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Abstract. We de�ne a new primitive that we call a somewhere statistically binding (SSB) commitment
scheme, which is a generalization of dual-mode commitments but has similarities with SSB hash func-
tions (Hubacek and Wichs, ITCS 2015) without local opening. In (existing) SSB hash functions, one
can compute a hash of a vector v that is statistically binding in one coordinate of v. Meanwhile, in SSB
commitment schemes, a commitment of a vector v is statistically binding in some coordinates of v and
is statistically hiding in the other coordinates. The set of indices where binding holds is predetermined
but known only to the commitment key generator. We show that the primitive can be instantiated
by generalizing the succinct Extended Multi-Pedersen commitment scheme (González et al., Asiacrypt
2015). We further introduce the notion of functional SSB commitment schemes and, importantly, use it
to get an e�cient quasi-adaptive NIZK for arithmetic circuits and e�cient oblivious database queries.
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1 Introduction

Commitment schemes are one of the most useful primitives in cryptography. In essence, a commitment to a
value binds the value to the commitment, but hides the value from other parties. Commitment schemes are
naturally used in zero-knowledge proofs, where one often proves statements about a committed value while
keeping the value hidden. For instance, to complete a digital transaction a party may need to prove he has
available funds in his account without actually revealing his exact balance. Such proofs on committed values
are very e�cient due to Bulletproofs [7], and are used in many privacy-preserving cryptocurrency designs
such as Mimblewimble [21,41] and Quisquis [20].

Dual-mode commitment schemes [9, 12, 13] are an interesting variant where the commitment key can be
set up in one of two modes: binding or hiding. In the binding mode, the commitment can only be opened to
one valid value. Meanwhile, in the hiding mode, a commitment hides the committed value even to unbounded
adversaries. For this de�nition to make sense, one should not be able to guess which mode is being used based
on the commitment key, i.e., the commitment key hides the mode. Dual-mode commitments are an essential
tool in Groth-Sahai proofs [31] which is a framework for constructing non-interactive zero-knowledge (NIZK)
proofs for algebraic relations.

In the case of committing to a vector, the two modes of a dual-mode commitment can be seen to be two
extremes: the commitment is either binding in all positions in the vector, or in none of them. A natural way
to generalize the notion would be to have multiple modes of commitment, specifying that the commitment
is binding in some positions in the vector of values. A similar generalization for hash functions is known as
somewhere statistically binding hash [32, 39], in which one can compute a hash of a vector v such that the
computed hash is statistically binding in one coordinate of v.

A generalization of dual-mode commitments would lead to interesting applications in NIZK arguments.
In a typical zero-knowledge succinct argument of knowledge (zk-SNARK) for Circuit-SAT [14, 22, 29, 37],
the prover commits to the witness (i.e., all the inputs to a circuit), and the proof of (knowledge) soundness
involves using a non-falsi�able assumption to extract the whole committed vector which is then used to check
each gate to establish where exactly the prover cheated; based on the knowledge of the witness one then



breaks a computational assumption. One can get a more e�cient extraction under falsi�able assumptions if
the commitment was binding only on the values corresponding to the inputs and outputs of a speci�c gate:
one then only needs to check the extracted values against a randomly chosen gate. As a caveat, the technique
will lead to a security loss linear in the number of gates.

In fact, the above extraction technique has been done before [15,28] using a generalization of the Pedersen
commitment scheme called Extended Multi-Pedersen [26,27] and resulting in e�cient NIZK arguments under
falsi�able assumptions. However, the above results are not zk-SNARKs: they are quasi-adaptive NIZK (QA-
NIZK) arguments which means the CRS may depend on the relation, and while the argument is succinct, the
commitment is not5. Moreover, previous work did not formalize which properties of a commitment scheme
would be required to enable e�cient NIZK arguments.

In the above construction, we need a succinct somewhere statistically binding property that guarantees
that the chosen coordinate is statistically binding while the remaining coordinates can be computationally
binding. On the other hand, to get zero-knowledge, the commitment needs to be almost-everywhere statisti-
cally hiding, that is, computationally hiding at the chosen coordinate, and statistically hiding at any other
coordinates. We also need index-set hiding, which means an adversary that is given the commitment key
does not know which particular coordinate is statistically binding.

Our Contributions. Formalizing the properties of the Extended Multi-Pedersen (EMP) commitment
scheme [26, 27], we de�ne a somewhere statistically binding (SSB) commitment scheme to n-dimensional
vectors. In the commitment key generation phase of an SSB commitment scheme one chooses an index-set
S ⊆ [1 .. n] of size at most q ≤ n and de�nes a commitment key ck that depends on n, q and S. A com-
mitment to an n-dimensional vector x will be statistically binding and extractable at coordinates indexed
by S and perfectly hiding at all other coordinates. Moreover, commitment keys corresponding to any two
index-sets S1 and S2 of size at most q must be computationally indistinguishable. Thus, an SSB commitment
scheme is required to be SSB, somewhere statistically extractable (SSE), almost everywhere statistically hid-
ing (AESH), and index-set hiding (ISH). An SSB commitment scheme generalizes dual-mode commitment
schemes (where n = 1 and q ∈ {0, 1} determines the mode) and the EMP commitment scheme (where q = 1
and n is arbitrary).

In Section 4, we de�ne algebraic commitment schemes (ACS), where the commitments keys are matrices.
We prove that the distribution of key matrices de�nes which properties of SSB commitments hold in each
coordinate and show that these commitments are suitable for working with QA-NIZK arguments. This is
because they behave like linear maps and the properties of SSB commitments can be expressed in terms of
membership to linear subspaces. Next, we generalize the EMP commitment scheme to work with arbitrary
values of q. Importantly, a single EMP commitment consists of q + 1 group elements and is thus succinct
given small q. We prove that EMP satis�es the mentioned security requirements under a standard Matrix
DDH assumption [19].

In Section 5, we de�ne functional SSB commitments, which are statistically binding on some components
that are outputs of some functions S = {fi}i where |S| ≤ q. It is a generalization of SSB commitments,
where the extracted values are the result of some linear functions of the committed values, instead of the
values themselves. We show that results which hold for SSB commitments also naturally hold for functional
SSB commitments. The notion of functional SSB commitments for families of linear functions was already
used indirectly in prior work [15]; however, they were not formally de�ned and their security properties were
not analyzed. We also see that a minor modi�cation of EMP works as a functional SSB commitment if we
consider only linear functions.

We provide some applications of functional SSB commitments. In Section 6.1 we propose a novel (but
natural) application that we call oblivious database queries (ODQ), where a sender has a private database
x and a receiver wants to query the database to learn f1(x), . . . , fq(x) without revealing the functions fi.
In Section 6.2 we present a QA-NIZK for Square Arithmetic Programs (SAP, [30]) that follows a similar
strategy to prior work [15] but can be used for arithmetic circuit satis�ability instead of Boolean circuit
satis�ability. Our QA-NIZK has comparable e�ciency and also under falsi�able assumptions.

5 One cannot construct zk-SNARKs in a black-box way from falsi�able assumptions [24], hence any black-box
construction from falsi�able assumptions will not be fully succinct.
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Relation to other primitives. The SSB requirement makes the EMP commitment scheme look similar
to SSB hash functions [32, 39], but there are obvious di�erences. SSB hash has the local opening property,
where the committer can e�ciently open just one coordinate of the committed vector, but SSB commitments
do not6. Meanwhile, we need hiding while SSB hash does not. This is, intuitively, a natural distinction and
corresponds to the di�erence between collision-resistant hash families and statistically hiding commitment
schemes. Also, we allow ck to be long, but require commitments to be succinct.

SSB commitments are directly related to two-message oblivious transfer (OT) protocols as de�ned in [2].
Essentially, SSB commitments are non-interactive analogs of such protocols: the commitment key corresponds
to the �rst OT message ot1 and the commitment corresponds to the second OT message ot2. Importantly,
while in OT, the ot1 generator is always untrusted, in our applications, it is su�cient to consider a trusted
ck generator. This allows for more e�cient constructions.

We discuss the relation to existing primitives in more detail in Appendix B.

2 Preliminaries

For a set S, let P(S) denote the power set (i.e., the set of subsets) of S, and let P(S, q) denote the set of
q-size subsets of S. For an n-dimensional vector α and i ∈ [1 .. n], let αi be its ith coe�cient. Let ei be
the ith unit vector of implicitly understood dimension. For a tuple S = (σ1, . . . , σq) with σi < σi+1, let
αS = (ασ1

, . . . , ασq ). Let α∅ be the empty string.
Let PPT denote probabilistic polynomial-time and let λ ∈ N be the security parameter. All adversaries

will be stateful. Let RNDλ(A) denote the random tape of the algorithm A for a �xed λ. We denote by
negl(λ) an arbitrary negligible function, and by poly(λ) an arbitrary polynomial function. Functions f, g are
negligibly close, denoted f ≈λ g, if |f − g| = negl(λ).

2.1 Bilinear Groups

In the case of groups, we will use additive notation together with the bracket notation [19], that is, for
ι ∈ {1, 2, T} we de�ne [a]ι := a[1]ι, where [1]ι is a �xed generator of the group Gι. A bilinear group generator
Pgen(1λ) returns (p,G1,G2,GT , ê, [1]1, [1]2), where p (a large prime) is the order of cyclic Abelian groups
G1, G2, and GT . Moreover, ê : G1 × G2 → GT is an e�cient non-degenerate bilinear pairing, such that
ê([a]1, [b]2) = [ab]T . Denote [a]1[b]2 := ê([a]1, [b]2), and [1]T := [1]1[1]2. We use matrix-vector notation freely,
writing say [M1]1[M2]2 = [M1M2]T for any compatible matrices M1 and M2.

We use F -extraction notation to mean extraction of the function F . E.g., if F is exponentiation then
we have [·]ι-extraction, where we extract elements in the group Gι. Several of our cryptographic primitives
have their own parameter generator Pgen. In all concrete instantiations of the primitives, we instantiate
Pgen with the bilinear group generator, which is then denoted Pgenbg. Distribution families D0 = {D0

λ}λ
and D1 = {D1

λ}λ are computationally indistinguishable, if ∀ PPT A, Pr[x←$D0
λ : A(x) = 1] ≈λ Pr[x←$D1

λ :
A(x) = 1].

The Matrix DDH (MDDH) assumption. Let `, k ∈ N, with ` ≥ k, be small constants. Let p be a large
prime. Following [19], we call D`k a matrix distribution if it outputs, in polynomial time, matrices A in Z`×kp

of full rank k. We denote Dk+1,k by Dk. Let U`k denote the uniform distribution over Z`×kp .
Let Pgen be as before, and let ι ∈ {1, 2}. D`k-MDDHGι [19] holds relative to Pgen, if ∀ PPT A,

Advmddh
A,D`k,ι,Pgen(λ) := |ε

0
A(λ)− ε1A(λ)| ≈λ 0, where

εβA(λ) := Pr

[
p← Pgen(1λ);A←$D`k; w←$Zkp;

y0←$Z`p;y1 ← Aw : A(p, [A,yβ ]ι) = 1

]
.

Common distributions for the MDDH assumption are Uk := Uk+1,k and the linear distribution Lk over
A =

(
A′

1 ... 1

)
, where A′ ∈ Zk×kp is a diagonal matrix with a′ii←$Zp.

6 The properties of SSB and local opening are orthogonal: it is possible to construct e�cient SSB hashes without
local opening [39] and e�cient vector commitments [8,35] (which have a local opening) without the SSB property
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2.2 Quasi-adaptive NIZK

A quasi-adaptive non-interactive zero-knowledge (QA-NIZK) proof [33] enables one to prove membership in
a language de�ned by a relation Rρ, which is determined by some parameter ρ sampled from a distribution
Dgk.

A tuple of algorithms (K0,K1,P,V), where gk ← K0(1
λ), crs ← K1(gk, ρ), π ← P(crs, x, w), 0/1 ←

V(crs, x, π), is aQA-NIZK proof system for witness-relationsRgk = {Rρ}ρ∈sup(Dgk), if it satis�es the following
properties (see Appendix A for formal de�nitions): (i) Quasi-Adaptive Completeness: if (x,w) ∈ Rρ then
V accepts P's proof. (ii) Computational Quasi-Adaptive Soundness: if ¬(∃w : Rρ(x,w)) then V accepts P's
proof only with negligible probability. (iii) Perfect Quasi-Adaptive Zero-Knowledge: there exists a trapdoor τ
and PPT simulator S such that for (x,w)←$Rρ, the distributions P(crs, x, w) and P(crs, τ, x) are identical.
We assume that crs contains an encoding of ρ, which is thus available to V. See Appendix A for more details.

3 SSB Commitment Schemes

In an SSB commitment scheme, the commitment key (i.e., the CRS) depends on n, q, and an index-set
S ⊆ [1 .. n] of cardinality ≤ q (in the case of Groth-Sahai commitments [31], n = q = 1 while in the current
paper n = poly(λ) and q ≥ 1 is a small constant). At coordinates described by S, an SSB commitment scheme
must be statistically binding and F -extractable [5] for a well-chosen function F , while at all other coordinates
it must be statistically hiding and trapdoor. Moreover, it must be index-set hiding, i.e., commitment keys
corresponding to any two index-sets S1 and S2 of size ≤ q must be computationally indistinguishable.

The Groth-Sahai commitments correspond to a bimodal setting where either all coe�cients are sta-
tistically hiding or statistically binding, and these two extremes are indistinguishable. SSB commitments
correspond to a more �ne-grained multimodal setting where some ≤ q coe�cients are statistically binding
and other coe�cients are statistically hiding, and all possible selections of statistically binding coe�cients
are mutually indistinguishable. Our terminology is inspired by [32, 39] who de�ned SSB hashing; however,
the consideration of the hiding property makes the case of SSB commitments su�ciently di�erent.

3.1 Formalization and De�nitions

An F -extractable SSB commitment scheme COM = (Pgen,KC,Com, tdOpen,ExtF ) consists of the following
polynomial-time algorithms:
Parameter generation: Pgen(1λ) returns parameters p (e.g., description of a bilinear group).
Commitment key generation: for parameters p, n ∈ poly(λ), q ∈ [1 .. n], and a tuple S ⊆ [1 .. n] with
|S| ≤ q, KC(p, n, q,S) outputs a commitment key ck and a trapdoor td = (ek, tk) consisting of an
extraction key ek, and a trapdoor key tk. Also, ck implicitly speci�es p, n, q, the message space MSP, the
randomizer space RSP, and the commitment space CSP, such that F (MSP) ⊆ ESP. For invalid input, KC
outputs (ck, td) = (⊥,⊥).

Commitment: for p ∈ Pgen(1λ), ck 6= ⊥, a message x ∈ MSPn, and a randomizer r ∈ RSP, Com(ck;x; r)
outputs a commitment c ∈ CSP.

Trapdoor opening: for p ∈ Pgen(1λ), S ⊆ [1 .. n] with |S| ≤ q, (ck, (ek, tk)) ∈ KC(p, n, q,S), two messages
x,x∗ ∈ MSPn, and a randomizer r ∈ RSP, tdOpen(p, tk;x, r,x∗) returns a randomizer r∗ ∈ RSP.

Extraction: for p ∈ Pgen(1λ), S = (σ1, . . . , σ|S|) ⊆ [1 .. n] with 1 ≤ |S| ≤ q, (ck, (ek, tk)) ∈ KC(p, n, q,S),
F : MSP→ ESP and c ∈ CSP, ExtF (p, ek; c) returns a tuple (yσ1 , . . . , yσ|S|) ∈ ESP|S|. We allow F to depend
on p.
Note that SSB commitment schemes are non-interactive and work in the CRS model; the latter is needed

to achieve trapdoor opening and extractability. With the current de�nition, perfect completeness is straight-
forward: to verify that C is a commitment of x with randomizer r, one just recomputes C ′ ← Com(ck;x; r)
and checks whether C = C ′.

An F -extractable SSB commitment scheme COM is secure if it satis�es the following security require-
ments. (See Table 1 for a brief summary.)
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Abbreviation Property De�nition

ISH Index-set hiding The commitment key reveals nothing about
the index-set S

SSB Somewhere statistically binding A commitment to x statistically binds the
values xS

AESH Almost everywhere statistically
hiding

The commitment is statistically hiding in
the indices outside the set S

F -SSE Somewhere statistical F -
extractability

Given a commitment to x and the extraction
key, one can extract the values F (xS)

Table 1. Properties of an SSB commitment scheme

Index-Set Hiding (ISH): ∀λ, PPT A, n ∈ poly(λ), q ∈ [1 .. n], AdvishA,COM,n,q(λ) := 2 · |εishA,COM,n,q(λ) −
1/2| ≈λ 0, where εishA,COM,n,q(λ) :=

Pr

[
p← Pgen(1λ); (S0,S1)← A(p, n, q) s.t. ∀i ∈ {0, 1},Si ⊆ [1 .. n] ∧ |Si| ≤ q;
β←$ {0, 1} ; (ckβ , tdβ)← KC(p, n, q,Sβ) : A(ckβ) = β

]
.

Somewhere Statistically Binding (SSB): ∀λ, unbounded A, n ∈ poly (λ), q ∈ [1 .. n],
AdvssbA,COM,n,q(λ) ≈λ 0, where AdvssbA,COM,n,q(λ) :=

Pr

p← Pgen(1λ);S ← A(p, n, q) s.t. S ⊆ [1 .. n] ∧ |S| ≤ q;
(ck, td)← KC(p, n, q,S); (x0,x1, r0, r1)← A(ck) s.t. x0S 6= x1S ;

Com(ck;x0; r0) = Com(ck;x1; r1)

 .

COM is somewhere perfectly binding (SPB) if AdvssbA,COM,n,q(λ) = 0.
Almost Everywhere Statistically Hiding (AESH): ∀λ, unbounded adversary A, n ∈ poly(λ), q ∈ [1 .. n],

AdvaeshA,COM,n,q(λ) := 2 · |εaeshA,COM,n,q(λ)− 1/2| ≈λ 0, where εaeshA,COM,n,q(λ) :=

Pr

p← Pgen(1λ);S ← A(p, n, q) s.t. S ⊆ [1 .. n] ∧ |S| ≤ q;
(ck, td)← KC(p, n, q,S); (x0,x1)← A(ck) s.t. x0S = x1S ;

β←$ {0, 1} ; r←$ RSP : A(Com(ck;xβ ; r)) = β

 .

COM is almost everywhere perfectly hiding (AEPH) if AdvaeshA,COM,n,q(λ) = 0. If A is PPT, COM is almost
everywhere computationally hiding (AECH).

Somewhere Statistical F -Extractability (F -SSE): ∀λ, n ∈ poly(λ), q ∈ [1 .. n], S = (σ1, . . . , σ|S|) with
|S| ≤ q, (ck, (ek, tk))← KC(p, n, q,S), and PPT A, AdvsseA,F,COM,n,q(λ) :=

Pr
[
x, r ← A(ck) : ExtF (p, ek;Com(ck;x; r)) 6= (F (xσ1

), . . . , F (xσ|S|))
]
≈λ 0 .

Additionally, an SSB commitment scheme can but does not have to be trapdoor.

Almost Everywhere Statistical Trapdoor (AEST): ∀λ, n ∈ poly(λ), q ∈ [1 .. n], and unbounded A,
AdvaestA,COM,n,q(λ) ≈λ 0, where AdvaestA,COM,n,q(λ) =

Pr

p← Pgen(1λ);S ← A(p, n, q) s.t. S ⊆ [1 .. n] ∧ |S| ≤ q;
(ck, td = (ek, tk))← KC(p, n, q,S); (x0, r0,x1)← A(ck) s.t. x0S = x1S ;

r1 ← tdOpen(p, tk;x0, r0,x1) : Com(ck;x0; r0) 6= Com(ck;x1; r1)

 .

It is almost everywhere perfect trapdoor (AEPT) if AdvaestCOM,n,q(λ) = 0.
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It is important to consider the case |S| ≤ q instead of only |S| = q. For example, when q = n, the PB
commitment key (|S| = n) has to be indistinguishable from the PH commitment key (|S| = 0). Moreover, in
the applications to construct QA-NIZK argument systems [15,26,27], one should not be able to distinguish
between the cases |S| = 0 and |S| = q.

F -extractability [5] allows one to model the situation where xi ∈ Zp but we can only extract the cor-
responding bracketed value [xi]ι ∈ Gι; similar limited extractability is satis�ed say by the Groth-Sahai
commitment scheme for scalars [31]. Note that in this case, F depends on p. Interestingly, extractability
implies SSB, see Appendix C.1 for a proof.

Lemma 1 (F -SSE & F is injective ⇒ SSB). Let COM be an SSB commitment scheme. Fix n and q.
Assume F is injective. For all PPT A, there exists a PPT B such that AdvssbA,COM,n,q(λ) ≤ 2·AdvsseB,F,COM,n,q(λ).

If q = 0 then AESH is equal to the standard statistical hiding (SH) requirement, and AEST is equal to
the standard statistical trapdoor requirement. If q = n then SSB is equal to the standard statistical binding
(SB) requirement, and F -SSE is equal to the standard statistical F -extractability requirement. We will show
that any secure SSB commitment scheme must also be computationally hiding and binding in the following
sense.
Computational Binding (CB): ∀ PPT A, n ∈ poly(λ), q ∈ [1 .. n], where AdvcbA,COM,n,q(λ) :=

Pr

p← Pgen(1λ);S ← A(p, n, q) s.t. S ⊆ [1 .. n] ∧ |S| ≤ q;
(ck, td)← KC(p, n, q,S); (x0,x1, r0, r1)← A(ck)
s.t. x0 6= x1;Com(ck;x0; r0) = Com(ck;x1; r1)

 ≈λ 0 .

Computational Hiding (CH): ∀ PPT A, n ∈ poly(λ), q ∈ [1 .. n], AdvchA,COM,n,q(λ) := 2 · |εchA,COM,n,q(λ)−
1/2| ≈λ 0, where εchA,COM,n,q(λ) :=

Pr

p← Pgen(1λ);S ← A(p, n, q) s.t. S ⊆ [1 .. n] ∧ |S| ≤ q;
(ck, td)← KC(p, n, q,S); (x0,x1)← A(ck);β←$ {0, 1} ;
r←$ RSP : A(Com(ck;xβ ; r)) = β

 .

Theorem 1. Let COM be an SSB commitment scheme. Fix n and q.
(i) (ISH + SSB⇒ CB) For all PPT A, there exist PPT B1 and unbounded B2, such that AdvcbA,COM,n,q(λ) ≤

AdvishB1,COM,n,q(λ) + n/(q − 4 · AdvishB1,COM,n,q(λ)) · Adv
ssb
B2,COM,n,q(λ).

(ii) (ISH + AESH ⇒ CH) For all PPT A, there exist PPT B1 and unbounded B2, such that
AdvchA,COM,n,q(λ) ≤ AdvishB1,COM,n,q(λ) + AdvaeshB2,COM,n,q(λ).

The full proof of this theorem is deferred to Appendix C.2.

4 Constructing SSB Commitment Schemes

In this section we generalize the notion of algebraic commitment scheme to general matrix distributions. We
show that they work nicely with QA-NIZK arguments and that certain matrix distributions give us an SSB
commitment scheme. We focus on the particular case of EMP in Section 4.2, where we propose a general
version of EMP and prove that it is an SSB commitment scheme.

4.1 Algebraic Commitment Schemes

Ràfols and Silva [42] de�ned the notion of algebraic commitment schemes (ACSs), where the commitment
keys are matrices, already used implicitly in other works [10, 11]. Since they behave like linear maps, it is
very natural to work with them. We give a more general de�nition in the following where the matrices are
sampled from general distributions.
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De�nition 1. Let ι ∈ {1, 2}, and let n,m, k be small integers. Let D1 be a distribution of matrices from
Gk×nι and let D2 be a distribution of matrices from Gk×mι . A commitment scheme COM is a (D1,D2)-
algebraic commitment scheme (ACS) for vectors in Znp , if for commitment key ck = [U1,U2]ι←$D1 × D2

the commitment of a vector x ∈ Znp is computed as a linear map of x and randomness r←$Zmp , i.e.,
Comck(x, r) := [U1]ιx+ [U2]ιr ∈ Gkι .

Ràfols and Silva mention that given di�erent commitment key matrices, their distributions are com-
putationally indistinguishable under the MDDH assumption, and each concrete distribution de�nes which
coordinates of the commitments are SB or SH. We prove in Appendix D.1 that it also gives a characterization
of the coordinates of the key matrices for the di�erent SSB properties (AECH, ISH, SPB, SPE) based on
linear dependency. In Appendix D.1 we also prove that to extract n elements from an ACS we need at least
n+ 1 rows.

4.2 The EMP Commitment Scheme

Extended Multi-Pedersen (EMP) [26,27] is a variant of the standard vector Pedersen commitment scheme [40].
In this section, we will depict a general version of the EMP commitment scheme7 in group G. We rede�ne
EMP by using a division of the generator matrix g as a product of two matricesR andM ; this representation
results in very short security proofs for EMP. To simplify notation, we will write Ext instead of Ext[·]. We use

a distribution Dp,n,Sq+1 that outputs n+1 vectors g(i), such that if i ∈ S ′ = S ∪{n+1} then g(i) is distributed
uniformly over Zq+1

p , and otherwise g(i) is a random scalar multiple of g(n+1).8

De�nition 2. Let p = p(λ), n = poly(λ), and let q ≤ n be a small positive integer. Let S ⊆ [1 .. n] with

|S| ≤ q. Then the distribution Dp,n,Sq+1 is de�ned as the �rst part of Dgen(p, n,S, q) in Fig. 1 (i.e., just g,
without the associated extraction key or trapdoor).

Note that [27] uses a distribution Dq+1,k instead of the uniform distribution Uq+1 over Zq+1
p , which means

that taking a larger k gives a weaker security assumption but with worse e�ciency. Our version of EMP also
works with a general distribution, but for ease of presentation we only use Uq+1.

Dgen(p, n,S, q)

S ′ ← S ∪ {n+ 1}; // S′ = {σ1, . . . , σq+1}

R←$Z(q+1)×(q+1)
p ;M ← 0(q+1)×(n+1);Mq+1,n+1 ← 1;

for j = 1 to n do
if j 6∈ S ′ then Mq+1,j = δj ←$Zp; else let i be such that j = σi;Mi,σi ← 1;

endfor
g ← RM ; tk← (δj)j∈[1 .. n]\S ; // g ∈ Z(q+1)×(n+1)

p ;
return (g,R, tk);

Fig. 1. Generating Dp,n,Sq+1 , with associated extraction key R and trapdoor tk

Example 1. In the Groth-Sahai commitment scheme, n = q = 1, so Dgen �rst samplesR = ( r11 r12r21 r22 )←$Z2×2
p .

If S = {1} then M = ( 1 0
0 1 ) and g = RM = ( r11 r12r21 r22 ). On the other hand, if S = ∅ then M =

(
0 0
δ1 1

)
and

g = RM =
(
δ1r12 r12
δ1r22 r22

)
for δ1←$Zp.

7 González et al. [27] mostly considered the case q = 1; they also did not formalize its security by using notions like
ISH

8 We add +1 to the dimension (e.g., q + 1) to accommodate the randomizer in EMP.
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KC(p, n, q,S): // S ⊆ {1, 2, . . . , n} with |S| ≤ q

Sample (g,R, tkι)←$Dgen(p, n,S, q) s.t. R has full rank;
ck← [g]; ek← R; // g ∈ Z(q+1)×(n+1)

p , R ∈ Z(q+1)×(q+1)
p

td← (ek, tk); return (ck, td);

tdOpen(p, tkι;x, r,x
∗)

r∗ ←
∑
i∈[1 .. n]\S(xi − x

∗
i )δi + r;

return r∗;

Ext(p, ek; [c])

[x′]← R−1[c];

return [xS ]← [x′[1 .. |S|]];

Com(ck;x ∈ Znp ; r ∈ Zp)

return [g]( x
r ); // =

∑n
j=1 xj [g

(j)] + r[g(n+1)] ∈ Gq+1

Fig. 2. The EMP commitment scheme COM

Consider the case n = 3, q = 2, and S = {3}. Then

M =
(

0 0 1 0
0 0 0 0
δ1 δ2 0 1

)
, g = RM =

(
δ1r13 δ2r13 r11 r13
δ1r23 δ2r23 r21 r23
δ1r33 δ2r33 r31 r33

)
, for δ1, δ2←$Zp,R←$Z3×3

p .

The following lemma shows that distributions [Dp,n,Sq+1 ] for di�erent sets S are indistinguishable under the
MDDH assumption. See Appendix D.2 for a proof.

Lemma 2. Let ι ∈ {1, 2}. Let p = p(λ) be created by Pgen(1λ), n = poly(λ), and let q ≤ n be a positive

integer. Let S ⊆ [1 .. n] with |S| ≤ q. The distribution families D0 := {[Dp,n,Sq+1 ]}λ and D1 := {[Dp,n,∅q+1 ]}λ are
computationally indistinguishable under the Uq+1-MDDHGι assumption relative to Pgen: for any PPT A,
there exists a PPT B, such that AdvindistA,D0,D1(λ) ≤ |S| · Advmddh

B,Uq+1,Pgen(λ).

We de�ne EMP in Fig. 2. We claim that it is indeed an SSB commitment scheme in the following Theorem,
see Appendix D.3 for a proof.

Theorem 2. Let Pgenbg be a bilinear group generator. Fix λ, n, and q. The EMP commitment scheme is
(i) ISH under the U(q+1)×(n+1)-MDDHGι assumption, (ii) F -SSE for F = [·] (thus, F depends on p), (iii)
AEPT, (iv) SPB, (v) AEPH, (vi) CB and CH under the U(q+1)×(n+1)-MDDHGι assumption.

Alternative constructions. One can also construct a SSB commitment from any IND-CPA secure
cryptosystem if both the message space and the randomness space are additively homomorphic, i.e.,
Encpk(m1; r1) + Encpk(m2; r2) = Encpk(m1 +m2; r1 + r2) for any public key pk, messages m1,m2 and ran-
domness r1, r2 ∈ R. For simplicity, consider the case when q = 1 and the i-th index is binding. We can
set ck = (pk, c := (Encpk(ei,1; r1), . . . ,Encpk(ei,n; rn)), tk = sk where ei is the i-th unit vector. In order to
commit to x, we compute c · x+ Encpk(0; r) = Encpk(xi, r +

∑n
i=1 ri) for r←$R. Now, ISH follows directly

from the IND-CPA security, SSB and F-SSE follow from the correctness of the cryptosystem, and AESH
follows since Encpk(xi, r+

∑n
i=1 ri) only depends on xi. However, we obtain a less e�cient construction than

EMP. E.g., if we instantiate with Elgamal we would have a commitment size of 2q group elements, whereas
EMP has q + 1.

The above is similar to the technique of obtaining 2-message oblivious transfer (OT) from additively
homomorphic cryptosystems [2] and this is no coincidence. SSB commitments can indeed be constructed
from OT, and we can conversely construct OT from SSB commitments. Hence there are various alternative
constructions of SSB, but in this paper we concentrate on EMP due to the applications we are interested in.
See Appendix B.2 for more details.
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KCι(p, n, q,M ∈ Zq×np ):

Set implicitly MSP = RSP = Znp and CSP = Gq+1
ι ;

Sample R←$Z(q+1)×(q+1)
p so that it has full rank; Sample r←$Znp ;

Set M ′ ←
(

M 0
rᵀ 1

)
∈ Z(q+1)×(n+1)

p ;

Set ck← [RM ′]ι ∈ G(q+1)×(n+1)
ι , td← (ek← R−1, tk← r);

return (ck, td);

Com(ck;x ∈ Znp ; r ∈ Zp)

return ck( x
r );

tdOpen(p, tkι;x, r,x
∗) // Mx = Mx∗

return r∗ ←
∑

i∈[1 .. n]

(xi − x∗i )tki + r;

Ext(p, ek; [c]ι)

return ek[c]ι without the last element;

Fig. 3. Functional SSB commitment for linear functions

5 Functional SSB Commitments

We generalize the notion of SSB commitment from being statistically binding on an index-set S ⊆ [1 .. n] to
being statistically binding on outputs of the functions {fi}qi=1 from some function family F . We construct
a functional SSB commitment for the case when F is the set of linear functions. In particular, this covers
functions fj(x) = xj and hence we also have the index-set functionality of EMP commitment.

In our de�nition, given a family of functions F we require that the commitment key ck will hide the
functions {fi}qi=1 ⊂ F and given a commitment Com(ck;x; r) and an extraction key ek it is possible to
F -extract fi(x) for i ∈ [1 .. q]. The commitment uniquely determines the outputs of the functions (due to
the SSB property) and commitments to messages which produce equal function outputs are statistically
indistinguishable (due to the AESH property). Our de�nition is similar to Döttling et al.'s [16] de�nition for
trapdoor hash functions for a family of predicates F .
De�nition of functional SSB. An F -extractable functional SSB commitment scheme COM = (Pgen,
KC,Com, tdOpen,ExtF ) for a function family F follows the de�nitions of SSB commitments in Section 3.1,
but with the following changes: (i) S is now a set of functions rather than a set of indices. (ISH then becomes
function set hiding (FSH)). (ii) For S = {fi}qi=1 ⊆ F and vector x we rede�ne xS := (f1(x), . . . , fq(x)). The
full de�nitions are given in Appendix E.1. Relations that hold between properties of SSB commitments also
hold for functional SSB commitments; the proofs are very similar.

Linear EMP.We construct a functional SSB commitment for a family of linear functions. Our construction
follows the ideas in [15] which only dealt with some concrete functions and never formalized the ideas.

We represent q linear functions by a matrix M ∈ Zq×np where each row contains coe�cients of one
function. From a commitment to vector x ∈ Znp , our construction allows to extract [Mx]ι. In particular, if

we takeM = (ei1 | . . . |eiq )> where eij ∈ Znp is the ijth unit vector, then [Mx]ι = [xi1 , . . . , xiq ]
>
ι . A detailed

construction is given in Fig. 3. Moreover, if we take an ACSP, the commitment key is ck = [U1,U2]ι ∈
G(q+1)×n
ι ×G(q+1)×1

ι , which is optimal size for extraction in q coordinates, as proven in Corollary 1. The main
di�erences with the EMP construction in Section 4.2 is that in EMP M is a matrix in reduced row echelon
form (with multiples of the column vector (0, . . . , 0, 1)T possibly inserted in between). We prove security of
linear EMP in Appendix E.2.

6 Applications of Functional SSB Commitments

We present three applications of functional SSB commitments. In Section 6.1 we have two straightforward
applications for linear EMP commitments: Oblivious Database Queries (ODQ) and Oblivious Linear Function
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Evaluation (OLE) [17,18,25]. OLE allows the receiver to learn f(x) where x is the receiver's private vector
and f is the sender's private linear function. ODQ essentially switches the roles of receiver and sender: the
receiver wants to learn f(x) where x is the sender's private database and f is the receiver's linear query
function. In Section 6.2 we present a new QA-NIZK argument for SAP relations that uses linear EMP
commitments as a technical tool in the security proof.

6.1 ODQ & OLE

A very straight-forward application of linear EMP is oblivious database queries (ODQ). We consider a
scenario where the sender knows a private database x and the receiver knows a set of private linear functions
fi(X1, . . . , Xn) = bi +

∑n
j=1 ai,jXj for i ∈ [1 .. q] that he wants to evaluate on that database.

Our ODQ protocol works as follows:

� Receiver de�nes matrices A = (aij) ∈ Zq×np , B = diag(b1, . . . , bq) ∈ Zq×qp , andM = (A | B) ∈ Zq×(n+q)p .
Following the KC algorithm it creates the commitment key ck, the extraction key ek, and sends ck to
the sender.

� Sender has x ∈ Znp and ck as input. It sets x′ = ( x
1q ), picks random r←$Zp and sends COM = ck

(
x′

r

)
to the receiver.

� Receiver extracts [M · x′] from COM using the Ext algorithm with ek.

Privacy and Correctness. We follow privacy and correctness de�nitions proposed by Döttling et al. [16]
(see Section 5.1 of their paper for full de�nitions). From the SSE property we know that the receiver can
recover [M ( x

1q )]ι = [Ax+b]ι and thus correctness holds. Receiver's (computational) privacy follows directly
from the FSH property, that is, any two function sets of size at most q are indistinguishable. Sender's privacy
is de�ned through simulatability of the protocol transcript given only receiver's inputM and receiver's output
[Mx′] to the simulator. Simulatability is slightly stronger than the AEPH property but still holds for linear
EMP. As a �rst message, the simulator can generate ck withM and store R. An honestly computed second

message has the form [R
(
M 0
rᵀ 1

)
]
(
x′

r

)
= R

[
Mx′

x′r>+r

]
and therefore we can simulate it by sampling r∗←$Zp

and computing R
(

[Mx′]
r∗

)
. Thus sender's privacy also holds.

E�ciency. We de�ne download rate as the ratio between output size and sender's message and total rate
as the ratio between output size and total transcript size. The total rate of our protocol is |[Mx′]|/(|ck| +
|COM|) = q/((n+ q + 2)(q + 1)). However, we achieve very good download rate |[Mx′]|/|COM| = q/(q + 1)
which tends to 1. This is similar to Döttling et al. [16] where they achieve an optimal download rate but
sub-optimal total rate.

OLE.We can achieve OLE in a very similar way. Suppose that now the sender has a function f(X1, . . . , Xn) =
b+
∑n
i=1 aiXi and the receiver has x. Then the receiver can send a commitment key withM = (x1, . . . , xn, 1)

and the sender responds with a commitment to (a1, . . . , an, b). The receiver extracts to obtain [f(x)]ι. The
proof is identical to the ODQ case. However, the resulting OLE is less e�cient with download rate 1/2 and
total rate 1/(2n+ 4).

6.2 QA-NIZK Argument for Quadratic Equations

We present a QA-NIZK argument which uses linear EMP commitments as an important technical tool in
the security proof, inspired by Daza et al. [15] who presented a commit-and-prove QA-NIZK argument for
Square Span Programs (SSP, [14]) which can be used to encode the Boolean circuit satis�ability language.
Their construction uses a speci�c setting of linear EMP commitments without explicitly formalizing it. Our
QA-NIZK is for Square Arithmetic Programs (SAP) [30] which can be used to encode the arithmetic circuit
satis�ability language, has roughly the same complexity as the argument in [15] and follows a similar overall
strategy. However, we use linear EMP commitments as a black-box and thus have a more compact and clear
presentation.

A rough intuition of our commit-and-prove QA-NIZK is as follows. The statement of our language LSAP,ck

contains a linear-length perfectly binding (and [·]1-extractable) commitment [c]1 of the SAP witness. Note
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that the commitment is only computed once but can be reused for many di�erent SAP relations. For sim-
plicity, we use ElGamal encryption in this role (see PB commitment in Appendix F.1) and the commitment
key ck as a parameter of the language. The argument itself is succinct and contains the following elements:
� a succinct SNARK-type argument [V,H,W ]1, [V ]2 for the SAP relation,
� a succinct linear EMP commitment [c̃]2 that commits to the SAP witness and to the randomness of the
SNARK,

� a succinct linear subspace argument bls [26] that shows that commitments open to consistent values (see
bls argument in Appendix F.1). I.e., it guarantees that the opening of [c]1 is also used in the SNARK
and in [c̃]2.

Square Arithmetic Program (SAP). A square arithmetic program is a tuple SAP = (p, n, d,V ∈
Zn×dp ,W ∈ Zn×dp ). We de�ne a commit-and-prove language for SAP as the following language with n variables
and d quadratic equations

LSAP,ck =

 [c]1 ∈ G2n
1

∃a, r ∈ Znp : [c]1 = Comck(a, r)∧{(
a>vj

)2 − a>wj = 0
}d
j=1


where Comck is a perfectly binding commitment scheme, vj is j-th column of the matrix V and wj is the
j-th column of the matrix W .

QA-NIZK Argument scheme. Given n, d ∈ N we construct a QA-NIZK argument for LSAP,ck.
� K0(λ) returns p← Pgen(1λ).
� Dp(n, d) returns a commitment key ck = [u]1 = [1, u]>1 where u←$Zp.
� K1(p, n, d, ck) picks s←$Zp, then sets qv = 4, n′ = n+1,M = 0 ∈ Zqv×n′p (i.e., Sv = ∅) and generates a

linear EMP key ck′ = [K]2 ← KC2(p, n
′, qv,M) ∈ G5×(n+2)

2 . Finally, it runs (crsbls, tdbls)← Kbls([N1]1 ∈
G(2n+2)×(2n+3)

1 , [N2]2 ∈ G5×(2n+3)
2 ) for

[N1]1 =


e2

. . .

e2

u
. . .

u

0

v1(s) . . . vn(s)
w1(s) . . . wn(s)

0
t(s) 0 0
0 t(s) 0


1

,

[N2]2 =

[
v1(s) . . . vn(s)
K(1) . . . K(n) 0

t(s) 0 0
K(n+1) 0 K(n+2)

]
2

.

Return the CRS crs = (p, ck, ck′, {
[
si
]
1,2
}di=1, crsbls) with trapdoor (s, tdbls).

� The prover P receives an input (crs, ([c]1,V,W), (a, r)). Let vi(X) and wi(X) be the interpolation
polynomials at some points {χj}j for the i-th column of V and W respectively for i ∈ [1 .. n], and set

t(X) =
∏d
i=j(X − χj). The prover picks δv, δw, rv ←$Zp and de�nes:

V (X) :=
∑n
i=1 aivi(X) + δvt(X), W (X) :=

∑n
i=1 aiwi(X) + δwt(X)

P (X) := V (X)2 −W (X) H(X) := P (X)/t(X)
(1)

The prover computes group elements [V ]1,2 = [V (s)]1,2, [W ]1 = [W (s)]1, [H]1 = [H(s)]1 and a linear
EMP commitment [c̃]2 = Com(ck′; (a, δv), rv). The prover also computes a bls argument ψ for the

statement xbls := ([c]1, [V ]1, [W ]1, [V ]2, [c̃]2)
> ∈ Im

(
[N1]1
[N2]2

)
with witness (a, r, δv, δw, rv)

> ∈ Z2n+3
p .

Finally, it outputs the argument π :=
(
[H]1 , [V ]1,2 , [W ]1 , [c̃]2, ψ

)
.

� The veri�er V with input (crs, [c]1,V,W, π) returns 1 i� [V ]1[V ]2 − [W ]1[1]2 = [H]1[t(s)]2 and
Vbls(crsbls, xbls, ψ) = 1.
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SSB functionality in the security proof. The security proof of the argument uses similar techniques
as [15] but simpli�ed because we rely on the properties of SSB commitments. Intuitively, in the security
reduction we need to compute some elements of the form [

∑
i aiyi]2 where (a1, . . . , an) is the witness and

[y1, . . . , yn]2 are elements that can be computed from the challenge of some falsi�able assumption or public
elements. The actual reduction requires us to extract multiple such linear combinations.

If an adversary wins the soundness game, its argument passes veri�cation but at least one SAP equation
does not hold. In the security proof, the soundness game is �rst changed by randomly picking one of the

SAP equations
(
a>vj∗

)2 − a>wj∗ = 0 for some j∗ ∈ [1 .. d]. To complete the proof, we have to check the
equation and break a computational assumption. For the former, since our perfectly binding commitment
is only [·]1-extractable, we can at best extract [ai]1 which is not enough to check the j∗-th equation, even
if vj∗ and wj∗ are public. We need a square of a, so it su�ces to extract

∑
[ai]2vj∗,i in G2 and prove the

equation in the target group. For the latter, we break the d-SATSDH assumption (see Appendix F.1) that is
a version of the d-TSDH assumption with some extra elements that are linear combinations of the witness.

Next, we switch the EMP commitment key that is in perfectly hiding mode in the honest proof (S = ∅) to
the mode that encodes the functions f(a1, . . . , an) =

∑
i ai[yi]2 that we need. Then, from [c̃]2 we can extract

[
∑
i aivj∗,i]2, and so check the equation in GT , and also the linear combinations to break the assumption.
The FSH property guarantees that the adversary cannot learn the index j∗ and thus the j∗-th SAP

equation is not satis�ed with probability ≥ 1/d. The [·]2-SSE property allows us to extract some linear
combinations of the claimed witness and break the d-SATSDH assumption. Zero-knowledge is straightfor-
wardly guaranteed by the AEPH property. The full security proof and more intuition of it are deferred
to Appendix F.2.
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A Full QA-NIZK De�nitions

A quasi-adaptive non-interactive zero-knowledge (QA-NIZK) proof [33] enables one to prove membership in
a language de�ned by a relation Rρ, which is determined by some parameter ρ sampled from a distribution
Dgk. A distribution Dgk is witness-sampleable if there exists an e�cient algorithm that samples (ρ, ωρ) from a
distribution Dpar

gk such that ρ is distributed according to Dgk, and membership of ρ in the parameter language
Lpar can be e�ciently veri�ed by using this witness ωρ.

A tuple of algorithms (K0,K1,P,V) is called a QA-NIZK proof system for witness-relations Rgk =
{Rρ}ρ∈sup(Dgk) with parameters sampled from a distribution Dgk over associated parameter language Lpar, if
there exists a probabilistic polynomial time simulator (S1,S2), such that for all non-uniform PPT adversaries
A1, A2, A3 we have:
Quasi-Adaptive Completeness:

Pr

[
gk← K0(1

λ); ρ← Dgk; crs← K1(gk, ρ); (x,w)← A1(gk, crs);
π ← P(crs, x, w) : V(crs, x, π) = 1 if Rρ(x,w)

]
= 1.

Computational Quasi-Adaptive Soundness:

Pr

[
gk← K0(1

λ); ρ← Dgk;
crs← K1(gk, ρ); (x, π)← A2(gk, crs)

:
V(crs, x, π) = 1 and
¬(∃w : Rρ(x,w))

]
≈ 0.

Computational Strong Quasi-Adaptive Soundness:

Pr

[
gk← K0(1

λ); (ρ, ωρ)← Dpar
gk ; crs← K1(gk, ρ);

(x, π)← A2(gk, crs, ωρ) : V(crs, x, π) = 1 and ¬(∃w : Rρ(x,w))

]
≈ 0.

Perfect Quasi-Adaptive Zero-Knowledge:

Pr[gk← K0(1
λ); ρ← Dgk; crs← K1(gk, ρ) : AP(crs,·,·)

3 (gk, crs) = 1] =

Pr[gk← K0(1
λ); ρ← Dgk; (crs, τ)← S1(gk, ρ) : AS(crs,τ,·,·)

3 (gk, crs) = 1]

where (i) P(crs, ·, ·) emulates the actual prover. It takes input (x,w) and outputs a proof π if (x,w) ∈ Rρ.
Otherwise, it outputs ⊥. (ii) S(crs, τ, ·, ·) is an oracle that takes input (x,w). It outputs a simulated
proof S2(crs, τ, x) if (x,w) ∈ Rρ and ⊥ if (x,w) /∈ Rρ.

We assume that crs contains an encoding of ρ, which is thus available to V.

B Relation to Existing Primitives

B.1 Relation to SSB Hashes

The SSB requirement makes the EMP commitment scheme look similar to SSB hash functions [32, 39], in
which one can compute a hash of a vector v such that the computed hash is statistically binding in one
coordinate of v. However, there are also obvious di�erences. First, to obtain zero-knowledge, we need hiding
(AESH) that is not required from hash functions. This is, intuitively, a natural distinction and corresponds
to the di�erence between collision-resistant hash families and statistically hiding commitment schemes.

Second, [32, 39] require that an SSB hash has the local opening property, meaning that the committer
can e�ciently open just one coordinate of the committed vector. In the QA-NIZK application, we do not
need this property: the commitment key ck is created by a trusted third party, and there is no need for the
honest parties to ever open the commitment. Instead, in the soundness proof, we need somewhere statistical
extractability (SSE), stating that the creator of ck (e.g., the adversary B) must be able to extract the succinct
guilt witness. SSE is not needed in the case of SSB hashes. Although not needed in our concrete applications,
it is also desirable to have the almost everywhere statistical trapdoor (AEST) property, where the creator
of ck is able to replace non-SB coordinates with anything she wishes. Finally, we allow ck to be long, but
require commitments to be succinct.

The properties of SSB and local opening are orthogonal: it is possible to construct e�cient SSB hashes
without local opening [39] and e�cient vector commitments [8,35] (which have a local opening) without the
SSB property.
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B.2 Relation to Oblivious Transfer (OT)

SSB commitments are directly related to two-message OT protocols as de�ned in [2]. In an OT protocol, the
sender has an n-element database and the chooser has an index-set S with |S| ≤ q. The chooser wants to
obtain xS ; no additional information should be leaked either to the chooser or the sender. In a two-message
OT protocol (in the plain model), the chooser sends the �rst message otq (an encoding of S) to the sender
who replies with the second message otr (an encoding of xS). OT protocols have very wide applications in
many areas of cryptography, with two-message OT protocols in the plain model such as [2, 23, 36, 38] being
of special interest because of their e�ciency.

Essentially, SSB commitments are non-interactive analogs of such protocols, the commitment key corre-
sponding to the �rst OT message ot1, and the commitment corresponding to the second OT message ot2.
However, the connection is not completely one-to-one, since there are subtle di�erences in the security def-
initions between SSB commitment schemes and OT protocols. Importantly, while in OT, the ot1 generator
is always untrusted, in our applications it is su�cient to consider a trusted ck generator, which allows for
more e�cient constructions. Additionally, SSB commitment schemes (such as EMP) result in a �avour of
OT where the receiver's message ot1 is long but can be reused multiple times, while the sender's message
ot2 is much shorter.

Thus, all secure two-message OT protocols are also secure SSB commitment schemes. Unfortunately,
none of the known e�cient two-message OT protocols have the required algebraic structure to construct
QA-NIZKs, and thus they are unsuitable for our main application.

B.3 Relation to PCP-Based SNARKs

The QA-NIZK application of SSB commitments is based on the observation that the language of bit-strings
(resp., CircuitSAT) has a local veri�ability property, similar to PCP [3,4]: one can establish, by checking one
random coordinate of the bit-string (resp., all adjacent wires of a random gate), whether an input belongs to
the language or not. Typical PCP-based zero-knowledge arguments like [34] use PCPs with small soundness
error; as a drawback, such PCPs have a long proof and an ine�cient reduction from CircuitSAT. Daza et
al. [15] and the current paper use a trivial PCP with a large soundness error but with a trivial reduction
from CircuitSAT. The use of SSB commitments means that the e�ciency loss is logarithmic in n (one needs
to use ≈ 2 log n-bit longer group elements) while in the case of earlier PCP-based arguments the e�ciency
loss is much larger. Nevertheless, the use of SSB commitments is not limited to trivial PCP; one can use
them together with any PCP that has a small number of queries and short proof length.

C Missing Proofs in Section 3

C.1 Proof of Lemma 1

Proof. Assume that for given n and q, A breaks SSB with probability AdvssbA,COM,n,q(λ). This means that
for some S of cardinality ≤ q and honestly generated ck (w.r.t. S), A outputs (x0,x1, r0, r1) such that
x0S 6= x1S and C := Com(ck;x0; r0) = Com(ck;x1; r1).

Since x0S 6= x1S and F is injective, we get that F 0 := (F (x0σ1
), . . . , F (x0σ|S|)) 6=

(F (x1σ1
), . . . , F (x1σ|S|)) =: F 1. Therefore, there exists β ∈ {0, 1}, such that ExtF (p, ek;C) 6= F β . Thus,

if B outputs (xβ , rβ) for β←$ {0, 1}, Advsseβ,F,COM,n,q(λ) ≥ AdvssbA,COM,n,q(λ)/2 and hence AdvssbA,COM,n,q(λ) ≤
2 · Advsseβ,F,COM,n,q(λ). ut

C.2 Proof of Theorem 1

Proof. Let Pr[Gamei(A) = 1] denote the probability A wins in Gamei.
(i: ISH + SSB ⇒ CB) We prove the theorem using a sequence of hybrid games, de�ned as follows,

where εi := Pr[Gamei(A) = 1].
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Game1: The original computational binding game. For given n and q, by de�nition A can break CB with

probability ε1 = AdvcbA,COM,n,q(λ).
Game2: Game1, but instead of ck, A gets ck′ where (ck′, td′) ← KC(p, n, q,S1) for S1←$P([1 .. n], q).

Note that a distinguisher B1 for Game1 and Game2 can be used to break the ISH game with advantage
εish = AdvishB1,COM,n,q(λ). Hence |ε1 − ε2| ≤ εish, which implies that ε2 ≥ ε1 − εish.

We now require the following lemma.

Lemma 3. Assume A outputs (x0, r0,x1, r1) with x0 6= x1. Then Pr[(x0)S1 6= (x1)S1 in Game2] ≥ q/n −
4 · εish.

Proof. Assume for any S1 of size q sampled uniformly at random, A can output distinct x0,x1 such that
Pr[(x0)S1 6= (x1)S1 in Game2] = ε.

We construct an adversary B that uses A to break ISH as follows.
1. Given p, n, q, B sets S1←$P([1 .. n], q) and receives S0 ← A(p, n, q).
2. B sends (S0,S1) to the ISH challenger, and receives ck corresponding to Sβ .
3. B gets (x0, r0,x1, r1)← A(ck).

� If A does not win, abort.
� If (x0)S1 6= (x1)S1 return β′←$ {0, 1}.
� Else return 1.

Note that β = 0 corresponds to Game1, and β = 1 corresponds to Game2. Moreover, for β = 0, A's
output (x0, r0,x1, r1) is independent of S1, in which case Pr[(x0)S1 6= (x1)S1 ] ≥ |S1|/n = q/n. Hence we get
that if A wins,

Pr[GameISH(B) = 1] =
1

2
Pr[GameISH(B) = 1|β = 0] +

1

2
Pr[GameISH(B) = 1|β = 1]

=
1

2
Pr[(x0)S1 6= (x1)S1 in Game1 ∧ β′ = 0]

+
1

2
Pr[(x0)S1 = (x1)S1 in Game2]

+
1

2
Pr[(x0)S1 6= (x1)S1 in Game2 ∧ β′ = 1]

≥ q

4n
+

1− ε
2

+
ε

4

=
1

2
+
q − nε
4n

.

Hence 4 · εish ≥ q/n− ε, as required. ut

It is easy to see that an adversary that wins Game2 with (x0)S1 6= (x1)S1 also wins the SSB game. Hence
there exists an adversary B2 such that

AdvssbB2,COM,n,q(λ) ≥ ε2 · Pr[(x0)S1 6= (x1)S1 in Game2|x0 6= x1]

≥ (ε1 − εish)(q/n− 4 · εish) (due to Lemma 3).

This is equivalent to ε1 ≤ εish + n
q−4·n·εish · Adv

ssb
B2,COM,n,q(λ).

(ii: ISH + AESH ⇒ CH) Assume that for given n and q, A can break CH with probability
AdvchA,COM,n,q(λ). Consider the following sequence of games with εi := Pr[Gamei(A) = 1].

Game1: In this game, A breaks CH with probability ε1. That is, given p, A(p, n, q) outputs S0
such that |S0| ≤ q, and for (ck0, td0) ← KC(p, n, q,S0), A(ck0) outputs (x0,x1), s.t. Pr[β←$ {0, 1} :
A(Com(ck0;xβ ; r)) = β] = ε1.

Game2: In this game, instead of ck0, A obtains ck1 where (ck1, td1) ← KC(p, n, q,S1) for S1 = ∅.
Clearly, for any PPT A that tries to distinguish Game1 and Game2, there exists a PPT B1, such that
|ε2 − ε1| ≤ AdvishB1,COM,n,q(λ).

Let us consider the following AESH adversary B2 in Game2.
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1. Given p, n, q, B2 sets S1 ← ∅ and receives S0 ← A(p, n, q).
2. B2 computes (ck1, td1)← KC(p, n, q,S1) and receives (x0,x1)← A(ck).
3. B2 forwards (x0,x1) to the AESH challenger, and receives c ← Com(ck1,xβ ; r) for some β←$ {0, 1},
r←$ RSP.

4. B gets and outputs β′ ← A(c).
If A returns the correct β′ then clearly also B2 returns the correct β′. For the success of B2, it is

also needed that x0S1 = x1S1 , which clearly holds since S1 = ∅. Thus, AdvaeshB2,COM,n,q(λ) = ε2. Hence,

AdvchA,COM,n,q(λ) ≤ |ε2 − ε1|+ ε2 ≤ AdvishB1,COM,n,q(λ) + AdvaeshB2,COM,n,q(λ). ut

D Details of Algebraic Commitments Schemes (ACS)

D.1 Characterisation of ACS

ACS as SSB commitment schemes. We will show that ACS de�ned in Section 4 are computationally
hiding under MDDH. They are also perfectly binding in those components that correspond to the linearly
independent columns ofU1. If they are also pair-wise to columns ofU2, the system of equations has maximum
rank and unique solution. We give this characterisation in Lemma 4.

Moreover, for extraction assume that span{U1} ∩ span{U2} = {0}. Intuitively, U1 de�nes the space of
the opening x, while U2 de�nes the randomness space. To extract in q positions, we hence need ek is such
that ek[U2]ι = 0 and ek[U1]ι = (bi)

n
i=1, where bi is ei in q positions and 0 elsewhere. Then by the linearity

of ACS, ek · Comck(x, r) = ek · [U1]ιx = [x]ι.

Lemma 4. Let n ≥ 1 and q ≤ n . Let COM be an ACS with commitment key ck = [U1,U2]ι sampled from
D1 ×D2 as de�ned in De�nition 1.
(i) COM is AECH under D2-MDDHGι .
(ii) COM is ISH under D1,D2-MDDHGι .
(iii) COM is SPB if U1 has rank q and span{U1} ∩ span{U2} = {0}.
(iv) COM is [·]ι-SPE if U1 has rank q and span{U1} ∩ span{U2} = {0}.

Proof. Let S ⊆ [1 .. n], |S| ≤ q be the indices of x one can extract during opening.

(i: AECH) Let A be an adversary that breaks AECH with non-negligible probability, say εA. Consider
the following Gι-MDDH adversary B. B receives a challenge [A,yβ ]ι whereA←$D2, y0←$Zkp, and y1 ← Ar
for r←$Zmp . B sets [U2]ι ← [A]ι, and generates U1 from the distribution D1. B sends ck = [U1,U2]ι to A
who replies with two messages x0,x1, such that x0,S ,x1,S . B computes c0 ← [U1]ιx0+[U2]ιr, for r←$Zmp ,
and c1 ← [U1]ιx1 + [yβ ]ι. B picks β′ ← {0, 1} and sends cβ′ to A. A guesses which message was committed
by returning βA ∈ {0, 1} to B. B sends βA to the MDDH challenger. Clearly,

Pr[βA = β] =Pr[βA = 0|β = 0]/2 + Pr[βA = 1|β = 1]/2

=εA/2 + (Pr[βA = 1|β = 1, β′ = 0]/2 + Pr[βA = 1|β = 1, β′ = 1]/2)/2

=εA/2 + εA/4 + εA/8 = 7/8 · εA .

Thus if A succeeded with non-negligible probability, then so did B.
(ii: ISH) Firstly we prove that for any S0 with |S0| ≤ n, if S1 = S0 ∪ {i∗} for some i∗ /∈ S0 and S0,S1 ⊆

[1 .. n], then D0,q
1,2 := ([Dn,kS0 ]ι, [Dm,kS0 ]ι) and D1,q

1,2 := ([Dn,kS1 ]ι, [Dm,kS1 ]ι) are computationally indistinguishable

under MDDH. Let A be an adversary that can distinguish D0
1,2 and D1

1,2. We construct the following MDDH

adversary B that receives a challenge [A,yβ ]ι where A1,A2←$D0
1,2, y0←$Zkp, and y1 ← (A>1 |A>2 )r for

r←$Zmp . B sets [U1]ι ← [A1]ι, and [U2]ι ← ([A2]ι|[yβ ]ι). B computes cβ ← [U1]ιx + [U2]ιr, for r←$Zmp
and sends cβ to A who replies with βA. Thus, B has the same advantage in breaking MDDH as A has in

distinguishing D0,q
1,2 and D1,q

1,2.

Now, for any sets S0 and S1 it holds that AdvindistA,D0
1,2,D1

1,2
(λ) ≤ (|S0 ∪ S1| − |S0 ∩ S1|) · Advmddh

B,Dn,q1,2 ,Pgen
(λ).
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(iii: SPB) Assume that all columns of U1 and U2 are pairwise linearly independent. Consider the matrix
system of equations de�ned by (U1,U2)(

x
r ) = Comck(x, r). This system has a unique solution because the

matrix has full rank. Hence, each commitment corresponds to a unique vector ( xr ). Now, if U1 has q columns
pair-wise linear independent and columns of U2 pair-wise linear independent to all of them, consider the
system that has a matrix with those q columns of U1 and the whole U2. Its rank is maximum as well and
the result follows.

(iv: [·]-SPE) Since k > m, for any matrix U2 of size k ×m there exist matrices ek ∈ U⊥2 that de�ne

orthogonal spaces ofU2 of size k
′×k for k′ ≥ k−m such that ek·U2 =

(
0(k−m)×m

a

)
where a ∈ Z(k′−k+m)×m

p .

This space has at least dimension 1 because k > m. Moreover, there exists an appropriate change of basis

of the space such that ek ·U1 =

(
Iq
b1
b2

)
where b1 ∈ Z(k′−q)×q

p , b2 ∈ Zk
′×(n−q)
p . This is well-de�ned since

k−m ≥ q and if q columns of the matrices are pair-wise linear independent then k′− q ≥ k−m− q ≥ 0. ut

Corollary 1. The minimum size of the k × m matrix to guarantee [·]ι-extraction of n ≥ 1 elements is
k = n+ 1, m = 1.

Proof. Information theoretically the commitment size should be no less than the dimension of the opening
in order to extract it completely, so k ≥ n. The orthogonal space has to be at least of dimension 1 in order
to provide extraction, so the minimal di�erence is k − m ≥ 1. We have k ≥ n + m directly by the linear
independence of the columns in matrices U1,U2. Hence, the minimal constants are m = 1, k = n+ 1. ut

ACS and QA-NIZK arguments. Algebraic commitments are suitable to work with QA-NIZK arguments
for linear spaces because most of their properties can be expressed in terms of membership or non-membership
to certain linear subspaces. For example, the works of González et al. [15, 26, 27] implicitly use an SSB
commitment scheme COM to construct e�cient QA-NIZK argument systems based on falsi�able assumptions.
The soundness of their QA-NIZK system depends on the ISH, SSB, and SSE properties, while the zero-
knowledge property depends on the AESH and CH properties. On the other hand, honest parties never need
to actually open the commitment; the opening (more precisely, extraction) is only done inside the security
proof by using the SSE property9. Moreover, in our QA-NIZK argument in Section 6.2, as well as [15], we
use functional SSB commitments since linear EMP is more straightforward to our use of it in the soundness
proof.

D.2 Proof of Lemma 2

Proof. Fix λ. We �rst prove that for any S0 with |S0| ≤ q − 1, if S1 = S0 ∪ {i∗} for i∗ > maxi{i ∈ S0} and
S0,S1 ⊆ [1 .. n], then D0 := [Dp,n,S0q+1 ] and D1 := [Dp,n,S1q+1 ] are computationally indistinguishable.

Let A be an adversary that can distinguish D0 and D1. We construct the following MDDH adversary B.
The challenger C of the MDDH game samples A←$Zq+1

p and w←$Zp. If β = 0 then C samples y←$Zq+1
p ,

otherwise C sets y ← Aw. C sends (p, [A,y]ι) to B. B does the following:

B(p, [A,y])

[g(n+1)]← [A];
for i in [1 .. n] do

if i = i∗ then [g(i)]← [y];

elseif i ∈ S0 then g(i) ←$Zq+1
p ;

else δi ←$Zp; [g(i)]← [g(n+1)]δi; fi endfor
return β ← A(p, [g]);

9 In this sense, one could also call them trapdoor hash functions [16] with the SSB and AESH properties
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Clearly, [g] is distributed according to Dβ . Thus, B has the same advantage in breaking MDDH as A has

in distinguishing D0 from D1. By using a standard hybrid argument, AdvindistA,D0,D1(λ) ≤ |S| ·Advmddh
B,Uq+1,Pgen(λ).

ut

As a simple generalization of Lemma 2, for any S0,S1 ⊆ [1 .. n] with Si ≤ q, AdvindistA,[Dp,n,S0q+1 ],[Dp,n,S1q+1 ]
(λ) ≤

|S1 4S2| · Advmddh
B,Uq+1,Pgen(λ).

D.3 Proof of Theorem 2

Proof. (i: ISH) Due to the properties of Dp,n,Sq+1 , g(S∪{n+1}) has columns distributed uniformly over Zq+1
p and

hence by the Schwartz-Zippel lemma has full rank with probability ≥ 1− (q+1)/p. It follows from Lemma 2
that for any PPTA, there exists a PPT B, such that AdvishA,COM,n,q(λ) ≤ q·Adv

mddh
B,U(q+1)×(n+1),ι,Pgen

(λ)+(q+1)/p.

(ii: [·]-SSE) We have [c] = [g]( xr ) = [RM ]( xr ) for some ( xr ), where R has full rank. But then [x′] =
R−1[c] = [M ]( xr ). Let S = {σi}. By the de�nition of M , clearly x′i =M i(

x
r ) = xσi for i ≤ |S|.

(iii: AEPT) Let x 6= x∗ but xS = x∗S . Then Com(ck;x; r) − Com(ck;x∗; r∗) = RM
(

x−x∗
r−r∗

)
=

R
(

0q∑
i∈[1 .. n]\S(xi−x

∗
i )δi+(r−r∗)

)
= 0q+1, since from tdOpen, r∗ =

∑
i∈[1 .. n]\S(xi − x∗i )δi + r.

(iv: SPB) Since F = [·] is injective (because the bilinear group has a prime order), this follows from Item ii
and Lemma 1.

(v: AEPH) Let x,x∗ be such that xS = x∗S . Then M( xr ) = (x>S , 0, . . . , 0, r +
∑
i∈[1 .. n]\S xiσi)

> and

similarly M
(
x∗

r∗
)
= ((x∗S)

>, 0, . . . , 0, r∗ +
∑
i∈[1 .. n]\S x

∗
i σi)

>. Thus, both have �rst q elements equal and

the last element is uniformly random. Clearly then also Com(ck;x; r) = RM( xr ) and Com(ck;x∗; r∗) =
RM

(
x∗

r∗
)
are indistinguishable.

(vi: CB and CH): Follows from Theorem 1, Item i, SPB and AEPH. ut

E Details of Functional SSB Commitments

E.1 De�nitions

Essentially the only di�erence between an SSB commitment and a functional SSB commitment is that in
the former S is a subset of [1 .. q] and in the latter S is a subset of some function set F . For the sake of
completeness we provide the formal de�nition below.

De�nition 3. An F -extractable functional SSB commitment scheme COM = (Pgen,KC,Com, tdOpen,ExtF )
for a function family F consists of the following polynomial-time algorithms:
Parameter generation: Pgen(1λ) returns parameters p (for example, group description). We allow F to

depend on p.
Commitment key generation: for parameters p, a positive integer n ∈ poly(λ), an integer q ∈ [1 .. n],

and a tuple S = (f1, . . . , f|S|) ⊆ F with |S| ≤ q, KC(p, n, q,S) outputs a commitment key ck and a
trapdoor td = (ek, tk). Here, ck implicitly speci�es p, the message space MSP, the randomizer space RSP,
and the commitment space CSP, such that F (MSP) ⊆ CSP, ek is the extraction key, and tk is the trapdoor
key. For any other input, KC outputs (ck, td) = (⊥,⊥).

Commitment: for p ∈ Pgen(1λ), a commitment key ck 6= ⊥, a message x ∈ MSPn, and a randomizer
r ∈ RSP, Com(ck;x; r) outputs a commitment c ∈ CSP.

Trapdoor opening: for p ∈ Pgen(1λ), S ⊆ F with |S| ≤ q, (ck, (ek, tk)) ∈ KC(p, n, q,S), two messages
x,x∗ ∈ MSPn, and a randomizer r ∈ RSP, tdOpen(p, tk;x, r,x∗) returns a randomizer r∗ ∈ RSP.

Extraction: for p ∈ Pgen(1λ), S = (f1, . . . , f|S|) ⊆ F with 1 ≤ |S| ≤ q, (ck, (ek, tk)) ∈ KC(p, n, q,S), and
c ∈ CSP, ExtF (p, ek; c) returns a tuple

(
F (f1(x)), . . . , F (f|S|(x))

)
∈ MSP|S|;

For {fi}qi=1 ⊆ F and vector x let us denote xS = (f1(x), . . . , fq(x)).
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De�nition 4. An F -extractable functional SSB commitment scheme COM for function family F is secure
if it satis�es the following security requirements.
Somewhere Statistically Binding (SSB): ∀λ, unbounded A, n ∈ poly (λ), q ∈ [1 .. n],

AdvssbA,COM,n,q(λ) ≈λ 0, where AdvssbA,COM,n,q(λ) :=

Pr

p← Pgen(1λ);S ← A(p, n, q) s.t. S ⊆ F ∧ |S| ≤ q;
(ck, td)← KC(p, n, q,S); (x0,x1, r0, r1)← A(ck) s.t. x0S 6= x1S :

Com(ck;x0; r0) = Com(ck;x1; r1)

 .

We say that COM is somewhere perfectly binding (SPB) if AdvssbA,COM,n,q(λ) = 0.
Almost Everywhere Statistically Hiding (AESH): ∀λ, unbounded A, n ∈ poly (λ), q ∈ [1 .. n],

AdvaeshA,COM,n,q(λ) := 2 · |εaeshA,COM,n,q(λ)− 1/2| ≈λ 0, where εaeshA,COM,n,q(λ) :=

Pr

p← Pgen(1λ);S ← A(p, n, q) s.t. S ⊆ F ∧ |S| ≤ q;
(ck, td)← KC(p, n, q,S); (x0,x1)← A(ck) s.t. x0S = x1S ;

β←$ {0, 1} ; r←$ RSP : A(Com(ck;xβ ; r)) = β

 .

COM is almost everywhere perfectly hiding (AEPH) if AdvaeshA,COM,n,q(λ) = 0.

Somewhere Statistical F -Extractability (F -SSE): ∀λ, p ∈ Pgen(1λ), n ∈ poly(λ), q ∈ [1 .. n], S =
(f1, . . . , f|S|) ⊆ F with |S| ≤ q, (ck, (ek, tk)) ← KC(p, n, q,S), and PPT A, AdvsseA,F,COM,n,q(λ) ≈λ 0,
where AdvsseA,F,COM,n,q(λ) :=

Pr
[
x, r ← A(ck) : ExtF (p, ek;Com(ck;x; r)) 6=

(
F (f1(x)), . . . , F (f|S|(x))

)]
.

It is somewhere perfect extractable if AdvsseA,F,COM,n,q(λ) = 0.
Almost Everywhere Statistical Trapdoor (AEST): ∀λ, n ∈ poly(λ), q ∈ [1 .. n] and unbounded A,

AdvaestA,COM,n,q(λ)(λ) ≈λ 0, where AdvaestA,COM,n,q(λ)(λ) =

Pr

p ∈ Pgen(1λ);S ← A(p, n, q) s.t. S ⊆ F ∧ |S| ≤ q;
(ck, td)← KC(p, n, q,S); (x0,x1, r0)← A(ck) s.t. x0S = x1S :

r∗ ← tdOpen(p, tk;x, r,x∗) : Com(ck;x; r) 6= Com(ck;x∗; r∗)

 .

It is AEPT (almost everywhere perfect trapdoor) if AdvaestA,COM,n,q(λ)(λ) = 1.

Computational Binding (CB): ∀ PPT A, n ∈ poly(λ), q ∈ [1 .. n], AdvcbA,COM,n,q(λ) = negl(λ), where

AdvcbA,COM,n,q(λ) :=

Pr

p← Pgen(1λ);S ← A(p, n, q) s.t. S ⊆ F ∧ |S| ≤ q;
(ck, td)← KC(p, n, q,S); (x0,x1, r0, r1)← A(ck) s.t. x0 6= x1 :

Com(ck;x0; r0) = Com(ck;x1; r1)

 .

Computational Hiding (CH): ∀ PPT A, n ∈ poly(λ), q ∈ [1 .. n], AdvchA,COM,n,q(λ) := 2 · |εchA,COM,n,q(λ)−
1/2| = negl(λ), where εchA,COM,n,q(λ) :=

Pr

p← Pgen(1λ);S ← A(p, n, q) s.t. S ⊆ F ∧ |S| ≤ q;
(ck, td)← KC(p, n, q,S); (x0,x1)← A(ck);β←$ {0, 1} ;
r←$ RSP : A(Com(ck;xβ ; r)) = β

 .

E.2 Security proofs

Before proving the security of linear EMP, let us recall some well-known decisional assumptions.
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Decisional Di�e-Hellman (DDH) Assumption. Let ι ∈ {1, 2}. DDHGι holds relative to Pgen, if ∀
PPT A, AdvddhA,ι,Pgen(λ) := |ε0A(λ)− ε1A(λ)| = negl(λ), where

εβA(λ) := Pr
[
p← Pgen(1λ);x, y, z←$Zp : A(p, [x, y, xy + βz]ι) = 1

]
.

Rank Assumption. Let ι ∈ {1, 2}. (`, k, r0, r1)-Rank assumption for 1 ≤ r0 < r1 ≤ min(`, k) holds relative
to Pgen, if ∀ PPT A, AdvrankA,`,k,r0,r1,ι,Pgen(λ) := |ε

0
A(λ)− ε1A(λ)| = negl(λ), if

εβA(λ) := Pr
[
p← Pgen(1λ);A←$U (rβ)

`k : A(p, [A]ι) = 1
]
,

where U (rβ)
`k is the uniform distribution over rank rβ matrices Z`×kp .

Theorem 3 ( [43]). Let ι ∈ {1, 2}. For any `, k, r0, r1 ∈ Z such that 1 ≤ r0 < r1 ≤ min(`, k), any PPT A,
and any Pgen,

AdvrankA,`,k,r0,r1,ι,Pgen(λ) ≤ dlog2(r1/r0)e · Adv
ddh
A,ι,Pgen(λ) .

Theorem 4. Let Pgenbg be a bilinear group generator. Fix n and q. The commitment scheme in Fig. 3 is

(i) FSH relative to Pgenbg under the DDHGι assumption: for each PPT A, there exists a PPT B, such
that AdvfshA,COM,n,q(λ) ≤ dlog2(q + 1)e · AdvddhB,ι,Pgen(λ).

(ii) F -SSE for F = [·]ι (thus, F depends on p),
(iii) SPB,
(iv) AEPH,
(v) AEPT,
(vi) CB and CH.

Proof. (i: FSH) Since given a matrix M ′ of rank r ∈ [1 .. q + 1], the matrix RM ′ is a random matrix
of rank r with an overwhelming probability. Then, distinguishing commitment keys ck1 = [R1M

′
1]ι and

ck2 = [R2M
′
2]ι is equivalent to breaking the rank assumption. Now, considering Theorem 3 we get that

for each adversary A against FSH, there exists an adversary B against the DDH in Gι such that the bound
AdvfshA,COM,n,q(λ) ' AdvrankB,ι,Pgen(λ) ≤ dlog2(r1/r0)e · Adv

ddh
B,ι,Pgen(λ) holds. In the worst case one matrix has

rank r0 = 1 and the other has rank r1 = q + 1, so the worst bound is dlog2(q + 1)e · AdvddhB,ι,Pgen(λ) .
(ii: F -SSE) For any x ∈ Znp and r ∈ Zq+1

p , we have Com(ck;x; r) = [RM ′( xr )]ι = [c]ι =. Then,

Ext(p, ek = R−1; [c]ι) computes R−1[c]ι = [M ′( xr )]ι =
[

Mx
r>x+r

]
ι
and outputs [Mx]ι which is exatly what

we wanted to extract.

(iii: SPB) Clearly, there are no x0,x1 ∈ Znp such that Mx0 6= Mx1 and [c]ι := Com(ck;x0; r0) =
Com(ck;x1; r1) since by the F -SSE property we have that Ext(p, ek = R−1; [c]ι) = [Mx0]ι = [Mx1]ι.

(iv: AEPH) Suppose that the adversary A on input (p, n, q) outputs S = M ∈ Zq×np , then gets as an

input the public key g = R ·M ′ whereM ′ =
(
M 0
r> 1

)
, R ∈ Z(q+1)(q+1)

p is some full rank matrix, and r ∈ Znp ,
and �nally outputs (x0,x1) such that Mx0 =Mx1.

Let us analyze distributions of C0 = Com(ck;x0;0 ) and C1 = Com(ck;x1; r1) for a uniformly random

r0, r1. For β ∈ {0, 1}, we can de�ne [uβ ] := [M ′(
xβ
rβ )] =

[
Mxβ

r>xβ+rβ

]
. We see that top q elements of u0

and u1 are equal and the last element is uniformly random. Thus, u0 and u1 are indistinguishable. Since
Cβ = Com(ck;xβ ; rβ) = R[uβ ], then also C1 and C2 are indistinguishable.

(v: AEPT) Let r0 ∈ Zp and x0,x1 ∈ Znp such that Mx0 = Mx1. In tdOpen, we de�ne r1 =∑
i∈[1 .. n](x0,i − x1,i)ri + r0. Then, r

>x1 + r1 = r>x0 + r0. Using, the de�nition of ub from the previ-

ous property, we see that u0 = u1 and then also Com(ck;x0; r0) = Com(ck;x1; r1).

(vi: CB and CH) Follows directly from the analog of Theorem 1. ut

21



F Details in QA-NIZK Application Section 6.2

F.1 Preliminaries

Perfectly binding commitment. We use ElGamal encryption as our perfectly binding commitment. In
particular, the commitment key is ck = [u]1 = [1, u]>1 where u←$Zp and Comck(a ∈ Znp ; r ∈ Znp ) = [c]1 :=
([r]1, [a]1+r[u]1). In matrix form [ci]1 = ai[e2]1+ ri[u]1. To [·]1-extract the message, we can simply decrypt
each individual ciphertext, that is [ai]1 = [ci,2]1 − u[ci,1]1 where [ci]1 = [ci,1, ci,2]

>
1 .

SNARK for SAP. Let χ1, . . . , χd ∈ Zp be unique interpolation points. We de�ne

v(X) =

n∑
i=1

aivi(X), w(X) =

n∑
i=1

aiwi(X) (2)

where vi(X), wi(X) are polynomials of degree less than d such that vi(χj) = vij and wi(χj) = −wij .
Moreover, let us de�ne p(X) = v(X)2 −w(X) and t(X) =

∏d
j=1(X − χj). We have that p(χj) = (a>vj)

2 −
a>wj and thus the j-th SAP equation is sati�ed exactly when χj is a root of p(X). In particular, when all
interpolation points are roots of p(X), then t(X) divides p(X) and all the SAP equations are satis�ed.

We can use these polynomial representations to construct a SNARK. Our CRS will contain {
[
si
]
1,2
}di=1

where s←$Zp is a secret point. The prover will compute [V ]1,2 = [V (s)]1,2, [W ]1 = [W (s)]1 and [H]1 =

[H(s)]1 where V (X) = v(X) + δvt(X), W (X) = w(X) + δwt(X), and H(X) = (V (X)2 − W (X))/t(X).
Elements δv and δw are picked randomly to hide the witness. The veri�er checks that the equation [V ]1[V ]2−
[W ]1[1]2 = [H]1[t(s)]2 is satis�ed. Intuitively, we can use this to show that t(X) divides P (X) := V (X)2 −
W (X). It is easy to see that if t(X) | P (X) then also t(X) | p(X) and thus the SAP relation is satis�ed.

BLS argument. As a subargument, we use a QA-NIZK argument for membership in linear spaces
(Kbls,Pbls,Vbls) de�ned in [26] for the bilateral linear subspace (bls) language L[N1]1,[N2]2 := {([x]1, [y]2) |
∃w ∈ Ztp : x = N1w ∧ y = N2w} for N1 ∈ Zn×tp , N2 ∈ Zm×tp . We use it to prove that commitments in
di�erent groups open to the same value. It has perfect completeness, strong quasi-adaptive soundness under
the SKerMDH assumption, and perfect zero-knowledge. The proof size is 2 elements in G1 and 2 elements in
G2. We refer the reader to the original paper for more details. We leave it as an open question if the slightly
more e�cient construction by Ràfols and Silva [42] can be used.

New target assumption. The q-target strong Di�e-Hellman assumption [6] says that given {
[
si
]
1,2
}qi=1

for a random s, it is computationally hard to �nd [ν]T = [1/(s − r)]T for any r ∈ Zp. We generalize this
assumption and intuitively say that it is hard to compute [ν]T = [c/(s − r)]T where r ∈ Zp and c is a
constant independent of s. In order to satisfy the latter requirement, we include a challenge value [z]2 and
let the adversary additionally output [c]1 and [c′]2 such that zc = c′. Intuitively, then c cannot depend on si

since otherwise c′ should depend on zsi which is not a part of the challenge. For technical reasons, c in our
assumption has a slightly more structured form β2

1 − β2.

De�nition 5 (q-SATSDH). The q-Square Arithmetic Target Strong Di�e-Hellman assumption holds relative
to Pgen, if ∀ PPT adversaries A,

Pr

p← Pgen(1λ); s, z←$Zp;(
r, [β1, β2]1, [β̃1, β̃2]2, [ν]T

)
← A

(
p, {
[
si
]
1,2
}qi=1, [z]2

)
:

β̃1 = zβ1 ∧ β̃2 = zβ2 ∧ β2
1 6= β2 ∧ ν =

β2
1−β2

s−r

 ≈λ 0.

We prove in the following that our new assumption is falsi�able and equivalent to TSDH assumption under
a knowledge assumption.

Let us �rst see that q-SATSDH is falsi�able. Observe that the challenger knows z, s ∈ Zp. Thus, upon
receiving (r, [β1, β2]1, [β̃1, β̃2]2, [ν]T ) it veri�es that: (a) [1]1[β̃1]2 = [β1]1[z]2, (b) [1]1[β̃2]2 = [β2]1[z]2, (c)
1
z [β1]1[β̃1]2 6= [β2]1[1]2, and (d) (s− r)[ν]T = 1

z [β1]1[β̃1]2 − [β2]1[1]2.
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We prove that if the Knowledge of Exponent Assumption in bilinear groups holds, then both q-TSDH
and q-SATSDH assumptions are equivalent. We recall in the following the de�nition of the Bilinear Bilinear
Di�e-Hellman Knowledge of Exponent assumption.

De�nition 6 (Bilinear Di�e-Hellman Knowledge of Exponent Assumption, BDH-KE [1]). For
all non-uniform PPT adversaries A:

Pr [([α1]1 , [α2]2 ‖a)← (A‖XA)(gk) : e ([α1]1 , [1]2) = e ([1]1, [α2]2) ∧ a 6= α1] ≈ 0,

where the probability is taken over gk← Pgen(1λ) and the coin tosses of adversary A.

Lemma 5. Given a bilinear group gk = (q,G1,G2,GT ), if the q-SATSDH assumption holds then the q-TSDH
assumption holds.

Proof. Assume that A is an adversary against the q-TSDH assumption, we construct another adversary B
against q-SATSDH assumption that receives a challenge tuple (gk, {[si]1,2}qi=1, [z]2) and sends the elements
(gk, {[si]1,2}qi=1) toA.A then returns (r, [ν]T ) that breaks q-TSDH. The adversary B chooses β1, β2 ← Zp such
that β2

1 6= β2 and returns
(
r, [β1, β2]1, β1[z]2, β2[z]2, (β

2
1 − β2)[ν]T

)
which breaks the q-SATSDH assumption.

ut

Lemma 6. Given a bilinear group gk = (q,G1,G2,GT ) where BDHKE assumption holds, if the q-TSDH
assumption holds then the q-SATSDH assumption holds.

Proof. Assume that A is an adversary against the q-SATSDH assumption, we construct an another adver-
sary B against the q-TSDH assumption that receives a challenge tuple (gk, {[si]1,2}qi=1). B chooses z ← Zp
and sends the elements (gk, {[si]1,2}qi=1, [z]2) to A. The adversary A then returns (r, [β1, β2]1, [β3, β4]2, [ν]T )

that breaks q-SATSDH. Now B computes [β̂1]2 = 1
z [β3]2 and [β̂2]2 = 1

z [β4]2 which satisfy e([βi]1, [1]2) =

e([1]1, [β̂i]2) for i = 1, 2. By the BDHKE assumption there exists and extractor of β1, β2 that solves the

q-TSDH assumption with
(
r, 1
β2
1−β2

[ν]T

)
. ut

F.2 Security of our QA-NIZK in Section 6.2

Security intuition. In the security proof, the soundness game is �rst changed by randomly picking one of

the SAP equations
(
a>vj∗

)2 − a>wj∗ = 0 for some j∗ ∈ [1 .. d]; with probability ≥ 1/d this equation does
not hold, assuming that the adversary is successful. By the characterization of the SAP, if the j∗-th equation
does not hold, then X − χj∗ - P (X). In particular, let qv(X), qw(X) be unique polynomials and βv, βw ∈ Zp
be unique values such that V (X) = qv(X)(X − χj∗) + βv and W (X) = qw(X)(X − χj∗) + βw. Then we can
express the division of P (X) = V (X)2 −W (X) by X − χj∗ as follows,

P (X) = V (X)(qv(X)(X − χj∗) + βv)− qw(X)(X − χj∗)− βw
=(X − χj∗) (V (X)qv(X)− qw(X)) + V (X)βv − βw
=(X − χj∗) (V (X)qv(X)− qw(X)) + (qv(X)(X − χj∗) + βv)βv − βw
=(X − χj∗) (qv(X) (V (X) + βv)− qw(X)) + (β2

v − βw) . (3)

Since, X − χj∗ - P (X) we get that (β2
v − βw) 6= 0.

We denote by αi(X) and βv,i the quotient and the remainder of the polynomial division of vi(X) by
X−χj∗ , i.e., vi(X) = αi(X)(X−χj∗)+βv,i. Similarly, we can also express wi(X) = α̂i(X)(X−χj∗)+βw,i.
As a special case, we de�ne t(X) = αt(X)(X − χj∗) + βt. The de�nition of V (X) and Eq. (2) give us
V (X) = (

∑n
i=1 aiαi(X) + δvαt) (X − χj∗) +

∑n
i=1 aiβv,i + δvβt, and thus

qv(X) =

n∑
i=1

aiαi(X) + δvαt, βv =

n∑
i=1

aiβv,i + δvβt. (4)
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Similarly, we get that

qw(X) =

n∑
i=1

aiα̂i(X) + δwβt, βw =

n∑
i=1

aiβw,i + δwβt. (5)

The security proof extracts the following functions of the witness a and δv, δw: [qv(s)]2 = [
∑n
i=1 aiαi(s) +

δvβt]2, [βvz]2 = [
∑n
i=1 aizβv,i + δvzβt]2, and [βwz]2 = [

∑n
i=1 aizβw,i + δwzβt]2, where z, s ∈ Zp are secrets

of SATSDH assumption. The idea is that we can break the d-SATSDH assumption by computing [βv]1 =∑n
i=1 βv,i[ai]1+βt[δv]1 (note that [ai]1 and [δv]1 are extractable from the PB commitment and [V ]1), [βw]1 =∑n
i=1 βw,i[ai]1 + βt[δw]1 and moreover by Eq. (3),

[
β2
v−βw
s−χj∗

]
T
=
[
P (s)
s−χj∗

]
T
− ([V ]1 + [βv]1)[qv(s)]2 + [qw(s)]T ,

where [ P (s)
s−χj∗

]T can be computed from the veri�cation equation. Together with other extracted elements,

this is now enough to break the SATSDH assumption. We refer to Theorem 6 for more details.

Proofs of security. The following two theorems prove the completeness, zero-knowledge, and soundness
properties of our QA-NIZK construction.

Theorem 5. The QA-NIZK argument has perfect completeness and perfect zero-knowledge.

Proof. Completeness. Since the BLS argument is perfectly complete, we only need to check the last veri�ca-
tion equation: the left hand side is [V ]1[V ]2 − [W ]1[1]2 =

[
V 2 −W

]
T
= [P (s)]T , and the right hand side is

[H]1[t(s)]2 = [H(s)]1[t(s)]2 = [P (s)]T .
Zero-knowledge.We prove it by showing that the proof can be e�ciently simulated given the BLS trapdoor

tdbls. Since we set Sv = ∅, then the SSB commitments are perfectly hiding by the AEPH property. Thus we
may simulate [c̃]2 by committing to 0. Next, V andW are uniformly random and independently distributed in
the honest proof. Hence, the simulator can pick µ1, µ2←$Zp and de�ne [V ]1,2 = µ1[t(s)]1,2, [W ]1 = µ2[t(s)]1.
Then, [H]1 = µ2

1[t(s)]1 − [µ2]1 and the veri�cation equation will be satis�ed. Finally, the BLS proof ψ can
be perfectly simulated (see [26]) using the trapdoor tdbls. ut

Theorem 6. Let Advsnd(A) be the advantage of any PPT adversary A against the soundness of the QA-
NIZK argument. There exist PPT adversaries B1 against the DDH assumption in G2, B2 against strong
soundness of the BLS argument, and B3 against the d-SATSDH assumption such that

AdvSnd(A) ≤ 3AdvDDH,G2(B1) + d
(
Advbls(B2) + Advd-SATSDH(B3)

)
.

Proof. In order to prove soundness we will prove indistinguishability of the following games.
� Real: This is the real soundness game. The output is 1 if the adversary produces a false accepting proof,

i.e., if there is some equation
(
a>vi

)2 − a>wi 6= 0 and the veri�er accepts the proof. Note that a is
uniquely determined since commitment [c]1 is perfectly binding.

� Game0: This game is identical to the previous one, except instead of generating the commitment key as
ck← Dp(n, d), the game samples u←$Zp himself, sets ck = [1, u]>1 , and stores u. Clearly, A's advantage
is the same in Real and Game0.

� Game1: This game is identical to the previous one except that some j∗←$ [1 .. d] is chosen randomly and
we change the commitment key ck′ by using a di�erent matrix M 6= 0 during its generation. For each
i ∈ [1 .. n], let us express

vi(X) = αi(X)(X − χj∗) + βv,i

wi(X) = α̂i(X)(X − χj∗) + βw,i

and t(X) = αt(X)(X − χj∗) + βt. We will pick [z]2←$G2 that is part of the SATSDH challenge and
change the EMP commitment key ck′ by setting

M =


α1(s) . . . αn(s) αn+1(s)
βv,1z . . . βv,nz 0
βw,1z . . . βw,nz 0
vj∗,1 . . . vj∗,n 0

 .
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It is important to note that from {
[
si
]
1,2
}di=1 and [z]2 we can only compute [M]2. However, looking at

the KC algorithm in Fig. 3, it is clear that ck′ can be computed even if only [M]2 is known. The game

aborts if a satis�es the j∗-th equation , i.e. if
(
a>vj∗

)2 − a>wj∗ = 010.
Let us now analyze the games.

Lemma 7. There exists an adversary B1 against DDH in G2 such that |Pr[Game0(A) = 1]−Pr[Game1(A) =
1]| ≤ 3AdvDDH,G2

(B1).

Proof. Game0 and Game1 di�er only in the linear EMP commitment key that encode di�erent functions,
but these keys are indistinguishable due to the FSH property. In particular, we can bound the advantage
of an adversary B1 against the DDHG2

assumption as in Theorem 4: AdvfshA,COM,n,q(λ) ≤ dlog2(q + 1)e ·
AdvddhB1,2,Pgen(λ) where in this case q = 4. ut

Lemma 8. There exists an adversary B2 against the strong soundness of the bls proof and a d-SATSDH
adversary B3 such that

Pr[Game1(A) = 1] ≤ d (Abls(B2) +Ad-SATSDH(B3)) .

Proof. First of all, if A breaks soundness, at least one equation j∗ does not hold, and the challenger can
guess j∗ with probability at least 1

d .

Let E be the event that ([c]1, [V ]1, [W ]1, [V ]2, [c̃]2)
> ∈ Im

(
[N1]1
[N2]2

)
and E be the complementary event.

Obviously,
Pr[Game1(A) = 1] ≤ Pr[Game1(A) = 1|E] + Pr[Game1(A) = 1|E]. (6)

For the latter event, we can easily construct from A a PPT adversary B2 that breaks strong quasi-adaptive
soundness of the BLS argument. Such an adversary receives as an input (crsbls, % = ([N1]1, [N2]2), ωρ =
(N1,N2)) sampled according to the distribution speci�ed by Game3. In particular, N2 contains t(s) and thus
B2 can e�ciently recover s by �nding roots of the polynomial t(X)− t(s). This is su�cient to construct the
rest of the CRS chosen in the usual way. Now adversary B2 can use the output of A to break the soundness
of bls in a straightforward way. Thus, Pr[Game1(A) = 1|E] ≤ Advbls(B2).

In the following, we bound the �rst term of the sum in Eq. (6) by constructing an adversary B3 which
breaks the d-SATSDH assumption in the case that E happens. Note that in this case there exists a witness

(a, r, δv, δw, rv)
>
for membership in Im

(
[N1]1
[N2]2

)
. Furthermore, this witness is unique since

� [c]1 is perfectly binding and thus uniquely �xes a and r,
� [V ]1 and a uniquely �x δv,
� [W ]1 and a uniquely �x δw, and
� [a]1 and δv uniquely �x rv.

In particular, this uniquely determines the polynomial P (X) = (v(X) + δvt(X))2 − w(X) + δwt(X).
We now describe the full reduction. Adversary B3 receives the d-SATSDH assumption challenge(

p, {
[
si
]
1,2
}qi=1, [z]2

)
and uses this to construct the CRS just as it is speci�ed in Game1. Note that to

create the commitment key ck′, it constructs the matrix M and the corresponding extraction key ek′. The
CRS is then sent to the soundness adversary A that returns [c]1 and π.

The adversary B3 extracts [a]1, [δv]1, [δw]1 ∈ G1 from [c]1 by using the secret key u; and extracts [qv(s)]2 =

[
∑n+1
i=1 aiαi(s) + δvαn+1(s)]2, [βvz]2, [βwz]2 and [

∑
i aivj∗,i]2 from ek′. Then it aborts if the j∗-th equation

is satis�ed, i.e. if (
n∑
i=1

[ai]1vj∗,i

)
·

[
n∑
i=1

aivj∗,i

]
2

−

(
n∑
i=1

[ai]1wj∗,i

)
· [1]2 = [0]T .

10 This statement is well-de�ned since a is uniquely determined by the commitment [c]1. The check can be done in
GT from [ai]1 and [

∑
aivj∗,i]2.
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Since veri�cation succeeds, [V ]1[V ]2 − [W ]T = [H(s)]1[t(s)]2. By the de�nition of P (X), we have that the
left hand side is [V 2 −W ]T = [P (s)]T .

If we divide both sides of the veri�cation equation by s− χj∗ , then

[
P (s)

s− χj∗

]
T

= [H]1 ·
[

t(s)

s− χj∗

]
2

= [H]1 ·

∏
i 6=j∗

(s− χi)


2

,

so the adversary B3 can compute

[
P (s)

s− χj∗

]
T

from [H]1 and the powers of [s]2 in the CRS. On the other

hand, if we use equation (3) on P (X), then[
P (s)

s− χj∗

]
T

=

[
(V (s) + βv)qv(s)− qw(s) +

β2
v − βw
s− χj∗

]
T

, (7)

and we have β2
v − βw 6= 0 (otherwise the j∗-th equation is satis�ed, in which case the game aborts). We

describe in the following how B3 can compute the right hand side of Eq. (7) and the elements to break the
d-SATSDH Assumption.

According to Eq. (4) and Eq. (5), B3 can compute [βv]1 =
∑n
i=0[ai]1βv,i+[δv]1βt, [βw]1 =

∑n
i=0[ai]1βw,i+

[δw]1βt and also [V (s)+βv]1 = [V ]1+[βv]1, because it knows [V ]1 from the proof π and the extracted values
[ai]1, and βi are the reminders of dividing Vi(X) by X − χj∗ .

From these values, the extracted values and [V (s) + βv]2, B3 can derive [(V (s) + βv)qv(s)]T as [V (s) +
βv]1 · [qv(s)]2. Finally, it can directly compute [qw(s)]T from extracted elements [ai]1 for i ∈ [1 .. n] and [δw]1,

and public α̂i(s): [
∑n
i=1 aiα̂i(s) + δwβt]1. Thus, from equation (7) B3 recovers

[
β2
v − βw
s− χj∗

]
T

and returns

(
χj∗ , [βv]1, [βw]1, [zβv]2, [zβw]2,

[
β2
v − βw
s− χj∗

]
T

)
,

breaking the d-SATSDH assumption.
Hence by the triangle inequality we have 1

dPr[Game1(A) = 1] ≤ Abls(B2) +Ad-SATSDH(B3). ut

Finally, by Lemmas 7 and 8 we get that

AdvSnd(A) ≤ 3AdvDDH,G2
(B1) + d

(
Advbls(B2) + Advd-SATSDH(B3)

)
.

ut

E�ciency. The proof size in the original construction in [15] is 4 elements in G1 and 6 elements in G2,
while our construction's proof size is 5 elements in G1 and 8 elements in G2.
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