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ABSTRACT
We establish the optimal security threshold for the Bitcoin protocol

in terms of adversarial hashing power, honest hashing power, and

network delays. Specifically, we prove that the protocol is secure if

𝑟𝑎 <
1

Δ0 + 1/𝑟ℎ
,

where 𝑟ℎ is the expected number of honest proof-of-work successes

in unit time, 𝑟𝑎 is the expected number of adversarial successes, and

no message is delayed by more than Δ0 time units. In this regime,

the protocol guarantees consistency and liveness with exponen-

tially decaying failure probabilities. Outside this region, the simple

private chain attack prevents consensus.

Our analysis immediately applies to any Nakamoto-style proof-

of-work protocol; we also present the adaptations needed to apply it

in the proof-of-stake setting, establishing a similar threshold there.
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1 INTRODUCTION
The Bitcoin protocol, proposed in 2008 by Satoshi Nakamoto [14],

has received abundant attention from both the applied and theo-

retical communities. The protocol’s survival in the permissionless

setting—where parties may freely join and depart—and the promise

of digital currencies and contracts that can thrive in such a hostile

environment have led to widespread experimentation and numer-

ous implementation projects. Likewise, the algorithmic core has

proven to be a successful framework for designing and analyzing

consensus algorithms.

Despite over a decade of study, the fundamental guarantees

of the protocol are not well understood. Roughly, the essential

ledger properties—consistency and liveness—are determined by

three interacting features: the hashing power of the adversary, the

hashing power of the honest parties, and networking delays. Ideally,

one would like to establish the precise relationship between these

parameters that guarantee the Bitcoin ledger properties. To date,

such a relationship has been elusive.

We establish this relationship, proving that Bitcoin is secure if

𝑟𝑎 <
1

Δ0 + 1/𝑟ℎ
, (1)

where 𝑟𝑎 is the expected number of adversarial proof-of-work suc-

cesses in unit time, 𝑟ℎ is the expected number of honest successes,

and no message is delayed by more than Δ0 time units. Here, adver-

sarial and honest proof-of-work successes are modeled as indepen-

dent Poisson processes, with parameters 𝑟ℎ and 𝑟𝑎 . In this region,

consistency accrues exponentially quickly in the sense that blocks

appearing at depth 𝑘 in a longest chain can only be later abandoned

with probability exp(−Ω(𝑘)). Additionally, liveness in this region

follows from a simple chain growth argument that provides simi-

lar exponential guarantees. This result is tight: if 𝑟𝑎 exceeds this

threshold, the simple private-chain attack prevents consensus. The

threshold, as a function of 𝑟ℎ , is indicated by the solid black curve

in Figure 1.

Our results in more detail. We work with the standard discrete

approximation to the Poisson distribution to simplify bookkeeping.

Specifically, we treat time as divided into small slots of length 𝑠

and let 𝑝𝑎 = 𝑠 · 𝑟𝑎 denote the probability of an adversarial hashing

success in a single slot; 𝑝ℎ = 𝑠 · 𝑟ℎ is likewise defined for the honest

parties. This distribution limits to the Poisson distribution as 𝑠 → 0

and a variety of classical results provide explicit upper bounds for

the distance between these distributions [3]. We remark that if

slots are short enough, there is no loss in assuming that no more

than a single success appears per slot. This is discussed formally in

Remark 1 below.

We reflect network delays with a single parameter Δ = ⌈Δ0/𝑠⌉:
while any message sent by honest parties is always delivered, the

adversary may delay its arrival by up to Δ slots. Delivery is assumed

to take place “at the beginning” of the slot, which is to say that

the minimum value Δ = 1 corresponds to the case where messages

transmitted in slot 𝑡 are available for other parties’ full consideration

in slot 𝑡+1. In this discretized setting, we prove that Bitcoin is secure
if

𝑝𝑎 <
1

Δ − 1 + 1/𝑝ℎ
. (2)

As mentioned above, if 𝑝𝑎 exceeds the bound there is an attack

that prevents any Bitcoin block from settling and succeeds with

probability tending to 1. This natural attack goes back to the original

Bitcoin whitepaper: it calls for the adversary to mine on a private

chain with the intention to double spend if this private chain catches

up to honestly held chains. The attack naturally generalizes to the

setting with delays by calling for maximum possible delay of all

honest messages. A notable, and perhaps unexpected, conclusion of

our work is that the viability of this straightforward attack precisely

captures the security regime of Bitcoin; in particular, when the

adversarial hashing power exceeds the optimal security threshold

this very attack prevents the protocol from reaching consensus and

thus represents the best one can do to subvert consistency.
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Finally, we point out that—while we discuss Bitcoin for concrete-

ness—our results are obtained in a model sufficiently general to

immediately cover any Nakamoto-style proof-of-work protocol. Ad-

ditionally, an adaptation of our techniques can be used to establish

similar results also for Nakamoto-style proof-of-stake protocols;

see Section 5 for a detailed discussion of this case.

Related work. Analyzing the security of Bitcoin has a long history.
The first rigorous results, due to Garay et al. [9], were obtained

in the lock-step synchronous model. Pass et al. [15] gave a new

treatment that established results in the Δ-synchronous model,

subsequently adopted by Garay et al. [8]. Kiffer et al. [13] tightened

the consistency bound of [15] by associating security with the

behavior of a Markov chain. Ren [16] simplified and condensed

these results, adopting the continuous-time Poisson model.

This line of research culminated in identifying the “Δ-isolated
bound,” establishing security if

𝑝𝑎 < 𝑝ℎ (1 − 𝑝ℎ)2Δ−1 .

As lim𝑠→0 (1 − 𝑠𝑟ℎ)2Δ0/𝑠−1 = exp(−2𝑟ℎΔ0), this corresponds to the

Poisson model bound

𝑟𝑎 < 𝑟ℎ exp(−2𝑟ℎΔ0) .

Roughly, the Δ-isolated bound can only leverage honest hashing

successes when surrounded by a Δ region with no competing hon-

est successes. The Δ-isolated bound established by prior work is

compared side-by-side with the optimal bound in Figure 1. While

the slopes of the two bounds coincide at zero, the “Δ-isolation”
criterion penalizes larger values of 𝑟ℎ .

It is natural to parameterize blockchain algorithms in the “sweet

spot” where 𝑟ℎ + 𝑟𝑎 ≈ 1/Δ0, as this intuitively maximizes block

throughput; the graph of Figure 1 illustrates this region. Bitcoin

itself operates in a region where 𝑟ℎ + 𝑟𝑎 is significantly less than

1/Δ0—that is, the roughly 10-minute interblock period targeted by

bitcoin is significantly longer than typical network delays; how-

ever, the recent generation of proof-of-work protocols, including

Ethereum [2], explicitly optimize throughput by choosing 𝑟𝑎 + 𝑟ℎ
approximately equal to 1/Δ0.

The relevance of Δ-isolated (honest) hashing victories to longest
chain rule analysis was recognized at least as early as [15], and also

plays a prominent role in our analysis: they arise in the treatment

in the “critical zone,” where the adversary has roughly “caught

up with” the honest players. (A more precise discussion appears

below.)

Finally, an independent preprint by Dembo et al. [6] appeared
online a few days prior to this paper and seems to investigate the

same questions and obtain similar results using different techniques.

We defer a detailed comparison of the results and techniques to a

future update.

A technical survey of the proof. Tomotivate the optimal threshold

itself, consider the baseline blockchain height that is achieved by the

honest parties if the adversary contributes no blocks and subjects

every honest message to a maximum delay Δ. With honest hashing

victories given by a sequence of i.i.d. indicator random variables

𝑤1,𝑤2, . . . corresponding to the time slots, the height ℎ𝑖 achieved
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Figure 1: The region of pairs (𝑟𝑎, 𝑟ℎ) for which Bitcoin is se-
cure with Δ0 = 10. The optimal bound established in this
paper 𝜗0 = 1/(Δ0 + 1/𝑟ℎ) is shown in solid black; the region
beneath this line—filled in light blue—is the region of pairs
(𝑟𝑎, 𝑟ℎ) for which we establish security. The best prior bound
𝜗 iso
0

= 𝑟ℎ exp(−2Δ0𝑟ℎ) is shown in dashed black; its corre-
sponding region of security is shown with blue hatching.

at slot 𝑖 satisfies

ℎ𝑖 =

{
ℎ𝑖−Δ + 1, if𝑤𝑖 = 1, and

ℎ𝑖−1, if𝑤𝑖 = 0.
(3)

It is an easy exercise to show that the expected value of ℎ𝑛 is

𝑛/𝛼 +𝑂 (1) where 𝛼 = (Δ−1) +1/𝑝ℎ (as above, 𝑝ℎ is the probability

of an honest hashing success). It is then clear that if 𝑝𝑎 exceeds

1/𝛼 (exactly the optimal threshold discussed earlier) an adversary

can dominate Bitcoin with the private-chain attack: in particular,

the adversary may pick any undesirable block in the system, begin

building a private chain prior to that block, and eventually overtake

the honest chain which grows at a rate of 1/𝛼 .
As for demonstrating security below this threshold, we develop

a set of new techniques for reasoning about the longest chain rule

in the Δ-synchronous setting. We begin by borrowing the notion

of a “fork,” the bookkeeping tool originating in [12] and adapted to

Δ-delays in [5]; this is a graph-theoretic convention for maintaining

the structure of all chains that have been constructed during an

execution of a blockchain protocol. With this language for express-

ing chains we consider the notion of “margin” from [1] (where it

was called “relative margin”). In the context of a history of hashing

successes—which indicates the prior slots in time during which

honest and adversarial hashing victories occurred—the notion of

margin provides a precise metric for “how many blocks ahead” of the
honest chains an adversarial chain could possibly be. More specifi-

cally, margin makes precise the intuition that the analysis of Bitcoin

is a contest between the adversary and the honest players to con-

struct the longest chain. (In fact, one has to specify a particular point

in time before which the adversary’s chain must diverge to make

sense of this notion, but we ignore such details in this summary.)

Previous work analyzed the behavior of margin in the synchronous

setting, first showing that it satisfies a relatively simple recurrence
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relation, and then analyzing the long term behavior of the process

that emerges by applying this to i.i.d. random variables, as above.

Existing analyses break down entirely in the Δ-synchronous case—
to sidestep this difficulty, one can use a pessimistic “Δ-synchronous
to synchronous reduction mapping,” [5] but this route leads to

precisely the Δ-isolated bound described above.

Our principal technical contribution is an analysis of margin

in the Δ-synchronous setting. We mention a few of the technical

challenges that arise; the full details are in Section 3. As margin

is intended to capture the “current advantage” of the adversary,

one would like to show that each adversarial success increases

margin by one. Honest successes are more complicated; however,

guided by the discussion of ℎΔ above, one would like to prove that

any honest success which gives rise to a height increase according

to the rule (3) indeed decreases the margin. Unfortunately, this

intuition fails: there are circumstances—occurring when the “race

is close” and margin is close to zero—where the appearance of an

honest victory actually works in the adversary’s favor. However,

we show that this natural intuition can indeed be established when

margin is bounded away from zero. Our results rely on several fork

transformations that yield a semi-normal form for forks; among

these is a “compression transformation” which guarantees that

among all honest blocks of a particular depth, there is at least one

that is “tight,” in the sense that it is placed at the minimum depth

history would allow. In the critical zone around zero, we show

looser bounds that rely on Δ-isolated successes.

With these recurrence relations in place, we analyze the resulting

stochastic process obtained by the appropriate i.i.d. distribution of

hashing successes in Section 4. This yields a randomwalkwith three

regions, which we analyze separately: when margin is bounded

away from zero, it is stochastically dominated by a negatively biased

random walk; the bias is determined by the gap between 𝑝𝑎 and

the optimal threshold. As we will see, this behavior exactly agrees

with the intuition above. When in a particular region near zero, it

follows a positively biased random walk, but one which descends

with constant probability. Fortunately, the critical zone around zero

has only constant thickness, so the global random walk still has the

desired features: in particular, after 𝑘 steps the probability it will

ever again rise to zero (or any other constant value) is exp(−Ω(𝑘)).
This establishes consistency.

Remarks and future directions. Wework with a very strong adver-

sary, one who is apprised of all future adversarial and honest mining

successes and their exact times. It is an interesting fact that the

security of the protocol is independent of such adversarial future

knowledge. In particular, such an adversary never has to contend

with regret for building on the wrong chain. On the other hand, we

analyze the “static setting”: 𝑝𝑎 and 𝑝ℎ are constant. It is reasonable

to expect that the analysis can be extended to a setting where these

are variable (but always satisfy, say 𝑝𝑎 < (1 − 𝛿)𝑝ℎ), but we do not

explore these issues. Our results focus on the “cryptographic” set-

ting where mining power is split between honest parties following

the protocol and adversarial parties deviating arbitrarily; hence we

cannot capture rational attacks by honest parties, such as “selfish

mining” [7]—of course the effect of such attacks can be reflected in

our model if the selfish miners are treated as adversarial. Finally,

for rates 𝑟𝑎 and 𝑟ℎ that satisfy 𝑟𝑎 < 1/(Δ0 + 1/𝑟ℎ), our analysis

establishes consistency and liveness with exponential error bounds;

note that the constants in these error functions depend (necessarily)

on the gap between 𝑟𝑎 and 1/(Δ0 + 1/𝑟ℎ).

Organization of the paper. Section 2 defines the technical tools of

our analysis: characteristic strings, forks, and the margin quantity;

and reduces the original question of Bitcoin consistency to margin.

Section 3 then shows howmargin can be bounded for a fixed history

of mining successes via a recurrence relation. Finally, Section 4

analyzes the random walk that is implied by this recurrence when

we move to the actual stochastic process with the success history

given by appropriately distributed random variables.

2 PRELIMINARIES
Throughout the paper, N = {0, 1, 2, . . .} denotes the set of natural
numbers (including zero). For 𝑛 ∈ N, [𝑛] denotes the set {1, . . . , 𝑛}
(hence [0] = ∅). For a word 𝑤 = 𝑤1 . . .𝑤𝑛 ∈ Σ𝑛 we denote by

𝑤𝑖:𝑗 its subword𝑤𝑖𝑤𝑖+1 . . .𝑤 𝑗 , and #𝑎 (𝑤) denotes the number of

occurrences of the symbol 𝑎 ∈ Σ in𝑤 ; similarly #𝑎,𝑏 (𝑤) ≜ #𝑎 (𝑤) +
#𝑏 (𝑤). We denote by ∥ the concatenation of languages.

2.1 Our Model and the Bitcoin Protocol
We begin with an informal, abstract description of the Bitcoin proto-

col that suffices to describe our model. We delay formal definitions

of consistency and liveness to later in this section.

The Bitcoin protocol is carried out by a family of parties of

two types: honest parties follow the letter of law, carrying out the

specified protocol, while adversarial parties may diverge arbitrarily

from the specifications. All parties actively engage in searching for

“proofs-of-work” (PoWs), which afford them the right to contribute

to the ledger. For the purposes of analysis we treat time as divided

into small slots and use a characteristic string to indicate whether a

proof-of-work was discovered in a particular time slot, and whether

the successful party was honest or adversarial. In particular, the

characteristic string 𝑤 = 𝑤1𝑤2 . . . ∈ {0, h, a}∗ associated with an

execution of the protocol is defined so that

𝑤𝑡 =


0 if no PoW was discovered in slot 𝑡 ,

h if an honest party discovered a PoW in slot 𝑡 ,

a if an adversarial party discovered a PoW in slot 𝑡 .

(4)

It is occasionally convenient to treat infinite characteristic strings

in {0, h, a}N for which we use the same conventions. We study

a probability distribution B(𝑝𝑎, 𝑝ℎ) of characteristic strings that
reflects different rates of adversarial and honest success.

Definition 1. Let 𝑝𝑎, 𝑝ℎ > 0 satisfy 𝑝𝑎 + 𝑝ℎ ≤ 1. Let B(𝑝𝑎, 𝑝ℎ) de-
note the distribution on characteristic strings𝑤1𝑤2 . . . ∈ {a, h, 0}N
given by independent selection of each𝑤𝑡 so that

𝑤𝑡 =


a with probability 𝑝𝑎,

h with probability 𝑝ℎ,

0 with probability 1 − 𝑝𝑎 − 𝑝ℎ .

Remark 1 (The discrete approximation to the Poisson process).
The most natural mathematical model for the distribution of proof-

of-work successes is a Poisson process, which reflects both the

memoryless aspect of the proof-of-work challenge and the fact

that it takes place in (effectively) continuous time. We work in the
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standard discrete approximation to the Poisson process since it

simplifies the accounting in Section 3; however, the proof could

as well have been presented in the Poisson setting. To clarify the

relationship between these models, consider the Poisson process

with parameter _ occurring on [0, 𝐿) ⊂ R. Dividing the interval

into 𝐿/𝑠 subintervals of length 𝑠 , let 𝑋𝑡 be the indicator random

variable for the event that at least one success appears in the 𝑡-th

subinterval. Then E [𝑋𝑡 ] = 1 − exp(−_𝑠) ≈ _𝑠 and the probability

that two Poisson successes appear in any of the subintervals is

𝐿/𝑠 · [1 − exp(−_𝑠) (1 + _𝑠)] = 𝑂 (𝐿_2𝑠) by the union bound, which

limits to zero linearly in 𝑠 . It follows that, except with probability

𝑂 (𝐿_2𝑠), the results of the independent random variables 𝑋𝑡 are

sufficient to determine the position of every success in [0, 𝐿) with
accuracy ±𝑠/2 and to determine their relative order exactly. Select-

ing a sufficiently small 𝑠 then suffices to bound the probability of

all the events of interest for our analysis. This also explains the

assumption that no more than one proof-of-work success can arise

in a particular time slot—this does not change the limiting model.

A final remark: scaling the discrete Δ-synchronous models of Pass

et al. [15] and Garay et al. [8]—which do reflect multiple hashing

successes—likewise leads to this very same Poisson model (for the

same reason). Ren [16] adopts precisely the Poisson model.

The Bitcoin protocol calls for parties to exchange blockchains,
each of which is an ordered sequence of blocks beginning with a

distinguished “genesis block,” known to all parties. Each proof-of-

work success confers on that party the right to add exactly one

block to an existing blockchain. (In fact, the party must identify

the previous chain on which she wishes to build ahead of time,

but this will not affect our analysis.) Honest parties follow the

longest-chain rule which dictates that they always choose to add

to the longest blockchain they have yet observed and broadcast

the result to all other parties. The basic dynamics of the system,

with a particular characteristic string𝑤 and an adversary, can be

described as follows.

Let C𝑡 denote the collection of all blockchains created by time 𝑡

and let 𝐻 (C𝑡 ) denote the subset of all chains in C𝑡 whose last block
was created by an honest party. Set C0 = {𝐺}, where𝐺 denotes the

unique chain consisting solely of the genesis block. The genesis

block is “honest”; thus 𝐻 (C0) = C0. It is convenient to adopt the

convention that C−𝑡 = 𝐻 (C−𝑡 ) = {𝐺} for any negative integer

−𝑡 < 0. Then the protocol execution proceeds as follows. For each

timestep 𝑡 = 1, . . .:

• If𝑤𝑡 = 0, define C𝑡 = C𝑡−1 and 𝐻 (C𝑡 ) = 𝐻 (C𝑡−1).
• If𝑤𝑡 = a, the adversary may select a single blockchain 𝐶 from

C𝑡−1 and add a block to create a new chain𝐶 ′
. Then C𝑡 = C𝑡−1∪

{𝐶 ′} and 𝐻 (C𝑡 ) = 𝐻 (C𝑡−1).
• If 𝑤𝑡 = h, the adversary may select any collection of chains

V for which 𝐻 (C𝑡−Δ) ⊆ V ⊆ C𝑡−1. This is the “view” of the
honest player, who applies the longest chain rule toV , selects the

longest chain 𝐿 ∈ V where ties are broken by the adversary, and

adds a new block to create a new chain 𝐿′. Then C𝑡 = C𝑡−1∪{𝐿′}
and 𝐻 (C𝑡 ) = 𝐻 (C𝑡−1) ∪ {𝐿′}.

In each time step 𝑡 we also maintain the set of Δ-dominant chains
D𝑡 ⊆ C𝑡 , determined entirely by C𝑡 and𝐻 (C𝑡−Δ): namely,D𝑡 is the

set of all chains in C𝑡 that are at least as long as the longest chain in

𝐻 (C𝑡−Δ). The intuition behind the definition of Δ-dominant chains

is that, in a time slot 𝑡 , it is in principle possible to manipulate an

honest party into adopting any Δ-dominant chain, as the adversary

is only obligated to deliver those chains in 𝐻 (C𝑡−Δ) and the chains

in D𝑡 are at least as long as those in 𝐻 (C𝑡−Δ).
This description implicitly places several constraints on the ad-

versary; most notably, the only means of producing new chains is

to append a block (associated with a proof-of-work success) to an

existing chain. In practice, these constraints are guaranteed with

cryptographic hash functions. Note that the Δ-synchrony assump-

tion is reflected in the rule for the case 𝑤𝑡 = h: the adversary is

obligated to deliver all chains produced by honest players that are

Δ slots old. Finally, we permit the adversary to have full view of

the characteristic string during this process. Of course, in practice

a Bitcoin adversary must make decisions “on line.” As mentioned

above, our proof shows that this extra power does not change the

security threshold of Bitcoin.

While expressed as a game between the adversary and the honest

players, considering that the adversary selects both the view V of

each honest player and is empowered to break ties, the structure

of the resulting sequence of chains (that is, the directed acyclic

graph naturally formed by the blocks) is determined entirely by the

adversary and the characteristic string.

In this context, we are interested in preserving two properties,

consistency and liveness, originally formulated in [9].

• Consistency; with parameter𝑘 . For any 𝑡1 ≤ 𝑡2, any𝐶1 ∈ D𝑡1

and 𝐶2 ∈ D𝑡2 satisfy 𝐶
⌈𝑘
1

⪯ 𝐶2, where ⪯ indicates the prefix

relation and 𝐶
⌈𝑘
1

is 𝐶1 without the blocks originating from the

slots {𝑡1 − 𝑘 + 1, . . . , 𝑡1}.
• Liveness; with parameter𝑢. For any two slots 𝑡1 < 𝑡2 with 𝑡1+
𝑢 ≤ 𝑡2, and any chain𝐶 ∈ D𝑡2 , there is a time 𝑡 ′ ∈ {𝑡1, . . . , 𝑡1+𝑢}
and a chain 𝐶 ′ ∈ 𝐻 (C𝑡 ′) such that 𝐶 ′ ⪯ 𝐶 .

Intuitively, consistency mandates that any blockchain possibly held

by an honest party at time 𝑡2 extends a blockchain that was held by

an honest party at time 𝑡1, except perhaps for a 𝑘-slot suffix which

could have been abandoned. Liveness, on the other hand, mandates

that the blockchain held by an honest party incorporates at least

one fresh honest block over any period of 𝑢 slots.

Note that the above definitions are tailored for the discrete set-

ting, they can be trivially translated to the Poisson setting by con-

sidering continuous time in place of slots.

2.2 Characteristic Strings and Forks
We let Σ = {0, h, a} and consider characteristic strings𝑤 = 𝑤1 . . .𝑤𝐿

drawn from the set Σ𝐿 . Recall that intuitively, the 𝑖-th symbol𝑤𝑖

of𝑤 describes the outcome of the 𝑖-th slot in an 𝐿-slot execution of

the Bitcoin protocol as captured in (4).

The following notion of a fork will be our core analytical tool

for reasoning about the security properties of the protocol.

Definition 2 (PoW Δ-fork). Let Δ be a positive integer and 𝐿 ∈ N.
A PoW Δ-fork for the string𝑤 = 𝑤1 . . .𝑤𝐿 ∈ Σ𝐿 is a directed, rooted

tree 𝐹 = (𝑉 , 𝐸) with a labeling function

lb : 𝑉 → {0} ∪ {𝑖 ∈ [𝐿] : 𝑤𝑖 ≠ 0}
satisfying the axioms (A1)–(A4) below. Edges are directed “away

from” the root so that there is a unique directed path from the root

to any vertex. The value lb(𝑣) is referred to as the label of 𝑣 . A
4



non-root vertex 𝑣 is called honest when𝑤lb(𝑣) = h; otherwise it is
adversarial.
(A1) The root 𝑟 ∈ 𝑉 has label lb(𝑟 ) = 0 and is considered honest.

(A2) The sequence of labels lb(·) along any directed path is in-

creasing.

(A3) If𝑤𝑖 = h then there is exactly one vertex with the label 𝑖 , if

𝑤𝑖 = a then there is at most one vertex with the label 𝑖 .

(A4) For any pair of honest vertices 𝑣,𝑤 for which lb(𝑣) + Δ ≤
lb(𝑤) we have len(𝑣) < len(𝑤), where len(·) denotes the
depth of the vertex.

A Δ-fork abstracts a protocol execution with a simple but suffi-

ciently descriptive discrete structure. Its vertices and edges stand

for blocks and their connecting hash links (in reverse direction),

respectively. The root represents the genesis block, and for each

vertex 𝑣 , lb(𝑣) and len(𝑣) denote the index of the slot in which the

respective block was created and the block’s depth, respectively.

It is easy to see the correspondence between the above axioms

and the constraints imposed in the protocol execution. In particular,

(A1) corresponds to the trusted nature of the genesis block; (A2)

reflects that the blocks’ ordering in a chain must be consistent

with slot order; (A3) reflects that honest players produce exactly

one block per PoW success, while the adversary might forgo a

block-creation opportunity; finally (A4) reflects the fact that given

sufficient time, as needed for block propagation in the network, an

honest party will take into account the blocks produced by previous

honest parties.

Definition 3 (Fork notation). We write 𝐹 ⊢Δ 𝑤 to indicate that 𝐹

is a Δ-fork for the string𝑤 . If 𝐹 ′ ⊢Δ 𝑤 ′
for a prefix𝑤 ′

of𝑤 , we say

that 𝐹 ′ is a subfork of 𝐹 if 𝐹 contains 𝐹 ′ as a consistently-labeled
subgraph. A fork 𝐹 ⊢Δ 𝑤 is closed if all its leaves are honest. By

convention, the trivial fork, consisting solely of a root vertex, is

closed. The closure of a fork 𝐹 , denoted 𝐹 ⊢Δ 𝑤 , is the maximal

closed subfork of 𝐹 .

An individual blockchain constructed during the protocol exe-

cution is represented by the notion of a tine, defined next. Conse-

quently, in later informal discussions we often identify a blockchain

with its respective tine if no confusion can arise.

Definition 4 (Tines). A path in a fork 𝐹 originating at the root is

called a tine (note that tines do not necessarily terminate at a leaf).

As there is a one-to-one correspondence between directed paths

from the root and vertices of a fork, we routinely overload notation

so that it applies to both tines and vertices.

Specifically, we let len(𝑇 ) denote the length of the tine 𝑇 , equal

to the number of edges on the path (see axiom (A4)). In the un-

usual cases where we wish to emphasize the fork from which 𝑣

is drawn, we write len𝐹 (𝑣). We further overload this notation by

letting len(𝐹 ) denote the length of the longest tine in a fork 𝐹 . Like-

wise, we let lb(·) apply to tines by defining lb(𝑇 ) ≜ lb(𝑣), where
𝑣 is the terminal vertex on the tine 𝑇 . For a vertex 𝑣 in a fork 𝐹 ,

we denote by 𝐹 (𝑣) the tine in 𝐹 terminating in 𝑣 . We say that a

tine is honest if the last vertex of the tine is honest; otherwise it is
adversarial.

Definition 5 (Branches). For an integer ℓ ≥ 1 and for two tines

𝑇,𝑇 ′
of a fork 𝐹 , we write 𝑇 ∼ℓ 𝑇

′
if the two tines share a vertex

with a label greater or equal to ℓ . The set of all tines 𝑇 ′ ∈ 𝐹 such

that 𝑇 ∼ℓ 𝑇
′
is called the branch of 𝑇 in 𝐹 and denoted B𝐹 (𝑇 ).

Intuitively, 𝑇 ∼ℓ 𝑇
′
guarantees that the respective blockchains

agree on the state of the ledger up to time ℓ . Looking ahead, the

adversary can only make two honest parties disagree on the state

of the ledger up to time ℓ if she makes them hold two chains corre-

sponding to tines for which 𝑇 ≁ℓ 𝑇
′
.

Definition 6 (Fork trimming; dominance). Given a string 𝑤 =

𝑤1 . . .𝑤𝑛 and a positive integer 𝑘 , we let 𝑤 ⌈𝑘 = 𝑤1 . . .𝑤𝑛−𝑘+1
denote the string obtained by removing the last 𝑘 −1 symbols. For a

fork 𝐹 ⊢Δ 𝑤1 . . .𝑤𝑛 we let 𝐹 ⌈𝑘 ⊢Δ 𝑤 ⌈𝑘 denote the fork obtained by

retaining only those vertices labeled from the set {0, . . . , 𝑛−𝑘+1}. In
the degenerate case 𝑘 > 𝑛 we define𝑤 ⌈𝑘 to be the empty string and

𝐹 ⌈𝑘 to be the trivial fork containing only the root. For convenience,

we sometimes prefer to emphasize the remaining length of the

string (resp. fork), and denote by𝑤𝑚⌉ and 𝐹𝑚⌉ the𝑚-symbol prefix

of 𝑤 and the corresponding fork, formally 𝑤𝑚⌉ ≜ 𝑤 ⌈𝑛−𝑚+1 and
𝐹𝑚⌉ ≜ 𝐹 ⌈𝑛−𝑚+1.

For an integer 𝛿 > 0, a tine 𝑇 in 𝐹 is called 𝛿-dominant if

len(𝑇 ) ≥ len(𝐹 ⌈𝛿 )

and simply call it dominant in the case 𝛿 = 1 (i.e., when len(𝑇 ) ≥
len(𝐹 )).

Observe that honest tines appearing in 𝐹 ⌈Δ are those that are

necessarily visible to honest players at a timeslot just beyond the

last one described by the characteristic string. Correspondingly, in

the special case 𝛿 = Δ, the notion of a Δ-dominant tine corresponds

to Δ-dominant chains as defined in the experiment described in

Section 2.1. More broadly, here and below we will always only be

interested in two possible values of the parameter 𝛿 : either 𝛿 = Δ
or 𝛿 = 1; and whenever we suppress 𝛿 in the notation, it indicates

the case 𝛿 = 1.

2.3 Advantage and Margin
Now we define our central quantity of interest called margin.

Definition 7 (Advantage, margin). For a Δ-fork 𝐹 ⊢Δ 𝑤 and 𝛿 > 0,

we define the 𝛿-advantage of a tine 𝑇 ∈ 𝐹 as

𝛼𝛿
𝐹
(𝑇 ) = len(𝑇 ) − len(𝐹 ⌈𝛿 ) .

Observe that 𝛼𝛿
𝐹
(𝑇 ) ≥ 0 if and only if 𝑇 is 𝛿-dominant in 𝐹 . We

often suppress the subscript if 𝐹 is clear from the context. For ℓ ≥ 1,

we define the 𝛿-margin of a fork 𝐹 as

𝛽𝛿ℓ (𝐹 ) = max

𝑇ℎ≁ℓ𝑇𝑎
𝑇ℎ is 𝛿-dominant

𝛼𝛿
𝐹
(𝑇𝑎) ,

this maximum extended over all pairs of tines (𝑇ℎ,𝑇𝑎) where 𝑇ℎ is

𝛿-dominant and 𝑇ℎ ≁ℓ 𝑇𝑎 . We call the pair (𝑇ℎ,𝑇𝑎) the 𝛿-witness
tines for 𝐹 if the above conditions are satisfied; i.e.,𝑇ℎ is 𝛿-dominant,

𝑇ℎ ≁ℓ 𝑇𝑎 , and 𝛽
𝛿
ℓ
(𝐹 ) = 𝛼𝛿

𝐹
(𝑇𝑎). Note that there might exist multiple

such pairs in 𝐹 , but under the condition ℓ ≥ 1 there will always

exist at least one such pair, as the trivial tine𝑇0 containing only the

root vertex satisfies 𝑇0 ≁ℓ 𝑇 for any 𝑇 and ℓ ≥ 1. For this reason,

we will always consider 𝛽𝛿
ℓ
only for ℓ ≥ 1.
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We overload the notation and define the 𝛿-margin of a charac-

teristic string𝑤 as

𝛽𝛿ℓ (𝑤) = max

𝐹⊢Δ𝑤
𝛽𝛿ℓ (𝐹 ) .

We call a fork 𝐹 ⊢Δ 𝑤 a 𝛿-witness fork for𝑤 if 𝛽𝛿
ℓ
(𝑤) = 𝛽𝛿

ℓ
(𝐹 ); again

multiple 𝛿-witness forks may exist for a string𝑤 .

We often write 𝛼𝐹 and 𝛽ℓ as shorthands for 𝛼
1

𝐹
and 𝛽1

ℓ
, respec-

tively; for brevity we also refer to 1-witness tines and 1-witness

forks as witness tines and witness forks, respectively.

Remark 2. Intuitively, 𝛼Δ
𝐹
(𝑇 ) captures the length advantage (or

deficit) of the tine𝑇 against the longest honest tine created at least Δ
slots before the upcoming slot, and hence now known to all honest

parties. Consequently, 𝛽Δ
ℓ
(𝐹 ) records the maximal advantage of

any tine 𝑇𝑎 in 𝐹 that potentially disagrees with some Δ-dominant

tine 𝑇ℎ about the chain state up to slot ℓ . A negative 𝛽Δ
ℓ
(𝐹 ) hence

indicates that the adversary cannot make an honest party holding

𝑇ℎ switch to any 𝑇𝑎 that would potentially cause a revision of its

ledger state up to slot ℓ ; this connection of margin and consistency

is made formal in Section 2.4.

Remark 3. The bulk of our analysis focuses on the quantity 𝛽ℓ (𝑤).
This quantity, without the special considerations on tine dominance,

appears to be somewhat more tractable than 𝛽Δ
ℓ
(𝑤). However, the

direct relationship between settlement failures andmargin sketched

above is most easily expressed using 𝛽Δ
ℓ
(𝑤). The two notions have

a simple relationship which justifies the choice to study 𝛽ℓ (): if
𝑤, 𝑥 ∈ Σ∗ and |𝑥 | ≥ Δ, then 𝛽Δ

ℓ
(𝑤𝑥) ≤ 𝛽ℓ (𝑤𝑦), where 𝑦 ∈ Σ∗ is the

string obtained by replacing every h in 𝑥 with the symbol a. (See
Lemma 18.)

Remark 4. In the special case |𝑤 | < ℓ , we can observe that any

fork 𝐹 ⊢Δ 𝑤 and any tines 𝑇,𝑇 ′ ∈ 𝐹 satisfy 𝑇 ≁ℓ 𝑇
′
(in particular,

𝑇 ≁ℓ 𝑇 ). Hence, in this case the quantity 𝛽𝛿
ℓ
(𝑤) simplifies to

𝛽𝛿ℓ (𝑤) = max

𝐹⊢Δ𝑤
𝛽𝛿ℓ (𝐹 ) = max

𝐹⊢Δ𝑤
𝑇 ∈𝐹

𝛼𝛿
𝐹
(𝑇 ) = max

𝐹⊢Δ𝑤
𝑇 ∈𝐹

len𝐹 (𝑇 ) − len(𝐹 ⌈𝛿 )

and so in this case we always have 𝛽𝛿
ℓ
(𝑤) ≥ 0.

It is easy to see that if a fork 𝐹 ⊢Δ 𝑤 has 𝛽𝛿
ℓ
(𝐹 ) < 0 then all tines

of length at least len(𝐹 ⌈𝛿 ) belong to the same branch. This justifies

the following definition.

Definition 8 (Main branch). Let𝑤 ∈ Σ𝑛 , ℓ ≥ 1, and 𝐹 ⊢Δ 𝑤 such

that 𝛽𝛿
ℓ
(𝐹 ) < 0. The unique branch of 𝐹 that contains all tines

of length at least len(𝐹 ⌈𝛿 ) (and possibly other tines) is called the

𝛿-main branch of 𝐹 and denoted M𝛿 (𝐹 ); we again omit 𝛿 in the

notation to indicate that 𝛿 = 1.

2.4 Margin and Consistency
We now formalize the intuitive connection between margin and

consistency outlined in Remark 2.

Consider an execution of the Bitcoin protocol over a lifetime

of 𝐿 slots, let 𝑤 = 𝑤1 . . .𝑤𝐿 be the corresponding characteristic

string. Let 𝐹 ⊢Δ 𝑤 be the fork consisting of vertices corresponding

to all blocks created during the execution, connected via the nat-

ural “child-block” relation and labeled by their creation slot. For

brevity, for each 𝑡 ∈ [𝐿] let 𝐹𝑡 ,𝑤𝑡 be the shorthands for 𝐹𝑡 ⌉ ,𝑤𝑡 ⌉ ,
respectively.

Lemma 1. Consider the Bitcoin execution described above. If for
every ℓ ∈ [𝐿 − 𝑘] and every 𝑡 ∈ {ℓ + 𝑘, . . . , 𝐿} we have 𝛽Δ

ℓ
(𝑤𝑡 ) < 0

then 𝑘-consistency was maintained during that execution.

Proof. Let 1 ≤ 𝑡1 ≤ 𝑡2 ≤ 𝐿 be slots and let 𝐶𝑖 ∈ D𝑡𝑖 be the

Δ-dominant chains from the definition of the consistency property.

If 𝑡1 ≤ 𝑘 then there is nothing to prove, hence assume 𝑡1 > 𝑘 and

consider ℓ := 𝑡1 − 𝑘 .

Fix any 𝑡 ∈ {𝑡1, . . . , 𝐿}. Since 𝛽Δ
ℓ
(𝐹𝑡 ) ≤ 𝛽Δ

ℓ
(𝑤𝑡 ) is negative by

assumption, there is a Δ-main branch MΔ (𝐹𝑡 ) in 𝐹𝑡 , and tines in

this branch share a vertex in or after slot ℓ , hence the corresponding

blockchains “agree” on their view of the content of the blockchain

up to slot ℓ . Moreover, any 𝑇 ∉ MΔ (𝐹𝑡 ) has 𝛼Δ𝐹𝑡 (𝑇 ) < 0 and there-

fore len(𝑇 ) < len((𝐹𝑡 )⌈Δ), hence 𝑇 is not Δ-dominant in 𝐹𝑡 . There-

fore, for each fixed 𝑡 ∈ {𝑡1, . . . , 𝐿}, all Δ-dominant blockchains D𝑡

in slot 𝑡 agree up to slot ℓ .

It remains to show that for 𝑡 ∈ {𝑡1, . . . , 𝐿 − 1}, tines inMΔ (𝐹𝑡 )
share their prefix up to slot ℓ with tines inMΔ (𝐹𝑡+1). If len((𝐹𝑡 )⌈Δ) =
len((𝐹𝑡+1)⌈Δ) then this is clear as MΔ (𝐹𝑡 ) ⊆ MΔ (𝐹𝑡+1) and as ar-

gued above, all tines inMΔ (𝐹𝑡+1) agree up to ℓ . On the other hand, if
len((𝐹𝑡 )⌈Δ) < len((𝐹𝑡+1)⌈Δ) then no extension of a tine𝑇 ∈ 𝐹𝑡 ,𝑇 ∉

MΔ (𝐹𝑡 ) can belong toMΔ (𝐹𝑡+1), as we had len(𝑇 ) < len((𝐹𝑡 )⌈Δ),
and 𝑇 could be extended by at most one vertex in 𝐹𝑡+1, hence the
extended tine is still shorter than len((𝐹𝑡+1)⌈Δ). Therefore, by an in-
duction argument, all chains inD𝑡1∪D𝑡2 agree on their prefix up to

ℓ and so this is also true for𝐶1 and𝐶2, establishing consistency. □

3 THE MARGIN RECURRENCE
Recall the meaning of the margin quantity 𝛽ℓ as discussed in Sec-

tion 1 and formalized in Section 2.3: Given some history of mining

successes captured as a characteristic string𝑤 ∈ Σ∗, 𝛽ℓ (𝑤) deter-
mines the potential length advantage (or deficit) of the best tine an

adversary could potentially use to make an honest party revise its

view of the history up to slot ℓ .

Given Lemma 1, our goal in this section is to establish upper

bounds on 𝛽ℓ (𝑤) for characteristic strings 𝑤 ∈ Σ∗. Our bounds
are expressed inductively, having the form 𝛽ℓ (𝑤𝑥) ≤ 𝛽ℓ (𝑤) + 𝑓 (𝑥)
where 𝑤, 𝑥 ∈ Σ∗, for some appropriate function 𝑓 of the suffix 𝑥 .

Intuitively, we would like 𝛽ℓ (𝑤) to satisfy the ideal recurrence: for
𝑤, 𝑥 ∈ Σ∗ and |𝑥 | ≥ Δ − 1,

𝛽ℓ (𝑤𝑥h) ≤ 𝛽ℓ (𝑤) + #a (𝑥) − 1 . (5)

Here 𝛽ℓ (·) increases by 1 for each ‘a’-symbol and decreases with

certainty by 1—intuitively this accounts for the last ‘h’-symbol

which is at least Δ slots ahead of any of the slots associated with𝑤 .

Roughly, we show that when 𝛽ℓ (𝑤) is “suitably large” or “suitably
small,” this ideal recurrence holds. The region around zero is more

problematic; in this case we only show that 𝛽ℓ cannot move too

quickly, and that there are certain suffixes (like 0
Δ−1h) which indeed

force 𝛽ℓ (·) to decrease. Because this difficult region will have only

constant width, we will see that it does not adversely affect the

final probabilistic results.

The step decomposition. The decomposition of𝑤 appearing

in the ideal recurrence (5) above plays a special role in the analysis.

We lay down some notation to reflect this.
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Definition 9 (The step decomposition). Let 𝑤 = 𝑤1𝑤2 . . . ∈
{a, h, 0}N. For such a string, we consider the decomposition 𝑤 =

𝜎1𝜎2 . . . where each

𝜎𝑖 ∈ ΣS ≜ {a, h, 0}Δ−1 ∥ {a, 0}∗ ∥ {h} .
We reserve the word symbol to refer to elements of Σ, and the

word step to refer to elements of ΣS . We write S(𝑤) ≜ 𝜎1𝜎2 . . . to

indicate the resulting sequence of elements of ΣS . Throughout, we
let |𝛾 | denote the number of symbols in the step 𝛾 ∈ ΣS .

We remark that this decomposition is unique and has the fol-

lowing direct interpretation: (1) write 𝑤 = 𝑥h𝑤 ′
where 𝑥 is the

shortest prefix of length at least Δ − 1 that is followed by the sym-

bol h. (2) emit the symbol 𝜎 = 𝑥h; (3) repeat the process on𝑤 ′
. The

sequence of symbols produced by this process corresponds to the

𝜎𝑖 above.

Organization. We start by introducing some key technical tools

below in Section 3.1. As a warm-up, in Section 3.2 we establish

a variant of the ideal recurrence (5) in the considerably simpler

setting “before the slot ℓ ,” i.e., for 𝑤 such that |𝑤 | < ℓ . Then we

turn to the more interesting case of general |𝑤 |, considering three

separate regions: the “critical” region where 𝛽ℓ (𝑤) is close to zero

(Section 3.3); the “cold” region where it is sufficiently below zero

(Sections 3.4); and the “hot” region where it is sufficiently above

zero (Section 3.5). As mentioned above, we show that the ideal

recurrence (5) holds in the hot and cold regions.

3.1 Compressed Forks and the Restructuring
Lemma

In our arguments we make use of special honest vertices called

tight that are, informally speaking, at the minimal depth that the

preceding part of the fork allows without violating the axiom (A4).

Herewe define these vertices formally and summarize several useful

properties they have: in particular, in Lemma 4 we show how a fork

that has a tight vertex at each possible depth (we call such forks

compressed) allows for a complex restructuring operation that leads

to a lower-bound on the margin of the underlying characteristic

string.

Definition 10. Let 𝐹 ⊢Δ 𝑤 ∈ Σ𝑛 . An honest vertex 𝑣 of 𝐹 is

called tight if len(𝑣) = len(𝐹lb(𝑣)−Δ⌉ ) + 1. The fork 𝐹 is said to

be compressed if, for every depth 0 ≤ 𝑑 ≤ len(𝐹 ), there is a tight
honest vertex 𝑣 of depth 𝑑 .

Lemma 2. Let 𝐹 ⊢Δ 𝑤 ∈ Σ𝑛 . Let 𝑣 be a tight vertex and let 𝑣 ′ be
an honest vertex with lb(𝑣) ≤ lb(𝑣 ′); then len(𝑣) ≤ len(𝑣 ′).

Proof of Lemma 2. As lb(𝑣) ≤ lb(𝑣 ′) and 𝑣 is tight,

len(𝑣) = len(𝐹lb(𝑣)−Δ⌉ ) + 1 ≤ len(𝐹lb(𝑣′)−Δ⌉ ) + 1 ≤ len(𝑣 ′) . □

Note the contrapositive of Lemma 2: if len(𝑣 ′) < len(𝑣) then
lb(𝑣 ′) < lb(𝑣).

Lemma 3. Let 𝑤 ∈ Σ∗, there exists a compressed witness fork
𝐹 ⊢Δ 𝑤 for𝑤 .

Proof. Let 𝐹 ⊢Δ 𝑤 be a witness fork for𝑤 . We describe a trans-

formation, which we naturally call “compression,” that converts 𝐹

into a compressed fork 𝐹𝑐 ⊢Δ 𝑤 for which 𝛽ℓ (𝐹𝑐 ) = 𝛽ℓ (𝐹 ). If 𝐹 is

compressed, the transformation makes no change. Otherwise, the

transformation is given as a sequence of “compression steps,” each

of which reduces the total depth of the fork and locally improves

tightness violations.

In particular, if 𝐹 is not compressed, there is a smallest depth

𝑑 ≤ len(𝐹 ) for which there is no tight honest vertex of depth 𝑑 . Let

𝐹 ′ denote the labeled rooted tree obtained from 𝐹 by carrying out

the following alterations:

• If 𝑑 = 1, for every vertex 𝑣 of depth 𝑑 = 1, replace any edge (𝑣,𝑢)
by an edge (𝑟,𝑢) where 𝑟 is the root.

• If 𝑑 > 1, raise every vertex 𝑣 of depth 𝑑 one level in the tree by

replacing the unique edge of the form (𝑢, 𝑣) with the edge (𝑝, 𝑣),
where 𝑝 is the parent of 𝑢.

The labels of all vertices in 𝐹 ′ remain the same as those of the

corresponding vertices in 𝐹 . As indicated above, we refer to the

procedure carrying 𝐹 ↦→ 𝐹 ′ as a compression step.

We verify that 𝐹 ′ ⊢Δ 𝑤 : Axiom (A1) is trivially satisfied. Ax-

iom (A2) holds for 𝐹 ′ as all directed edges added to 𝐹 ′ respect the
label ordering. Axiom (A3) holds as all labels are preserved. Finally,

we consider axiom (A4). Note the effect that the process has on the

depth of honest vertices in the general case 𝑑 > 1: The depths of all

honest vertices with (initial) depth less than 𝑑 are preserved, while

the depths of all honest vertices with depths at least 𝑑 are decreased

by exactly one. Thus the only possible violations of axiom (A4)

could occur among those honest vertices at depth exactly 𝑑 ; how-

ever, as all such vertices are non-tight by assumption, reducing

their depth by one guarantees axiom (A4). Finally, observe that if

𝑑 = 1, all vertices of depth 𝑑 are adversarial, as any honest vertex

of depth 1 is tight by definition, hence the above reasoning applies

as well despite a different alteration rule.

In light of the comments above, we note that len(𝐹 ′) = len(𝐹 )−1
and len(𝐹 ′) = len(𝐹 ) − 1. It follows that a finite number of com-

pression steps results in a compressed fork, 𝐹𝑐 , as desired.

In general, we show below that 𝛽ℓ (𝐹 ′) ≥ 𝛽ℓ (𝐹 ); thus, if 𝛽ℓ (𝐹 ) =
𝛽ℓ (𝑤) then 𝛽ℓ (𝐹 ′) = 𝛽ℓ (𝑤) and 𝐹 ′ is likewise an optimal fork.

Consider a tine 𝑇 of 𝐹 ; we may naturally associate this with the

tine 𝑇 ′
of 𝐹 ′ that terminates with the same vertex. If 𝛼𝐹 (𝑇 ) ≥

0 it follows from the discussion above that 𝛼𝐹 ′ (𝑇 ′) = 𝛼𝐹 (𝑇 ), as
len(𝑇 ′) = len(𝑇 ) − 1 and len(𝐹 ′) = len(𝐹 ) − 1. If 𝛼𝐹 (𝑇 ) < 0 it

follows that 𝛼𝐹 (𝑇 ) ≤ 𝛼𝐹 ′ (𝑇 ′) ≤ 𝛼𝐹 (𝑇 ) + 1, depending on whether

the alterations involve any vertices of the𝑇 . It follows immediately

that 𝛽ℓ (𝐹 ′) ≥ 𝛽ℓ (𝐹 ). Specifically, let (𝑇ℎ,𝑇𝑎) be two witness tines
for 𝐹 so that 𝛼𝐹 (𝑇ℎ) ≥ 0, 𝛼𝐹 (𝑇𝑎) = 𝛽ℓ (𝐹 ), and 𝑇ℎ ≁ℓ 𝑇𝑎 . Let 𝑇 ′

𝑎 and

𝑇 ′
ℎ
be the two tines corresponding to 𝑇𝑎 and 𝑇ℎ in 𝐹 ′, respectively;

clearly 𝑇 ′
ℎ
≁ℓ 𝑇 ′

𝑎 and note that this does not depend on ℓ . Then

𝛼𝐹 ′ (𝑇 ′
ℎ
) = 𝛼𝐹 (𝑇ℎ) and 𝛼𝐹 ′ (𝑇 ′

𝑎 ) ≥ 𝛼𝐹 (𝑇𝑎); therefore 𝑇 ′
ℎ
is dominant

in 𝐹 ′ and we have 𝛽ℓ (𝐹 ′) ≥ 𝛽ℓ (𝐹 ), as desired. □

Lemma 4 (Restructuring lemma). Let𝑤 ∈ Σ∗ be a characteristic
string and 𝐹 ⊢Δ 𝑤 be a compressed fork for 𝑤 , let 𝑇1 ≁ℓ 𝑇2 be
arbitrary tines in 𝐹 . For 𝑖 ∈ {1, 2}, let 𝑣𝑖 be an honest vertex on𝑇𝑖 and
let 𝐴𝑖 denote the set of all adversarial vertices on 𝑇𝑖 deeper than 𝑣𝑖 . If
lb(𝑣1) ≤ lb(𝑣2) then

𝛽ℓ (𝑤) ≥ 𝛼𝐹 (𝑣1) + |𝐴1 ∪𝐴2 | .
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Proof. On a high level, we restructure the fork 𝐹 to obtain

a valid fork 𝐹 ⊢Δ 𝑤 that satisfies 𝛽ℓ (𝐹 ) ≥ 𝛼𝐹 (𝑣1) + |𝐴1 ∪ 𝐴2 |,
establishing the claim. This restructuring consists of two main

modifications: (i) use (at least) all adversarial vertices in 𝐴1 ∪𝐴2 to

build a tine𝑇𝑎 on top of 𝑣1 with len(𝑇𝑎) at least len(𝑣1) + |𝐴1 ∪𝐴2 |;
and (ii) use tight vertices of depths len(𝑣2) +1, len(𝑣2) +2,. . . , len(𝐹 )
to build an honest tine𝑇ℎ on top of 𝑣2 that achieves len(𝑇ℎ) = len(𝐹 ).
A simple additional modification is needed to ensure that the honest

descendants of 𝑣1 and 𝑣2 do not violate the validity of the resulting

fork 𝐹 . The heart of the argument is then to verify that 𝐹 is indeed

a valid fork for𝑤 .

Towards a formal description of the restructuring operation,

we identify sets of vertices in 𝐹 that will be modified in the same

way. Let 𝑦 denote the last common vertex of 𝑇1 and 𝑇2, and let

𝑧 denote the deeper one of the vertices {𝑣1, 𝑦}. First, we define

𝐴′
𝑖
≜ {𝑎 ∈ 𝐴𝑖 : lb(𝑎) > lb(𝑧)}, we write 𝐴 ≜ 𝐴′

1
∪ 𝐴′

2
and refer

to the individual vertices in 𝐴 as 𝑎1, . . . 𝑎 |𝐴 | so that 𝑖 < 𝑗 implies

lb(𝑎𝑖 ) < lb(𝑎 𝑗 ).1 Next, as 𝐹 is compressed, it contains a tight honest

vertex for each depth in {len(𝑣2) + 1, . . . , len(𝐹 )}. We label these

vertices ℎ1, . . . , ℎ𝑔 , where 𝑔 = len(𝐹 ) − len(𝑣2) and ℎ𝑖 has len(ℎ𝑖 ) =
len(𝑣2) + 𝑖 , and denote 𝐻 ≜ {ℎ1, . . . , ℎ𝑔 }. Note that there might be

several tight vertices of a particular depth in 𝐹 , the choice of vertices

for𝐻 is arbitrary, we just ensure that it contains one vertex for each

of the relevant depths. Finally, we denote by 𝐷 = {𝑑1, . . . , 𝑑 |𝐷 |}
the set of all vertices that at the same time (a) are honest, (b) are

(possibly indirect) descendants of either 𝑣1 or 𝑣2, (c) are not (possible

indirect) predecessors of either 𝑧 or 𝑣2, and (d) are not in 𝐻 . We

again index the vertices in 𝐷 in an increasing order of labels.

We first modify 𝐹 as follows:

Set 𝐴: The unique edge of the form (𝑢, 𝑎1) is replaced with the

edge (𝑧, 𝑎1) and for each 𝑖 ∈ {2, . . . , |𝐴|}, the unique edge of the
form (𝑢, 𝑎𝑖 ) is replaced with the edge (𝑎𝑖−1, 𝑎𝑖 ).

Set 𝐻 : The unique edge of the form (𝑢,ℎ1) is replaced with the

edge (𝑣2, ℎ1) and for each 𝑖 ∈ {2, . . . , 𝑔}, the unique edge of the
form (𝑢,ℎ𝑖 ) is replaced with the edge (ℎ𝑖−1, ℎ𝑖 ).

We denote the resulting labeled tree 𝐹0, note that 𝐹0 is not nec-

essarily a valid fork. To reestablish validity, we proceed with the

following sequence of modifications:

Set 𝐷: For each 𝑖 ∈ {1, . . . , |𝐷 |} the unique edge of the form (𝑢,𝑑𝑖 )
in 𝐹𝑖−1 is replaced by (𝑢𝑖 , 𝑑𝑖 ), where 𝑢𝑖 is the vertex in 𝐹𝑖−1 with
maximum depth out of all honest vertices with label at most

lb(𝑑𝑖 ) − Δ; note that this in particular excludes 𝑑 𝑗 for 𝑗 > 𝑖 .

Formally,

𝑢𝑖 ≜ argmax

𝑢∈𝐹𝑖−1; 𝑤lb(𝑢)=h
lb(𝑢) ≤lb(𝑑𝑖 )−Δ

len𝐹𝑖−1 (𝑢) , (6)

where ties in max can be broken arbitrarily. The labeled tree

resulting from the 𝑖-th iteration is called 𝐹𝑖 .

Finally, we let 𝐹 ≜ 𝐹 |𝐷 | .
We now show that 𝐹 is a valid fork for 𝑤 . The axioms (A1)

and (A3) are clearly maintained by the above modifications and

hence inherited from 𝐹 . Axiom (A2) is satisfied in 𝐹 as each newly

added edge (𝑢, 𝑣) has lb(𝑢) < lb(𝑣). For new edges {(·, 𝑑𝑖 ) : 𝑑𝑖 ∈ 𝐷}

1
We recommend the reader to first consider the simplest situation where len(𝑦) <
len(𝑣𝑖 ) for both 𝑖 ∈ {1, 2} and hence 𝑧 = 𝑣1 and𝐴

′
𝑖 = 𝐴𝑖 .

this directly follows from (6), for new edges {(·, 𝑎𝑖 ) : 𝑎𝑖 ∈ 𝐴} this
is a consequence of the definition of 𝐴′

𝑖
and the ordering within 𝐴.

Finally, in 𝐻 we have by construction

len(𝑣2) < len(ℎ1) < · · · < len(ℎ𝑔 ) = len(𝐹 ),
𝑣2 is honest, and each ℎ𝑖 is tight (and hence honest). Applying

Lemma 2 to each ℎ𝑖 implies that

lb(𝑣2) < lb(ℎ1) < · · · < lb(ℎ𝑔 )
as required.

To verify axiom (A4), note that when moving from 𝐹 to 𝐹 , the

depths of all honest vertices outside of 𝐷 remained unchanged.

The depth of a vertex 𝑑𝑖 ∈ 𝐷 might have changed, but it has not

increased; this can be shown by simple induction on 𝑖: by induction

hypothesis, also the depths of all honest vertices with labels up to

lb(𝑑𝑖 ) − Δ have not increased from 𝐹 to 𝐹 , and hence

len𝐹 (𝑑𝑖 ) ≥ max

𝑢∈𝐹, 𝑤lb(𝑢)=h
lb(𝑢) ≤lb(𝑑𝑖 )−Δ

len𝐹 (𝑢) + 1

≥ max

𝑢∈𝐹, 𝑤lb(𝑢)=h
lb(𝑢) ≤lb(𝑑𝑖 )−Δ

len
𝐹
(𝑢) + 1 = len

𝐹
(𝑑𝑖 ) ,

where the first inequality follows from axiom (A4) in 𝐹 and the

last equality is a consequence of (6). Given the above, the only

possible violation of axiom (A4) in 𝐹 could occur for a pair (𝑣,𝑤)
with𝑤 = 𝑑𝑖 ∈ 𝐷 , but this is exactly prevented by the rule (6). This

concludes the argument that 𝐹 ⊢Δ 𝑤 .

To finish the proof, denote by𝑇𝑎 and𝑇ℎ the tines in 𝐹 terminating

in 𝑎 |𝐴 | and ℎ |𝐻 | , respectively. Given 𝑇1 ≁ℓ 𝑇2 we have lb(𝑦) < ℓ ,

and note that the last common vertex of𝑇𝑎 and𝑇ℎ has label at most

lb(𝑦), hence we have 𝑇𝑎 ≁ℓ 𝑇ℎ . Furthermore, len(𝑇ℎ) = len(𝐹 ) by
construction. Hence we have

𝛽ℓ (𝑤) ≥ 𝛽ℓ (𝐹 ) ≥ 𝛼
𝐹
(𝑇𝑎) = 𝛼𝐹 (𝑧) + |𝐴| .

Finally, 𝛼𝐹 (𝑧) + |𝐴| ≥ 𝛼𝐹 (𝑣1) + |𝐴1 ∪ 𝐴2 |: if 𝑧 = 𝑣1 then each

𝐴𝑖 = 𝐴′
𝑖
and hence 𝐴 = 𝐴1 ∪ 𝐴2; otherwise 𝑧 = 𝑦 and 𝛼𝐹 (𝑧) ≥

𝛼𝐹 (𝑣1) + |(𝐴1 ∪𝐴2) \𝐴|. This concludes the proof. □

3.2 Warm-up: Margin Prior To ℓ

We start by describing the behavior of 𝛽ℓ (𝑤) for |𝑤 | < ℓ . Note that

this significantly simplifies the notion as discussed in Remark 4, in

particular |𝑤 | < ℓ implies 𝛽ℓ (𝑤) ≥ 0. We use this simpler case to

illustrate the approach taken also in our later proofs.

Lemma 5. Let ℓ ≥ 1,𝑤 ∈ {0, h, a}<ℓ and 𝑥 ∈ {0, h, a}≥Δ−1. Then

𝛽ℓ (𝑤𝑥h) ≤
{
𝛽ℓ (𝑤) + #a (𝑥) − 1 if 𝛽ℓ (𝑤) ≥ 1 ,

#a (𝑥) if 𝛽ℓ (𝑤) = 0 .

Proof. The proof proceeds by case analysis. First consider the

case 𝛽ℓ (𝑤) ≥ 1. If 𝛽ℓ (𝑤𝑥h) ≤ #a (𝑥) then the lemma follows im-

mediately, hence assume 𝛽ℓ (𝑤𝑥h) > #a (𝑥). Let 𝐹 ′ ⊢Δ 𝑤𝑥h be a

witness fork for𝑤 ′ ≜ 𝑤𝑥h and let (𝑇 ′
ℎ
,𝑇 ′
𝑎 ) be a witness pair in 𝐹 ′.

Let 𝐹 ≜ 𝐹 ′ |𝑤 | ⌉ ⊢Δ 𝑤 and define𝑇 ≜ (𝑇 ′
𝑎 ) |𝑤 | ⌉ as the restriction of𝑇

′
𝑎

to vertices with labels at most |𝑤 |; we have 𝑇 ∈ 𝐹 . By definition of

𝑇 ′
𝑎 , at least 𝛽ℓ (𝑤𝑥h) deepest vertices of 𝑇 ′

𝑎 are adversarial. By the

assumption 𝛽ℓ (𝑤𝑥h) > #a (𝑥), more than #a (𝑥) deepest vertices of
𝑇 ′
𝑎 are hence adversarial. However, 𝑇 ′

𝑎 \ 𝑇 only contains vertices
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with labels beyond |𝑤 |, and the whole 𝐹 ′ contains at most #a (𝑥)
adversarial vertices with such labels, hence 𝑇 ′

𝑎 \ 𝑇 must consist

solely of adversarial vertices and we get len(𝑇 ′
𝑎 ) − len(𝑇 ) ≤ #a (𝑥).

Consider any honest tine 𝑇𝐻 of maximum length in 𝐹 , we have

lb(𝑇𝐻 ) ≤ |𝑤 |. Now let 𝑇 ′
𝐻

be the unique honest tine in 𝐹 ′ that
satisfies lb(𝑇 ′

𝐻
) = |𝑤 ′ | as it terminates with the unique honest

vertex corresponding to the trailing h-symbol of 𝑤𝑥h according

to axiom (A3) of Definition 2. As |𝑥h| ≥ Δ, axiom (A4) gives us

len(𝑇𝐻 ) < len(𝑇 ′
𝐻
) and hence

len(𝐹 ) < len(𝐹 ′) . (7)

As |𝑤 | < ℓ , we have 𝑇 ≁ℓ 𝑇 and the pair (𝑇,𝑇 ) can serve as a

witness pair in 𝐹 . We can hence conclude

𝛽ℓ (𝑤) ≥ 𝛽ℓ (𝐹 ) ≥ 𝛼𝐹 (𝑇 ) = len(𝑇 ) − len(𝐹 )

≥ [len(𝑇 ′
𝑎 ) − #a (𝑥)] − [len(𝐹 ′) − 1]

= 𝛽ℓ (𝑤𝑥h) − #a (𝑥) + 1 ,

(8)

as desired, finishing the proof for 𝛽ℓ (𝑤) ≥ 1.

In the case 𝛽ℓ (𝑤) = 0, the situation 𝛽ℓ (𝑤𝑥h) > #a (𝑥) cannot
occur, as the same reasoning as above would give us 0 = 𝛽ℓ (𝑤) ≥
𝛽ℓ (𝑤𝑥h) − #a (𝑥) + 1 ≥ 1, a contradiction. Hence in this case we

must have 𝛽ℓ (𝑤𝑥h) ≤ #a (𝑥) as desired. □

Remark 5. Notice the structure of the argument in the first part

of the proof of Lemma 5. To prove an upper-bound on 𝛽ℓ (𝑤𝑥h),
we consider the optimal fork 𝐹 ′ ⊢ 𝑤𝑥h witnessing 𝛽ℓ (𝑤𝑥h) and
the witness tines (𝑇 ′

ℎ
,𝑇 ′
𝑎 ) in 𝐹 ′; we then use these witnesses to

construct a related fork 𝐹 ⊢ 𝑤 that achieves sufficient 𝛽ℓ (𝐹 ), which
of course lower-bounds 𝛽ℓ (𝑤). This translates to an upper-bound

on 𝛽ℓ (𝑤𝑥h) in terms of 𝛽ℓ (𝑤) as desired, cf. (8), observing that

|𝑥 | ≥ Δ − 1 guarantees len(𝐹 ′) > len(𝐹 ).
The same high-level approach is also used in the proofs of the

subsequent Lemmas 7, 8 and 10; the challenging part is typically to

construct 𝐹 and the right tines in 𝐹 such that they provably witness

sufficient 𝛽ℓ (𝐹 ).

3.3 The Critical Region
In the “critical region” (near zero) we will rely on rather loose

information about the behavior of 𝛽ℓ . The first bound (Lemma 6)

establishes that |𝛽ℓ (𝑤𝑥) − 𝛽ℓ (𝑤) | ≤ #h,a (𝑥)—each symbol of 𝑥

can change 𝛽ℓ () by at most one. The second bound for the critical

region (Lemma 7) shows that for |𝑤 | ≥ ℓ , 𝛽ℓ (𝑤0
𝑡h) < 𝛽ℓ (𝑤) when

𝑡 ≥ Δ− 1. Note that for |𝑤 | < ℓ a similar statement (with a singular

exception of 𝛽ℓ (𝑤) = 0) follows from Lemma 5.

Lemma 6 (𝛽ℓ is 1-Lipschitz). Let𝑤 ∈ {0, h, a}∗ be a characteristic
string. Then 𝛽ℓ (𝑤0) = 𝛽ℓ (𝑤) and for 𝑥 ∈ {h, a} we have

��𝛽ℓ (𝑤𝑥) −
𝛽ℓ (𝑤)

�� ≤ 1.

Proof. The lower bound 𝛽 (𝑤𝑥) ≥ 𝛽 (𝑤) − 1 is straightforward;

in fact one can establish higher precision bounds

𝛽ℓ (𝑤0) = 𝛽ℓ (𝑤) ,
𝛽ℓ (𝑤a) ≥ 𝛽ℓ (𝑤) + 1

and 𝛽ℓ (𝑤h) ≥ 𝛽ℓ (𝑤) − 1 .

These follow by considering an optimal fork 𝐹 ⊢Δ 𝑤 with witness

tines (𝑇ℎ,𝑇𝑎): if 𝑥 = a, an adversarial vertex can be added to the

end of𝑇𝑎 ; if 𝑥 = h, this honest vertex can be added to the end of𝑇ℎ .

The resulting forks clearly achieve the statistics above.

We turn our attention to the upper bound 𝛽ℓ (𝑤𝑥) ≤ 𝛽ℓ (𝑤) + 1.

Let 𝐹 ′ ⊢Δ 𝑤𝑥 be a compressed optimal fork with witness tines

(𝑇 ′
ℎ
,𝑇 ′
𝑎 ). Let 𝐹 ⊢Δ 𝑤 denote the fork that results by removing the

vertex 𝑣 associated with the symbol 𝑥 . If 𝑣 does not appear on either

of the witness tines, the same tines establish that 𝛽ℓ (𝐹 ) ≥ 𝛽ℓ (𝐹 ′)
and we conclude that 𝛽ℓ (𝑤) ≥ 𝛽ℓ (𝑤𝑥), as desired. If 𝑣 appeared on

𝑇 ′
𝑎 (and possibly also on 𝑇 ′

ℎ
if 𝑇 ′

ℎ
= 𝑇 ′

𝑎 ), we let (𝑇ℎ,𝑇𝑎) denote the
restrictions of (𝑇 ′

ℎ
,𝑇 ′
𝑎 ) to 𝐹 and note that the witness tines (𝑇ℎ,𝑇𝑎)

establish that

𝛽ℓ (𝑤) ≥ 𝛽ℓ (𝐹 ) ≥ 𝛼𝐹 (𝑇𝑎) ≥ 𝛼𝐹 ′ (𝑇 ′
𝑎 ) − 1 = 𝛽ℓ (𝑤𝑥) − 1 ,

as desired. It remains to consider the case that 𝑣 appears on 𝑇 ′
ℎ

and not on 𝑇 ′
𝑎 . As above, let 𝑇ℎ denote the tine in 𝐹 resulting from

removing 𝑣 from𝑇 ′
ℎ
, and observe that 𝐹 is compressed. If 𝛼𝐹 ′ (𝑇 ′

𝑎 ) =
𝛽ℓ (𝑤𝑥) ≥ 0, we invoke Lemma 4. Let 𝑣ℎ and 𝑣 ′𝑎 denote the deepest

honest vertices on 𝑇ℎ and 𝑇 ′
𝑎 respectively; let 𝐴ℎ (resp. 𝐴′

𝑎) be the

set of adversarial vertices on 𝑇ℎ (resp. 𝑇 ′
𝑎 ) deeper than 𝑣ℎ (resp. 𝑣 ′𝑎).

If lb(𝑣ℎ) ≤ lb(𝑣 ′𝑎) then Lemma 4 gives us

𝛽ℓ (𝑤) ≥ 𝛼𝐹 (𝑣ℎ) + |𝐴′
𝑎 ∪𝐴ℎ | ≥ (𝛼𝐹 (𝑣ℎ) + |𝐴ℎ |) + |𝐴′

𝑎 \𝐴ℎ |
≥ −1 + |𝐴′

𝑎 \𝐴ℎ | ≥ 𝛽ℓ (𝑤𝑥) − 1

as desired. On the other hand, if lb(𝑣 ′𝑎) ≤ lb(𝑣ℎ) we similarly have

𝛽ℓ (𝑤) ≥ 𝛼𝐹 (𝑣 ′𝑎) + |𝐴′
𝑎 ∪𝐴ℎ | ≥ 𝛼𝐹 (𝑣 ′𝑎) + |𝐴′

𝑎 | ≥ 𝛼𝐹 ′ (𝑇 ′
𝑎 )

= 𝛽ℓ (𝑤𝑥) .

Finally, we consider the case that 𝛼𝐹 ′ (𝑇 ′
𝑎 ) = 𝛽ℓ (𝑤𝑥) < 0. Letting𝑇𝐻

denote a maximum length honest tine in 𝐹 we consider two cases:

if 𝑇𝐻 ≁ 𝑇 ′
𝑎 , these two tines witness 𝛽ℓ (𝑤) ≥ 𝛼𝐹 (𝑇 ′

𝑎 ) ≥ 𝛼𝐹 ′ (𝑇 ′
𝑎 ) =

𝛽ℓ (𝑤𝑥), as desired. Otherwise,𝑇𝐻 ≁ 𝑇ℎ and these two tines witness

𝛽ℓ (𝑤) ≥ 𝛼𝐹 (𝑇ℎ) ≥ 𝛼𝐹 ′ (𝑇 ′
ℎ
) − 1 ≥ 𝛽ℓ (𝑤𝑥) − 1, as desired. □

Lemma 7. Let ℓ ≥ 1 and𝑤 ∈ {0, h, a}≥ℓ be a characteristic string.
Then 𝛽ℓ (𝑤0

Δ−1h) ≤ 𝛽ℓ (𝑤) − 1.

Proof. We follow the approach outlined in Remark 5. Let 𝐹 ′ ⊢Δ
𝑤0

Δ−1h be a witness fork for𝑤0
Δ−1h and let𝑇 ′

𝑎 and𝑇 ′
ℎ
denote a pair

of witness tines in 𝐹 ′ so that 𝛼 (𝑇 ′
ℎ
) ≥ 0 and 𝛼 (𝑇 ′

𝑎 ) = 𝛽ℓ (𝑤0
Δ−1h).

Let 𝑣 denote the vertex in 𝐹 ′ corresponding to the final h symbol and

let 𝐹 ⊢Δ 𝑤 denote the fork obtained by removing the vertex 𝑣 . Note

that len(𝐹 ) < len(𝐹 ′) by the same argument as (7) in Lemma 5.

Note that as |𝑤 | ≥ ℓ and𝑇 ′
ℎ
≁ℓ 𝑇

′
𝑎 , 𝑣 cannot appear on both these

tines. If 𝑣 appears on 𝑇 ′
𝑎 , let 𝑇𝑎 denote the tine in 𝐹 resulting from

removal of 𝑣 . As 𝑇 ′
𝑎 terminated with an honest vertex and, by defi-

nition, 𝛽ℓ (𝑤0
Δ−1h) = 𝛼𝐹 ′ (𝑇 ′

𝑎 ), we conclude that 𝛽ℓ (𝑤0
Δ−1h) = 0.

In this special case, then, we wish to show that 𝛽ℓ (𝑤) ≥ 1. Observe

that 𝑇𝑎 is dominant in 𝐹 , as len(𝑇𝑎) = len(𝐹 ′) − 1 = len(𝐹 ). On the

other hand, 𝛼𝐹 (𝑇 ′
ℎ
) = 𝛼𝐹 ′ (𝑇 ′

ℎ
) + 1 so the two tines (now playing

reverse roles) witness 𝛽ℓ (𝑤) ≥ 1, as desired. Otherwise, 𝑣 does not

appear on 𝑇 ′
𝑎 . In this case, we let 𝑇ℎ denote the tine corresponding

to𝑇 ′
ℎ
in 𝐹 : specifically, if 𝑣 does not appear in𝑇 ′

ℎ
then define𝑇ℎ = 𝑇 ′

ℎ
;

otherwise, define 𝑇ℎ to be the result of removing 𝑣 from 𝑇 ′
ℎ
. In ei-

ther case, however, 𝑇ℎ is dominant in 𝐹 (as len(𝐹 ) = len(𝐹 ′) − 1).

Thus the tines 𝑇 ′
𝑎 and 𝑇ℎ (in 𝐹 ) witness 𝛽ℓ (𝑤) ≥ 𝛽ℓ (𝑤0

Δ−1h) + 1,

as desired. □
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3.4 The Cold Region
We now study the setting when 𝛽ℓ is sufficiently small. Specifically,

consider a string of steps 𝜎 = 𝜎1 . . . 𝜎𝑛 ∈ Σ𝑛S , where each 𝜎𝑖 ∈ ΣS .
We identify the set

Cold = {𝜎 = 𝜎1 . . . 𝜎𝑛 ∈ Σ+S :

𝛽ℓ (𝜎1 . . . 𝜎𝑛−1) + #h,a (𝜎𝑛) + #h (𝜎𝑛−1) < 0}

where naturally #h (𝜎0) = 0. We show that in the region defined by

Cold, 𝛽ℓ satisfies the ideal recurrence (5).
Note that the following lemma does not require any relationship

between |𝑤 | and ℓ , the value ℓ can be an arbitrary positive constant.

Nonetheless, the lemma is only useful to control margin after slot

ℓ , as we know from Lemma 5 that before that slot, margin cannot

be negative.

Lemma 8. Let ℓ ≥ 1; let𝑤 ∈ {0, h, a}∗, 𝑥 ∈ {0, h, a}≥Δ−1, and let
𝑧 ∈ {0, h, a}≤Δ be the Δ-long suffix of𝑤 (if |𝑤 | < Δ then 𝑧 = 𝑤 ). If
𝛽ℓ (𝑤) < −#h,a (𝑥) − #h (𝑧) then

𝛽ℓ (𝑤𝑥h) ≤ 𝛽ℓ (𝑤) + #a (𝑥) − 1 .

In particular, for any 𝜎 ∈ Σ∗S and any step 𝛾 ∈ ΣS , if 𝜎𝛾 ∈ Cold then
𝛽ℓ (𝜎𝛾) ≤ 𝛽ℓ (𝜎) + #a (𝛾) − 1.

Proof. Our high-level approach exactly follows Remark 5, where

the fork 𝐹 ⊢ 𝑤 and its tines evidencing sufficient 𝛽ℓ (𝑤) are con-
structed simply as the restrictions of a compressed witness fork

𝐹 ′ ⊢ 𝑤𝑥h and its witness tines (𝑇 ′
ℎ
,𝑇 ′
𝑎 ) to 𝑤 ; a detailed argument

follows.

Let𝑤 ′ ≜ 𝑤𝑥h and let 𝐹 ′ be a compressed witness Δ-fork 𝐹 ′ ⊢Δ
𝑤 ′

; let (𝑇 ′
ℎ
,𝑇 ′
𝑎 ) be a pair of witness tines in 𝐹 ′ such that len(𝑇 ′

ℎ
) =

len(𝐹 ′). Furthermore, let 𝐹 ≜ 𝐹 ′ |𝑤 | ⌉ ⊢Δ 𝑤 and define𝑇ℎ ≜ (𝑇 ′
ℎ
) |𝑤 | ⌉

and 𝑇𝑎 ≜ (𝑇 ′
𝑎 ) |𝑤 | ⌉ , i.e., 𝑇ℎ and 𝑇𝑎 are the restrictions of 𝑇 ′

ℎ
and 𝑇 ′

𝑎

to vertices with labels at most |𝑤 |; we have𝑇ℎ,𝑇𝑎 ∈ 𝐹 by definition

of 𝐹 . The inequality len(𝐹 ) < len(𝐹 ′) can be established exactly

as (7) in Lemma 5.

By our assumption of negative 𝛽ℓ (𝑤), there is a well-defined

main branchM(𝐹 ). We first establish that, intuitively speaking, any

tines in 𝐹 outside of M(𝐹 ) are, after 𝑤 , extended by adversarial

vertices only.

Claim 9. Consider any tine 𝑇 ∈ 𝐹 such that 𝑇 ∉ M(𝐹 ) and any
𝑇 ′ ∈ 𝐹 ′ that extends𝑇 in 𝐹 ′ so that𝑇 = 𝑇 ′

|𝑤 | ⌉ . Then the set of vertices
𝑇 ′ \𝑇 contains no honest vertices.

To see this, observe that any honest vertex in 𝐹 ′with label greater
than |𝑤 | must have depth at least len(𝐹 ⌈Δ) +1 by axiom (A4), hence

all vertices in𝑇 ′\𝑇 with depth at most len(𝐹 ⌈Δ) must be adversarial.

Furthermore, len(𝐹 ) − len(𝐹 ⌈Δ) ≤ #h (𝑧) + #h (𝑥): this is because
𝐹 ′ is compressed and contains an honest vertex for each depth

𝑑 ∈ {len(𝐹 ⌈Δ) + 1, . . . , len(𝐹 )}; but at most #h (𝑧) of these honest
vertices can have labels from [|𝑤 |] (by definition of 𝐹 ⌈Δ), similarly

at most #h (𝑥) of these honest vertices can have labels greater than

|𝑤 | (by Axiom (A4)). This gives us len(𝑇 ) + #a (𝑥) < len(𝐹 ⌈Δ), as
we have 𝛼𝐹 (𝑇 ) ≤ 𝛽ℓ (𝑤) < −#h,a (𝑥) − #h (𝑧) by our assumption

on 𝛽ℓ (𝑤), and hence len(𝑇 ′) < len(𝐹 ⌈Δ). This already implies that

there are no honest vertices in 𝑇 ′ \𝑇 and establishes Claim 9.

We now argue that 𝑇ℎ ∈ M(𝐹 ). Towards contradiction, assume

that𝑇ℎ ∉ M(𝐹 ). Then Claim 9 applies to𝑇ℎ and𝑇 ′
ℎ
\𝑇ℎ contains no

honest vertices, hence

len(𝑇 ′
ℎ
) ≤ len(𝑇ℎ) + #a (𝑥) . (9)

However, by assumption len(𝑇ℎ) − len(𝐹 ) = 𝛼𝐹 (𝑇ℎ) ≤ 𝛽ℓ (𝑤) <

−#𝑎 (𝑥) and hence len(𝑇ℎ) < len(𝐹 )−#a (𝑥), and using equations (9)
and (7) gives us len(𝑇 ′

ℎ
) < len(𝐹 ) < len(𝐹 ′), a contradiction with

the definition of 𝑇 ′
ℎ
. Therefore, 𝑇ℎ ∈ M(𝐹 ).

Since 𝑇 ′
ℎ
≁ℓ 𝑇

′
𝑎 , it also follows that 𝑇ℎ ≁ℓ 𝑇𝑎 , and at most one of

these tines belongs toM(𝐹 ), hence we have𝑇𝑎 ∉ M(𝐹 ). By Claim 9,

𝑇 ′
𝑎 \𝑇𝑎 contains no honest vertices. Hence we have

len(𝑇 ′
𝑎 ) ≤ len(𝑇𝑎) + #a (𝑥) (10)

and we can combine equations (7) and (10) to get

𝛽ℓ (𝑤) ≥ 𝛼𝐹 (𝑇𝑎) = len(𝑇𝑎) − len(𝐹 )

≥ len(𝑇 ′
𝑎 ) − #a (𝑥) − len(𝐹 ′) + 1 = 𝛼𝐹 ′ (𝑇 ′

𝑎 ) − #a (𝑥) + 1

= 𝛽ℓ (𝑤 ′) − #a (𝑥) + 1 ,

finishing the proof of Lemma 8. □

3.5 The Hot Region
We shift attention to the setting when 𝛽ℓ is sufficiently large. Specif-

ically, consider a string of steps 𝜎 = 𝜎1 . . . 𝜎𝑛 ∈ Σ𝑛S where each

𝜎𝑖 ∈ ΣS and 𝑛 ≥ #h (𝜎𝑛) + 3. We write 𝜎 = 𝜎𝜏𝜎𝑛 , where 𝜏 consists

of #h (𝜎𝑛) + 2 steps, and identify the set

Hot = {𝜎 = 𝜎𝜏𝜎𝑛 | 𝛽ℓ (𝜎𝜏) ≥ #a (𝜏) + 2} .
We show that in the region defined by Hot, 𝛽ℓ satisfies the ideal
recurrence (5).

We first need to formally define the minimal honest height ℎΔ (·).

Definition 11. Let 𝑥 ∈ {0, 1}∗ and recall that 𝑥 ⌈Δ denotes the

string obtained by removing the last Δ − 1 symbols from 𝑥 , with

the understanding that the result is 𝜖 if |𝑥 | < Δ. We define ℎΔ (𝑥)
inductively so that ℎΔ (𝜖) = 0, ℎΔ (𝑥0) = ℎΔ (𝑥), and ℎΔ (𝑥1) =

ℎΔ (𝑥 ⌈Δ)+1. We often overloadℎΔ to apply to strings from {0, h, a}∗,
in that case only the honest symbols h are counted as 1s, while

symbols 0 and a are treated as 0s.

Now we can state the result describing 𝛽ℓ in the Hot region.

Lemma 10. Let ℓ ≥ 1, let 𝑥 ∈ {0, h, a}Δ−1 ∥ {0, a}∗, and let 𝑤 ∈
{0, h, a}∗ with ℎΔ (𝑤) > #h (𝑥) + 3. Let 𝑧 be the shortest suffix of the
string𝑤 with the property thatℎΔ (𝑧) ≥ #h (𝑥)+3. If 𝛽ℓ (𝑤) > #a (𝑧)+2
then we have

𝛽ℓ (𝑤𝑥h) ≤ 𝛽ℓ (𝑤) + #a (𝑥) − 1 .

In particular, for any 𝜎 ∈ Σ∗S and any step 𝛾 ∈ ΣS , if 𝜎𝛾 ∈ Hot then
𝛽ℓ (𝜎𝛾) ≤ 𝛽ℓ (𝜎) + #a (𝛾) − 1.

Proof. The high-level approach again follows Remark 5; this

time the argument is more involved than in the Cold case and

requires the use of our restructuring lemma (Lemma 4). More con-

cretely, starting with a compressed witness fork 𝐹 ′ ⊢ 𝑤𝑥h and its

witness tines (𝑇 ′
ℎ
,𝑇 ′
𝑎 ), we look at their restrictions (𝑇ℎ,𝑇𝑎) to𝑤 and

identify the last honest vertices on these tines, denoted 𝑣ℎ and 𝑣𝑎 ,

respectively. We show that lb(𝑣ℎ) < lb(𝑣𝑎) would contradict the
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optimality of the original fork 𝐹 ′, while lb(𝑣ℎ) ≥ lb(𝑣𝑎) allows us
to invoke Lemma 4 to obtain the desired lower bound on 𝛽ℓ (𝑤).

Let 𝐹 ′ ⊢ 𝑤𝑥h be an optimal compressed fork for𝑤 ′ ≜ 𝑤𝑥h and

𝐹 ⊢ 𝑤 the restriction to𝑤 ; if 𝑇 ′
is a tine in 𝐹 ′, we let 𝑇 denote the

associated tine for 𝐹 . Let 𝑇 ′
ℎ
and 𝑇 ′

𝑎 be a pair of witness tines for

𝐹 ′. Observe that len(𝐹 ) < len(𝐹 ′) can again be established exactly

as (7) in Lemma 5.

We first prove a lower bound on 𝛽ℓ (𝑤 ′). Towards that, con-
sider a witness fork 𝐺 ⊢Δ 𝑤 for 𝑤 , and let (𝑈ℎ,𝑈𝑎) be witness

tines for 𝐺 such that len(𝑈ℎ) = len(𝐺). For 𝑠 ∈ {h, a}, let 𝐼𝑠 ≜{
𝑖 ∈ {|𝑤 | + 1, . . . , |𝑤𝑥 |} : 𝑤 ′

𝑖
= 𝑠

}
. Construct a labeled rooted tree

𝐺 ′
from 𝐺 by (i) adding #h (𝑥) honest vertices labelled by indices

from 𝐼h, all of them as direct descendants of the terminal vertex

of𝑈ℎ ; (ii) adding a single honest vertex with label |𝑤 ′ | as a direct
descendant of any of the above-added honest vertices; and finally

(iii) extending the tine 𝑈𝑎 by a path consisting of #a (𝑥) adversarial
vertices labelled by the increasing sequence of indices from 𝐼a. Let

𝑈 ′
ℎ
denote the tine terminating in the vertex labelled |𝑤 ′ | and let𝑈 ′

𝑎

be this newly-constructed tine extending𝑈𝑎 in𝐺 ′
. Observe that𝐺 ′

is a valid Δ-fork for𝑤 ′
: the axioms (A1)–(A3) are trivially satisfied,

and the axiom (A4) also holds as all newly added honest vertices

only share depth with honest vertices labelled closer than Δ to their

own label. Clearly len(𝑈 ′
ℎ
) = len(𝐺 ′) and moreover, 𝑈ℎ ≁ℓ 𝑈𝑎

implies𝑈 ′
ℎ
≁ℓ 𝑈

′
𝑎 ; hence we have

𝛽ℓ (𝑤 ′) ≥ len(𝑈 ′
𝑎) − len(𝑈 ′

ℎ
)

= (len(𝑈𝑎) + #a (𝑥)) − (len(𝑈ℎ) + 2)
= 𝛽ℓ (𝑤) + #a (𝑥) − 2 > #a (𝑧𝑥) , (11)

where the last inequality follows by our assumption on 𝛽ℓ (𝑤).
We now establish that also in this setting there are no honest

vertices on 𝑇 ′
𝑎 with a label greater than |𝑤 |, in other words, there

are no honest vertices in 𝑇 ′
𝑎 \𝑇𝑎 . Towards a contradiction, assume

that there is an honest vertex in 𝑇 ′
𝑎 \ 𝑇𝑎 and let 𝑣 ′a be the honest

vertex on𝑇 ′
𝑎 with maximum label (and hence also maximum depth).

Since lb(𝑣 ′a) > |𝑤 |, all vertices 𝑢 on 𝑇 ′
𝑎 with len(𝑢) > len(𝑣 ′a)

also have lb(𝑢) > lb(𝑣 ′a) > |𝑤 |, and by maximality of 𝑣 ′a all these
vertices are adversarial, hence there are at most #a (𝑥) such vertices

by axiom (A3). However, we also have len(𝑣 ′a) ≤ len(𝐹 ′) as 𝑣 ′a
is honest. Put together, we have 𝛽ℓ (𝑤 ′) = len(𝑇 ′

𝑎 ) − len(𝐹 ′) ≤
len(𝑇 ′

𝑎 ) − len(𝑣 ′a) ≤ #a (𝑥). This contradicts (11), concluding the

proof that there are no honest vertices on 𝑇 ′
𝑎 \𝑇𝑎 . Hence we have

len(𝑇 ′
𝑎 ) − len(𝑇𝑎) ≤ #a (𝑥).

Let 𝑣𝑎 be the last honest vertex on 𝑇𝑎 (we now know that it

is also the last honest vertex on 𝑇 ′
𝑎 ). Likewise, let 𝑣ℎ be the last

honest vertex on 𝑇ℎ . We consider two cases depending on lb(𝑣𝑎)
and lb(𝑣ℎ).

The case lb(𝑣ℎ) < lb(𝑣𝑎). For a tine 𝑇 and a portion 𝑦 of the

characteristic string, we let #h (𝑦;𝑇 ) denote the number of honest

vertices in 𝑇 labeled with symbols from 𝑦; we similarly overload

also the notation #a and #h,a.

We first establish that

len(𝑣𝑎) < len(𝑇ℎ) + #a (𝑥h;𝑇 ′
ℎ
) . (12)

Note, first of all, that len(𝑇ℎ) ≥ len(𝐹 ′)−#h,a (𝑥h;𝑇 ′
ℎ
). Now consider

len(𝑣𝑎). Observe that 𝑣𝑎 cannot be labeled from the string 𝑧: if it

were, then 𝛽ℓ (𝐹 ′) ≤ #a (𝑧𝑥) which contradicts (11). Hence 𝑣𝑎 is

labeled prior to 𝑧 and it follows that len(𝐹 ′) ≥ len(𝑣𝑎) + [ℎΔ (𝑧) −
1] ≥ len(𝑣𝑎) + #h (𝑥 ;𝑇 ′

ℎ
) + 2 by definition of 𝑧. Hence

len(𝑇ℎ) ≥ len(𝐹 ′) − #h,a (𝑥h;𝑇 ′
ℎ
)

≥
(
len(𝑣𝑎) + #h (𝑥 ;𝑇 ′

ℎ
) + 2

)
− #h,a (𝑥h;𝑇 ′

ℎ
)

> len(𝑣𝑎) − #a (𝑥h;𝑇 ′
ℎ
) ,

proving (12).

Now we invoke Lemma 4 with tines 𝑇 ′
ℎ
, 𝑇 ′

𝑎 and vertices 𝑣ℎ , 𝑣𝑎 in

𝐹 ′. By assumption lb(𝑣ℎ) < lb(𝑣𝑎) and hence we obtain 𝛽ℓ (𝑤 ′) ≥
𝛼𝐹 ′ (𝑣ℎ) + |𝐴ℎ ∪ 𝐴𝑎 |, where 𝐴ℎ (resp. 𝐴𝑎) is the set of adversarial

vertices in𝑇 ′
ℎ
after 𝑣ℎ (resp. in𝑇 ′

𝑎 after 𝑣𝑎). Note that lb(𝑣ℎ) < lb(𝑣𝑎)
implies 𝑣ℎ ≠ 𝑣𝑎 and together with the definition of 𝑣ℎ , 𝑣𝑎 this means

that 𝐴ℎ ∩𝐴𝑎 = ∅ and |𝐴ℎ ∪𝐴𝑎 | = |𝐴ℎ | + |𝐴𝑎 |.
Recall that 𝑇ℎ (resp. 𝑇𝑎) contains only adversarial vertices after

𝑣ℎ (resp., 𝑣𝑎) by definition of 𝑣ℎ (resp. 𝑣𝑎). Moreover, 𝑇 ′
𝑎 \𝑇𝑎 also

only contains adversarial vertices. Hence we get

𝛽ℓ (𝑤 ′) ≥ 𝛼𝐹 ′ (𝑣ℎ) + (len(𝑇ℎ) − len(𝑣ℎ))
+ (len(𝑇 ′

𝑎 ) − len(𝑣𝑎)) + #a (𝑥h;𝑇 ′
ℎ
)

≥ 𝛼𝐹 ′ (𝑇ℎ) + (len(𝑇 ′
𝑎 ) − len(𝑣𝑎)) + #a (𝑥h;𝑇 ′

ℎ
)

> 𝛼𝐹 ′ (𝑣𝑎) + (len(𝑇 ′
𝑎 ) − len(𝑣𝑎)) ≥ 𝛼𝐹 ′ (𝑇 ′

𝑎 ) ,

where the third inequality follows from (12). This contradicts the

optimality of 𝐹 ′ and 𝑇 ′
𝑎 , and shows that this case cannot occur.

The case lb(𝑣ℎ) ≥ lb(𝑣𝑎). Let 𝑇𝐻 denote a maximal length hon-

est tine in 𝐹 . If 𝑇𝐻 ≁ℓ 𝑇𝑎 , these two tines witness

𝛽ℓ (𝑤) ≥ 𝛼𝐹 (𝑇𝑎) ≥ (len(𝑇 ′
𝑎 ) − #a (𝑥)) − len(𝐹 )

≥ (len(𝑇 ′
𝑎 ) − #a (𝑥)) − (len(𝐹 ′) − 1)

= 𝛽ℓ (𝑤𝑥h) − #a (𝑥) + 1

as desired. Otherwise, we assume that 𝑇𝐻 ∼ℓ 𝑇𝑎 and hence 𝑇𝐻 ≁ℓ
𝑇ℎ .

In this case, we begin by compressing the fork 𝐹 : Let 𝑐 (𝐹 ) ⊢Δ 𝑤

denote the compression of 𝐹 . If 𝑣 is a vertex of 𝐹 it appears in 𝑐 (𝐹 );
in order for context to be clear we let 𝑐 (𝑣) denote the vertex 𝑣 as it
appears in 𝑐 (𝐹 ). If𝑇 is a tine of 𝐹 , we let 𝑐 (𝑇 ) denote the associated
tine in the compression (that is, the tine that terminates with the

vertex that terminates𝑇 ). As 𝛼𝐹 (𝑇𝑎) ≥ 0, recall that 𝛼𝑐 (𝐹 ) (𝑐 (𝑇𝑎)) =
𝛼𝐹 (𝑇𝑎). Note that the last honest vertex on 𝑐 (𝑇𝑎) may not be 𝑐 (𝑣𝑎)
(due to a compression step); let𝑤𝑎 be the vertex for which 𝑐 (𝑤𝑎)
is the last honest vertex on 𝑐 (𝑇𝑎). As lb(𝑤𝑎) ≤ lb(𝑣𝑎), we still have
the inequality lb(𝑤𝑎) ≤ lb(𝑣ℎ) (and hence, of course, lb(𝑐 (𝑤𝑎)) <
lb(𝑐 (𝑣ℎ))).

We again invoke Lemma 4, this time for tines 𝑐 (𝑇𝑎), 𝑐 (𝑇ℎ) and
vertices 𝑐 (𝑤𝑎), 𝑐 (𝑣ℎ) in 𝑐 (𝐹 ). Since lb(𝑐 (𝑤𝑎)) < lb(𝑐 (𝑣ℎ)), we ob-
tain the following, where 𝐴 is the set of adversarial vertices on

𝑐 (𝑇𝑎) after 𝑐 (𝑤𝑎) in 𝑐 (𝐹 ):

𝛽ℓ (𝑤) ≥ 𝛼𝑐 (𝐹 ) (𝑐 (𝑤𝑎)) + |𝐴| = 𝛼𝑐 (𝐹 ) (𝑐 (𝑇𝑎)) = 𝛼𝐹 (𝑇𝑎)

= len𝐹 (𝑇𝑎) − len(𝐹 )

≥
(
len𝐹 ′ (𝑇 ′

𝑎 ) − #a (𝑥)
)
−
(
len(𝐹 ′) − 1

)
= 𝛼𝐹 ′ (𝑇 ′

𝑎 ) − #a (𝑥) + 1 = 𝛽ℓ (𝑤 ′) − #a (𝑥) + 1 .

This concludes the proof for the second case. □
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4 ANALYSIS OF THE STOCHASTIC PROCESS
Finally, in this section we apply the margin bounds developed

above to establish the optimal security threshold for Bitcoin. The

remaining technical issue is to analyze the margin recurrences

when characteristic strings are drawn according to the symbol

distribution B(𝑝𝑎, 𝑝ℎ) of Definition 1. While the analysis itself

requires some detailed treatment of the boundaries between the

various regions described in Section 3, the intuition and high-level

structure of the proof are easy to describe.

Recall from the introduction the critical security threshold.

Definition 12. For 𝑝ℎ > 0 and Δ ∈ N, we define the discrete

critical threshold

𝜗 (𝑝ℎ,Δ) :=
1

(Δ − 1) + 1/𝑝ℎ
.

For 𝑟ℎ > 0 and Δ0 > 0, we likewise define the Poisson critical

threshold

𝜗 (𝑟ℎ,Δ0) :=
1

Δ0 + 1/𝑟ℎ
.

While 𝜗 is a function of 𝑝ℎ and Δ, we simply write 𝜗 when these

parameters can be inferred from context; 𝜗 is treated similarly.

To relate the security threshold 𝜗 in the Poisson setting to dis-

crete threshold 𝜗 , recall that the discrete approximation is given

by taking 𝑝ℎ = 𝑠𝑟ℎ , 𝑝𝑎 = 𝑠𝑟𝑎 and Δ = ⌈Δ0/𝑠⌉ for a (small “slot

length”) parameter 𝑠 . If 𝑟𝑎, 𝑟ℎ , and Δ0 satisfy 𝑟𝑎 < 𝜗 , which is to say

1/𝑟𝑎 > Δ0 + 1/𝑟ℎ then, by scaling this inequality by 1/𝑠 , we find
that

1

𝑝𝑎
=

1

𝑠𝑟𝑎
>

Δ0

𝑠
+ 1

𝑠𝑟ℎ
> (⌈Δ0/𝑠⌉ − 1) + 1

𝑝ℎ
= Δ − 1 + 1

𝑝ℎ
.

This proves the following.

Fact 11. For all 𝑠 > 0, 𝑠𝜗 (𝑟ℎ,Δ0) ≤ 𝜗 (𝑠𝑟ℎ, ⌈Δ0/𝑠⌉); hence, if
𝑟𝑎 < 𝜗 (𝑟ℎ,Δ0) then 𝑠 · 𝑟𝑎 < 𝜗 (𝑠 · 𝑟ℎ, ⌈Δ0/𝑠⌉).

Thus, any 𝑟𝑎 , 𝑟ℎ , and Δ0 satisfying the Poisson threshold yield

discrete approximations (for any 𝑠 > 0) that likewise satisfy the

discrete threshold.

Note that 𝜗 satisfies the equality

1

𝜗
= (Δ − 1) + 1

𝑝ℎ
,

which gives an immediate and intuitive interpretation: note that if

𝑤𝑖 = 𝑥 for a symbol 𝑥 ∈ Σ that occurs with probability 𝑝 then 1/𝑝
is the expected waiting time before the next occurrence of 𝑥 . Thus

the threshold corresponds to the setting where the average waiting

time for “a” symbols is larger, by an additive factor of Δ − 1, than

the average waiting time for “h” symbols.

The step distribution; revisiting the ideal recurrence. Consistent
with the treatment in the previous section, we group symbols of

the characteristic string together into steps. In preparation for stat-

ing the final results and discussing the proofs, we set down a few

properties of the distribution arising on steps.

Definition 13. When𝑤 has the distribution B(𝑝𝑎, 𝑝ℎ) of Defini-
tion 1, the steps 𝜎𝑖 arising from𝑤 are independent and identically

distributed random variables, taking values in {a, h, 0}∗. We denote

this distribution S(𝑝𝑎, 𝑝ℎ ;Δ).

Observe that when 𝛾 is drawn from S(𝑝𝑎, 𝑝ℎ ;Δ), its length fol-

lows a translated geometric distribution: for each 𝑘 ≥ 0,

Pr[|𝛾 | = Δ + 𝑘] = 𝑝ℎ (1 − 𝑝ℎ)𝑘 . (13)

This immediately yields the following tail bound.

Fact 12. Let𝛾 be drawn according toS(𝑝𝑎, 𝑝ℎ ;Δ). Then Pr[#a (𝛾) ≥
𝑘] ≤ Pr[|𝛾 | ≥ 𝑘] = exp(−Ω(𝑘)).

The estimates of Lemma 5, Lemma 8, and Lemma 10 show that,

with particular exceptions, 𝛽 adheres to the ideal recurrence on

steps:

𝛽 (𝜎𝛾) ↦→ 𝛽 (𝜎) + #a (𝛾) − 1 .

The claim below confirms that when 𝑝𝑎 < 𝜗 , this transition has

negative bias (for 𝛾 drawn from S(𝑝𝑎, 𝑝ℎ ;Δ)), its straightforward
proof appears in Appendix A.

Claim 13. Let 𝑝𝑎 < 𝜗 (𝑝ℎ,Δ) and let 𝛾 have the distribution
S(𝑝𝑎, 𝑝ℎ ;Δ). Then E [#a (𝛾) − 1] < 𝑝𝑎/𝜗 − 1 < 0. We remark,
additionally, that if 𝑝𝑎 = 𝑠𝑟𝑎 , 𝑝ℎ = 𝑠𝑟ℎ , and Δ = ⌈Δ0/𝑠⌉, then
𝑝𝑎/𝜗 < 𝑟𝑎/𝜗 .

A high-level view of the stochastic process and the final proba-
bilistic analysis. In light of the discussion above, the random walk

described by 𝛽ℓ (𝜎1 . . .) initially observes a negative bias with a bar-

rier at zero (arising from the rules of Lemma 5); once the length of

the string exceeds ℓ , the walk is more complicated: it is negatively

biased except for an “unruly” region around zero. A simple classical

example of such a walk on the integers Z is pictured below, having

negative bias at all sites but for a “hurdle” at zero:

0

−1
−2

1

.1

.9

.4

.6

.6

.4

.6

.4

.6

.4

Despite the hurdle—which moves the particle back to 1 with proba-

bility 90%—this walk indeed diverges to −∞, and does so at a “linear

rate,” which is to say that the value at time 𝑇 is −Ω(𝑇 ) except with
probability exp(−Ω(𝑇 )). This is exactly the sort of statement we

establish for 𝛽ℓ (). One explanation for this phenomenon is that any

time the particle is lucky enough to jump the hurdle at zero, with

constant probability it will never revisit zero, descending to −∞ as

described. Furthermore, the negative bias above zero ensures that

the particle has recurring opportunities to jump the hurdle. Note

that the hidden constants in the asymptotic notation depend on the

constants in the walk.

In the following (Sections 4.1–4.3) we work towards establishing

the rigorous estimate for the behavior of the full walk formulated

as Theorem 14 below. We then apply this main technical result in

Section 4.4 to control Bitcoin consistency failures.

Theorem 14. Let 𝑝𝑎 , 𝑝ℎ and Δ satisfy 𝑝𝑎 < 𝜗 (𝑝ℎ,Δ). Fix𝑚 ≥ 0.
Let 𝜎 = 𝜎1, . . . denote a sequence of steps, each identically dis-
tributed according to S(𝑝𝑎, 𝑝ℎ ;Δ). Let ℓ denote the random variable
|𝜎1 . . . 𝜎𝑚 |, i.e., the length of 𝜎1 . . . 𝜎𝑚 in symbols. Then for any𝑇 ≥ 0

and𝑀 > 0,

Pr[∃𝑡 ≥ 𝑚 +𝑇, 𝛽ℓ (𝜎1 . . . 𝜎𝑡 ) ≥ −𝑀] = exp(−Ω(𝑇 ) +𝑂 (𝑀)) ,
where the constants hidden by the asymptotic notation are universal
aside from dependence on |𝑝𝑎/𝜗 − 1|.
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Similarly, we use the following Lemma 15, analyzing the notion

of ℎΔ (·) from Definition 11, to argue Bitcoin’s liveness. Its straight-

forward induction proof appears in Appendix A; the large deviation

bound (15) follows immediately from the classical McDiarmid in-

equality.

Lemma 15. Let 𝑝 ∈ (0, 1) and Δ ∈ {1, 2, . . .}. Let 𝑋1, . . . , 𝑋𝑛 be
independent Bernoulli random variables, each taking the value 1 with
probability 𝑝 . Let 𝛼 = Δ + (1 − 𝑝)/𝑝 and 𝑋 = (𝑋1, . . . , 𝑋𝑛); then��𝑛/𝛼 − E [ℎΔ (𝑋 )]

�� ≤ 1 . (14)

Furthermore,

Pr[|ℎΔ (𝑋 ) − 𝑛/𝛼 | ≥ _
√
𝑛 + 1] ≤ 2 exp(−2_2) . (15)

4.1 The Stationary Distribution Prior to ℓ

We consider the distribution of 𝛽ℓ (𝑤) where |𝑤 | ≤ ℓ . Focusing

on the step decomposition𝑤 = 𝜎1 . . . and the recurrence relation

established in Lemma 5, we observe that for any 𝜎 = 𝜎1 . . . 𝜎𝑘 ∈ Σ𝑘S
for which |𝜎 | ≤ ℓ , 𝛽ℓ (𝜎) ≤ 𝐵(𝜎), where 𝐵(·) is given by the upper

bounds of Lemma 5. That is, 𝐵(𝜖) = 0, and

𝐵(𝜎𝛾) =
{
𝐵(𝜎) + #a (𝛾) − 1 if 𝐵(𝜎) > 0

#a (𝛾) if 𝐵(𝜎) = 0,

where 𝜎 ∈ Σ∗S and 𝛾 is a single step, 𝛾 ∈ ΣS . In light of Claim 13,

when the symbols are drawn from S(𝑝𝑎, 𝑝ℎ ;Δ) the quantity 𝐵()
follows a negatively biased randomwalk onNwith a barrier at zero;

in this setting where the upper tails of the walk are sub-geometric

(that is, there is an upper bound on the one-step tails of the form

𝐶𝑎−𝑘 for some 𝑎 > 1), it follows immediately that the random

variables 𝐵(𝜎) converge to a stationary distribution.

To articulate the result formally, we recall the notion of stochastic

dominance. For two random variables 𝑋 and 𝑌 taking values in

R, we say that 𝑌 stochastically dominates 𝑋 , written 𝑋 ≺ 𝑌 , if for

all _ ∈ R, Pr[𝑋 ≥ _] ≤ Pr[𝑌 ≥ _]. Note that if 𝑋 ≺ 𝑌 we can

transfer tail bounds on 𝑌 to tail bounds on 𝑋 : if Pr[𝑌 ≥ _] ≤ 𝑓 (_)
then Pr[𝑋 ≥ _] ≤ 𝑓 (_). The discussion above implies that for any

random variable 𝜎 , 𝛽ℓ (𝜎) ≺ 𝐵(𝜎) (so long as |𝜎 | ≤ ℓ).

Lemma 16. Let 𝑋1, 𝑋2, . . . be a sequence of i.i.d. random variables
taking values inN for which (i.) E [𝑋𝑖 ] < 1 and (ii.) there are constants
𝑎 > 1 and 𝐴 > 0 so that Pr[𝑋𝑖 = 𝑘] ≤ 𝐴 · 𝑎−𝑘 . Let𝑊𝑡 denote the
random walk on N given by the rule𝑊0 = 0,

𝑊𝑡 =

{
𝑊𝑡−1 + 𝑋𝑡 − 1 if𝑊𝑡−1 > 0, and
𝑊𝑡−1 + 𝑋𝑡 if𝑊𝑡−1 = 0.

Then there is a random variable 𝑆 , taking values in N, for which
𝑊𝑡 ≺ 𝑆 for all 𝑡 and, moreover, there are constants 𝑎∗ > 1 and𝐴∗ > 0

so that Pr[𝑆 = 𝑘] ≤ 𝐴∗ · 𝑎−𝑘∗ .

The proof appears in Appendix A. Applying Lemma 16 to the

random variables 𝑋𝑖 = #a (𝜎𝑖 ) (with the 𝜎𝑖 drawn as above), yields

the following bound on 𝛽ℓ (·).

Corollary 17. Let 𝜎 = 𝜎1 . . . , 𝜎𝑚 ∈ Σ𝑚S be independently gen-
erated according to S(𝑝𝑎, 𝑝ℎ ;Δ). Let ℓ = ℓ (𝜎) denote the random
variable |𝜎 |. Then Pr[𝛽ℓ (𝜎) ≥ 𝑘] ≤ exp(−Ω(𝑘)).

4.2 The Descent to −∞ After ℓ
This section proves Theorem 14. In general, the proof proceeds by

considering several coupled stochastic processes:

B(𝑝𝑎, 𝑝ℎ) : 𝑤1 . . .𝑤𝑡1︸     ︷︷     ︸ 𝑤𝑡1+1 . . .𝑤𝑡2︸         ︷︷         ︸ . . .

S = S(𝑤) : 𝜎1 𝜎2 . . .

M : 𝑚1 = 𝛽ℓ (𝜎1) 𝑚2 = 𝛽ℓ (𝜎1𝜎2) . . .

P : 𝜋1 = 𝜋 (𝜎1) 𝜋2 = 𝜋 (𝜎1𝜎2) . . .

I : 𝑖1 = ] (𝜎1) 𝑖2 = ] (𝜎1𝜎2) . . .

I𝐷
: 𝑖𝐷

1
= ]𝐷 (𝜎1) 𝑖𝐷

2
= ]𝐷 (𝜎1𝜎2) . . .

The random variables 𝑤𝑖 of B = B(𝑝𝑎, 𝑝ℎ) are described in Def-

inition 1. The process S is given by the rule 𝜎 (𝑤) described in

Definition 9 above. The “margin process”M is determined by ap-

plication of 𝛽 (·) to S. This is the principal process of interest, and
the subject of Theorem 14.

The final processes, which are introduced solely for the purposes

of analysis, are I, the ideal process, which carries out the ideal

recurrence, and P, the pessimistic process, which only relies on

the generally applicable results from Lemma 6 and Lemma 7. We

study, additionally, a “deformation” of the ideal process denoted

I𝐷
. These are defined by the following recurrences.

Definition 14 (The ideal process; the pessimistic process). Fix

Δ > 0. Define ], 𝜋 : Σ∗S → Z by the rule ] (𝜖) = 𝜋 (𝜖) = 0, for the

empty string 𝜖 , and, for 𝜎 ∈ Σ∗S and a single step 𝛾 ∈ ΣS ,

] (𝜎𝛾) = ] (𝜎) + #a (𝛾) − 1 ,

and

𝜋 (𝜎𝛾) =
{
𝜋 (𝜎) − 1 if 𝛾 = 0

𝑡h with 𝑡 ≥ Δ − 1,

𝜋 (𝜎) + #a,h (𝛾) otherwise.

In general, we apply these functions to suffixes of a sequence 𝜎 ∈
Σ∗S . To reflect this usage, we generalize these functions to prescribed
basepoints for convenience. Specifically, we define

] (𝜎 ;𝜏) = 𝛽ℓ (𝜎) + ] (𝜏) and 𝜋 (𝜎 ;𝜏) = 𝛽ℓ (𝜎) + 𝜋 (𝜏) ,

for 𝜎, 𝜏 ∈ Σ∗. (Note that ℓ and Δ are implicit in this notation, but

they can be inferred from context.)

Note that ] and 𝜋 aremotivated by themargin bounds of Section 3.

In particular, in light of Lemma 6 and Lemma 7,

𝛽ℓ (𝜎𝜏) ≤ 𝜋 (𝜎 ;𝜏)

for any |𝜎 | ≥ ℓ . (In fact, for 𝜋 this is true even without the length

restriction on 𝜎 .) We note here an important relationship with 𝛽Δ
ℓ
(),

which will be relevant for the proof of Theorem 14.

Lemma 18. Let 𝑤 ∈ Σ∗ and 𝑥 ∈ Σ∗ satisfy |𝑥 | ≥ Δ. Let 𝑦 denote
the string obtained from 𝑥 by replacing all h with a. Then

𝛽Δℓ (𝑤𝑥) ≤ 𝛽ℓ (𝑤𝑦) ≤ 𝛽ℓ (𝑤) + #h,a (𝑥) .

Similarly, let𝑤 ∈ Σ∗ and write𝑤 = 𝜎1 . . . 𝜎𝑚𝑤 ′, where each 𝜎𝑖 ∈ ΣS
and 𝑤 ′ ∈ Σ∗ so that the expression 𝜎1 . . . 𝜎𝑚𝑤 ′ denotes a partial
rendering of𝑤 into steps followed by an arbitrary suffix. Then

𝛽Δℓ (𝑤) ≤ 𝛽ℓ (𝜎1 . . . 𝜎𝑚−1) + #h,a (𝜎𝑚𝑤 ′) .
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Proof. Let 𝐹 ⊢Δ 𝑤𝑥 where, as in the statement of the lemma,

|𝑥 | ≥ Δ. Then, 𝐹 may be viewed as a fork of𝑤𝑦, as any vertex of 𝐹

associated with an honest symbol of 𝑥 can be associated with an

adversarial symbol. We let 𝐹 ′ ⊢Δ 𝑤𝑦 denote this fork 𝐹 viewed as a

fork of𝑤𝑦; note that while 𝐹 and 𝐹 ′ have identical structure, there
may be honest vertices of 𝐹 that are adversarial in 𝐹 ′. Note, also,
that len(𝐹 ) = len(𝐹 ⌈Δ). Thus a pair of Δ-witness tines 𝐹 are a pair

of witness tines in 𝐹 ′; this proves the statement. □

Likewise, roughly speaking, if 𝜎𝜏 ′ satisfies the Hot or Cold con-

ditions for each prefix 𝜏 ′ of 𝜏 , then

𝛽ℓ (𝜎𝜏) ≤ ] (𝜎 ;𝜏) .

Finally, to manage some technical issues in the proof, we intro-

duce a related process with a less ready interpretation.

Definition 15 (The deformed ideal process;𝐷-typicality). For each
𝐷 ≥ 4, define the function ]𝐷 : Σ∗S → Z by the following rules.

In general, for a string 𝜎 ∈ Σ∗S , we write 𝜎 = 𝜎base𝜎tail, with the

convention that 𝜎tail consists of the last 𝐷 steps of 𝜎 ; if 𝜎 consists

of fewer than 𝐷 steps, we define 𝜎tail = 𝜎 and 𝜎base = 𝜖 . Then for

𝜎 ∈ Σ∗S and a single step 𝛾 ∈ ΣS , we say that 𝜎𝛾 is 𝐷-typical if

#h,a (𝛾) ≤ 𝐷 − 2, and #h,a (𝜐) ≤ 𝐷 for each step 𝜐 in 𝜎tail .

Note that typicality is determined only by the last 𝐷 steps of 𝜎 and

the step 𝛾 . Then we define ]𝐷 (𝜖) = 0, and in general

]𝐷 (𝜎𝛾) =
{
]𝐷 (𝜎) + #a (𝛾) − 1 if 𝜎𝛾 is 𝐷-typical,

]𝐷 (𝜎) + #h,a (𝛾) otherwise.

We similarly define a notion with a basepoint:

]𝐷 (𝜎 ;𝜏) = 𝛽ℓ (𝜎) + []𝐷 (𝜎𝜏) − ]𝐷 (𝜎)] ,

for 𝜎, 𝜏 ∈ Σ∗.

Observe that ]∞ () = ] (), which explains the name. 𝐷-typicality

is a convenient “local” criterion for membership in Hot or Cold (as

it depends only on the most recent 𝐷 + 1 steps); in particular, the

details of the definition are meant to appropriately correspond to

the definitions of Hot and Cold as described by the claim below.

Claim 19. Let 𝜎𝛾 ∈ Σ∗S × ΣS be 𝐷-typical. Then

𝛽ℓ (𝜎) > 𝐷2 =⇒ 𝜎𝛾 ∈ Hot ,

𝛽ℓ (𝜎) < −𝐷2 =⇒ 𝜎𝛾 ∈ Cold .

As a result, if 𝜎𝛾 is 𝐷-typical and |𝛽ℓ (𝜎) | > 𝐷2 then ]𝐷 (𝜎 ;𝛾) =

] (𝜎 ;𝛾) = 𝛽ℓ (𝜎𝛾). More generally, if |𝛽 (𝜎) | > 𝐷2 then 𝛽ℓ (𝜎𝛾) ≤
]𝐷 (𝜎 ;𝛾).

Proof. This follows immediately from Lemma 8, Lemma 10, and

Lemma 6. □

We first develop a standard tail bound for the random variables

that arise naturally in the ideal process ] (that is, the #a (𝜎𝑖 ) −
1). Recall that for a real-valued random variable 𝑋 , the moment-
generating function 𝑚𝑋 is defined by the rule 𝑧 ↦→ E

[
𝑒𝑧𝑋

]
. The

proofs of the following five lemmas appear in Appendix A.

Lemma 20. Let 𝑎 > 1 and 𝐶 > 0. Let 𝐴 be a random variable on
{−1, 0, 1, . . .} satisfying E [𝐴] < 0 and Pr[𝐴 = 𝑘] ≤ 𝐶𝑎−𝑘 . Then

𝑚𝐴 (_) ≤ 1 + E [𝐴] _/2 (16)

for sufficiently small _.

Lemma 21. Let 𝑎 > 1, 𝐶 > 0, and 𝛾 > 0. Consider a sequence of
i.i.d. integer-valued random variables 𝑍1, 𝑍2, . . . satisfying E [𝑍𝑖 ] =
−𝛾 < 0 and Pr[𝑍𝑖 = 𝑘] ≤ 𝐶𝑎−𝑘 . Let 𝑆𝑛 =

∑𝑛
𝑖=1 𝑍𝑖 . Then there is a

constant 𝛼 > 0 so that

∀Λ ≥ −𝛾𝑛/2, Pr[𝑆𝑛 ≥ Λ] ≤ 𝑒−𝛼 (Λ+𝛾𝑛/2) . (17)

It follows that for any 𝑁 > 0,

Pr[∃𝑛 ≥ 𝑁, 𝑆𝑛 ≥ −𝛾𝑛/4] = 𝑒−Θ(𝑁 ) . (18)

Lemma 22 (Gambler’s ruin). Let 𝑎 > 1 and 𝐶 > 0. Let 𝑍1, . . . be
a sequence of i.i.d. random variables taking values in {−1, 0, 1, . . .}
satisfying E [𝑍𝑖 ] < 0 and Pr[𝑍𝑖 = 𝑘] ≤ 𝐶𝑎−𝑘 . Let 𝑆𝑛 =

∑𝑛
𝑖=1 𝑍𝑖 .

Then

(1) for any 𝐷 > 0, Pr[∃𝑡 > 0, 𝑆𝑡 ≥ 𝐷] = exp(−Θ(𝐷)), and
(2) Pr[∀𝑡 > 0, 𝑆𝑡 < 0] > 0.

Lemma 23. Let 𝐻1, 𝐻2, . . . be a sequence of i.i.d. random variables
taking values in N for which Pr[𝐻1 = 𝑘] = exp(−Ω(𝑘)). Likewise,
let 𝐺 be a random variable taking values in N, independent from the
𝐻𝑖 , for which Pr[𝐺 = 𝑘] ≤ exp(−Ω(𝑘)). Then

(1) Pr[𝐺 + 𝐻1 ≥ 𝑘] = exp(−Ω(𝑘)), and
(2) Pr[𝐻1 + · · · + 𝐻𝐺 ≥ 𝑘] = exp(−Ω(𝑘)).

The constants hidden by these instances of asymptotic notation may
be different.

Lemma 24. Let 𝑋1, 𝑋2, . . . be a sequence of independent geomet-
rically distributed random variables, so that each 𝑋𝑖 has the distri-
bution Pr[𝑋𝑖 = 𝑘] = 𝑝 (1 − 𝑝)𝑘 for a parameter 𝑝 ∈ (0, 1]. Then
E [𝑋𝑖 ] = (1 − 𝑝)/𝑝 and, for any _ ≥ 1,

Pr

[
𝑛∑
𝑖=1

𝑋𝑖 > _𝑛/𝑝
]
≤ 𝑒−𝑛 (1−_) .

Let 𝑌1, 𝑌2, . . . be a sequence of independent exponentially distributed
random variables, so that each 𝑌𝑖 has the probability density function
𝑝𝑒−𝑝𝑥 (𝑥 ≥ 0). Then E [𝑌𝑖 ] = 1/𝑝 and, for any _ ≥ 2,

Pr

[
𝑛∑
𝑖=1

𝑌𝑖 > _𝑛/𝑝
]
≤ 𝑒

−𝑛 1

4(𝑝+1) (_−1) .

4.3 The Proof of Theorem 14
Finally we put the pieces together to prove Theorem 14.

Proof of Theorem 14. Denote by

bias = E [] (𝛾)] = E [#a (𝛾) − 1] < 0

the (negative) bias of the “ideal walk” (with 𝛾 being sampled from

S(𝑝𝑎, 𝑝ℎ ;Δ)). We organize the proof around three “zones,” corre-

sponding roughly to the Hot, Cold and critical cases studied in

Section 3.
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Specifically, we select a “typicality limit” 𝐷 ≥ 4 and define the

following subsets of the integers:

𝑅− = {𝑧 ∈ Z | 𝑧 < −𝐷2},
𝑅0 = {𝑧 ∈ Z | −𝐷2 ≤ 𝑧 ≤ 𝐷2}, and

𝑅+ = {𝑧 ∈ Z | 𝐷2 < 𝑧} .

To determine the limit 𝐷 defining these regions, consider indepen-

dent selection of 𝐶 ≥ 4 steps 𝛾1 . . . 𝛾𝐶 and a final step 𝛾 ′ (each
independently according to S(𝑝𝑎, 𝑝ℎ ;Δ)). Then examine the ran-

dom variable

𝑃𝐶 = ]𝐶 (𝛾1 . . . 𝛾𝐶𝛾 ′) − ]𝐶 (𝛾1 . . . 𝛾𝐶 )

=

{
#a (𝛾 ′) − 1 if 𝛾1 · · ·𝛾𝐶𝛾 ′ is 𝐶-typical,
#a,h (𝛾 ′) otherwise.

As 𝐶 → ∞, note that Pr[#h,a (𝛾𝑖 ) > 𝐶] = exp(−Ω(𝐶)) and hence

Pr[max(#h,a (𝛾1), . . . , #h,a (𝛾𝐶 ), #h,a (𝛾 ′)) ≥ 𝐶] = 𝐶 exp(−Ω(𝐶)) .

It follows that lim𝐶→∞ Pr[𝛾1 · · ·𝛾𝐶𝛾 ′ is 𝐶-typical] = 1 and hence

that lim𝐶→∞ E [𝑃𝐶 ] → bias. Define 𝐷 to be the smallest value of

𝐶 for which E [𝑃𝐶 ] < bias/2. We explain the relevance of this rule

for selecting 𝐷 below.

Throughout the proof, we often write the sequence 𝜎1𝜎2 . . . as

𝜎1 . . . 𝜎𝑠𝜏1 . . . (so that 𝜏𝑖 = 𝜎𝑠+𝑖 ) with the implicit understanding

that 𝑠 ≥ 𝑚. With this convention, the initial steps always determine

the “pre-ℓ” dynamics 𝛽ℓ (𝜎1 . . . 𝜎𝑚), whose statistics are controlled
by Corollary 17.

We associate with every prefix of steps 𝜎1 . . . 𝜎𝑚𝜏1 . . . 𝜏𝑡 a state
in the set {𝑅−, 𝑅0, 𝑅+}, depending on which of these contains the

integer 𝛽ℓ (𝜎𝜏). We now consider the transitions between these

states.

Dynamics in the region R+. Consider entry to 𝑅+ at “time” 𝑠 (i.e.,

after 𝑠 steps), and let 𝜎 = 𝜎1 . . . 𝜎𝑠 . We examine the random walk

𝛽ℓ (𝜎), 𝛽ℓ (𝜎𝜏1), . . . by comparing it to ]𝐷 (𝜎 ; 𝜖), ]𝐷 (𝜎 ;𝜏1), . . .. Return-
ing to the definition of ]𝐷 (𝜎 ;𝜏), observe that while 𝜎𝜏1 . . . 𝜏𝑡 ∈ 𝑅+,
𝛽ℓ (𝜎𝜏1 . . . 𝜏𝑡 ) > 𝐷2

and, by the results of Section 3.5 and Claim 19,

𝛽ℓ (𝜎𝜏1 . . . 𝜏𝑡 ) ≤ ]𝐷 (𝜎 ;𝜏1 . . . 𝜏𝑡 ) .

We wish to show that this ]𝐷 (𝜎 ;𝜏1 . . .) walk will descend to 𝐷2

(so that 𝛽ℓ (𝜎𝜏) returns to 𝑅0) with certainty and, moreover, that the

descent will occur quickly: that is, the probability that the descent

will take 𝑘 steps is exp(−Ω(𝑘)).
A typical entry into 𝑅+ arrives with an initial value 𝑍init for

which Pr[𝑍init = 𝑘] = exp(−Ω(𝑘)). This can either occur at time𝑚,

when the distribution of 𝛽ℓ (𝜎1 . . . 𝜎𝑚) is given by Corollary 17, or

as a result of a transition from 𝑅0 (or 𝑅
−
) in which case the value is

bounded above by 𝐷 + #a (𝛾) for the last step prior to the transition

to 𝑅+, in which case the height is bounded by Fact 12.

Fixing 𝜎 , we consider the random variables

𝑊𝑡 = ]𝐷 (𝜎 ;𝜏1 . . . 𝜏𝑡 ) − ]𝐷 (𝜎 ;𝜏1 . . . 𝜏𝑡−1) .

By the definition of 𝐷 , E [𝑊𝑡 ] < −bias/2 for any 𝑡 > 𝐷 (so long as

the walk remains in 𝑅+); for 𝑡 ≤ 𝐷 , the exact behavior of𝑊𝑡 may

depend on 𝜎 but in any case𝑊𝑡 ≤ #𝑎,ℎ (𝜏𝑡 ). To account for this, we

define

𝑍warm =

𝐷∑
𝑡=1

𝑊𝑡 and 𝑍𝑡 =𝑊𝑡+𝐷 (for 𝑡 ≥ 1) .

In light of Fact 12 and Lemma 23, Pr[𝑍warm ≥ 𝑘] = exp(−Ω(𝑘)) as
it is a sum of a constant number of variables with exponential tails.

We wish to show that

Pr

[
𝑍init + 𝑍warm +

𝑘∑
𝑡=1

𝑍𝑡 ≥ 𝐷2

]
= exp(−Ω(𝑘)) ,

and hence that 𝛽 () returns to 𝑅0 quickly.
Although the random variables 𝑍𝑖 satisfy the conditions of Lem-

ma 20, we cannot directly apply Lemma 21 to this sequence of

random variables as they are not independent. However, 𝑍𝑡1 and

𝑍𝑡2 are independent if |𝑡1 − 𝑡2 | > 𝐷 since the conditioning aris-

ing from ]𝐷 () only involves the previous 𝐷 steps. Thus we may

partition the 𝑘 random variables into 𝐷 subsets indexed by arith-

metic progressions with multiple 𝐷 ; each subset then contains

random variables that are never closer than 𝐷 from each other.

The tail bounds of Lemma 21 apply to each subset. By the union

bound, it then follows that there is a constant 𝐶 > 0 so that

Pr[𝑍1 + · · · + 𝑍𝑘 > −𝐶𝑘] = exp(−Ω(𝑘)). Combining this with

the bounds on 𝑍init and 𝑍warm, we conclude that the probability

that the walk remains in 𝑅+ for 𝑘 steps is exp(−Ω(𝑘)), as desired.

Dynamics in the region R0. Consider entry to 𝑅0 at time 𝑠 ≥ 𝑚

and let 𝜎 = 𝜎1 . . . 𝜎𝑠 . We examine the random walk 𝛽ℓ (𝜎), 𝛽ℓ (𝜎 ;𝜏1),
. . . by comparing it to 𝜋 (𝜎 ; 𝜖), 𝜋 (𝜎 ;𝜏1), . . .. Considering that the

“width” of the region, 2𝐷2 + 1, is a fixed constant the next distinct

observed state will be 𝑅− with nonzero constant probability; at

worst, this is the probability of observing a sequence of back-to-

back 0
Δ−1h steps that carry 𝜋 (), and hence 𝛽 (), into 𝑅− (Lemma 7).

Moreover, considering that each non-overlapping block of 2𝐷2 + 1

steps independently escapes from 𝑅0 to 𝑅− with positive constant

probability, it follows that the probability that the walk remains in

𝑅0 for more than 𝑘 steps is exp(−Ω(𝑘)).

Dynamics in the region R−. The analysis is nearly identical to

the case for 𝑅+, though in this setting we must specially handle the

event that the walk never returns to 𝑅0 (or 𝑅+). Consider entry to

𝑅− at a time 𝑠 ≥ 𝑚 and let 𝜎 = 𝜎1 . . . 𝜎𝑠 . We examine the random

walk 𝛽ℓ (𝜎), 𝛽ℓ (𝜎𝜏1), . . . by comparing it to ]𝐷 (𝜎 ; 𝜖), ]𝐷 (𝜎 ;𝜏1), . . ..
As in the analysis of the 𝑅+ case, we condition on an arbitrary

history 𝜎 and note that so long as 𝛽ℓ (𝜎𝜏1 . . . 𝜏𝑡 ) remains in 𝑅−

𝛽ℓ (𝜎𝜏1 . . . 𝜏𝑡 ) ≤ ]𝐷 (𝜎 ;𝜏1 . . . 𝜏𝑡 ) ;

again this follows from Claim 19. This yields the random variables

𝑊𝑡 = ]𝐷 (𝜎 ;𝜏1 . . . 𝜏𝑡 ) − ]𝐷 (𝜎 ;𝜏1 . . . 𝜏𝑡−1) .

As in the case of 𝑅+, it is convenient to decompose the steps of

the walk into an initial “warm” region consisting of at least 𝐷

steps—which may suffer from some conditioning from 𝜎—and the

remaining steps. By the definition of 𝐷 , E [𝑊𝑡 ] < −bias/2 for any
𝑡 > 𝐷 (so long as the walk remains in 𝑅−); for 𝑡 ≤ 𝐷 , the exact

behavior of𝑊𝑡 may depend on 𝜎 but in any case𝑊𝑡 ≤ #𝑎,ℎ (𝜏𝑡 ). To
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account for this, we will select a constant 𝐶warm > 𝐷 and define

𝑍warm =

𝐶warm∑
𝑡=1

𝑊𝑡 and 𝑍𝑡 =𝑊𝑡+𝐶warm (for 𝑡 ≥ 1) .

As pointed out above, the random variables 𝑍𝑡 are independent of

𝜎 . We set the exact value of 𝐶warm in the argument below.

First we establish that with constant probability, this walk never

returns to𝑅0 (or𝑅+). Adopting the approach from the𝑅+ case above,
we partition the sequence of random variables 𝑍𝑡 into 𝐷 families

of i.i.d. random variables; specifically, let 𝑍
(𝑠)
𝑖

= 𝑍𝐷𝑖+𝑠 (for 𝑠 ∈
{1, . . . , 𝐷}). Then for each fixed 𝑠 the sequence𝑍 (𝑠)

𝑖
are independent

random variables that satisfy the assumptions of Lemma 21 and

hence Lemma 22. In particular, there is a constant 𝐶 > 0 so that

Pr

[
∃𝑡 > 0,

𝑡∑
𝑖=0

𝑍
(𝑠)
𝑖

≥ 𝐶

]
<

1

2𝐷

for each fixed 𝑠 . Hence

Pr

[
∃𝑡 > 0,

𝑡∑
𝑖=0

𝑍𝑖 ≥ 𝐶 · 𝐷
]
≤ Pr

[
∃𝑠∃𝑡 > 0,

𝑡∑
𝑖=0

𝑍
(𝑠)
𝑖

≥ 𝐶

]
< 1/2 .

(19)

We now assign𝐶warm = 𝐶 ·𝐷 . To complete the argument, note that

with constant probability the first 𝐶warm of the random variables

𝑊𝑡—precisely those comprising 𝑍warm—all take the value −1 as this
is guaranteed by the possibility that each of these steps is 0

Δ−1h.
The variables𝑍

(1)
𝑖

may depend on this conditioning, as𝐷-typicality

depends on the prior 𝐷 steps; however, the conditioning assigns

the “warm” random variables values that contain no adversarial

symbols: this can only increase the probability that a particular𝑍
(1)
𝑠

is 𝐷-typical and hence reduce its expected value. We conclude that

the 𝑍
(𝑠)
𝑖

satisfy equation (19), even under conditioning. It follows

that with constant probability

∑𝑡
𝑖 𝑊𝑖 never rises above −𝐷2

and

hence that 𝛽 () never departs 𝑅−.
Conditioned on the event that 𝛽ℓ () never departs 𝑅−, the value

𝛽ℓ (𝜎𝜏1 . . . 𝜏𝐷 ) is bounded above by −𝐷2
; hence also 𝛽ℓ (𝜎𝜏1 . . . 𝜏𝑡 )

is bounded above by −𝐷2 +∑𝑖=𝑡−𝐷
𝑖=1 𝑍𝑖 . Again applying Lemma 21

to this sum (after decomposing it into

∑
𝑖 𝑍

(𝑠)
𝑖

as above), we find

that, for any𝑀,𝑇 > 0,

Pr[∃𝑡 ≥ 𝑇, 𝛽 (𝜎𝜏1 . . . 𝜏𝑡 ) ≥ −𝑀 | 𝛽ℓ (𝜎𝜏1 . . .) never escapes 𝑅−]
≤ exp(−Ω(𝑇 ) +𝑂 (𝑀)) .

Finally, we wish to show that if 𝛽 () returns to 𝑅0 (or 𝑅+), it does
so quickly. This proceeds exactly as in the case of 𝑅+: in light of

Lemma 21, for a constant 𝐸 > 0, the probability that any one of

the sums

∑𝑡
𝑖=1 𝑍

(𝑠)
𝑖

exceeds −𝐸𝑡 is exp(−Ω(𝑡)) and hence that 𝛽 ()
departs 𝑅− quickly, if it does so at all.

Finally, consider the transitions among the states 𝑅−, 𝑅0, and 𝑅+.
Any arrival into the state 𝑅− results in the desired permanent de-

scent beyond −𝑀 with constant probability. Otherwise, the waiting

time to leave any of the states after entry has a worst-case exponen-

tial tail: specifically, there are constants𝐴trans > 0 and 𝑎trans > 1 so

that for any of the three states the probability that the waiting time

between arrival and departure in that state exceeds 𝑘 is no more

than𝐴trans𝑎
−𝑘
trans. Furthermore, from either 𝑅0 or 𝑅+, the probability

of transitioning to 𝑅− in the next two state transitions is a nonzero

constant. It follows that 𝑇 , the number of transitions that occur

before observing the permanent descent, has an exponential tail. As

the convolution of 𝑇 waiting time distributions has an exponential

tail by Lemma 23, it follows that the walk permanently descends

past −𝑀 with certainty and, moreover, the number of steps before

this event takes place has an exponential tail. □

4.4 The Bitcoin Security Threshold
We begin with the discrete version of the main theorem.

Theorem 25. If 𝑝𝑎 < 𝜗 (𝑝ℎ,Δ) then a Bitcoin execution over a
lifetime of 𝐿 slots achieves 𝑘-consistency and 𝑢-liveness except with
error probabilities (𝐿/Δ) · exp(−Ω(𝑘)) and (𝐿/Δ) · exp(−Ω(𝑢)), re-
spectively. If 𝑝𝑎 > 𝜗 (𝑝ℎ,Δ), then the private chain attack is successful
(with probability tending to 1 exponentially quickly), and Bitcoin is
insecure.

Proof. The main claim is the positive statement for consistency.

Consider an 𝐿-slot execution of the protocol and let 𝜎1, 𝜎2, . . . be

the resulting sequence of steps as per Definition 9; for convenience,

we treat this as an infinite sequence, while only being interested

in its prefix covering the first 𝐿 slots. Observe, however, that this

prefix involves no more than 𝐿/Δ steps (as each step covers at least

Δ symbols). First, recall that by Fact 12 and a union bound, we have

Pr [∃𝑖 ∈ [𝐿] : |𝜎𝑖 | ≥ 𝑧] ≤ (𝐿/Δ) · exp(−Ω(𝑧)) . (20)

Moreover, given (13), for 𝑇 ≜ (𝑝ℎ/4Δ) · 𝑘 and for any𝑚 ∈ [𝐿/Δ]
we have |𝜎𝑚𝜎𝑚+1 . . . 𝜎𝑚+𝑇−1 | ≤ 𝑘 except with error probability

exp(−Ω(𝑘)). (This follows from classical tail bounds for sums of

geometric variables; see Lemma 24.)

We invoke Theorem 14 for each𝑚 ∈ [𝐿/Δ], using 𝑇 as above

and 𝑀 ≜ 𝑐𝑘 for a suitable constant 𝑐 > 0 depending on the con-

stants hidden in the asymptotic notation of Theorem 14, so that

the error term remains exp(−Ω(𝑘)) in each invocation. Applying

union bound over all𝑚, this gives us

Pr

[
∃𝑚 ∈ [𝐿], ∃̃𝑡 ≥ 𝑚 +𝑇 : 𝛽ℓ (𝜎1 . . . 𝜎�̃� ) ≥ −𝑐𝑘

]
= (𝐿/Δ) · exp(−Ω(𝑘)) .

This means that for any two slots ℓ , 𝑡 that are step boundaries sepa-

rated by at least 𝑇 steps, and hence also if they are separated by at

least 𝑘 slots, we have 𝛽ℓ (𝐹𝑡 ) < −𝑐𝑘 except with error exp(−Ω(𝑘)).
We extend this to arbitrary slots ℓ , 𝑡 that are not necessarily step

boundaries. Thanks to the Lipschitz property of 𝛽ℓ (Lemma 6), we

know that in any slot 𝑡 ′ belonging to the step following immediately

after the slot 𝑡 , 𝛽ℓ (𝐹𝑡 ′) may differ from 𝛽ℓ (𝐹𝑡 ) by at most 𝑡 ′ − 𝑡 ,

which can be upper-bounded by a sufficiently small multiple of

𝑘 using (20), with error exp(−Ω(𝑘)). By a similar argument, for

any slot ℓ ′ from the step immediately before the slot ℓ , 𝛽ℓ′ (𝐹𝑡 ) may

differ from 𝛽ℓ (𝐹𝑡 ) by at most ℓ − ℓ ′, which can be similarly bounded

using (20). To conclude, by a proper choice of 𝑐 ′, we have that for
any ℓ ∈ [𝐿 − 𝑘] and 𝑡 ∈ {ℓ + 𝑘, . . . , 𝐿}, 𝛽ℓ (𝐹𝑡 ) < −𝑐 ′𝑘 except with

probability (𝐿/Δ) · exp(−Ω(𝑘)).
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Finally, we transition from 𝛽ℓ to 𝛽Δ
ℓ
: for any 𝑤 = 𝜎1 . . . 𝜎𝑟𝑤

′

where𝑤 ′
is an incomplete step,

𝛽Δℓ (𝑤) − 𝛽ℓ (𝑤) =

= [𝛽Δℓ (𝑤) − 𝛽ℓ (𝜎1 . . . 𝜎𝑟−1)] + [𝛽ℓ (𝜎1 . . . 𝜎𝑟−1) − 𝛽ℓ (𝑤)]
≤ 2#h,a (𝜎𝑟𝑤 ′) ,

where the second inequality follows from Lemma 6. (See also

Lemma 18 for a detailed discussion of the relationship between

𝛽 and 𝛽Δ.) The resulting quantity can be again bounded using (20),

we can hence conclude that for any ℓ ∈ [𝐿 − 𝑘] and 𝑡 ∈ {ℓ +
𝑘, . . . , 𝐿}, 𝛽Δ

ℓ
(𝐹𝑡 ) < 0 except with an overall error probability

(𝐿/Δ) · exp(−Ω(𝑘)), and invoke Lemma 1 to establish consistency.

For the positive result on liveness, the argument follows exactly

the same path as in previous work (e.g., [15, 16]), with the single

exception that the honest chain growth is lower-bounded by ℎΔ (·)
(and Lemma 15) rather than the number of so-called “left-isolated

slots” or “non-tailgaters.”

Finally, the negative result is straightforward: If we have 𝑝𝑎 >

𝜗 (𝑝ℎ,Δ) then the expected growth rate of a private chain domi-

nates that of an honest chain with maximally delayed blocks (with

strong tail bounds), and so the private-chain attack succeeds with

overwhelming probability. □

The statement in the Poisson setting follows immediately.

Corollary 26. If 𝑟𝑎 < 𝜗 (𝑟ℎ,Δ0) then a Bitcoin execution over
a lifetime of 𝐿, where (1) honest and adversarial PoW successes are
modeled by Poisson processes with parameters 𝑟ℎ and 𝑟𝑎 , respec-
tively, and (2) honest messages are delayed by no more than Δ0 time,
achieves 𝑘-consistency and 𝑢-liveness except with error probabilities
𝐿 · exp(−Ω(𝑘)) and 𝐿 · exp(−Ω(𝑢)), respectively. If 𝑟𝑎 > 𝜗 (𝑟ℎ,Δ0),
then the private chain attack is successful (with probability tending
to 1 exponentially quickly), and Bitcoin is insecure.

Proof. This follows directly from the proof of Theorem 25. (Note

that Δ0 is a constant and hence does not appear in the error bounds

above, in contrast to Theorem 25.)

In particular, fix a parameter 𝑠 > 0—the length in time of a

discrete slot—and define 𝑝𝑎 = 𝑠𝑟𝑎 , 𝑝ℎ = 𝑠𝑟ℎ , and Δ = ⌈Δ0/𝑠⌉. In
the limit, as 𝑠 → 0, this yields the Poisson model. As noted in

Fact 11, it follows that for any 𝑠 , 𝑝𝑎 < 𝜗 (𝑝ℎ,Δ), and the proof

of Theorem 25 applies. A critical feature of the proof is that the

conclusions are independent of 𝑠 . In particular, the error rates and

constants selected in the proof are independent of 𝑠—indeed, the

dynamics of walk are given by the bias, which is bounded for any 𝑠

by −(1 − 𝑝𝑎/𝜗) < −(1 − 𝑟𝑎/𝜗).
We remark that in the Poisson setting, we naturally wish to

parameterize consistency and liveness in terms of absolute time

(rather than an integer number of discrete slots, which would scale

with 1/𝑠). Note that the time 𝑡step associated with a single step

drawn from S(𝑝𝑎, 𝑝ℎ ;Δ) converges (as 𝑠 → 0) to the shifted expo-

nential distribution Δ0 + 𝑋 , where 𝑋 is exponentially distributed

with parameter 𝑝ℎ (so that the density function of 𝑋 is given by

𝑝ℎ exp(−𝑥𝑝ℎ)). Applying standard tail bounds for such variables

(see Lemma 24), we find that in time 𝑡 one must observe Ω(𝑡/Δ0)
of these “Poisson steps” except with probability exp(−Ω(𝑡/Δ0)).
Thus the error bounds of Theorem 25 scale in 𝑡/Δ0, as desired. □

5 TIGHT SECURITY THRESHOLD FOR
PROOF-OF-STAKE BLOCKCHAINS

Our results apply, with small adaptations, also to Nakamoto-style

protocols in the proof-of-stake (PoS) setting where they likewise

yield a tight threshold. The PoS setting has a few notable differences

which must be appropriately reflected in the proof.

Protocol modeling. PoS blockchain security can be analyzed in

an abstract framework analogous to that described in Section 2 for

PoW blockchains. The fact of the matter is that PoS blockchains

rely on fundamentally more sophisticated protocols because they

are faced with the challenge of generating randomness for leader

election and appropriately managing stake distribution snapshots.

Despite this, typical PoS protocol security proofs proceed by show-

ing that randomness generation can be carried out with high fidelity

and, hence, that the protocol can be analyzed in an idealized setting

where slot leadership is determined by an i.i.d. distribution. (The

possibility of adaptive corruption can lead to a distortion of this

i.i.d. condition, but this can be generically managed by stochastic

dominance arguments [1].) This yields the comparatively simple

setting described below, which can be directly applied to the se-

curity proofs of such protocols as Snow White [4] and Ouroboros

Praos [5].

Multiple slot leaders; the PoS characteristic string alphabet. In the

PoS setting, one adopts a discrete time model to reflect the round-

based nature of the protocol itself. This means that events involving

multiple leaders per slot must be handled explicitly by the analysis.

Specifically, the fundamental parameters of the protocol naturally

determine three probabilities:

• 𝑝𝐴 – the probability of at least one adversarial leader,

• 𝑝𝐻 – the probability of at least one honest leader,

• 𝑝ℎ – the probability of exactly one honest leader.

These probabilities determine a distribution on a richer alphabet of

characteristic string symbols. That is, we now consider the alphabet

ΣPoS = {0, h,H} × {0,A} and place the distribution on𝑤 = (𝑥,𝑦) ∈
ΣPoS which independently assigns values to 𝑥 ∈ {0, h,H} and 𝑦 ∈
{0,A} so that:

• 𝑥 = H with probability 𝑝𝐻 − 𝑝ℎ ; 𝑥 = h with probability 𝑝ℎ .

• 𝑦 = A with probability 𝑝𝐴 .

The interpretation of the symbol𝑤 = (𝑥,𝑦) mirrors the definitions

of the probabilities above. The 𝑥 symbol corresponds to honest

participation in the slot in question: 0 indicates no honest leaders,

h indicates exactly one honest leader, and H indicates a nonzero

number of honest leaders. (For analytic purposes, it is convenient to

permit 𝑥 = H to be a valid assignment even if the slot has a unique

leader.) Likewise, 𝑦 = 0 indicates that there are no adversarial

leaders and 𝑦 = A if there is at least one. As adversarial slot leaders

can issue as many blocks as they please in a PoS slot, there is no

need to distinguish the case of a unique adversarial leader. Observe

that 𝑝𝐻 is the probability of any honest slot leader in a particular

slot (and that, in general, 𝑝ℎ ≤ 𝑝𝐻 ).

The security threshold in the PoS case is analogous to the PoW

case:

𝑝𝐴 <
1

Δ − 1/𝑝𝐻
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under the added assumption that 𝑝ℎ is nonzero. Note that no par-

ticular relationship is assumed between 𝑝ℎ and 𝑝𝐻 ; it suffices for

𝑝ℎ to be bounded above zero. This additional constraint (on 𝑝ℎ) is

necessary in general circumstances where the adversary may break

ties in the longest-chain rule: even without any adversarial blocks,

if all honest leaders are paired with at least one simultaneous leader

a simple attack can force honest maintenance of two forking chains

of equal depths. It is an interesting fact that with the stronger as-

sumption of deterministic tie breaking, the positivity demand on 𝑝ℎ
can be removed (see [11] for a detailed discussion and the full anal-

ysis of the synchronous case), and indeed this would also suffice in

our setting. (We return to this point below.)

The analysis: PoS Δ-forks and PoS margin. The definition of PoS

fork is analogous; we only give a brief overview as our treatment

directly follows the definitions of PoS Δ-forks, (relative) margin,

and settlement in [1, 5, 11]. The notion of a PoS Δ-fork is adapted

to the richer PoS characteristic strings in the natural way: the only

alteration is axiom (A3), which is updated so that for a symbol

𝑤𝑖 = (𝑥𝑖 , 𝑦𝑖 ), we have
• if 𝑥𝑖 = 0 there are no honest vertices associated with slot 𝑖; if

𝑥𝑖 = h there is exactly one; if 𝑥𝑖 = H there may be an arbitrary

positive number; and

• if 𝑦𝑖 = 0 there are no adversarial vertices associated with slot 𝑖;

if 𝑦𝑖 = A there may be an arbitrary number.

Observe that in case 𝑥𝑖 = H, we place no particular constraints on

the (positive) number of honest vertices that label the slot; as we

effectively permit the adversary to “choose” the fork for a given char-

acteristic string, this gives the adversary the power to determine

the number of honest leaders if the characteristic string permits the

possibility that there is more than one. As it happens, giving the

adversary this extra latitude slightly simplifies the analysis without

changing the (optimal) final results.

The most substantial change involves the elementary metric

for measuring the ability of an adversary to produce settlement

violations for a characteristic string. In the PoW setting this is

exactly captured by the notion of margin; we reuse the namemargin
in this setting, since no confusion can arise. For a fork 𝐹 ⊢Δ 𝑤 , we

define the 𝛿-margin as

`𝛿ℓ (𝐹 ) ≜ max

𝑇1≁ℓ𝑇2

(
min{𝛼𝛿

𝐹
(𝑇1), 𝛼𝛿𝐹 (𝑇2)}

)
,

this maximum extended over all pairs of tines satisfying the crite-

rion. As usual, we again overload the notation by defining

`𝛿ℓ (𝑤) ≜ max

𝐹⊢Δ𝑤
`𝛿ℓ (𝐹 ) .

As in the PoW case, we will be considering the two variants 𝛿 = Δ
and 𝛿 = 1, which are again closely related. The variant with 𝛿 = Δ
is directly relevant for settlement violations; on the other hand, the

bulk of the analysis focuses on the simpler variant `1
ℓ
(𝑤), which

we simply denote `ℓ (𝑤).
It is convenient to define the reach 𝜌 as the simpler quantity

𝜌 (𝐹 ) = max𝑇 𝛼𝐹 (𝑇 ) and, likewise, 𝜌 (𝑤) = max𝐹⊢Δ𝑤 𝜌 (𝐹 ). Margin

plays a role directly analogous to the PoW setting: that is, a settle-

ment violation can occur in slot ℓ at time ℓ + 𝑡 exactly if `Δ
ℓ
(𝑤) ≥ 0,

where𝑤 is the characteristic string through time ℓ + 𝑡 . While ` is

a structurally distinct quantity from 𝛽 , it can be analyzed using

exactly the machinery we have already developed. Specifically,

• When `ℓ (𝑤) < 0, `ℓ (𝑤) = 𝛽ℓ (𝑤) and thus adheres precisely to

the recurrence for the Cold region, described in Section 3.4.

• When `ℓ (𝑤) ≥ 0, its exact behavior is unimportant because

`ℓ (𝑤) ≤ 𝜌 (𝑤) and `ℓ () cannot descend below zero until 𝜌 (𝑤)
returns to zero. In particular, once `ℓ () rises to zero, the quan-

tity of interest becomes 𝜌 (𝑤). 𝜌 () simply follows directly the

recurrence and dynamics for 𝛽ℓ () in the pre-ℓ regime, described

in Section 3.2. As in the analysis of Ouroboros Praos [1], this

somewhat complicates the analysis of the resulting random walk

because 𝜌 () will typically be nonzero when `ℓ () climbs to zero,

so the resulting return time of 𝜌 () to zero depends on its initial

height. One can develop a highly precise accounting for this

initial height, but for our purposes it suffices to simply bound

it with the length of the previous excursion of `ℓ () below zero

(which is already controlled by the analysis).

• The final point of interest is the critical region around zero. Here

the same argument works, though one must adopt a stronger

notion of “magic” sequence to guarantee descending across 0. In

particular, one identifies the sequence of (Δ − 1)-isolated occur-

rences of uniquely honest slots (with no adversarial presence)

to guarantee descent. It is an interesting fact that this is the

only place in the analysis that requires unique honest leaders.

Of course, this changes the constant probability associated with

descent compared to the PoW case.
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A OMITTED PROOFS
A.1 Proof of Claim 13

Proof. We have

E [#𝑎 (𝛾)] =
∞∑
ℓ=Δ

Pr[|𝛾 | = ℓ] · E [#𝑎 (𝛾) | |𝛾 | = ℓ]

=

∞∑
ℓ=Δ

Pr[|𝛾 | = ℓ] · (ℓ − 1)𝑝𝑎

≤ 𝑝𝑎

∞∑
ℓ=Δ

Pr[|𝛾 | = ℓ] · ℓ = 𝑝𝑎E [|𝛾 |]

= 𝑝𝑎
(
(Δ − 1) + E

[
𝐺𝑝𝑎

] )
= 𝑝𝑎

(
(Δ − 1) + 1/𝑝ℎ

)
= 𝑝𝑎/𝜗 < 1 ,

where𝐺𝑝 denotes a geometrically distributed random variable with

distribution Pr[𝐺𝑝 = 𝑡] = (1 − 𝑝)𝑡−1𝑝 (for 𝑡 ≥ 1). □

A.2 Proof of Lemma 15
Recall the notion of ℎΔ (·) from Definition 11. We record the Mc-

Diarmid inequality, which immediately implies a large deviation

bound on ℎΔ.

Theorem 27 (McDiarmid’s ineqality). Let 𝑋 = 𝑋1, . . . , 𝑋𝑛 be
a sequence of independent random variables taking values in {0, 1}.
Let 𝑓 : {0, 1}𝑛 → R have the property that for any 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈
{0, 1}𝑛 and 𝑦 = (𝑦1, . . . , 𝑦𝑛) ∈ {0, 1}𝑛 that differ only in a single
coordinate |𝑓 (𝑥) − 𝑓 (𝑦) | < 𝐶 . Then

Pr

𝑋

[
|𝑓 (𝑋 ) − E [𝑓 (𝑌 )] | ≥ _

√
𝑛
]
≤ 2 exp(−2_2/𝐶) ,

where 𝑌 has the same distribution as 𝑋 .

Proof of Lemma 15. Fix 𝑝 ∈ [0, 1] and define

ℎ𝑛 = E [ℎΔ (𝑋1, . . . , 𝑋𝑛)]

where, as in the statement of the lemma, the 𝑋𝑖 are independent

Bernoulli random variables with E [𝑋𝑖 ] = 𝑝 . To match the definition

of ℎΔ, we define ℎ0 = 0. Expanding the expectation around the

outcome of the last random variable 𝑋𝑛 , we find that

ℎ𝑛 = (1 − 𝑝)ℎ𝑛−1 + 𝑝 (1 + ℎ𝑛−Δ) for all 𝑛 > Δ. (21)

Likewise, we find that ℎ𝑛 = (1 − 𝑝)ℎ𝑛−1 + 𝑝 for all 0 < 𝑛 ≤ Δ. In
this regime (where 𝑛 ≤ Δ) we can directly solve for ℎ𝑛 :

ℎ𝑛 = 1 − (1 − 𝑝)𝑛 for 0 < 𝑛 ≤ Δ.

Define 𝑓 (𝑛) = 𝑛/𝛼 . A calculation confirms that 𝑓 (·) satisfies the
recurrence relation (21) for all 𝑛 ∈ Z:

𝑓 (𝑛) = (1 − 𝑝) · 𝑓 (𝑛 − 1) + 𝑝 [1 + 𝑓 (𝑛 − Δ)] .

To complete the proof, we proceed by induction. For any 0 ≤ 𝑛 ≤
Δ, both ℎ𝑛 and 𝑓 (𝑛) lie in the interval [0, 1] which establishes (14).

Assuming (14) for all 𝑘 < 𝑛 (where 𝑛 > Δ), we observe that

𝑓 (𝑛) − ℎ𝑛 = (1 − 𝑝) [𝑓 (𝑛 − 1) − ℎ𝑛−1] + 𝑝 [𝑓 (𝑛 − Δ) − ℎ𝑛−Δ]

as both 𝑓 and ℎ satisfy (21). Thus

|𝑓 (𝑛) − ℎ𝑛 | ≤ (1 − 𝑝) |𝑓 (𝑛 − 1) − ℎ𝑛−1 | + 𝑝 |𝑓 (𝑛 − Δ) − ℎ𝑛−Δ |
≤ (1 − 𝑝) + 𝑝 = 1 ,

as desired.

Finally, note that

|ℎΔ (𝑥1, . . . , 𝑥𝑛) − ℎΔ (𝑦1, . . . , 𝑦𝑛) | ≤ 1

if (𝑥1, . . . , 𝑥𝑛) and (𝑦1, . . . , 𝑦𝑛) differ in only one coordinate. The

large deviation bound follows directly, then, from the McDiarmid

inequality (Theorem 27). □

A.3 Proof of Lemma 16
Proof. Let 𝑔𝑘 = Pr[𝑋𝑖 = 𝑘] and let 𝐺 (𝑥) = ∑

𝑘≥0 𝑔𝑘𝑥
𝑘
denote

the corresponding ordinary generating function associated with the

random variables 𝑋𝑖 . By assumption, for sufficiently small 𝑎 > 1,

𝑔𝑘 ≤ 𝐴 · 𝑎−𝑘 ; it follows that𝐺 (𝑥) is well-defined and differentiable

around 1. As E [𝑋 ] < 1, expanding the derivative we find that

𝐺 ′(1) = E [𝑋𝑖 ] < 1; in particular, for sufficiently small 𝑏 > 1,

𝐺 (𝑏) < 𝑏. Thus, we may adopt an 𝑎∗ = min(𝑎, 𝑏) satisfying both of

these inequalities. Let

𝐵 = 𝐴𝑎∗/(𝑎∗ −𝐺 (𝑎∗)) .

Then we show by induction that (for all 𝑡 and 𝑘) Pr[𝑊𝑡 = 𝑘] ≤
𝐵𝑎−𝑘∗ . The base case 𝑡 = 0 is immediate.

Pr[𝑊𝑡 = 𝑘] = Pr[𝑊𝑡−1 = 0] · 𝑔𝑘 +
𝑘∑
𝑗=0

𝑔 𝑗 Pr[𝑊𝑡−1 = 𝑘 − 𝑗 + 1]

≤ 𝐴𝑎−𝑘∗ +
∞∑
𝑗=0

𝑔 𝑗 Pr[𝑊𝑡−1 = 𝑘 − 𝑗 + 1]

≤ 𝐴𝑎−𝑘∗ +
∞∑
𝑗=0

𝑔 𝑗𝐵𝑎
−𝑘+𝑗−1
∗

= 𝐴𝑎−𝑘∗ + 𝐵𝑎−𝑘−1∗

∞∑
𝑗=0

𝑔 𝑗𝑎
𝑗
∗

= 𝐴𝑎−𝑘∗ + 𝐵𝑎−𝑘−1∗ 𝐺 (𝑎∗)

= 𝑎−𝑘∗ (𝐴 + 𝐵𝐺 (𝑎∗)/𝑎∗) = 𝐵𝑎−𝑘∗ ,

as desired. □
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A.4 Proof of Lemma 20
Proof. Let 𝛼 = 1/𝑎 < 1. Assume that _ < 1/𝑒 is small enough

to satisfy the following additional inequalities:

_ ln2 (_−1) ≤ |E [𝐴] |
4 · 32

(1 −
√
𝛼)2 ≤∗ |E [𝐴] |

4 · 62
ln
2 (1/𝛼) , and

(22)

_ ≤ 1/𝐶 . (23)

The inequality ≤∗
above follows directly from the fact that 1−

√
𝛼 <

(1/2) ln(1/𝛼) for all 𝛼 ∈ (0, 1). Decompose𝑚𝐴 (_) into two sums:

𝑚𝐴 (_) =
∑

−1≤𝑘<𝑆
𝑒_𝑘 Pr[𝐴 = 𝑘]︸                ︷︷                ︸

(†)

+
∑
𝑆≤𝑘

𝑒_𝑘 Pr[𝐴 = 𝑘]︸                ︷︷                ︸
(‡)

,

where 𝑆 = 2 · ln(_2/𝐶)/ln(𝛼) is a threshold chosen to balance

error terms determined below. We record the fact that under con-

straint (23) we have the simpler upper bound

𝑆 ≤ 6 ln(_)/ln(𝛼) . (24)

Consider the sum (†). We first record two estimates applied in

the bound. Observe that

_𝑆2 ≤ _

(
6 ln(_−1)
ln(𝛼−1)

)
2

≤ _ ln2 (_−1)
(

6

ln(𝛼−1)

)
2

≤ |E [𝐴] |
4

(25)

and hence _𝑆 ≤ _𝑆2 < 1/2. We additionally remark that for |𝛿 | < 1,

| exp(𝛿) − (1 + 𝛿) | ≤ 𝛿2/[2(1 − |𝛿 |)]. Then we find that∑
−𝑅≤𝑘<𝑆

𝑒_𝑘 Pr[𝐴 = 𝑘] ≤
∑

−𝑅≤𝑘<𝑆

(
1 + _𝑘 + _2𝑘2

1 − |_𝑘 |

)
Pr[𝐴 = 𝑘]

≤ 1 + _E [𝐴] + _2𝑆2

2(1 − _𝑆)
≤ 1 + _E [𝐴] + _2𝑆2 . (26)

≤ 1 + _E [𝐴] + _

4

|E [𝐴] | , (27)

where line 26 follows because _𝑆 ≤ 1/2, as noted above, and line 27
follows from (25).

As for the sum (‡), in light of constraint 22 we find that∑
𝑆≤𝑘

𝑒_𝑘 Pr[𝐴 = 𝑘] ≤
∑
𝑆≤𝑘

𝑒_𝑘𝐶𝛼𝑘 =
𝐶 (𝛼𝑒_)𝑆

1 − 𝛼𝑒_

≤ 𝐶
√
𝛼
𝑆

1 −
√
𝛼

≤ _2

1 −
√
𝛼

≤ _
|E [𝐴] |

4

.

(28)

where we used the fact that _ < ln(1/
√
𝛼) and hence 𝛼𝑒_ <

√
𝛼 in

the first inequality of the last line. Thus

𝑚𝐴 (_) ≤ 1 + _E [𝐴] + 2

|E [𝐴] |
4

≤ 1 + _
E [𝐴]
2

,

as desired. □

A.5 Proof of Lemma 21
Proof. Applying Lemma 20 to the random variables 𝑍𝑖 , there is

a constant _∗ for which𝑚𝑍𝑖
(_∗) ≤ 1 − _∗𝛾/2 ≤ exp(−_∗𝛾/2). As

the 𝑍𝑖 are independent,

𝑚𝑆𝑛 (_
∗) = E

[
𝑒_

∗ ∑𝑛
𝑖 𝑍𝑖

]
=

𝑛∏
𝑖

E
[
𝑒_

∗𝑍𝑖

]
≤ exp(−𝑛_∗𝛾/2) .

Thus

Pr[𝑆𝑛 ≥ 𝑇 ] = Pr[𝑒_
∗𝑆𝑛 ≥ 𝑒_

∗𝑇 ] ≤
E
[
𝑒_

∗𝑆𝑛
]

𝑒_
∗𝑇

≤ 𝑒−𝑛_
∗𝛾/2𝑒−_

∗𝑇 = exp(−_∗ (𝑇 + 𝑛𝛾/2)) . □

A.6 Proof of Lemma 22
Proof of Lemma 22. For a constant 𝐷 ,

Pr[∃𝑛 > 0, 𝑆𝑛 ≥ 𝐷] ≤
∞∑
𝑛=1

Pr[𝑆𝑛 ≥ 𝐷] ≤
∞∑
𝑛=1

𝑒−𝛼 [𝐷+𝛾𝑛/2]

= 𝑒−𝛼𝐷
∞∑
𝑛=1

𝑒−𝛾𝑛/2 =
𝑒−𝛼𝐷

𝑒𝛾/2 − 1

, (29)

where 𝛼 is the constant promised by Lemma 21. Let𝐷∗
be a constant

for which (29) is less than 1. Then, with non-zero probability 𝑍1 =

𝑍2 = . . . = 𝑍𝐷∗ = −1, so that 𝑆𝑛 = −𝐷∗
and no future 𝑆𝑛 is zero. □

A.7 Proof of Lemma 23
Proof. Let G(𝑋 ) = ∑

𝑘 𝑎𝑘𝑋
𝑘
and H(𝑋 ) = ∑

𝑘 𝑏𝑘𝑋
𝑘
be the or-

dinary generating functions for the random variables 𝐺 and 𝐻𝑖 ,

respectively. By assumption there are constants 𝑎 > 1 and 𝐴 > 0

for which 𝑎𝑘 = Pr[𝐺 = 𝑘] ≤ 𝐴𝑎−𝑘 and constants 𝑏 > 1 and 𝐵 > 0

for which 𝑏𝑘 = Pr[𝐻𝑖 = 𝑘] ≤ 𝐵𝑏−𝑘 . Thus G(𝑋 ) converges inside
[0, 𝑎); likewise H(𝑋 ) converges inside [0, 𝑏).

Recall thatG(𝑋 )×H(𝑋 ) = ∑
𝑐𝑛𝑋

𝑛
is the generating function for

𝐺+𝐻1. AsG(𝑋 ) ·H(𝑋 ) converges in [0,min(𝑎, 𝑏)) (and,min(𝑎, 𝑏) >
1), Pr[𝐺 + 𝐻1 = 𝑘] = 𝑐𝑘 = exp(−Ω(𝑘)). The tail bound in the

statement of the theorem follows immediately.

Recall that G(H(𝑋 )) is the generating function associated with

the convolution of𝐺 copies of 𝐻 (the random variable

∑𝐺
𝑖=1 𝐻𝑖 ). As

H converges in a neighborhood around 1 and lim𝑧→1
+ H(𝑧) = 1,

there is a value 𝑧∗ > 1 for which 𝐻 (𝑧∗) converges to a value

less than 𝑎 (which is > 1). Then G(H(𝑧∗)) converges; writing

G(H(𝑍 )) = ∑
𝑘 𝑐𝑘𝑋

𝑘
, we conclude that 𝑐𝑘 < exp(−Ω(𝑘)). The tail

bound in the statement of the theorem follows immediately. □

A.8 Proof of Lemma 24
This is a result of [10, Thm. 1].
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