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Abstract. At FSE 2017, Gaži et al. demonstrated a pseudorandom function (PRF)
distinguisher (Gaži et al., ToSC 2016(2)) on PMAC with Ω(`q2/2n) advantage, where
q, `, and n, denote the number of queries, maximum permissible query length (in terms
of n-bit blocks), and block size of the underlying block cipher. This, in combination
with the upper bounds of O(`q2/2n) (Minematsu and Matsushima, FSE 2007) and
O(qσ/2n) (Nandi and Mandal, J. Mathematical Cryptology 2008(2)), resolved the
long-standing problem of exact security of PMAC. Gaži et al. also showed that the
dependency on ` can be dropped (i.e. O(q2/2n) bound up to ` ≤ 2n/2) for a simplified
version of PMAC, called sPMAC, by replacing the Gray code-based masking in PMAC
with any 4-wise independent universal hash-based masking. Recently, Naito proposed
another variant of PMAC with two powering-up maskings (Naito, ToSC 2019(2))
that achieves `-free bound of O(q2/2n), provided ` ≤ 2n/2. In this work, we first
identify a flaw in the analysis of Naito’s PMAC variant that invalidates the security
proof. Apparently, the flaw is not easy to fix under the existing proof setup. We
then formulate an equivalent problem which must be solved in order to achieve `-free
security bounds for this variant. Second, we show that sPMAC achieves O(q2/2n)
bound for a weaker notion of universality as compared to the earlier condition of
4-wise independence.
Keywords: PMAC · PMAC1 · PMAC_Plus · PRF · universal hash · tight security

1 Introduction
Message Authentication Codes or MACs are symmetric-key primitives that ensure
data integrity and authenticity. PMAC, by Black and Rogaway [BR02], is an example of
parallelizable block cipher-based MAC. A slightly simplified version1 of PMAC based on
an n-bit block cipher EK is defined as follows:

PMACK(m) := EK (EK(m1 ⊕ γ1 ·∆)⊕ · · · ⊕ EK(m`−1 ⊕ γ`−1 ·∆)⊕m`) ,

where (m1, . . . ,m`) is n-bit (also referred as block) parsing of the input message m, and
∆ = EK(0n) is the masking key. PMAC and its close variant PMAC1 [Rog04] have the
ability to significantly outperform sequential block cipher based-MACs, like the CBC-MAC
family [EMST76, BKR94, BdBB+95, BR00], by virtue of their parallelizable nature.

Existing Analysis of PMAC: In the following discussion, q, ` and σ, respectively, denote
the number of queries, maximum permissible message length in blocks, and total number
of blocks in all queries, i.e, σ ≤ `q. It is a well-known observation [GGM84, BGM04]
that a good PRF is necessarily a good deterministic2 MAC. Consequently, most of the

1Ignoring the padding rule.
2This observation is not true, in general, for nonce-based or probabilistic MACs.
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research on the security of PMAC have explored its pseudorandomness properties. The
first result along this line came in the introductory paper by Black and Rogaway [BR02]
who showed an upper bound of O(σ2/2n) on the PRF advantage. A different bound of the
form O(`q2/2n) was shown by Minematsu and Matsushima [MM07]. This bound is better
than the original bound whenever message lengths do not vary much from `. However,
this bound can be worse when very few messages are of length ` and rest of the messages
are of length much smaller than `. Nandi and Mandal [NM08] showed an improved bound
about O(qσ/2n). This is indeed an improved bound for all choices of parameters.

Luykx et al. [LPSY16] studied the problem from lower bound perspective. Specifically,
they constructed a pair of messages such that the PMAC outputs corresponding to the
two messages collide with probability roughly `/2n, leading to a distinguishing attack with
advantage `/2n for q = 2 queries. However, they did not show how this can be extended
to get collision probability about `q2/2n for q ≥ 2 messages. Later Gaži et al. [GPR16]
constructed an adversary which makes q queries, each of length exactly ` blocks, so that
the collision probability of PMAC outputs is about `q2/2n. Thus, the bounds `q2/2n and
qσ/2n are essentially tight. However, it is worth noting that the attack does not work for
PMAC1 [Rog04] where the Gray code sequence is replaced with the sequence α, α2, α3, . . .
for some fixed primitive element α of the Galois field GF(2n). So, the exact security of
PMAC1 is still an open problem.

PRFs with Length Independent Security: In applications where we process large
messages or where most of the messages are of lengths much smaller than `, a bound of
the form O(q2/2n) (length-independent) is much desired, as compared to say a bound of
O(`q2/2n). For instance, AES128 [NIS01] based PMAC needs rekeying after roughly 222

messages when message length can be as large as 250 bytes and more than 2−32 advantage
is not tolerated. Whereas, any construction with q2/2n or similar bound can be safely
used without rekeying for up to 248 messages in a similar setup. As a result, this line of
research has seen a lot of interest over the years.

EMAC [BKR94, BdBB+95], ECBC and FCBC [BR00] are shown to have O(q2/2n) PRF
advantage provided ` ≤ 2n/4 [JN16a, JN16b]. However, these constructions are sequential
in nature. Luykx et al. [LPTY16] proposed a parallel construction, called LightMAC, that
achieves `-free security. However, inspired by Bernstein’s protected counter sums [Ber99],
LightMAC uses a counter-based encoding which limits the efficiency. For example, to allow
a message length of 2n/2 blocks, LightMAC requires two calls of block ciphers to process one
block of message, i.e., it is a rate3 1/2 construction. Dutta et al. [DJN17] proposed some
optimal strategies to encode counter and message in input blocks. Although this increases
the rate for smaller messages, still the rate is low as compared to PMAC or PMAC1.

With respect to PMAC-like designs, Gaži et al. [GPR16] proved O(q2/2n) bound for a
simplified variant of PMAC, called sPMAC, albeit with comparatively expansive masking
methods. For example, the masking function should be a 4-wise independent function.
Most efficient algebraic instantiations of such a function require at least four keys and
several field multiplications. Very recently, Naito [Nai19] proposed a variant of PMAC1,
which uses two powering-up maskings (instead of one used in PMAC1). He showed O(q2/2n)
advantage provided ` ≤ 2n/2.

The constructions following Double-block Hash-then-Sum paradigm [DDNP18], in-
cluding PMAC_Plus [Yas11] and LightMAC_Plus [Nai17], achieve beyond the birthday
bound (BBB) security [KLL20] and hence can achieve `-free bound for a wide range of `.
However, these constructions require almost twice the memory (due to the BBB security
requirement) used in other PMAC variants. So, in this paper we only focus on PMAC-like
designs that follow the Hash-then-PRP paradigm [Sho04].

3Roughly speaking, rate is the ratio of message length in blocks to the number of block cipher calls
required to process the message.
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1.1 Our Contributions
Our contributions are twofold:

1. Revisiting Naito’s variant of PMAC1: As of now, Naito’s PMAC1 variant
[Nai19] is the only known rate-1 PMAC-like construction that achieves `-free security
bound (for ` < 2n/2). We show that the security analysis of this construction is
incorrect (see section 4). Further, we state an equivalent problem which must be
solved to prove the `-free security of this construction. However, we are not able
to solve that equivalent problem. So the exact security of Naito’s variant is still an
open problem.

2. Relaxing the Security Precondition for sPMAC: In [GPR16], sPMAC is
shown to have `-free security bound up to ` < 2n/2 when the underlying masking
function is 4-wise independent hash. We relax the 4-wise independence condition to
2-wise almost XOR universality (see section 5).

2 Preliminaries
Basic Notations: For any positive integer n, we write [n] := {1, . . . , n}. We write xq to
denote a q-tuple (x1, . . . , xq).

Notations on Blocks: Throughout the paper n denotes the security parameter as well
as the bit size of the underlying permutation. We call the set B := {0, 1}n block set
and elements of the set blocks. For any binary string m ∈ {0, 1}∗, we denote the number
of bits of m as |m| and we write lm := d|m|/ne.4 We use “‖” to denote concatenation
operations on bit strings. For a message m ∈ {0, 1}nl, we write m = m[1]‖ · · · ‖m[l] with
m[i] ∈ {0, 1}n for all i ∈ [l].

Notations on Block Functions and Permutations: We call a function block
function if the range of the function is the block set. The set of all block functions defined
over a set D is denoted as FuncD. The set of all permutations over the block set (also
called block permutation) is denoted as Perm.

A keyed block function F with key space K and domain D is a block function over
K ×D. We also view it as an indexed family of functions, where K is the index set, i.e.,
for each K ∈K, we associate a function FK(·) := F (K, ·).

Multiset: Informally, a multiset X is a variant of set in which we allow elements to repeat.
One can equivalently define a multisetX by a set {(x,m) : x ∈ X, x appears m times in X}.
We write Xo to denote the set of all elements x which appears odd times in X. Note that,
Xo by definition is a set which can be empty. We say X is evenly repeated if Xo = ∅.

Example 1. Let X := {a, b, a, b, b, c} be a multiset. We represent it by the follow-
ing set {(a, 2), (b, 3), (c, 1)}. Note that Xo = {b, c}. Similarly, for a multiset Y :=
{a, b, a, b, b, b, c, c}, Yo = ∅ and hence Y is evenly repeated.

Given a block function π, we use shorthand notation π⊕(X) :=
⊕

x∈X π(x). With this
notation, it is easy to see that (the empty sum represents 0n)

π⊕(X) = π⊕(Xo) for every multiset X, (1)

and hence π⊕(X) = 0n whenever X is evenly repeated multiset.
Binary Field: In this paper, we view the block set B as the Galois field GF(2n). We
fix a primitive polynomial p(x) := p0 ⊕ p1x ⊕ · · · ⊕ pnxn where pi ∈ {0, 1}. Note that

4When m is a set we also write |m| to denote the size of the set m. So the notation |m| should be clear
from the context.
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p0 = pn = 1 (as it is a primitive polynomial). The field multiplication “·” between two
field elements is defined through the primitive polynomial. We abuse the notation 2 to
denote a primitive element of the underlying field GF(2n).

2.1 Hash Functions
In the following, let H be a keyed block function with keyspace K and domain D.

Collision Probability: For distinct m,m′ ∈ D, we define collision probability as

collH(m,m′) := Pr(H(K,m) = H(K,m′) : K ←$ K).

When D ⊆ {0, 1}∗, the collision probability can depend on the size of the inputs. We write

collH(`) = max
m 6=m′
|m|,|m′|≤`

collH(m,m′).

We generalize the above definition for more than two inputs. For q distinct inputs
m1, . . . ,mq ∈ D, we write

collH(mq) := Pr(∃i < j,H(K,mi) = H(K,mj) : K ←$ K), and
collH(q, `, σ) := max

mq :|mi|≤`∑q

i=1
|mi|≤σ

collH(mq).

By using the union bound, collH(q, `, σ) ≤
(
q
2
)
collH(`).

Definition 1 (Universal hash function). The keyed block functionH is called an ε-universal
hash if for all distinct m,m′ ∈ D, collH(m,m′) ≤ ε.

Definition 2 (XOR universal hash function). The keyed block function H is called an
ε-almost XOR universal hash if for all distinct m,m′ ∈ D and δ ∈ B,

Pr(H(K,m)⊕H(K,m′) = δ : K ←$ K) ≤ ε.

Definition 3 (k-wise independent hash function). The keyed block function H is called a
k-wise independent if for all distinct m1, . . . ,mk ∈ D and for all y1, . . . , yk ∈ B,

Pr(H(K,m1) = y1, . . . ,H(K,mk) = yk : K ←$ K) = 1
2kn .

The following observations are easy to establish.

1. A random function is k-wise independent for any k.

2. A 2-wise independent hash function is 2−n-AXU.

2.2 Pseudorandom Functions and the Hash-then-RP Paradigm
We write X ←$ X to represent that X is a uniform random variable taking values from a
finite nonempty set X.

Throughout, ρρρD←$ FuncD denotes a random function, and πππ←$ Perm denotes a random
permutation. We simply write the random function as ρρρ, when D is understood from the
context.

Definition 4 (Pseudorandom function). Let F be a keyed block function over a finite set
D with a finite key space K. The PRF-advantage of any oracle adversary A against F is
defined as

Advprf
F (A) :=

∣∣Pr(AFK = 1 : K ←$ K)− Pr(AρρρD = 1)
∣∣ .
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The maximum PRF-advantage of F is defined as

Advprf
F (q, `, σ) = max

A
Advprf

F (A),

where the maximum is taken over all adversaries A making at most q queries, each of
length at most `, and the total length of all queries at most σ, i.e., σ ≤ `q.

HK πππm t

Figure 2.1: The Hash-then-RP paradigm.

Hash-then-RP Construction: Let H : K × D → B be a keyed hash and πππ be
an n-bit random permutation. The composition πππ ◦ HK is called the Hash-then-RP
construction, where K ←$ K. When πππ is replaced with ρρρ, the resulting composition is
called the Hash-then-RF. These constructions have been studied in [CW79, Sho96]. Many
PRF constructions can be viewed as instances of Hash-then-RP/RF. For example, EMAC
[BKR94, BdBB+95], ECBC, FCBC [BR00], LightMAC [LPTY16] and protected counter
sum [Ber99]. Proposition 1 gives the PRF advantage for Hash-then-RP construction.

Proposition 1. Let H be a keyed block function with keyspace K and domain D. Then,
we have

Advprf
πππ◦H(q, `, σ) ≤ collH(q, `, σ) + q(q − 1)

2n+1 .

So, if H is an ε-universal hash function, then

Advprf
πππ◦H(q, `, σ) ≤ q(q − 1)

2

(
ε+ 1

2n

)
.

We skip a formal proof here as Proposition 1 is a well-known result. The readers are
referred to [GPR16, JN18] for a formal proof.

3 Revisiting Simplified PMAC
Description of sPMAC: Gaži et al. [GPR16] proposed a generalized version of PMAC,
called sPMAC, to capture the underlying masking function for a wide class of PMAC
variants.

Definition 5 (sPHash). For any permutation π ∈ Perm and a block-valued function
τ ∈ FuncN (referred as masking function), we define the simplified PMAC hash or sPHash
over the message space B+ as follows:
for all m := (m[1], . . . ,m[l]) ∈ Bl,

sPHashπ,τ (m) := m[l]⊕
l−1⊕
i=1

π(xτ (m, i)), where xτ (m, a) := m[a]⊕ τ(a). (2)

Clearly, sPHash is just an identity function for a single block message.
Now, given two permutations π, π′ ∈ Perm and a masking function τ ∈ FuncN, the

simplified PMAC or sPMAC construction (illustrated in Figure 3.1) is defined as follows:
for all m ∈ B+,

sPMACπ′,π,τ (m) := π′ (sPHashπ,τ (m)) .
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π π . . . π

⊕⊕⊕ ⊕⊕⊕ ⊕⊕⊕

m[1] m[2] m[`− 1]

τ(1) τ(2) τ(`− 1)

m[`]

⊕⊕⊕ ⊕⊕⊕. . . ⊕⊕⊕ π′ t

Figure 3.1: The simplified PMAC construction.

We call K := (π′, π, τ) the key of sPMAC. A concrete variant of PMAC is determined
whenever we fix a sampling mechanism of the key K.

sPMAC over arbitrary-length messages: For m ∈ {0, 1}∗, we define

m := m[1], . . . ,m[l] n← m

to be the function that partitions m into l = d|m|/ne blocks of size n bits, where the
last block is appended with 0s, if necessary. sPMAC can be easily extended for any
arbitrary-length message m ∈ {0, 1}∗, as sPMAC(m) := sPMAC(m). As the padding rule
is injective, there is no loss of generality in ignoring the padding and assuming all message
sizes are multiple of n.

PMAC variants from sPMAC: Now, we describe some variants of PMAC as instantiations
of sPMAC by defining the sampling mechanism of the key K = (πππ,πππ′, τττ).

1. PMAC: We get the original PMAC [BR02] construction by setting πππ←$ Perm, πππ′ =
πππ, and τττ(i) = γi · πππ(0), where γi is the ith element of the Gray code sequence
[Gra53, Rog04].

2. PMAC1: We get PMAC1 [Rog04] by setting πππ←$ Perm, πππ′ = πππ, and τττ(i) = 2i · πππ(0),
where 2 is a fixed primitive element of the Galois field GF(2n).

3. Gaži et al.’s variants: In [GPR16], Gaži et al. discussed two variants of PMAC. In
both the cases, πππ,πππ′←$ Perm and τττ is sampled independent of πππ,πππ′. The two choices
of τττ are the following:

(a) τττ is a uniform random function.
(b) τττ is a 4-wise independent hash function.

4. Naito’s variant of PMAC1: Naito proposed another variant of PMAC by setting
πππ,πππ′←$ Perm, and τττ(i) = 2i · L1 ⊕ 23i · L2 where L1, L2←$ B. In rest of the paper,
we call this construction NPMAC.

Upper Bound on the PRF Advantage of sPMAC: Any instance of sPMAC can be
viewed as an instance of Hash-then-RP, as long as πππ and πππ′ are sampled independently.
Thus, the result of Hash-then-RP is not applicable for PMAC and PMAC1 as πππ′ = πππ.

In this paper, we consider only those instances of sPMAC that follow the Hash-then-RP
paradigm where πππ,πππ′, τττ are all sampled independently. Moreover, πππ and πππ′ are random
permutations and hence any PMAC variant (and its underlying hash) are completely
determined once we fix a distribution for the masking function τττ , say τ . We write sPHashτ
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to represent sPHashπππ,τ and we write sPMACτ (m) := πππ′(sPMACτ (m)). We can restate
Proposition 1 in context of PMAC variants as follows.

Advprf
sPMACτττ (q, `, σ) ≤ collsPHashτττ (q, `, σ) + q(q − 1)

2n+1 (3)

≤ q(q − 1)
2 · collsPHashτττ (`) + q(q − 1)

2n+1 (4)

Lower Bound on the PRF Advantage of sPMAC: Fix q distinct messagesm1, . . . ,mq

such that
collsPHashτττ (q, `, σ) = collsPHashτττ (m1, . . . ,mq).

In other words, the message tuple maximizes the collision probability. Now, we define a
(non-adaptive) PRF distinguisher A for sPMAC that exploits collisions in sPMAC outputs.

1. A makes 2q queries, namely m1, 0n‖m1, . . . ,mq, 0n‖mq to its oracle O (which is
either sPMACτττ , i.e. the real oracle, or a random function, ρρρ, i.e. the ideal oracle).

2. A returns 1, if for some i 6= j, O(mi) = O(mj) as well as O(0n‖mi) = O(0n‖mj),
and 0 otherwise.

Note that, in case of real oracle, collision for mi and mj implies collision for 0n‖mi and
0n‖mj too. So, Pr(AsPMACτττ = 1) = collsPHashτττ (m1, . . . ,mq), whereas, Pr(Aρρρ = 1) ≤ q(q−1)

22n+1 .
So,

Advprf
sPMACτττ (A) ≥ collsPHashτττ (m1, . . . ,mq)−

q(q − 1)
22n+1 .

= collsPHashτττ (q, `, σ)− q(q − 1)
22n+1 . (5)

It is clear from Eq. (3) and (5) that collsPHashτττ (q, `, σ) is a very close estimate for Advprf
sPMACτττ ,

i.e., we have

collsPHashτττ (q, `, σ)− q(q − 1)
22n+1 ≤ Advprf

sPMACτττ (A) ≤ collsPHashτττ (q, `, σ) + q(q − 1)
2n+1 . (6)

In other words,
∣∣∣Advprf

sPMACτττ (A)− collsPHashτττ (q, `, σ)
∣∣∣ ≤ q(q − 1)

2n+1 .

3.1 Collision Analysis of sPMAC [GPR16]
Throughout the rest of this section, we fix two distinct messagesm := (m[1], . . . ,m[l]),m′ :=
(m′[1], . . . ,m′[l′]) with number of blocks l := lm and l′ := lm′ respectively. We also assume
l ≤ l′. Let mchop := (m[1], . . . ,m[l − 1]) denote the message m after removing the last
block. Similarly, we write m′chop for the message m′. Let

V := {(M,a) | M ∈ {m,m′}; 1 ≤ a ≤ lM − 1}

be called index set. For any masking function τ , recall the definition of xτ (also referred
as input function) from Eq. (2). xτ can be viewed as a block function defined over V. For
a masking function τ , we write the multiset corresponding to all inputs for the chopped
message mchop as

Xτ (mchop) := {xτ (m, 1), xτ (m, 2), . . . , xτ (m, l − 1)}.

We similarly define Xτ (m′chop) for the message m′ and Xτ (mchop,m
′
chop) := Xτ (mchop) ∪

Xτ (m′chop). Note that Xτ (mchop,m
′
chop) actually depends on mchop and m′chop.
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Definition 6 (cross-canceling masking function). A masking function τττ is called cross-
canceling with respect to mchop and m′chop if Xτττ (mchop,m

′
chop) is evenly repeated. Let

θτττ (mchop,m
′
chop) := Prτττ (τττ is cross-canceling with respect to (mchop,m

′
chop)),

and θτττ (`) := max θτττ (mchop,m
′
chop), where the maximum is taken over all distinctmchop,m

′
chop

with l, l′ < `. θτττ (`) is referred as the cross-cancellation probability of τττ .

Lemma 1 ([GPR16]). For any random masking τττ , we have

collsPHashτττ (`) ≤ θτττ (`) + 1
2n − 2` .

A proof of this lemma is available in [GPR16, Lemma 2]. Similar result is also proved in
[LPSY16, Proposition 1], albeit under a slightly different notational setup.

Extension of Cross-Cancellation Probability over q Messages. In [GPR16],
the idea of cross-cancellation is defined for two messages. Here, we extend the idea to
more than two messages. Let

θτττ (mq) := Prτττ (∃i 6= j, τττ is cross-canceling with respect to mi and mj),

and θτττ (q, `, σ) := max θτττ (mq), where the maximum is taken over all q distinct messages
each with at most `− 1 blocks, having at most σ − q blocks altogether.

Lemma 2. For any random masking τττ , we have

θτττ (q, `, σ) ≤ collsPHashτττ (q, `, σ) ≤ θτττ (q, `, σ) + q(q − 1)
2(2n − 2`) .

Proof. Suppose, m1, . . . ,mq are q messages for which θτττ (mq) = θτττ (q, `, σ). Let T denote
the set of all realizable masking functions. Let Ti,j ⊆ T denote the set of all cross-
canceling masking functions with respect to (mi,mj). Then, θτττ (mq) := Pr(τττ ∈ ∪i<jTi,j).
Let m′i = mi‖0n for 1 ≤ i ≤ q. Now, for any τ ∈ Ti,j , sPHashτ (m′i) = sPHashτ (m′j) holds
(also denoted as colli,j). So,

θτττ (q, `, σ) ≤ Pr(∪i<jτττ ∈ Ti,j) ≤ Pr(∪i,jcolli,j) ≤ collsPHashτττ (q, `, σ).

Now, we show the upper bound. We fix q distinct messages m1, . . . ,mq such that
collsPHashτττ (mq) = collsPHashτττ (q, `, σ). Let µ := Pr(τττ is cross-canceling with respect to mq).

collsPHashτττ (mq) ≤ µ+
∑

τττ∈T\∪i,jTi,j

Pr(∃i < j,πππ⊕(Xo
τ (mi,mj)) = mi[li]⊕mj [lj ] ∧ τττ = τ)

= µ+
∑

τττ∈T\∪i,jTi,j

Pr(∃i < j,πππ⊕(Xo
τ (mi,mj)) = mi[li]⊕mj [lj ])× Pr(τττ = τ)

≤ Pr(τττ is cross-canceling with respect to mq) + q(q − 1)
2(2n − 2`) ,

where the last inequality is obtained by conditioning on the output of πππ on all elements in
Xo
τ (mi,mj) except one.

Corollary 1. For any random masking function τττ , we have

θτττ (q, `, σ)− q2

22n+1 ≤ Advprf
sPMACτττ (q, `, σ) ≤ θτττ (q, `, σ) + q(q − 1)

2(2n − 2`) + q(q − 1)
2n+1

≤ q(q − 1)
2 · θτττ (`) + q(q − 1)

2(2n − 2`) + q(q − 1)
2n+1 .
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Corollary 1 follows from Eq. (3) and Lemma 2 in combination with the observation that
θτττ (q, `, σ) ≤

(
q
2
)
θτττ (`).

To achieve O(q2/2n) bound, it is sufficient to show θτττ (`) ≤ c/2n for some constant c
(should be independent of `). Sometimes, it is possible to show this for a range of values
of ` instead of all values of `. Sometimes, it might be difficult to obtain `-free bound for
θτττ (`). However, it might be possible to show `-free bound for the θτττ (q, `, σ) by considering
all q messages together. In this case, first part of the above corollary could be used to
obtain an `-free security bound. When ` ≤ 2n−2, Corollary 1 is simplified to

Advprf
sPMACτττ ≤

q2

2 ·
(
θτττ (`) + 3

2n

)
. (7)

Some Examples of Cross-Cancellation Probability: We list some known results
on the cross-cancellation probability of some masking functions.

1. In [GPR16], Gaži et al. show the following bounds on cross-cancellation probability:

(a) If τττ is a uniform random function, then θτττ (`) ≤ 21−n.

(b) If τττ is a 4-wise independent hash function, then θτττ (`) ≤ 22−n.

2. For the masking function τττ(i) = 2i · Li ⊕ 23i · L2, Naito proved the following result
[Nai19, Section 4.2: Bounding p2

coll] whenever L1, L2←$ B:

θτττ (`) ≤ 22−n, while ` ≤ 2n/2. (8)

4 An Observation on Naito’s PMAC Variant
In this section, we revisit a claim of [Nai19] regarding the cross cancellation probability of
two powering-up maskings.

4.1 A Flaw and Its Effect on the Proof of NPMAC [Nai19]
As mentioned in section 3, Naito proved Eq. (8) with respect to the cross cancellation
probability of two powering-up maskings. The proof relies on five cases [Nai19, Section 4.2:
Type-1 to Type-5]. The most crucial and general of these cases is Type-5. Naito made the
following claim with respect to this case.

Claim in [Nai19, Type-5 case in Section 4.2]: The following system of equations, denoted
(E), in L1 and L2 such that {i1, i2} 6= {i3, i4},

(2i1 ⊕ 2i2)L1 ⊕ (23i1 ⊕ 23i2)L2 = c1

(2i3 ⊕ 2i4)L1 ⊕ (23i3 ⊕ 23i4)L2 = c2

has rank two (i.e. the equations are always linearly independent).
The author argues as follows: If the equations are not linearly independent then 2i1 ⊕2i2 =
2i3⊕2i4 and 23i1⊕23i2 = 23i3⊕23i4 . From this, by using simple calculation, one can obtain
i1 = i2 = i3 = i4. This leads to a contradiction of the assumption that {i1, i2} 6= {i3, i4},
and hence the linear dependence assumption is false. The author thus concludes that the
system (E) will always have rank 2. In other words, for fixed i1, i2, i3, i4, the pair (L1, L2)
has a unique solution.
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Flaw in the Argument: Unfortunately, linear dependency and consistency of the two
equations over GF(2n) can be equivalently written as

2i1 ⊕ 2i2 = c · (2i3 ⊕ 2i4) (9)
23i1 ⊕ 23i2 = c · (23i3 ⊕ 23i4) (10)

where c2 = c · c1. Clearly, whenever c 6= 1, the claim on (E) is not correct. In [Nai19], the
author only considers the c = 1 case. Next, we show a concrete counterexample for this.

Counterexample for the Rank Claim: First, we can rewrite Eq. (9) and (10) as

(2i1 ⊕ 2i2) · (23i3 ⊕ 23i4) = (2i3 ⊕ 2i4) · (23i1 ⊕ 23i2) (11)

We show a counterexample for n = 16. Similar examples can be constructed for other
values of n as well. Consider the field GF(216) generated by x = 2 satisfying the minimal
polynomial x16 + x5 + x3 + x+ 1. Using simple algebra one can show that i1 = 1, i2 = 24,
i3 = 14 and i4 = 18 satisfies Eq. (11). Plugging in the same values in Eq. (10), one can
get

c = 212 ⊕ 29 ⊕ 28 ⊕ 27 ⊕ 26 ⊕ 25 ⊕ 22 ⊕ 2⊕ 1.

This proves that the system (E) can be of rank 1 as well. And, the number of such
i1, i2, i3, i4 is at least 1. Whereas, Naito incorrectly argues that the number of such
quadruples is 0.

Effect on the Current Proof: The system (E) is fixed once we fix the quadruple
(i1, i2, i3, i4). In [Nai19], the number of i1, i2, i3, i4 indices corresponding to the system
(E) is bounded by O(`2) which can be further bounded by O(2n) (since ` ≤ 2n/2). This
bound is fine as long as the rank of system (E) is 2, as this will mean that we get an
overall cross-cancellation probability bound of O(2−n). However, given the evidence that
(E) can have rank 1, a bound of O(`2) is not desirable, as it will result in an overall
cross-cancellation probability bound of O(`2/2n) which is worse than O(`/2n) bound for
the existing PMAC.

4.2 Further Discussion on the Security of NPMAC
From previous discussions, it is clear that the question of `-free security for NPMAC is
far from resolved. Going by the existing proof strategy [Nai19], we get θτττ (`) = O(`2/2n)
bound. Looking ahead momentarily, Proposition 2 shows that we can achieve O(`/2n)
for any O(2−n)-AXU masking function. This result also applies to NPMAC as the two
powering-up maskings is obviously a O(2−n)-AXU. But, this is as far as we could reach.
In what follows, we discuss some bottlenecks in resolving this question one way or another.

Let us denote the number of quadruples satisfying Eq. (11) by N . Our counterexample
in the previous subsection shows that N = Ω(1) and due to Proposition 2 we can give a
trivial upper bound of N = O(`). Now, to prove or disprove the `-free security claim we
need an exact estimate of N .

We could neither construct a counterexample where N = Ω(`), nor show that N = O(1).
This indeed looks like a hard problem requiring an involved analysis of the properties of
GF(2n). Interestingly, a similar hardness remains for PMAC1 as well [LPSY16, GPR16]
that involves a study of the additive subgroups (and their cosets) of GF(2n).

Note that, (E) is a simplified version of the actual system of equation that we
have to analyze. In the actual system, c1 and c2 are not arbitrary. In fact, for some
M1,M2,M3,M4 ∈ {m,m′},

c1 = M1[i1]⊕M2[i2], c2 = M3[i3]⊕M4[i4], and thus, c = M3[i3]⊕M4[i4]
M1[i1]⊕M2[i2] .
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Clearly the simplification, though sufficient to discuss the flaw, could possibly degrade
the bound as we count some inconsistent systems of equations as well. We say that a
quadruple (i1, i2, i3, i4) is valid if the resulting system of equation (E) is consistent. At
the moment, we do not see any approach to exploit the exact nature of c to get a better
estimate for the number of valid quadruples satisfying Eq. (11).
In summary, to prove or disprove the `-free security of NPMAC, we have to bound:
The number, N , of valid quadruples (i1, i2, i3, i4) that satisfy

(2i1 ⊕ 2i2) · (23i3 ⊕ 23i4) = (2i3 ⊕ 2i4) · (23i1 ⊕ 23i2).

We leave it as an open problem to find an exact estimate for N , which in turn gives tight
security bound for NPMAC. In fact, even a sub-optimal bound better than Ω(1) (in case
of lower bound) or O(`) (in case of upper bound), say in the order of a slowly growing
function of `, could be a great improvement.

5 Relaxing the Security Precondition for sPMAC
Gaži et al. [GPR16] showed that a 4-wise independent masking function is sufficient
to achieve `-free security bound up to ` ≤ 2n/2. In this section, we relax the 4-wise
independence condition to a weaker notion. Our relaxed notion of universality is inspired
by the flaw discovered in section 4.

5.1 2-wise Almost XOR Universal Hash Function
We extend the definition of AXU hash functions to jointly consider two pairs of messages
and their hash output differences.
Definition 7 (2-wise AXU). A hash function H is called ε 2-wise AXU (or 2AXU) if for
any distinct {m1,m2}, {m3,m4} and δ1, δ2 ∈ B, we have

Pr(H(K,m1)⊕H(K,m2) = δ1 : K ←$ K) ≤ ε,
Pr(H(K,m1)⊕H(K,m2) = δ1, H(K,m3)⊕H(K,m4) = δ2 : K ←$ K) ≤ ε2.

Clearly, any ε-2AXU hash function is also an ε-AXU hash function. We usually expect
ε = O(1/2n) and hence the joint probability for the two linear equations is O(1/22n).

Mennink defined a very close variant, called AXU3, in [Men18]. In that definition
m3 = m1 (and hence m2 6= m4). He also gave an example of AXU3 (and its higher order
variants) using finite field arithmetic.
2AXU is Strictly Weaker than 4-wise Independence: It is easy to see that a
4-wise independent hash function is 2−n-2AXU. However, every 2AXU hash function need
not be 4-wise independent. Consider the following example due to Naito [Nai]. Similar
example can also be found in [Men18] as an example of AXU4 (see [Men18]) hash function.
Example 2. Let L1, L2, L3←$ B. For a fixed primitive element 2 of GF(2n) and any i,
let us define

τττ(i) := 2i · L1 ⊕ 22i · L2 ⊕ 23i · L3.

It can be easily shown that τττ is O(2−n)-2AXU. However, for any distinct i1, i2, i3, i4 and
y1, y2, y3, y4 we cannot get probability 1/24n for the following event:

2ij · L1 ⊕ 22ij · L2 ⊕ 23ij · L3 = yj ,∀j ∈ {1, 2, 3, 4}.

In other words, the above masking function is not 4-wise independent.
Remark 1. We note that the two powering-up maskings used in [Nai19] is not 2−n-2AXU
hash.



12 On Length Independent Security Bounds for the PMAC Family

5.2 PRF Security of sPMAC
From Corollary 1, we know that the PRF advantage of sPMAC is bounded by the cross-
cancellation probability of the underlying masking function. We have closely revisited
all the existing proof strategies for upper bounding the cross-cancellation probability
and have found a unified way to present all these proofs. This approach also helps in
understanding the requirements from the masking function for achieving length-independent
PRF advantage. We state two results unifying the proofs of existing and some new
constructions. The proofs of these results is postponed to section 6.

Proposition 2. Suppose τττ is ε-AXU. Then, θτττ (`) ≤ 2`ε. Hence, by using Corollary 1,
we have

Advprf
sPMACτττ (q, `, σ) ≤ q2`ε+ q2

2(2n − 2`) + q2

2n+1 .

Proposition 2 gives the security bound for PMAC and PMAC1 when the outer permutation
is replaced by an independent random permutation and the masking key is sampled
independently. A dedicated analysis is required when we consider outer permutation same
as the inner one and the masking key is derived from the permutation, like the original
PMAC and PMAC1.

The bound in Proposition 2 is not `-free as it has q2`ε term (which came due to
cross-cancellation probability). In the following result, we show how we can improve this
term if we apply a stronger masking function. Gaži et al. [GPR16] proved a similar result
for 4-wise independent masking function. However, we can easily extend their result to
the weaker notion of 2AXU masking function.

Theorem 1. Suppose τττ is ε-2AXU. Then, θτττ (`) ≤ max{2ε, 4`2ε2}. Hence, by using
Corollary 1, we have

Advprf
sPMACτττ (q, `, σ) ≤ max{q2ε, 2q2`2ε2}+ q2

2(2n − 2`) + q2

2n+1 .

So, when ε = 1/2n and ` ≤ 2n−1
2 then

Advprf
sPMACτττ (q, `, σ) ≤ 5q2

2n+1 .

Note that, Theorem 1 also works (up to ` ≤ 2n/2) for a uniform random masking function
and 4-wise independent masking function as these are also 1/2n-2AXU hash functions.
However, in case of uniform random function, a more precise analysis (as shown in [GPR16])
gives θρρρ(`) ≤ 2/2n for all values of `.
Remark 2. Our result is a bit stronger than the result proved in [GPR16] as every 2AXU
hash function need not be 4-wise independent hash function.

6 Security Proofs
Before we delve into the proofs of Proposition 2 and Theorem 1, we describe a graph-based
description of input collisions that would help us to have some visual presentation of
cross-canceling masking function.

6.1 Input Collision Graph and Covering Bound Lemma
Graph Notations: For a set V , let [V ]2 denote the set of all doubleton subsets of V . So,
size of the set [V ]2 is

(|V |
2
)

:= |V |(|V | − 1)/2. A graph G is a pair (V,E) where E ⊆ [V ]2.
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We call V and E the vertex and edge set of the graph, respectively. We also denote V (G)
and E(G) to denote the vertex set and edge set of the graph G, respectively. An edge is an
element {u, v} ∈ E and we also say that u is adjacent to v. Given a graph G = (V,E) and
a subset V ′ ⊆ V , the subgraph restricted at V ′, denoted as G(V ′), has vertex set V ′ and
the edge set [V ′]2 ∩ E. A path from u to v of length t is a sequence of distinct elements
(w0 := u,w1, . . . , wt := v) such that wi−1 is adjacent to wi for all i ∈ [t]. A component C
(or connected component) is a subset of V such that for every u, v ∈ C either u = v or
there is a path from u to v. A component C of a graph G is called clique if all pairs of
the components are adjacent. We call a graph G evenly partitioned if all components of G
have even sizes.

Input Collision Graph: Recall the index set V := {(M,a) | M ∈ {m,m′}; 1 ≤ a ≤
lM − 1} for two distinct messages m and m′ of length l = lm and l′ = lm′ , respectively,
such that l ≤ l′. To each masking function τ , we associate a collision graph Gτ with the
vertex set V such that (M1, a1) is adjacent to (M2, a2) if xτ (M1, a1) = xτ (M2, a2). So an
input collision graph is always disjoint union of cliques.

A graph G′ over V is called τ -realizable if there is a realizable masking function τ such
that Gτ = G′. Let G be the set of all such realizable graphs. Among all realizable graphs,
we are interested in some special graphs, namely evenly partitioned graph. Let Geven be
the set of all realizable graphs which are evenly partitioned. The following observation is
straightforward from the definition of cross-canceling masking function.

Claim 1. A masking function τττ is cross-canceling if and only if the induced input collision
graph Gτττ is evenly partitioned.

Due to Corollary 1, it is now sufficient to bound the probability to realize any evenly
partitioned graph (equivalent to realizing a cross-canceling masking function). Now, we
identify a subset of vertices for which restricted subgraph over that subset is evenly
partitioned whenever the graph is evenly partitioned. Let

V= := {(M,a) : a ≤ l, l′, m[a] = m′[a]}.

So, (m, a) ∈ V= if and only if (m′, a) ∈ V=. For any such (m, a), we obviously have
xτ (m, a) = xτ (m′, a) for all masking functions τ (not necessarily cross-canceling masking
function). Hence, for any realizable input collision graph Gτ , {(m, a), (m′, a)} is an edge
of the graph and we call those edges vertical (all other edges will be non-vertical). On the
other hand, if (m, a) /∈ V= then (m, a) and (m′, a) are not adjacent whenever these are
defined. Let V 6= := V \V= and

I 6= := {a : either (m, a) ∈V 6= or (m′, a) ∈V 6=}.

We can rewrite the set I 6= as union of the interval [l + 1, l′] (can be the empty set) and
{a : a ≤ l, l′ and m[a] 6= m′[a]}. As m 6= m′, we have V 6= 6= ∅. Given any graph G we
denote G6= := G(V 6=), the subgraph restricted on the set of vertices V 6=.

Now any connected component of Gτ consists of a connected component of G6=τ with
some additional pairs of vertices from V=. Hence, we have the following result.

Claim 2. For all masking functions τττ , Gτττ is evenly partitioned if and only if G6=τττ is evenly
partitioned.

Now, we explain a method by which we can obtain an upper bound on the cross-canceling
probability θτττ (`) or θτττ (q, `, σ). LetG 6=even be the collection of all evenly partitioned realizable
graphs over the vertex set V 6=. Due to above claim, this is same as the collection of all
restricted subgraphs with vertex set V 6= of all evenly partitioned realizable graphs.
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Definition 8 (covering collection of edges). Let I be some index set such that for every
i ∈ I we have an edge set Ei ⊆ [V 6=]2. The collection E := {Ei : i ∈ I} is said to
cover evenly partitioned graphs if for all G ∈ G 6=even, there exists i := iG ∈ I such that
Ei ⊆ E(G).

For any edge e := {(M1, a1), (M2, a2)} ∈ [V]2, we say that event e(τττ) holds if

τττ(a1)⊕ τττ(a2) = ce := M1[a1]⊕M2[a2].

We extend the above definition to an edge set E as follows: An event E(τττ) holds if for all
edges e ∈ E, e(τττ) holds. All these events are defined based on the randomness of τττ only
and we simply write Pr(e) or Pr(E) to denote the probability that the corresponding event
holds under the randomness of τττ .

Lemma 3 (Covering Bound Lemma). Suppose {Ei : i ∈ I} covers evenly partitioned
graphs, then we have

Prτττ (τττ is cross-canceling with respect to (m,m′)) ≤
∑
i∈I

Pr(Ei)

Proof. Let T∗ denote the set of all cross-canceling masking functions with respect to
(m,m′). For every Ei, let Ti denote the set of all masking function τ such that Ei ⊆ E(G6=τ ).
Now, we claim that T∗ ⊆ ∪iTi. For any τ ∈ T∗, Gτ is an evenly partitioned graph and
hence (using Claim 2) for some i, Ei ⊆ E(G6=τ ) ⊆ E(Gτ ). Thus, τ ∈ Ti. So the claim holds.
The result follows from union bound.

6.2 Proof of Proposition 2
Let i be the smallest element in I 6=. We use shorthand notation ei(v) and e′i(v) to
denote edges {(m, i), v} and {(m′, i), v}, respectively, whenever these are defined. Let
V
6=
i := V 6= \ {(m, i), (m′, i)}.
As (m′, i) has an edge for any evenly partitioned graph G ∈ G 6=, there must exist

(M, j) with j > i and M ∈ {m,m′} such that (m′, i) is adjacent to (M, j). So, we define
the following collection of edge sets of size one.

Ei := {Ev := e′i(v) : v ∈V
6=

1 }.

From the above discussion, it is clear that this covers all evenly partitioned graphs. Now,
using the fact that τττ is an ε-AXU, we have Pr(E(M,j)) = Pr(τττ(i)⊕τττ(j) = m′[i]⊕M [j]) ≤ ε
(since j 6= i). So, using the covering bound lemma (Lemma 3) we have

Prτττ (τττ is cross-canceling with respect to (m,m′)) ≤
∑
v∈V 6=

i

Pr(Ev)

≤ (l + l′)ε.

As l, l′ ≤ `, we have θ(`) ≤ 2`ε. This completes the proof.

6.3 Proof of Theorem 1
Here, we first assume that |I 6=| > 2, and we denote the first, second and third smallest
elements of I 6= as i1, i2 and i3, respectively. For 1 ≤ j ≤ 3, V 6=j := V 6= \ {(m, ij), (m′, ij)},
and we use shorthand notation ej(v) and e′j(v) to denote edges {(m, ij), v} and {(m′, ij), v},
respectively, whenever these are edges over V (they may not be edge as some of the vertices
may not be present in V).
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In the previous proof for AXU masking function, edge sets are singleton and hence
the probability for any such edge set can be at best O(1/2n) (as we deal with a single
equation). Now, we are considering doubleton edge sets, hoping that probability to realize
any edge set is about O(1/22n) (as we assume stronger masking function), to achieve
better security. Consider the following collections of doubleton edge sets:

1. E1 := {{e′1(M, i2), e′3(v)} : v ∈V
6=

3 ,M ∈ {m,m′}},

2. E2 := {{e′1(M1, j1), e′2(M2, j2)} : (M1, j1) ∈V
6=

1 ∩V
6=

2 , (M2, j2) ∈V
6=

2 }.

We claim that the collection E := E1 ∪E2 is a covering collection of edges. Fix any evenly
partitioned graph G over V 6=. The vertex (m′, i1) should be adjacent to some other vertex.

Case 1: Suppose, (m′, i1) is adjacent to (M, i2) then the vertex (m′, i3) should be adjacent
to (M, j) for some j 6= i3. So, we can use an appropriate edge set from E1.

Case 2: Suppose, (m′, i1) is adjacent to (M, j) for some M ∈ {m,m′} and j ≥ i3. Then,
(m′, i2) should be adjacent to (M, j) for some j 6= i2. So, we can use an appropriate
collection from E2.
Thus, E is indeed a covering collection of edges. Now, we fix any edge set E :=
{e′1(M1, i2), e′3(M2, j)} ∈ E1 where j 6= i3. Then, for c1 = m′[i1] ⊕ M1[i2] and c2 =
m′[i3]⊕M2[j], we have

Pr(E) = Pr(τττ(i1)⊕ τττ(i2) = c1, τττ(i3)⊕ τττ(j) = c2) ≤ ε2,

where the inequality follows from the definition of ε-2AXU. Similarly, for any edge set
E ∈E2, one can show that Pr(E) ≤ ε2. Note that |E1| ≤ 2(l + l′) and |E2| ≤ (l + l′ − 1)2.
So, |E| ≤ (l + l′)2 ≤ 4`2. By using the covering bound lemma (Lemma 3), we have

Prτττ (τττ is cross-canceling with respect to (m,m′)) ≤
∑
E∈E2

Pr(E) ≤ 4`2ε2.

Now, the only remaining case is |I 6=| = 2 (|I 6=| cannot be 1 as this would contradict the
existence of evenly partitioned graph). In this case, we have only two possibilities of evenly
partitioned graphs, each occurring with at most ε probability (using ε-2AXU). So, we have

Prτττ (τττ is cross-canceling with respect to (m,m′)) ≤ 2ε.

The result follows by combining the two cases for |I 6=|.

7 Conclusion and Future Works
In this paper, we revisited some difficulties in designing a PMAC variant that has length-
independent security bound O(q2/2n) up to ` < 2n/2. Particularly, we took a closer look
at a recent PMAC variant by Naito [Nai19] that claims to have length-independent security
bound. We showed that the security proof of this construction has a non-trivial gap which
is not easy to fix. Indeed, we pose it as an open problem to prove or disprove the `-free
security bound of O(q2/2n) for Naito’s construction. Apparently, this problem could be as
hard as a similar problem posed in context of PMAC1 [Rog04]. On a positive note, we show
that 2AXU (see section 5) masking function is sufficient to achieve length-independent
security up to ` < 2n/2. This is a relaxation from the 4-wise independence condition used
in [GPR16].
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