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Abstract—Due to the smaller size in public and secret keys over other candidates for post-quantum cryptography (PQC), the
supersingular isogeny key encapsulation (SIKE) protocol has survived from the second round fierce competition hosted by the National
Institute of Standards and Technology (NIST) in January 2019. Many efforts have been done by researchers to reduce the computation
latency, which, however, is still far more than desired. In the SIKE implementation, the Montgomery representation has been mostly
adopted in the finite field arithmetic computing as the corresponding reduction algorithm is considered the fastest method for
implementing the modular reduction. In this paper, we propose a new data representation for the supersingular isogeny-based
elliptic-curve cryptography (ECC), of which the SIKE is a subclass. The new representation can facilitate faster modular reduction
implementation than the Montgomery reduction. Meanwhile, the other finite field arithmetic operations in the ECC can also benefit from
the proposed data representation. We have implemented all the arithmetic operations in C language with constant execution time
based on our proposed data representation and applied them to the newest SIKE software library. Targeting at the SIKEp751, we run
our design and the optimized implementation on a 2.6GHz Intel Xeon E5-2690 processor. The experiment results show that for the
parameters of SIKEp751, the proposed modular reduction algorithm is about 2.61x faster than the best Montgomery one and our
scheme also performs significantly better for the other finite field operations. With these improvements, the overall software
implementation for the SIKEp751 achieves about 1.65x speedup compared to the state-of-the-art implementation.

Index Terms—Supersingular isogeny Diffie-Hellman (SIDH) key exchange, elliptic curve cryptography (ECC), modular reduction,
Montgomery representation, Barrett reduction, post-quantum cryptography (PQC).
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1 INTRODUCTION

In recent years, much progress has been made in
quantum computers. The commonly used public-key
cryptographic algorithms like the Rivest–Shamir–Adleman
(RSA) [1] and elliptic-curve cryptography (ECC) [2] could
be easily solved by using the Shor’s algorithm [3] with pow-
erful quantum computers. These achievements have indeed
accelerated the development of post-quantum cryptography
(PQC). From 2017, the National Institute of Standards and
Technology (NIST) [4] has hosted two rounds of competi-
tion aiming to develop the post-quantum standards. The
supersingular isogeny key encapsulation (SIKE) protocol [5]
has survived from these competitions, as one of the 26
candidates. This protocol has the advantage of very short
public and secret key sizes, which are perfectly compatible
with the conventional ECC protocols. The SIKE protocol is
developed by packaging the supersingular isogeny Diffie-
Hellman (SIDH) key exchange protocol using the key en-
capsulation mechanism [6], to enhance the defense against
various side-channel attacks [7], [8], [9]. The SIDH was first
proposed by Jao and De Feo in 2011 to resist the quantum
attack in terms of the difficulty to find isogenies between
supersingular elliptic curves [10]. Generally, large degree
isogenies are set to meet the security requirement. Long
latency is caused mainly due to the serial computing of
these isogenies, and it forms the bottleneck in practical
applications. Therefore, methods to accelerate the SIDH can
directly be applied to speed up the SIKE protocol.

Many researchers have conducted optimizations for the
SIDH/SIKE protocol based on software [11], [12], [13], [14],
[15], [16], [17] or hardware [18], [19], [20], [21], [22], [23], [24]
platform. In the beginning, the software implementation of
SIDH was done by Jao using the GMP library in 2011 [11],

which presents the earliest version. The latest version pro-
vided in [17] is commonly recognized as the fastest software
implementation, which has constantly integrated the state-
of-the-art supersingular isogeny cryptographic schemes.
Additionally, the library [17] covers the implementations
for SIKE on x64, ARM, and FPGA platforms, which also
combine the optimized methods proposed in the open liter-
ature. Many improvements have been made to speed up the
SIKE protocol and make it more practical. However, those
implementations for this PQC candidate are still more than
one order of magnitude slower than many popular alter-
natives. It is noted that almost all of the implementations
are based on the Montgomery representation. The major
reason is that the associated reduction algorithm [25] has
been widely regarded as the most efficient method to im-
plement the modular reduction. Moreover, the Montgomery
representation is also friendly to the computation of other
field arithmetics.

A smooth prime of supersingular isogeny elliptic curves
usually has the form of p = f · aeAbeB ± 1, where a and b
are small primes, eA and eB are positive integers, and f is
a small cofactor to make p prime. Considering the special
structure of primes of those curves, some other efforts have
been done to improve the performance of the modular re-
duction. In [26], Karmakar et al. proposed an efficient mod-
ular reduction for the prime of the form p = 2 · 2eA3eB − 1,
where eA and eB must be even. They represented the field
elements in quadratic form based on the unconventional
radix R = 2eA/23eB/2 and derived a formula to replace
the modulo-p operation with two modulo-R operations.
Note that the two modular reductions are completed by
the Barrett reduction algorithm [27] and the Montgomery
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method is not available here. Despite that, the new mod-
ular reduction algorithm achieves better performance than
the conventional Montgomery one. Later, the modular re-
duction algorithm based on the unconventional quadratic
representation has also been studied in [28] and [23]. Since
the Montgomery reduction in multi-precision [15] only costs
one multiplication for the general cases, the superiority of
the algorithm in [26] fades away.

Our contributions: In this paper, we further explore the
data representation based on a new unconventional radix
for the supersingular isogeny elliptic curves. We transform
the conventional structure of primes and extend the orders
from quadratic to any orders. Based on this new data repre-
sentation, we propose a low-complexity modular reduction
algorithm with the improved Barrett reduction algorithm.
The new method shows a big potential to outperform the
best Montgomery reduction algorithm. It is worth to men-
tion that this new data representation is also applicable
to other finite field arithmetic operations. Thereafter, we
implement the proposed algorithms in software and apply
them to the SIKE protocol. The entire implementation is
designed with constant time to defend the timing attack.

The main contributions are summarized as follows:

1) A general data representation of field elements is pro-
posed for the supersingular isogeny elliptic curves,
which can facilitate faster computation for field arith-
metic operations.

2) An efficient modular reduction algorithm is derived
based on the proposed data representation with several
novel ideas. This new reduction algorithm obtains sig-
nificant complexity reduction and it shows substantial
superiority over the fastest Montgomery reduction al-
gorithm when adopting a higher-order representation.

3) The other field operations are also deduced based on
the proposed data representation. The operations on
the new form require fewer computations than conven-
tional ones.

4) A new SIKE implementation is presented by converting
the input parameters to the new data representation
and using the proposed field arithmetic algorithms.

We benchmark these implementations on a 2.6GHz Intel
Xeon E5-2690 processor and set the order of representation
to 12. All the tests of these algorithms have been passed
of the parameters of SIKEp751 (NIST security level 5).
The proposed modular reduction algorithm achieves 2.61x
speedup over the fastest Montgomery reduction algorithm
and the other tested field arithmetic operations are also
computed faster than the previous works. Moreover, the
entire implementation for SIKEp751 obtains a 1.65x faster
speed than the optimized implementation provided in [17].

Paper organization: The rest of this paper is organized
as follows. Section 2 gives a brief review of the SIDH
and SIKE protocols, and basic field arithmetic operations.
The proposed data representation and the efficient modular
reduction algorithm are presented in Section 3. The finite
field arithmetics based on the new data representation are
derived in Section 4. In Section 5, the experiment results and
comparisons are provided. Section 6 concludes this paper.

2 PRELIMINARIES

The SIKE protocol is developed based on the SIDH key-
exchange protocol by applying a key encapsulation mecha-
nism [6] to enhance its anti-attack capability. By breaking
down the computations of this protocol, it can be easily
found that the large-degree isogeny computations occupy a
dominant position. Those computations over elliptic curves
can be divided into the basic arithmetic operations over a
quadratic extension field Fp2 , where p is a prime with a
form of f · aeAbeB ± 1. And those operations can be further
subdivided as arithmetic operations over Fp. Usually, oper-
ations in Fp are processed on the Montgomery field, which
has been widely considered providing better efficiency over
others.

2.1 The SIDH Protocol

The SIDH key-exchange protocol is designed for two parties
(saying, Alice and Bob) securely communicating with each
other based on a shared secret key over a public commu-
nication environment. This shared secret is the j-invariant
of two isomorphic supersingular elliptic curves generated
based on a public supersingular elliptic curve E. The main
steps of this protocol are summarized in Alg. 1, where the
operations in the left-hand column are computed by Alice
and those in the right by Bob. The public supersingular
elliptic curve is usually set as the Montgomery curve with
the form of

E/Fp2 : Dy2 = x3 + Cx2 + x, (1)

where C,D ∈ Fp2 , D(C2 − 4) 6= 0, and p = f · aeAbeB ±
1. The two pairs of independent public points {PA, QA}
and {PB , QB} all are on E/Fp2 , and satisfy < PA, QA >=
E[aeA ] and < PB , QB >= E[beB ], respectively.

Algorithm 1: The SIDH key-exchange proto-
col [10].

Input: Public parameters: E, (PA, QA), and (PB , QB).

Alice Bob
1: Generate both parties’ public and secret keys with the

corresponding public parameters
skA

$←− {0, 1}eA skB
$←− {0, 1}eB

pkA ←− isogenA(skA) pkB ←− isogenB(skB)

2: Exchange the public keys and compute the shared secret key
j ←− isoexA(pkB , skA) j ←− isoexB(pkA, skB)
ss←− H(j,M) ss←− H(j,M)

3: Communicate with each other by using the shared secret key
mA ∈ {0, 1}M mB ∈ {0, 1}M
cA ←− ss⊕mA cB ←− ss⊕mB

mB ←− cB ⊕ ss mA ←− cA ⊕ ss
Output: Alice’s received message mB and Bob’s received message

mA.

In the first step, both parties generate their public and
secret keys with the corresponding public parameters. Al-
ice randomly chooses her secret key skA in the keyspace
{0, 1, ..., 2eA − 1}. Her public key pkA is obtained by us-
ing the isogenA function, which can be referred to in the
SIKE protocol specification document provided in [29] and
so do the other three isogeny computation functions. The
isogenA function for Alice is used to iteratively calculate
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the isogenous curves based on points PA and QA with
the Vélu’s formulas [30] and find the images of the points
QB and PB on these curves. The pair of images over the
isogenous curve in the last iteration is output as the public
key. Analogously, Bob could get his secret and public keys
in the same way by using his corresponding parameters.
In the second step, They exchange their public keys and
separately calculate their shared secret key j by using the
isoexl (l = A or B) function. The isoexl function is similar
to the isogenl function, which also requires to compute the
isogenous curves iteratively. The main difference lies in the
initial parameters and the outputs. The isoexl function is
initialized with the pair of points of the opposite party’s and
only needs to output the j-invariant of the last isogenous
curve, computed as:

j =
256(C2 − 3)3

C2 − 4
. (2)

Assuming the size of plaintext is M , the j-invariant is
encrypted by the hash function H to adjust the output
ss with a bit width of M . Alice and Bob could securely
communicate with each other by using their shared secret
key as shown in Step 3: One party encrypts his/her plaintext
into the ciphertext by using the XOR operation on ss and
sends it to the other party, and the other party decrypts this
message still using ss to do the XOR operation.

2.2 The SIKE Protocol

Note that the SIDH is proposed to resist the quantum
computer’s attack. However, in recent years, many other
attacks [7], [8], [9] applying to specific security models have
been reported. The secret keys of both parties must be
dynamically updated to ensure security. To fix these flaws,
authors in [29] proposed the SIKE protocol and demon-
strated its security.

Algorithm 2: The SIKE protocol of PQC candi-
dates [29].

Input: Public parameters: E, (PA, QA), and (PB , QB).

Alice Bob
1: Generate both parties’ public and secret keys, Alice’s message,

and Bob’s fake message
skB

$←− {0, 1}eB
pkB ←− isogenB(skB)

mA ∈ {0, 1}M fmB ∈ {0, 1}M
skA ←− H({mA, pkB}, eA)
pkA ←− isogenA(skA)

2: Exchange the public keys and compute the shared secret key
j ←− isoexA(pkB , skA) j ←− isoexB(pkA, skB)
ss←− H(j,M) ss←− H(j,M)

3: Send the ciphertext from Alice to Bob by using the shared
secret key and compute the output plaintext by Bob with the
help of fake message
cA ←− ss⊕mA

m′
A ←− cA ⊕ ss

sk′A ←− H({m′
A, pkB}, eA)

pk′A ←− isogenA(sk′A)
em← H({mA, pkA, cA},K) em′ ← H({fmB , pkA, cA},K)

emA =

{
em, pk′A = pkA

em′, pk′A = pkA
Output: Bob’s calculated message emA.

The main course of the SIKE is shown in Alg. 2, which is
assumed that Alice sends messages to Bob. We still divide
this protocol into three steps. To guarantee security, some
extra operations are added compared to the SIDH. In the
first step, Bob generates his secret and public keys the same
as in the SIDH. This secret key can be securely used repeat-
edly. Those keys of Alice’s are produced dynamically, based
on the delivered message and Bob’s public key. Meanwhile,
Bob produces a fake message for use in the later. The second
step is the same as in the SIDH. The j-invariant is obtained
by using the owner’s secret key and the other party’s public
key and encrypted by the hash function. In the third step,
Alice encrypts her message in two forms, one with their
shared secret key as cA and the other with the hash function
as em, and sends them to Bob. After receiving the two
ciphertexts, Bob recovers Alice’s message, secret and public
keys by using cA. At the same time, he encrypts the fake
message fmB in the same way as Alice denoted by em′.
He chooses em or em′ as the output by judging whether
Alice’s recovered public key is equal to the received public
key. This scheme has been proved chosen-ciphertext attack
(CCA) secure.

2.3 Finite Field Arithmetic Operations for Supersingu-
lar Isogeny Elliptic Curves

The arithmetic operations over finite field mainly include
the modular addition, modular subtraction, modular multi-
plication, modular division, modular negation, and modular
inversion. The modular addition, modular subtraction, and
modular negation operations are usually far simpler to be
implemented compared to the rest operations. The modular
division can be carried out by the modular multiplication
and modular inversion operations. According to the Fer-
mat’s little theorem [31], the modular inversion operation
can be computed as A−1 ≡ Ap−2 mod p, also becoming the
modular multiplication operations. Therefore, improving
the field multiplication usually can effectively accelerate a
complicated algorithm, especially in which many modular
multiplications are included. The four isogeny computation
functions of SIDH and SIKE exactly belong to this category.

The modular multiplication can be divided into two
parts: the multiplication and modular reduction. For the
multiplication part, except the schoolbook multiplication,
many fast multiplication algorithms, like the Karatsuba [32],
Toom-Cook [33], Schönhage–Strassen [34], and Fürer’s [35]
algorithms, have been proposed, which are very suitable for
implementations with enough large and flexible bit widths.
For the modular reduction part, two well-known modular
reduction algorithms, the Montgomery reduction [25] and
the Barrett reduction algorithms [27], are reported.

Since for a specific large bit width N , implementing a
multiplication requires many multiplication and addition
instructions, much more complex than implementing an ad-
dition or a subtraction, we will use the consumed number of
multiplications to represent the complexity of an algorithm
in this paper.

2.3.1 Montgomery Reduction Algorithm
The original Montgomery reduction algorithm in [25] is
shown in Alg. 3, where the input operand c must satisfy
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0 ≤ c < Rp (gcd(p,R) = 1) and 2 N × N multiplications
are cost. Assume u digits are used to represent integers
in radix-2w, where w is set as the word size of a targeted
architecture and uw ≥ N . This algorithm requires 2u2

word multiplications. The multi-precision version primarily

Algorithm 3: The Montgomery reduction [25].

Input: An operand c ∈ [0, Rp), the modulus p with
2N−1 < p < 2N = R, and the pre-computed constant
p′ = (−p−1) mod R.

1: t = ((c mod R) · p′) mod R
2: r = (c+ t · p)/R
3: if r ≥ p then
4: r = r − p
5: end if

Output: The residue r = cR−1 mod p.

Algorithm 4: The multi-precision Montgomery
reduction [36].

Input: An operand c ∈ [0, Rp), the modulus p with
2N−1 < p < 2N ≤ 2uw = R, and the pre-computed
constant p′ = (−p−1) mod 2w.

1: for i = 0 to u− 1 do
2: t = ((c mod 2w) · p′) mod 2w

3: c = (c+ t · p)/2w
4: end for
5: r = c
6: if r ≥ p then
7: r = r − p
8: end if

Output: The residue r = cR−1 mod p.

proposed in [25] and improved in [36] could significantly re-
duce the complexity and only (u2+u) word multiplications
are needed. The multi-precision Montgomery reduction is
shown in Alg. 4, where the parameter R equals 2uw and in
each iteration parameter R is replaced by 2w. It should be
noted that the modulus p for supersingular elliptic curves
usually has the form of p = f · aeAbeB ± 1. If a = 2
and w ≤ eA, we could have p mod 2w = ±1. Thus, the
parameter p′ is equal to ∓1. The first multiplication can
be removed. When w is set as the word size of a targeted
architecture, we usually have w � eA. The number of digit
multiplications is reduced to u2. The complexity can be
further reduced by refining the second multiplication, which
has been fully studied in [15] and [28]. The complexity in
multiplication is reduced to u(u−δ), where δ is close to u/2.
For example, when p = 23723239 − 1 and w = 64, we have
u = 12 and δ = 5 and the number of word multiplications
is reduced from 144 to 84. Note that this method has been
adopted by the SIKE protocol [17].

It should be pointed out that the output of the Mont-
gomery reduction is not c mod p but cR−1 mod p. It can
be easily solved by making all involved integers in Mont-
gomery representation, i.e., multiplying these integers by R
at the beginning of an algorithm. It has been demonstrated
that all arithmetic operations over a finite field can be
processed in Montgomery representation the same way as

in the normal representation. At the end of this algorithm,
the outputs can be back to normal divided by R.

2.3.2 Barrett Reduction Algorithm
The primary form of the Barrett reduction algorithm [27] is
presented in Alg. 5, where γ is an arbitrary integer. When
the absolute value of γ is small, this algorithm needs about
3u2 word multiplications.

Algorithm 5: The Barrett reduction [27].

Input: An operand c ∈ [0, 22N+γ), the modulus p
satisfying 2N−1 < p < 2N , and the pre-computed
constant λ = b22N+γ/pc.

1: q = b c·λ
22N+γ c

2: r = c− q · p
3: if r ≥ p then
4: r = r − p, q = q + 1
5: end if

Output: The quotient q = bc/pc, and the remainder
r = c mod p.

In [37], the authors have improved the model of the
estimated quotient (Step 1 of Alg. 5) by introducing more
variable parameters. The quotient is written as:

q = b c
p
c = b

c
2N+ρ

2N+σ

p

2σ−ρ
c ≥ b

b c
2N+ρ cb 2

N+σ

p c
2σ−ρ

c, (3)

where σ and ρ are two parameters. Assume the estimated

quotient as q̂ = b b
c

2N+ρ cb
2N+σ

p c
2σ−ρ c. The author in [38] has

deduced the estimation error in detail. The final formula
is:

q ≥ q̂ > q − c

2N+σ
− 2N+ρ

p
+ 2ρ−σ − 1. (4)

Note that 0 ≤ c < 22N+γ and 2N−1 < p < 2N . Thus, this
equation satisfies:

q ≥ q̂ > q − 22N+γ

2N+σ
− 2N+ρ

2N−1
+ 2ρ−σ − 1 (5)

= q − 2N+γ−σ − 2ρ+1 + 2ρ−σ − 1.

It can be easily proved that when σ ≥ N + γ + 1 and
ρ ≤ −2, the estimation error is no larger than 1. The equal
symbols both are adopted to obtain less complexity. Hence,
the modified equation for the estimated quotient becomes:

q̂ = b
b c
2N−2 cb 2

2N+γ+1

p c
2N+γ+3

c. (6)

When the absolute value of γ is small, this improved al-
gorithm costs about 2u2 word multiplications, close to the
original Montgomery reduction but still inferior to the best
version.

In [26], the authors have refined the original Barrett
reduction (Alg. 5) for a special structure modulus of 2x3y

(x and y are arbitrary positive integers and x ≈ dlog2(3y)e)
and applied it as a function to their proposed reduction
algorithm. In this paper, this scheme is also adopted in our
new reduction algorithm that will be detailed in the next
section.
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We combine the methods in [26], [37], and [39], and
present an improved Barrett reduction (IBR) as shown in
Alg. 6. The splitting method in Step 1 is referred to [26];
the estimation method for quotient in Step 2 is referred
to [37]; and the simplification methods in Steps 3, 4, and 8
are referred to [39]. The bit width of the input c is assumed
as 2W + γ and the modulus is denoted as m, to distinguish
from prime p. It should be noted that the IBR is not directly
used as an independent reduction algorithm for the SIKE
protocol but as a function to compute the quotient and
remainder. It can be seen that the first multiplication (in
Step 2) is a (W + γ + 2) × (W + γ + 1) multiplication and
the second one (in Step 3) is a (W2+1)×W2 multiplication.
When the absolute value of γ is small andW1 ≈W2 ≈W/2,
an IBR function takes about 1.25W ×W multiplications.

Algorithm 6: The improved Barrett reduction (IBR).

Input: An operand c ∈ [0, 22W+γ); the modulus m = 2x3y ,
where W1 = x, W2 = dlog2(3y)e, W1 +W2 =W , and
m′ = 3y ; and the pre-computed constant
λ = b22W+γ+1/mc.

1: t = bc/2W1c, s = c mod 2W1

2: q = b
b t

2W2−2 c·λ
2W+γ+3 c

3: t1 = (q mod 2W2+1) ·m′
4: r = ((t mod 2W2+1)− (t1 mod 2W2+1)) mod 2W2+1

5: if r ≥ m′ then
6: r = r −m′, q = q + 1
7: end if
8: r = r · 2W1 + s

Output: The quotient q = bc/mc, and the remainder
r = c mod m.

3 PROPOSED DATA REPRESENTATION FOR SU-
PERSINGULAR ISOGENY BASED CRYPTOGRAPHY

3.1 A Preview of the New Data Representation
Firstly, we rewrite the modulus p as:

p = f · aeAbeB ± 1 (7)
= f · a−αb−βaeA+αbeB+β ± 1

= f ′ ·Rn ± 1,

where f ′ = f · a−αb−β , α and β are small positive integers,
n = GCD(eA + α, eB + β), n ≥ 1, and R = a

eA+α

n b
eB+β

n .
Then, we represent a field element A ∈ Fp based on the
unconventional radix R as

A =
n−1∑
j=0

aj ·Rj , (8)

where aj ∈ [0, R − 1] for 0 < j < n − 1, an−1 ∈ [0, f ′R −
1], and a0 ∈ [0, R ± 1] of which the plus or minus sign is
consistent with that of p.

The correctness can be easily validated. Our goal is to
build a mapping that can involve all elements in Fp. For
p = f · aeAbeB − 1, we know that any field integer A
over Fp satisfies 0 ≤ A < p. Meanwhile, the expression
of A in Eq. (8) satisfies 0 ≤ A ≤ p. Therefore, except the
largest value, the values in the representation of Eq. (8) can

exactly map the integers over the finite field. Equally, for
p = f · aeAbeB + 1, this new representation can also express
all integers over Fp but is not an one-to-one mapping in
some cases. Based on this new data representation, all the
arithmetic operations can be correctly conducted. In the
following, we will mainly demonstrate how to compute
these operations based on the proposed data representation.

3.2 Deduction of A Low-Complexity Modular Reduction
Algorithm
As analyzed above, the modular reduction is the core com-
putation in the basic arithmetic operations, so we begin with
it in our deduction first. Let us take two field elements

A =
n−1∑
j=0

aj · Rj and B =
n−1∑
j=0

bj · Rj , where aj and bj

are the order-j coefficients of A and B, respectively. When
multiplying the two integers, we have:

C = A×B =
n−1∑
j=0

aj ·Rj ×
n−1∑
j=0

bj ·Rj (9)

=
n−1∑
j=0

j∑
i=0

aibj−i ·Rj +
2n−2∑
j=n

n−1∑
i=j−n+1

aibj−i ·Rj

=
n−1∑
j=0

cj ·Rj +
2n−2∑
j=n

cj ·Rj ,

where cj for 0 ≤ j ≤ 2n − 2 is made up of multiply-
accumulate terms based on the coefficients of A and B.

In order to make the output C with standard form as in
Eq. (8) after the modulo operation, the first task is to remove
the terms with orders larger than n− 1, namely, the second
multiply-accumulate term of Eq. (9). Luckily, this term can
be directly merged with the first term in a general formula
for the prime p = f ′ ·Rn ± 1. Let us pick up an item cj ·Rj
for n ≤ j ≤ 2n − 2 and compute the modulo operation
separately. According to the deduction in [28] and [23], cj ·
Rj mod p satisfies

cj ·Rj mod p (10)

= ((cjR
j mod f ′Rn) + (b cjR

j

f ′Rn
c · f ′Rn)) mod p

= ((cjR
j mod f ′Rn) + (b cjR

j

f ′Rn
c · (p∓ 1))) mod p

≡ ((cjR
j mod f ′Rn)∓ bcjR

j−n

f ′
c) mod p.

For j = n, this formula equals:

cn ·Rn mod p (11)

≡ (cnR
n mod f ′Rn)∓ bcn

f ′
c) mod p

≡ ((
cn mod f ′

f ′
· f ′Rn)∓ bcn

f ′
c) mod p

≡ ((
cn mod f ′

f ′
· (p∓ 1))∓ bcn

f ′
c) mod p

≡ ∓(cn mod f ′

f ′
+ bcn

f ′
c) mod p.

It should be pointed out that ”mod f ′” is just a form to
make the expression clearer. When f ′ is a fraction, we will
not directly use it, but turn back to the previous step.
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For n < j ≤ 2n− 2, we have:

cj ·Rj mod p ≡ (cj ·Rn mod p) ·Rj−n mod p (12)

≡ ∓(cj mod f ′

f ′
+ b cj

f ′
c) ·Rj−n mod p.

Then, C mod p is congruent with:

C ≡ cn−1Rn−1 + (13)
n−2∑
j=0

(cj ∓ (
cn+j mod f ′

f ′ + b cn+j

f ′ c)) ·R
j mod p,

which is not the final output since the coefficients are
usually not in the defined ranges. It should be noticed
that this equation is a general formula for any p with the
form of Eq. (7). For example, when f ′ = 2, n = 2, and
p = 2·R2−1, this result is equivalent to the derived equation
of the EFFM [26]. When f ′ = 1, n = 1, and p = R ± 1, this
result is the same as that of the FFM2 [23], which has been
proved less efficient than the EFFM and FFM1 in [39]. It
seems that the larger n is, the faster speed can be achieved.

Intuitively, if the parameter f ′ is not equal to 1 or 2,
the modulo and division operations over f ′ will become
complicated. The ideal case is f ′ = 1, since cn+j mod f ′ =
0 and the division is also removed. In that case, we have
p = Rn ± 1. Since the modulus p must be prime, the minus
sign is not available for n > 1. However, in the existing SIKE
examples, the prime is usually with the form of 2eA3eB − 1
where eA and eB are co-prime. If directly using f ′ = 1 for
the formula of Eq. (13), the modular reduction will not be
so efficient since n can only be set to 1. In the following, we
will demonstrate that this equation can be very simple with
n > 1 for the primes of the SIKE.

We have found that if eA or eB is added by a small
positive integer α or β, the revised parameters will not be
co-prime and the greatest common divisor will usually be
larger than 2 (referred to the parameter n in the fifth row of
Table 2). Then, we have f ′ = 2−α3−β . When turning back
to Eq. (11), we can rewrite the first term in the first step as:

cnR
n mod f ′Rn (14)

= cn2
α3β · f ′Rn mod f ′Rn ≡ 0.

Therefore, we have cn · Rn mod p = cn · 2α3β mod p.
The similar transformation can also be applied to the higher
orders. Then, equation (13) becomes

C ≡ cn−1R
n−1 +

n−2∑
j=0

(cj + cn+j2
α3β)Rj mod p.(15)

3.2.1 Multiplication Part
Equation (15) can be unfolded as:

C ≡
n−1∑
i=0

aibn−i−1 ·Rn−1 + (16)

n−2∑
j=0

(
j∑
i=0

aibj−i +
n−1∑
i=j+1

aibj−i+n · 2α3β) ·Rj mod p.

Computing the raw coefficients is what the multiplication
part is to do. It should be noted that these multiply-
accumulate terms look like the same as those of the tradi-
tional unfolded multiplication. But their radixes are differ-
ent and the bit width of a coefficient in our algorithm equals

dNn e. Since the coefficients are totally free from each other,
our algorithm does not need to send the carry from the
lower-order to the next higher-order. Additionally, as the co-
efficients are independent and relatively small, the one-level
Karatsuba-like optimization method can be easily applied to
the coefficient multiplication combination aibj+ajbi (i 6= j)
as:

aibj + ajbi = (ai + aj)(bi + bj)− aibi − ajbj . (17)

Notice that the number of such combination is (n2−n)/2. By
using this method, the number of coefficient multiplications
is reduced from n2 to (n2 − n)/2 + n = n(n + 1)/2. For
the constant multiplications in Eq. (16), as the parameters,
α and β, are very small (usually set to 0 or 1), only some
additions and shift operations are required.

In the SIKE implementation [17], the comb multiplica-
tion algorithm [40] is adopted in the integer multiplication,
which is a scheduling method to effectively control the
multiplication and accumulation of partial products. As
analyzed in [15], it shows more promise than the Karatsuba
algorithm when the data width of operands is small or mod-
erate. Obviously, the number of multiplication instructions
is not reduced by the comb scheduling method. Besides,
many carries are required to be handled in the iterations.
Thus, it can believe that the proposed multiplication method
could be faster than the previous one. Moreover, it should be
mentioned that our multiplication method is naturally more
suitable for high-parallel implementation to achieve much
higher speed.

3.2.2 Low-Complexity Modular Reduction Algorithm
It is worth to mention that whatever method to compute
the raw coefficients is adopted, the procedure of modular
reduction for these coefficients is almost the same. Without
loss of generality, we will take the prime of 2eA3eB −1 as an
example in the following.

Suppose an integer C =
n−1∑
j=0

cj ·Rj with raw coefficients

cj computed by Eq. (16). The coefficients of the final out-
put are required to be satisfied as the defined ranges, i.e.,
cj ∈ [0, R − 1] for 0 ≤ j < n − 1 and cn−1 ∈ [0, f ′R − 1].
The coefficients with 0 ≤ j < n − 1 can be reduced by
modulo R, keeping the remainders as the corresponding
new coefficients and adding the quotients to the adjacent
higher-order coefficients. For the (n− 1)-th term, according
to the formula

cn−1 ·Rn−1 mod p (18)

≡ ((cn−1R
n−1 mod (f ′R ·Rn−1)) + bcn−1R

n−1

f ′Rn
c) mod p

≡ ((cn−1 mod f ′R) ·Rn−1 + bcn−1
f ′R
c) mod p,

we can reduce this term by modulo f ′R. The quotient is
merged with the lowest term. Then, several additions and
subtractions are needed to adjust the final result. We adopt
(n+ 1) IBR functions presented in Alg. 6 to deal with those
modulo operations.

The proposed fast reduction algorithm can be summa-
rized as follows:

1) Compute (q0, r0) = IBR(c0, R);
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2) Calculate (qj , rj) = IBR(cj+qj−1, R) for 0 < j < n−1;
3) Compute (qn−1, rn−1) = IBR(cn−1 + qn−2, f

′R);
4) Calculate (q0, c0) = IBR(r0 + qn−1, R), where q0 be-

comes very small;
5) For 0 < j ≤ n−1, compute the addition, dj = rj+qj−1,

and the subtraction, ej = dj − R, where R is replaced
by f ′R for j = n− 1. The updated quotient qj is set as
ej ’s sign bit xored by 1. If qj is equal to 0, the output cj
will be set to dj ; otherwise, cj will be set to ej . Finally,
compute c0 = r0 + qn−1.

It should be noted that the complexity of an IBR is
directly related with the input c. Hence, those IBR functions
can be optimized with the corresponding largest input in-
tegers. Additionally, we use a lazy reduction for c0, with a
range of [0, R], to reduce the requirement of the additions
and subtractions. This little trick is also adopted by the
modular addition and subtraction presented later.

Now, we will try to evaluate the complexity of this new
reduction algorithm in terms of multiplications. It should be
noted that the multiplications only lie in the IBR functions.
Obviously, The IBR of Step 4 could be designed much
simpler than the others. For simplification, we use the value
((n − 1)2α3β + 1)(R − 1)2 as the largest value for all of
them. The bit width equals log2((n−1)2α3β+1)(R−1)2 =
log2((n− 1)2α3β +1)+2 · log2(R− 1). When n is relatively
small, the bit width of this value is about 2 · dNn e. For one
IBR function, it costs 1.25 dNn e × d

N
n e multiplications. So,

the proposed reduction algorithm takes about 1.25(n + 1)
dNn e × d

N
n e multiplications.

If dNn e is equal to w, n will be equal to u (Usually, dNn e is
not exactly equal to w while we still have n equal to u. For
example, for the SIKEp751, when the word size w is equal
to 64, we have n = u = 12 but dNn e = d

751
12 e = 63). About

1.25(n+ 1) w × w multiplications are needed. It should be
pointed out that the parameter λ is assumed to be small.
In that case, the ratio of the best Montgomery reduction
used in SIKE library (requiring about 0.5n2 w ×w multipli-
cations) to our reduction is about 0.4n2/(n + 1) in terms
of multiplications. When n > 3, the proposed modular
reduction algorithm may obtain better performance than
the fastest Montgomery one. The larger n is, the faster
speed can be achieved. When targeting an architecture with
specific word sizes, this trend would be limited by them.
Considering the small sizes of the input operand of the
IBR, the optimization methods like the Karatsuba or Toom-
Cook fast multiplication can also be easily applied to the
multiplications by utilizing the redundant representation. It
should be pointed out that this modular reduction could
be further accelerated to implement those IBR functions in
parallel on software or hardware platforms.

4 PROPOSED FIELD ARITHMETIC ALGORITHMS
BASED ON THE NEW DATA REPRESENTATION

The supersingular elliptic curves used for the SIDH or SIKE
are usually defined over the quadratic field Fp2 which is
extended from the base field Fp with i2 + 1 = 0. Therefore,
the field arithmetic operations should be considered and
implemented for the two finite fields. In the following, we
will propose the basic field arithmetic algorithms based on
the new data representation for both fields, respectively.

4.1 Arithmetic Operations Over Fp
4.1.1 Modular Multiplication and Squaring
As the multiplication part and the modular reduction have
been presented based on the new data representation in
the previous section, we can directly obtain a new modular
multiplication algorithm, named as general IFFM (G-IFFM)
algorithm. It can be summarized in the following two steps:

• Step 1: Compute multiply-accumulate terms in
Eq. (16) and get the raw coefficients.

• Step 2: Apply the proposed low-complexity reduc-
tion algorithm to these raw coefficients and output
the standard coefficients.

As analyzed above, both of the multiplication and modular
reduction could be more efficient than the conventional
methods. The G-IFFM can, therefore, achieve better perfor-
mance than the state-of-the-art method in [17].

The modular squaring in our implementation is sep-
arately designed since Eq. (17) equals 2aiaj , which need
not the extra additions and subtractions, and thus is more
efficient than that formula.

4.1.2 Modular Addition
For the modular addition, we can split it into two steps.
Assume two field elements A and B are represented as in
Eq. (8). In the first step, we directly compute

C =
n−1∑
j=0

(aj + bj) ·Rj =
n−1∑
j=0

cj ·Rj . (19)

Only n additions are cost without carries. In the second
step, we reduce C to the standard representation. It can be
noticed that we have 0 ≤ cj < 2R − 1 for 0 ≤ j < n − 1
and 0 ≤ cn−1 < 2f ′R − 1. When R ≤ cj < 2R − 1 for
0 ≤ j < n− 1, we can reduce this coefficient cj by using the
formula:

cj+1 ·Rj+1 + cj ·Rj (20)
= (cj+1 + 1) ·Rj+1 + (cj −R) ·Rj .

If the condition is satisfied, one addition and one subtraction
are required.

For the coefficient cn−1, we can use the following for-
mula:

cn−1 ·Rn−1 + c0 mod p (21)
≡ cn−1 ·Rn−1 − (f ′Rn − 1) + c0 mod p
= (cn−1 − f ′R) ·Rn−1 + (1 + c0) mod p.

When satisfying f ′R ≤ cn−1 < 2f ′R − 1, one addition
and one subtraction are needed. Thus, in the worst case,
the reduction for these coefficients costs n additions and
n subtractions. Note that the output coefficient c0 ranges in
[0, R], which does not need to be adjusted right now. In total,
it takes 2n additions and n subtractions. To achieve constant
time, some extra operations are required. More discussions
will be given in the next section.

In the traditional method, two N -bit additions and
one N -bit subtraction are cost by the modular addi-
tion. An N -bit addition/subtraction requires u w-bit ad-
ditions/subtractions with carries/borrows, for which at
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least 2u addition/subtraction instructions are needed.
Considering the overflow situation for each word addi-
tion/subtraction, it could be more complex than we count.
Hence, at least 4u addition and 2u subtraction instructions
are required for the modular addition. When dNn e ≈ w and
n = u, our modular addition could be at least twice faster
than the traditional method.

4.1.3 Modular Subtraction
Similar to the modular addition, we can split the modular
subtraction into two steps. Assume two field elements A
andB are expressed as in Eq. (8). In the first step, we directly
compute

C =
n−1∑
j=0

(aj − bj) ·Rj =
n−1∑
j=0

cj ·Rj . (22)

Only n subtractions are cost without borrows. In the second
step, we reduce C to the standard representation. Notice
that we have −R + 1 ≤ cj ≤ R − 1 for 0 ≤ j < n − 1 and
−f ′R + 1 ≤ cn−1 ≤ f ′R − 1. When −R + 1 ≤ c0 ≤ 0 or
−R+ 1 ≤ cj < 0 for 0 < j < n− 1, we can reduce them by
using the formula:

cj+1 ·Rj+1 + cj ·Rj (23)
= (cj+1 − 1) ·Rj+1 + (cj +R) ·Rj .

For the coefficient cn−1 with −f ′R+ 1 ≤ cn−1 < 0 , we can
use the following formula:

cn−1 ·Rn−1 + c0 mod p (24)
≡ cn−1 ·Rn−1 + (f ′Rn − 1) + c0 mod p
= (cn−1 + f ′R) ·Rn−1 + (c0 − 1) mod p.

Similarly, the output coefficients cj for 0 < j ≤ n − 1 are
in the standard ranges and c0 falls in [0, R]. Our modular
subtraction costs about n additions and 2n subtractions. In
the conventional method, one N -bit addition and one N -
bit subtraction are consumed for the modular subtraction.
About 2u addition and 2u subtraction instructions are used.
When dNn e ≈ w and n = u, our modular subtraction could
at least be 1.33 times faster than the traditional modular
subtraction.

4.1.4 Modular Negation
Let C be represented as in Eq. (8). We can compute the
modular negation as follows:

(−C) mod p ≡ (P − C) mod p (25)

= (f ′R− cn−1 − 1)Rn−1 +
n−2∑
j=0

(R− cj − 1)Rj mod p.

It can be seen that 2n subtractions are required in total. In
the conventional method, except the 2u subtractions, more
operations are needed for borrows.

4.1.5 Modular Inversion
According to the Fermat’s little theorem [31], the general
modular inversion can be computed as A−1 ≡ Ap−2 mod p,
which could be calculated by using the modular multiplica-
tion and squaring operations in chains. As analyzed before,
these two operations could be better than the conventional

method, so the modular inversion could also obtain faster
speed than the previous work.

Modular Division by Two: Besides the general case,
we have also derived the modular division by two, i.e.,
A
2 mod p. In all cases, this modular division equals:

A

2
mod p ≡


A

2
, A is even,

A+ p

2
, A is odd.

(26)

When A =
n−1∑
j=0

aj · Rj , we have A
2 mod p =

n−1∑
j=0

aj
2 ·

Rj mod p. We also separately compute the even and odd
cases of these coefficients. If an aj for 0 < j ≤ n− 1 is even,
only a right shift is needed. Otherwise, we can compute it
with the following decomposition:

aj
2 ·R

j = (
aj − 1

2
+

1

2
) ·Rj (27)

= (
aj − 1

2
) ·Rj + R

2
·Rj−1.

For the odd a0, we have:

a0
2

= (
a0 − 1

2
) +

1

2
. (28)

The modular inversion
1

2
mod p can be presented as:

1

2
mod p ≡ (

p+ 1

2
) mod p (29)

= (
f ′Rn

2
) mod p =

f ′R

2
·Rn−1 mod p.

Therefore, our modular division by two can be summarized
as follows.

First, we compute the intermediate variables bj and cj
as:

bj =


aj
2
, aj is even,

aj − 1

2
, aj is odd,

for 0 ≤ j ≤ n− 1; (30)

cj =


0, aj+1 is even,
R

2
, aj+1 is odd,

for 0 ≤ j ≤ n− 2, (31)

and

cn−1 =


0, a0 is even,

f ′R

2
, a0 is odd.

(32)

Then, the division by two is computed as:

n−1∑
j=0

aj
2
·Rj mod p ≡

n−1∑
j=0

(bj + cj) ·Rj mod p. (33)

The parameters
f ′R

2
and

R

2
can be precomputed. Thus,

this algorithm takes n subtractions, additions, and right
shifts. The conventional method using Eq. (26) needs 2u
additions with carries and u right-shift instructions. When
n = u, they may cost similar number of cycles.
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4.2 Arithmetic Operations Over Fp2

An element A in Fp2 is represented as A = A0 + A1i,
where A0, A1 ∈ Fp. Assuming two elements A,B ∈ Fp2 ,
the arithmetic computing over this field can be represented
as:

A+B = (A0 +B0) + (A1 +B1)i mod p, (34)
A−B = (A0 −B0) + (A1 −B1)i mod p,
A×B = (A0B0 −A1B1) + ((A0 +A1)(B1 +B0)

−A0B0 −A1B1)i mod p,
A2 = (A0 +A1)(A0 −A1) + (A0A1 +A0A1)i mod p,
A−1 = A0(A

2
0 +A2

1)
−1 + (−A1(A

2
0 +A2

1)
−1)i mod p,

where the real part and imaginary part are computed sep-
arately. Each of the operations over Fp2 includes several
kinds of operations over Fp, as summarized in Table 1,
where operations are in abbreviation for brevity. Since all
of the involved operations over Fp can be better than the
conventional methods, the arithmetic operations over Fp2
can also achieve better performance than the previous work.
Additionally, it can be seen that the multiplication over Fp
is widely used and dominates the computations.

TABLE 1
The Numbers of Operations in Fp Covered by

Operations in Fp2

Fp2

Fp Add. Sub. Mul. Sqr. Inv.

Add. 2 0 0 0 0
Sub. 0 2 0 0 0
Mul. 2 3 3 0 0
Sqr. 2 1 2 0 0
Inv. 1 1 2 2 1

In fact, the multiplications, squaring, and inversion op-
erations over Fp2 can be further optimized by separating
the integer operations from the modular reductions. The
integer multiplication, squaring, and addition operations
can be directly used, while the integer subtraction should
be specifically designed since the input of the modular
reduction is nonnegative. In the following, we will mainly
focus on the optimization of the modular multiplication
over Fp2 .

Modular Multiplication: The formula of multiplication
in Eq. (34) shows that the real part contains a large subtrac-
tion. Thanks to the feature of modulo operation, the result

of (A0B0 − A1B1 = C0 − C1 =
n−1∑
j=0

(c0,j − c1,j) · Rj) can

be made positive by adding the multiple of p = f ′Rn − 1.
Thus, we can reduce it by using the formula:

n−1∑
j=0

(c0,j − c1,j) ·Rj mod p (35)

≡
n−1∑
j=0

(c0,j − c1,j) ·Rj + xR(f ′Rn − 1) mod p

= (c0,n−1 − c1,n−1 + xR(f ′R− 1))Rn−1 +
n−2∑
j=0

(c0,j − c1,j + xR(R− 1)) ·Rj mod p,

where x is a small parameter to make all of these coefficients
positive. As analyzed above, the raw coefficients are no
larger than ((n − 1)2α3β + 1)(R − 1)2, so x can be set
close to (n − 1)2α3β . The parameters xR(f ′R − 1) and
xR(R − 1) can be precomputed. We need to use extra n
additions to aid this modular reduction. In the conventional
method, the parameter 2N ·p is added to help this reduction,
which consumes a similar number of addition instructions
but more carries.

4.3 Transformation of Data Representation
The above analyses have demonstrated that the field arith-
metic operations can be normally computed based on our
data representation. In fact, for a computing system, we can
transform all the inputs into the new representation at the
beginning, and inversely transform the final results back to
normal as the output in the end. The forward and backward
transformation algorithms are presented below.

4.3.1 From Normal to Unconventional Radix (N2U)
For a field element A ∈ Fp, we can use Alg. 7 to transform
this element into our data representation. In fact, it can be

Algorithm 7: From normal to unconventional radix
(N2U).

Input: An operand A ∈ Fp, the radix R, and the modulus
p = f ′Rn − 1.

1: for j ← 0 to n− 2 do
2: cj ← A mod R
3: A ← bARc;
4: end for
5: cn−1 ← A

Output: The result C =
n−1∑
j=0

cj ·Rj = A mod p.

calculated by calling the IBR function with modulus R in
n− 1 times. A vector of λ with n− 1 values is precomputed
for these callings.

4.3.2 From Unconventional Radix Back to Normal (U2N)

Suppose an integer A =
n−1∑
j=0

aj · Rj as defined in Eq. (8).

Algorithm 8 is proposed to make the integer A from the
unconventional radix back to the normal representation.
Note that since the results in our representation cover the
integers p and p+ 1, they should be checked out and set to
zeros and ones, respectively.

5 IMPLEMENTATION AND BENCHMARK RESULTS

The publicly available implementation library of SIKE called
SIDH v3.2 is widely considered as the state-of-the-art soft-
ware library, which has been substantially supplemented
and improved since the SIKE protocol was submitted to
the NIST. The library includes four folders: KAT (known
answer test files for the KEM), src (source files including C,
assembly, and header files), tests (test files), and Visual Studio
(Visual Studio 2015 files for compilation in Windows). In
the src folder, the generic implementations (in portable C
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Algorithm 8: From unconventional radix back to
normal (U2N).

Input: An operand A =
n−1∑
j=0

aj ·Rj , the radix R, and the

modulus p = f ′Rn − 1.
1: C = an−1
2: for j ← n− 2 to 0 do
3: C ← C ·R+ aj
4: end for
5: If C = p, set C to 0.
6: If C = p+ 1, set C to 1.

Output: The result C ∈ Fp = A mod p.

code) and optimized x64 implementations (in x64 assembly
code for x64 platforms) for p434, p503, p610, and p751 are
respectively provided and the optimized ARMv8 imple-
mentations (in ARMv8 assembly code for 64-bit ARMv8
platforms) for p503 and p751 are also covered. The dif-
ference between the three kinds of implementation lies in
implementing the field arithmetic. The x64 and ARMv8
implementations both are to exploit assembly optimizations
in different platforms based on the generic implementation.

In this work, we try to propose new field arithmetic
algorithms to replace the old ones, aiming to speed up the
whole SIKE protocol. We rely on the generic implementation
software library (with no compression) and integrate the
proposed field arithmetic functions into it to show a more
complete picture of the SIKE protocol acceleration brought
by the new techniques. The optimization for the x64 or ARM
platform is not considered in this paper.

5.1 Parameters Breakdown for the SIKE Protocol

The four groups of primes for SIKE all have the form of
2eA3eB−1 with coprime factors eA and eB . According to our
aforementioned method, they can be easily broken down
with the parameters listed in Table 2. The bit widths of the
obtained unconventional radices are appended in the fourth
row. The digits u required in [17] are added in the fifth
row. It can be seen that when the unconventional radix R
is larger than 264, the polynomial order n is usually smaller
than u. For example, for SIKEp434, n = 6 but u = 7; for
SIKEp610, n = 6 but u = 10. Though the word length of
a coefficient increases to 2, the order is reduced to some
degree. However, those cases for complexity estimation are
uncertain. So we just take a certain case (n = u) to show the
trend in the above sections. The parameters in the table can
also be changed by using different values of f ′.

The parameters of SIKEp751 are selected as an example
to show the efficiency of the proposed field arithmetic in this
paper. The overall results of the SIKEp751 and SIKEp503
will also be added as supplemental experiments. We coded
our design in C language and benchmarked it on an Intel
Xeon E5-2690 processor with a 64-bit operating system. The
generic implementation in C code of the SIKE library [17]
was also run on this processor for a fair comparison. The
TurboBoost was disabled during all the tests. Our code is

available at: https://github.com/FastSIKE2019/generic1.

5.2 Analysis of Finite Field Arithmetic Computing

As introduced in Section 2, the basic arithmetic operations
are the cornerstones of the SIKE protocol. We have counted
those operations and calculated the proportions of clock
cycles of them in the SIKEp751 for our and the previous im-
plementations, respectively. Some of them are selected and
listed in Table 3. The running time will be reported in the
following. It should be noted that the numbers of operations
are close to but not the same in many cases between the two
implementations because of the adopted different methods.
It can be seen that the modular reduction and the integer
multiplication operations have a dominant position in both
libraries. Optimizing the two operations is very effective
to accelerate the whole protocol. Note that the modular
reduction and the integer multiplication are not merely used
in the modular multiplications as analyzed in the previous
section. The modular addition and subtraction operations
over Fp take up about half of the rest of the proportion. The
other operations, like the hash function and the modular
negation, are trivial for the whole system. Meanwhile, we
can find that the proportion of modular reduction is reduced
in our work while that of the multiplication goes up. This
is because we have achieved more simplification on the
former than the latter. More results will be provided in the
following to explain this phenomenon.

Table 4 shows the running time (average clock cycles)
of operations over the selected base field and its quadratic
field, where the acceleration factors (AF) are also given in
the right-most column. It can be seen that all of these basic
arithmetic operations of our work achieve faster speed than
those in [17] over either field.

5.2.1 Impact of the Optimized Modular Multiplication Over
Fp
The multiplication over Fp is composed of modular re-
duction and integer multiplication. For the reduction part,
based on our analysis in Section 3, by using the proposed
reduction algorithm, about 77% reduction in multiplications
would be obtained. However, we cannot take full advan-
tage of every bit. The computations in software usually
are predefined as instructions with fixed word sizes. Take
the proposed modular reduction algorithm for an exam-
ple, compared with the Montgomery one proposed in [17],
benchmarked on a 64-bit operating system for the SIKEp751.
We will analyze the numbers of required multiplication
instructions of them, respectively. In [17], the MUL function
(a digital multiplication) is called 12 × 7 = 84 times and
thus 84 × 4 = 336 multiplication instructions are needed.
In our algorithm, the IBR function is called 12 + 1 = 13
times. The maximum data width of the input c of the IBR
is 132 (2 × 63 + 6) and the sizes of the two multiplications
are 72 × 72 and 32 × 32, respectively. For the first multi-
plication, we divide the inputs into three digits and use 6

1. We can currently only provide the .o files of the field arithmetic,
which is sufficient to reproduce the execution time of our implemen-
tation when using the same target platform. We will upload the rest c
files as soon as possible.

https://github.com/FastSIKE2019/generic
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TABLE 2
Breaking Down the Parameters of the Primes Provided in [17] with Our Method

Prime SIKEp434 SIKEp503 SIKEp610 SIKEp751
Security Level 1 Level 2 Level 3 Level 5

Form 22163137 − 1 22503159 − 1 23053192 − 1 23723239 − 1
R 236323 (73 bits) 225316 (51 bits) 251332 (102 bits) 231320 (63 bits)
n/u 6/7 10/8 6/10 12/12
f ′ 1

3
(α = 0, β = 1) 1

3
(α = 0, β = 1) 1

2
(α = 1, β = 0) 1

3
(α = 0, β = 1)

TABLE 3
The Statistics of Selected Basic Arithmetic Operations in the

SIKEp751 Library

Operation Number of Operation Proportion in Protocol
[17] Our work [17] Our work

Reduc. 234,209 234,175 32.23% 20.18%
Mul. 307,888 307,986 61.05% 76.88%
Add. 87,814 168,310 1.77% 1.01%
Sub. 130,638 130,638 1.68% 0.76%

multiplication instructions to implement it. Thus, 7 multipli-
cation instructions are adopted for one IBR, and therefore,
13×7 = 91 multiplication instructions are consumed. About
73% of the multiplication instructions are reduced by our
method. It should be noted that the other instructions (like
the addition, subtraction, or shift) may not have such much
reduction. In brief, the proposed reduction algorithm saves
more than 60% cycles (i.e., about 2.61x speedup shown in
Table 4) compared to the one used in [17].

For the integer multiplication part, the proposed algo-
rithm has two aspects of optimization to reduce the com-
putation complexity, compared to the multi-precision comb
multiplication algorithm used in [17]. On one hand, there
are no carries to be propagated in the adjacent orders; on the
other hand, the coefficient multiplication terms aibj + ajbi
(i 6= j) can be easily simplified. For the SIKEp751, the
bit width of a coefficient is no larger than 63, we can
simply use the one-level Karatsuba-like method to reduce
the complexity. With this help, the number of calling the
64 × 64 multiplication function is reduced from 144 to
78. According to Eq. (16), more additions are required to
merge the higher-order terms with the corresponding lower-
order terms. Meanwhile, the higher-order terms need to be
multiplied with a small constant. For the SIKEp751, this
constant is equal to 3. The constant multiplication can be
replaced by a 1-bit left-shift and an addition. Hence, the
speedup of the multiplication is cut down, only a factor of
1.32.

As shown in Table 4, combining the modular reduction
with integer multiplication, the proposed modular multipli-
cation over Fp is 1.65x superior to the previous implemen-
tation.

The modular squaring is further optimized based on the
modular multiplication with a speedup of 2.26x. Since the
modular inversion is made up of the modular multiplica-
tions and squaring, this operation also has a factor of 2.14x
speedup.

5.2.2 Impact of the Optimized Modular Addition and Sub-
traction Over Fp
From Table 4, we can see that the AFs of modular addition
and subtraction both are drastically larger than the ratios es-

timated in Section 4. It means that the generic version in [17]
consumes many more extra operations to handle the carry or
borrow. Those may be greatly simplified implemented on an
x64 or ARM platform in assembly code. Nevertheless, it can
still believe that the proposed modular addition/subtraction
can outperform the previous one when running on the
same platform. Additionally, this attenuation in acceleration
here would not affect the whole SIKE implementation so
significantly as the running time of modular addition is not
the bottleneck according to the statistics in Table 3.

5.2.3 Impact of the Optimized Operations Over Fp2
The operations over Fp2 are mainly constituted by the
corresponding operations over Fp as shown in Table 1.
It can be observed that except the modular squaring, the
other operations show a similar trend of a speedup as
the corresponding operations over Fp. That is because the
modular squaring over Fp2 is mainly decomposed into not
modular squaring but multiplication operations over Fp.

5.3 Performance comparison of the SIKE Protocol
The overall comparison results of the three phases (KeyGen,
Encaps, Decaps) for SIKEp751 are shown in Table 5. In all
cases, we can achieve about 1.65x speedup. The total design
is also about 1.65x faster than the method implemented in
the SIDH v3.2 library. Note that these AF values are very
close to the AF values of modular multiplication over Fp
(1.65x). This result, in return, demonstrates the dominant
position of the modular multiplication. We have also imple-
mented the software for SIKEp503 and tested the running
time as shown in Table 6. It can be seen that our implementa-
tion obtains an about 1.61x speedup over the previous work,
which further demonstrates the effectiveness of our method.

6 CONCLUSIONS

In this paper, we have presented a faster software imple-
mentation of the SIKE protocol based on our proposed data
representation. This new data representation is a general
form for the supersingular isogeny-based elliptic curves,
which can facilitate faster finite field arithmetic computing
than prior arts. With the help of this representation, we have
derived a low-complexity modular reduction algorithm for
the prime of p = 2eA3eB − 1, which is usually considered
in the SIKE implementation. Besides, the other basic field
arithmetic algorithms are deduced and discussed. We have
applied these proposed algorithms to the SIKE protocol
and successfully validated all of them. When benchmarked
on an Intel Xeon E5-2690 processor and compared with
the state-of-the-art software implementations, the new SIKE
implementation achieves 1.65x and 1.61x speedup for the
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TABLE 4
Timing Performance of Selected Base Field and Quadratic Field Operations of

SIKEp751. Timings Are Reported in Clock Cycles

Field Operation [17] Our work AF

Fp

Mul.
(Reduc. & Int.Mul.)

4808
(1981 & 2827)

2906
(760 & 2146)

1.65
(2.61 & 1.32)

Sqr. 4997 2207 2.26
Add. 286 52 5.50
Sub. 191 48 3.98
Inv. 4,490,413 2,097,965 2.14

Fp2

Mul. 13141 8288 1.59
Sqr. 10047 5933 1.69

Add. 572 103 5.55
Sub. 389 91 4.27

TABLE 5
Overall Timing Comparisons of the SIKEp751

Software Implementations. Timings Are Reported in
Clock Cycles

Phase [17] Our work AF
KeyGen 330,394,357 200,167,938 1.651
Encaps 535,098,458 324,778,282 1.648
Decaps 575,180,241 348,305,883 1.651

Total 1,440,673,056 873,252,103 1.650

TABLE 6
Overall Timing Comparisons of the SIKEp503

Software Implementations. Timings Are Reported
in Clock Cycles

Phase [17] Our work AF
KeyGen 99,448,697 61,837,086 1.608
Encaps 163,759,088 101,847,565 1.608
Decaps 174,201,386 108,200,191 1.610

Total 437,409,171 271,884,842 1.609

SIKEp751 and the SIKEp503, respectively. It should be noted
that higher acceleration factors are obtained for most of the
proposed field operations.

Though these improvements are significant, it still has
a big gap between the SIKE protocol and some other pop-
ular candidates. As analyzed above, most of the proposed
algorithms for the SIKE are very suitable for high parallel
design, such as the integer multiplication, modular addi-
tion, modular subtraction, and modular negation, thanks to
the independent coefficients computing. This is completely
different from conventional methods. When fully adopting
the parallelism strategy, the running time of the new im-
plementation is very likely to be accelerated in multiples,
perhaps with a factor of n. It could be very interesting and
meaningful to do such exploration in software or hardware.
Our future work will mainly focus on this point to further
bridge the gap.
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