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Abstract
We establish the optimal security threshold for the Bitcoin protocol in terms of adversarial hashing

power, honest hashing power, and network delays. Specifically, we prove that the protocol is secure if

ra <
1

∆ + 1/rh
,

where rh is the expected number of honest proof-of-work successes in unit time, ra is the expected number
of adversarial successes, and no message is delayed by more than ∆ time units. In this regime, the
protocol guarantees consistency and liveness with exponentially decaying failure probabilities. Outside
this region, the simple private chain attack prevents consensus.

Our analysis immediately applies to any Nakamoto-style proof-of-work protocol; we also present the
adaptations needed to apply it in the proof-of-stake setting, establishing a similar threshold there.

1 Introduction

The Bitcoin protocol, proposed in 2008 by Satoshi Nakamoto [13], has received extraordinary attention from
both the applied and theoretical communities. The protocol’s survival in the permissionless setting—where
parties may freely join and depart—and the promise of digital currencies and contracts that can thrive in
such a hostile environment have led to widespread experimentation and numerous implementation projects.
Likewise, the algorithmic core has proven to be a successful framework for designing and analyzing consensus
algorithms.

Despite over a decade of study, the fundamental guarantees of the protocol are not well understood.
Roughly, the essential ledger properties—consistency and liveness—are determined by three interacting
features: the hashing power of the adversary, the hashing power of the honest parties, and networking delays.
Ideally, one would like to establish the precise relationship between these parameters, exactly characterizing
the parametrizations that guarantee the Bitcoin ledger properties.

We establish this relationship, proving that Bitcoin is secure if

ra <
1

∆0 + 1/rh
, (1)

where ra is the expected number of adversarial proof-of-work successes in unit time, rh is the expected number
of honest successes, and no message is delayed by more than ∆0 time units. Here, adversarial and honest
proof-of-work successes are modeled as independent Poisson processes, with parameters rh and ra. In this
region, consistency accrues exponentially quickly in the sense that blocks appearing at depth k in a longest
chain can only be later abandoned with probability exp(−Ω(k)). Additionally, liveness in this region follows
from a simple chain growth argument that provides similar exponential guarantees. This result is tight: if ra
exceeds this threshold, the simple private-chain attack prevents consensus. The threshold, as a function of rh,
is indicated by the solid black curve in Figure 1.
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Our results in more detail. We work with the standard discrete approximation to the Poisson distribution
to simplify bookkeeping. Specifically, we treat time as divided into small slots of length s and let pa = s · ra
denote the probability of an adversarial hashing success in a single slot; ph = s · rh is likewise defined for
the honest parties. This distribution limits to the Poisson distribution as s → 0; though classical results
provide explicit upper bounds for the distance between these distributions (e.g., [2]) we do not need such
high precision estimates because we model a system with finite lifetime. We remark that if slots are short
enough, there is no loss in assuming that no more than a single success appears per slot. This is discussed
formally in Remark 1 below.

We reflect network delays with a single parameter ∆ = d∆0/se: while any message sent by honest parties
is always delivered, the adversary may delay its arrival by up to ∆ slots. Delivery is assumed to take place
“at the beginning” of the slot, which is to say that the minimum value ∆ = 1 corresponds to the case where
messages transmitted in slot t are available for other parties’ full consideration in slot t+ 1. In this setting,
we prove that Bitcoin is secure if

pa <
1

∆− 1 + 1/ph
. (2)

As mentioned above, if pa exceeds the bound there is an attack that prevents any Bitcoin block from settling
and succeeds with probability tending to 1. This natural attack goes back to the original Bitcoin whitepaper:
it calls for the adversary to mine on a private chain with the intention to double spend if this private chain
catches up to honestly held chains. The attack naturally generalizes to the setting with delays by calling
for maximum possible delay of all honest messages. A notable, and perhaps unexpected, conclusion of our
work is that the viability of this straightforward attack precisely captures the security regime of Bitcoin;
in particular, when the adversarial hashing power exceeds the optimal security threshold this very attack
prevents the protocol from reaching consensus and thus represents the best one can do to subvert consistency.

Finally, we point out that although we mention Bitcoin for concreteness, our results are obtained in a
model sufficiently general to immediately cover any Nakamoto-style proof-of-work protocol. Additionally, an
adaptation of our techniques can be used to establish similar results also for Nakamoto-style proof-of-stake
protocols; see Section 5 for a detailed discussion of this case.

Related work. Analyzing the security of Bitcoin has a long history. The first rigorous results, due to
Garay et al. [8], were obtained in the lock-step synchronous model. Pass et al. [14] gave a new treatment that
established results in the ∆-synchronous model, subsequently adopted by Garay et al. [7]. Kiffer et al. [12]
tightened the consistency bound of [14] by associating security with the behavior of a Markov chain. Ren [15]
simplified and condensed these results, adopting the continuous-time Poisson model.

This line of research culminated in identifying the “∆-isolated bound,” establishing security if

pa < ph(1− ph)2∆−1 .

As lims→0(1− srh)2∆0/s−1 = exp(−2rh∆0), this corresponds to the Poisson model bound

ra < rh exp(−2rh∆0) .

The ∆-isolated bound is compared side-by-side with the optimal bound in Figure 1. Roughly, the ∆-isolated
bound can only leverage honest hashing successes when surrounded by a ∆ region with no competing honest
successes. While the slopes of the two bounds coincide at zero, the “∆-isolation” criterion penalizes larger
values of rh. It is natural to parameterize blockchain algorithms in the “sweet spot” where rh + ra ≈ 1/∆0,
as this intuitively maximizes block throughput; the graph of Figure 1 illustrates this region.

The relevance of ∆-isolated (honest) hashing victories to longest chain rule analysis was recognized at least
as early as [14], and also plays a prominent role in our analysis: they arise in the treatment in the “critical
zone,” where the adversary has roughly “caught up with” the honest players. (A more precise discussion
appears below.)

Finally, an independent preprint by Dembo et al. [5] appeared online a few days prior to this paper and
seems to investigate the same questions and obtain similar results. We defer a detailed comparison of the
results and techniques to a future update.
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Figure 1: The region of pairs (ra, rh) for which Bitcoin is secure with ∆0 = 10. The optimal bound established
in this paper ϑ0 = 1/(∆0 + 1/rh) is shown in solid black; the region beneath this line—filled in light blue—is
the region of pairs (ra, rh) for which we establish security. The best prior bound ϑiso0 = rh exp(−2∆0rh) is
shown in dashed black; its corresponding region of security is shown with blue hatching.

A technical survey of the proof. To motivate the optimal threshold itself, consider the baseline blockchain
height achieved by the honest parties if the adversary contributes no blocks and subjects every honest message
to a maximum ∆ delay. With honest hashing victories given by a sequence of i.i.d. indicator random variables
corresponding to the time slots w1, w2, . . ., the height hi achieved at slot i satisfies

hi =

{
hi−∆ + 1, if wi = 1, and

hi−1, if wi = 0.
(3)

It is not difficult to show that the expectation E [hn] = n/α+O(1) where α = (∆− 1) + 1/ph (as above,
ph is the probability of an honest hashing success). It is then clear that if pa exceeds 1/α (exactly the optimal
threshold discussed earlier) an adversary can dominate Bitcoin with the private-chain attack: in particular,
the adversary may pick any undesirable block in the system, begin building a private chain prior to that
block, and eventually overtake the honest chains which grow at a rate of 1/α.

As for demonstrating security below this threshold, we develop a set of new techniques for reasoning
about the longest chain rule in the ∆-synchronous setting. We begin by borrowing the notion of a “fork,” the
bookkeeping tool originating in [11] and adapted to ∆-delays in [4], and the technique of “relative margin”
from [1]. In the context of a history of hashing successes—which indicates the prior slots in time during
which honest and adversarial hashing victories occurred—the notion of relative margin provides a precise
metric for “how far ahead” of the honest chains an adversarial chain could possibly be. (In fact, one has
to specify a particular point in time before which the adversary’s chain must diverge to make sense of this
notion, but we ignore such details in this summary.) Previous work analyzed the behavior of relative margin
in the synchronous setting, first showing that it satisfies a relatively simple recurrence relation, and then
analyzing the long term behavior of the process that emerges by applying this to i.i.d. random variables, as
above. Existing analyses break down entirely in the ∆-synchronous case—to sidestep this difficulty, one can
use a pessimistic “∆-synchronous to synchronous reduction mapping,” [4] but this route leads to precisely
the ∆-isolated bound described above.

Our principal technical contribution is an analysis of relative margin in the ∆-synchronous setting. We
mention a few of the technical curiosities that arise; the full details are in Section 3. Intuitively, one would like
to show that each adversarial success increases relative margin by one, and that each time an honest success
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gives rise to a height increase, according to the rule (3), the relative margin should decrease. Unfortunately,
this intuition fails: there are circumstances—occurring when the “race is close” and relative margin is close
to zero—where the appearance of an honest victory actually works in the adversary’s favor. However, we
show that this favorable intuition can indeed be established when relative margin is bounded away from zero.
Our results rely heavily on a “compression transformation” that places forks in a semi-normal form; this
guarantees that among all honest blocks of a particular depth, there is at least one that is “tight,” in the
sense that it is placed at the minimum depth history would allow. In the critical zone around zero, we show
looser bounds that rely on ∆-isolated successes.

With these recurrence relations in place, we analyze the resulting stochastic process obtained by the
appropriate i.i.d. distribution of hashing successes in Section 4. This yields a random walk with three regions,
which we analyze separately: when relative margin is bounded away from zero, it is stochastically dominated
by a negatively biased random walk; the bias is determined by the gap between pa and the optimal threshold.
When in a particular region near zero, it follows a positively biased random walk, but one which descends
with constant probability. Fortunately, the critical zone around zero has only constant thickness, so the
global random walk still has the desired features: in particular, after k steps the probability it will ever again
rise to zero (or any other constant value) is exp(−Ω(k)).

Remarks and future directions. We work with a very strong adversary, one who is apprised of all future
adversarial and honest mining successes and their exact times. It is an interesting fact that the security of
the protocol is independent of such adversarial future knowledge. In particular, such an adversary never has
to contend with regret for building on the wrong chain. On the other hand, we analyze the “static setting”:
pa and ph are constant. It is reasonable to expect that the analysis can be extended to a setting where these
are variable (but always satisfy, say pa < (1− δ)ph); but we do not explore these issues. Our results focus on
the “cryptographic” setting where mining power is split between honest parties following the protocol and
adversarial parties deviating arbitrarily; hence we cannot capture rational attacks by honest parties, such as
“selfish mining” [6]—of course the effect of such attacks can be reflected in our model if the selfish miners are
treated as adversarial. Finally, we have made no particular attempt to control the constants; a more precise
understanding of the critical region could presumably result in constants that directly inform practice.

2 Preliminaries

Throughout the paper, let N = {0, 1, 2, . . .} denote the set of natural numbers (including zero). For n ∈ N,
[n] denotes the set {1, . . . , n} (hence [0] = ∅). For a word w = w1 . . . wn ∈ Σn we denote by wi:j its subword
wiwi+1 . . . wj , and by #a(w) we denote the number of occurrences of the symbol a ∈ Σ in w. We extend this

notation also to multiple symbols, for example #a,b(w) , #a(w) + #b(w). We denote by ‖ the concatenation
of languages.

2.1 Our Model and the Bitcoin Protocol

We begin with an informal, abstract description of the Bitcoin protocol that suffices to describe our model.
We delay formal definitions of the consistency and liveness events to later in this section.

The Bitcoin protocol is carried out by a family of parties of two types: honest parties follow the letter of law,
carrying out the specified protocol, while adversarial parties may diverge arbitrarily from the specifications.
All parties actively engage in searching for “proofs-of-work,” which afford them the right to contribute to the
ledger. For the purposes of analysis we treat time as divided into small slots and use a characteristic string
to indicate whether a proof-of-work was discovered in a particular time slot, and whether the successful party
was honest or adversarial. In particular, the characteristic string w = w1w2 . . . ∈ {0, h, a}∗ associated with an
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execution of the protocol is defined so that

ws =


0 if no proof-of-work was discovered in slot s,

h if an honest party discovered a proof-of-work in slot s, and

a if an adversarial party discovered a proof-of-work in slot s.

It is occasionally convenient to treat infinite characteristic strings in {0, h, a}N for which we use the same
conventions. We study a probability distribution B(pa, ph) of characteristic strings that reflects different rates
of adversarial and honest success.

Definition 1. Let pa, ph > 0 satisfy pa + ph ≤ 1. Let B(pa, ph) denote the distribution on characteristic
strings w1w2 . . . ∈ {a, h, 0}N given by independent selection of each wi so that

wi =


a with probability pa,

h with probability ph,

0 with probability 1− pa − ph.

Remark 1 (The discrete approximation to the Poisson process). The most natural mathematical model for
the distribution of proof-of-work successes is a Poisson process, which reflects both the memoryless aspect
of the proof-of-work challenge and the fact that it takes place in (effectively) continuous time. We work in
the standard discrete approximation to the Poisson process since it simplifies the accounting in Section 3;
however, the proof could as well have been presented in the Poisson setting. To clarify the relationship
between these models, consider the Poisson process with parameter λ occurring on [0, L) ⊂ R. Dividing the
interval into L/s subintervals of length s, let Xt be the indicator random variable for the event that at least
one success appears in the tth subinterval. Then E [Xt] = 1− exp(−λs) ≈ λs and the probability that two
Poisson successes appear in any of the subintervals is L/s · [1− exp(−λs)(1 + λs)] = O(Lλ2s) by the union
bound, which limits to zero linearly in s. It follows that, except with probability O(Lλ2s), the results of
the independent random variables Xt are sufficient to determine the position of every success in [0, L) with
accuracy ±s/2 and to determine their relative order exactly. Selecting a sufficiently small s then suffices
to bound the probability of all the events of interest for our analysis. This also explains the assumption
that no more than one proof-of-work success can arise in a particular time slot—this does not change the
limiting model. A final remark: scaling the discrete ∆-synchronous models of Pass et al. [14] and Garay et
al. [7]—which do reflect multiple hashing successes—likewise leads to this very same Poisson model (for the
same reason). Ren [15] adopts precisely the Poisson model.

The Bitcoin protocol calls for parties to exchange blockchains, each of which is an ordered sequence of
blocks beginning with a distinguished “genesis block,” known to all parties. Each proof-of-work success
confers on that party the right to add exactly one block to an existing blockchain. (In fact, the party must
identify the previous chain on which she wishes to build ahead of time, but this will not affect our analysis.)
Honest parties follow the longest-chain rule which dictates that they always choose to add to the longest
blockchain they have yet observed and broadcast the result to all other parties. The basic dynamics of the
system, with a particular characteristic string w and an adversary, can be described as follows.

We shall let Ct denote the collection of all blockchains created by time t and let H(Ct) denote the subset
of all chains in Ct whose last block was created by an honest party. Set C0 = {G}, where G denotes the
unique chain consisting solely of the genesis block. The genesis block is “honest”; thus H(C0) = C0. It is
convenient to adopt the convention that C−t = H(C−t) = {G} for any negative integer −t < 0. Then the
protocol execution proceeds as follows. For each timestep t = 1, . . .:

• If wt = 0, define Ct = Ct−1 and H(Ct) = H(Ct−1).

• If wt = a, the adversary may select a single blockchain C from Ct−1 and add a block to create a new
chain C ′. Then Ct = Ct−1 ∪ {C ′} and H(Ct) = H(Ct−1).
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• If wt = h, the adversary may select any collection of chains V for which H(Ct−∆) ⊆ V ⊆ Ct−1. This is the
“view” of the honest player, who applies the longest chain rule to V , selects the longest chain L ∈ V where
ties are broken by the adversary, and adds a new block to create a new chain L′. Then Ct = Ct−1 ∪ {L′}
and H(Ct) = H(Ct−1) ∪ {L′}.

In each time step t we also maintain the set of ∆-dominant chains Dt ⊆ Ct, determined entirely by Ct and
H(Ct−∆): namely, Dt is the set of all chains in Ct that are at least as long as the longest chain in H(Ct−∆).
The intuition behind the definition of ∆-dominant chains is that, in a time slot t, it is in principle possible
to manipulate an honest party into adopting any ∆-dominant chain, as the adversary is only obligated to
deliver those chains in H(Ct−∆) and the chains in Dt are at least as long as those in H(Ct−∆).

This description implicitly places several constraints on the adversary; most notably, the only means of
producing new chains is to append a block (associated with a proof-of-work success) to an existing chain. In
practice, these constraints are guaranteed with cryptographic hash functions. Note that the ∆-synchrony
assumption is reflected in the rule for the case wt = h: the adversary is obligated to deliver all chains produced
by honest players that are ∆ slots old. Finally, we permit the adversary to have full view of the characteristic
string during this process. Of course, in practice a Bitcoin adversary must make decisions “on line.”

While expressed as a game between the adversary and the honest players, considering that the adversary
selects both the view V of each honest player and is empowered to break ties, the resulting sequence of chains
is determined entirely by the adversary and the characteristic string.

In this context, we are interested in preserving two properties, consistency and liveness, which can be
expressed in terms of the variables introduced above. In more detail:

• Consistency; with parameter k. For any t1 ≤ t2, any C1 ∈ Dt1 and C2 ∈ Dt2 satisfy Cdk1 � C2, where
� indicates the prefix relation and Cdk1 is C1 without the blocks originating from the slots {t1−k+1, . . . , t1}.

• Liveness; with parameter u. There is a parameter u such that for any two slots t1 < t2 with t1 +u ≤ t2,
and any chain C ∈ Dt2 , there is a time t′ ∈ {t1, . . . , t1 + u} and a chain C ′ ∈ H(Ct′) such that C ′ � C.

Intuitively, consistency mandates that any blockchain possibly held by an honest party at time t2 extends
a blockchain that was held by an honest party at time t1, except perhaps for a k-slot suffix which could
have been abandoned. Liveness, on the other hand, mandates that the blockchain held by an honest party
incorporates at least one fresh honest block over a period of u slots.

We next proceed to introduce the formal notion of a fork for a characteristic string, which is one of the
key tools for our analysis.

2.2 Characteristic Strings and Forks

We let Σ = {0, h, a} and consider characteristic strings w = w1 . . . wL drawn from the set ΣL. Recall that
intuitively, the i-th symbol wi of w describes the outcome of the i-th slot in an L-slot execution of the
Bitcoin protocol: the values 0, h, a indicate no mining success, an honest success, and an adversarial success,
respectively.

We next introduce the concept of a fork which will be the core analytical tool for establishing the security
properties of the protocol. In particular a ∆-fork abstracts a protocol execution with a simple but sufficiently
descriptive discrete structure.

Definition 2 (PoW ∆-fork). Let ∆ be a positive integer and L ∈ N. A PoW ∆-fork for the string
w = w1 . . . wL ∈ ΣL is a directed, rooted tree F = (V,E) with a labeling function

lb : V → {0} ∪ {i ∈ [L] : wi 6= 0}

satisfying the axioms (A1)–(A4) below. Edges are directed “away from” the root so that there is a unique
directed path from the root to any vertex. The value lb(v) is referred to as the label of v. A non-root vertex
v is called honest when wlb(v) = h; otherwise it is adversarial.

6



(A1) The root r ∈ V has label lb(r) = 0 and is considered honest.

(A2) The sequence of labels lb(·) along any directed path is increasing.

(A3) If wi = h then there is exactly one vertex with the label i, if wi = a then there is at most one vertex
with the label i.

(A4) For any pair of honest vertices v, w for which lb(v) + ∆ ≤ lb(w), len(v) < len(w), where len(·) denotes
the depth of the vertex.

It is easy to see the correspondence between the above axioms and the constraints imposed in the protocol
execution. In particular, (A1) corresponds to the trusted nature of the genesis block; (A2) reflects that the
blocks’ ordering in a chain must be consistent with slot order; (A3) reflects that honest players produce
exactly one block per PoW success, while the adversary might forgo a block-creation opportunity; finally
(A4) reflects the fact that given sufficient time, as needed for block propagation in the network, an honest
party will take into account the blocks produced by previously activated honest parties.

Definition 3 (Fork notation). We write F `∆ w to indicate that F is a ∆-fork for the string w. If F ′ `∆ w′

for a prefix w′ of w, we say that F ′ is a subfork of F , if F contains F ′ as a consistently-labeled subgraph. A
fork F `∆ w is closed if all its leaves are honest. By convention the trivial fork, consisting solely of a root
vertex, is closed. The closure of a fork F , denoted F `∆ w, is the maximal closed subfork of F .

Definition 4 (Tines). A path in a fork F originating at the root is called a tine (note that tines do not
necessarily terminate at a leaf). As there is a one-to-one correspondence between directed paths from the
root and vertices of a fork, we routinely overload notation so that it applies to both tines and vertices.

Specifically, we let len(T ) denote the length of the tine T , equal to the number of edges on the path (see
axiom (A4)). In the unusual cases where we wish to emphasize the fork from which v is drawn, we write
lenF (v). We further overload this notation by letting len(F ) denote the length of the longest tine in a fork F .

Likewise, we let lb(·) apply to tines by defining lb(T ) , lb(v), where v is the terminal vertex on the tine T .
For a vertex v in a fork F , we denote by F (v) the tine in F terminating in v. We say that a tine is honest if
the last vertex of the tine is honest, otherwise it is adversarial.

Definition 5 (Branches). For an integer ` ≥ 1 and for two tines T, T ′ of a fork F , we write T ∼` T ′ if the
two tines share a vertex with a label greater or equal to `. The set of all tines T ′ ∈ F such that T ∼` T ′ is
called the branch of T in F and denoted BF (T ).

Definition 6 (Fork trimming; dominance). For a string w = w1 . . . wn and a positive integer k, we
let wdk = w1 . . . wn−k+1 denote the string obtained by removing the last k − 1 symbols. For a fork
F `∆ w1 . . . wn we let F dk `∆ wdk denote the fork obtained by retaining only those vertices labeled from the
set {0, . . . , n− k + 1}. In the singular case k > n we postulate wdk to be the empty string and F dk to be the
trivial fork containing only the root. For convenience, we sometimes prefer to emphasize the remaining length
of the string (resp. fork), and denote by wme and Fme the m-symbol prefix of w and the corresponding fork,

formally wme , wdn−m+1 and Fme , F dn−m+1.
For an integer δ > 0, we say that a tine T in F is δ-dominant if

len(T ) ≥ len(Fdδ)

and simply call it dominant in the case δ = 1 (i.e., when len(T ) ≥ len(F )).

Observe that honest tines appearing in F d∆ are those that are necessarily visible to honest players at
a timeslot just beyond the last one described by the characteristic string. Correspondingly, in the special
case δ = ∆, the notion of a ∆-dominant tine corresponds to ∆-dominant chains as defined in the experiment
described in Section 2.1. More broadly, here and below we will always only be interested in two possible
values of the parameter δ: either δ = ∆ or δ = 1; and whenever we suppress δ in the notation, it indicates
the case δ = 1.
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2.3 Advantage and Margin

Definition 7 (Advantage, margin). For a ∆-fork F `∆ w and δ > 0, we define the δ-advantage of a tine
T ∈ F as

αδF (T ) = len(T )− len(Fdδ) .

Observe that αδF (T ) ≥ 0 if and only if T is δ-dominant in F . We often suppress the subscript if F is clear
from the context. For ` ≥ 1, we define the δ-margin of a fork F as

βδ` (F ) = max
Th 6∼`Ta

Th is δ-dominant

αδF (Ta) ,

this maximum extended over all pairs of tines (Th, Ta) where Th is δ-dominant and Th 6∼` Ta. We call the
pair (Th, Ta) the δ-witness tines for F if the above conditions are satisfied; i.e., Th is δ-dominant, Th 6∼` Ta,
and βδ` (F ) = αδF (Ta). Note that there might exist multiple such pairs in F , but under the condition ` ≥ 1
there will always exist at least one such pair, as the trivial tine T0 containing only the root vertex satisfies
T0 6∼` T for any T and ` ≥ 1. For this reason, we will always consider βδ` only for ` ≥ 1.

We overload the notation and define the δ-margin of w as

βδ` (w) = max
F`∆w

βδ` (F ) .

We call a fork F `∆ w a δ-witness fork for w if βδ` (w) = βδ` (F ), again multiple δ-witness forks may exist for
a single string w.

We often write αF and β` as shorthands for α1
F and β1

` , respectively; for brevity we also refer to 1-witness
tines and 1-witness forks as witness tines and witness forks, respectively.

Remark 2. The bulk of the analysis focuses on the quantity β`(w). This quantity, without the special
considerations on tine dominance, appears to be somewhat more tractable than β∆

` (w). However, the
direct relationship between settlement failures and margin is most easily expressed using β∆

` (w). The two
notions have a simple relationship which justifies the choice to study β`(): if w, x ∈ Σ∗ and |x| ≥ ∆, then
β∆
` (wx) ≤ β`(wy), where y ∈ Σ∗ is the string obtained by replacing every h in x with the symbol a. (See

Lemma 19.)

Remark 3. In the special case |w| < `, we can observe that any fork F `∆ w and any tines T, T ′ ∈ F satisfy
T 6∼` T ′ (in particular, T 6∼` T ). Hence, in this case the quantity βδ` (w) simplifies to

βδ` (w) = max
F`∆w

βδ` (F ) = max
F`∆w
T∈F

αδF (T ) = max
F`∆w
T∈F

lenF (T )− len(Fdδ)

and so in this case we always have βδ` (w) ≥ 0.

It is easy to see that if a fork F `∆ w has βδ` (F ) < 0 then all tines of length at least len(Fdδ) belong to
the same branch. This justifies the following definition.

Definition 8 (Main branch). Let w ∈ Σn, ` ≥ 1, and F `∆ w such that βδ` (F ) < 0. The unique branch of F
that contains all tines of length at least len(Fdδ) (and possibly other tines) is called the δ-main branch of F
and denoted Mδ(F ); we again omit δ in the notation to indicate that δ = 1.

2.4 Margin and Consistency

We now show how consistency can be established based on the margin quantity defined above.
Consider an execution of the Bitcoin protocol over a lifetime of L slots, let w = w1 . . . wL be the

corresponding characteristic string. Let F `∆ w be the fork consisting of vertices corresponding to all blocks
created during the execution, connected via the natural “child-block” relation and labeled by their creation
slot. For brevity, for each t ∈ [L] let Ft, wt be the shorthands for Fte, wte, respectively.
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Lemma 1. Consider the Bitcoin execution described above. If for every ` ∈ [L−k] and every t ∈ {`+k, . . . , L}
we have β∆

` (wt) < 0 then k-consistency was maintained during that execution.

Proof. Let 1 ≤ t1 ≤ t2 ≤ L be slots and let Ci ∈ Dti be the ∆-dominant chains from the definition of the
consistency property. If t1 ≤ k then there is nothing to prove, hence assume t1 > k and consider ` := t1 − k.

Fix any t ∈ {t1, . . . , L}. Since β∆
` (Ft) ≤ β∆

` (wt) is negative by assumption, there is a ∆-main branch
M∆(Ft) in Ft, and tines in this branch share a vertex in or after slot `, hence the corresponding blockchains
“agree” on their view of the content of the blockchain up to slot `. Moreover, any T 6∈ M∆(Ft) has α∆

Ft
(T ) < 0

and therefore len(T ) < len((Ft)d∆), hence T is not ∆-dominant in Ft. Therefore, for each fixed t ∈ {t1, . . . , L},
all ∆-dominant blockchains Dt in slot t agree up to slot `.

It remains to show that for t ∈ {t1, . . . , L− 1}, tines in M∆(Ft) share their prefix up to slot ` with tines
in M∆(Ft+1). If len((Ft)d∆) = len((Ft+1)d∆) then this is clear as M∆(Ft) ⊆ M∆(Ft+1) and as argued above,

all tines in M∆(Ft+1) agree up to `. On the other hand, if len((Ft)d∆) < len((Ft+1)d∆) then no extension of a

tine T ∈ Ft, T 6∈ M∆(Ft) can belong to M∆(Ft+1), as we had len(T ) < len((Ft)d∆), and T could be extended

by at most one vertex in Ft+1, hence the extended tine is still shorter than len((Ft+1)d∆). Therefore, by an
induction argument, all chains in Dt1 ∪ Dt2 agree on their prefix up to ` and so this is also true for C1 and
C2, establishing consistency.

3 The Margin Recurrence

Our goal in this section is to establish upper bounds on β`(w) for characteristic strings w ∈ Σ∗. Our bounds
are expressed inductively, having the form β`(wx) ≤ β`(w) + f(x) where w, x ∈ Σ∗ and f is an appropriate
function of the suffix x. Roughly, the bounds show that when β`(w) is “suitably large” or “suitably small,” it
satisfies the ideal recurrence: for w, x ∈ Σ∗ and |x| ≥ ∆− 1,

β`(wxh) ≤ β`(w) + #a(x)− 1 . (4)

Note that β`(·) increases by 1 for each ‘a’-symbol; and it decreases by 1—intuitively accounting for the last
‘h’-symbol which is at least ∆ slots ahead of any of the slots associated with w.

The region around zero is more problematic; in this case we only show that β` cannot move too quickly,
and that there are certain suffixes (like 0∆−1h) which indeed force β`(·) to decrease. Because this difficult
region will have only constant width, we will see that it does not adversely affect the final probabilistic results.

The step decomposition. The decomposition of w appearing in the ideal recurrence (4) above plays a
special role in the analysis. We lay down some notation to reflect this.

Definition 9 (The step decomposition). Let w = w1w2 . . . ∈ {a, h, 0}N. For such a string, we consider the
decomposition

w = σ1σ2 . . . where each σi ∈ ΣS , {a, h, 0}∆−1 ‖ {a, 0}∗ ‖ {h} .

We reserve the word symbol to refer to elements of Σ, and the word step to refer to elements of ΣS . We
write S(w) , σ1σ2 . . . to indicate the resulting sequence of elements of ΣS . Throughout, we let |γ| denote
the number of symbols in the step γ ∈ ΣS .

We remark that this decomposition is unique and has the following direct interpretation: (1) write
w = xhw′ where x is the shortest prefix of length at least ∆− 1 that is followed by the symbol h. (2) emit the
symbol σ = xh; (3) repeat the process on w′. The sequence of symbols produced by this process corresponds
to the σi above.

Organization. We start by introducing some key technical tools below in Section 3.1. As a warm-up, in
Section 3.2 we establish a variant of the ideal recurrence (4) in the considerably simpler setting “before the
slot `,” i.e., for w such that |w| < `. Then we turn to the more interesting case of general |w|, considering
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three separate regions: the “critical” region where β`(w) is close to zero (Section 3.3); and the “cold” resp.
“hot” regions where it is sufficiently far from zero on the negative, resp. positive side (Sections 3.4 and 3.5,
respectively).

3.1 Compressed Forks and the Restructuring Lemma

In our arguments we make use of special honest vertices called tight that are, informally speaking, at the
minimal depth that the preceding part of the fork allows without violating the axiom (A4). Here we define
these vertices formally and summarize several useful properties they have: in particular, in Lemma 4 we show
how a fork that has a tight vertex at each possible depth (we call such forks compressed) allows for a complex
restructuring operation that leads to a lower-bound on the margin of the underlying characteristic string.

Definition 10. Let F `∆ w ∈ Σn. An honest vertex v of F is called tight if len(v) = len(Flb(v)−∆e) + 1. The

fork F is said to be compressed if, for every depth 0 ≤ d ≤ len(F ), there is a tight honest vertex v of depth d.

Lemma 2. Let F `∆ w ∈ Σn. Let v be a tight vertex and let v′ be an honest vertex with lb(v) ≤ lb(v′); then
len(v) ≤ len(v′).

Proof of Lemma 2. As lb(v) ≤ lb(v′) and v is tight,

len(v) = len(Flb(v)−∆e) + 1 ≤ len(Flb(v′)−∆e) + 1 ≤ len(v′) .

In the proofs below, we often use the contrapositive of Lemma 2: if len(v′) < len(v) then lb(v′) < lb(v).

Lemma 3. Let w ∈ Σ∗, there exists a compressed witness fork F `∆ w for w.

Proof. Let F `∆ w be a witness fork for w. We describe a transformation, which we naturally call
“compression,” that converts F into a compressed fork F c `∆ w for which β`(F

c) = β`(F ). If F is compressed,
the transformation makes no change. Otherwise, the transformation is given as a sequence of “compression
steps,” each of which reduces the total depth of the fork and locally improves tightness violations.

In particular, if F is not compressed, there is a smallest depth d ≤ len(F ) for which there is no tight
honest vertex of depth d. Let F ′ denote the labeled rooted tree obtained from F by carrying out the following
alterations:

• If d = 1, for every vertex v of depth d = 1, replace any edge (v, u) by an edge (r, u) where r is the root.

• If d > 1, raise every vertex v of depth d one level in the tree by replacing the unique edge of the form
(u, v) with the edge (p, v), where p is the parent of u.

The labels of all vertices in F ′ remain the same as those of the corresponding vertices in F . As indicated
above, we refer to the procedure carrying F 7→ F ′ as a compression step.

We verify that F ′ `∆ w: Axiom (A1) is trivially satisfied. Axiom (A2) holds for F ′ as all directed edges
added to F ′ respect the label ordering. Axiom (A3) holds as all labels are preserved. Finally, we consider
axiom (A4). Note the effect that the process has on the depth of honest vertices in the general case d > 1:
The depths of all honest vertices with (initial) depth less than d are preserved, while the depths of all honest
vertices with depths at least d are decreased by exactly one. Thus the only possible violations of axiom (A4)
could occur among those honest vertices at depth exactly d; however, as all such vertices are non-tight by
assumption, reducing their depth by one guarantees axiom (A4). Finally, observe that if d = 1, all vertices of
depth d are adversarial, as any honest vertex of depth 1 is tight by definition, hence the above reasoning
applies as well despite a different alteration rule.

In light of the comments above, we note that len(F ′) = len(F )− 1 and len(F ′) = len(F )− 1. It follows
that a finite number of compression steps results in a compressed fork, F c, as desired.

In general, we show below that β`(F
′) ≥ β`(F ); thus, if β`(F ) = β`(w) then β`(F

′) = β`(w) and F ′ is
likewise an optimal fork. Consider a tine T of F ; we may naturally associate this with the tine T ′ of F ′ that
terminates with the same vertex. If αF (T ) ≥ 0 it follows from the discussion above that αF ′(T

′) = αF (T ), as

10



len(T ′) = len(T )− 1 and len(F
′
) = len(F )− 1. If αF (T ) < 0 it follows that αF (T ) ≤ αF ′(T ′) ≤ αF (T ) + 1,

depending on whether the alterations involve any vertices of the T . It follows immediately that β`(F
′) ≥ β`(F ).

Specifically, let (Th, Ta) be two witness tines for F so that αF (Th) ≥ 0, αF (Ta) = β`(F ), and Th 6∼` Ta. Let
T ′a and T ′h be the two tines corresponding to Ta and Th in F ′, respectively; clearly T ′h 6∼` T ′a and note that
this does not depend on `. Then αF ′(T

′
h) = αF (Th) and αF ′(T

′
a) ≥ αF (Ta); therefore T ′h is dominant in F ′

and we have β`(F
′) ≥ β`(F ), as desired.

Lemma 4 (Restructuring lemma). Let w ∈ Σ∗ be a characteristic string and F `∆ w be a compressed fork
for w, let T1 6∼` T2 be arbitrary tines in F . For i ∈ {1, 2}, let vi be an honest vertex on Ti and let Ai denote
the set of all adversarial vertices on Ti deeper than vi. If lb(v1) ≤ lb(v2) then

β`(w) ≥ αF (v1) + |A1 ∪A2| .

Proof. On a high level, we restructure the fork F to obtain a valid fork F̃ `∆ w that satisfies β`(F̃ ) ≥
αF (v1) + |A1 ∪A2|, establishing the claim. This restructuring consists of two main modifications: (i) use (at

least) all adversarial vertices in A1 ∪A2 to build a tine T̃a on top of v1 with len(T̃a) ≥ len(v1) + |A1 ∪A2|;
and (ii) use tight vertices of depths len(v2) + 1, len(v2) + 2, . . . , len(F ) to build an honest tine T̃h on top of v2

with len(T̃h) = len(F ). Additional care is needed to ensure the validity of the resulting fork.
Towards a more detailed description, we identify sets of vertices in F that will be modified in the same

way. Let y denote the last common vertex of T1 and T2, and let z denote the deeper one of the vertices
{v1, y}. First, we define A′i , {a ∈ Ai : lb(a) > lb(z)}, we write A , A′1 ∪ A′2 and refer to the individual
vertices in A as a1, . . . a|A| so that i < j implies lb(ai) < lb(aj).

1 Next, as F is compressed, it contains a

tight honest vertex for each depth in {len(v2) + 1, . . . , len(F )}. We label these vertices h1, . . . , hg, where

g = len(F )− len(v2) and hi has len(hi) = len(v2) + i, and denote H , {h1, . . . , hg}. Note that there might
be several tight vertices of a particular depth in F , the choice of vertices for H is arbitrary, we just ensure
that it contains one vertex for each of the relevant depths. Finally, we denote by D = {d1, . . . , d|D|} the set
of all vertices that at the same time (a) are honest, (b) are (possibly indirect) descendants of either v1 or
v2, (c) are not (possible indirect) predecessors of either z or v2, and (d) are not in H. We again index the
vertices in D in an increasing order of labels.

We first modify F as follows:

Set A: The unique edge of the form (u, a1) is replaced with the edge (z, a1) and for each i ∈ {2, . . . , |A|},
the unique edge of the form (u, ai) is replaced with the edge (ai−1, ai).

Set H: The unique edge of the form (u, h1) is replaced with the edge (v2, h1) and for each i ∈ {2, . . . , g},
the unique edge of the form (u, hi) is replaced with the edge (hi−1, hi).

We denote the resulting labeled tree F0, note that F0 is not necessarily a valid fork. To reestablish validity,
we proceed with the following sequence of modifications:

Set D: For each i ∈ {1, . . . , |D|} the unique edge of the form (u, di) in Fi−1 is replaced by (ũi, di), where ũi
is the vertex in Fi−1 with maximum depth out of all honest vertices with label at most lb(di)−∆; note
that this in particular excludes dj for j > i. Formally,

ũi , arg max
u∈Fi−1; wlb(u)=h

lb(u)≤lb(di)−∆

lenFi−1
(u) , (5)

where ties in max can be broken arbitrarily. The labeled tree resulting from the i-th iteration is called Fi.

Finally, we let F̃ , F|D|.

We now show that F̃ is a valid fork for w. The axioms (A1) and (A3) are clearly maintained by the above

modifications and hence inherited from F . Axiom (A2) is satisfied in F̃ as each newly added edge (u, v) has

1We recommend the reader to first consider the simplest situation where len(y) < len(vi) for both i ∈ {1, 2} and hence z = v1
and A′

i = Ai.
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lb(u) < lb(v). For new edges {(·, di) : di ∈ D} this directly follows from (5), for new edges {(·, ai) : ai ∈ A}
this is a consequence of the definition of A′i and the ordering within A. Finally, in H we have by construction

len(v2) < len(h1) < · · · < len(hg) = len(F ),

v2 is honest, and each hi is tight (and hence honest). Applying Lemma 2 to each hi implies that

lb(v2) < lb(h1) < · · · < lb(hg)

as required.
To verify axiom (A4), note that when moving from F to F̃ , the depths of all honest vertices outside of D

remained unchanged. The depth of a vertex di ∈ D might have changed, but it has not increased; this can be
shown by simple induction on i: by induction hypothesis, also the depths of all honest vertices with labels up
to lb(di)−∆ have not increased from F to F̃ , and hence

lenF (di) ≥ max
u∈F, wlb(u)=h

lb(u)≤lb(di)−∆

lenF (u) + 1 ≥ max
u∈F̃ , wlb(u)=h

lb(u)≤lb(di)−∆

lenF̃ (u) + 1 = lenF̃ (di) ,

where the first inequality follows from axiom (A4) in F and the last equality is a consequence of (5). Given

the above, the only possible violation of axiom (A4) in F̃ could occur for a pair (v, w) with w = di ∈ D, but

this is exactly prevented by the rule (5). This concludes the argument that F̃ `∆ w.

To finish the proof, denote by T̃a and T̃h the tines in F̃ terminating in a|A| and h|H|, respectively. Given

T1 6∼` T2 we have lb(y) < `, and note that the last common vertex of T̃a and T̃h has label at most lb(y), hence

we have T̃a 6∼` T̃h. Furthermore, len(T̃h) = len(F̃ ) by construction. Hence we have

β`(w) ≥ β`(F̃ ) ≥ αF̃ (T̃a) = αF (z) + |A| .

Finally, αF (z) + |A| ≥ αF (v1) + |A1 ∪A2|: if z = v1 then each Ai = A′i and hence A = A1 ∪A2; otherwise
z = y and αF (z) ≥ αF (v1) + |(A1 ∪A2) \A|. This concludes the proof.

3.2 Warm-up: Margin Prior To `

We start by describing the behavior of β`(w) for |w| < `. Note that this significantly simplifies the notion as
discussed in Remark 3, in particular |w| < ` implies β`(w) ≥ 0.

Lemma 5. Let ` ≥ 1, w ∈ {0, h, a}<` and x ∈ {0, h, a}≥∆−1. Then

β`(wxh) ≤

{
β`(w) + #a(x)− 1 if β`(w) ≥ 1 ,

#a(x) if β`(w) = 0 .

Proof. First consider the case β`(w) ≥ 1. If we have β`(wxh) ≤ #a(x) then the lemma follows immediately,
hence assume β`(wxh) > #a(x). Let F ′ `∆ wxh be a witness fork for w′ , wxh and let (T ′h, T

′
a) be a witness

pair in F ′. Let F , F ′|w|e `∆ w and define T , (T ′a)|w|e as the restriction of T ′a to vertices with labels
at most |w|; we have T ∈ F . By our assumption on β`(wxh), more than #a(x) deepest vertices of T ′a are
adversarial and hence we get len(T ′a)− len(T ) ≤ #a(x). The pair (T, T ) can serve as a witness pair in F , and
we have len(F ′) > len(F ) since |x| ≥ ∆− 1. We can hence conclude

β`(w) ≥ β`(F ) ≥ αF (T ) = len(T )− len(F ) ≥ [len(T ′a)−#a(x)]− [len(F ′)− 1] = β`(wxh)−#a(x) + 1 ,

as desired.
In the case β`(w) = 0, the situation β`(wxh) > #a(x) cannot occur, as the same reasoning as above

would give us 0 = β`(w) ≥ β`(wxh) − #a(x) + 1 ≥ 1, a contradiction. Hence in this case we must have
β`(wxh) ≤ #a(x) as desired.
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3.3 The Critical Region

In the “critical region” (near zero) we will rely on rather loose information about the behavior of β`. The
first bound (Lemma 6) establishes that |β`(wx)− β`(w)| ≤ #h,a(x)—each symbol of x can change β`() by at
most one. The second bound (Lemma 7) shows that for |w| ≥ `, β`(w0th) < β`(w) when t ≥ ∆− 1. Note
that a similar statement (with a singular special case) for |w| < ` follows from Lemma 5.

Lemma 6 (β` is 1-Lipschitz). Let w ∈ {0, h, a}∗ be a characteristic string. Then β`(w0) = β`(w) and for
x ∈ {h, a} we have ∣∣β`(wx)− β`(w)

∣∣ ≤ 1 .

Proof. The lower bound β(wx) ≥ β(w) − 1 is straightforward; in fact one can establish higher precision
bounds

β`(w0) = β`(w) ,

β`(wa) ≥ β`(w) + 1

and β`(wh) ≥ β`(w)− 1 .

These follow by considering an optimal fork F `∆ w with witness tines (Th, Ta): if x = a, an adversarial
vertex can be added to the end of Ta; if x = h, this honest vertex can be added to the end of Th. The
resulting forks clearly achieve the statistics above.

We turn our attention to the upper bound β`(wx) ≤ β`(w)+1. Let F ′ `∆ wx be a compressed optimal fork
with witness tines (T ′h, T

′
a). Let F `∆ w denote the fork that results by removing the vertex v associated with

the symbol x. If v does not appear on either of the witness tines, the same tines establish that β`(F ) ≥ β`(F ′)
and we conclude that β`(w) ≥ β`(wx), as desired. If v appeared on T ′a (and possibly also on T ′h if T ′h = T ′a),
we let (Th, Ta) denote the restrictions of (T ′h, T

′
a) to F and note that the witness tines (Th, Ta) establish that

β`(w) ≥ β`(F ) ≥ αF (Ta) ≥ αF ′(T ′a)− 1 = β`(wx)− 1 ,

as desired. It remains to consider the case that v appears on T ′h and not on T ′a. As above, let Th denote the
tine in F resulting from removing v from T ′h, and observe that F is compressed. If αF ′(T

′
a) = β`(wx) ≥ 0, we

invoke Lemma 4. Let vh and v′a denote the deepest honest vertices on Th and T ′a respectively; let Ah (resp.
A′a) be the set of adversarial vertices on Th (resp. T ′a) deeper than vh (resp. v′a). If lb(vh) ≤ lb(v′a) then
Lemma 4 gives us

β`(w) ≥ αF (vh) + |A′a ∪Ah| ≥ (αF (vh) + |Ah|) + |A′a \Ah| ≥ −1 + |A′a \Ah| ≥ β`(wx)− 1

as desired. On the other hand, if lb(v′a) ≤ lb(vh) we similarly have

β`(w) ≥ αF (v′a) + |A′a ∪Ah| ≥ αF (v′a) + |A′a| ≥ αF ′(T ′a) = β`(wx) .

Finally, we consider the case that αF ′(T
′
a) = β`(wx) < 0. Letting TH denote a maximum length honest tine

in F we consider two cases: if TH 6∼ T ′a, these two tines witness β`(w) ≥ αF (T ′a) ≥ αF ′(T
′
a) = β`(wx), as

desired. Otherwise, TH 6∼ Th and these two tines witness β`(w) ≥ αF (Th) ≥ αF ′(T
′
h)− 1 ≥ β`(wx)− 1, as

desired.

Lemma 7. Let ` ≥ 1 and w ∈ {0, h, a}≥` be a characteristic string. Then

β`(w0∆−1h) ≤ β`(w)− 1 .

Proof. Let F ′ `∆ w0∆−1h be a witness fork for w0∆−1h and let T ′a and T ′h denote a pair of witness tines in
F ′ so that α(T ′h) ≥ 0 and α(T ′a) = β`(w0∆−1h). Let v denote the vertex in F ′ corresponding to the final h
symbol and let F `∆ w denote the fork obtained by removing the vertex v. Note that len(F ) ≤ len(F ′)− 1
by axiom (A4).
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Note that as |w| ≥ ` and T ′h 6∼` T ′a, v cannot appear on both these tines. If v appears on T ′a, let Ta
denote the tine in F resulting from removal of v. As T ′a terminated with an honest vertex and, by definition,
β`(w0∆−1h) = αF ′(T

′
a), we conclude that β`(w0∆−1h) = 0. In this special case, then, we wish to show

that β`(w) ≥ 1. Observe that Ta is dominant in F , as len(Ta) = len(F ′)− 1 = len(F ). On the other hand,
αF (T ′h) = αF ′(T

′
h) + 1 so the two tines (now playing reverse roles) witness β`(w) ≥ 1, as desired. Otherwise,

v does not appear on T ′a. In this case, we let Th denote the tine corresponding to T ′h in F : specifically, if v
does not appear in T ′h then define Th = T ′h; otherwise, define Th to be the result of removing v from T ′h. In
either case, however, Th is dominant in F (as len(F ) = len(F ′)− 1). Thus the tines T ′a and Th (in F ) witness
β`(w) ≥ β`(w0∆−1h) + 1, as desired.

3.4 The Cold Region

We now study the setting when β` is sufficiently small. Specifically, consider a string of steps σ = σ1 . . . σn ∈ ΣnS ,
where each σi ∈ ΣS . We identify the set

Cold =
{
σ = σ1 . . . σn ∈ Σ+

S : β`(σ1 . . . σn−1) + #h,a(σn) + #h(σn−1) < 0
}

where naturally #h(σ0) = 0. We show that in the region defined by Cold, β` satisfies the ideal recurrence (4).
Note that the following lemma does not require any relationship between |w| and `, the value ` can be an

arbitrary positive constant. Nonetheless, the lemma is only useful to control margin after slot `, as we know
from Lemma 5 that before that slot, margin cannot be negative.

Lemma 8. Let ` ≥ 1; let w ∈ {0, h, a}∗, x ∈ {0, h, a}≥∆−1, and let z ∈ {0, h, a}≤∆ be the ∆-long suffix of w
(if |w| < ∆ then z = w). If β`(w) < −#h,a(x)−#h(z) then

β`(wxh) ≤ β`(w) + #a(x)− 1 .

In particular, for any σ ∈ Σ∗S and any step γ ∈ ΣS , if σγ ∈ Cold then β`(σγ) ≤ β`(σ) + #a(γ)− 1.

Proof. Let w′ , wxh and let F ′ be a compressed witness ∆-fork F ′ `∆ w′; let (T ′h, T
′
a) be a pair of witness

tines in F ′ such that len(T ′h) = len(F ′). Furthermore, let F , F ′|w|e `∆ w and define Th , (T ′h)|w|e and

Ta , (T ′a)|w|e, i.e., Th and Ta are the restrictions of T ′h and T ′a to vertices with labels at most |w|; we have
Th, Ta ∈ F by definition of F .

Consider any honest tine TH of maximum length in F , we have lb(TH) ≤ |w|. Now let T ′H be the unique
honest tine in F ′ that satisfies lb(TH) = |w′| as it terminates with the unique honest vertex corresponding
to the trailing h-symbol of w′ according to axiom (A3) of Definition 2. As |xh| ≥ ∆, axiom (A4) gives us
len(TH) < len(T ′H) and hence

len(F ) < len(F ′) . (6)

By our assumption of negative β`(w), there is a well-defined main branch M(F ). We first establish the
following claim.

Claim 9. Consider any tine T ∈ F such that T 6∈ M(F ) and any T ′ ∈ F ′ that extends T in F ′ so that
T = T ′|w|e. Then the set of vertices T ′ \ T contains no honest vertices.

To see this, observe that any honest vertex in F ′ with label greater than |w| must have depth at least
len(Fd∆) + 1 by axiom (A4), hence all vertices in T ′ \ T with depth at most len(Fd∆) must be adversarial.

Furthermore, len(F )− len(Fd∆) ≤ #h(z) + #h(x): this is because F ′ is compressed and contains an honest

vertex for each depth d ∈ {len(Fd∆)+1, . . . , len(F )}; but at most #h(z) of these honest vertices can have labels

from [|w|] (by definition of Fd∆), similarly at most #h(x) of these honest vertices can have labels greater than

|w| (by Axiom (A4)). This gives us len(T )+#a(x) < len(Fd∆), as we have αF (T ) ≤ β`(w) < −#h,a(x)−#h(z)

by our assumption on β`(w), and hence len(T ′) < len(Fd∆). This already implies that there are no honest
vertices in T ′ \ T and establishes Claim 9.
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We now argue that Th ∈ M(F ). Towards contradiction, assume that Th 6∈ M(F ). Then Claim 9 applies to
Th and T ′h \ Th contains no honest vertices, hence

len(T ′h) ≤ len(Th) + #a(x) . (7)

However, by assumption len(Th)− len(F ) = αF (Th) ≤ β`(w) < −#a(x) and hence len(Th) < len(F )−#a(x),
and using equations (7) and (6) gives us len(T ′h) < len(F ) < len(F ′), a contradiction with the definition of T ′h.
Therefore, Th ∈ M(F ).

Since T ′h 6∼` T ′a, it also follows that Th 6∼` Ta, and at most one of these tines belongs to M(F ), hence we
have Ta 6∈ M(F ). By Claim 9, T ′a \ Ta contains no honest vertices. Hence we have

len(T ′a) ≤ len(Ta) + #a(x) (8)

and we can combine equations (6) and (8) to get

β`(w) ≥ αF (Ta) = len(Ta)− len(F ) ≥ len(T ′a)−#a(x)− len(F ′) + 1 = αF ′(T
′
a)−#a(x) + 1

= β`(w
′)−#a(x) + 1 ,

finishing the proof of Lemma 8.

3.5 The Hot Region

We shift attention to the setting when β` is sufficiently large. Specifically, consider a string of steps
σ = σ1 . . . σn ∈ Σn

S where each σi ∈ ΣS and n ≥ #h(σn) + 3. We write σ = σ̃τσn, where τ consists of
#h(σn) + 2 steps, and identify the set

Hot = {σ = σ̃τσn | β`(σ̃τ) ≥ #a(τ) + 2} .

We show that in the region defined by Hot, β` satisfies the ideal recurrence (4).
We first need to formally define the minimal honest height h∆(·).

Definition 11. Let x ∈ {0, 1}∗ and recall that xd∆ denotes the string obtained by removing the last ∆− 1
symbols from x, with the understanding that the result is ε if |x| < ∆. We define h∆(x) inductively so that
h∆(ε) = 0, h∆(x0) = h∆(x), and h∆(x1) = h∆(xd∆) + 1. We often overload h∆ to apply to strings from
{0, h, a}∗, in that case only the honest symbols h are counted as 1s, while symbols 0 and a are treated as 0s.

Now we can state the result describing β` in the Hot region.

Lemma 10. Let ` ≥ 1, let x ∈ {0, h, a}∆−1 ‖ {0, a}∗, and let w ∈ {0, h, a}∗ with h∆(w) > #h(x) + 3. Let z
be the shortest suffix of the string w with the property that h∆(z) ≥ #h(x) + 3. If β`(w) > #a(z) + 2 then we
have

β`(wxh) ≤ β`(w) + #a(x)− 1 .

In particular, for any σ ∈ Σ∗S and any step γ ∈ ΣS , if σγ ∈ Hot then β`(σγ) ≤ β`(σ) + #a(γ)− 1.

Proof. Let F ′ ` wxh be an optimal compressed fork for w′ , wxh and F ` w the restriction to w; if T ′ is a
tine in F ′, we let T denote the associated tine for F . Let T ′h and T ′a be a pair of witness tines for F ′. Observe
that (6) can be again established in the same way.

We first prove a lower bound on β`(w
′). Towards that, consider a witness fork G `∆ w for w, and let

(Uh, Ua) be witness tines for G such that len(Uh) = len(G). For s ∈ {h, a}, let

Is , {i ∈ {|w|+ 1, . . . , |wx|} : w′i = s} .

Construct a labeled rooted tree G′ from G by (i) adding #h(x) honest vertices labelled by indices from Ih, all
of them as direct descendants of the terminal vertex of Uh; (ii) adding a single honest vertex with label |w′|
as a direct descendant of any of the above-added honest vertices; and finally (iii) extending the tine Ua by a
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path consisting of #a(x) adversarial vertices labelled by the increasing sequence of indices from Ia. Let U ′h
denote the tine terminating in the vertex labelled |w′| and let U ′a be this newly-constructed tine extending
Ua in G′. Observe that G′ is a valid ∆-fork for w′: the axioms (A1)–(A3) are trivially satisfied, and the
axiom (A4) also holds as all newly added honest vertices only share depth with honest vertices labelled closer
than ∆ to their own label. Clearly len(U ′h) = len(G′) and moreover, Uh 6∼` Ua implies U ′h 6∼` U ′a; hence we
have

β`(w
′) ≥ len(U ′a)− len(U ′h) = (len(Ua) + #a(x))− (len(Uh) + 2) = β`(w) + #a(x)− 2 > #a(zx) , (9)

where the last inequality follows by our assumption on β`(w).
We now establish that also in this setting there are no honest vertices on T ′a with a label greater

than |w|, in other words, there are no honest vertices in T ′a \ Ta. Towards a contradiction, assume that
there is an honest vertex in T ′a \ Ta and let v′a be the honest vertex on T ′a with maximum label (and
hence also maximum depth). Since lb(v′a) > |w|, all vertices u on T ′a with len(u) > len(v′a) also have
lb(u) > lb(v′a) > |w|, and by maximality of v′a all these vertices are adversarial, hence there are at most #a(x)
such vertices by axiom (A3). However, we also have len(v′a) ≤ len(F ′) as v′a is honest. Put together, we have
β`(w

′) = len(T ′a)− len(F ′) ≤ len(T ′a)− len(v′a) ≤ #a(x). This contradicts (9), concluding the proof that there
are no honest vertices on T ′a \ Ta. Hence we have len(T ′a)− len(Ta) ≤ #a(x).

Let va be the last honest vertex on Ta (we now know that it is also the last honest vertex on T ′a). Likewise,
let vh be the last honest vertex on Th. We consider two cases depending on lb(va) and lb(vh).

The case lb(vh) < lb(va). For a tine T and a portion y of the characteristic string, we let #h(y;T ) denote
the number of honest vertices in T labeled with symbols from y; we similarly overload also the notation #a

and #h,a.
We first establish that

len(va) < len(Th) + #a(xh;T ′h) . (10)

Note, first of all, that len(Th) ≥ len(F ′) −#h,a(xh;T ′h). Now consider len(va). Observe that vA cannot be
labeled from the string z: if it were, then β`(F

′) ≤ #a(zx) which contradicts (9). Hence va is labeled prior to
z and it follows that len(F ′) ≥ len(va) + [h∆(z)− 1] ≥ len(va) + #h(x;T ′h) + 2 by definition of z. Hence

len(Th) ≥ len(F ′)−#h,a(xh;T ′h) ≥ (len(va) + #h(x;T ′h) + 2)−#h,a(xh;T ′h) > len(va)−#a(xh;T ′h) ,

proving (10).
Now we invoke Lemma 4 with tines T ′h, T ′a and vertices vh, va in F ′. By assumption lb(vh) < lb(va) and

hence we obtain β`(w
′) ≥ αF ′(vh) + |Ah ∪Aa|, where Ah (resp. Aa) is the set of adversarial vertices in T ′h

after vh (resp. in T ′a after va). Note that lb(vh) < lb(va) means vh 6= va and together with the definition of
vh, va this means that Ah ∩Aa = ∅ and |Ah ∪Aa| = |Ah|+ |Aa|.

Recall that Th (resp. Ta) contains only adversarial vertices after vh (resp., va) by definition of vh (resp.
va). Moreover, T ′a \ Ta also only contains adversarial vertices. Hence we get

β`(w
′) ≥ αF ′(vh) + (len(Th)− len(vh)) + (len(T ′a)− len(va)) + #a(xh;T ′h)

≥ αF ′(Th) + (len(T ′a)− len(va)) + #a(xh;T ′h)

> αF ′(va) + (len(T ′a)− len(va)) ≥ αF ′(T ′a) ,

where the third inequality follows from (10). This contradicts the optimality of F ′ and T ′a, and shows that
this case cannot occur.

The case lb(vh) ≥ lb(va). Let TH denote a maximal length honest tine in F . If TH 6∼` Ta, these two
tines witness

β`(w) ≥ αF (Ta) ≥ (len(T ′a)−#a(x))− len(F ) ≥ (len(T ′a)−#a(x))− (len(F ′)− 1) = β`(wxh)−#a(x) + 1

as desired. Otherwise, we assume that TH ∼` Ta and hence TH 6∼` Th.
In this case, we begin by compressing the fork F : Let c(F ) `∆ w denote the compression of F . If v is a

vertex of F it appears in c(F ); in order for context to be clear we let c(v) denote the vertex v as it appears in
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c(F ). If T is a tine of F , we let c(T ) denote the associated tine in the compression (that is, the tine that
terminates with the vertex that terminates T ). As αF (Ta) ≥ 0, recall that αc(F )(c(Ta)) = αF (Ta). Note that
the last honest vertex on c(Ta) may not be c(va) (due to a compression step); let wa be the vertex for which
c(wa) is the last honest vertex on c(Ta). As lb(wa) ≤ lb(va), we still have the inequality lb(wa) ≤ lb(vh) (and
hence, of course, lb(c(wa)) < lb(c(vh))).

We again invoke Lemma 4, this time for tines c(Ta), c(Th) and vertices c(wa), c(vh) in c(F ). Since
lb(c(wa)) < lb(c(vh)), we obtain the following, where |A| is the set of adversarial vertices on c(Ta) after c(wa)
in c(F ):

β`(w) ≥ αc(F )(c(wa)) + |A| = αc(F )(c(Ta)) = αF (Ta) = lenF (Ta)− len(F )

≥ (lenF ′(T
′
a)−#a(x))−

(
len(F ′)− 1

)
= αF ′(T

′
a)−#a(x) + 1 = β`(w

′)−#a(x) + 1 .

This concludes the proof for the second case.

4 Analysis of the Stochastic Process

Recall from the introduction the critical security threshold.

Definition 12. For ph > 0 and ∆ ∈ N, we define the discrete critical threshold

ϑ(ph,∆) :=
1

(∆− 1) + 1/ph
.

For rh > 0 and ∆0 > 0, we likewise define the Poisson critical threshold

ϑ(rh,∆0) :=
1

∆0 + 1/rh
.

While ϑ is a function of ph and ∆, we simply write ϑ when these parameters can be inferred from context; ϑ
is treated similarly.

To relate the security threshold ϑ in the Poisson setting to discrete threshold ϑ, recall that the discrete
approximation is given by taking ph = srh, pa = sra and ∆ = d∆0/se for a (small “slot length”) parameter s.
If ra, rh, and ∆0 satisfy ra < ϑ, which is to say 1/ra > ∆0 + 1/rh then, by scaling this inequality by 1/s, we
find that

1

pa
=

1

sra
> ∆0/s+

1

srh
> (d∆0/se − 1) +

1

ph
= ∆− 1 +

1

ph
.

This proves the following.

Fact 11. For all s > 0, sϑ(rh,∆0) ≤ ϑ(srh, d∆0/se). Hence, if ra < ϑ(rh,∆0) then s · ra < ϑ(s · ph, d∆0/se).

We remark that ϑ satisfies the equality

1

ϑ
= (∆− 1) +

1

ph
,

which gives an immediate and intuitive interpretation: note that if wi = x for a symbol x ∈ Σ that occurs
with probability p then 1/p is the expected waiting time before the next occurrence of x. Thus the threshold
corresponds to the setting where the average waiting time for a symbols is larger, by an additive factor of
∆− 1, than the average waiting time for h symbols.

Definition 13. When w has the distribution B(pa, ph) of Definition 1, the steps σi arising from w are
independent and identically distributed random variables, taking values in {a, h, 0}∗. We denote this
distribution S(pa, ph; ∆).
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Observe that when γ is drawn from S(pa, ph; ∆), its length follows a translated geometric distribution:
for each k ≥ 0,

Pr[|γ| = ∆ + k] = ph(1− ph)k . (11)

This immediately yields the following tail bound.

Fact 12. Let γ be drawn according to S(pa, ph; ∆). Then Pr[#a(γ) ≥ k] ≤ Pr[|γ| ≥ k] = exp(−Ω(k)).

The estimates of Lemma 5, Lemma 8, and Lemma 10 show that, with particular exceptions, β adheres to
the ideal recurrence

β(σγ) 7→ β(σ) + #a(γ)− 1 .

The claim below confirms that when pa < ϑ, this transition has negative bias (for γ drawn from S(pa, ph; ∆)),
its proof appears in Appendix A.

Claim 13. Let pa < ϑ(ph,∆) and let γ have the distribution S(pa, ph; ∆). Then E [#a(σ)− 1] < pa/ϑ−1 < 0.
We remark, additionally, that if pa = sra, ph = srh, and ∆ = d∆0/se, then pa/ϑ < ra/ϑ.

Thus, the random walk described by β`(σ1 . . .) initially observes a negative bias with a barrier at zero
(arising from the rules of Lemma 5); once the length of the string exceeds `, the walk is more complicated: it
is negatively biased when sufficiently far from zero and positively biased near zero.

In the following (Sections 4.1–4.3) we work towards establishing the estimate for the behavior of the full
walk formulated as Theorem 14 below. Finally, in Section 4.4 we apply it to control Bitcoin consistency
failures.

Theorem 14. Let pa, ph and ∆ satisfy pa < ϑ(ph,∆). Fix m ≥ 0. Let σ = σ1, . . . denote a sequence of
steps, each identically distributed according to S(pa, ph; ∆). Let ` denote the random variable |σ1 . . . σm|, i.e.,
the length of σ1 . . . σm in symbols. Then for any T ≥ 0 and M > 0,

Pr[∃t ≥ m+ T, β`(σ1 . . . σt) ≥ −M ] = exp(−Ω(T ) +O(M)) ,

where the constants hidden by the asymptotic notation are universal aside from dependence on |pa/ϑ− 1|.

4.1 Minimal Honest Height

Recall the notion of h∆(·) from Definition 11. We record the McDiarmid inequality, which immediately
implies a large deviation bound on h∆.

Theorem 15 (McDiarmid’s inequality). Let X = X1, . . . , Xn be a sequence of independent random variables
taking values in {0, 1}. Let f : {0, 1}n → R have the property that for any x = (x1, . . . , xn) ∈ {0, 1}n and
y = (y1, . . . , yn) ∈ {0, 1}n that differ only in a single coordinate |f(x)− f(y)| < C. Then

Pr
X

[
|f(X)− E [f(Y )] | ≥ λ

√
n
]
≤ 2 exp(−2λ2/C) ,

where Y has the same distribution as X.

Lemma 16. Let p ∈ (0, 1) and ∆ ∈ {1, 2, . . .}. Let X1, . . . , Xn be independent Bernoulli random variables,
each taking the value 1 with probability p. Let α = ∆ + (1− p)/p and X = (X1, . . . , Xn); then∣∣n/α− E [h∆(X)]

∣∣ ≤ 1 . (12)

Furthermore,
Pr[|h∆(X)− n/α| ≥ λ

√
n+ 1] ≤ 2 exp(−2λ2) .

The straightforward induction proof appears in Appendix A.
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4.2 The Stationary Distribution Prior to `

We consider the distribution of β`(w) where |w| ≤ `. Focusing on the step decomposition w = σ1 . . . and the
recurrence relation established in Lemma 5, we observe that for any σ = σ1 . . . σk ∈ Σk

S for which |σ| ≤ `,
β`(σ) ≤ B(σ), where B(·) is given by the upper bounds of Lemma 5. That is, B(ε) = 0, and

B(σγ) =

{
B(σ) + #a(γ)− 1 if B(σ) > 0

#a(γ) if B(σ) = 0,

where σ ∈ Σ∗S and γ is a single step, γ ∈ ΣS . In light of Claim 13, when the symbols are drawn from
S(pa, ph; ∆) the quantity B() follows a negatively biased random walk on N with a barrier at zero; in this
setting where the upper tails of the walk are sub-geometric (that is, there is an upper bound on the one-step
tails of the form Ca−k for some a > 1), it follows immediately that the random variables B(σ) converge to a
stationary distribution.

To articulate the result formally, we recall the notion of stochastic dominance. For two random variables
X and Y taking values in R, we say that Y stochastically dominates X, written X ≺ Y , if for all λ ∈ R,
Pr[X ≥ λ] ≤ Pr[Y ≥ λ]. Note that if X ≺ Y we can transfer tail bounds on Y to tail bounds on X: if
Pr[Y ≥ λ] ≤ f(λ) then Pr[X ≥ λ] ≤ f(λ). The discussion above implies that for any random variable σ,
β`(σ) ≺ B(σ) (so long as |σ| ≤ `).

Lemma 17. Let X1, X2, . . . be a sequence of i.i.d. random variables taking values in N for which (i.)
E [Xi] < 1 and (ii.) there are constants a > 1 and A > 0 so that Pr[Xi = k] ≤ A · a−k. Let Wt denote the
random walk on N given by the rule W0 = 0,

Wt =

{
Wt−1 +Xt − 1 if Wt−1 > 0, and

Wt−1 +Xt if Wt−1 = 0.

Then there is a random variable S, taking values in N, for which Wt ≺ S for all t and, moreover, there are
constants a∗ > 1 and A∗ > 0 so that Pr[S = k] ≤ A∗ · a−k∗ .

The proof appears in Appendix A. Applying Lemma 17 to the random variables Xi = #a(σi) (with the σi
drawn as above), yields the following bound on β`(·).

Corollary 18. Let σ = σ1 . . . , σm ∈ ΣmS be independently generated according to S(pa, ph; ∆). Let ` = `(σ)
denote the random variable |σ|. Then Pr[β`(σ) ≥ k] ≤ exp(−Ω(k)).

4.3 The Descent to −∞ After `

This section proves Theorem 14. In general, the proof proceeds by considering several coupled stochastic
processes:

B(pa, ph) : w1 . . . wt1︸ ︷︷ ︸ wt1+1 . . . wt2︸ ︷︷ ︸ . . .

S = S(w) : σ1 σ2 . . .
M : m1 = β`(σ1) m2 = β`(σ1σ2) . . .
P : π1 = π(σ1) π2 = π(σ1σ2) . . .
I : i1 = ι(σ1) i2 = ι(σ1σ2) . . .
ID : iD1 = ιD(σ1) iD2 = ιD(σ1σ2) . . .

The random variables wi of B = B(pa, ph) are described in Definition 1. The process S is given by the rule
σ(w) described in Definition 9 above. The “margin process” M is determined by application of β(·) to S.
This is the principal process of interest, and the subject of Theorem 14.

The final processes, which are introduced solely for the purposes of analysis, are I, the ideal process, which
carries out the ideal recurrence, and P, the pessimistic process, which only relies on the generally applicable
results from Lemma 6 and Lemma 7. We study, additionally, a “deformation” of the ideal process denoted
ID. These are defined by the following recurrences.
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Definition 14 (The ideal process; the pessimistic process). Fix ∆ > 0. Define ι, π : Σ∗S → Z by the rule
ι(ε) = π(ε) = 0, for the empty string ε, and, for σ ∈ Σ∗S and a single step γ ∈ ΣS ,

ι(σγ) = ι(σ) + #a(γ)− 1 ,

and

π(σγ) =

{
π(σ)− 1 if γ = 0th with t ≥ ∆− 1,

π(σ) + #a,h(γ) otherwise.

In general, we apply these functions to suffixes of a sequence σ ∈ Σ∗S . To reflect this usage, we generalize
these functions to prescribed basepoints for convenience. Specifically, we define

ι(σ; τ) = β`(σ) + ι(τ) and π(σ; τ) = β`(σ) + π(τ) ,

for σ, τ ∈ Σ∗. (Note that ` and ∆ are implicit in this notation, but they can be inferred from context.)

Note that ι and π are motivated by the margin bounds of Section 3. In particular, in light of Lemma 6
and Lemma 7,

β`(στ) ≤ π(σ; τ)

for any |σ| ≥ `. (In fact, for π this is true even without the length restriction on σ.) We note here an
important relationship with β∆

` (), which will be relevant for the proof of Theorem 14.

Lemma 19. Let w ∈ Σ∗ and x ∈ Σ∗ satisfy |x| ≥ ∆. Let y denote the string obtained from x by replacing
all h with a. Then

β∆
` (wx) ≤ β`(wy) ≤ β`(w) + #h,a(x) .

Similarly, let w ∈ Σ∗ and write w = σ1 . . . σmw
′, where each σi ∈ ΣS and w′ ∈ Σ∗ so that the expression

σ1 . . . σmw
′ denotes a partial rendering of w into steps followed by an arbitrary suffix. Then

β∆
` (w) ≤ β`(σ1 . . . σm−1) + #h,a(σmw

′) .

Proof. Let F `∆ wx where, as in the statement of the lemma, |x| ≥ ∆. Then, F may be viewed as a fork of
wy, as any vertex of F associated with an honest symbol of x can be associated with an adversarial symbol.
We let F ′ `∆ wy denote this fork F viewed as a fork of wy; note that while F and F ′ have identical structure,
there may be honest vertices of F that are adversarial in F ′. Note, also, that len(F ) = len(Fd∆). Thus a pair
of ∆-witness tines F are a pair of witness tines in F ′; this proves the statement.

Likewise, roughly speaking, if στ ′ satisfies the Hot or Cold conditions for each prefix τ ′ of τ , then

β`(στ) ≤ ι(σ; τ) .

Finally, to manage some technical issues in the proof, we introduce a related process with a less ready
interpretation.

Definition 15 (The deformed ideal process; D-typicality). For each D ≥ 4, define the function ιD : Σ∗S → Z
by the following rules. In general, for a string σ ∈ Σ∗S , we write σ = σbaseσtail, with the convention that σtail
consists of the last D steps of σ; if σ consists of fewer than D steps, we define σtail = σ and σbase = ε. Then
for σ ∈ Σ∗S and a single step γ ∈ ΣS , we say that σγ is D-typical if

#h,a(γ) ≤ D − 2, and #h,a(υ) ≤ D for each step υ in σtail.

Note that typicality is determined only by the last D steps of σ and the step γ. Then we define ιD(ε) = 0,
and in general

ιD(σγ) =

{
ιD(σ) + #a(γ)− 1 if σγ is D-typical,

ιD(σ) + #h,a(γ) otherwise.

We similarly define a notion with a basepoint:

ιD(σ; τ) = β`(σ) + [ιD(στ)− ιD(σ)] ,

for σ, τ ∈ Σ∗.
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Observe that ι∞() = ι(), which explains the name. D-typicality is a convenient “local” criterion for
membership in Hot or Cold (as it depends only on the most recent D + 1 steps); in particular, the details of
the definition are meant to appropriately correspond to the definitions of Hot and Cold as described by the
claim below.

Claim 20. Let σγ ∈ Σ∗S × ΣS be D-typical. Then

β`(σ) > D2 =⇒ σγ ∈ Hot ,

β`(σ) < −D2 =⇒ σγ ∈ Cold .

As a result, if σγ is D-typical and |β`(σ)| > D2 then ιD(σ; γ) = ι(σ; γ) = β`(σγ). More generally, if
|β(σ)| > D2 then β`(σγ) ≤ ιD(σ; γ).

Proof. This follows immediately from Lemma 8, Lemma 10, and Lemma 6.

We first develop a standard tail bound for the random variables that arise naturally in the ideal process ι
(that is, the #a(σi)− 1). Recall that for a real-valued random variable X, the moment-generating function
mX is defined by the rule z 7→ E

[
ezX

]
. The proofs of the following five lemmas appear in Appendix A.

Lemma 21. Let a > 1 and C > 0. Let A be a random variable on {−1, 0, 1, . . .} satisfying E [A] < 0 and
Pr[A = k] ≤ Ca−k. Then

mA(λ) ≤ 1 + E [A]λ/2 (13)

for sufficiently small λ.

Lemma 22. Let a > 1, C > 0, and γ > 0. Consider a sequence of i.i.d. integer-valued random variables
Z1, Z2, . . . satisfying E [Zi] = −γ < 0 and Pr[Zi = k] ≤ Ca−k. Let Sn =

∑n
i=1 Zi. Then there is a constant

α > 0 so that
∀Λ ≥ −γn/2, Pr[Sn ≥ Λ] ≤ e−α(Λ+γn/2) . (14)

It follows that for any N > 0,
Pr[∃n ≥ N,Sn ≥ −γn/4] = e−Θ(N) . (15)

Lemma 23 (Gambler’s ruin). Let a > 1 and C > 0. Let Z1, . . . be a sequence of i.i.d. random variables
taking values in {−1, 0, 1, . . .} satisfying E [Zi] < 0 and Pr[Zi = k] ≤ Ca−k. Let Sn =

∑n
i=1 Zi. Then

1. for any D > 0, Pr[∃t > 0, St ≥ D] = exp(−Θ(D)), and

2. Pr[∀t > 0, St < 0] > 0.

Lemma 24. Let H1, H2, . . . be a sequence of i.i.d. random variables taking values in N for which Pr[H1 =
k] = exp(−Ω(k)). Likewise, let G be a random variable taking values in N, independent from the Hi, for
which Pr[G = k] ≤ exp(−Ω(k)). Then

1. Pr[G+H1 ≥ k] = exp(−Ω(k)), and

2. Pr[H1 + · · ·+HG ≥ k] = exp(−Ω(k)).

The constants hidden by these instances of asymptotic notation may be different.

Lemma 25. Let X1, X2, . . . be a sequence of independent geometrically distributed random variables, so that
each Xi has the distribution Pr[Xi = k] = p(1− p)k for a parameter p ∈ (0, 1]. Then E [Xi] = (1− p)/p and,
for any λ ≥ 1,

Pr

[
n∑
i=1

Xi > λn/p

]
≤ e−n(1−λ) .

Let Y1, Y2, . . . be a sequence of independent exponentially distributed random variables, so that each Yi has the
probability density function pe−px (x ≥ 0). Then E [Yi] = 1/p and, for any λ ≥ 2,

Pr

[
n∑
i=1

Yi > λn/p

]
≤ e−n

1
4(p+1)

(λ−1) .
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Finally we return to the proof of Theorem 14.

Proof of Theorem 14. Denote by bias = E [ι(γ)] = E [#a(γ)− 1] < 0 the (negative) bias of the “ideal walk”
(with γ drawn from S(pa, ph; ∆)). We organize the proof around three “zones,” corresponding roughly to the
Hot, Cold and critical cases studied in Section 3.

Specifically, we select a “typicality limit” D ≥ 4 and define the following subsets of the integers:

R− = {z ∈ Z | z < −D2}, R0 = {z ∈ Z | −D2 ≤ z ≤ D2}, and R+ = {z ∈ Z | D2 < z} .

To determine the limit D defining these regions, consider independent selection of C ≥ 4 steps γ1 . . . γC and
a final step γ′ (each independently according to S(pa, ph; ∆)). Then examine the random variable

PC = ιC(γ1 . . . γCγ
′)− ιC(γ1 . . . γC) =

{
#a(γ

′)− 1 if γ1 · · · γCγ′ is C-typical,

#a,h(γ
′) otherwise.

As C →∞, note that Pr[#h,a(γi) > C] = exp(−Ω(C)) and hence Pr[max(#h,a(γ1), . . . ,#h,a(γC),#h,a(γ
′)) ≥

C] = C exp(−Ω(C)). It follows that limC→∞ Pr[γ1 · · · γCγ′ is C-typical] = 1 and hence that limC→∞ E [PC ]→
bias. Define D to be the smallest value of C for which E [PC ] < bias/2. We explain the relevance of this rule
for selecting D below.

Throughout the proof, we often write the sequence σ1σ2 . . . as σ1 . . . σsτ1 . . . (so that τi = σs+i) with
the implicit understanding that s ≥ m. With this convention, the initial steps always determine the “pre-`”
dynamics β`(σ1 . . . σm), whose statistics are controlled by Corollary 18.

We associate with every prefix of steps σ1 . . . σmτ1 . . . τt a state in the set {R−, R0, R+}, depending on
which of these contains the integer β`(στ). We now consider the transitions between these states.

Dynamics in the region R+. Consider entry to R+ at “time” s (i.e., after s steps), and let σ = σ1 . . . σs.
We examine the random walk β`(σ), β`(στ1), . . . by comparing it to ιD(σ; ε), ιD(σ; τ1), . . .. Returning to the
definition of ιD(σ; τ), observe that while στ1 . . . τt ∈ R+, β`(στ1 . . . τt) > D2 and, by the results of Section 3.5
and Claim 20,

β`(στ1 . . . τt) ≤ ιD(σ; τ1 . . . τt) .

We wish to show that this ιD(σ; τ1 . . .) walk will descend to D2 (so that β`(στ) returns to R0) with
certainty and, moreover, that the descent will occur quickly: that is, the probability that the descent will
take k steps is exp(−Ω(k)).

A typical entry into R+ arrives with an initial value Zinit for which Pr[Zinit = k] = exp(−Ω(k)). This can
either occur at time m, when the distribution of β`(σ1 . . . σm) is given by Corollary 18, or as a result of a
transition from R0 (or R−) in which case the value is bounded above by D + #a(γ) for the last step prior to
the transition to R+, in which case the height is bounded by Fact 12.

Fixing σ, we consider the random variables

Wt = ιD(σ; τ1 . . . τt)− ιD(σ; τ1 . . . τt−1) .

By the definition of D, E [Wt] < −bias/2 for any t > D (so long as the walk remains in R+); for t ≤ D, the
exact behavior of Wt may depend on σ but in any case Wt ≤ #a,h(τt). To account for this, we define

Zwarm =

D∑
t=1

Wt and Zt = Wt+D (for t ≥ 1) .

In light of Fact 12 and Lemma 24, Pr[Zwarm ≥ k] = exp(−Ω(k)) as it is a sum of a constant number of
variables with exponential tails. We wish to show that

Pr

[
Zinit + Zwarm +

k∑
t=1

Zt ≥ D2

]
= exp(−Ω(k)) ,
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and hence that β() returns to R0 quickly.
Though the random variables Zi satisfy the conditions of Lemma 21, we cannot directly apply Lemma 22

to this sequence of random variables as they are not independent. However, Zt1 and Zt2 are independent
if |t1 − t2| > D since the conditioning arising from ιD() only involves the previous D steps. Thus we may
partition the k random variables into D subsets indexed by arithmetic progressions with multiple D; each
subset then contains random variables that are never closer than D from each other. The tail bounds of
Lemma 22 apply to each subset. By the union bound, it then follows that there is a constant C > 0 so that
Pr[Z1 + · · ·+ Zk > −Ck] = exp(−Ω(k)). Combining this with the bounds on Zinit and Zwarm, we conclude
that the probability that the walk remains in R+ for k steps is exp(−Ω(k)), as desired.

Dynamics in the region R0. Consider entry to R0 at time s ≥ m and let σ = σ1 . . . σs. We examine the
random walk β`(σ), β`(σ; τ1), . . .. by comparing it to π(σ; ε), π(σ; τ1), . . .. Considering that the “width” of
the region, 2D2 + 1, is a fixed constant the next distinct observed state will be R− with nonzero constant
probability; at worst, this is the probability of observing a sequence of back-to-back 0∆−1h steps that carry
π(), and hence β(), into R− (Lemma 7). Moreover, considering that each non-overlapping block of 2D2 + 1
steps independently escapes from R0 to R− with positive constant probability, it follows that the probability
that the walk remains in R0 for more than k steps is exp(−Ω(k)).

Dynamics in the region R−. The analysis is nearly identical to the case for R+, though in this setting
we must specially handle the event that the walk never returns to R0 (or R+). Consider entry to R− at
a time s ≥ m and let σ = σ1 . . . σs. We examine the random walk β`(σ), β`(στ1), . . . by comparing it to
ιD(σ; ε), ιD(σ; τ1), . . .. As in the analysis of the R+ case, we condition on an arbitrary history σ and note
that so long as β`(στ1 . . . τt) remains in R−

β`(στ1 . . . τt) ≤ ιD(σ; τ1 . . . τt) ;

again this follows from Claim 20. This yields the random variables

Wt = ιD(σ; τ1 . . . τt)− ιD(σ; τ1 . . . τt−1) .

As in the case of R+, it is convenient to decompose the steps of the walk into an initial “warm” region
consisting of at least D steps—which may suffer from some conditioning from σ—and the remaining steps.
By the definition of D, E [Wt] < −bias/2 for any t > D (so long as the walk remains in R−); for t ≤ D, the
exact behavior of Wt may depend on σ but in any case Wt ≤ #a,h(τt). To account for this, we will select a
constant Cwarm > D and define

Zwarm =

Cwarm∑
t=1

Wt and Zt = Wt+Cwarm (for t ≥ 1) .

As pointed out above, the random variables Zt are independent of σ. We set the exact value of Cwarm in the
argument below.

First we establish that with constant probability, this walk never returns to R0 (or R+). Adopting the
approach from the R+ case above, we partition the sequence of random variables Zt into D families of i.i.d.

random variables; specifically, let Z
(s)
i = ZDi+s (for s ∈ {1, . . . , D}). Then for each fixed s the sequence

Z
(s)
i are independent random variables that satisfy the assumptions of Lemma 22 and hence Lemma 23. In

particular, there is a constant C > 0 so that

Pr

[
∃t > 0,

t∑
i=0

Z
(s)
i ≥ C

]
<

1

2D

for each fixed s. Hence

Pr

[
∃t > 0,

t∑
i=0

Zi ≥ C ·D

]
≤ Pr

[
∃s∃t > 0,

t∑
i=0

Z
(s)
i ≥ C

]
<

1

2
. (16)
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We now assign Cwarm = C ·D. To complete the argument, note that with constant probability the first Cwarm

of the random variables Wt—precisely those comprising Zwarm—all take the value −1 as this is guaranteed by

the possibility that each of these steps is 0∆−1h. The variables Z
(1)
i may depend on this conditioning, as

D-typicality depends on the prior D steps; however, the conditioning assigns the “warm” random variables

values that contain no adversarial symbols: this can only increase the probability that a particular Z
(1)
s is

D-typical and hence reduce its expected value. We conclude that the Z
(s)
i satisfy equation (16), even under

conditioning. It follows that with constant probability
∑t
iWi never rises above −D2 and hence that β()

never departs R−.
Conditioned on the event that β`() never departs R−, the value β`(στ1 . . . τD) is bounded above by −D2;

hence β`(στ1 . . . τt) is bounded above by −D2 +
∑i=t−D
i=1 Zi. Again applying Lemma 22 to this sum (after

decomposing it into
∑
i Z

(s)
i as above), we find that, for any M,T > 0,

Pr[∃t ≥ T, β(στ1 . . . τt) ≥ −M | β`(στ1 . . .) never escapes R−] ≤ exp(−Ω(T ) +O(M)) .

Finally, we wish to show that if β() returns to R0 (or R+), it does so quickly. This proceeds exactly as
in the case of R+: in light of Lemma 22, for a constant E > 0, the probability that any one of the sums∑t
i=1 Z

(s)
i exceeds −Et is exp(−Ω(t)) and hence that β() departs R− quickly, if it does so at all.

Finally, consider the transitions among the states R−, R0, and R+. Any arrival into the state R− results
in the desired permanent descent beyond −M with constant probability. Otherwise, the waiting time to leave
any of the states after entry has a worst-case exponential tail: specifically, there are constants Atrans > 0
and atrans > 1 so that for any of the three states the probability that the waiting time between arrival and
departure in that state exceeds k is no more than Atransa

−k
trans. Furthermore, from either R0 or R+, the

probability of transitioning to R− in the next two state transitions is a nonzero constant. It follows that T ,
the number of transitions that occur before observing the permanent descent, has an exponential tail. As the
convolution of T waiting time distributions has an exponential tail by Lemma 24, it follows that the walk
permanently descends past −M with certainty and, moreover, the number of steps before this event takes
place has an exponential tail.

4.4 Bitcoin Security Threshold

Theorem 26. If pa < ϑ(ph,∆) then a Bitcoin execution over a lifetime of L slots achieves k-consistency
and u-liveness except with error probabilities L · exp(−Ω(k)) and L · exp(−Ω(u)), respectively.

If pa > ϑ(ph,∆), then the private chain attack is successful (with probability tending to 1 exponentially
quickly), and Bitcoin is insecure.

Proof sketch. The main claim is the positive statement for consistency. Consider an L-slot execution of the
protocol and let σ1, σ2, . . . be the resulting sequence of steps as per Definition 9 (for convenience, we see this
as an infinite sequence, while only being interested in its prefix covering the first L slots). First, recall that
by Fact 12 and a union bound, we have

Pr [∃i ∈ [L] : |σi| ≥ z] ≤ L · exp(−Ω(z)) . (17)

Moreover, given (11) and Lemma 25, for T , (ph/4∆)·k and for anym ∈ [L] we have |σmσm+1 . . . σm+T−1| ≤ k
except with error exp(−Ω(k)).

We invoke Theorem 14 for each m ∈ [L], using T as above and M , ck for a suitable constant c > 0
depending on the constants hidden in the asymptotic notation of Theorem 14, so that the error term remains
exp(−Ω(k)) in each invocation. Applying union bound over all m, this gives us

Pr
[
∃m ∈ [L],∃t̃ ≥ m+ T : β`(σ1 . . . σt̃) ≥ −ck

]
= L · exp(−Ω(k)) .

Recalling the notation of Section 2.4, this means that for any two slots `, t that are step boundaries separated
by at least T steps, and hence also if they are separated by at least k slots, we have β`(Ft) < −ck except
with error exp(−Ω(k)).
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We extend this to arbitrary slots `, t that are not necessarily step boundaries. Thanks to the Lipschitz
property of β` (Lemma 6), we know that in any slot t′ belonging to the step following immediately after
the slot t, β`(Ft′) may differ from β`(Ft) by at most t′ − t, which can be upper-bounded by a sufficiently
small multiple of k using (17), with error exp(−Ω(k)). By a similar argument, for any slot `′ from the step
immediately before the slot `, β`′(Ft) may differ from β`(Ft) by at most `−`′, which can be similarly bounded
using (17). To conclude, by a proper choice of c′, we have that for any ` ∈ [L− k] and t ∈ {`+ k, . . . , L},
β`(Ft) < −c′k except with probability L · exp(−Ω(k)).

Finally, we transition from β` to β∆
` : for any w = σ1 . . . σrw

′ where w′ is an incomplete step,

β∆
` (w)− β`(w) =

[
β∆
` (w)− β`(σ1 . . . σr−1)

]
+ [β`(σ1 . . . σr−1)− β`(w)] ≤ 2#h,a(σrw

′) ,

where the second inequality uses both Lemma 19 and Lemma 6. The resulting quantity can be again bounded
using (17), we can hence conclude that for any ` ∈ [L− k] and t ∈ {`+ k, . . . , L}, β∆

` (Ft) < 0 except with an
overall error probability L · exp(−Ω(k)), and invoke Lemma 1 to establish consistency.

For the positive result on liveness, the argument follows exactly the same path as in previous work
(e.g., [14, 15]), with the single exception that the honest chain growth is lower-bounded by h∆(·) rather than
the number of so-called “left-isolated slots” or “non-tailgaters.”

Finally, the negative result is straightforward: if pa > ϑ(ph,∆), then the expected growth rate of a private
chain dominates the expected growth rate of an honest chain with maximally delayed blocks (with strong tail
bounds), and so the private-chain attack succeeds with overwhelming probability.

Corollary 27. If ra < ϑ(rh,∆0) then a Bitcoin execution over a lifetime of L, where (1) honest and
adversarial PoW successes are modeled by Poisson processes with parameters rh and ra, respectively, and
(2) honest messages are delayed by no more than ∆0 time, achieves k-consistency and u-liveness except with
error probabilities L · exp(−Ω(k)) and L · exp(−Ω(u)), respectively.

If ra > ϑ(rh,∆0), then the private chain attack is successful (with probability tending to 1 exponentially
quickly), and Bitcoin is insecure.

Proof. This follows directly from the proof of Theorem 26. In particular, for a parameter s > 0—the length
in time of a discrete slots—and define pa = sra, ph = srh, and ∆ = d∆0e. In the limit, as s→ 0, this yields
the Poisson model. As noted in Fact 11, it follows that for any s, pa < ϑ(ph,∆), and the proof of Theorem 26
applies. A critical feature of the proof is that the conclusions are independent of s. In particular, the error
rates and constants (e.g., “D”) selected in the proof are independent of s—indeed, the dynamics of walk are
given by the bias, which is bounded for any s by −(1− pa/ϑ) < −(1− ra/ϑ).

We remark that in the Poisson setting, we naturally wish to parameterize consistency and soundness in
terms of absolute time (rather than an integer number of discrete slots, which would scale with 1/s). Note
that the time tstep associated with a single step drawn from S(pa, ph; ∆) converges (as s→ 0) to the shifted
exponential distribution ∆0 +X, where X is exponentially distributed with parameter ph (so that the density
function of X is given by ph exp(−xph)). Applying the tail bounds of Lemma 25 (for exponential random
variables), we find that in time t one must observe Ω(t/∆0) of these “Poisson steps” except with probability
exp(−Ω(t/∆0)). Thus the error bounds of Theorem 26 scale in t/∆0, as desired.

5 Tight Security Threshold for Proof-of-Stake Blockchains

Our results apply, with small adaptations, also to Nakamoto-style protocols in the proof-of-stake (PoS) setting
where they likewise yield a tight threshold. The PoS setting has a few notable differences which must be
appropriately reflected in the proof.

Protocol modeling. PoS blockchain security can be analyzed in an abstract framework analogous to that
described above for PoW blockchains. The fact of the matter is that PoS blockchains rely on fundamentally
more sophisticated protocols because they are faced with the challenge of generating randomness for leader
election and appropriately managing stake distribution snapshots. Despite this, typical PoS protocol security
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proofs proceed by showing that randomness generation can be carried out with high fidelity and, hence,
that the protocol can be analyzed in an idealized setting where slot leadership is determined by an i.i.d.
distribution. (The possibility of adaptive corruption can lead to a distortion of this i.i.d. condition, but
this can be generically managed by stochastic dominance arguments [1].) This yields the comparatively
simple setting described below, which can be directly applied to the security proofs of such protocols as Snow
White [3] and Ouroboros Praos [4].

Multiple slot leaders; the PoS characteristic string alphabet. In the PoS setting, one adopts a
discrete time model to reflect the round-based nature of the protocol itself. This means that events involving
multiple leaders per slot must be handled explicitly by the analysis. Specifically, the fundamental parameters
of the protocol naturally determine three probabilities:

• pA – the probability of at least one adversarial leader,

• pH – the probability of at least one honest leader,

• ph – the probability of exactly one honest leader.

These probabilities determine a distribution on a richer alphabet of characteristic string symbols. That is, we
now consider the alphabet ΣPoS = {0, h,H} × {0,A} and place the distribution on w = (x, y) ∈ ΣPoS which
independently assigns values to x ∈ {0, h,H} and y ∈ {0,A} so that:

• x = H with probability pH − ph; x = h with probability ph.

• y = A with probability pA.

The interpretation of the symbol w = (x, y) mirrors the definitions of the probabilities above. The x symbol
corresponds to honest participation in the slot in question: 0 indicates no honest leaders, h indicates exactly
one honest leader, and H indicates a nonzero number of honest leaders. (For analytic purposes, it is convenient
to permit x = H to be a valid assignment even if the slot has a unique leader.) Likewise, y = 0 indicates that
there are no adversarial leaders and y = A if there is at least one. As adversarial slot leaders can issue as
many blocks as they please in a PoS slot, there is no need to distinguish the case of a unique adversarial
leader. Observe that pH is the probability of any honest slot leader in a particular slot (and that, in general,
ph ≤ pH).

The security threshold in the PoS case is analogous to the PoW case:

pA <
1

∆− 1/pH

under the added assumption that ph is nonzero. Note that no particular relationship is assumed between ph
and pH ; it suffices for ph to be bounded above zero. This additional constraint (on ph) is necessary in general
circumstances where the adversary may break ties in the longest-chain rule: even without any adversarial
blocks, if all honest leaders are paired with at least one simultaneous leader a simple attack can force honest
maintenance of two forking chains of equal depths. It is an interesting fact that with the stronger assumption
of deterministic tie breaking, the positivity demand on ph can be removed (see [10] for a detailed discussion
and the full analysis of the synchronous case), and indeed this would also suffice in our setting. (We return
to this point below.)

The analysis: PoS ∆-forks and PoS margin. The definition of PoS fork is analogous; we only give a
brief overview as our treatment directly follows the definitions of PoS ∆-forks, relative margin, and settlement
in [4, 1, 10]. The notion of a PoS ∆-fork is adapted to the richer PoS characteristic strings in the natural
way: the only alteration is axiom (A3), which is updated so that for a symbol wi = (xi, yi), we have

• if xi = 0 there are no honest vertices associated with slot i; if xi = h there is exactly one; if xi = H there
may be an arbitrary positive number; and
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• if yi = 0 there are no adversarial vertices associated with slot i; if yi = A there may be an arbitrary
number.

Observe that in case xi = H, we place no particular constraints on the (positive) number of honest vertices
that label the slot; as we effectively permit the adversary to “choose” the fork for a given characteristic string,
this gives the adversary the power to determine the number of honest leaders if the characteristic string
permits the possibility that there is more than one. As it happens, giving the adversary this extra latitude
slightly simplifies the analysis without changing the (optimal) final results.

The most substantial change involves the elementary metric for measuring the ability of an adversary to
produce settlement violations for a characteristic string. In the PoS setting this is exactly captured by the
notion of relative margin; we reuse the name margin in this setting, since no confusion can arise. For a fork
F `∆ w, we define the relative δ-margin as

µδ`(F ) , max
T1 6∼`T2

(
min{αδF (T1), αδF (T2)}

)
,

this maximum extended over all pairs of tines satisfying the criterion. As usual, we again overload the
notation by defining

µδ`(w) , max
F`∆w

µδ`(F ) .

As in the PoW case, we will be considering the two variants δ = ∆ and δ = 1, which are again closely related.
The variant with δ = ∆ is directly relevant for settlement violations; on the other hand, the bulk of the
analysis focuses on the simpler variant µ1

`(w), which we simply denote µ`(w).
It is convenient to define the reach ρ as the simpler quantity ρ(F ) = maxT αF (T ) and, likewise, ρ(w) =

maxF`∆w ρ(F ). Margin plays a role directly analogous to the PoW setting: that is, a settlement violation
can occur in slot ` at time `+ t exactly if µ∆

` (w) ≥ 0, where w is the characteristic string through time `+ t.
While µ is a structurally distinct quantity from β, it can be analyzed using exactly the machinery we have
already developed. Specifically,

• When µ`(w) < 0, µ`(w) = β`(w) and thus adheres precisely to the recurrence for the Cold region, described
in Section 3.4.

• When µ`(w) ≥ 0, its exact behavior is unimportant because µ`(w) ≤ ρ(w) and µ`() cannot descend below
zero until ρ(w) returns to zero. In particular, once µ`() rises to zero, the quantity of interest becomes
ρ(w). ρ() simply follows directly the recurrence and dynamics for β`() in the pre-` regime, described in
Section 3.2. As in the analysis of Ouroboros Praos [1], this somewhat complicates the analysis of the
resulting random walk because ρ() will typically be nonzero when µ`() climbs to zero, so the resulting
return time of ρ() to zero depends on its initial height. One can develop a highly precise accounting for
this initial height, but for our purposes it suffices to simply bound it with the length of the previous
excursion of µ`() below zero (which is already controlled by the analysis).

• The final point of interest is the critical region around zero. Here the same argument works, though
one must adopt a stronger notion of “magic” sequence to guarantee descending across 0. In particular,
one identifies the sequence of (∆− 1)-isolated occurrences of uniquely honest slots (with no adversarial
presence) to guarantee descent. It is an interesting fact that this is the only place in the analysis that
requires unique honest leaders. Of course, this changes the constant probability associated with descent
compared to the PoW case.
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A Omitted Proofs

A.1 Proof of Claim 13

Proof. We have

E [#a(σ)] =

∞∑
`=∆

Pr[|σ| = `] · E [#a(σ) | |σ| = `]

=

∞∑
`=∆

Pr[|σ| = `] · (`− 1)pa

≤ pa
∞∑
`=∆

Pr[|σ| = `] · ` = paE [|σ|]

= pa
(
(∆− 1) + E [Gpa ]

)
= pa

(
(∆− 1) + 1/ph

)
= pa/ϑ < 1 ,

where Gp denotes a geometrically distributed random variable with distribution Pr[Gp = t] = (1− p)t−1p
(for t ≥ 1).

A.2 Proof of Lemma 16

Proof. Fix p ∈ [0, 1] and define
hn = E [h∆(X1, . . . , Xn)]

where, as in the statement of the lemma, the Xi are independent Bernoulli random variables with E [Xi] = p.
To match the definition of h∆, we define h0 = 0. Expanding the expectation around the outcome of the last
random variable Xn, we find that

hn = (1− p)hn−1 + p(1 + hn−∆) for all n > ∆. (18)

Likewise, we find that hn = (1− p)hn−1 + p for all 0 < n ≤ ∆. In this regime (where n ≤ ∆) we can directly
solve for hn:

hn = 1− (1− p)n for 0 < n ≤ ∆.

Define f(n) = n/α. A calculation confirms that f(·) satisfies the recurrence relation (18) for all n ∈ Z:

f(n) = (1− p) · f(n− 1) + p[1 + f(n−∆)] .

To complete the proof, we proceed by induction. For any 0 ≤ n ≤ ∆, both hn and f(n) lie in the interval
[0, 1] which establishes (12). Assuming (12) for all k < n (where n > ∆), we observe that

f(n)− hn = (1− p)[f(n− 1)− hn−1] + p[f(n−∆)− hn−∆]

as both f and h satisfy (18). Thus

|f(n)− hn| ≤ (1− p)|f(n− 1)− hn−1|+ p|f(n−∆)− hn−∆|
≤ (1− p) + p = 1 ,

as desired.
Finally, note that |h∆(x1, . . . , xn)− h∆(y1, . . . , yn)| ≤ 1 if (x1, . . . , xn) and (y1, . . . , yn) differ in only one

coordinate. The large deviation bound follows directly, then, from the McDiarmid inequality (Theorem 15).
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A.3 Proof of Lemma 17

Proof. Let gk = Pr[Xi = k] and let G(x) =
∑
k≥0 gkx

k denote the corresponding ordinary generating function

associated with the random variables Xi. By assumption, for sufficiently small a > 1, gk ≤ A · a−k; it follows
that G(x) is well-defined and differentiable around 1. As E [X] < 1, expanding the derivative we find that
G′(1) = E [Xi] < 1; in particular, for sufficiently small b > 1, G(b) < b. Thus, we may adopt an a∗ = min(a, b)
satisfying both of these inequalities. Let

B = Aa∗/(a∗ −G(a∗)) .

Then we show by induction that (for all t and k) Pr[Wt = k] ≤ Ba−k∗ . The base case t = 0 is immediate.

Pr[Wt = k] = Pr[Wt−1 = 0] · gk +

k∑
j=0

gj Pr[Wt−1 = k − j + 1]

≤ Aa−k∗ +

∞∑
j=0

gj Pr[Wt−1 = k − j + 1]

≤ Aa−k∗ +
∞∑
j=0

gjBa
−k+j−1
∗

= Aa−k∗ +Ba−k−1
∗

∞∑
j=0

gja
j
∗

= Aa−k∗ +Ba−k−1
∗ G(a∗)

= a−k∗ (A+BG(a∗)/a∗) = Ba−k∗ ,

as desired.

A.4 Proof of Lemma 21

Proof. Let α = 1/a < 1. Assume that λ < 1/e is small enough to satisfy the following additional inequalities:

λ ln2(λ−1) ≤ |E [A] |
4 · 32

(1−
√
α)2 ≤∗ |E [A] |

4 · 62
ln2(1/α) , and (19)

λ ≤ 1/C . (20)

The inequality ≤∗ above follows directly from the fact that 1 −
√
α < (1/2) ln(1/α) for all α ∈ (0, 1).

Decompose mA(λ) into two sums:

mA(λ) =
∑

−1≤k<S

eλk Pr[A = k]︸ ︷︷ ︸
(†)

+
∑
S≤k

eλk Pr[A = k]︸ ︷︷ ︸
(‡)

,

where S = 2 · ln(λ2/C)/ln(α) is a threshold chosen to balance error terms determined below. We record the
fact that under constraint (20) we have the simpler upper bound

S ≤ 6 ln(λ)/ln(α) . (21)

Consider the sum (†). We first record two estimates applied in the bound. Observe that

λS2 ≤ λ
(

6 ln(λ−1)

ln(α−1)

)2

≤ λ ln2(λ−1)

(
6

ln(α−1)

)2

≤ |E [A] |
4

(22)

30



and hence λS ≤ λS2 < 1/2. We additionally remark that for |δ| < 1, | exp(δ) − (1 + δ)| ≤ δ2/[2(1− |δ|)].
Then we find that ∑

−R≤k<S

eλk Pr[A = k] ≤
∑

−R≤k<S

(
1 + λk +

λ2k2

1− |λk|

)
Pr[A = k]

≤ 1 + λE [A] +
λ2S2

2(1− λS)

≤ 1 + λE [A] + λ2S2 . (23)

≤ 1 + λE [A] +
λ

4
|E [A] | , (24)

where line 23 follows because λS ≤ 1/2, as noted above, and line 24 follows from (22).
As for the sum (‡), in light of constraint 19 we find that

∑
S≤k

eλk Pr[A = k] ≤
∑
S≤k

eλkCαk =
C(αeλ)S

1− αeλ

≤ C
√
α
S

1−
√
α
≤ λ2

1−
√
α
≤ λ |E [A] |

4
.

(25)

where we used the fact that λ < ln(1/
√
α) and hence αeλ <

√
α in the first inequality of the last line. Thus

mA(λ) ≤ 1 + λE [A] + 2
|E [A] |

4
≤ 1 + λ

E [A]

2
,

as desired.

A.5 Proof of Lemma 22

Proof. Applying Lemma 21 to the random variables Zi, there is a constant λ∗ for which mZi
(λ∗) ≤ 1−λ∗γ/2 ≤

exp(−λ∗γ/2). As the Zi are independent,

mSn
(λ∗) = E

[
eλ
∗∑n

i Zi

]
=

n∏
i

E
[
eλ
∗Zi

]
≤ exp(−nλ∗γ/2) .

Thus

Pr[Sn ≥ T ] = Pr[eλ
∗Sn ≥ eλ

∗T ] ≤
E
[
eλ
∗Sn
]

eλ∗T

≤ e−nλ
∗γ/2e−λ

∗T = exp(−λ∗(T + nγ/2)) .

A.6 Proof of Lemma 23

Proof of Lemma 23. For a constant D,

Pr[∃n > 0, Sn ≥ D] ≤
∞∑
n=1

Pr[Sn ≥ D] ≤
∞∑
n=1

e−α[D+γn/2]

= e−αD
∞∑
n=1

e−γn/2 =
e−αD

eγ/2 − 1
, (26)

where α is the constant promised by Lemma 22. Let D∗ be a constant for which (26) is less than 1. Then,
with non-zero probability Z1 = Z2 = . . . = ZD∗ = −1, so that Sn = −D∗ and no future Sn is zero.
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A.7 Proof of Lemma 24

Proof. Let G(X) =
∑
k akX

k and H(X) =
∑
k bkX

k be the ordinary generating functions for the random
variables G and Hi, respectively. By assumption there are constants a > 1 and A > 0 for which ak = Pr[G =
k] ≤ Aa−k and constants b > 1 and B > 0 for which bk = Pr[Hi = k] ≤ Bb−k. Thus G(X) converges inside
[0, a); likewise H(X) converges inside [0, b).

Recall that G(X)× H(X) =
∑
cnX

n is the generating function for G+H1. As G(X) · H(X) converges in
[0,min(a, b)) (and, min(a, b) > 1), Pr[G+H1 = k] = ck = exp(−Ω(k)). The tail bound in the statement of
the theorem follows immediately.

Recall that G(H(X)) is the generating function associated with the convolution of G copies of H (the

random variable
∑G
i=1Hi). As H converges in a neighborhood around 1 and limz→1+ H(z) = 1, there is a

value z∗ > 1 for which H(z∗) converges to a value less than a (which is > 1). Then G(H(z∗)) converges;
writing G(H(Z)) =

∑
k ckX

k, we conclude that ck < exp(−Ω(k)). The tail bound in the statement of the
theorem follows immediately.

A.8 Proof of Lemma 25

This is a result of [9, Thm. 1].
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