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Abstract Many attribute-based anonymous credential (ABC) schemes have been proposed al-
lowing a user to prove the possession of some attributes, anonymously. They became more and
more practical with, for the most recent papers, a constant-size credential to show a subset of
attributes issued by a unique credential issuer. However, proving possession of attributes coming
from K different credential issuers usually requires K independent credentials to be shown. Only
attribute-based credential schemes from aggregate signatures can overcome this issue.
In this paper, we propose new ABC schemes from aggregate signatures with randomizable tags.
We consider malicious credential issuers, with adaptive corruptions and collusions with malicious
users. Whereas our constructions only support selective disclosures of attributes, to remain compact,
our approach significantly improves the complexity in both time and memory of the showing of
multiple attributes: for the first time, the cost for the prover is (almost) independent of the number
of attributes and the number of credential issuers.
Whereas anonymous credentials require privacy of the user, we propose the first schemes allowing
traceability by a specific tracing authority.
We formally define an aggregate signature scheme with (traceable) randomizable tags, which is
of independent interest. We build concrete schemes from the Hébant, Phan, Pointcheval linearly
homomorphic signature scheme of PKC 20. As all the recent ABC schemes, our construction relies
on signatures for which unforgeability is proven in the bilinear generic group model.
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1 Introduction

In an anonymous credential scheme, a user asks to an organization (a credential issuer) a
credential on an attribute, so that he can later claim its possession, even multiple times, but in
an anonymous and unlinkable way.

Usually, a credential on one attribute is not enough and the user needs credentials on multiple
attributes. Hence, the interest of an attribute-based anonymous credential scheme (ABC in
short): depending on the construction, the user receives one credential per attribute or directly
for a set of attributes. One goal is to be able to express relations between attributes (or at least
selective disclosure), with one showing. As different attributes may have different meanings
(e.g. a university delivers diploma while a city hall delivers a birth certification), there should
be several credential issuers. Besides multiple credential issuers, it can be useful to have a multi-
show credential system to allow a user to prove an arbitrary number of times one credential still
without loosing anonymity. For that, the showings are required to be unlinkable to each other.

Classically, a credential is a signature by the credential issuer of the attribute with the public
key of the user. The latter is thus the only one able to prove the ownership with an interactive
zero-knowledge proof of knowledge of the secret key. Anonymity is provided by the probabilistic
encryption of the signature. As many signature schemes with various interesting properties have
been proposed, many ABC schemes have been designed with quite different approaches. We can
gather them into two families: the ABC schemes where a credential is obtained on a set of
attributes and then, according to the properties of the signature, it is possible either to prove
the knowledge of a subset of the attributes (CL-signatures [CL03, CL04], blind signatures [BL13,
FHS15]), or to modify some of the attributes to default values (sanitizable signatures [CL13]),
or simply to remove them (unlinkable redactable signatures [CDHK15, San20], SPS-EQ with
set commitments [FHS19]); and the ABC schemes where the user receives one credential per
attribute and then combines them (aggregate signatures [CL11]). In the former family, whereas
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it is possible to efficiently show a subset of attributes issued in a unique credential, showing
attributes coming from K different credential issuers requires K independent credentials to be
proven. On the other hand, with aggregate signatures, credentials on different attributes can be
combined together even if they have been issued by different credential issuers. This leads to
more compact schemes and this paper follows this latter approach.

Moreover, except some constructions based on blind signatures where the credentials can
be shown only once, all ABC schemes allow multi-shows, exploiting randomizability properties
of the signatures for anonymity and unlinkability of the showings. This avoids the need of
encryption and heavy zero-knowledge proofs.

1.1 Our Contributions

Our goal is to obtain a compact ABC system with a compact size credential allowing different
credential issuers. Our first contribution is then the formal definition of the scheme which
supports possibly malicious credential issuers.

Following the path of anonymous credentials from aggregate signatures [CL11] and inspired
by the definition of linearly homomorphic signatures of [HPP20], our second contribution is the
formalization of an aggregate signature scheme with randomizable tags (ART-Sign). It comes
with a practical construction based on a signature scheme of Hebant et al. [HPP19]. With such
a primitive, two signatures of different messages under different keys can be aggregated only if
they are associated to the same tag. In our case, tags will eventually be like pseudonyms, but
with some properties which make them ephemeral (hence EphemerId scheme) and randomizable.
After randomization, while they are still associated to the same user, they will be unlinkable.
This will provide anonymity.

The EphemerId scheme provides ephemeral keys to users, that will allow anonymous authen-
tication. Public keys being randomizable, still for a same secret key, multiple authentications will
remain unlinkable. In addition, these public keys will be used as (randomizable) tags with the
above ART-Sign scheme when the credential issuer signs an attribute. Thanks to aggregation,
multiple credentials for multiple attributes and from multiple credential issuers but under the
same tag, and thus for the same user, can be combined into a unique compact (constant-size)
credential.

We achieve the optimal goal of constant-size multi-show credentials even for multiple at-
tributes from multiple credential issuers and we stress that aggregation can be done on-the-fly,
for any selection of attributes issued by multiple credential issuers: our scheme allows multi-show
of any selective disclosure of attributes.

About security, whereas there exists a scheme proven in the universal composability (UC)
framework [CDHK15], for our constructions, we consider a game-based security model for ABC
inspired from [FHS19]. As we support different credentials issuers, we additionally consider mali-
cious credential issuers, with adaptive corruptions, and collusion with malicious users. However,
the keys need to be honestly generated, thus our proofs hold in the certified key setting. This is
quite realistic, as this is enough to wait for a valid proof of knowledge of the secret key before
certifying the public key. As all the recent ABC schemes, our constructions will rely on signature
schemes proven in the bilinear generic group model.

Our last contribution is traceability, in the same vein as group signatures: whereas showings
are anonymous, a tracing authority owns tracing keys for being able to link a credential to its
owner. In such a case, we also consider malicious tracing authorities, with the non-frameability
guarantee. As in [CL13] we thus define trace and judge algorithms to trace the defrauder and
prove its identity to a judge. This excludes malicious behavior of the tracing authority.

Very few papers deal with traceability: the first one [CL13] exploits sanitizable signatures,
where the sanitizer can be traced back, but a closer look shows privacy weaknesses (see the
Appendix A) and a more recent one [KL16] that has thereafter been broken [Ver17]. As a
consequence, our scheme is the first traceable attribute-based anonymous credential scheme.
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1.2 Related Work
The most recent papers on attribute-based anonymous credential schemes are [FHS19, San20].
The former proposes the first constant-size credential to prove k-of-N attributes, with compu-
tational complexity in O(N − k) for the prover and in O(k) for the verifier. However, it only
works for one credential issuer (K = 1). The latter one improves this result enabling multiple
showings of relations (r) of attributes. All the other known constructions allow, at best, selective
(s) disclosures of attributes.

In [CL11], Canard and Lescuyer use aggregate signatures to construct an ABC system. It
is thus the closest to our approach. Instead of having tags, their signatures take indices as
input. We follow a similar path but, we completely formalize this notion of tag/index with an
EphemerId scheme. To our knowledge, aggregate signatures are the only way to deal with multiple
credential issuers but still showing a unique compact credential for the proof of possession of
attributes coming from different credential issuers. However, the time-complexity of a prover
during a verification depends on the number k of shown attributes. We solve this issue at the
cost of a larger key for the credential issuers (but still in the same order as [FHS19, San20])
and a significantly better showing cost for the prover (also better than [FHS19, San20]). We
can also note their tags/indices are 3 elements of G1, plus 2 elements of G2 and one element of
Zp which is much larger than our tags: only 3 elements in G1.

Scheme P T
k-of-N attributes from K = 1 credential issuer

|CI key| |Show| Prover Verifier
G1,G2 G1,G2, (GT ),Zp exp., pairings exp., pairings

[CL11] s 7 1, 1 16, 2, (4), 7 16G1 + 2G2 + 10GT , 12G1 + 20GT ,
18 + k 18 + k

[FHS19] s 7 0, N 8, 1, 2 9G1 + 1G2, 0 4G1, k + 4
[San20] r 7 0, 2N + 1 2, 2, (1), 2 (2(N −k)+2)G1 + 2G2, 1 (k+1)G1 + 1GT , 5
Sec. 5.2 s 3 0, 2k + 3 3, 0, 1 6G1, 0 4G1 + kG2, 3
Sec. 5.3 s 3 0, 2N + 2 3, 0, 1 6G1, 0 4G1 + 2NG2, 3

Scheme
k = 1-of-N attribute from K credential issuers

Scheme |CI key| |Show| Prover Verifier
G1,G2 G1,G2, (GT ),Zp exp., pairings exp., pairings

[CL11] K × (1, 1) 16, 2, (4), 7 16G1 + 2G2 + 10GT , 12G1 + 20GT ,
18 + k 18 + k

[FHS19] K × (0, N) K × (8, 1, 2) K × (9G1 + 1G2, 0) K × (4G1, k + 4)
[San20] K × (0, 2N + 1) K × (2, 2, (1), 2) K × ((2(N −k)+2)G1 K × ((k+1)G1+

+2G2, 1) 1GT , 5)
Sec. 5.2 K × (0, 2k + 3) 3, 0, 1 6G1, 0 4G1 + kG2, 3
Sec. 5.3 K × (0, 2N + 2) 3, 0, 1 6G1, 0 4G1 + 2KNG2, 3

Figure 1. Comparison of different ABC systems.

In Figure 1, we provide some comparisons with the most efficient ABC schemes, where the
column “P” (for policy) specifies whether the scheme just allows selective disclosure of attributes
(s) or relations between attributes (r). The column “T” (for traceability) indicates whether
traceability is possible or not. Then, “|CI key|” gives the size of the keys (public keys of the
credential issuers) required to verify the credentials, “|Show|” is the communication bandwidth
during a show, while “Prover” and “Verifier” are the computational cost during a show, for the
prover and the verifier respectively. Bandwidths are in number of elements G1, G2, GT and
Zp. Computations are in number of exponentiations in G1, G2 and GT , and of pairings. Due
to their negligible impact on performance, we ignore multiplications. We denote N the global
number of attributes owned by a user, k the number of attributes he wants to show and K
the number of credential issuers involved in the issuing of the credentials. In the first table,
we focus on the particular case of proving a credential with k attributes, among N attributes
issued from 1 credential issuer. Our first scheme, from Section 5.2, is already the most efficient,
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but this is even better for a larger K, as shown in the second table. However this is for a limited
number of attributes. Our second scheme, from Section 5.3 has similar efficiency, but with less
limitations on the attributes. Note that both schemes have a constant-size communication for
the showing of any number of attributes, and the computation cost for the prover is almost
constant too (as we ignore multiplications). Our two instantiations are derived from the second
linearly homomorphic signature scheme of [HPP20]. As already said, our scheme is the first
traceable attribute-based anonymous credential scheme, hence the only one in the tables.

1.3 Organization

After precising some notations and reviewing classical definitions in Section 2, we formally define
the anonymous credential scheme with multiple credential issuers in Section 3. In Section 4, we
define two important primitives useful for the rest of the paper: the EphemerId and ART-Sign
schemes. From there, we will be able to provide our black-box construction of an ABC scheme
that we completely instantiate in Section 5. Finally, traceability is defined and instantiated in
Section 6.

2 Preliminaries

In this section, we recall the asymmetric pairing setting and some classical computational as-
sumptions.

2.1 Notations

All along this paper, κ is the security parameter. We will consider an asymmetric bilinear setting
(G1,G2,GT , p, g, g, e), where G1, G2 and GT are cyclic groups of prime order p (of length 2κ).
The elements g and g are generators of G1 and G2, respectively and e is a bilinear map from
G1 × G2 into GT , that is non-degenerated and efficiently computable. This is usually called a
pairing.

For the sake of clarity, elements of G2 will be in Fraktur font. In addition, in all the public-
key cryptographic primitives, keys will implicitly include the global parameters and secret keys
will include the public keys.

Vectors will be denoted between brackets [. . .] and unions will be concatenations: [a, b] ∪
[a, c] = [a, b, a, c], keeping the ordering. On the other hand, sets will be denoted between paren-
theses {. . .}, with possible repetitions: {a, b} ∪ {a, c} = {a, a, b, c} as in [San20], but without
ordering. Also, if m is a vector in some group G, mα for α ∈ Zp will denote the exponentiation
component by component.

2.2 Classical Assumptions and Security Claims

In an asymmetric bilinear setting (G1,G2,GT , p, g, g, e), or just in a simple group G, we can
define the following assumptions:

Definition 1 (Discrete Logarithm (DL) Assumption). In a group G of prime order p, it
states that for any generator g, given y = gx, it is computationally hard to recover x.

Definition 2 (Decisional Diffie-Hellman (DDH) Assumption). In a group G of prime
order p, it states that the two following distributions are computationally indistinguishable:

Ddh = {(g, gx, h, hx); g, h $← G, x, $← Zp}

G4
$ = {(g, gx, h, hy); g, h $← G, x, y, $← Zp}.
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Definition 3 (Square Discrete Logarithm (SDL) Assumption). In a group G of prime
order p, it states that for any generator g, given y = gx and z = gx

2 , it is computationally hard
to recover x.

Definition 4 (Decisional Square Diffie-Hellman (DSqDH) Assumption). In a group G
of prime order p, it states that the two following distributions are computationally indistin-
guishable:

Dsqdh = {(g, gx, gx2); g $← G, x $← Zp} G3
$ = {(g, gx, gy); g $← G, x, y $← Zp}.

It is worth noticing that the DSqDH Assumption implies the SDL Assumption: if one can break
SDL, from g, gx, gx

2 , one can compute x and thus break DSqDH. Such Square Diffie-Hellman
triples will be our tags, or ephemeral public keys. For anonymity, we will use the following
theorem:
Theorem 5. The DDH and DSqDH assumptions imply the indistinguishability between the two
distributions

D0 = {(g0, g
x
0 , g

x2
0 , g1, g

x
1 , g

x2
1 ), g0, g1

$← G, x $← Zp}

D1 = {(g0, g
x
0 , g

x2
0 , g1, g

y
1 , g

y2

1 ), g0, g1
$← G, x, y $← Zp}.

Proof. For this indistinguishability, one can show they are both indistinguishable from random
independent 6-tuples (the distribution G6

$):

D0 ≈ {(g0, g
x
0 , g

y
0 , g1, g

x
1 , g

y
1), g0, g1

$← G, x, y $← Zp} under DSqDH

≈ {(g0, g
x
0 , g

y
0 , g1, g

u
1 , g

v
1), g0, g1

$← G, x, y, u, v $← Zp} = G6
$ under DDH

≈ {(g0, g
x
0 , g

x2
0 , g1, g

u
1 , g

u2
1 ), g0, g1

$← G, x, u $← Zp} = D1 under DSqDH

For unforgeability in our construction, we will use the following theorem on Square Diffie-
Hellman tuples, stated and proven in [HPP20]:
Theorem 6. Given n valid Square Diffie-Hellman tuples (gi, ai = gwii , bi = awii ), together with
wi, for random gi

$← G∗ and wi
$← Z∗p, outputting (αi)i=1,...,n such that (G =

∏
gαii , A =∏

aαii , B =
∏
bαii ) is a valid Square Diffie-Hellman, with at least two non-zero coefficients αi,

is computationally hard under the DL assumption.
Intuitively, from Square Diffie-Hellman tuples where the exponents are known but random (and
so distinct with overwhelming probability) and the bases are also known and random, it is
impossible to construct a new Square Diffie-Hellman tuple melting the exponents (with linear
combinations). We refer to [HPP20] for the original proof or see the Appendix B.

3 Multi-Authority Anonymous Credentials

In this section, we define a multi-authority anonymous attribute-based credential scheme by
adapting the model of [FHS19, San20] to the multiple credential issuers, and then, provide the
associated security definitions.

3.1 Definition
Throughout the paper, we will consider the certified key setting. Indeed, we assume a Certi-
fication Authority (CA) first checks the knowledge of the secret keys before certifying public
keys and then, that the keys are always checked before being used by any players in the system.
Moreover, we assume that an identity id is associated (and included) to any verification key vk,
which is in turn included in the secret key sk.

Our general definition of anonymous credential scheme supports multiple users (Ui)i and
multiple credential issuers (CIj)j :
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Definition 7 (Anonymous Credential). An anonymous credential system is defined by the
following algorithms:

Setup(1κ): It takes as input a security parameter and outputs the public parameters param;
CIKeyGen(ID): It generates the key pair (sk, vk) for the credential issuer with identity ID;
UKeyGen(id): It generates the key pair (usk, uvk) for the user with identity id;
(CredObtain(usk, vk, a),CredIssue(uvk, sk, a)): A user with identity id (associated to (usk, uvk))

runs CredObtain to obtain a credential on the attribute a from the credential issuer ID
(associated to (sk, vk)) running CredIssue. At the end of the protocol, the user receives a
credential σ;

CredAggr(usk, {(vkj , aj , σj)}j): It takes as input a secret key usk of a user and a list of
credentials (vkj , aj , σj) and outputs a credential σ of the aggregation of the attributes;

(CredShow(usk, {(vkj ,aj)}j , σ),CredVerify({(vkj ,aj)}j): In this two-party protocol, a user with
identity id (associated to (usk, uvk)) runs CredShow and interacts with a verifier running
CredVerify to prove that he owns a valid credential σ on {aj}j issued respectively by
credential issuers IDj (associated to (skj , vkj)).

3.2 Security Model
The security model of anonymous credentials was already defined in various papers. We fol-
low [FHS19, San20], with multi-show unlinkable credentials, but considering multiple credential
issuers. Informally, the scheme needs to have the three properties:
– Correctness: the verifier must accept any credential obtained by an aggregation of honestly

issued credentials on attributes;
– Unforgeability: the verifier should not accept a credential on a set of attributes for which

the user did not obtain all the individual credentials for himself;
– Anonymity: credentials shown multiple times by a user should be unlinkable, even for

the credential issuers. This furthermore implies that credentials cannot be linked to their
owners.

For the two above security notions of unforgeability and anonymity, one can consider mali-
cious adversaries able to corrupt some parties. We thus define the following lists: HU the list of
honest user identities, CU the list of corrupted user identities, similarly we define HCI and CCI
for the honest/corrupted credential issuers. For a user identity id, we define Att[id] the list of the
attributes of id and Cred[id] the list of his individual credentials obtained from the credential
issuers. All these lists are initialized to the empty set. For both unforgeability and anonymity,
the adversary has unlimited access to the oracles (in any order but queries are assumed to be
atomic):
– OHCI(ID) corresponds to the creation of an honest credential issuer with identity ID. If he

already exists (i.e. ID ∈ HCI ∪ CCI), it outputs ⊥. Otherwise, it adds ID ∈ HCI and runs
(sk, vk)← CIKeyGen(ID) and returns vk;

– OCCI(ID, vk) corresponds to the corruption of a credential issuer with identity ID and op-
tionally public key vk. If he does not exist yet (i.e. ID /∈ HCI ∪ CCI), it creates a new
corrupted credential issuer with public key vk by adding ID to CCI. Otherwise, if ID ∈ HCI,
it removes ID from HCI and adds it to CCI and outputs sk;

– OHU(id) corresponds to the creation of an honest user with identity id. If the user already
exists (i.e. id ∈ HU∪CU), it outputs ⊥. Otherwise, it creates a new user by adding id ∈ HU
and running (usk, uvk) ← UKeyGen(id). It initializes Att[id] = {} and Cred[id] = {} and
returns uvk;

– OCU(id, uvk) corresponds to the corruption of a user with identity id and optionally public
key uvk. If the user does not exist yet (i.e. id /∈ HU ∪ CU), it creates a new corrupted user
with public key uvk by adding id to CU. Otherwise, if id ∈ HU, it removes id from HU and
adds it to CU and outputs usk and all the associated credentials Cred[id];
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– OObtIss(id, ID, a) corresponds to the issuing of a credential from an honest credential issuer
with identity ID (associated to (sk, vk)) to an honest user with identity id (associated to
(usk, uvk)) on the attribute a. If id /∈ HU or ID /∈ HCI, it outputs ⊥. Otherwise, it runs
σ ← (CredObtain(usk, vk, id),CredIssue(uvk, sk, a)) and adds (ID, a) to Att[id] and (ID, a, σ)
to Cred[id]. The adversary receives the full transcript;

– OObtain(id, ID, a) corresponds to the issuing of a credential from the adversary playing the
role of a malicious credential issuer with identity ID (associated to vk) to an honest user
with identity id (associated to (usk, uvk)) on the attribute a. If id /∈ HU or ID /∈ CCI, it
outputs ⊥. Otherwise, it runs CredObtain(usk, a) and adds (ID, a) to Att[id] and (ID, a, σ)
to Cred[id];

– OIssue(id, ID, a) corresponds to the issuing of a credential from an honest credential issuer
with identity ID (associated to (sk, vk)) to the adversary playing the role of a malicious user
with identity id (associated to uvk) on the attribute a. If id /∈ CU or ID /∈ HCI, it outputs ⊥.
Otherwise, it runs CredIssue(uvk, sk, a) and adds (ID, a) to Att[id] and (ID, a, σ) to Cred[id];

– OShow(id, {(IDj , aj)}j) corresponds to the showing by an honest user with identity id (as-
sociated to (usk,uvk)) of a credential on the set {(IDj , aj)}j⊂Att[id]. If id /∈ HU, it outputs
⊥. Otherwise, it runs CredShow(usk,{(vkj , aj)}j, σ) with the adversary playing the role of a
malicious verifier.

Definition 8 (Unforgeability). An anonymous credential scheme is said unforgeable if, for
any polynomial time adversary adversary A having access to O = {OHCI, OCCI, OHU, OCU,
OObtIss, OIssue, OShow},
Advunf(A) = |Pr[Expunf

A (1κ) = 1]| is negligible where
Expunf

A (1κ) :
param← Setup(1κ)
{(IDj , aj)}j ← AO(param)
b← (A(),CredVerify({(vkj , aj)}j))
If ∃id ∈ CU, ∀j, either IDj ∈ CCI, or IDj ∈ HCI and (IDj , aj) ∈ Att[id],

then return 0
Return b

Intuitively, the adversary wins the security game if it manages to prove its ownership of a
credential, on behalf of a corrupted user id ∈ CU whereas this user did not ask the attributes
to the honest credential issuers. Note that attributes from the corrupted credential issuers can
be generated by the adversary itself, using the secret keys.

Definition 9 (Anonymity). An anonymous credential scheme is said anonymous if, for any
polynomial time adversary A having access to O = {OHCI, OCCI, OHU, OCU, OObtain,
OShow},
Advano(A) = |Pr[Expano−1

A (1κ) = 1]− Pr[Expano−0
A (1κ) = 1]| is negligible where

Expano−b
A (1κ) :
param← Setup(1κ)
(id0, id1, {(IDj , aj)}j)← AO(param)
If for some IDj , (IDj , aj) 6∈ Att[id0] ∩ Att[id1], then return 0
∀j, σj ← (CredObtain(uskb, vkj , aj),CredIssue(uvkb, skj , aj)
σ ← CredAggr(uskb, {aj , σj}j)
(CredShow(uskb, {aj}j , σ),A())
b∗ ← AO()
If id0 ∈ CU or id1 ∈ CU, then return 0
Return b∗

First, note that we do not hide the attributes nor the issuers during the showing, but just the
user, as we want to prove their ownership by the anonymous user. Intuitively, the adversary
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wins the security game if it can distinguish showings from users id0 and id1 of its choice, on the
same set of attributes {(IDj , aj)}j , even after having verified credentials from the two identities,
as it has access to the oracle OShow.

Note that contrarily to [San20], unless the attributes contain explicit ordering (as it will be
the case with our first construction), we are dealing with unlinkability as soon as the sets of
attributes are the same for the two players (with the second construction).

4 Anonymous Credentials from New Primitives

The usual way to perform authentication is by presenting a certified public key and proving
ownership, with a zero-knowledge proof of knowledge of the associated private key. The certified
public key is essentially the signature by a Certification Authority (CA) on a public key–identity
pair, with a standard signature scheme. Authentication works with two levels. First, everybody
trusts the CA public key and the CA certifies the link between the public key uvk and the
identity id of a user. Eventually, the user authenticates as id, as the owner of uvk by proving his
knowledge of the associated secret key usk.

In case of attribute-based authentication, some authority will sign together the attribute
with the public key of the user (and not directly his identity, but after having checked the link
between the public key and the identity with the above relation). The user will then later prove
he owns such a credential from a Credential Issuer, on a specific attribute with a public key to
which he knows the associated private key.

In the same vein as labelled encryption schemes, we define tag-based signatures to dissociate
the user-key which will be a provable tag and Attr which will be the signed message (the
attribute, in the latter situation). This flexibility will allow randomizability of one without
affecting the other, leading to anonymous credentials. It will indeed be possible to randomize
the user-key to make it unlinkable to the user, but still with strong unforgeability guarantees.

4.1 Tag-based Signatures.

For a pair (τ̃ , τ), where τ is a tag and τ̃ corresponds to the secret part of the tag, one can
define a new primitive called tag-based signature, where we assume all the used tags τ to be
valid (either because they are all valid, or their validity can be checked):

Definition 10 (Tag-Based Signature).

Setup(1κ): Given a security parameter κ, it outputs the global parameter param, which
includes the message spaceM and the tag space T ;

Keygen(param): Given a public parameter param, it outputs a key pair (sk, vk);
GenTag(param): Given a public parameter param, it generates a witness-word pair (τ̃ , τ);
Sign(sk, τ,m): Given a signing key sk, a tag τ , and a message m, it outputs the signature σ

under the tag τ ;
VerifSign(vk, τ,m, σ): Given a verification key vk, a tag τ , a message m and a signature σ,

it outputs 1 if σ is valid relative to vk and τ , and 0 otherwise.

The security notion would expect no adversary able to forge, for any honest pair (sk, vk), a
new signature for a pair (τ,m), for a valid tag τ , if the signature has not been generated using
sk and the tag τ on the message m.

Two classical cases are: (τ̃ = sk, τ = vk), which corresponds to a classical signature of m;
τ̃ = τ , with no secret witness, this is just a classical signature of (τ,m). In fact, more subtle
situations can be handled as it will be described in the next paragraphs.
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4.2 Anonymous Ephemeral Identities

In our use-cases, τ will be a word for some language L representing the authorized users and τ̃
a witness for τ ∈ L. Hence, according to the language L, which can be a strict subset of a whole
set of tags T , one may have to prove the actual membership τ ∈ L. Throughout the paper, a
tag τ ∈ T is said valid if τ ∈ L. This validity will be important for the unforgeability of our
credentials. On the other hand, one may also have to prove the knowledge of the witness τ̃ , in a
zero-knowledge way, for authentication with some freshness guarantees to avoid replay attacks.

The latter proof of knowledge can be performed, using the (interactive) protocol (ProveKTag(τ̃),
VerifKTag(τ)). Interactive protocol or signature of knowledge on a fresh message will thus ex-
clude replay attacks of the proof of validity. The former proof of validity can also be proven
using an (interactive) protocol (ProveVTag(τ̃),VerifVTag(τ)). However this verification can also
be non-interactive or even public, without needing any private witness. The only requirement is
that this proof or verification of membership should not reveal the secret involved in the proof
of knowledge, whose soundness will guarantee the authentication of the user.

As tags are seen as words in some language L, randomizable tags will make sense for random-
self reducible languages [TW87]: the word τ defined by a witness τ̃ and some additional ran-
domness r can be derived into another word τ ′ associated to τ̃ ′ and r′ (either r′ only or both τ̃ ′
and r′ are uniformly random).

As valid tags will represent the identity of the authorized users in our anonymous credential
scheme, the randomizability will be useful for the anonymity property. Our randomizable tags
will be used as ephemeral identities (ephemeral key pairs) and formally:

Definition 11 (EphemerId). An EphemerId scheme consists of the algorithms:

Setup(1κ): Given a security parameter κ, it outputs the global parameter param, which
includes the tag space T ;

GenTag(param): Given a public parameter param, it outputs a tag τ and its secret part τ̃ ;
RandTag(τ): Given a tag τ as input, it outputs a new tag τ ′ and the randomization link
ρτ→τ ′ between τ and τ ′;

DerivWitness(τ̃ , ρτ→τ ′): Given a witness τ̃ (associated to the tag τ) and a link between the
tags τ and τ ′ as input, it outputs a witness τ̃ ′ for τ ′;

(ProveVTag(τ̃),VerifVTag(τ)): This (possibly interactive) protocol corresponds to the verifi-
cation of the tag τ . At the end of the protocol, the verifier outputs 1 if it accepts τ as a
valid tag and 0 otherwise;

(ProveKTag(s, τ̃),VerifKTag(s, τ)): This (possibly interactive) protocol corresponds to a fresh
proof of knowledge of τ̃ using the state s. At the end of the protocol, the verifier outputs
1 if it accepts the proof and 0 otherwise.

Security. The security notions are the usual properties of zero-knowledge proofs for the proto-
cols (ProveKTag(τ̃),VerifKTag(τ)) and (ProveVTag(τ̃),VerifVTag(τ)), with zero-knowledge and
soundness:

– Soundness: the verification process for the validity of the tag should not accept an invalid
tag (not in the language);

– Knowledge-Soundness: if the verification process for the proof of knowledge of the witness
accepts with good probability, a simulator can extract it;

– Zero-knowledge: the proof of validity and the proof of knowledge should not reveal any
information about the witness.

When the two protocols output 1, the witness-word pair is said to be valid.
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Correctness. For an honestly generated pair (τ̃ , τ) ← GenTag(param), the witness-word pair
must be valid (i.e. both protocols (ProveVTag(τ̃),VerifVTag(τ)) and (ProveKTag(s, τ̃),VerifKTag(s, τ))
must output 1).

From an honestly generated witness-word pair (τ̃ , τ)← GenTag(param), if (τ ′, ρ)← RandTag(τ)
and τ̃ ′ ← DerivWitness(τ̃ , ρ) then (τ̃ ′, τ ′) must also be a valid witness-word pair.

Hence, the language L ⊂ T might be split in equivalence classes denoted ∼ (with possibly a
unique huge class) and τ ′ ∼ τ if (τ ′, ρ)← RandTag(τ) and τ̃ ′ ← DerivWitness(τ̃ , ρ) then (τ̃ ′, τ ′).

Unlinkability. The RandTag must randomize the tag τ within the equivalence class in an unlink-
able way: for any pair ((τ̃1, τ1), (τ̃2, τ2)) issued from GenTag, the two distributions {(τ1, τ2, τ

′
1, τ
′
2)}

and {(τ1, τ2, τ
′
2, τ
′
1)}, where τ ′1 ← RandTag(τ1) and τ ′2 ← RandTag(τ2), must be (computation-

ally) indistinguishable.
In the case of unique equivalence class for τ , one can expect perfect unlinkability. In case of

multiple equivalence classes for τ , these classes should be computationally indistinguishable to
provide unlinkability.

4.3 Aggregate Signatures with Randomizable Tags
Now the tag and the message are two distinct elements in a tag-based signature, we will introduce
new properties for each of them:
– randomizable tags: if τ can be randomized, but still with an appropriate zero-knowledge

proof of knowledge of τ̃ , one can get anonymous credentials, where τ is a randomizable
public key and an attribute is signed;

– aggregate signatures: one can aggregate signatures generated for different messages (at-
tributes), even different keys (multi-authority) but all on the same tag τ .

By combining both properties, we will provide a compact scheme of attribute-based anonymous
credentials. When a trapdoor allows to link randomized tags, one gets traceability.

Signatures with Randomizable Tags. When randomizing τ into τ ′, one must be able to
keep track of the change from to update τ̃ to τ̃ ′ and the signatures. Formally, we will require
to have the algorithm:

DerivSign(vk, τ,m, σ, ρτ→τ ′): Given a valid signature σ on tag τ and message m, and ρτ→τ ′
the randomization link between τ and another tag τ ′, it outputs a new signature σ′ on
the message m and the new tag τ ′. Both signatures are under the same key vk.

For compatibility with the tag and correctness of the signature scheme, we require that for all
honestly generated keys (sk, vk) ← Keygen(param), all tags (τ̃ , τ) ← GenTag(param), and all
messages m, if σ ← Sign(sk, τ,m), (τ ′, ρ)← RandTag(τ) and σ′ ← DerivSign(vk, τ,m, σ, ρ), then
VerifSign(vk, τ ′,m, σ′) should output 1.

For privacy reasons, in case of probabilistic signatures, it will not be enough to just randomize
the tag, but the random coins of the signing algorithm too:

RandSign(vk, τ,m, σ): Given a valid signature σ on tag τ and message m, it outputs a new
signature σ′ on the same message m and tag τ .

Correctness extends the above one, where the algorithm VerifSign(vk, τ ′,m, σ′′) should output 1
with σ′′ ← RandSign(vk, τ ′,m, σ′). One additionally expects unlinkability: the following distri-
butions are (computationally) indistinguishable, for any vk and m (possibly chosen by the ad-
versary), where for i = 0, 1, (τ̃i, τi)← GenTag(1κ), σi ← Sign(sk, τi,m), (τ ′i , ρi)← RandTag(τi),
σ′i ← DerivSign(vk, τi,m, σi, ρi) and σ′′i ← RandSign(vk, τ ′i ,m, σ′i):

D0 = {(m, vk, τ0, σ0, τ
′
0, σ
′′
0 , τ1, σ1, τ

′
1, σ
′′
1)} D1 = {(m, vk, τ0, σ0, τ

′
1, σ
′′
1 , τ1, σ1, τ

′
0, σ
′′
0)}.

We stress that this indistinguishability should also hold with respect to the signer, but then
after randomization of the signature (and not just of the tag) in case of probabilistic signature.
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Aggregate Signatures. Boneh et al. [BGLS03] remarked it was possible to aggregate the BLS
signature [BLS01], we will follow this path, but for tag-based signatures, with possible aggre-
gation only between signatures with the same tag, in a similar way as the indexed aggregated
signatures [CL11]. We will even consider aggregation of public keys, which can either be a simple
concatenation or a more evolved combination as in [BDN18]. Hence, an aggregate (tag-based)
signature scheme (Aggr-Sign) is a signature scheme with the algorithms:

AggrKey({vkj}`j=1): Given ` verification keys vkj , it outputs an aggregated verification key
avk;

AggrSign(τ, (vkj ,mj , σj)`j=1): Given ` signed messagesmj in σj under vkj and the same tag τ ,
it outputs a signature σ on the message-set ~M = {mj}`j=1 under the tag τ and aggregated
verification key avk.

We remark that keys can evolve (either in a simple concatenation or a more compact way) but
messages also become sets. While we will still focus on signing algorithm of a single message
with a single key, we have to consider verification algorithms on message-sets and for aggregated
verification keys. In the next section, we combine aggregation with randomizable tags, and we
will handle verification for message-sets.

Correctness of an aggregate (tag-based) signature scheme requires that for any valid tag-
pair (τ̃ , τ) and honestly generated keys (skj , vkj)← Keygen(param), if σj = Sign(skj , τ,mj) are
valid signatures for j = 1, · · · , `, then for both key avk ← AggrKey({vkj}`j=1) and signature
σ = AggrSign(τ, (vkj ,mj , σj)`j=1), the verification VerifSign(avk, τ, {mj}`j=1, σ) should output 1.

Aggregate Signatures with Randomizable Tags We can now provide the formal defini-
tion of an aggregate signature scheme with randomizable tags, where some algorithms exploit
compatibility between the EphemerId scheme and the signature scheme:

Definition 12 (Aggregate Signatures with randomizable tags (ART-Sign)). An ART-
Sign scheme, associated to an EphemerId scheme E = (Setup, GenTag, RandTag, DerivWitness,
(ProveVTag,VerifVTag)) consists of the algorithms (Setup, Keygen, Sign, AggrKey, AggrSign,
DerivSign, RandSign, VerifSign):

Setup(1κ): Given a security parameter κ, it runs E .Setup and outputs the global parameter
param, which includes E .param with the tag space T , and extends it with the message
spaceM;

Keygen(param): Given a public parameter param, it outputs a key-pair (sk,vk);
Sign(sk, τ,m): Given a signing key, a valid tag τ , and a message m ∈ M, it outputs the

signature σ;
AggrKey({vkj}`j=1): Given ` verification keys vkj , it outputs an aggregated verification key

avk;
AggrSign(τ, (vkj ,mj , σj)`j=1): Given ` signed messages mj in σj under vkj and the same valid

tag τ , it outputs a signature σ on the message-set ~M = {mj}`j=1 under the tag τ and
aggregated verification key avk;

VerifSign(avk, τ, ~M, σ): Given a verification key avk, a valid tag τ, a message-set ~M and a
signature σ, it outputs 1 if σ is valid relative to avk and τ , and 0 otherwise;

DerivSign(avk, τ, ~M, σ, ρτ→τ ′): Given a signature σ on a message-set ~M under a valid tag
τ and aggregated verification key avk, and the randomization link ρτ→τ ′ between τ and
another tag τ ′, it outputs a signature σ′ on the message-set ~M under the new tag τ ′ and
the same key avk;

RandSign(avk, τ, ~M, σ): Given a signature σ on a message-set ~M under a valid tag τ and
aggregated verification key avk, it outputs a new signature σ′ on the message-set ~M and
the same tag τ .
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We stress that all the tags must be valid: their verification must be performed before the
verification of the signatures.
Note that using algorithms from E , tags are randomizable at any time, and signatures adapted
and randomized, even after an aggregation: avk and ~M can either be single key and message or
aggregations of keys and messages. One can remark that only protocol (ProveVTag,VerifVTag)
from E is involved in the ART-Sign scheme, as one just needs to check the validity of the tag, not
the ownership. The latter will be useful in anonymous credentials with fresh proof of ownership.

Correctness. The idea is that an ART-Sign scheme is correct if the underlying tag-based
signature scheme with randomizable tag and the underlying aggregate signature scheme are
correct. The formal correctness for an aggregate signature scheme with randomizable tags is
given in the Appendix C.

Unforgeability. In the Chosen-Message Unforgeability security game, the adversary has un-
limited access to the following oracles, with lists KList and TList initially empty:

– OGenTag() outputs the tag τ and keeps track of the associated witness τ̃ , with (τ̃ , τ)
appended to TList;

– OKeygen() outputs the verification key vk and keeps track of the associated signing key sk,
with (sk, vk) appended to KList;

– OSign(τ, vk,m), for (τ̃, τ)∈TList and (sk, vk)∈KList, outputs Sign(sk, τ,m).

It should not be possible to generate a signature that falls outside the range of DerivSign,
RandSign, or AggrSign:
Definition 13 (Unforgeability for ART-Sign). An ART-Sign scheme is said unforgeable if,
for any adversary A that, given signatures σi for tuples (τi,vki,mi) of its choice but for τi and
vki issued from the GenTag and Keygen algorithms respectively (for Chosen-Message Attacks),
outputs a tuple (avk, τ, ~M, σ) where both τ is a valid tag and σ is a valid signature w.r.t.
(avk, τ, ~M), there exists a subset J of the signing queries with a common tag τ ′ ∈ {τi}i such
that τ ∼ τ ′, ∀j ∈ J, τj = τ ′, avk is an aggregated key of {vkj}j∈J , and ~M = {mj}j∈J , with
overwhelming probability.
Since there are multiple secrets, we can consider corruptions of some of them:

– OCorruptTag(τ), for (τ̃ , τ) ∈ TList, outputs τ̃ ;
– OCorrupt(vk), for (sk, vk) ∈ KList, outputs sk.

The forgery should not involve a corrupted key (but corrupted tags are allowed). Note again
that all the tags are valid (either issued from GenTag or verified). In the unforgeability security
notion, some limitations might be applied to the signing queries: one-time queries (for a given
tag-key pair) or a bounded number of queries.

Unlinkability. Randomizability of both the tag and the signature are expected to provide
anonymity, with some unlinkability property:
Definition 14 (Unlinkability for ART-Sign). An ART-Sign scheme is said unlinkable if, for
any avk and ~M , no adversary A can distinguish the distributions D0 and D1, where for i = 0, 1,
we have (τ̃i, τi) ← GenTag(1κ), (τ ′i , ρi) ← RandTag(τi), σi is any valid signature of ~M under τi
and vk, σ′i ← DerivSign(avk, τi, ~M, σi, ρi) and σ′′i ← RandSign(avk, τ ′i , ~M, σ′i):

D0 = {( ~M, avk, τ0, σ0, τ
′
0, σ
′′
0 , τ1, σ1, τ

′
1, σ
′′
1)} D1 = {( ~M, avk, τ0, σ0, τ

′
1, σ
′′
1 , τ1, σ1, τ

′
0, σ
′′
0)}.

We stress again that this indistinguishability should also hold with respect to the signer, but
then after randomization of the signature (and not just of the tag, with derivation) in case of
probabilistic signature.
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4.4 Anonymous Credential from EphemerId and ART-Sign

Let E be an EphemerId scheme and Sart an ART-Sign scheme, one can construct an anonymous
attribute-based credential scheme. The user’s keys will be tag pairs and the credentials will be
ART-Sign signatures on both the tags and the attributes. Since the signature is aggregatable
and the tag is randomizable, the user can anonymously show any aggregation of credentials.

Furthermore, as the signature scheme tolerates corruptions of users and signers, we will be
able to consider corruptions of users and credential issuers, and even possible collusions:

Setup(1κ): Given a security parameter κ, it runs Sart.Setup and outputs the public parame-
ters param which includes all the parameters;

CIKeyGen(ID): Credential issuer CI with identity ID, runs Sart.Keygen(param) to obtain his
key pair (sk, vk);

UKeyGen(id): User U with identity id, runs E .GenTag(param) to obtain his key pair (usk, uvk);
(CredObtain(usk, vk, a),CredIssue(uvk, sk, a)): User U with identity id and key-pair (usk, uvk)

asks the credential issuer CI for a credential on attribute a: σ = Sart.Sign(sk, uvk, a), which
can be checked by the user;

CredAggr(usk, {(vkj , aj , σj)}j): Given credentials σj on attributes (IDj , aj) under the same
user key uvk, it outputs the signature (which only needs uvk in our case)
σ = Sart.AggrSign(uvk, {(vkj , aj , σj)}j) on the set of attributes {aj}j under uvk and the
aggregated verification key avk of all the vkj ;

(CredShow(usk, {(vkj , aj)}j , σ),CredVerify({(vkj , aj)}j): User U randomizes his public key
(uvk′, ρ) = E .RandTag(uvk) and computes the aggregated key avk = Sart.AggrKey({vkj}j).
Then, it adapts the secret key usk′ = E .DerivWitness(usk, ρ), thanks to ρ, as well as the
aggregated signature σ′ = Sart.DerivSign(avk, uvk, {aj}j , σ, ρ). It eventually randomizes
it: σ′′ = Sart.RandSign(avk, uvk′, {aj}j , σ′). Finally, it sends to the verifier V the anony-
mous credential (avk, {aj}j , uvk′, σ′′). The verifier first checks the freshness of the creden-
tial with a proof of ownership of uvk′ using the interactive protocol (E .ProveKTag(usk′),
E .VerifKTag(uvk′)) and then verifies the validity of the credential with
Sart.VerifSign(avk, uvk′, {aj}j , σ′′).

If one considers corruptions, when one corrupts a user, his secret key is provided, when one
corrupts a credential issuer, his secret key is provided.

By replacing all the algorithms by their instantiations for the proposed constructions of
EphemerId and ART-Sign schemes, we obtain our constructions of anonymous attribute-based
credential schemes. The SqDH construction uses an aggregate signature with (public) random-
izable tag, and unforgeability holds even if the witnesses are known. As a consequence, this
construction allows corruption of the Credential Issuers and of the users.

Theorem 15. Assuming EphemerId achieves knowledge-soundness and ART-Sign is unforge-
able, the generic construction is an unforgeable attribute-based credential scheme, in the certified
key model.

Proof. Let A be an adversary against the unforgeability of our anonymous credential scheme.
We build an adversary B against the unforgeability of the ART-Sign. We stress that our proof
is in the certified key model: even for the corrupted players, the simulator knows the secret
keys, as they can be extracted at the certification time. Our adversary B runs the unforgeability
security game of the ART-Sign, and answers the oracle queries asked by A as follows:

– OHCI(ID): If ID ∈ HCI ∪ CCI, B outputs ⊥. Otherwise, it adds ID ∈ HCI, asks the query
OKeygen() and forwards the answer to A;

– OCCI(ID, vk): If ID /∈ HCI∪CCI, B adds ID ∈ CCI. Otherwise, if ID ∈ HCI with keys (sk, vk),
it moves ID from HCI to CCI. It then asks the query OCorrupt(vk) and forwards the answer
to A;
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– OHU(id): If id ∈ HU ∪ CU, B outputs ⊥. Otherwise, it adds id ∈ HU, asks the query
OGenTag() and forwards the answer to A;

– OCU(id, uvk): If id /∈ HU ∪ CU, B adds id ∈ CU. Otherwise, if id ∈ HU with keys (usk, uvk),
it moves id from HU to CU, asks the query OCorruptTag(uvk) and forwards the answer to
A;

– OObtIss(id, ID, a): If id /∈ HU or ID /∈ HCI, B outputs ⊥. Otherwise, id is associated to
(usk, uvk) and ID is associated to (sk, vk). Then B asks the query OSign(vk, uvk, a), adds
(ID, a) to Att[id] and (ID, a, σ) to Cred[id] and outputs σ.

– OObtain(id, ID, a): If id /∈ HU or ID /∈ CCI, B outputs ⊥. Otherwise, id is associated to
(usk, uvk) and ID is associated to (sk, vk). In our (non-interactive) construction, the adver-
sary additionally provides a signature σ, that is first checked by B, that later adds (ID, a)
to Att[id] and (ID, a, σ) to Cred[id];

– OIssue(id, ID, a): If id /∈ CU or ID /∈ HCI, B outputs ⊥. Otherwise, id is associated to
(usk, uvk) and ID is associated to (sk, vk). Then B runs σ = Sign(sk, uvk, a) and adds (ID, a)
to Att[id] and (ID, a, σ) to Cred[id];

– OShow(id, {(IDj , aj)}j): If id /∈ HU or {(IDj , aj)}j) 6⊂ Att[id], B outputs ⊥. Otherwise, id
is associated to (usk, uvk) and each IDj is associated to (skj , vkj). Furthermore, for each
(IDj , aj), there is σj such that (IDj , aj , σj) ∈ Cred[id]. Then B first randomizes the key uvk
with (uvk′, ρ) = E .RandTag(uvk), computes the aggregated key avk = Sart.AggrKey({vkj}j)
and adapts the secret key usk′ = E .DerivWitness(usk, ρ). From the obtained credentials σj ,
it computes the aggregated signature σ = Sart.AggrSign(uvk, {(vkj , aj , σj)}j), adapts it: σ′ =
Sart.DerivSign(avk, uvk, {aj}j , σ, ρ), and randomizes it: σ′′ = Sart.RandSign(avk, uvk′, {aj}j , σ′).
B outputs (avk, {aj}j , uvk′, σ′′) and makes the E .ProveKTag(usk′) part of the interactive
proof of ownership.

Eventually, the adversaryA runs a showing for {(vkj , aj)}j , with a credential (avk, {aj}j , uvk∗, σ∗)
and a proof of knowledge of usk∗ associated to uvk∗: in case of success, B outputs the signature
(avk, {aj}j , uvk∗, σ∗).

In case of validity of the showing, except with negligible probability,

– from the knowledge-soundness of the EphemerId scheme, with a valid final showing and
proof of knowledge, one gets freshness of the proof and one can use once the extractor to
get usk∗. This proves the validity of the tag uvk∗;

– from the unforgeability of the aggregate signature with randomizable tags, all the attributes
aj ’s have been signed for vkj and a common uvk ∼ uvk∗, such that there is id ∈ CU,
associated to (usk, uvk). These individual credentials known by the adversary have thus
been issued either by the adversary on behalf of a corrupted credential issuer IDj ∈ CCI or
from an oracle query to IDj for id.

This is thus a legitimate showing with overwhelming probability: B wins with negligible prob-
ability. Hence, this is the same for the adversary A.

As explained above, the security relies on both the soundness of the EphemerId scheme and
the unforgeability of the aggregate signature with randomizable tags. In our construction, the
witness is not needed for signing, and unforgeability of the ART-Sign holds even if the witnesses
are all known to the adversary. Hence, corruption of users would just help to run the proof of
knowledge of the witnesses, and corruption of credential issuers for the issuing of credentials,
which would not help for forgeries (in the above security model). Of course, we also have to
take care of the way keys are generated and the number of signatures that will be issued to
guarantee the unforgeability.

Theorem 16. Assuming EphemerId is zero-knowledge and ART-Sign is unlinkable, the generic
construction is an anonymous attribute-based credential scheme, in the certified key model.
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Proof. From the unlinkability of the ART-Sign, the tuple (avk, ~M, τ ′, σ′′) does not leak any
information about the initial tag τ . Hence, a credential does not leak any information about
uvkb. In addition, if the proof of knowledge of the witness is zero-knowledge, it does not leak
any information about uvkb either.

5 Constructions

We can now instantiate the different primitives. More precisely, we provide two constructions
of a multi-authority anonymous credential scheme each one based on a construction of an ART-
Sign scheme: a one-time version and a bounded version. In the first construction, we consider
attributes where the index i determines the attribute type (age, city, diploma) and the exact
value is encoded in ai ∈ Z∗p (possibly H(m) ∈ Z∗p if the value is a large bitstring), or 0 when
empty. The second construction will not require any such ordering on the attributes. Arbitrary
bit strings are supported. However, the construction of the EphemerId scheme is in common.

5.1 SqDH-based EphemerId Scheme

With tags in T = G3
1, in an asymmetric bilinear setting (G1,G2,GT , p, g, g, e), and τ =

(h, hτ̃ , hτ̃2) a Square Diffie-Hellman tuple, one can define the SqDH EphemerId scheme:

Setup(1κ): Given a security parameter κ, let (G1,G2,GT , p, g, g, e) be an asymmetric bilinear
setting, where g and g are random generators of G1 and G2 respectively. The set of (valid
and invalid) tags is T = G3

1. We then define param = (G1,G2,GT , p, g, g, e; T );
GenTag(param): Given a public parameter param, it randomly chooses a generator h $← G∗1

and outputs τ̃ $← Z∗p and τ = (h, hτ̃ , hτ̃2) ∈ G3
1.

RandTag(τ): Given a tag τ as input, it chooses ρτ→τ ′ $← Zp and constructs τ ′ = τρτ→τ ′ the
derived tag. It outputs (τ ′, ρτ→τ ′).

DerivWitness(τ̃ , ρτ→τ ′): The derived witness remains unchanged: τ̃ ′ = τ̃ .
ProveVTag(τ̃),VerifVTag(τ): The prover constructs the proof π = proof(τ̃ : τ = (h, hτ̃ , hτ̃2))

(see the Appendix F.2 for a non-interactive proof using the Groth-Sahai [GS08] frame-
work). The verifier outputs 1 if it accepts the proof and 0 otherwise.

Valid tags are Square Diffie-Hellman pairs in G1:

L = {(h, hx, hx2), h ∈ G∗1, x ∈ Z∗p} = ∪x∈Z∗pLx Lx = {(h, hx, hx2), h ∈ G∗1}

The randomization does not affect the exponents, hence there are p − 1 different equivalence
classes Lx, for all the non-zero exponents x ∈ Z∗p, and correctness is clearly satisfied within
equivalence classes. The validity check (see the Appendix F.2) is sound as the Groth-Sahai
commitment is in the perfectly binding setting. Such tags also admit an interactive Schnorr-like
zero-knowledge proof of knowledge of the exponent τ̃ for (ProveKTag(τ̃),VerifKTag(τ)) which
also provides extractability (knowledge-soundness)- With the Fiat-Shamir heuristic and the
random oracle, this proof of knowledge can be transformed into a non-interactive one, also
called a signature of knowledge. Under the DSqDH and DL assumptions, given the tag τ , it is
hard to recover the exponent τ̃ = x. The tags, after randomization, are uniformly distributed
in the equivalence class, and under the DSqDH-assumption, each class is indistinguishable from
G3

1, and thus one has unlinkability: see Theorem 5.

5.2 One-Time Version

One-Time SqDH-based ART-Sign Scheme. The above EphemerId scheme can be extended
into an ART-Sign scheme where implicit vector messages are signed. As the aggregation can be
made on signatures of messages under the same tag but from various signers, the description is
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given for multiple and independent signers, each indexed by j, and any signed message by the
j-signer for coordinate i is indexed by (j, i).

We stress that this one-time scheme needs to be state-full as there is the limitation for a
signer j not to sign more than one message with index (j, i) for a given tag: a signer must use
two different indices to sign two messages for one tag. This is due to the linearly-homomorphic
signature scheme: each coordinate is signed in a subspace of dimension 2, with two signatures
on two independent 2-dimension vectors, one can generate the full subspace.

Our construction of aggregate signature with randomizable tags is based on the second
linearly homomorphic signature scheme of [HPP19, Appendix C.5]:

Setup(1κ): It extends the above setup with the set of messagesM = Zp;
Keygen(param): Given the public parameters param, it outputs the signing and verification

keys
skj,i = ( SKj = [ tj , uj , vj ], SK′j,i = [ rj,i, sj,i ] ) $← Z5

p,

vkj,i = ( VKj = [ gtj , guj , gvj ], VK′j,i = [ grj,i , gsj,i ] ) ∈ G5
2.

Note that one could dynamically add new SK′j,i and VK′j,i to sign implicit vector messages:
skj = SKj ∪ [SK′j,i]i, vkj = VKj ∪ [VK′j,i]i;

Sign(skj,i, τ,m): Given a signing key skj,i = [t, u, v, r, s], a message m ∈ Zp and a public tag
τ = (τ1, τ2, τ3), it outputs the signature (of m, by the j-th signer on the index (j, i)):
σ = τ t+r+ms1 × τu2 × τv3 ∈ G1.

AggrKey({vkj,i}j,i): Given verification keys vkj,i, it outputs the aggregated verification key
avk = [avkj ]j , with avkj = VKj ∪ [VK′j,i]i for each j;

AggrSign(τ, (vkj,i,mj,i, σj,i)j,i): Given tuples of verification key vkj,i, message mj,i and sig-
nature σj,i all under the same tag τ , it outputs the signature σ =

∏
j,i σj,i ∈ G1 of the

concatenation of the messages verifiable with avk ← AggrKey({vkj,i}j,i). Note that one
needs to keep track of the indices of the mj,i in the concatenation;

DerivSign(avk, τ, ~M, σ, ρτ→τ ′): Given a signature σ on tag τ and a message-set ~M , and ρτ→τ ′
the randomization link between τ and another tag τ ′, it outputs σ′ = σρτ→τ ′ ;

RandSign(avk, τ, ~M, σ): The scheme being deterministic, it returns σ;
VerifSign(avk, τ, ~M, σ): Given a valid tag τ = (τ1, τ2, τ3), an aggregated verification key avk =

[avkj ] and a message-set ~M = [mj ], with both for each j, avkj = VKj ∪ [VK′j,i]i and
mj = [mj,i]i, and a signature σ, one checks if the following equality holds or not, where
nj = #{VK′j,i}:

e(σ, g) = e

τ1,
∏
j

VKj,1nj ×
∏
i

VK′j,i,1 · VK′j,i,2
mj,i


× e

τ2,
∏
j

VKj,2nj
× e

τ3,
∏
j

VKj,3nj
 .

In case of similar public keys in the aggregation (a unique index j), avk = VK ∪ [VK′i]i and
verification becomes, where n = #{VK′i},

e(σ, g) = e

(
τ1,VK1

n ×
n∏
i=1

VK′i,1 · VK′i,2
~Mi

)
× e (τ2,VK2

n)× e (τ3,VK3
n) .

Recall that the validity of the tag has to be verified, either with a proof of knowledge of the
witness (as it will be the case in the ABC scheme, or with the proof π = proof(τ̃ : τ =
(h, hτ̃ , hτ̃2)) (such as the one given in the Appendix F.2).
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Security of the One-Time SqDH-based ART-Sign Scheme. As argued in the article [HPP20], the
signature scheme defined above is unforgeable in the generic group model [Sho97], if signing
queries are asked at most once per tag-index pair:

Theorem 17. The One-Time SqDH-based ART-Sign is unforgeable with one signature only per
index, for a given tag, even with adaptive corruptions of keys and tags, in the generic group
model.

Proof. As argued in [HPP20], when the bases of the tags are random, even if the exponents
are known, the signature that would have signed messages (g, gm1 , . . . , g, gmn) ∈ G2n

1 is an
unforgeable linearly-homomorphic signature. While [HPP20] was signing vectors in G1, un-
forgeability also holds when ~M = (m1, . . . ,mn) ∈ Znp is known. This means it is only possible
to linearly combine signatures with the same tag. As issued signatures are on pairs (g, gmi),
under a different pair of keys skj,i for each such signed pair (whether they are from the same
global signing key SKj or not, as we exclude repetitions for an index), which can be seen as
tuples (1, 1, . . . , g, gmi , . . . , 1, 1), completed with 1 = g0: all the pairs (g, gmi) have been signed
under the same tag. This proves unforgeability, even with corruptions of the tags, but without
repetitions of tag-index. One can also consider corruptions of the signing keys, as they are all
independent: one just needs to guess under which key will be generated the forgery.

About unlinkability, it relies on the DSqDH assumption, but between signatures that contain
the same messages at the same shown indices (the same message-vector ~M):

Theorem 18. The One-Time SqDH-based ART-Sign, with message-vectors, is unlinkable under
the DSqDH and DDH assumptions.

Proof. As already noticed, the tags are randomizable among all the square Diffie-Hellman
triples with the same exponent, and for any pair of tags (τ̃i, τi) ← GenTag(1κ), for i =
0, 1, when randomized into τ ′i respectively, the distributions (τ0, τ1, τ

′
0, τ
′
1) and (τ0, τ1, τ

′
1, τ
′
0)

are indistinguishable from G12
$ under the DSqDH and DDH assumptions, as shown in Theo-

rem 5. For any avk and ~M , the signatures are deterministic and unique for a tag τ , so they
are functions of (avk, τ, ~M). Then, using the signing keys, one can get that the distributions
( ~M, avk, τ0, σ0, τ1, σ1, τ

′
0, σ
′
0, τ
′
1, σ1) and ( ~M, avk, τ0, σ0, τ1, σ1, τ

′
1, σ
′
1, τ
′
0, σ0) are also indistinguish-

able under the DSqDH and DDH assumption. No need of randomization of the signatures.

The Basic SqDH-based Anonymous Credential Scheme. The basic construction directly
follows the instantiation of the above construction with the SqDH-based ART-Sign:

Setup(1κ): Given a security parameter κ, let (G1,G2,GT , p, g, g, e) be an asymmetric bilinear
setting, where g and g are random generators of G1 and G2 respectively. We then define
param = (G1,G2,GT , p, g, g, e,H), where H is an hash function in G1;

CIKeyGen(ID): Credential issuer CI with identity ID, generates its keys for n kinds of at-
tributes

skj = ( SKj = [ tj , uj , vj ], SK′j,i = [ rj,i, sj,i ]i ) $← Z3+2n
p ,

vkj = ( VKj = [ gtj , guj , gvj ], VK′j,i = [ grj,i , gsj,i ]i ) ∈ G3+2n
2 .

More keys for new attributes can be generated on-demand: by adding the pair [rj,i, sj,i] $←
Z2
p to the secret key and [grj,i , gsj,i ] to the verification key, the keys can works on n + 1

kinds of attributes;
UKeyGen(id): User U with identity id, sets h = H(id) ∈ G∗1, generates its secret tag τ̃

$← Z∗p
jointly with CA (to guarantee randomness) and computes τ = (h, hτ̃ , hτ̃2) ∈ G3

1: usk = τ̃
and uvk = τ = (h, hτ̃ , hτ̃2);
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(CredObtain(usk, vk, ai),CredIssue(uvk, sk, ai)): User U with identity id and uvk = (τ1, τ2, τ3)
asks to the credential issuer CI for a credential on the attribute ai: σ = τ t+ri+aisi1 × τu2 ×
τv3 ∈ G1. The credential issuer uses the appropriate index i, making sure this is the first
signature for this index;

CredAggr(usk, {(VKj ,VK′j,i, aj,i, σj,i)}j,i): Given credentials σj,i on attributes (IDj , aj,i) under
the same user key uvk, it outputs the signature σ =

∏
j,i σj,i ∈ G1;

(CredShow(usk, {(VKj ,VK′j,i, aj,i)}j,i, σ), CredVerify({(VKj ,VK′j,i, aj,i)}j,i):
First, user U randomizes his public key with a random ρ $← Z∗p into uvk′ = (τρ1 , τ

ρ
2 , τ

ρ
3 ),

concatenates the keys avk = ∪j([VKj ]∪ [VK′j,i]i), and adapts the signature σ′ = σρ. Then
it sends the anonymous credential (avk, {aj,i}j,i, uvk′, σ′) to the verifier. The latter first
checks the freshness of the credential with a proof of both ownership and validity of uvk′
using a Schnorr-like interactive proof and then verifies the validity of the credential: with
nj = #{VK′j,i}:

e(σ, g) = e

τ1,
∏
j

VKj,1nj ×
∏
i

VK′j,i,1 · VK′j,i,2
aj,i

× e
τ2,

∏
j

VKj,2nj
× e

τ3,
∏
j

VKj,3nj
 .

We stress that for the unforgeability of the signature, generator h for each tag must be random,
and so it is generated asH(id), with a hash functionH in G1. This way, the credential issuers will
automatically know the basis for each user. There is no privacy issue as this basis is randomized
when used in an anonymous credential. Moreover, the user needs his secret key τ̃ to be random.
Therefore, he jointly generates τ̃ with the Certification Authority (see the Appendix E). During
the showing of a credential, the user has to make a fresh proof of knowledge of the witness for
the validity of the tag. Again, in the security proof of unforgeability, one may need a rewinding,
but only for the target alleged forgery.

In this construction, we can consider a polynomial number n of attributes per credential
issuer, where ai is associated to key vkj,i of the Credential Issuer CIj . Again, to keep the unforge-
ability of the signature, the credential issuer should provide at most one attribute per key vkj,i
for a given tag. At the showing time, for proving the ownership of k attributes (possibly from
K different credential issuers), the users has to perform k−1 multiplications in G1 to aggregate
the credentials into one, and 4 exponentiations in G1 for randomization, but just one element
from G1 is sent, as anonymous credential, plus an interactive Schnorr-like proof of SqDH-tuple
with knowledge of usk (see the Appendix F.1: 2 exponentiations in G1, 2 group elements from
G1, and a scalar in Zp); whereas the verifier first has to perform 4 exponentiations and 2 mul-
tiplications in G1 for the proof of validity/knowledge of usk, and less than 3k multiplications
and k exponentiations in G2, and 3 pairings to check the credential. While this is already better
than [CL11], we can get a better construction.

5.3 Bounded Version

Bounded SqDH-based ART-Sign Scheme. The above signature scheme limits to one-time
signatures: only one signature can be generated for a given tag-index, otherwise signatures can
be later forged on any message for this index, by linearity [HPP20]: the vector space spanned
by (g, gm) (in case of just one signature issued for one index) is just (gα, gαm) and the ratio of
the exponents is the constant m; on the other hand, the vector space spanned by (g, gm) and
(g, gm′) (in case of two signatures issued for one index) is G × G, and then any ratio can be
achieved.

This will be enough for our ABC application, as one usually has one attribute value for a
specific kind of information (age, city, diploma, etc), but in practice this implies the signer to
either keep track of all the indices already signed for one tag or to sign all the messages at once.
We provide another kind of combinations, that could be applied on our SqDH signature scheme
that will have interesting application to an ABC scheme.
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Bounded SqDH-based ART-Sign Scheme. We propose here an alternative where the limi-
tation is on the total number n of messages signed for each tag by each signer:

Setup(1κ): It extends the above EphemerId-setup with the set of messagesM = Zp;
Keygen(param, n): Given the public parameters param and a length n, it outputs the signing

and verification keys

skj = [ tj , uj , vj , sj,1, . . . , sj,2n−1 ] $← Z2n+2
p ,

vkj = gskj = [ Tj , Uj , Vj , Sj,1, . . . , Sj,2n−1 ] ∈ G2n+2
2 .

Sign(skj , τ,m): Given a signing key skj = [t, u, v, s1, . . . , s2n−1], a message m ∈ Zp and a
public tag τ = (τ1, τ2, τ3), it outputs the signature

σ = τ
t+
∑2n−1

1 s`m
`

1 × τu2 × τv3 ∈ G1.

AggrKey({vkj}j): Given verification keys vkj , it outputs the aggregated verification key avk =
[vkj ]j ;

AggrSign(τ, (vkj ,mj,i, σj,i)j,i): Given tuples of verification key vkj , message mj,i and signa-
ture σj,i all under the same tag τ , it outputs the signature σ =

∏
j,i σj,i ∈ G1 of the

concatenation of the messages verifiable with avk← AggrKey({vkj}j);
DerivSign(avk, τ, ~M, σ, ρτ→τ ′): Given a signature σ on tag τ and a message-set ~M , and ρτ→τ ′

the randomization link between τ and another tag τ ′, it outputs σ′ = σρτ→τ ′ ;
RandSign(avk, τ, ~M, σ): The scheme being deterministic, it returns σ;
VerifSign(avk, τ, ~M, σ): Given a valid tag τ = (τ1, τ2, τ3), an aggregated verification key avk =

[vkj ]j and a message-set ~M = [mj ]j , with for each j, mj = [mj,i]i, and a signature σ, one
checks if the following equality holds or not, where nj = #{mj,i}:

e(σ, g) = e

τ1,
∏
j

T
nj
j ×

2n−1∏
`=1

S

∑
i
m`j,i

j,`

× e
τ2,

∏
j

U
nj
j

× e
τ3,

∏
j

V
nj
j


Recall that the validity of the tag has to be verified, as for the other version.

Security of the Bounded SqDH-based ART-Sign Scheme. The linear homomorphism of
the signature from [HPP20] still allows combinations. But when the number of signing queries
is at most 2n per tag, the verification of the signature implies 0/1 coefficients only:

Theorem 19. The bounded SqDH-based ART-Sign is unforgeable with a bounded number of
signing queries per tag, even with adaptive corruptions of keys and tags, in both the generic
group model and the random oracle model.

Proof. As argued in [HPP20] and recalled in Theorem 6, when the bases of the tags are
random, even if the exponents are known, the signature that would have signed messages
(gm1

, . . . , gm
2n−1), for m ∈ Zp, is an unforgeable linearly-homomorphic signature. This means

it is only possible to linearly combine signatures with the same tag. We fix the limit to n
signatures σi queried on distinct messages mi, for i = 1, . . . , n under vkj : one can derive the
signature σ =

∏
σαii on

(
g
∑

i
αim

1
i , . . . , g

∑
i
αim

2n−1
i

)
. Whereas the forger claims this is a signa-

ture on
(
g
∑

i
a1
i , . . . , g

∑
i
ani
)
, on nj ≤ n values a1, . . . , anj , as one cannot combine more than n

messages. Because of the constraint on τ2, we additionally have
∑
αi = nj mod p:

n∑
i=1

αim
`
i =

nj∑
i=1

a`i mod p for ` = 0, . . . , 2n− 1
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Let us first move on the left hand side the elements ak ∈ {mi}, with only n′ ≤ nj new elements,
we assume to be the first ones, and we note βi = αi if mi 6∈ {ak} and βi = αi − 1 if mi ∈ {ak}:∑n
i=1 βim

`
i =

∑n′
i=1 a

`
i mod p, for ` = 0, . . . , 2n− 1. We thus have the system

n∑
i=1

βim
`
i +

n′∑
i=1

γia
`
i = 0 mod p for ` = 0, . . . , 2n− 1, with γi = −1

This is a system of 2n equations with at most n + n′ ≤ 2n unknown values βi’s and γi’s, and
the Vandermonde matrix is invertible: βi = 0 and γi = 0 for all index i. As a consequence, the
vector (αi)i only contains 0 or 1 components.

This proves unforgeability, even with corruptions of the tags, but with a number of signed
messages bounded by n. One can also consider corruptions of the signing keys, as they are all
independent: one just needs to guess under which key will be generated the forgery.

About unlinkability, it relies on the DSqDH assumption, with the same proof as the previous
scheme, except we can consider un-ordered message-sets ~M :

Theorem 20. The bounded SqDH-based ART-Sign, with message-sets, is unlinkable.

Note that we provide an ART-Sign scheme in the Appendix D that slightly reduces the param-
eters.

The Compact SqDH-based Anonymous Credential Scheme. Instead of having a specific
key VK′j,i for each family of attributes aj,i, and thus limiting to one issuing per family of at-
tributes for each user, we can use the bounded SqDH-based ART-Sign, with free-text attributes:
we consider 2n− 1 keys, where n is the maximum number of attributes issued for one user by
a credential issuer, whatever the attributes are:

Setup(1κ): Given a security parameter κ, let (G1,G2,GT , p, g, g, e) be an asymmetric bilinear
setting, where g and g are random generators of G1 and G2 respectively. We then define
param = (G1,G2,GT , p, g, g, e,H), where H is an hash function in G1;

CIKeyGen(ID): Credential issuer CI with identity ID, generates its keys for n maximum at-
tributes per user

skj = [ tj , uj , vj , sj,1, . . . , sj,2n−1 ] $← Z2n+2
p ,

vkj = gskj = [ Tj , Uj , Vj , Sj,1, . . . , Sj,2n−1 ] ∈ G2n+2
2 .

UKeyGen(id): User U with identity id, sets h = H(id) ∈ G∗1, , generates its secret tag τ̃
$← Z∗p

jointly with CA (to guarantee randomness) and computes τ = (h, hτ̃ , hτ̃2) ∈ G3
1: usk = τ̃

and uvk = τ = (h, hτ̃ , hτ̃2);
(CredObtain(usk, vk, a),CredIssue(uvk, sk, a)): User U with identity id and uvk = (τ1, τ2, τ3)

asks to the credential issuer CI for a credential on the attribute a: σ = τ
t+
∑2n−1

`=1 s`a
`

1 ×
τu2 × τv3 ∈ G1. Note that a ∈ Z∗p, so it can be a hash value of an attribute represented by
an arbitrary bit string;

CredAggr(usk, {(vkj , aj,i, σj,i)}j,i): Given credentials σj,i on attributes (IDj , aj,i) under the
same user key uvk, it outputs the signature σ =

∏
j,i σj,i ∈ G1;

(CredShow(usk, {(vkj , aj,i)}j,i, σ),CredVerify({(vkj , aj,i)}j,i): First, a user U randomizes his
public key with a random ρ $← Z∗p, uvk′ = (τρ1 , τ

ρ
2 , τ

ρ
3 ), concatenates the keys avk =

∪j [vkj ], and adapts the signature σ′ = σρ. Then it sends the anonymous credential
(avk, {aj,i}j,i, uvk′, σ′) to the verifier. The latter first checks the freshness of the credential
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with a proof of ownership and validity of uvk′ using a Schnorr-like interactive proof and
then verifies the validity of the credential: with nj = #{aj,i}:

e(σ, g) = e

τ1,
∏
j

T
nj
j

2n−1∏
`=1

S

∑
i
a`j,i

j,`

× e
τ2,

∏
j

U
nj
j

× e
τ3,

∏
j

V
nj
j


Again, we stress that for the unforgeability of the signature, generator h for each tag and τ̃ must
be random. And the credential issuer should provide at most n attributes per user, even if in
this construction, we can consider an exponential number N of attributes per credential issuer,
as aj,i is any scalar in Z∗p. More concretely, aj,i can be given as the output of a hash function into
Zp from any bitstring. At the showing time, for proving the ownership of k attributes (possibly
from K different credential issuers), the users has to perform k − 1 multiplications in G1 to
aggregate the credentials into one, and 4 exponentiations in G1 for randomization, but just one
group element for G1 is sent, as anonymous credential, plus an interactive Schnorr-like proof
of SqDH-tuple with knowledge of usk (see the Appendix F.1: 2 exponentiations in G1, 2 group
elements from G1, and a scalar in Zp); whereas the verifier first has to perform 4 exponentiations
and 2 multiplications in G1 for the proof of validity/knowledge of usk, and less than 2n ·(K+3k)
multiplications in G2, 2n · k exponentiations in G2 and 3 pairings to check the credential.

In the particular case of just one credential issuer with verification key vk = (T,U, V, [Si]2n−1
i=1 ),

the verification of the credential σ on the k attributes {ai} just consists of

e(σ, g) = e

(
τ1, T

k
2n−1∏
`=1

S

∑
i
a`i

`

)
× e

(
τ2, U

k
)
× e

(
τ3, V

k
)
.

The communication is of constant size (one group element in G1). We stress that n is just a
limit of the maximal number of attributes issued by the credential issuer for one user but the
universe of the possible attributes is exponentially large, and there is no distinction between
the families of attributes.

6 Traceable Anonymous Credentials

As the SqDH-based ART-Sign schemes provide computational unlinkability only, it opens the
door of possible traceability in case of abuse, with anonymous but traceable tags.

The idea is that one can extend an EphemerId scheme with a modified GenTag algorithm and
additional TraceId and JudgeId ones and use this traceable EphemerId to construct a traceable
anonymous credentials.

To help the reader, we use the notations used in the anonymous credential to define the
traceable EphemerId scheme (full definition in the Appendix G):

Definition 21 (Traceable EphemerId). Based on an EphemerId scheme:

GenTag(param): Given a public parameter param, it outputs the user-key pair (usk,uvk) and the
tracing key utk;

TraceId(utk, uvk′): Given the tracing key utk associated to uvk and a public key uvk′, it outputs
a proof π of whether uvk ∼ uvk′ or not;

JudgeId(uvk, uvk′, π): Given two public keys and a proof, the judge checks the proof π and
outputs 1 if it is correct.

Construction. One can enhance our SqDH-based EphemerId scheme:

GenTag(param): Given a public parameter param, it randomly chooses a generator h $← G∗1
and outputs usk = τ̃ $← Z∗p, uvk = τ = (h, hτ̃ , hτ̃2) ∈ G3

1 and utk = gτ̃ ;
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TraceId(utk, uvk′): Given the tracing key utk associated to uvk = (τ1, τ2, τ3) and a public key
uvk′, it outputs a Groth-Sahai proof π (as shown in the Appendix F.3) that proves, in a
zero-knowledge way, the existence of utk such that

e(τ1, utk) = e(τ2, g) e(τ2, utk) = e(τ3, g) (1)
e(τ ′1, utk) = e(τ ′2, g) e(τ ′2, utk) = e(τ ′3, g); (2)

JudgeId(uvk, uvk′, π): Given two public keys and a proof, the judge checks the proof π and
outputs 1 if it is correct.

Correctness. The tracing key allows to check whether τ ′ ∼ τ or not: e(τ ′1, utk) = e(τ ′2, g) and
e(τ ′2, utk) = e(τ ′3, g). If one already knows the tags are valid (SqDH tuples), this is enough to
verify whether e(τ ′1, utk) = e(τ ′2, g) holds or not. However we provide the complete proof in the
Appendix F.3, as it is already quite efficient.The first equation (1) proves that utk is the good
tracing key for uvk = τ , and the second line (2) shows it applies to uvk′ = τ ′ too. It can be
observed this can also be a proof of innocence of id with key uvk if the first equation (1) is
satisfied while the second one is not.

Traceable Anonymous Credentials. For traceability in an anonymous credential scheme, we
need an additional player: the tracing authority. During the user’s key generation, this tracing
authority will either be the certification authority, or a second authority, that also has to certify
user’s key uvk once it has received the tracing key utk.

We consider a non-interactive proof of tracing, produced by the TraceId algorithm and
verified by anybody using the JudgeId algorithm. This proof could be interactive.

Non-frameability. In case of abuse of a credential σ under anonymous key uvk′, a tracing algo-
rithm outputs the initial uvk and id, with a proof a correct tracing. A new security notion is
quite important: non-frameability, which means that the tracing authority should not be able
to declare guilty a wrong user: only correct proofs are accepted by the judge.

A successful adversary A against non-frameability is able to forge a valid credential σ∗
under the key uvk∗ and a valid proof π = TraceId(utk∗, uvk) for some honest user with identity
id and key uvk which is not possible without breaking the unforgeability of the credential or the
proof. Hence, the tracing authority cannot frame a user and we obtain the first secure traceable
anonymous credential scheme.

Note however that, since we let the user choose the secret key τ̃ in GenTag, one user could
decide to use the same as another user. Either the tracing authority first checks that, using the
new tracing key on all the previous tags, and reject, or this is considered a collusion of users,
and at the tracing time, both users will be accused.
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Complementary Material

A Canard-Lescuyer Scheme

In 2013, Canard and Lescuyer proposed a traceable attribute-based anonymous credential
scheme [CL13], based on sanitizable signatures: “Protecting privacy by sanitizing personal data:
a new approach to anonymous credentials”.

The intuition consists in allowing the user to “sanitize” the global credentials issued by the
credential issuer, in order to keep visible only the required attributes. Then for unlinkability,
the signatures are encrypted under an ElGamal encryption scheme.

Unfortunately, in their scheme, the public key contains g $← G1 and g
$← G2, and the

ElGamal secret key is α $← Zp, the tracing key. The public encryption key is h = gα, but they
also need h = gα to be published for some verifications.

With this value h, anybody can break the semantic security of the ElGamal encryption, and
then break the privacy of the anonymous credential.

B Proof of Theorem 19 [HPP20]

For completeness, we simply recall in this section the proof of the Theorem 6 from [HPP20,
Theorem 19] that we use in our constructions.

Theorem 22. Given n valid Square Diffie-Hellman tuples (gi, ai = gwii , bi = awii ), with wi, for
random gi

$← G∗ and wi $← Z∗p, outputting (αi)i=1,...,n such that (G =
∏
gαii , A =

∏
aαii , B =∏

bαii ) is a valid Square Diffie-Hellman, with at least two non-zero coefficients αi, is computa-
tionally hard under the DL assumption.

Proof. Up to a guess, which is correct with probability greater than 1/n2, it is possible to assume
that α1, α2 6= 0. We are given a discrete logarithm challenge Z, in basis g. We will embed it in
either g1 or g2, by randomly choosing a bit b:

– if b = 0: set X = Z, and randomly choose v $← Zp and set Y = gv

– if b = 1: set Y = Z, and randomly choose u $← Zp and set X = gu

We set g1 ← X(= gu), g2 ← Y (= gv), with either u or v unknown, and randomly choose
βi ∈ Zp, for i = 3, . . . , n to set gi ← gβi . Eventually, we randomly choose wi, for i = 1, . . . , n
and output (gi, ai = gwii , bi = awii ) together with wi, to the adversary which outputs (αi)i=1,...,n
such that (G =

∏
gαii , A =

∏
aαii = Gw, B =

∏
bαii = Aw) for some unknown w. We thus have

the following relations:(
α1u+ α2v +

n∑
i=3

αiβi

)
· w = α1uw1 + α2vw2 +

n∑
i=3

αiβiwi(
α1uw1 + α2vw2 +

n∑
i=3

αiβiwi

)
· w = α1uw

2
1 + α2vw

2
2 +

n∑
i=3

αiβiw
2
i

If we denote T =
∑n
i=3 αiβi, U =

∑n
i=3 αiβiwi, and V =

∑n
i=3 αiβiw

2
i , that can be computed,

we deduce that:

(α1uw1 + α2vw2 + U)2 = (α1u+ α2v + T )(α1uw
2
1 + α2vw

2
2 + V )

which leads to

α1α2(w2
1 − w2

2)uv + α1(V − 2Uw1 + Tw2
1)u+ α2(V − 2Uw2 + Tw2

2)v + (TV − U2) = 0

We consider two cases:
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1. K = α2(w2
1 − w2

2)v + V − 2Uw1 + Tw2
1 = 0 mod p;

2. K = α2(w2
1 − w2

2)v + V − 2Uw1 + Tw2
1 6= 0 mod p;

which can be determined by checking whether the equality below holds or not:

g−(V−2Uw1+Tw2
1)/(α2(w2

1−w
2
2)) = Y.

One can note that case (1) and case (2) are independent of the bit b.

– If the case (1) happens, but b = 0, one aborts. If b = 1 (which holds with probability
1/2 independently of the case) then we can compute v = −(V − 2Uw1 + Tw2

1)/(α2(w2
1 −

w2
2)) mod p which is the discrete logarithm of Z in the basis g.

– Otherwise, the case (2) appears. If b = 1 one aborts. If b = 0 (which holds with probability
1/2 independently of the case), v is known and we have α1Ku+ α2(V − 2Uw2 + Tw2

2)v +
(TV − U2) = 0 mod p, which means that the discrete logarithm of Z in the basis g is
u = −(α2(V − 2Uw2 + Tw2

2)v + (TV − U2))/(α1K) mod p. ut

C Correctness of ART-Sign

An ART-Sign scheme is correct if the underlying tag-based signature scheme with randomiz-
able tag and the underlying aggregate signature scheme are correct. Tags can be randomized
and signatures adapted and randomized at any time, even after an aggregation. However, for
readability, we only develop the cases where randomization follows aggregation and aggregation
follows randomization.

From any valid tag-pair (τ̃ , τ) and honestly generated keys (skj , vkj) ← Keygen(param), if
σj = Sign(skj , τ,mj) are valid signatures on message mj ∈M for j = 1, · · · , `:

Aggregation then Randomization: if avk← AggrKey({vkj}`j=1),
σ = AggrSign(τ, (vkj ,mj , σj)`j=1),
(τ ′, ρ)← RandTag(τ),
σ′ ← DerivSign(vk, τ, {mj}`j=1, σ, ρ) and
σ′′ ← RandSign(vk, τ ′, {mj}`j=1, σ

′),
then VerifSign(vk, τ ′, {mj}`j=1, σ

′′) should output 1.
Randomization then Aggregation: if (τ ′, ρ)← RandTag(τ),
σ′j ← DerivSign(vk, τ,m, σj , ρ) for j = 1, · · · , `,
σ′′j ← RandSign(vk, τ ′,m, σ′j), avk← AggrKey({vkj}`j=1) and
σ′′ = AggrSign(τ, (vkj ,mj , σ

′′
j )`j=1)

then VerifSign(vk, τ ′, {mj}`j=1, σ
′′) should also output 1.

D Another Bounded SqDH-Based ART-Sign

We can slightly reduce the parameters of the bounded SqDH-based ART-Sign, but with some
limitations on the number of attributed to be signed. It relies on a hash function, modelled as
a random oracle in the security analysis.

Description of the Bounded SqDH-based ART-Sign Scheme 2. We thus propose here a
second version, still with the limitation on the total number of messages signed for each tag,
but the public keys are twice smaller:

Setup(1κ): It extends the above EphemerId-setup with the set of messagesM = {0, 1}∗, but
also a hash function H into Zp;
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Keygen(param, n): Given the public parameters param and a length n, it outputs the signing
and verification keys

skj = [ tj , uj , vj , sj,1, . . . , sj,n ] $← Zn+3
p ,

vkj = gskj = [ Tj , Uj , Vj , Sj,1, . . . , Sj,n ] ∈ Gn+3
2 .

Sign(skj , τ,m): Given a signing key skj = [t, u, v, s1, . . . , sn], a message m ∈ Zp and a public
tag τ = (τ1, τ2, τ3), it outputs the signature

σ = τ
t+
∑n

`=1 s`H(m)`
1 × τu2 × τv3 .

AggrKey({vkj}j): Given verification keys vkj , it outputs the aggregated verification key avk =
[vkj ]j ;

AggrSign(τ, (vkj ,mj,i, σj,i)j,i): Given tuples of verification key vkj , message mj,i and signa-
ture σj,i all under the same tag τ , it outputs the signature σ =

∏
j,i σj,i of the concatenation

of the messages verifiable with avk← AggrKey({vkj}j);
DerivSign(avk, τ, ~M, σ, ρτ→τ ′): Given a signature σ on tag τ and a message-set ~M , and ρτ→τ ′

the randomization link between τ and another tag τ ′, it outputs σ′ = σρτ→τ ′ ;
RandSign(avk, τ, ~M, σ): The scheme being deterministic, it returns σ;
VerifSign(avk, τ, ~M, σ): Given a valid tag τ = (τ1, τ2, τ3), an aggregated verification key avk =

[vkj ]j and a message-set ~M = [mj ]j , with for each j, mj = [mj,i]i, and a signature σ, one
checks if the following equality holds or not, where nj = #{mj,i}:

e(σ, g) = e

τ1,
∏
j

T
nj
j ×

n∏
`=1

S

∑
i
H(mj,i)`

j,`

× e
τ2,

∏
j

U
nj
j,2

× e
τ3,

∏
j

V
nj
j,3


We also recall that the validity of the tag has to be verified, as before, for the signature to be
considered valid.

Security of the Bounded SqDH-based ART-Sign Scheme 2. The linear homomorphism of
the signature from [HPP20] still allows combinations. But when the number of signing queries
is at most n per tag, the verification of the signature implies 0/1 coefficients only, with over-
whelming probability:

Theorem 23. The bounded SqDH-based ART-Sign defined above is unforgeable with a bounded
number of signing queries per tag, even with adaptive corruptions of keys and tags, in both the
generic group model and the random oracle model, as soon as qnH � p, where qH is the number
of hash queries and p the order of the group (the output of the hash function).

Proof. As argued in [HPP20], when the bases of the tags are random, even if the exponents
are known, the signature that would have signed messages (gm1

, . . . , gm
n), for m ∈ Zp, is an

unforgeable linearly-homomorphic signature. This means it is only possible to linearly combine
signatures with the same tag: from up to n signatures σi on distinct messagesmi, for i = 1, . . . , n
under vkj , one can derive the signature σ =

∏
σαii on

(
g
∑

i
αim

1
i , . . . , g

∑
i
αim

n
i

)
. Whereas the

forger claims this is a signature on
(
g
∑

i
a1
i , . . . , g

∑
i
ani
)
, on nj values a1, . . . , anj . Because of

the constraint on τ2, we have
∑
αi = nj mod p:

n∑
i=1

αim
`
i =

nj∑
i=1

a`i mod p for ` = 0, . . . , n
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Let us first move on the left hand side the elements ak ∈ {mi}, with only n′ ≤ nj new elements,
we assume to be the first ones, and we note βi = αi if mi 6∈ {ak} and or βi = αi−1 if mi ∈ {ak}:

n∑
i=1

βim
`
i =

n′∑
i=1

a`i mod p for ` = 0, . . . , n

Our goal is to prove that n′ = 0 and the αi’s are only 0 or 1.
So, first, let us assume that n′ = 0: there is no new element. The matrix (m`

i)i,`, for i =
1, . . . , n and ` = 0, . . . , n − 1 is a Vandermonde matrix, that is invertible: hence the unique
possible vector (βi) is the zero-vector. As a consequence, the vector (αi)i only contains 0 or 1
components.
Now, we assume n′ = 1: there is exactly one element a1 6∈ {mi}. We can move it on the left
side:

β0a
`
1 +

n∑
i=1

βm`
i = 0 mod p for ` = 0, . . . , n, with β0 = −1

Again, the matrix (m`
i)i,`, for i = 0, . . . , n where we denote m0 = a1, and ` = 0, . . . , n, is a

Vandermonde matrix, that is invertible: hence the unique possible vector (βi) is the zero-vector,
which contradicts the fact that β0 = −1.
Eventually, we assume n′ > 1: there are at least two elements ak 6∈ {mi}. We can move a1 on
the left side:

β0a
`
1 +

n∑
i=1

βm`
i =

n′∑
i=2

a`i mod p for ` = 0, . . . , n, with β0 = −1

Again, because of the invertible matrix, for the n′ − 1 elements on the right hand side, there is
a unique possible vector (βi), and the probability for β0 = −1 is negligible, as the new elements
ak are random (if they are issued from a hash value): probability 1/p for each possible choice
on the n′ − 1 < n attributes on the right hand side. Hence, as soon as qnH � p, the probability
for a combination to allow β0 = −1 is negligible.

As a conclusion, one can only combine initial messages with a weight 1 (or 0). This proves
unforgeability, even with corruptions of the tags, but with a number of signed messages bounded
by n, and random messages (issued from a hash function). One can also consider corruptions
of the signing keys, as they are all independent: one just needs to guess under which key will
be generated the forgery.

Unlinkability remains unchanged.

E Joint Generation of Square Diffie-Hellman Tuples

As already explained, for the unlinkability property to hold in the anonymous credential pro-
tocol, we need the user secret key usk = τ̃ random. Of course, this could be done with generic
two-party computation, between the user and the Certification Authority.

– The user chooses τ̃1
$← Zp and computes (A1 = hτ̃1 , B1 = Aτ̃1

1 ).
– On its side, the Certification Authority chooses τ̃2

$← Zp and computes

A = A1 · hτ̃2 = hτ̃1+τ̃2 B = B1 · (A2
1 · hτ̃2)τ̃2 = Aτ̃1

1 ·A
2τ̃2
1 hτ̃

2
2 = h(τ̃1+τ̃2)2

.

It then sends and certifies τ = (h,A,B) together with τ̃2 so that the user can compute
τ̃ = τ̃1 + τ̃2.
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F Zero-Knowledge Proofs

F.1 Zero-Knowledge Proof for Square Diffie-Hellman Tuples

During both the certification of the tag τ and the showing protocol, the user must provide
a proof of validity of the SqDH tuple, in an extractable way, as this must also be a proof of
knowledge.

As an SqDH-tuple (τ1 = h, τ2 = hτ̃ , τ3 = hτ̃
2) ∈ G3

1 is a Diffie-Hellman tuple (τ1, τ2, τ2, τ3),
one can use a Schnorr-like proof:

– The prover chooses a random scalar r $← Zp, and sets and sends U ← τ r1 , V ← τ r2 ;
– The verifier chooses a random challenge e $← {0, 1}κ;
– The prover sends back the response s = eτ̃ + r mod p;
– The verifier checks whether both τ s1 = τ e2 × U and τ s2 = τ e3 × V .

This provides an interactive zero-knowledge proof of knowledge of the witness τ̃ that (τ1, τ2, τ3)
is an SqDH-tuple.

F.2 Groth-Sahai Proof for Square Diffie-Hellman Tuples

If one just needs a proof of validity of the tuple, this is possible, using the Groth-Sahai
methodology [GS08], to provide a non-interactive proof of Square Diffie-Hellman tuple: in the
asymmetric pairing setting, one sets a reference string (v1,1, v1,2, v2,1, v2,2) ∈ G4

2, such that
(v1,1, v1,2, v2,1, v2,2) is a Diffie-Hellman tuple.

Given a Square Diffie-Hellman tuple (τ1 = h, τ2 = hτ̃ , τ3 = hτ̃
2) ∈ G3

1, one first commits τ̃ :
Com = (c = vτ̃2,1v

µ
1,1, d = vτ̃2,2g

τ̃vµ1,2), for a random µ $← Zp, and one sets π1 = τµ1 and π2 = τµ2 ,
which satisfy

e(τ1, c) = e(τ2, v2,1) · e(π1, v1,1) e(τ1, d) = e(τ2, v2,2 · g) · e(π1, v1,2)
e(τ2, c) = e(τ3, v2,1) · e(π2, v1,1) e(τ2, d) = e(τ3, v2,2 · g) · e(π2, v1,2)

The proof proof = (c, d, π1, π2), when it satisfies the above relations, guarantees that (τ1, τ2, τ3)
is a Square Diffie-Hellman tuple. This proof is furthermore zero-knowledge, under the DDH
assumption in G2: by switching (v1,1, v1,2, v2,1, g × v2,2) into a Diffie-Hellman tuple, one can
simulate the proof, as the commitment is perfectly hiding.

As explained in [HPP20], one can apply a batch verification [BFI+10], and pack them in a
unique one with random scalars x1,1, x1,2, x2,1, x2,2

$← Zp:

e(τx2,1
1 τ

x2,2
2 , cx1,1dx1,2) = e(τx2,1

2 τ
x2,2
3 , v

x1,1
2,1 v

x1,2
2,2 gx1,2)× e(πx2,1

1 π
x2,2
2 , v

x1,1
1,1 v

x1,2
1,2 )

One thus just has to compute 13 exponentiations and 3 pairing evaluations for the verification,
instead of 12 pairing evaluations.

F.3 Groth-Sahai Proof for Square Diffie-Hellman Tracing

For the proof of tracing, one wants to show τ ′ ∼ τ , where τ is the reference tag for a user
(certified at the registration time). With the tracing key utk = gτ̃ , one needs to show

e(τ1, utk) = e(τ2, g) e(τ2, utk) = e(τ3, g)
e(τ ′1, utk) = e(τ ′2, g) e(τ ′2, utk) = e(τ ′3, g)

but without revealing utk ∈ G2. This is equivalent, for random α1, α2, α
′
1, α
′
2

$← Zp, to have:

e(T1, utk) = e(T2, g) with T1 = τ1
α1 · τ2

α2 · τ ′1
α′1 · τ ′2

α′2

T2 = τ2
α1 · τ3

α2 · τ ′2
α′1 · τ ′2

α′2
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One can commit utk: as above, with the reference string (v1,1, v1,2, v2,1, v2,2) ∈ G4
2, such that

(v1,1, v1,2, v2,1, v2,2) is a Diffie-Hellman tuple, one computes Com = (c = vλ2,1v
µ
1,1, d = vλ2,2v

µ
1,2 ×

utk), for random λ, µ $← Zp, and one sets π1 = T λ1 and π2 = Tµ1 , which should satisfy

e(T1, c) = e(π1, v2,1) · e(π2, v1,1) e(T1, d) = e(T2, g) · e(π1, v2,2) · e(π2, v1,2)

The random values α1, α2, α
′
1, α
′
2 can be either chosen by the verifier in case of interactive proof,

or set from H(τ1, τ2, τ3, τ
′
1, τ
′
2, τ
′
3).

G Traceable EphemerId

We provide the formal definition of a traceable EphemerId scheme:

Definition 24 (TraceableEphemerId). A Traceable EphemerId scheme consists of the algo-
rithms:

Setup(1κ): Given a security parameter κ, it outputs the global parameter param, which
includes the tag space T ;

GenTag(param): Given a public parameter param, it outputs a tag τ , its secret part τ̃ and a
tracing key tk;

RandTag(τ): Given a tag τ as input, it outputs a new tag τ ′ and the randomization link
ρτ→τ ′ between τ and τ ′;

DerivWitness(τ̃ , ρτ→τ ′): Given a witness τ̃ (associated to the tag τ) and a link between the
tags τ and τ ′ as input, it outputs a witness τ̃ ′ for the tag τ ′;

(ProveVTag(τ̃),VerifVTag(τ)): This (possibly interactive) protocol corresponds to the verifi-
cation of the tag τ . At the end of the protocol, the verifier outputs 1 if it accepts τ as a
valid tag and 0 otherwise;

(ProveKTag(s, τ̃),VerifKTag(s, τ)): This (possibly interactive) protocol corresponds to a fresh
proof of knowledge of τ̃ using the state s. At the end of the protocol, the verifier outputs
1 if it accepts the proof and 0 otherwise.

TraceId(τ, τ ′): Given the tracing key tk associated to τ and a public tag τ ′, it outputs a proof
π of whether τ ∼ τ ′ or not;

JudgeId(τ, τ ′, π): Given two public keys and a proof, the judge checks the proof π and outputs
1 if it is correct.


