA. At a high level, to withstand
against IKGA, Zhang et al.’s used the same concepts as authenticated encryption [7] to counter IKGA. In other
words, the data sender must generate a “signature” ζj using the SamplePre function to authenticate the ciphertext
CTj2 and the random binary string γj they selected. Unfortunately, in Zhang et al.’s scheme [12], encryption and
authentication operate independently; thus, their scheme only prevents a malicious insider from generating a valid
ζj , i.e., the malicious insider can still test the trapdoor by recovering γj . Although Zhang et al. provided a security
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proof and showed that their scheme can withstand IKGA, the security model they proposed does not apply to IKGA
scenarios. In their IKGA security model (Section 2.3), the adversary must forge a ciphertext that can pass the Test
algorithm for a given challenge keyword. However, even if the adversary cannot forge such ciphertext (Section 4),
they can still guess the keywords used by the trapdoor offline.

To the best of our knowledge, only pairing-based public-key authenticated encryption with keyword searchable
has been proposed [6,7,8,9]; however, these schemes are considered vulnerable to future quantum computer attacks
[10,11]. Therefore, determining how to realize an efficient lattice-based approach is an urgent problem to solve.

6 Conclusion

In this manuscript, we have presented cryptanalysis of the FS-PEKS scheme proposed by Zhang et al. [12]. The
security model of Zhang et al.’s scheme is unsuitable for IKGA scenarios, and thus the scheme cannot withstand
IKGA described in this manuscript.
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