
Software Evaluation of Grain-128AEAD for
Embedded Platforms

Alexander Maximov1 and Martin Hell2

1 Ericsson AB, Lund, Sweden, alexander.maximov@ericsson.com
2 Lund University, Lund, Sweden, martin.hell@eit.lth.se

Abstract. Grain-128AEAD is a stream cipher supporting authenticated encryption
with associated data, and it is currently in round 2 of the NIST lightweight crypto
standardization process. In this paper we present and benchmark software implemen-
tations of the cipher, targeting constrained processors. The processors chosen are
the 8-bit (AVR) and 16-bit (MSP) processors used in the FELICS-AEAD framework.
Both high speed and small code size implementations are targeted, giving us in total
4 different implementations. Using the FELICS framework for benchmarking, we
conclude that Grain-128AEAD is competitive to other algorithms currently included
in the FELICS framework. Our detailed discussion regarding particular implementa-
tion tricks and choices can hopefully be of use for the community when considering
optimizations for other ciphers.
Keywords: Grain-128AEAD · stream cipher · software implementation · NIST ·
optimizations

1 Introduction
The stream cipher Grain-128AEAD is currently a round 2 candidate of the NIST lightweight
crypto standardization process. Its specification is closely based on Grain-128a, introduced
in 2011, which has, already for several years, been analyzed in the literature. To benefit
from the maturity of the Grain family, the design of Grain-128AEAD is very closely based
on Grain-128a, with as small changes as possible. This allows us to argue for the security
of the cipher based on previous results on Grain-128a.

Grain-128a is in turn based on Grain v1 and Grain-128, which have both been extensively
analyzed, providing much insight into the security of the design approach. All Grain
stream ciphers also allow the throughput to be increased by adding additional copies of
the Boolean functions involved.

Grain-128AEAD can be very suitable in Internet of things (IoT) and embedded systems.
Strong advantages of Grain-128AEAD and its precedent versions can be seen in its industrial
relevance.

The design of Grain-128AEAD has previously been given in [HJM+19a] and [HJM+19b],
while details related to hardware implementations are given in [SHSK19].

In this paper, we give details of software implementations targeting constrained
processors, namely the 8-bit and 16-bit processors used in the FELICS-AEAD frame-
work [CdSGB19]. This, together with the hardware implementation results in [SHSK19],
provides an understanding of how Grain-128AEAD performs on constrained devices, both
in software and in hardware.

In [BMA+18], it was shown that lightweight stream ciphers are typically more suitable
than lightweight block ciphers for energy optimization when encrypting longer messages,
in particular when the speed can be increased at the expense of moderate extra hardware.

mailto:alexander.maximov@ericsson.com
mailto:martin.hell@eit.lth.se


2 Software Evaluation of Grain-128AEAD for Embedded Platforms

Thus, in these cases, Grain-128AEAD can provide authenticated encryption with low
energy consumption. Our implementations targeting embedded processors show that also
short messages can be handled efficiently by Grain-128AEAD.

2 Algorithm specification
The full specification of the algorithm can be found in [HJM+19b]. Here, we only give a
very brief overview of the overall design in order to introduce some of the challenges we
are facing when implementing the cipher on constrained embedded processors.

Grain-128AEAD consists of two main building blocks. The first is a pre-output
generator, which is constructed using a Linear Feedback Shift Register (LFSR), a Non-
linear Feedback Shift Register (NFSR) and a pre-output function, while the second is an
authenticator generator consisting of a shift register and an accumulator.

2.1 Building blocks and functions
The pre-output generator generates a stream of pseudo-random bits, which are used for
encryption and the authentication tag. It is depicted in Fig. 1. The content of the 128-bit

LFSR

Accumulator

Register

NFSR

g f

hh

7 2 7

6524

mi

z'i zi

y384+t

...

Figure 1: An overview of the building blocks in Grain-128AEAD.

LFSR is denoted St = [st
0, st

1, . . . , st
127] and the content of the 128-bit NFSR is similarly

denoted Bt = [bt
0, bt

1, . . . , bt
127]. These two shift registers represent the 256-bit state of the

pre-output generator.
The update function of the LFSR is given by

st+1
127 = st

0 + st
7 + st

38 + st
70 + st

81 + st
96 = L(St),

and update function for the NFSR is given by

bt+1
127 = st

0 + bt
0 + bt

26 + bt
56 + bt

91 + bt
96 + bt

3bt
67 + bt

11bt
13 + bt

17bt
18 + bt

27bt
59 + bt

40bt
48

+ bt
61bt

65 + bt
68bt

84 + bt
22bt

24bt
25 + bt

70bt
78bt

82 + bt
88bt

92bt
93bt

95 = st
0 + F(Bt).

Nine state variables are taken as input to a Boolean function h(x),

h(x) = x0x1 + x2x3 + x4x5 + x6x7 + x0x4x8,

where the variables x0, . . . , x8 correspond to, respectively, the state variables bt
12, st

8, st
13,

st
20, bt

95, st
42, st

60, st
79 and st

94.



A. Maximov and M. Hell 3

The output of the pre-output generator, is then given by the pre-output function

yt = h(x) + st
93 +

∑
j∈A

bt
j ,

where A = {2, 15, 36, 45, 64, 73, 89}.
The authenticator generator consists of a shift register, storing the most recent 64 odd

bits from the pre-output, and an accumulator. Both are of size 64 bits. We denote the
content of the accumulator at instance i as Ai = [ai

0, ai
1, . . . , ai

63]. Similarly, the content of
the shift register is denoted Ri = [ri

0, ri
1, . . . , ri

63].

2.2 Key and nonce initialization
Denote the key bits as ki, 0 ≤ i ≤ 127 and the nonce (IV) bits as IV i, 0 ≤ i ≤ 95. Then
the state is initialized as follows. The 128 NFSR bits are loaded with the bits of the
key b0

i = ki, 0 ≤ i ≤ 127 and the first 96 LFSR elements are loaded with the nonce bits,
s0

i = IVi, 0 ≤ i ≤ 95. The last 32 bits of the LFSR are filled with 31 ones and a zero,
s0

i = 1, 96 ≤ i ≤ 126, s0
127 = 0. Then, the cipher is clocked 256 times, feeding back the

pre-output function and XORing it with the input to both the LFSR and the NFSR, i.e.,

st+1
127 = L(St) + yt, 0 ≤ t ≤ 255,

bt+1
127 = st

0 + F(Bt) + yt, 0 ≤ t ≤ 255.

Once the pre-output generator has been initialized, the authenticator generator is initialized
by loading the register and the accumulator with the pre-output keystream as

a0
j = y256+j and r0

j = y320+j , 0 ≤ j ≤ 63.

When the register and the accumulator are initialized, the key is simultaneously shifted
into the LFSR,

st+1
127 = L(St) + kt−256, 256 ≤ t ≤ 383,

while the NFSR is updated as

bt+1
127 = st

0 + F(Bt), 256 ≤ t ≤ 383.

Thus, when the cipher has been fully initialized the LFSR and the NFSR states are
given by S384 and B384, respectively, and the register and accumulator are given by R0
and A0, respectively. The initialization procedure is summarized in Fig 2.

2.3 Operating mode
For a message m of length L, denoted m0, m1, . . . , mL−1, set mL = 1 as padding in order
to ensure that m and m‖0 have different tags.

After initializing the pre-output generator, the pre-output is used to generate keystream
bits zi for encryption and authentication bits z′i to update the register in the accumulator
generator. The keystream is generated as

zi = y384+2i,

i.e., every even bit (counting from 0) from the pre-output generator is taken as a keystream
bit. The authentication bits are generated as

z′i = y384+2i+1,



4 Software Evaluation of Grain-128AEAD for Embedded Platforms

LFSR

Accumulator

Register

NFSR

t = 0 .. 255

t = 0 .. 255

t = 256 .. 383t = 256 .. 383

g f

hh

7 2 7

6524

yt

ki
...

Figure 2: An overview of the initialization of Grain-128AEAD. Note that, in hardware, the
accumulator initialization is realized by first loading 64 pre-output bits into the register,
followed by moving them to the accumulator.

i.e., every odd bit from the pre-output generator is taken as an authentication bit. The
message is encrypted as

ci = mi ⊕ zi, 0 ≤ i < L.

The accumulator is updated as

ai+1
j = ai

j + mir
i
j , 0 ≤ j ≤ 63, 0 ≤ i ≤ L,

and the shift register is updated as

ri+1
63 = z′i and ri+1

j = ri
j+1, 0 ≤ j ≤ 62.

2.3.1 Using the NIST API

For the specific case of the NIST software API, the input (ad, ad length, message, message
length) is mapped to a string m′ as

m′ = Encode(ad length)||ad||m||0x80,

where Encode() = y denotes the message length encoded in the DER format as used by,
e.g., X.509. If the first byte in y starts with a 0, the remaining 7 bits contain an encoding
of the number of bytes in the associated data (up to 127 bytes). If the first byte in y starts
with a 1, the remaining 7 bits are, instead, an encoding of the number of forthcoming
bytes that are used to describe the length (in bytes) of the associated data. In y, this first
byte is then followed by the bytes giving the length.

3 Software implementations on constrained processors
In this section, we discuss software implementations targeting two constrained processors.
The provided discussion and implementation details serve mainly two purposes. First, some
of our optimizations might be useful also for other algorithms, and second, by giving the
details of the rationale behind the optimizations, others might more easily be able to further
optimize the code. Re-use of specific optimizations and transparency of implementations
allows more fair comparisons between algorithms. A fair comparison obviously also require



A. Maximov and M. Hell 5

comparable results in terms of the processors used as implementation targets. Here, we
have decided to use the FELICS-AEAD framework for the benchmarking [CdSGB19]. The
framework defines three different processors, targeting resource constrained devices. We
have made optimized implementations for the two smallest of these processors, namely the
AVR ATmega 128 and the MSP430F1611. The two processors are very different in several
aspects. A brief comparison is given in Table 1.

Table 1: Some details and comparison of AVR and MSP targets
AVR target [Atm06] MSP target [Ins11, Ins06]

CPU Characteristics
Platform 8-bit RISC (Harvard) 16-bit RISC (Von Neumann)
Version AVR ATmega 128 @ 16MHz MSP430F1611 @ 8MHz
Flash / SRAM 128 KB / 4 KB 48 KB / 10 KB
Registers 8-bit R0-R31 where R26-R31 16-bit R0-R15 where R0-R3

are for three 16-bit pointers are reserved for Control Regs

It can be noted that both processors are little-endian machines, which will be used
in the implementations. The main properties, as suggested by FELICS-AEAD, are the
code size, the RAM consumption, and the execution time. We have implemented Grain-
128AEAD in four different versions: AVR-Small – small code size for AVR; AVR-Fast –
fast execution time for AVR; MSP-Small – small code size for MSP; MSP-Fast – fast
execution time for MSP. 1

3.1 Implementation details
Neither the AVR, nor the MSP, is suitable for bit-shifts. They can only perform a 1-bit
shift to the left or to the right, with or without carry propagation, or a swap of a half-word
(2x4-bit swap in AVR and 2x8 bit swap in MSP). This means that in the implementation
of Grain we must take care to reduce the number of bit-shifts needed as much as possible.

The two processors differ in several critical aspects and a programmer must take the
specific properties and limitations into account. In the MSP, we can only use 11 16-bit
registers for Grain logic, while 1 register is reserved for storing the pointer to the state
data. This requires a more careful treatment than in the AVR case, where we can use 26
8-bit registers for logic (or, 13 2x8-bit registers), and the Z-registers (R30-R31) for storing
the pointer to the Grain state. In the MSP, we should reduce the usage of instructions with
immediate constants, and also limit memory read/write as much as possible. In addition,
the usage of the stack should be reduced as far as possible, since the RAM↔registers
transfer time is rather expensive (latency 3-4). An overview of the latency and code size
in the MSP can be found in Table 2. In the AVR, this problem is not present as most of
the instructions have latency 1 and for RAM↔registers transfers it is only 2.

Table 2: Code size and the number of cycles for MSP430F1611, based on input arguments.
src→dst #cycles code size Example
reg→reg 1 2 MOV R4, R5
reg→mem 4 4 AND R4, 6(R5)
mem→reg 3 4 XOR 6(R5), R4
mem→mem 6 6 ADD 6(R5), 3(R4)
const→reg 2 4 MOV #10, R5
const→mem 5 6 XOR #10, 3(R5)

1All four implementations, and also some alternative variants, can be found in the FELICS virtual
machine accessible at https://www.cryptolux.org/index.php/FELICS



6 Software Evaluation of Grain-128AEAD for Embedded Platforms

Several implementation optimizations have been considered. Here, we provide an overall
description of our implementation approach, together with code samples to highlight some
particular implementation choices.

3.1.1 Data structures and main sub-routines

For the 8-bit AVR implementation, the state of Grain is defined as
1 typede f s t r u c t GrainState_st
2 { uint8_t l f s r [ 1 6 ] , n f s r [ 1 6 ] , A[ 8 ] , R[ 8 ] , z1 ;
3 } GrainState ;

and for the 16-bit variant, it is
1 typede f s t r u c t GrainState_st
2 { uint16_t l f s r [ 8 ] , n f s r [ 8 ] , A[ 4 ] , R[ 4 ] , z1 ;
3 } GrainState ;

In both cases, the order of data in the structure GrainState_st is highly important, as
will be seen later. The members of the structure correspond to the state of LFSR, NFSR,
Accumulator, and Register in the design description of Grain-128AEAD. 1 (or 2) byte
of extra information ( .z1) is added to the structure GrainState_st for efficiency reasons.
This contains the odd bits from the keystream and will be used when authenticating each
message byte.

In the implementation of both the 8- and 16-bit variants, we utilize four sub-routines.
1 uint8 /16_t grain_update ( GrainState ∗ g ) ;
2 void grain_auth ( GrainState ∗ g , uint8_t msg) ;
3 uint8_t gra in_getz ( GrainState ∗ g ) ;
4 void grain_encdec ( uint8_t ∗ s ta te , uint8_t ∗message ,
5 uint32_t message_length , uint8_t mask ) ;

The sub-routines implement the following tasks.

• grain_update() performs LFSR and NFSR updates, computes and returns the y value.
For the AVR platform this is an 8-bit value and for the MSP it is 16 bits.

• grain_getz() calls the function grain_update() 1 (MSP) or 2 (AVR) times and splits the
returned 16 bits into two bytes, z0 and z1, containing even and odd bits. Then 8 odd
bits are stored in the state of Grain in .z1, and is used later in the authentication,
while the 8 even bits serve as a keystream byte, which is returned to the caller.

• grain_auth() receives a single byte of a message, and updates the “Accumulator” .A
and the “Register” .R given the message byte msg and the 8 (odd) bits saved in the
Grain state as .z1.

• grain−encdec() is a combined function for both encryption and decryption, since the
only difference is the order of the authentication and the XORing of the input
message with the keystream.

3.1.2 Implementing the FELICS API

The Grain-128AEAD implementation in the FELICS-AEAD framework must follow a cer-
tain pre-defined API, which has six functions, ProcessPlaintext(), ProcessCiphertext(), Finalize (),
TagGeneration(), Initialize (), and ProcessAssociatedData().

In this section, we discuss the implementation of the functions for this API. Using the
above-mentioned sub-routines, we get a very simple implementation of the first four API
functions.



A. Maximov and M. Hell 7

1

2 void Proce s sP la in t ex t ( uint8_t ∗ s ta te , uint8_t ∗message , uint32_t
message_length )

3 { grain_encdec ( s ta te , message , message_length , 0 x f f ) ; }
4

5 void Proces sCipher text ( uint8_t ∗ s ta te , uint8_t ∗message , uint32_t
message_length )

6 { grain_encdec ( s ta te , message , message_length , 0x00 ) ; }
7

8 void F i n a l i z e ( uint8_t ∗ s ta te , uint8_t ∗key )
9 { /∗ Do nothing ∗/ }

10

11 void TagGeneration ( uint8_t ∗ s ta te , uint8_t ∗ tag )
12 { GrainState ∗ g = ( GrainState ∗) s t a t e ;
13 uint8_t i ;
14 f o r ( i =0; i <4; ++i )
15 ( ( uint16_t ∗) tag ) [ i ] = g−>A[ i ] ^ g−>R[ i ] ;
16 }

Note that the 32-bit length of the message (uint32_t message_length) is not suitable for
8 and 16 bit platforms. Instead of introducing a 32-bit counter, we use the message_length
variable directly and decrement it while incrementing the data pointer (uint8_t ∗ message).
This is done in the sub-routines grain_encdec() and ProcessAssociatedData(), described later.

The API function Initialize () is quite straight-forward. It only differs between 8- and
16-bit implementations in the size of the returned y from the sub-routine grain_update().
For the 16-bit version it is given as follows.

1 void I n i t i a l i z e ( uint8_t ∗ s ta te , const uint8_t ∗key , const uint8_t ∗nonce )
2 {
3 GrainState ∗ g = ( GrainState ∗) s t a t e ;
4 uint8_t i ;
5

6 memcpy(g−>nfs r , key , 16) ;
7 memcpy(g−>l f s r , nonce , 12) ;
8 g−>l f s r [ 6 ] = 0 x f f f f ;
9 g−>l f s r [ 7 ] = 0 x 7 f f f ;

10

11 f o r ( i =0; i <16; ++i )
12 { uint16_t y = grain_update ( g ) ;
13 g−>l f s r [ 7 ] ^= y ;
14 g−>n f s r [ 7 ] ^= y ;
15 }
16

17 f o r ( i =0; i <8; ++i )
18 { g−>A[ i ] = grain_update ( g ) ;
19 g−>l f s r [ 7 ] ^= ( ( const uint16_t ∗) key ) [ i ] ;
20 }
21 }

Here we take advantage of the order of .A[] and .R[] in the structure GrainState_st. On
line 18 above, for i>=4 it will actually update g−>R[i−4] with no extra expense in code
size and time.

The remaining function from the FELICS-AEAD API is ProcessAssociatedData(). The
main complication there is the DER encoding of the message length, and since the length
in the API is a 32-bit integer, this also has to be taken into consideration. The smallest
and most efficient DER encoding is a byte-oriented solution, and here we utilize the fact
that AVR and MSP are little-endian machines. The 16-bit implementation then looks as
follows.

1 void ProcessAssoc iatedData ( uint8_t ∗ s ta te , uint8_t ∗ assoc iatedData , uint32_t
assoc iated_data_length )

2 {
3 GrainState ∗ g = ( GrainState ∗) s t a t e ;
4 uint8_t der [ 5 ] , k , der_len ;



8 Software Evaluation of Grain-128AEAD for Embedded Platforms

5 ∗( uint32_t ∗) ( der + 1) = assoc iated_data_length ;
6

7 der [ 0 ] = 0x80 ;
8 f o r ( der_len=4; ! der [ der_len ] ; −−der_len ) ;
9

10 /∗ Alt1 : i f ( ! ( ( der [ 1 ] & 0x80 ) | ( der_len>>1)) ) ∗/
11 /∗ Alt2 : i f ( ! ( ( der_len>>1) | ( der [1]>>7) ) ) ∗/
12 /∗ Alt3 : i f ( ! ( ( der_len & 0 x f e ) | ( der [ 1 ] & 0x80 ) ) ) ∗/
13 i f ( ( der_len<=1) && ( der [1 ] <128) )
14 { der [ 0 ] = der [ 1 ] ;
15 der_len = 0 ;
16 }
17 e l s e
18 der [ 0 ] |= der_len ;
19

20 f o r ( k=0; k <= der_len ; k++)
21 { gra in_getz ( g ) ;
22 grain_auth (g , der [ k ] ) ;
23 }
24

25 whi le ( assoc iated_data_length −−)
26 { gra in_getz ( g ) ;
27 grain_auth (g , ∗( as soc ia tedData ) ) ;
28 assoc ia tedData++;
29 }
30 }

It can be noted that the implementations for both 8- and 16-bit targets are byte oriented
in terms of how we process the message and the authentication data. This removes the
need for handling odd lengths. Moreover, for the 16-bit case, having 16-bit keystream
chunks is not justified since in that case we would have to update the LFSR/NFSR with
32 clocks at a time. Thus, for both the AVR and MSP architectures, the approach to
handle the message byte-wise seems most efficient.

3.1.3 Sub-routine grain_encdec()

The implementation of the combined encryption/decryption is very straight-forward, and
does not contain any particular processor oriented optimizations. Recall that the mask is
set to 0xff for encryption, meaning that the message before XORing with the keystream is
sent to the authentication sub-routine. For decryption, the mask is instead 0x00, resulting
in a decrypted message on line 6, before the plaintext is used for authentication.

1 void grain_encdec ( uint8_t ∗ s ta te , uint8_t ∗message ,
2 uint32_t message_length , uint8_t mask )
3 { GrainState ∗ g = ( GrainState ∗) s t a t e ;
4 whi le ( message_length−−)
5 { uint8_t z0 = grain_getz ( g ) ;
6 ∗message ^= z0 & ~mask ;
7 grain_auth (g , ∗message ) ;
8 ∗message ^= z0 & mask ;
9 message++;

10 }
11 }

3.1.4 Sub-routine grain_getz()

As noted, for the 8-bit AVR target, the function grain_getz() must call grain_update() two
times in order to receive 16 bits of y. In the 16-bit implementation the call to grain_update()
is only performed once since grain_update() then returns 16 bits of y.

The next step is to deinterleave the received 16 bits into two bytes, z0 and z1, containing
even and odd bits, respectively.



A. Maximov and M. Hell 9

Deinterleaving may be done in several ways. For the 8-bit case, we can first deinterleave
the 8 bits in each of the 2 bytes of y independently, then mix the results to further get the
full split in z0, z1.

1 // AVR compi le r w i l l convert t h i s i n to a s i n g l e i n s t r u c t i o n ' swap '
2 s t a t i c i n l i n e uint8_t SWAP( uint8_t x )
3 { re turn (x>>4) | ( x<<4) ; }
4

5 s t a t i c uint8_t d e i n t e r l e a v e ( uint8_t x )
6 { uint8_t tmp ;
7 tmp = (x ^ (x >> 1) ) & 0x22 ; x ^= tmp ^ (tmp << 1) ;
8 tmp = (x ^ (x >> 2) ) & 0x0c ; x ^= tmp ^ (tmp << 2) ;
9 r e turn x ;

10 }
11

12 uint8_t gra in_getz ( GrainState ∗ g )
13 { uint8_t r0 = de i n t e r l e a v e ( grain_update ( g ) ) ;
14 uint8_t r1 = SWAP( de i n t e r l e a v e ( grain_update ( g ) ) ) ;
15 uint8_t t = ( r0 ^ r1 ) & 0 xf0 ;
16 g−>z1 = SWAP( r1 ^ t ) ;
17 r e turn r0 ^ t ;
18 }

This approach gives a small code. However, it is not very fast since it requires several
bit shifts. A faster approach is to use a lookup table, 256 bytes, which deinterleaves a
single byte, where even bits are collected as low 4 bits of the result and odd bits are placed
as high 4 bits of the resulting byte. This helps to speed up the execution but requires
larger code size.

For the 16-bit MSP case we implemented the deinterleaving directly on the 16-bit
response y, as follows.

1 uint8_t gra in_getz ( GrainState ∗ g )
2 { uint16_t tmp , x = grain_update ( g ) ;
3 tmp = (x ^ (x>>1)) & 0x2222 ; x ^= tmp ^ (tmp<<1) ;
4 tmp = (x ^ (x>>2)) & 0x0c0c ; x ^= tmp ^ (tmp<<2) ;
5 tmp = (x ^ (x>>4)) & 0x00f0 ; x ^= tmp ^ (tmp<<4) ;
6 g−>z1 = x >> 8 ;
7 r e turn ( uint8_t )x ;
8 }

For the fast case on the MSP target we also implemented this function in inline assembly,
so that we could ignore the carry flag cleanups, optimizing this function even further.

3.1.5 Sub-routine grain_auth()

Authenticating one message byte in Grain-128AEAD will require a loop of in total 64 steps.
For the AVR processor, reading from and writing to RAM is not very expensive, so an
efficient implementation can be achieved as follows.

1 void grain_auth ( GrainState ∗ g , uint8_t msg)
2 { uint8_t i ;
3 f o r ( i =0; i <8; ++i )
4 { uint8_t j , mask = −(msg & 1) ;
5 msg >>=1;
6 f o r ( j =0; j <8; ++j )
7 { g−>A[ j ] ^= g−>R[ j ] & mask ;
8 g−>R[ j ] = ( uint8_t ) ( (∗ ( uint16_t ∗) ( g−>R + j ) )>>1) ;
9 }

10 g−>z1 >>= 1 ;
11 }
12 }

Note that we here also take advantage of the fact that .z1 is located in the data structure
right after .R[], so that we avoid buffer overflow.



10 Software Evaluation of Grain-128AEAD for Embedded Platforms

A similar implementation on the 16-bit MSP target is not efficient due to the compar-
atively slow instructions for reading from and writing to the memory. Here, it is more
efficient to load the state of .A[] and .R[] into registers, operate on the registers, and then
store them back at the very end of the procedure. In addition, inline assembly can be used
in shifting .R[] by 1, since there we can effectively use the instruction rrc that gets in and
pushes out the carry value. Thus, the shifting of ← R ← z1 is only 5 instructions. The
overall optimization for the 16-bit platform can be implemented as follows.

1 void grain_auth ( GrainState ∗ g , uint8_t msg)
2 {
3 uint16_t r0 = g−>R[ 0 ] , r1 = g−>R[ 1 ] , r2 = g−>R[ 2 ] , r3 = g−>R[ 3 ] , z=g−>z1 ;
4 uint16_t a0 = g−>A[ 0 ] , a1 = g−>A[ 1 ] , a2 = g−>A[ 2 ] , a3 = g−>A[ 3 ] , i ;
5

6 f o r ( i =0; i <8; ++i )
7 { uint16_t j , mask = −(uint16_t ) (msg & 1) ;
8 msg >>= 1 ;
9 __asm__ __volatile__ (

10 "mov %3, %10 \ t \n"
11 " and %9, %10 \ t \n"
12 " xor %10, %8 \ t \n"
13 "mov %2, %10 \ t \n"
14 " and %9, %10 \ t \n"
15 " xor %10, %7 \ t \n"
16 "mov %1, %10 \ t \n"
17 " and %9, %10 \ t \n"
18 " xor %10, %6 \ t \n"
19 "mov %0, %10 \ t \n"
20 " and %9, %10 \ t \n"
21 " xor %10, %5 \ t \n"
22 " r r c %4 \ t \n"
23 " r r c %3 \ t \n"
24 " r r c %2 \ t \n"
25 " r r c %1 \ t \n"
26 " r r c %0 \ t \n"
27 : "+r " ( r0 ) , "+r " ( r1 ) , "+r " ( r2 ) , "+r " ( r3 ) , "+r " ( z ) , "+r " ( a0 ) , "+r " ( a1 ) , "+r

" ( a2 ) , "+r " ( a3 ) , "+r " (mask ) , "=r " ( j ) : ) ;
28 }
29

30 g−>R[ 0 ] = r0 ; g−>R[ 1 ] = r1 ; g−>R[ 2 ] = r2 ; g−>R[ 3 ] = r3 ;
31 g−>A[ 0 ] = a0 ; g−>A[ 1 ] = a1 ; g−>A[ 2 ] = a2 ; g−>A[ 3 ] = a3 ;
32 }

Note that in both approaches above we do mask = −(uint16_t)(msg & 1) which effectively
generates the mask 0x0000 or 0 xffff in just 4 instructions (e.g., mov, and, inv, inc), based
on the bit of the message. This approach is branchless and executes in constant time
independently on the message. This helps protecting against message dependent side-
channel timing attacks on the authentication part of the implementation.

3.1.6 Sub-routine grain_update()

The update sub-routine function is the main core of the Grain-128AEAD algorithm. The
function clocks the two registers 8 or 16 times respectively for the AVR and MSP targets,
and returns 8 or 16 bits of y. This is the main function to consider for speed and area
optimizations, and where most effort should be done. As will also be shown, we can
additionally gain a significant code size reduction by carefully analyzing the function. This
section will discuss several optimization approaches for this function and the different
options that were considered.

Let a “word” be an 8-bit integer for the AVR, and a 16-bit integer for the MSP. Further,
a “double-word” is a 16-bit integer for the AVR, and a 32-bit integer for the MSP. Let us
define an LFSR/NFSR “double-word” at a byte offset i as follows:

1 #de f i n e LF( i ) (∗ ( u int16 /32_t∗) ( ( uint8_t ∗) g−>l f s r + i ) )



A. Maximov and M. Hell 11

2 #de f i n e NF( i ) (∗ ( u int16 /32_t∗) ( ( uint8_t ∗) g−>n f s r + i ) )

where we use the type conversion to uint16_t for the 8-bit AVR and uint32_t for the MSP.
In the function, the main goal is to compute a new value for the LFSR, NFSR, and the

value of y. These will be referred to as uint8/uint16_t ln, nn, y, respectively. Now, ln , nn, y
can be expressed in terms of the LF, NF macros. For the 16-bit case this can be done as
follows.

1 uint16_t grain_update ( GrainState ∗ g )
2 {
3 uint16_t ln , nn , y ;
4

5 ln = LF(0) ^ LF(12) ^ (LF(0)>>7) ^ (LF(4)>>6) ^ (LF(8)>>6) ^ (LF(10)>>1) ;
6

7 y = (LF(1)>>5) & (LF(2)>>4) ;
8 y ^= (LF(7)>>4) & (LF(9)>>7) ;
9 y ^= (NF(11)>>7) & (LF(5)>>2) ^ (NF(11)>>1) ;

10 y ^= (NF(1)>>4) & (NF(11)>>7) & (LF(11)>>6) ;
11 y ^= (NF(1)>>4) & LF(1) ;
12 y ^= (LF(11)>>5) ^ (NF(0)>>2) ^ (NF(1)>>7) ^ (NF(4)>>4) ;
13 y ^= (NF(5)>>5) ^ NF(8) ^ (NF(9)>>1) ;
14

15 nn = LF(0) ^ NF(0) ^ NF(7) ^ NF(12) ^ (NF(5) & NF(6) ) ;
16 nn ^= NF(11) & (NF(11)>>4) & (NF(11)>>5) & (NF(11)>>7) ^ (NF(11)>>3) ;
17 nn ^= (NF(0)>>3) & (NF(8)>>3) ;
18 nn ^= (NF(1)>>3) & (NF(1)>>5) ;
19 nn ^= (NF(2)>>1) & (NF(2)>>2) ;
20 nn ^= (NF(3)>>3) & (NF(7)>>3) ;
21 nn ^= (NF(3)>>2) ;
22 nn ^= (NF(7)>>5) & (NF(8)>>1) ;
23 nn ^= (NF(8)>>4) & (NF(10)>>4) ;
24 nn ^= (NF(2)>>6) & NF(3) & (NF(3)>>1) ;
25 nn ^= (NF(8)>>6) & (NF(9)>>6) & (NF(10)>>2) ;
26

27 memcpy(g−>l f s r , g−>l f s r + 1 , 30) ;
28 g−>l f s r [ 7 ] = ln ;
29 g−>n f s r [ 7 ] = nn ;
30 r e turn y ;
31 }

While this is in general a rather efficient way of updating bit-oriented shift registers, a
problem with the above code is that it needs many shifts of double-words. A single shift by
1 to the right (left) takes at least 2 instructions, i.e., just a single term NF(11)>>7 would
normally take 14 instructions, excluding the time of loading the double-word NF(11).

Another problem is that every call to the macros LF, NF would mean loading the 2
words from RAM into 2 registers. This may be acceptable for the AVR case, but in the
MSP it becomes quite expensive.

So, our speed optimization goal is to

• reduce the number of shifts required, and

• reduce the number of register to/from RAM transfers.

The latter part becomes particularly challenging on the MSP target as there we only have
11 registers at our disposal.

For reducing the number of shifts, one approach could be to switch the order of
operations. As an example,

1 nn ^= ( (NF(0)>>3) & (NF(8)>>3)) ^ ( (NF(3)>>3) & (NF(7)>>3)) ;

requires 4 “double-word” shifts, taking 2(^)+2(&)+4*6(>>3)=28 instructions. Instead,
1 nn ^= (NF(0) & NF(8) ) ^ (N(3) & NF(7) ) >>3;



12 Software Evaluation of Grain-128AEAD for Embedded Platforms

would require only 13 instructions. Another approach is that shifts can be nested. For
example

1 nn ^= ( (NF(1)>>3) & (NF(1)>>5)) ^ ( (NF(2)>>1) & (NF(2)>>2)) ^ ( (NF(3)>>3)
& (NF(7)>>3)) ^ (NF(3)>>2) ;

requires 45 instructions, while the nested expression needs only 25 instructions:
1 nn ^= ( ( ( ( (NF(1)>>2) & NF(1) ) ^ (NF(3) & NF(7) ) )>>1) ^ NF(3) )>>1) ^ ( (NF

(2)>>1) & NF(2) ) )>>1;

These ideas can be applied to the AVR by utilizing 21 registers, but they do not work
nicely for the MSP, where we only have 11 registers. Loading of the LFSR state already
occupies 7 16-bit registers, and thus we only have 4 remaining registers for operations and
to keep intermediate values during the evaluation of ln , nn, y.

A better approach for the MSP is to load the LFSR state into 7 registers – the last 16
bits are not used in the update function and thus we have 4 extra registers to work with.
Then we are shifting these 7 registers by 1 bit in parallel. If some expression contains an
NF(x)>>1, LF(x)>>1, we pick that value from the shifted state almost directly, and use it
in the expression. If there is an & operator, then we have to save the value somewhere and
AND it with the next operand as soon as the state will be shifted by the right amount.
Then we repeat shifting the 7 state registers by 1 yet another 7 times until all arguments
in the functions are met.

However, since registers in MSP are 16-bit long, there are two possible situations that
need to be handled somewhat differently. Assume we are shifting the state to the right; if
the needed argument in NF/LF(x) has even x, then the value is achieved directly from the
register R(x/2). However, if x is odd, then the value is spanned over two 16-bit registers
(R(x/2+1)|R(x/2))>>8, which need to be extracted.

The following assembly code is used for such an extraction, where B|A is the 32-bit
value in two 16-bit registers A and B, and where we need to extract the middle 16 bits
into the register R. This can be either a third register or the register B. The both fastest
and smallest code use only 4 instructions on the MSP target.

1 #de f i n e get8 (B, A, R) \
2 "mov . b " B " , " R " \n\ t " \
3 " xor . b " A " , " R " \n\ t " \
4 " xor " A " , " R " \n\ t " \
5 " swpb " R " \n\ t "

The above ideas provide an efficient implementation of the update function, but it is
not necessarily very small. If code size is crucial and speed is of much less importance, we
here outline an approach for minimizing the code size, but at the expence of speed.

By the above, it is clear that the update function is implemented as a sequence of
AND and XOR operations, where the arguments are basically the bit-offsets from the
beginning of the GrainState_st structure. Each invocation of NF(i)/LF(i) is a number of
assembly instructions, where each instruction is 2 bytes long. Based on this observation
the following approach can be taken to dramaticaly reduce the code size:

1. Encode the sequence of the functions’ evaluation steps in a shorter form, say as a
vector of bytes. Each byte points to the bit-offset of the argument in some well-defined
order of the evaluation of an expression.

2. Encode the sequence of operations. Here we introduce result as being the result of an
expression evaluation, and product being the intermediate AND-product of the input
arguments. The sequence of the evaluation is thus binary, where ’1’ means that the
argument has to be ANDed to the product, and ’0’ means that the product must
be XORed to the total result . The values are initialized as result=0, product=−1, and
when the product is XORed to the result , it is then initialized again as product=−1.



A. Maximov and M. Hell 13

3. Write a mini-RISC CPU that can process the given program with the provided
arguments.

This approach effectively substitutes the code for each &/^ LF/NF(i)>>j operation by just
1 byte of the encoded command with one argument to the mini-RISC CPU implemented
within the Grain code itself. As an exampe, for the 16-bit case, that implementation is
done as follows.

1 s t a t i c const uint8_t program16 [ 5 4 ] =
2 { // program f o r LFSR update
3 0x60 , 0x51 , 0x46 , 0x26 , 0x07 , 0x00 ,
4 // program f o r NFSR update
5 /∗0x00 , ∗/ 0x80 , 0x9a , 0xb8 , 0xdb , 0xe0 , 0xd8 , 0xdc , 0xdd , 0xdf , 0x96 , 0x98

, 0x99 , 0xc6 , 0xce , 0xd2 , 0x83 , 0xc3 , 0x8b , 0x8d , 0x91 , 0x92 , 0x9b , 0xbb
, 0xa8 , 0xb0 , 0xbd , 0xc1 , 0xc4 , 0xd4 ,

6 // program f o r y
7 0x8c , 0x08 , 0x0d , 0x14 , 0xdf , 0x2a , 0x3c , 0x4f , 0x8c , 0xdf , 0x5e , 0x5d , 0

x82 , 0x8f , 0xa4 , 0xad , 0xc0 , 0xc9 , 0xd9
8 } ;
9

10 // Mini−RISC CPU
11 s t a t i c uint16_t execute_program ( const uint16_t ∗ data , uint16_t command ,

uint16_t pc , uint16_t pc_end )
12 { uint16_t r e s u l t = 0x0000 , product = 0 x f f f f ;
13 f o r ( ; pc < pc_end ; ++pc , command>>=1)
14 { uint16_t o f f s e t = program16 [ pc ]>>4;
15 uint16_t s h i f t = program16 [ pc ] & 15 ;
16 product &= ( uint16_t ) (∗ ( ( uint32_t ∗) ( data + o f f s e t ) ) >> s h i f t ) ;
17 i f (command & 1) cont inue ;
18 r e s u l t ^= product ;
19 product = 0 x f f f f ;
20 }
21 r e turn r e s u l t ;
22 }
23

24 uint16_t grain_update ( GrainState ∗ g )
25 uint16_t nn , y , i ;
26 nn = execute_program (g−>l f s r , 0x6dc0 , 5 , 21) ;
27 nn ^= execute_program (g−>l f s r , 0x1555 , 21 , 35) ;
28 y = execute_program (g−>l f s r , 0x0355 , 35 , 54) ;
29 g−>n f s r [ 0 ] = execute_program (g−>l f s r , 0x0000 , 0 , 6) ;
30

31 memcpy(g−>l f s r , g−>l f s r + 1 , 30) ;
32 g−>n f s r [ 7 ] = nn ;
33 r e turn y ;
34 }

The “program” for nn has 30 instructions, and we have to call the mini-RISC CPU twice.
We also utilize the fact that after 16 shifts of the command 0x0355 it will produce only
zeroes, thus normally the processing will XOR all the arguments to the result . Therefore,
the computation of y can be done with only a single call to the processor while there are
(54-35)=19 commands being executed.

3.2 Benchmarking results
The FELICS-AEAD framework defines several scenarios. One set of scenarios targets the
use case given by IEEE 802.15.4, which has a standard packet size of 127 bytes, including
at most 25 byte header. Assuming a 16 byte authentication tag, this allows for 86 bytes of
plaintext. The other set of scenarios is based on IPv6 with a MTU of 1280 bytes. This
includes a fixed 40 byte header. Thus, there is a 1224 byte plaintext (since 16 bytes are
used for the MAC). Here, we focus on the scenarios with authenticated encryption.



14 Software Evaluation of Grain-128AEAD for Embedded Platforms

• Scenario 1c. Authenticated encryption of 86 bytes of payload and 25 bytes of header
(associated data);

• Scenario 2c. Authenticated encryption of 1224 bytes of payload and 40 bytes header
(associated data).

At the time of writing, very few ciphers are implemented in the FELICS-AEAD
framework. These are ACORN, AES-GCM, ASCON, Ketje-Jr, and NORX. Of these,
ASCON, is also in round 2 of the NIST LWC standardization process. Each cipher comes
with a few different implementations and, in addition, different compiler options are used.
The best performing implementation/option for each scenario is used in the comparison.
In particular, the comparison with AES-GCM is of interest since a LWC cipher is expected
to perform better than AES in the constrained environments.

The simulation results given in Table 3 are divided into 4 targets, namely minimizing
code size and minimizing total time for AVR and MSP, respectively. For each target,
we also provide alternative (Alt.) choices that are next best for this target (code size or
total time). The idea is to show that a small price in the primary metric can lead to a
significantly better performance in other metrics. For example, in “AVR-Small” we can see
that (Alt.) NORX has a very small increase in code size but a much better performance
in terms of the total time.

RAM usage. Most of the ciphers have a relatively small and stable usage of RAM
for the state and stack, except Ketje-Jr whose stack usage heavily depends on the message
length (about 1350 bytes for scenario 2c). On the smaller end, Grain and ACORN have
state and stack RAM usage of about 100 bytes, where Grain uses the least RAM resources
among all of the presented ciphers (83-94 bytes, in different scenarios/targets).

AVR/MSP-Small. Grain outperforms all the presented algorithms regarding the
code size in all 4 target groups. On AVR, Grain has the smallest code size of 1100 bytes,
with the next smallest being ACORN with 1868 bytes. On MSP, Grain has the smallest
code size of 926 bytes. The next smallest, again being ACORN, is 1744 bytes.

AVR-Fast. When targeting fast code for AVR, Grain is faster than most of the
compared ciphers, except NORX and ASCON. Alt. Grain is 3.8 times faster than AES-
GCM, while still being the smallest of all ciphers in code size. NORX demonstrates x2
speed of Grain but then the code size is x2-3 times larger than Grain. ASCON has x4.6
times faster speed but the code size is x11-14 times larger than Grain’s (24590 vs 2372/1734
bytes). Alt.ASCON with a decent code size (but still larger than Grain) has a speed
performance 28% slower than Grain.

MSP-Fast. When targeting fast code for MSP, Grain still has the smallest code size
and performs ∼x12.2 times faster than AES-GCM. ASCON is faster, but its code size
is again enormously large (46174 vs 1436 bytes). Alt.ASCON with a decent code size
becomes ∼x2.4 times slower than Grain. NORX seems to have 2x faster speed than Grain
but the code size is 3-4 times larger, again.

Balanced choice. The code size and the total time of a chosen cipher heavily depend
on the platform, implementation, and the compiler’s optimization options. Minimizing
both code size and total time require a balanced metric for that. Here, we compute the
product of the code size and the total time and pick the cipher variant with the smallest
such metric. These “balanced” variants are given in Table 4. The initialization requirement
for stream ciphers typically makes them less favorable for very short messages. Still, we
have chosen Scenario 1c for this metric in order to show that Grain outperforms the
compared ciphers and their implementations even in this scenario. For ASCON, the best
balanced choice has a very large code size (24590 bytes), so we also provide the next best
metric with smaller code size. On both targets, AVR and MSP, Grain has the smallest
metric of the balance between the code size and the total time. Moreover, Grain has the
smallest code size, and the total time is a lot faster than AES-GCM (about x5.6 and x12,



A. Maximov and M. Hell 15

Table 3: Simulation results on FELICS-AEAD
Name Ver CO RAM Code RAM Total time RAM Total time

state size stack (cycles) stack (cycles)
AVR-Small (minimizing code size) Scenario 1c Scenario 2c

ACORN v2 -Os 37 1868 64 692884 64 2947063
AES-GCM v1 -O2 228 2336 96 1463142 96 14700113
ASCON v3 -O1 40 3724 122 362589 124 3849045
Grain v1 -Os 49 1100 34 1647100 34 19026431
(Alt.) Grain v3 -O1 50 1306 38 1505809 38 17407445
Ketje-Jr v2 -O2 25 3022 197 3149313 1335 29903034
NORX v4 -Os 64 5024 202 178095 202 1192691
(Alt.) NORX v3 -O2 64 5126 203 123769 203 814237

AVR-Fast (minimizing total time) Scenario 1c Scenario 2c
ACORN v1 -Os 37 3024 81 396798 81 1614759
(Alt.) ACORN v2 -O2 37 1916 66 661208 66 2811932
AES-GCM v2 -O3 228 6578 111 975184 111 9812008
(Alt.) AES-GCM v1 -O3 228 5944 111 985390 111 9919910
ASCON v2 -O3 40 24590 63 53272 63 598098
(Alt.) ASCON v2 -O2 40 24086 63 54931 63 596774
(Alt.) ASCON v3 -O1 40 3724 122 362589 124 3849045
Grain v2 -O3 49 2372 38 255936 38 3000359
(Alt.) Grain v2 -O2 49 1734 38 263101 38 3090000
Ketje-Jr v2 -O3 25 5156 190 311949 1328 3007966
(Alt.) Ketje-Jr v1 -O3 25 4562 189 409286 1327 3948612
NORX v3 -O2 64 5126 203 123769 203 814237

MSP-Small (minimizing code size) Scenario 1c Scenario 2c
ACORN v2 -Os 37 1744 74 892381 74 3781122
(Alt.) ACORN v2 -O1 37 1750 64 676228 64 2863923
AES-GCM v1 -Os 228 1874 116 2331871 116 23407855
ASCON v3 -Os 40 5572 336 417711 338 4420289
(Alt.) ASCON v1 -Os 40 5578 336 603756 330 6866631
Grain v3 -Os 50 926 42 1612326 42 18515129
(Alt.) Grain v4 -Os 50 1358 44 184104 44 2193116
Ketje-Jr v2 -Os 25 2574 212 6753573 1350 64134071
(Alt.) Ketje-Jr v2 -O2 25 2602 206 6135738 1344 58219121
NORX v4 -Os 64 4214 214 100988 214 687123
(Alt.) NORX v3 -O2 64 4308 218 71368 218 480123

MSP-Fast (minimizing total time) Scenario 1c Scenario 2c
ACORN v1 -O3 37 6454 76 435022 76 1749651
(Alt.) ACORN v1 -O2 37 3136 92 525851 92 2182308
AES-GCM v1 -O2 228 2020 126 2126367 126 21372940
ASCON v2 -Os 40 46174 68 117690 68 1265628
(Alt.) ASCON v3 -O1 40 5688 332 415098 334 4391449
Grain v4 -O1 50 1436 40 174338 40 2071091
Ketje-Jr v2 -O3 25 6248 196 335624 1334 3242592
(Alt.) Ketje-Jr v2 -O2 25 2602 206 6135738 1344 58219121
NORX v3 -O3 64 8112 208 69360 208 449837
(Alt.) NORX v3 -O2 64 4308 218 71368 218 480123

respectively). Of the compared designs, the closest to Grain in respect to this metric is
NORX, which has about a 2x faster speed but about 3x larger code.



16 Software Evaluation of Grain-128AEAD for Embedded Platforms

Table 4: Balanced choice of algorithms. The smallest Code-size × min total time is used.
Name Ver CO RAM Code RAM Total time Code size

state size stack (cycles) × Total time
AVR balanced choice (Sc.1c)

ACORN v1 -Os 37 3024 81 396798 230.16

AES-GCM v2 -O2 228 2338 96 1460677 231.67

ASCON v2 -O3 40 24590 63 53272 230.29

(Alt.) ASCON v3 -O1 40 3724 122 362589 230.33

Grain v2 -O2 49 1734 38 263101 228.77

Ketje-Jr v2 -O3 25 5156 190 311949 230.58

NORX v3 -Os 64 5028 201 124062 229.22

MSP balanced choice (Sc.1c)
ACORN v2 -O1 37 1750 64 676228 230.14

AES-GCM v2 -O1 228 1952 126 2174330 231.98

ASCON v3 -Os 40 5572 336 417711 231.12

Grain v4 -Os 50 1358 44 184104 227.90

Ketje-Jr v2 -O3 25 6248 196 335624 230.97

NORX v3 -Os 64 4216 212 71419 228.17

4 Conclusions
We have presented a software implementation of the Grain-128AEAD stream cipher for
embedded processors. The two processors that were targeted are the two smallest defined in
the FELICS-AEAD framework, namely the AVR ATmega 128 and the MSP430F1611. Since
these two processors have very different characteristics, the optimizations require different
approaches. Moreover, we have shown that the code size can be made extremely small
by implementing a mini-RISC CPU for the clocking of the registers and the computation
of the pre-output keystream. The benchmarking results show that Grain-128AEAD is
competitive when implemented for embedded platforms.

References
[Atm06] Atmel. 8-bit Atmel Microcontroller with 128KBytes In-System Pro-

grammable Flash ATmega128 ATmega128L, 2006. http://ww1.microchip.
com/downloads/en/DeviceDoc/doc2467.pdf.

[BMA+18] Subhadeep Banik, Vasily Mikhalev, Frederik Armknecht, Takanori Isobe, Willi
Meier, Andrey Bogdanov, Yuhei Watanabe, and Francesco Regazzoni. Towards
low energy stream ciphers. IACR Transactions on Symmetric Cryptology,
2018(2):1–19, Jun. 2018.

[CdSGB19] Luan Cardoso dos Santos, Johann Großschädl, and Alex Biryukov. FELICS-
AEAD: Benchmarking of lightweight authenticated encryption algorithms,
2019. Lightweight Cryptography Workshop.

[HJM+19a] Martin Hell, Thomas Johansson, Willi Meier, Jonathan Sönnerup, and Hiro-
taka Yoshida. An AEAD variant of the Grain stream cipher. In Claude Carlet,
Sylvain Guilley, Abderrahmane Nitaj, and El Mamoun Souidi, editors, Codes,
Cryptology and Information Security, pages 55–71. Springer International
Publishing, 2019.

[HJM+19b] Martin Hell, Thomas Johansson, Willi Meier, Jonathan Sönnerup, and Hi-
rotaka Yoshida. Grain-128AEAD - a lightweight AEAD stream cipher,

http://ww1.microchip.com/downloads/en/DeviceDoc/doc2467.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/doc2467.pdf


A. Maximov and M. Hell 17

2019. https://csrc.nist.gov/Projects/lightweight-cryptography/
round-2-candidates.

[Ins06] Texas Instruments. MSP430x1xx Family User’s Guide, 2006. http://www.
ti.com/lit/ug/slau049f/slau049f.pdf.

[Ins11] Texas Instruments. MSP430F15x, MSP430F16x, MSP430F161x Mixed Signal
Microcontroller, 2011. http://www.ti.com/lit/ds/symlink/msp430f1611.
pdf.

[SHSK19] Jonathan Sönnerup, Martin Hell, Mattias Sönnerup, and Ripudaman Khat-
tar. Efficient hardware implementations of Grain-128AEAD. In Progress in
Cryptology – INDOCRYPT 2019. Springer International Publishing, 2019.
Accepted.

https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
http://www.ti.com/lit/ug/slau049f/slau049f.pdf
http://www.ti.com/lit/ug/slau049f/slau049f.pdf
http://www.ti.com/lit/ds/symlink/msp430f1611.pdf
http://www.ti.com/lit/ds/symlink/msp430f1611.pdf

	Introduction
	Algorithm specification
	Building blocks and functions
	Key and nonce initialization
	Operating mode

	Software implementations on constrained processors
	Implementation details
	Benchmarking results

	Conclusions

