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Abstract

The share size of general secret-sharing schemes is poorly understood. The gap between the best
known upper bound on the total share size per party of 20.64n+o(n) (Applebaum et al., STOC 2020)
and the best known lower bound of Ω(n/ log n) (Csirmaz, J. of Cryptology 1997) is huge (where n is
the number of parties in the scheme). To gain some understanding on this problem, we study the share
size of secret-sharing schemes of almost all access structures, i.e., of almost all collections of authorized
sets. This is motivated by the fact that in complexity, many times almost all objects are hardest (e.g.,
most Boolean functions require exponential size circuits). All previous constructions of secret-sharing
schemes were for the worst access structures (i.e., all access structures) or for specific families of access
structures.

We prove upper bounds on the share size for almost all access structures. We combine results on
almost all monotone Boolean functions (Korshunov, Probl. Kibern. 1981) and a construction of (Liu
and Vaikuntanathan, STOC 2018) and conclude that almost all access structures have a secret-sharing
scheme with share size 20̃(

√
n).

We also study graph secret-sharing schemes. In these schemes, the parties are vertices of a graph and
a set can reconstruct the secret if and only if it contains an edge. Again, for this family there is a huge
gap between the upper bounds – O(n/ log n) (Erdös and Pyber, Discrete Mathematics 1997) – and the
lower bounds – Ω(log n) (van Dijk, Des. Codes Crypto. 1995). We show that for almost all graphs, the
share size of each party is no(1). This result is achieved by using robust 2-server conditional disclosure
of secrets protocols, a new primitive introduced and constructed in (Applebaum et al., STOC 2020), and
the fact that the size of the maximal independent set in a random graph is small. Finally, using robust
conditional disclosure of secrets protocols, we improve the total share size for all very dense graphs.

1 Introduction

A dealer wants to store a string of secret information (a.k.a. a secret) on a set of computers such that only
some pre-defined subsets of the computers can reconstruct the information. We will refer to the computers
as the parties, their number as n, and the collection of authorized sets that can reconstruct the secret as
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an access structure. To achieve this goal the dealer uses a secret-sharing scheme – a randomized function
that is applied to the secret and produces n strings, called shares. The dealer gives the i-th share to the
i-th party, and any authorized set of parties can reconstruct the secret from its shares. Nowadays, secret-
sharing schemes are used as a building box in many cryptographic tasks (in addition to their obvious usage
for secure storage), e.g., secure multiparty computation protocols [21, 34, 36], threshold cryptography [44],
access control [64], and attribute-based encryption [53, 73]. We consider schemes where unauthorized sets
of parties gain absolutely no information on the secret from their shares, i.e., the security is information
theoretic. We will mainly try to reduce the sizes of the shares given to the parties. To understand why
minimizing the share size is important, let us consider the original secret-sharing schemes of [55] for an
arbitrary access structure; in these schemes the size of each share is greater than 2n, making them impractical
when, for example, n = 100. Even in the most efficient scheme known today, the share size is 20.64n [5]
(improving on [59, 4]).

We ask the question if the above share size can be reduced for almost all access structures. One mo-
tivation for this question is that in complexity theory, almost all Boolean functions are often the hardest
functions. For example, Shannon [70] showed that almost all Boolean functions require circuits of size
2Ω(n), this lower bound applies also to other models, e.g., formulas. Furthermore, almost all monotone
Boolean functions require monotone circuits and monotone formulas of size 2Ω(n). Dealing with properties
of almost all objects is a common theme in combinatorics, e.g., properties of almost all graphs. A famous
example states that the size of the maximum independent set (and clique) of almost all n-vertex graphs is
approximately 2 log n [54]; we use this property in our constructions. Using a result on almost all monotone
Boolean functions [58], we show that almost all access structures can be realized by a secret-sharing scheme
with share size 2Õ(

√
n).

In this paper, we also study graph secret-sharing schemes. In a secret-sharing scheme realizing a graph
G, the parties are vertices of the graph G and a set can reconstruct the secret if and only if it contains
an edge. The naive scheme to realize a graph is to share the secret independently for each edge; this
result implies a share of size O(n) per party. A better scheme with share size O(n/ log n) per party is
implied by a result of Erdös and Pyber [47]. Graph secret-sharing schemes were studied in many papers,
e.g., [31, 32, 33, 45, 25, 39, 43, 40, 41, 13, 49, 42]. One motivation for studying graph secret-sharing
schemes is that they are simpler than secret-sharing schemes for general access structures and phenomena
proved for graph secret-sharing schemes were later generalized to general access structures (e.g., Blundo et
al. [27] proved that in any non-ideal access structure the share size of at least one party is at least 1.5 times the
size of the secret, a result that was later proved for every access structure [62]). Another motivation is that,
by [66], for every constant 0 < c < 1/2 any graph secret-sharing scheme with share size O(nc) per party
implies a secret-sharing scheme for any access structure with share size 2O(0.5+c)n; thus, major improvement
in the share size for all graphs will result in improved schemes for all access structures. However, in spite
of the recent improvements in the share size for general access structures [59, 4, 5] and for specific families
of access structures (e.g., forbidden graphs [17, 51, 60] and uniform access structures [2, 18, 4]), no such
improvement was achieved for schemes for graphs. We show that almost all graphs can be realized by a
secret-sharing scheme with share size no(1) per party.

1.1 Previous Results

We next describe the most relevant previous results. We refer the reader to Figure 1 for a description of the
share size in previous constructions and our constructions.
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Figure 1: A summary of the upper and lower bounds on the maximum share size for secret-sharing schemes
for forbidden graph access structures, almost all graph access structures, graph access structures, almost all
access structures, and all access structures. The results proved in this paper are in boldface.

Measures of share size. The size of a share is simply the length of the string representing it. For a secret-
sharing scheme, two measures of for the share size were considered: (1) the maximum share size, i.e.,
the maximum over all parties in the scheme of the size of the share of the party, (2) the total share size,
i.e., the sum over all parties in the scheme of the size of the share of the party. For a given scheme, the
maximum share size is bounded from above by the total share size, which is bounded from above by n times
the maximum share size. The distinction between these two measures is important for graph secret-sharing
schemes, and there might be trade-offs between optimizing one measure and optimizing the other. On the
other hand, the share size in the secret-sharing schemes considered in this paper for general access structures
is larger than 2

√
n, thus for these schemes the distinction between the measures is less important.

We will also consider the normalized total (respectively, maximum) share size, i.e., the ratio between
the sum of the share sizes (respectively, maximum share size) and the size of the secret. This normalized
share size (also known as information ratio) is similar in spirit to measures considered in information theory
and it is interesting since the length of each share is at least the length of the secret [57]. In this work, we
will consider the normalized share size for two regimes: (1) Moderately short secrets of size Õ(n), and (2)
Following [3, 2], we also consider exponentially long secrets of size 2n

2
. The latter size is not reasonable,

however, these schemes may lead to schemes with the same share size for shorter secrets and they provide
barriers for proving lower bounds via information inequalities.

Bounds on the share size. Secret-sharing schemes were introduced by Blakely [24] and Shamir [69] for
the threshold case and by Ito, Saito, and Nishizeki [55] for the general case. In the original secret-sharing
schemes for arbitrary access structures of Ito et al. [55] the maximum share size is 2n−1. Additional con-
structions of secret-sharing schemes followed, e.g., [71, 30, 22, 56, 23]. For specific access structures, the
share size in these schemes is less than the share size in the scheme of [55]; however, the share size in the
above schemes for arbitrary access structures is 2n−o(n). In a recent breakthrough work, Liu, and Vaikun-
tanathan [59] (using results of [61]) constructed a secret-sharing scheme for arbitrary access structures with
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share size 20.944n and a linear secret-sharing scheme with share size 20.999n. Applebaum et al. [5] (using
results of [61, 4]) improved these results, constructing a secret-sharing schemes for arbitrary access struc-
tures with share size 20.637n and a linear secret-sharing scheme with share size 20.762n. It is an important
open problem if the share can be improved to 2o(n) (or even smaller). Lower bounds for secret-sharing were
proven in, e.g., [33, 26, 45, 38, 37]. These lower bounds are very far from the upper bounds – the best
lower bound is Ω(n2/ log n) for the normalized total share size for an explicit access structure (proven by
Csirmaz [37]).

For graph secret-sharing schemes there is also a big gap between the upper bounds and lower bounds.
Erdös and Pyber [47] have proved that every graph can be partitioned into complete bipartite graphs such
that each vertex is contained in at most O(n/ log n) complete bipartite graphs. Blundo et al. [26] observed
that this implies that the normalized maximum share size of realizing every n-vertex graph is O(n/ log n)
(for secrets of size log n). Van Dijk [45] proved a lower bound of Ω(log n) on the normalized maximum
share size of realizing an explicit n-vertex graph. Csirmaz [39] extended this lower bound to the n-vertex
Boolean cube. He observed that a lower bound of Ω(log n) on a specific graph implies a lower bound
of Ω(log log n) for almost all graphs (as almost all n-vertex graphs contain a copy of every log n-vertex
graph [29]). Furthermore, Csirmaz asked if for almost every graph there is a scheme with normalized
maximum share size o(n/ log n). We answer this question affirmatively by showing for almost all graphs a
secret-sharing scheme with maximum share size no(1).

Linear secret-sharing schemes. Linear secret-sharing schemes, introduced by [30, 56], are schemes in
which the random string is a vector of elements over some finite field Fq, the domain of secrets is also Fq,
and the shares are computed as a linear map over Fq. Many known schemes are linear, e.g., [69, 24, 22]
and the schemes for graphs implied by [47]. They are equivalent to a linear-algebraic model of computation
called monotone span programs [56]. Linear secret-sharing schemes are useful as they are homomorphic:
given shares of two secrets s, s′, each party can locally add its shares and obtain a share of s+ s′. For many
applications of secret sharing, linearity is essential, e.g., [36, 8, 74], hence, constructing linear secret-sharing
schemes is important. The size of the shares in the best known linear secret-sharing scheme is 20.76n [5]
(improving upon [59]). Pitassi and Robere [67] proved an exponential lower bound of 2cn log q on the
share in linear secret-sharing schemes over Fq for an explicit access structure of (where 0 < c < 1/2 is a
constant). Babai et al. [9] proved a lower bound of 2n/2−o(n)

√
log q on the share in linear secret-sharing

schemes over Fq for almost all access structures.
Multi-linear secret-sharing schemes, introduced by [23], are a generalization of linear secret-sharing

schemes in which the domain of secrets is F`q for some integer `. In [2, 5], such schemes improve the
normalized maximum share size compared to the linear secret-sharing schemes constructed in those papers
(i.e., the multi-linear schemes share a longer secret while using the same share size as the linear schemes).
Beimel et al. [11] proved that every lower bound proved for linear secret-sharing schemes using the Gal-
Pudlák criteria [50] also applies to multi-linear secret-sharing schemes. In particular, this implies that the
nΩ(logn) lower bound of [9] for the normalized maximum share size for an explicit access structure and the
Ω(
√
n) lower bound of [16] for the normalized maximum share size for an explicit graph access structure

hold also for multi-linear secret-sharing schemes. We note that it is not clear if multi-linear secret-sharing
schemes can replace linear secret-sharing schemes in many applications, e.g., in the MPC protocols of [36]
that are secure against general adversarial structures.

Conditional disclosure of secrets protocols. Conditional disclosure of secrets (CDS) protocols were first
defined by Gertner et al. [52]. A CDS protocol for a Boolean function f involves k servers and a referee.
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Each server holds a common secret s, a common random string r, and a private input xi; using these r, s,
and xi the i-th server computes one message (without seeing any other input or message) and sends it
to the referee. The referee knowing the inputs x1, . . . , xk and the messages should be able to compute
s if and only if f(x1, . . . , xk) = 1. CDS protocols were used in many cryptographic applications, such
as symmetric private information retrieval protocols [52], attribute based encryption [51, 8, 74], priced
oblivious transfer [1], and secret-sharing schemes [59, 4, 5]. Applebaum et al. [5] defined robust CDS
protocols (see Section 2.3) and used them to construct more efficient secret-sharing schemes for arbitrary
access structures. We use robust CDS protocols to construct better schemes for almost all graphs and for all
very dense graphs.

The original construction of k-server CDS protocols for general functions f : [N ]k → {0, 1}, presented
in [52], has message size O(Nk) (where N is the input domain size of each server). This construction is
linear. Recently, better constructions of CDS protocols for general functions have been presented. Beimel
et al. [17] have shown a non-linear 2-server CDS protocol with message size O(N1/2) and Gay et al. [51]
constructed a linear 2-server CDS protocol with the same message size. Then, Liu et al. [60] have designed a
2-server non-linear CDS protocol with message size 2O(

√
logN log logN) and Liu et al. [61] have constructed

a k-server CDS protocol with message size 2Õ(
√
k logN). Beimel and Peter [19] and Liu et al. [61] have

constructed a linear CDS protocol with message size O(N (k−1)/2); by [19], this bound is optimal for linear
CDS protocols (up to a factor of k). Applebaum and Arkis [2] (improving on Applebaum et al. [3]) have
showed that there is a CDS protocol with long secrets – of size Θ(2N

k
) – in which the message size is 4

times the secret size. Lower bounds on the message size in CDS protocols and in linear CDS protocols have
been proven in [51, 3, 6, 7].

Forbidden graph access structures. In a forbidden-graph secret-sharing scheme for a graph G, intro-
duced by Sun and Shieh [72], the parties are the vertices of the graph G and a set is authorized if it is
an edge or its size is at least 3. A a forbidden-graph secret-sharing scheme for a graph G is not harder
than a graph secret-sharing realizing G: Given a secret-sharing scheme realizing a graph, one can con-
struct a forbidden-graph secret-sharing scheme for G by giving a share of the graph secret-sharing scheme
and a share of a 3-out-of-n threshold secret-sharing schemes. Furthermore, forbidden graph secret-sharing
schemes are closely related to 2-server CDS protocols: Beimel et al. [17] have described a transformation
from a CDS protocol for a function describing the graph G to a forbidden graph secret-sharing scheme for
G in which the maximum share size of the scheme is O(log n) times the message size of the CDS protocol.
Furthermore, by [17, 2], if we consider secrets of size at least O(log2 n), then there is a transformation in
which the normalized maximum share size is a constant times the message size of the CDS protocol. As
a result, we get that every forbidden graph G can be realized by a secret-sharing with maximum share size
no(1) (using the CDS protocol of [60]), by a linear secret-sharing scheme over Fq with maximum share size
Õ(
√
n log q) for every prime power q (using the CDS protocol of [51]), and a multi-linear secret-sharing

scheme with normalized maximum share size O(1) for secrets of length 2n
2

[2]. We nearly match these
bounds for graph access structures for almost all graphs.

1.2 Our Results and Techniques

We next describe the results we achieve in this paper. We again refer the reader to Figure 1 for a description
of the maximum share size in previous constructions and our constructions.
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Almost all access structures. We prove upper bounds on the share size for almost all access structures,
namely almost all access structures have a secret-sharing scheme with share size 20̃(

√
n), a linear secret-

sharing scheme with share size 2n/2+o(n), and a multi-linear secret-sharing scheme with maximum share
size Õ(log n) for secrets of size 2n

2
. Our linear secret-sharing scheme for almost all access structures are

optimal (up to a factor of 2o(n)) for a one-bit secret (by a lower bound of Babai et al. [9]).
The construction for almost all access structures is a simple combination of previous results. The first

result, proved by Korshunov [58] in 1981, is that in almost all access structures with n parties all minimum
authorized sets are of size between n/2 − 1 and n/2 + 2, i.e., all sets of size at most n/2 − 2 are unau-
thorized and all sets of size at least n/2 + 3 are authorized. The second result we use, proved by Liu and
Vaikuntanathan [59], is that such access structures can be realized by secret-sharing schemes with share size
as above. These results are presented in Section 3.

We also prove lower bounds on the normalized share size in linear secret-sharing schemes for almost
all access structures. Rónyai et al. [68] proved that for every finite field Fq for almost all access structures
the normalized share size of linear secret-sharing schemes over Fq realizing the access structure is at least
Ω(2n/3−o(n)). The result of Rónyai et al. [68] does not rule-out the possibility that for every access struc-
tures there exists some finite field Fq (possibly with a large q) such that the access structure can be realized
by a linear secret-sharing schemes over Fq with small normalized share size. This could be plausible since
we know that there are access structures that can be realized by an efficient linear secret-sharing scheme
over one field, but require large shares in any linear secret-sharing scheme over fields with a different char-
acteristic [20, 67]. Pitassi and Robere [67] proved that there exists an explicit access structure for which
this is not true, i.e., there exists a constant c > 0 such that in any linear secret-sharing scheme realizing
it the normalized share size is 2cn. In Theorem 3.9, we prove that this is not true for almost all access
structures, namely, for almost every access structure the normalized share size in any linear secret-sharing
scheme realizing the access structure is Ω(2n/3−o(n)). Our proof uses a fairly recent result on the number of
representable matroids [65].

(G, t)-graph secret-sharing schemes and robust CDS. We define a hierarchy of access structures be-
tween forbidden graph access structures and graph access structures. In a (G, t)-secret-sharing scheme,
every set containing an edge is authorized and, in addition, every set of size t + 1 is authorized. In other
words, the unauthorized sets are independent sets in G of size at most t. We show that (G, t)-secret-sharing
schemes are equivalent to 2-server t-robust CDS protocols. As a result, using the robust CDS protocols
of [5], we get efficient (G, t)-secret-sharing schemes, e.g., schemes with maximum share size no(1)t. These
results are presented in Section 4. We note that, for an arbitrary graph G, our (G,n)-secret-sharing scheme,
which is a graph secret-sharing scheme realizingG, the share size does not improve upon the scheme of [47].

Almost all graph secret-sharing schemes. We show that for almost all graphs, there exists a secret-
sharing scheme with maximum share size no(1), a linear secret-sharing scheme with normalized maximum
share size Õ(

√
n) (for moderately short secrets), and a multi-linear secret-sharing scheme with normalized

maximum share size Õ(log n) for exponentially long secrets. By [16, 11], there exists a graph such that in
every multi-linear secret-sharing scheme realizing the graph the normalized maximum share size is Ω(

√
n),

thus, we get a separation for multi-linear secret-sharing schemes between the normalized maximum share
size for almost all graphs and the maximum share size of the worst graph. These results are presented
in Section 5.

To construct our scheme for almost all graphs, we use the fact that if the size of every independent set
in a graph G is at most t, then a (G, t)-secret-sharing scheme is a graph secret-sharing scheme realizing G.
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Our construction follows from the fact that for almost every graph, the size of the maximal independent set
in a random graph is O(log n) [54].

We also consider the maximum share size of random n-vertex graphs drawn from the Erdös-Rényi [48]
distribution G (n, p), that is, each pair of vertices is independently connected by an edge with probability p.
For example, G (n, 1/2) is the uniform distribution over the n-vertex graphs. On one hand, with probability
nearly 1 the size of the maximum independent set in a graph drawn from G (n, p) is at mostO(1

p log n), thus,
using (G, t)-secret-sharing schemes with t = O(1

p log n), we realize a graph in G (n, p) with normalized
maximum share size no(1)/p. On the other hand, with probability nearly 1 the degree of all vertices in
the graph drawn from G (n, p) is O(pn), thus, it can be realized by the trivial secret-sharing scheme with
maximum share size O(pn). Combining these two schemes, the hardest distribution in our construction
is G (n, 1/

√
n) for which the normalized maximum share size is

√
n. We do not know if there is a better

secret-sharing scheme for graphs drawn from G (n, 1/
√
n) or this distribution really requires shares of size

nΩ(1).

Dense graph secret-sharing schemes. Following [13], we study graph secret-sharing schemes for very
dense graphs, i.e., graphs with at least

(
n
2

)
− n1+β edges for some constant β. For these graphs, Beimel et

al. [13] have constructed a linear secret-sharing scheme with maximum share size Õ(n1/2+β/2) and another
linear secret-sharing scheme with total share size Õ(n5/4+3β/4). We improve on the latter result and show
that all very dense graphs can be realized by a secret-sharing scheme with normalized total share size of
n1+β+o(1) for moderately short secrets of size Õ(n). To put this result in perspective, this total share size
matches (up to a factor of no(1)) to the total share size of the naive secret-sharing scheme for sparse graphs
with n1+β edges. These schemes are presented in Section 6.

We next describe the high-level ideas of our construction realizing a graph G with at least
(
n
2

)
− n1+β

edges. If every vertex in G has degree at least n − nβ , then the size of every independent set in G is at
most nβ + 1, and we can use a (G,nβ + 1)-secret-sharing schemes, resulting in normalized total share size
O(n1+β+o(1)). While in a graph with at least

(
n
2

)
− n1+β edges the average degree is at least n − O(nβ),

the graph can contain vertices whose degree is small. To overcome this problem, we use an idea of [13]. We
consider the set of vertices A whose degree is smallest in G and execute a secret-sharing scheme realizing
the graph restricted to this set (denoted G′). We choose the size of this set such that: (1) the size of the set is
small, thus, the total share size in realizing G′ is small, and (2) the degree of the each vertex not in A is big,
thus, we can realize the graph without the edges between vertices in A by a (G, t)-secret-sharing scheme for
a relatively small t. We apply the above construction iteratively to get our scheme.

Hypergraph secret-sharing schemes. A secret-sharing realizes a hypergraph H if the parties of the
scheme are the vertices of H and a set of parties can reconstruct the secret if and only if it contains a
hyperedge. In this work, we construct schemes for k-hypergraphs, that is, hypergraphs whose hyperedeges
are all of size k. The access structures of these schemes are also called k-homogeneous. The best secret-
sharing scheme for k-hypergraphs known to date is the original scheme of [55], which have maximum share
size O(

(
n
k−1

)
).

Extending the results explained above, we show a connection between k-hypergraph secret-sharing
schemes and k-server t-robust CDS protocols. For any constant k, we show that for almost every k-
hypergraph there exists a secret-sharing scheme with maximum share size is no(1), a linear secret-sharing
scheme with normalized maximum share size Õ(n(k−1)/2), and a multi-linear secret-sharing scheme with
normalized maximum share size Õ(logk−1 n) for exponentially long secrets. These schemes are presented
in Section 7.
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Interpretation of our results. In this work we have shown that for almost all access structures there exist
secret-sharing schemes that are more efficient than the known secret-sharing schemes for the worst access
structures. Similarly, we have constructed for almost every graph G a secret-sharing schemes realizing
G that are more efficient than the known secret-sharing schemes realizing the worst graph. One possible
conclusion from this result is that in secret-sharing schemes almost all access structures might not be the
hardest access structures. Another possible interpretation is that our results may be generalized to all access
structures. We note that in one case we know that the former interpretation is true: there is a graph for
which the normalized maximum share size for multi-linear schemes is at least Ω(

√
n) (for every size of

secrets) [11, 16], while we show an upper bound for almost all graphs of Õ(log n) (for long secrets).

Open problems. Can the normalized share size of almost all access structures can be improved? We do
not have any non-trivial lower-bound on the normalized share size for them. Recall that an access structure is
n/2-uniform if all sets of size less than n/2 are unauthorized, all sets of size greater than n/2 are authorized,
and sets of size exactly n/2 can be either authorized or unauthorized. By [4] (using results of [2]), every
n/2-uniform access structure can be realized by a scheme with normalized maximum share size O(n2)
(with exponentially long secrets). Since almost all access structures somewhat resemble uniform access
structures (see Theorem 3.2), one can hope that almost every access structure can be realized by a scheme
with polynomial normalized share size.

Another research problem is to study the complexity of almost all functions for other primitives with
information-theoretic security, for example, private simultaneous messages (PSM) protocols, MPC proto-
cols, MPC protocols with constant number of rounds, and private information retrieval (PIR) protocols for
almost all databases. For all these primitives there is a huge gap between the known upper bounds and lower
bounds on the message size. Are there more efficient protocols for any of these primitives for almost all
functions than the protocols for all functions?

2 Preliminaries

In the section, we present the preliminary results needed for this work. First, we define secret-sharing
schemes, linear secret-sharing schemes, graph secret-sharing schemes, and homogeneous access structures.
Second, we define conditional disclosure of secrets (CDS) protocols, and robust CDS protocols. We also
present several CDS and robust CDS protocols from [2, 19, 60, 61] that are used in this work. Finally, we
present a short introduction to random graphs and random access structures.

2.1 Secret-Sharing Schemes

We present the definition of secret-sharing scheme as given in [35, 12]. For more information about this
definition and secret-sharing in general, see [10].

Definition 2.1 (Access Structures). Let P = {P1, . . . , Pn} be a set of parties. A collection Γ ⊆ 2P is
monotone if B ∈ Γ and B ⊆ C imply that C ∈ Γ. An access structure is a monotone collection Γ ⊆ 2P of
non-empty subsets of P . Sets in Γ are called authorized, and sets not in Γ are called forbidden.

Definition 2.2 (Secret-Sharing Schemes). A secret-sharing scheme Π with domain of secrets S, such that
|S| ≥ 2, is a mapping from S × R, where R is some finite set called the set of random strings, to a set of
n-tuples S1 × S2 × · · · × Sn, where Sj is called the domain of shares of Pj . A dealer distributes a secret
s ∈ S according to Π by first sampling a random string r ∈ R with uniform distribution, computing a vector
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of shares Π(s, r) = (s1, . . . , sn), and privately communicating each share sj to party Pj . For a set A ⊆ P ,
we denote ΠA(s, r) as the restriction of Π(s, r) to its A-entries (i.e., the shares of the parties in A).

A secret-sharing scheme Π with domain of secrets S realizes an access structure Γ if the following two
requirements hold:

CORRECTNESS. The secret s can be reconstructed by any authorized set of parties. That is, for any set
B =

{
Pi1 , . . . , Pi|B|

}
∈ Γ there exists a reconstruction function ReconB : Si1 × · · · ×Si|B| → S such that

for every secret s ∈ S and every random string r ∈ R,

ReconB (ΠB(s, r)) = s.

PRIVACY. Any forbidden set cannot learn anything about the secret from its shares. Formally, for any set
T =

{
Pi1 , . . . , Pi|T |

}
/∈ Γ and every pair of secrets s, s′ ∈ S, the distributions ΠT (s, r) and ΠT (s′, r) are

identical, where the distributions are over the choice of r from R at random with uniform distribution.
Given a secret-sharing scheme Π, define the size of the secret as log |S|, the share size of party Pj as

log |Sj |, the maximum share size as max1≤j≤n {log |Sj |}, and the total share size as
∑n

j=1 log |Sj |.

A secret-sharing scheme is multi-linear if the mapping that the dealer uses to generate the shares given
to the parties is linear, as we formalize at the following definition.

Definition 2.3 (Multi-Linear and Linear Secret-Sharing Schemes). Let Π be a secret-sharing scheme with
domain of secrets S. We say that Π is a multi-linear secret-sharing scheme over a finite field F if there are
integers `d, `r, `1, . . . , `n such that S = F`d , R = F`r , S1 = F`1 , . . . , Sn = F`n , and the mapping Π is a
linear mapping over F from F`d+`r to F`1+···+`n . We say that a scheme is linear over F if S = F (i.e., when
`d = 1).

Definition 2.4 (Graph secret-sharing schemes). Let G = (V,E) be an undirected graph with |V | = n; for
simplicity we assume that E 6= ∅. We define ΓG as the access structure whose minimal authorized subsets
are the edges in G, that is, the unauthorized sets are independent sets in the graph. A secret-sharing scheme
realizing an access structure ΓG is said to be a secret-sharing scheme realizing the graph G and is called a
graph secret-sharing schemes.

These schemes are one of the main topics in this work. In this paper, we study very dense graphs, graphs
with at least

(
n
2

)
− n1+β edges for some 0 ≤ β < 1.

We also study k-homogeneous access structures, which are access structures whose minimal authorized
subsets are of the size k. For example, graph access structures are 2-homogeneous access structures. For
k > 2, it is convenient to define k-homogeneous access structures from hypergraphs. A hypergraph is a
pair H = (V,E) where V is a set of vertices and E ⊆ 2V \ {∅} is the set of hyperedges. A hypergraph is
k-uniform if |e| = k for every e ∈ E. A k-uniform hypergraph is complete if E =

(
V
k

)
= {e ⊆ V : |e| =

k}. Observe that there is a one-to-one correspondence between uniform hypergraphs and homogeneous
access structures, and that complete uniform hypergraphs correspond to threshold access structures. Given
a hypergraph H = (V,E), we define ΓH as the access structure whose minimal authorized sets are the
hyperedges of H .

We contrast homogeneous access structures with uniform access structures (studied, e.g., in [72, 18, 2,
4]). A k-uniform access structures is also described by a k-uniform hyper-graph and its authorized sets are
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all the hyper-edges and all sets of size at least k + 1. Thus, k-homogeneous access structures are harder to
realize as they might contain forbidden sets of size much larger than k.1

2.2 Conditional Disclosure of Secrets

We define k-server conditional disclosure of secrets protocols, originally defined in [52].

Definition 2.5 (Conditional Disclosure of Secrets Protocols). Let f : X1 × · · · ×Xk → {0, 1} be a k-input
function. A k-server CDS protocol P for f with domain of secrets S consists of:

1. A finite domain of common random strings R, and k finite message domains M1, . . . ,Mk,

2. Deterministic message computation functions ENC1, . . . , ENCk, where ENCi : Xi×S×R→Mi for
every i ∈ [k] (we also say that ENCi(xi, s, r) is the message sent by the i-th server to the referee), and

3. A deterministic reconstruction function DEC : X1 × · · · ×Xk ×M1 × · · · ×Mk → {0, 1}.

We denote ENC(x, s, r) = (ENC1(x, s, r), . . . , ENC(xk, s, r)). We say that a CDS protocol P is a CDS
protocol for a function f if the following two requirements hold:

CORRECTNESS. For any input (x1, . . . , xk) ∈ X1 × · · · ×Xk for which f(x1, . . . , xk) = 1, every secret
s ∈ S, and every common random string r ∈ R,

DEC(x1, . . . , xk, ENC1(x1, s, r), . . . , ENCk(xk, s, r)) = s.

PRIVACY. For any input x = (x1, . . . , xk) ∈ X1 × · · · ×Xk for which f(x1, . . . , xk) = 0 and for every
pair of secrets s, s′, the distributions ENC(x, s, r) and ENC(x, s′, r) are identical, where the distributions
are over the choice of r from R at random with uniform distribution.

The message size of a CDS protocol P is defined as the size of largest message sent by the servers, i.e.,
max1≤i≤k {log |Mi|}.

Next, we present the properties of three CDS protocols that are used in this work. The CDS protocol
presented in Theorem 2.6 has linear properties: the messages are generated from the secret and the random-
ness with linear mappings. Theorem 2.6 is a particular case of Theorem 6 of [2], while Theorem 2.7 is from
[60].

Theorem 2.6 ([2]). For any 2-input function f : [n] × [n] → {0, 1} there is a 2-server CDS protocol in
which, for sufficiently large secrets, i.e., secrets of size 2n

2
, each server communicates at most 3 bits per

each bit of the secret.

Theorem 2.7 ([60]). For any 2-input function f : [n]× [n]→ {0, 1} there is a 2-server CDS protocol with
message size nO(

√
log logn/ logn) = no(1).

Theorem 2.8 ([61]). For any k-input functions f : [n]k → {0, 1} there is a k-server CDS protocol with
message size nO(

√
k/ logn log(k logn)).

1For example, given a secret-sharing realizing the k-homogeneous access structures of a hyper-graph H , we can realize the
k-uniform access structures of H by additionally sharing the secret in a (k + 1)-out-of-k secret-sharing scheme.
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2.3 Robust Conditional Disclosure of Secrets

In a recent work [5], Applebaum et al. define a stronger notion of CDS protocols that is useful for construct-
ing secret-sharing schemes. In a k-server CDS protocol, we assume that each server sends one message
to the referee. Therefore, the referee only has access to k messages. In a robust k-server CDS protocol,
we consider the case that the referee can have access to more than one message from some servers (gener-
ated with the same common random string), and privacy is guaranteed even if an adversary sees a bounded
number of messages from each server.

Definition 2.9 (Zero sets). Let f : X1 × · · · × Xk → {0, 1} be a k-input function. We say that a set of
inputs Z ⊆ X1 × · · · ×Xk is a zero set of f if f(x) = 0 for every x ∈ Z. For sets Z1, . . . , Zk, we denote
ENCi(Zi, s, r) = (ENCi(xi, s, r))xi∈Zi , and

ENC(Z1 × · · · × Zk, s, r) = (ENC1(Z1, s, r), . . . , ENCk(Zk, s, r)).

Definition 2.10 (Robust conditional disclosure of secrets (RCDS) protocols). Let P be a k-server CDS
protocol for a k-input function f : X1 × · · · × Xk → {0, 1} and Z = Z1 × · · · × Zk ⊆ X1 × · · · × Xk

be a zero set of f . We say that P is robust for the set Z if for every pair of secrets s, s′ ∈ S, it holds that
ENC(Z, s, r) and ENC(Z, s′, r) are identically distributed. Let t1, . . . , tk be integers. We say that P is a
(t1, . . . , tk)-robust CDS protocol if it is robust for every zero set Z1 × · · · ×Zk such that |Zi| ≤ ti for every
i ∈ [k] and it is a t-robust CDS protocol if it is (t, . . . , t)-robust.

In this work we use several constructions of robust CDS protocols presented in [4], which are based on
non-robust CDS protocols. Theorem 2.11 presents linear and multi-linear robust CDS protocols in which
the underlying CDS protocol is from [51]. Then, Theorem 2.12 presents a generic transformation from non-
robust CDS protocols to robust CDS protocols. In this transformation, if the original CDS is linear, then the
resulting robust CDS is multi-linear.

Theorem 2.11 ([5, Theorem D.5]). Let f : [N ]× [N ]→ {0, 1} be a function. Then, for every finite field Fq
and every integer t ≤ N/(2 log2N), there is a linear 2-server (t,N)-robust CDS protocol for f with one
element secrets in which the message size is

O((t log2 t+
√
N)t log t log2N log q).

Furthermore, there is p0 such that for every prime-power q > p0 there is a multi-linear 2-server (t,N)-
robust CDS protocol for f over Fq with secrets of size Θ(t2 log q log t log3N) in which the normalized
message size is

O(t log2 t+
√
N).

Theorem 2.12 ([5, Theorem E.2]). Let f : [N ]k → {0, 1} be a k-input function, for some integer k > 1,
and t ≤ min{kN/2, 2

√
N/k} be an integer. Assume that for some integer m ≥ 1, there is a k-server CDS

protocol P for f with secrets of size m in which the message size is c(N,m). Then, there is a k-server
t-robust CDS protocol for f with secrets of size m in which the message size is

O
(
c(N,m)k3k−12ktk log2k−1 t log2(N)

)
.

If P is a linear protocol over F2m , then the resulting protocol is also linear. Furthermore, there is a k-server
t-robust CDS protocol for f with secrets of size Θ(mk2t log t log2(N)) in which the normalized message
size is

O

(
c(N,m)

m
k3k−32ktk−1 · log2k−2 t

)
.
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2.4 Random Graphs and Access Structures

In this work, we use several results on random graphs to construct secret-sharing schemes for almost all
graphs with improved share size. First, we present the Erdös-Rényi model for random graphs [48]. For an
introduction to this topic see, e.g., [28].

Let Gn be the family of graphs with the vertex set V = {1, . . . , n}. Given 0 < p < 1, the model G (n, p)
is a probability distribution over Gn in which each edge is chosen independently with probability p, that is,
if G is a graph with m edges, then Pr[{G}] = pm(1 − p)(

n
2)−m. Note that when p = 1/2, any two graphs

are equiprobable.
We say that almost every graph in G (n, p) has a certain property Q if Pr[Q] → 1 as n → ∞. For

p = 1/2, saying that almost every graph in G (n, p) has a certain property Q is equivalent to saying that the
number of graphs in Gn satisfying Q divided by |Gn| tends to 1 as n → ∞. In this case, we will say that
almost all graphs satisfy Q.

Analogously, we will use the same expression for any family of access structures Fn. We say that almost
all access structures in Fn satisfy Q if the number of access structures in Fn satisfying Q divided by |Fn|
tends to 1 as n→∞. In particular, we study the family of homogeneous access structures and the family of
all access structures.

Next, we present some properties of the maximum independent sets of graphs in G (n, p). Lemma 2.13
was presented by Grimmett and McDiarmid in [54]. Several subsequent results gave more accurate bound
on the size of maximum independent sets, but it is enough for our purposes. In Lemma 2.14 we give bounds
to the maximum independent sets in G (n, p) for non-constant p. In Lemma 2.15 and Lemma 2.16 we
present further properties of almost all graphs. The proofs of Lemma 2.14 and Lemma 2.15 are moved to
the Appendix A.

Lemma 2.13 ([54]). Let 0 < p < 1 be a constant. Then the size of a maximum independent set in almost
every graph in G (n, p) is smaller than 2 log n/ log( 1

1−p) + o(log n).

As a consequence of Lemma 2.13, the size of a maximum independent set in almost every graph in Gn
is smaller than (2 + o(1)) log n.

Lemma 2.14. The size of a maximum independent set in almost every graph in G (n, p) is O( logn
p ) if 1/n ≤

p ≤ 1/2, and 1 + 2+o(1)
α if p = 1− n−α for some 1/ log n ≤ α ≤ 1.

With a similar proof, we can also show that for every 0 ≤ β ≤ 1 − 1
logn , almost all graph with n1+β

edges have maximal independent sets of size at most O(n1−β log n), and almost all graphs with
(
n
2

)
−n1+β

have maximal independent sets of size at most 1 + 2+o(1)
1−β .

Lemma 2.15. Almost all graphs in G (n, p) with p = ω(log n/n) have degree at most 2pn.

Lemma 2.16 ([29, Theorem 1]). Almost every graph with n = dr22r/2e vertices contains every graph of r
vertices as an induced subgraph.

3 Secret-sharing Schemes for Almost All Access Structures

This section is dedicated to the study of general access structures. Combining results on monotone Boolean
functions by Korshunov [58] and secret-sharing schemes from [59, 2], we obtain secret-sharing schemes
for almost all access structures. Then, we present lower bounds on the maximum share size for almost all
access structures.
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3.1 Upper Bounds for Almost All Access Structures

First, we define the family of slice access structures. These access structures have a special role in the
general constructions presented in [59, 4, 5]. In Theorem 3.2, we present a family of slice access structures
that contains almost all access structures. It is direct consequence of the results in [58] for monotone Boolean
functions (also presented in [75, Page 99]).

Definition 3.1. Let a, b be two integers satisfying 1 ≤ a < b ≤ n. We define Sa,b as the family of access
structures Γ satisfying that, for every A ⊆ P :

1. if |A| > b, then A ∈ Γ,

2. if |A| < a, then A /∈ Γ.

Theorem 3.2. Let ` = bn/2c. Almost all access structures (i.e., monotone collections of sets) are in
S`−1,`+1 if n is even, and in S`−1,`+2 if n is odd.

Theorem 3.3. Almost all access structures can be realized by the following secret-sharing schemes.

1. A secret-sharing scheme with share size 2O(
√
n logn).

2. A linear secret-sharing scheme with share size 2n/2+o(n).

3. A multi-linear secret-sharing scheme with normalized share size 2O(
√
n logn) for secrets of size 2n

2
.

Proof. By Theorem 3.2, constructing secret-sharing schemes for access structures in S`−1,`+2 suffices for
constructing secret-sharing schemes for almost all access structures.

Assume that for every k-input function f : [N ]k → {0, 1} and secret of size m there is a k-server CDS
protocol for f in which the message size is c(N,m). By [59], for every k there is a secret-sharing scheme
for Γ ∈ Sa,b with share size at most

c(N,m)2(b−a+1)n/kO(n)

(
n

a

)
/

(
n/k

a/k

)k
for N =

(n/k
a/k

)
. In our case, a = bn2 c − 1 and b = bn2 c+ 2. Taking k =

√
n

logn ,

c(N,m)24n/kO(n)

(
n

n/2−1

)
( n/k

(n−2)/2k

)k = c(N,m)24
√
n lognO(poly(n))

(n
k

) k
2

= c(N,m)2O(
√
n logn).

Taking the k-server CDS protocol with message size c(N,m) = 2O(
√

logN log logN ≤ 2O(
√
n logn) from [61],

we get the first secret-sharing scheme. If we take the linear k-server CDS protocol from [19, 61] with
message size O(N (k−1)/2) ≤ 2n/2+o(n), we get the second secret-sharing scheme. The third secret-sharing
scheme is obtained by using the k-server CDS protocol with message size c(N,m) ≤ 4m from [2].

As a consequence of this result, Hypotheses 1 and 3 in [2] are true for almost all access structures:

Hypothesis 1 (SS is short). Every access structure over n parties is realizable with small information ratio
(say 2o(n)).

Hypothesis 2 (SS is amortizable). For every access structure over n parties, and every sufficiently long
secret s, there exists a secret-sharing scheme with small information ratio (e.g., sub-exponential in n).
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3.2 Almost All Access Structures Require Long Shares in Linear secret-sharing Schemes

Rónyai et al. [68] proved that for every finite field Fq for almost every access structure Γ the normalized
share size of linear secret-sharing schemes over Fq realizing Γ is at least 2n/3−o(n). We reverse the order of
quantifiers and prove that for almost every access structure Γ, for every finite field Fq the normalized share
size of linear secret-sharing schemes over Fq realizing Γ is at least 2n/3−o(n).

The rest of the section is organized as follows. We start by defining monotone span program and repre-
sentable matroids; these notions are used to prove the lower bounds. We then, as a warm-up, reprove a lower
bound on the size of shares of linear secret-sharing over F2, originally proved in [9]. Thereafter, we prove
our new lower bound on the normalized share size of linear secret-sharing schemes. We end this section
by proving a lower bound on the size of shares in linear secret-sharing schemes for a one bit secret over all
fields.

3.2.1 Definitions

A linear secret-sharing scheme with total share size m can be described by a matrix M with m rows such
that the shares are computed by multiplying M by a vector whose first coordinate is the secret s and the
other coordinates are random field elements. It is convenient to describe a linear secret-sharing scheme by a
monotone span program, a computational model introduced by Karchmer and Wigderson [56]. The reader
is referred to [10] for more background on monotone span programs and their connections to secret sharing.

Definition 3.4 (Monotone Span Program [56]). A monotone span program is a tripleM = (F,M, ρ), where
F is a field, M is an d × b matrix over F, and ρ : {1, . . . , d} → {p1, . . . , pn} labels each row of M by a
party.2 The size ofM is the number of rows ofM (i.e., d). For any setA ⊆ {p1, . . . , pn}, letMA denote the
sub-matrix obtained by restricting M to the rows labeled by parties in A. We say thatM accepts B if the
rows of MB span the vector ~e1 = (1, 0, . . . , 0). We say thatM accepts an access structure Γ ifM accepts
a set B if and only if B ∈ Γ.

Theorem 3.5 ([56]). There exists a linear secret-sharing scheme over Fq realizing an access structure Γ
with secrets of size log q and total share size d log q if and only if there exists a monotone span program
M = (Fq,M, ρ) accepting the access structure Γ such that M is an d× d matrix.

We next define representable matroids and quote the result of [65]. For our proof, we do not need the
definition of matroids; we note that they are an axiomatic abstraction of linear independency.

Definition 3.6. A matroid representable over a field F is a pair (A, r), where A is a finite set, called a
ground set, and r : 2A → {0, 1, . . . , |A|} is a function, called a rank function, such that there are vectors
{va}a∈A in F|A| for which for every B ⊆ A

r(B) = rank({va}a∈B),

where rank(V ) is the linear-algebraic rank of vectors, i.e., the maximum number of linearly independent
vectors in V . A representable matroid is a matroid representable over some field.

Theorem 3.7 ([65]). For every d ≥ 12, there are at most 2d
3/4 representable matroids with ground set [d].

2For simplicity, in this paper we label a row by a party pj rather than by a variable xj as done in [56].
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3.2.2 A Warm-up

As a warm-up, we reprove a lower bound from [9] on the share size of linear secret-sharing scheme over F2.

Claim 3.8 ([9]). For almost every access structure Γ with n parties the share size in every linear secret-
sharing scheme over F2 realizing Γ with a one bit secret is at least 2n/2−o(n).

Proof. Assume that there is a linear secret-sharing scheme over F2 realizing an access structure Γ with total
share size d. By Theorem 3.5, there is a monotone span program M = (F2,M, ρ) accepting the access
structure Γ where M is matrix over F2 of size d× d.

There are at most nd2d
2

monotone span programs of size d over F2 (as there are 2d
2

matrices and nways
to label each row by a party) and each monotone span program accepts a unique access structure. Thus, for
d = 0.5 · 2n/2−0.25 logn, there are at most

20.5·2n/2−.025·logn logn+0.25·2n/
√
n ≤ 20.5·2n/

√
n

access structures that can be realized by a monotone span program over F2 of size d. On the other hand,

there are more than 2( n
n/2) ≥ 20.7·2n/

√
n access structures: We consider access structures whose minimal

sets are of size exactly n/2 and for each set of size n/2, it can either be in the access structure or not in the
access structure. Since

lim
n→∞

20.5·2n/
√
n

20.7·2n/
√
n

= 0,

almost all access structures require shares of size greater than 0.5 ·2n/2−0.25 logn in any linear secret-sharing
scheme.

3.2.3 A Lower Bound on the Normalized Share Size in Linear Secret-Sharing Schemes

Rónyai et al. [68] proved a result similar to Claim 3.8 for every field. Note that for large q, the lower bound
over Fq cannot be proved by counting the number of d × d matrices over Fq. This is done by showing that
over Fq monotone span programs of size d accept at most 2nd

3
access structures. The following theorem

generalize the results of [9, 68].

Theorem 3.9. For almost every access structure Γ with n parties the following property holds: For every
prime-power q, the normalized share size in every linear secret-sharing scheme realizing Γ over the field Fq
is at least 2n/3−o(n).

Proof. The proof is similar to the proof of Claim 3.8, with a more complex upper bound on the number of
access structure that can be realized with a monotone span program of size d.

Fix some labeling function ρ0 : [d] → {p1, . . . , pn} and assume that there is a monotone span program
M = (Fq,M, ρ0) accepting an access structure Γ where M is matrix over some field Fq of size d× d. Let
Mi be the i-th row of M and M0 = ~e1 and define a representable matroid with a ground set A = {0, . . . , d}
and a rank function r(B) = rank {Mi : i ∈ B}. We next show that the rank function r together with ρ0

determines the access structure Γ accepted byM. Indeed,B ∈ Γ if and only if ~e1 ∈ span
{
Mi : pρ0(i) ∈ B

}
if and only if

rank(
{
Mi : pρ0(i) ∈ B

}
) = rank(

{
Mi : pρ0(i) ∈ B

}
∪ {~e1})

if and only if r(
{
i : pρ0(i) ∈ B

}
= r(

{
i : pρ0(i) ∈ B

}
∪ {0}). Thus, the number of access structures that

can be realized by a linear scheme with normalized share size is upper-bounded by the number of labeling
functions ρ times the number of representable matroids with ground set {0, . . . , d}, i.e., by nd×2(d+1)3/4 ≤
2d

3/2. To conclude, for d = 2n/3/n1/6, almost all access structures do not have a linear secret-sharing
scheme with normalized share size smaller than d.
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3.2.4 A Lower Bound on the Share Size in Linear Secret-Sharing Schemes with a One Bit Secret

Finally, for a one-bit secret, we obtain a lower bound of 2n/2−o(n) on the share size of linear secret-sharing
schemes over any field realizing almost all access structures even if the secret is a bit. Notice that this
lower bound is on the share size (and not on the normalized share size). The constant in the exponent in
Theorem 3.10 is 1/2 (compared to a constant 1/3 in Theorem 3.9), matching the construction of linear
secret-sharing schemes for almost all access structures in Theorem 3.3 (up to lower order terms). This
theorem is a special case of [4, Theorem 5.5], however, the proof of this special case is simpler.

Theorem 3.10. For almost every access structure Γ with n parties the following property holds: For every
prime-power q, the share size in every linear secret-sharing scheme over Fq realizing Γ with a one bit secret
is at least 2n/2−o(n).

Proof. There are at most ndqd
2

monotone span programs of size d over Fq (as there are qd
2

matrices and
n ways to label each row by a party). For d > log n, ndqd

2
< q2d2 . The total share size in the linear

secret-sharing scheme constructed from such monotone span program is D = d log q. Thus, the number of
linear secret-sharing schemes over Fq with total share size D is at most q2(D/ log q)2 < 22D2

. Furthermore,
when q > 2D, the share size of each party is at least log q > D as each share contains at least on element
from Fq. Thus, the number of linear secret-sharing schemes with share size D is at most∑

q : q≤2D,q is a prime power

22D2 ≤ 2D · 22D2 ≤ 23D2
.

Taking D = 0.4 · 2n/2−0.25 logn, the number of access structures that have a linear secret-sharing scheme
over any field with share size at most D is less than 23·0.16·2n/

√
n, i.e., almost all access structures require

shares of size larger than D in all linear secret-sharing schemes.

4 (G, t)-Secret-Sharing Schemes

In this section, we present a new family of schemes that we call (G, t)-secret-sharing schemes. We show that
there is a close bi-directional connection between these schemes and 2-server robust CDS protocols, gener-
alizing the connection between (non-robust) CDS protocols and forbidden graphs secret-sharing schemes.
These schemes will be later used to construct graph secret-sharing schemes.

4.1 The Definition of (G, t)-Secret-Sharing Schemes

Definition 4.1. Let G = (V,E) be an undirected graph with |V | = n such that E 6= ∅ and let ΓG be the
graph access structure determined byG (that is, each edge is a minimal authorized set and each independent
set is forbidden). For any 0 ≤ t ≤ n − 1, define Γt as the t-out-of-n threshold access structure on V (that
is, Γt = {A ⊆ X : |A| ≥ t}) and define the access structure ΓG,t on V as ΓG,t = ΓG ∪ Γt+1. We say a
secret-sharing scheme is a (G, t)-secret-sharing scheme if it realizes the access structure ΓG,t.

Next, we present some properties of these schemes. If Π is a (G, t)-secret-sharing scheme, then all
subsets containing edges are authorized, independent subsets of G of size at most t are forbidden, and
subsets of size greater than t are authorized. If t = 2, then ΓG,t is a forbidden graph access structure
determined by a graph G (for an introduction to these access structures, see [15], for example). Notice that
for t < n − 1, any (G, t)-secret-sharing scheme is also a (G, t + 1)-secret-sharing scheme. If the size of a
largest independent set of G is µ, then every subset of size µ+ 1 is authorized in ΓG. Therefore, ΓG,t = ΓG
for every t ≥ µ. In particular, ΓG,n−1 = ΓG for every graph G.
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4.2 (G, t)-Secret-Sharing Schemes from Robust CDS Protocols

We now present constructions of (G, t)-secret-sharing schemes. First, we present a transformation from
robust CDS protocols to (G, t)-secret-sharing schemes. Then, using the robust CDS schemes presented in
Section 2, we provide explicit (G, t)-secret-sharing schemes.

Lemma 4.2. Let G = (V,E) be a graph with |V | = n, and let 0 < t < n. If there exists a 2-server t-robust
CDS protocol with secrets of sizem and messages of size c(n,m) for functions f : [n]2 → {0, 1}, then there
is a (G, t)-secret-sharing scheme with secrets of size m and shares of size 2 · c(n,m) + max {m, dlog ne}.

Proof. We construct the (G, t)-secret-sharing scheme using the scheme in Figure 2. Next we prove the
correctness and privacy properties.

CORRECTNESS: Let A ⊆ [n] be a minimal authorized subset in ΓG,t. Then A is either in E or A is of
size t + 1. If A = {i, j} is in E, then f(i, j) = 1, i.e., the message of Alice (the first server) on i and the
message of Bob (the second server) on j determines s, so the pair {i, j} can recover s. If |A| = t+ 1, then
A can recover s using the (t+ 1)-out-of-n secret-sharing scheme.

PRIVACY: Let A be a maximal forbidden subset. Then A does not contain any edge in E and |A| ≤ t.
The shares received from the threshold secret-sharing scheme do not provide any information about s. Now
we analyze the information provided by the messages of P . The parties in A receive Alice’s messages for
A and Bob’s messages for A. Observe that the set A × A does not contain edges of G, thus, A × A is a
zero-set of f and the t-robustness of P guarantees the privacy of the scheme.

The maximum share size of the resulting scheme is twice the message size of P plus the share size of
the (t+ 1)-out-of-n secret-sharing scheme.

The secret: An element s ∈ S.
The parties: V = {1, . . . , n}.
The access structure: ΓG,t for some graph G = (V,E) and 0 ≤ t ≤ n− 1.
The scheme:

• Let f : [n]× [n]→ {0, 1} be the function defined as f(i, j) = 1 if and only if (i, j) ∈ E.

• Let P be a 2-server t-robust CDS protocol with secrets from {0, 1}m for the function f ;
denote its servers by Alice and Bob.

Then,

1. Execute the protocol P for the secret s.

2. Share s independently among V with a (t+ 1)-out-of-n secret-sharing scheme.

3. The share of party i ∈ V is the message of Alice on the input i, the message of Bob on the
input i, and the share of i in the (t+ 1)-out-of-n secret-sharing scheme.

Figure 2: A (G, t)-secret-sharing scheme Π for a graph G = (V,E).

In Lemma 4.2, we showed a way to construct (G, t)-secret-sharing schemes from t-robust CDS proto-
cols. Conversely, we can also construct robust CDS protocols from (G, t)-secret-sharing schemes, as shown
in Lemma 4.3.
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Lemma 4.3. Let f : [n]× [n]→ {0, 1} be a function and let 0 < t < n. Define G = (([n]× {1}) ∪ ([n]×
{2}), E) as the bipartite graph with E = {((i, 1), (j, 2)) : i ∈ [n], j ∈ [n], f(i, j) = 1}. If there exists a
(G, 2t)-secret-sharing scheme with secrets of size m and maximum share size c(2n,m), then there exists a
2-server t-robust CDS protocol for f with message size c(2n,m).

Proof. Let Π be a (G, 2t)-secret-sharing scheme. We define a 2-server t-robust CDS protocol P for f as
follows. The message spaces M1 and M2 of the servers are the spaces of shares of parties [n] × {1} and
[n] × {2}, respectively. The common randomness r is the randomness of the dealer in Π. The function
ENCi(j, s, r) for i ∈ {1, 2} outputs the share of party (j, i) with the secret s and randomness r, and DEC is
the reconstruction function of Π.

The correctness of P is guaranteed because every pair in E is authorized in Π. The t-robustness of
P is guaranteed because every zero-set Z1 × Z2 where |Z1|, |Z2| ≤ t corresponds to an independent set
(Z1 × {1}) ∪ (Z2 × {2}) of size at most 2t in G, thus the messages of the inputs in Z1 ∪ Z2 are shares of a
forbidden set in Π.

Now that we showed the connection between (G, t)-secret-sharing schemes from t-robust CDS proto-
cols, we present (G, t)-secret-sharing schemes that use Theorem 2.12 and Theorem 2.11.

Lemma 4.4. Let G = (V,E) be a graph with |V | = n, and let 1 ≤ t < n/2. If there exist a 2-server CDS
protocol with message size c(n,m) for functions with domain size n and secrets of size m, then there exists
a (G, t)-secret-sharing scheme with maximum share size O(t2 log3 t log2 n · c(n,m)), and a (G, t)-secret-
sharing scheme with secrets of size Θ(mt log t log2 n) and normalized maximum share size O(t log2 t ·
c(n,m)/m).

Proof. Theorem 2.12 guarantees that there exists a 2-server t-robust CDS protocol with message size `(n) =
O(t2c(n,m) log3 t log2 n), and a 2-server t-robust CDS protocol with secrets of sizem′ = Θ(mt log t log2 n)
with normalized message size `(n)/m′ = O(t log2 t · c(n,m)/m). Using these 2-server t-robust CDS pro-
tocols and Lemma 4.2 we obtain the lemma.

We conclude this section presenting different (G, t)-secret-sharing schemes that are obtained from ro-
bust CDS schemes applying Lemma 4.2 and Lemma 4.4.

Theorem 4.5. Let G = (V,E) be a graph with |V | = n and let 1 < t < n.

1. There exists a (G, t)-secret-sharing scheme with moderately-short secrets of sizeO(t log3 n), normal-
ized maximum share size

nO(
√

log logn/ logn)t log2 n = no(1)t log2 n,

and normalized total share size n1+O(
√

log logn/ logn)t log2 n = n1+o(1)t log2 n;

2. For every prime power q, there exists a linear (G, t)-secret-sharing scheme over Fq with and maximum
share size

O
(
(t log2 t+

√
n)t log t log2 n log q

)
;

3. There exists an integer p0 such that for every prime power q > p0, there exists a multi-linear (G, t)-
secret-sharing scheme over Fq with moderately-short secrets of size Θ(t2 log t log2 n log n log q) and
normalized maximum share size O(t log2 t+

√
n);
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4. There exists a multi-linear (G, t)-secret-sharing scheme over F2 with secrets of size 2n
2

and normal-
ized maximum share size O(t log2 t).

Proof. Scheme 1: By Theorem 2.7, for any function f : [n]2 → {0, 1} there exists a 2-server CDS
protocol with secret of size m = 1 and messages size c(n, 1) = nO(

√
log logn/ logn). Applying Theo-

rem 2.12 with the CDS protocol from Theorem 2.7 results in a 2-server t-robust CDS protocol with secrets
of size O(t log t log2 n) = O(t log3 n), message size O(nO(

√
log logn/ logn)t2 log5 t), and normalized mes-

sage size O(nO(
√

log logn/ logn)t log2 t). By Lemma 4.2, there is a (G, t)-secret-sharing with secrets of size
O(t log3 n) and maximum share size O(nO(

√
log logn/ logn)t2 log5 t), thus with normalized maximum share

size O(nO(
√

log logn/ logn)t log2 n) and with normalized total share size O(n1+O(
√

log logn/ logn)t log2 n).
Scheme 2: Theorem 2.11 guarantees that for t ≤ n/(2 log2 n) there exists a linear 2-server t-robust

CDS protocol over Fq with message size O
(
(t log2 t+

√
n)t log t log2 n log q

)
. Thus, by Lemma 4.2

there is a (G, t)-secret-sharing scheme where the maximum share size is the above message size. For
t > n/(2 log2 n), the upper bound also holds because there is always a linear (G, t)-secret-sharing with
maximum share size O(n/ log n).

Scheme 3: Theorem 2.11 also guarantees, for a large enough q, a 2-server (t, n)-robust CDS protocol
with secrets of size Θ(t2 log t log2 n log q) and normalized message size O(t log2 t +

√
n). Again, we

construct the desired (G, t)-secret-sharing with from the robust CDS protocol applying Lemma 4.2.
Scheme 4: By Theorem 2.6, there exists a multi-linear CDS protocol over F2 with normalized message

size c(n,m)/m = 3 for secrets of size 2n
2
. Applying Lemma 4.4, we obtain a multi-linear (G, t)-secret-

sharing over F2 with normalized maximum share size O(t log2 t · c(n,m)/m) = O(t log2 t).

5 Secret-sharing Schemes for Almost All Graphs

In this section we study the maximum share size of secret-sharing schemes for almost all graphs and for
almost all graphs in G (n, p) for different values of p. The previous and new results for almost all graphs are
summarized in Figure 1, while the results for G (n, p) are summarized in Figure 5.

Schemes presented in this section rely on the properties of almost all graphs shown in Section 2.4, and
use the (G, t)-secret-sharing schemes presented in Section 4. In order to understand the share size of secret-
sharing schemes for almost all graphs, we provide lower bounds for them in Theorem 5.5 and Theorem 5.7.

5.1 Schemes for Almost all Graphs

As a consequence of Lemma 2.13, the size of every independent set in almost every graph in Gn isO(log n).
We observed in Section 4 that a (G, t)-secret-sharing scheme is also a secret-sharing scheme realizing G
when t is bigger than the size of a largest independent set of G. Hence, we consider the four constructions
presented in Theorem 4.5 for t = O(log n). In Theorem 5.1 we present the resulting schemes.

Theorem 5.1. Almost all graphs with n vertices can be realized by the following schemes.

1. A secret-sharing scheme with maximum share size nO(
√

log logn/ logn) = no(1),

2. A linear secret-sharing scheme over Fq with maximum share size Õ(
√
n log q) for every prime power q,

3. A multi-linear secret-sharing scheme over Fq with normalized maximum share size O(
√
n) and

moderately-short secrets of size Θ(log q log3 n log logn) for a large enough q, and
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4. A multi-linear secret-sharing scheme over F2 with normalized maximum share sizeO
(
log n(log log n)2

)
for secrets of size 2n

2
.

5.2 Secret-sharing Schemes for G (n, p)

In order to study properties of sparse graphs, we study G (n, n−α) for a constant 0 < α < 1. Almost
all graphs in G(n, n−α) have maximal independent sets of size at most t = O(nα log n). Following the
procedure we developed in the previous section, we can construct secret-sharing schemes for almost all
graphs in G(n, n−α) using Theorem 4.5. Similar bounds can be obtained for linear schemes and multi-
linear schemes. They are presented in Figure 5.

Theorem 5.2. Let 0 < α < 1 be a constant. Almost every graph in G (n, n−α) can be realized by a
secret-sharing scheme with normalized maximum share size nmin(α,1−α)+o(1) and secret of size Õ(

√
n).

Proof. We present two schemes Π1 and Π2 for almost all graphs in G (n, n−α). The scheme Π1 consists
on sharing the secret for each edge independently. By Lemma 2.15, almost every graph in G (n, n−α) has
maximum degree of at most 2n1−α. Therefore, the maximum share size of Π1 is 2n1−α for almost all graphs
in G (n, n−α).

The second scheme Π2 is obtained from Theorem 4.5. For almost every graph in G (n, n−α) the size of a
maximum independent set isO(nα log n) (by Lemma 2.14). Thus, we let Π2 be the (G,O(nα log n))-secret-
sharing scheme of Theorem 4.5 with secret of size Θ(t log3 n) = Θ(nα log4 n) and normalized maximum
share size O(no(1)t log2 n) = O(nα+o(1) log3 n) = nα+o(1).

Therefore, almost every graph in G (n, n−α) can be realized by a secret-sharing scheme with normalized
maximum share size min(2n1−α, nα+o(1)) ≤ nmin(1−α,α)+o(1).

For α ≤ 1/2, the best choice is Π1, and for α > 1/2, the best choice is Π2. For α = 1/2, the normalized
maximum share size of almost all graphs in G (n, n−α) in our scheme is O(

√
n). This is the constant α

that gives the worst upper bound on the normalized maximum share size of secret-sharing schemes for
G (n, n−α).

Finally, we study properties of very dense graphs by analyzing G (n, 1−n−α) for a constant 0 < α < 1.
By Lemma 2.14, the size of a maximum independent set for almost all graphs in G (n, 1 − n−α) is con-
stant. As we saw above, graphs with small independent sets admit more efficient schemes. In Theorem 5.4
we present secret-sharing schemes for all graphs in G (n, 1 − n−α). Two of the schemes we present in
Theorem 5.4 follow quite easily from our previous results. In contrast, the linear scheme we construct in
Theorem 5.4 does not follow from previous results on robust CDS protocols. Rather, it follows from the fol-
lowing theorem of [15] on the total share size for forbidden graph secret sharing schemes and the techniques
of [5].

Theorem 5.3 ([15, Theorem 6]). Let G = (V,E) graph with n vertices and at least
(
n
2

)
− n1+β edges, for

some 0 ≤ β < 1. Then for every prime-power q > n there is a linear (G, 2)-secret-sharing scheme over Fq
that with total share size Õ(n1+β/2 log q)

Theorem 5.4. Let 0 ≤ β < 1 be a constant. Almost all graphs in G (n, 1 − nβ−1) can be realized by a
secret-sharing scheme with maximum share size no(1), a linear secret-sharing scheme over Fq with total
share size Õ(n1+β/2 log q) for every prime-power q > n, and a multi-linear secret-sharing scheme over F2

with exponentially long secrets of size 2n
2

and normalized maximum share size O(1).
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Proof. By Lemma 2.14, the size of a maximum independent set for almost all graphs in G (n, 1 − n−α) is
some constant c. The non-linear secret-sharing scheme and the secret-sharing scheme with long secrets are
obtained by applying Theorem 4.5 with t = O(1).

To construct the linear secret-sharing scheme we note that the maximum degree of almost every graphG
in G (n, 1−nβ−1) is at least n−2nβ (by Lemma 2.15 applied toG), thus the number of edges inG is at least(
n
2

)
−n1+β . The linear scheme is derived by using the technique of [5] to transform the (G, 2)-secret-sharing

scheme from Theorem 5.3 to a (G, c)-secret-sharing scheme: Let H =
{
hi : [n]→ [c2] : 1 ≤ i ≤ `

}
be a

family of perfect hash functions,3 where |H| = ` = O(log n). The (G, c)-secret-sharing scheme, denoted
Π, is as follows:

• Input: a secret s ∈ Fq.

• Choose `− 1 random elements s1, . . . , s`−1 from Fq and let s` = s− (s1 + · · ·+ s`−1).

• For every i ∈ {1, . . . , `} and every a, b ∈
{

1, . . . , c2
}

, independently share si using the (G, 2)-secret-
sharing scheme and give the share of vertex v to v if and only if hi(v) ∈ {a, b}.

For the correctness of the scheme Π, let (u, v) be an edge in G (i.e., an authorized set). For every i, the
parties u, v can reconstruct si from the scheme for a = h(u), b = h(v). For the privacy of Π, let B be an
independent set in G (i.e., a forbidden set). By Lemma 2.14, we can assume that the size of B is at most c,
thus, there exists a hash function hi ∈ H such that hi(u) 6= hi(v) for every distinct u, v ∈ B. Therefore,
in any sharing of si for some values a, b the parties in B hold at most 2 shares, and these shares are of a
forbidden set. The privacy of the (G, 2)-secret-sharing scheme implies that the parties in B do not get any
information on si from this execution. Since all executions of the (G, 2)-secret-sharing scheme are executed
with an independent random string, the parties in B do not get any information on si from the shares of Π,
hence they get no information on s. Note that the total share size in Π is O(log n) times the total share size
of the (G, 2)-secret-sharing scheme.

5.3 Lower Bounds for the Share Size for Almost All Graphs

Next, we present lower bounds for the maximum share size of secret-sharing schemes for almost all graphs.
This question was first addressed by Csirmaz in [39], where he proved a lower bound which we include
in Theorem 5.5.

Theorem 5.5. For almost every graph G, the normalized maximum share size of every secret-sharing
scheme realizing G is Ω(log log n), and the normalized maximum share size of every multi-linear secret-
sharing scheme realizing G is Ω(log1/2 n).

Proof. Both bounds are a consequence of Lemma 2.16 (which says that almost all n-vertex graphs contain
all graphs of size log n as an induced graph), taking different graphs with log n vertices. The first bound was
proved by Csirmaz in [39], taking the family of hypercube graphs (or the graphs of [45]). The `-cube has 2`

vertices, and its normalized maximum share size is at least Ω(`) [39]. Hence, taking ` = blog lognc, almost
every graph with n vertices contains as an induced graph the `-cube, which requires normalized maximum
share size Ω(log log n).

3 A family H is a family of perfect hash functions for sets of size at most c if for every B ⊂ {1, . . . , n} such that |B| ≤ c,
there exists a function h ∈ H such that h is one-to-one on B, that is, h(u) 6= h(v) for every distinct u, v ∈ B. By a standard
probabilistic argument, such family of size O(c logn) exists. For a constant c, the size of the family is O(logn).
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The second bound is a consequence of the results in [16, 11]. By [16], for every r there exists a graphHr

whereHr has r vertices and for every finite field Fq the normalized maximum share size in any linear secret-
sharing scheme realizing Hr over Fq is Ω(r1/2). By [11], this bound applies to multi-linear secret-sharing
schemes as well. Hence, the normalized maximum share size of every multi-linear secret-sharing scheme
realizing Hr is also Ω(r1/2). By Lemma 2.16, almost every graph G with n = r22r/2 vertices contains Hr

as an induced graph, hence the normalized maximum share size in any multi-linear secret-sharing scheme
over Fq realizing G is Ω(r1/2) = Ω(log1/2 n).

Remark 5.6. Lemma 2.16 provides a connection between the maximum share size of schemes for every
graph access structure with r = log n vertices and the maximum share size of schemes for almost all
graph access structures with n vertices. In Theorem 5.5 we used it in one direction, but it could also be
used in the converse direction. For instance: if there exist secret-sharing schemes for almost all n-vertex
graphs with (normalized) maximum share size� logn

log logn , then there exist secret-sharing schemes realizing
every r-vertex graph with (normalized) maximum share size� r/ log r, which is currently the best upper
bound [47].

In Theorem 5.7, we quote a lower bound on the maximum share size for linear graph secret-sharing
schemes, proved in [63, 14]. Notice, however, that this bound does not grow as a function of the size of the
secrets.

Theorem 5.7 ([63, 14]). For almost every graph G, the maximum share size of every linear secret-sharing
scheme realizing G is Ω(

√
n).

6 Secret-sharing Schemes for Very Dense Graphs

In this section we study secret-sharing schemes for very dense graphs, i.e., graphs with n vertices and
at least

(
n
2

)
− n1+β edges for some 0 ≤ β < 1. This problem was originally studied in [13], and the

best previously known upper bounds on the maximum share size and the total share size are presented in
Theorems 6.1 and 6.2. The normalized total share size of the schemes presented in this section is smaller
than the maximum share size of previous schemes.

Theorem 6.1 ([13]). Let G = (V,E) be a graph with |V | = n and |E| ≥
(
n
2

)
− n1+β for some 0 ≤ β < 1.

Then, there exists a linear secret-sharing scheme realizing G with maximum share size Õ(n1/2+β/2), total
share size Õ(n3/2+β/2), and secret of size O(log n).

The above theorem hides poly-logarithmic factors in the share size. It was also shown in [13] that these
poly-logarithmic factors can be avoided if we consider multi-linear secret-sharing schemes and normalized
share size: for the graphs considered in Theorem 6.1, there exists a multi-linear secret-sharing scheme with
normalized maximum share size O(n1/2+β/2) and secret of size O(log2 n).

In [13], there is another secret-sharing construction for very dense graphs, presented in Theorem 6.2.
The total share size of this scheme is smaller than the one in Theorem 6.1, but the maximum share size may
be larger.

Theorem 6.2 ([13]). Let G = (V,E) be a graph with |V | = n and |E| ≥
(
n
2

)
− n1+β for some 0 ≤ β < 1.

There exists a linear secret-sharing scheme realizing G with total share size Õ(n5/4+3β/4).
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As an observation, notice that as a direct implication of the results in previous sections we can construct
a scheme whose maximum share size is similar to the maximum share size as in the scheme of Theo-
rem 6.2. The size of the largest independent set in a graph G with at least

(
n
2

)
− n1+β edges is at most

t =
√
n1+β . Then, by Theorem 4.5, there exists a multi-linear (G, t)-secret-sharing scheme with secrets of

size O(n1/2+β/2 log4 n) and normalized maximum share size

O(t log2 t+
√
n) = O(n1/2+β/2 log2 n).

Notice, however, that this result is weaker than the one in Theorem 6.2, because in this new scheme the
secret is larger, and the normalized maximum share size is bigger by a factor of log2 n.

6.1 New Constructions

We use (G, t)-secret-sharing schemes, described in the Section 4, to construct secret-sharing schemes for
all very dense graphs. Our main result for dense graphs is Theorem 6.4, where we show that graphs with at
least

(
n
2

)
−n1+β edges admit secret-sharing schemes with normalized total share size n1+β+o(1). This result

nearly matches the best total share size for sparse graphs with at most n1+β edges (for which we share the
secret independently for each edge). The construction follows the ideas described in the introduction.

The secret: An element s ∈ S.
The parties: V = {1, . . . , n}
The scheme:

1. Let β < α < (1 + β)/2 and n′ = n1+β−α.

2. Let A ⊆ V be a subset of n′ vertices of lowest degree and G′ = (A,E ∩ (A×A)).

3. Share s among A using Π1, a secret-sharing scheme realizing G′.

4. Choose r ∈ S uniformly at random.

5. Share r using Π2, a (G, 2nα + 1)-secret-sharing scheme.

6. Share r+ s using Π3, a secret-sharing scheme where A is the only maximal forbidden subset
(that is, give s to every party not in A).

Figure 3: A secret-sharing scheme Πdense realizing a graph G = (V,E) with |E| ≥
(
n
2

)
− n1+β for some

0 ≤ β < 1.

Lemma 6.3. Let G = (V,E) be a graph with |V | = n and |E| ≥
(
n
2

)
− n1+β for some 0 ≤ β < 1. The

scheme described in Figure 3 is a secret-sharing scheme realizing G.

Proof. Let A be a subset n′ vertices of lowest degree in G, let v be a vertex of highest degree in A, and
denote its degree by n− d− 1, i.e., each vertex in A misses at least d edges (and each missed edge touches
at most two vertices in A). Then 2n1+β ≥ d · |A| = d · n1+β−α, so d ≤ 2nα. In particular, every vertex
in V \ A misses at most d edges, and so the size of every independent set containing at least one vertex in
V \A is at most than d+ 1 ≤ 2nα + 1.

Next we prove the correctness and privacy of the scheme in Figure 3.
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CORRECTNESS: The minimal authorized subsets in ΓG are the edges of the graph. Let (x, y) be an edge
of G. If {x, y} ⊆ A, then {x, y} is authorized in Π1. Else, it is authorized in Π2 and in Π3, and so {x, y}
can recover the secret.

PRIVACY: Let B be a forbidden set of ΓG, that is, B is an independent set of G. In particular, B is an
independent set of G′ and so it does not learn any information on s from Π1. If B ⊆ A, then B is forbidden
in Π3 because it is contained in A, hence it does not learn any information on s + r from Π3 and does not
learn any information on s from Π2, regardless of the information it may learn on r. If B is not contained
in A, then it is an independent set of G of size at most 2nα + 1. Hence B does not learn any information
on r in Π2 and does not learn any information on s from Π3, regardless of the information it may learn on
r + s.

In Theorem 6.4, we use Πdense recursively to obtain our improved secret-sharing scheme for dense
graphs. In order to improve the readability of the proof of Theorem 6.4, we say that a scheme has share size
exponent γ when the normalized total share size is nγ+o(1).

Theorem 6.4. Let G = (V,E) be a graph with |V | = n and |E| ≥
(
n
2

)
− n1+β for some 0 ≤ β < 1. Then

G can be realized by a secret-sharing schemes with secrets of size O(n log3 n) and normalized total share
size n1+β+o(1).

Proof. We show that there exists a sequence of families of schemes {Fk}1≤k≤logn that for any β and n
realize graphs with n vertices and at least

(
n
2

)
− n1+β edges such that the scheme Fk uses the scheme Fk−1

to reduce the share size and the total share size of Flogn is n1+β+o(1). Formally, we show that for k ≥ 1, for
every n and 0 < β < 1 there exist a secret-sharing scheme Fk with share size exponent 2k+1

2k + 2k−1
2k β for

every graph with at least
(
n
2

)
− n1+β edges.

The proof is by induction. Theorem 6.1 shows that it holds for k = 1, that is, there is a scheme with
share size exponent 3/2 + β/2. Now suppose that for every n and β there exist a secret-sharing scheme Fk
with share size exponent 2k+1

2k + 2k−1
2k β for every graph with at least

(
n
2

)
− n1+β edges. We will show that

for every n and β there exists a secret-sharing scheme Fk+1 with share size exponent 2(k+1)+1
2(k+1) + 2(k+1)−1

2(k+1) β

for every graph with at least
(
n
2

)
− n1+β edges.

We construct the secret-sharing scheme Fk+1 using the secret-sharing scheme described in Figure 3.
We combine a scheme Π1 for very dense graphs, a scheme Π2 for graphs with a bound on the size of their
maximal independent set, and a scheme Π3. As described in Figure 3, the scheme Π3 has maximum share
size 1 and total share size n− |A| (that is, it gives r ⊕ s to every party not in A).

Next, we present the schemes Π1 and Π2. Let β′ = α
1+β−α . The graph G′ has at least

(
n′

2

)
− n1+β =(

n′

2

)
−
(
(n′)1/(1+β−α)

)1+β
=
(
n′

2

)
− (n′)1+β′ edges. By the induction hypothesis, we can take the secret-

sharing scheme Fk as Π1 (i.e., as the secret-sharing scheme realizing G′); the total share size of Fk is
Õ((n′)δ) with δ = 1 + 1

2k + 2k−1
2k β′. Since n′ = n(1+β−α), this scheme has share size exponent

(1 + β − α)

(
2k + 1

2k
+

2k − 1

2k

α

1 + β − α

)
=

2k + 1

2k
+

2k + 1

2k
β − 2α

2k
.

We use the first scheme of Theorem 4.5 to realize the (G, 2nα + 1) secret-sharing scheme Π2 with
secrets of size O(nα log3 n) ≤ O(n log3 n) and share size exponent 1 + α.

The resulting construction has share size exponent

max

{
1 + α,

2k + 1

2k
+

2k + 1

2k
β − 2α

2k

}
.
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In order to balance these two terms, we take

α =
1

2k + 2
(1 + (2k + 1)β) =

1

2k + 2
+

2k + 1

2k + 2
β.

Then the resulting scheme has share size exponent

1 + α =
2k + 3

2k + 2
+

2k + 1

2k + 2
β,

which concludes the proof of the induction.
We claim that if we take the above sequence {Fk}1≤k≤log(n)/2, then Flog(n)/2 has share size exponent

1 + β. Notice that for ` = log(n)/2

n
2`+1
2`

+ 2`−1
2`

β = n1+β+O(1/ logn) = O(n1+β).

The secret: An element s ∈ S.
The parties: V = {1, . . . , n}
The scheme:

1. Let ` = logn
2 , V` = V , n` = n, and β` = β.

2. For k = ` downto 1 do:

(a) Let Gk = (Vk, E ∩ Vk × Vk)

(∗ Gk is a graph with nk vertices and at least
(
nk

2

)
− n1+βk

k edges ∗)

(b) Let αk = 1
2k+2 + 2k+1

2k+2βk, nk−1 = n1+βk−αk

k , and βk−1 = αk

1+βk−αk
.

(c) Let Vk−1 ⊆ Vk be the subset of size nk−1 with the vertices of lowest degree in Gk.

(d) Choose uniformly at random an element rk ∈ S.

(e) Share rk with a (Gk, 2n
αk

k + 1)-secret-sharing scheme.

(f) Give rk + s to every party in Vk \ Vk−1.

3. Share the secret s with the secret-sharing scheme of Theorem 6.1 realizing the graph G0 =
(V0, E ∩ V0 × V0).

Figure 4: A secret-sharing scheme F logn
2

for a graph G = (V,E) with |E| ≥
(
n
2

)
− n1+β for some

0 < β < 1.

For the clarity of the presentation (and to ensure that we do not misuse the asymptotic analysis), we
explicitly describe Flog(n)/2 in Figure 4. In Flog(n)/2 we execute a (Gk, 2n

αk
k + 1)-secret-sharing scheme

for k = logn
2 downto 1. The normalized total share size in the (Gk, 2n

αk
k + 1)-secret-sharing scheme is

n
1+αk+o(1)
k . It can be check that n1+αk−1

k−1 = n1+αk
k for every k, thus, the total share size is

O
(

log n · n1+α`+o(1)
`

)
= O

(
log n · n1+β+o(1)

)
.
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total inf. ratio

(mod. short secrets)

total share size

of linear schemes over Fq

total inf. ratio

multi-linear schemes

n1+β edges
n1+β [55]

Ω(n log n) [40]

n1+β log q [55]

Ω(nmin(1+β,3/2) log q) [16]

n1+β [55]

Ω(nmin(1+β,3/2)) [16, 11]

G (n, nβ−1)
nmin(1+β,2−β)+o(1)

Th. 5.2

nmin(1+β,3−2β)+o(1) log q

Th. 5.2

nmin(1+β,2−β)

Th. 5.2(
n
2

)
− n1+β

edges

n1+β+o(1) Th. 6.4

Ω(n log n) [13]

Õ(n5/4+β/4 log q) [13]

Ω(n1+β/2 log q) [13]

Õ(n1+β) Rem. 6.5

Ω(n1+β/2) [13, 11]

G (n, 1− nβ−1) n1+o(1) Th. 5.4 O(n1+β/2) log q Th. 5.4 O(1) Th. 5.4

Figure 5: Total share size for different families of graphs and constant 0 < β < 1. Note that almost all
graphs in G (n, nβ−1) and in G (n, 1− nβ−1) have Θ(n1+β) and

(
n
2

)
−Θ(n1+β) edges, respectively

Remark 6.5. In Theorem 6.4, we combine the secret-sharing scheme for very dense graphs in Theorem 6.1
with several instances of the first scheme of Theorem 4.5. Instead, if we replace the former by the fourth
scheme of Theorem 4.5, we obtain a multi-linear secret-sharing scheme with secrets of exponential size and
normalized total share size Õ(n1+β) for exponentially long secrets.

We can also replace it by other schemes presented described in this paper; the resulting schemes improve
the current best schemes just for some values of β. For β > 2/5, using the third scheme of Theorem 4.5 in
just one recursion step, we get a multi-linear scheme with moderately-short secrets of size Õ(n2) and total
share size n7/6+5β/6+o(1). For β < 1/3, combining Theorem 5.3 and Lemma 4.4 and one recursion step,
we get a scheme with normalized total share size Õ(n7/6+β). These optimizations for specific values of β
are not presented in Figure 5.

Remark 6.6. In Figure 5, we present lower bounds on the total share size for graphs with at most n1+β edges
and graphs with at least

(
n
2

)
− n1+β edges. The lower bounds for very dense graphs were presented in [13].

For sparse graphs the lower bound follows from similar arguments as we next explain. We prove that for
every 0 ≤ β ≤ 1 and every n there exists a graph with n vertices and n1+β edges such that the normalized
total share size of any linear and multi-linear secret-sharing scheme realizing the graph is Ω(n1+β). The
starting point is result of [16], constructing for every n a graph Hn with n vertices and n3/2 edges such that
the normalized total share size of linear secret-sharing schemes realizing the graph is Ω(n3/2). By [11], the
same lower bound holds for multi-linear schemes. This proves the claim for β = 1/2.

For 0 < β < 1/2, we construct a graph Gn,β with n vertices and n1+β edges that requires normalized
total share size Ω(n1+β) for linear and multi-linear schemes. We partition the set of vertices into n1−2β parts
of size n2β , and in each part we construct a copy of the graph Hn2β of [16]; there are no edges between the
parts. In the graph Hn2β there are n3β edges and it requires normalized total share size Ω(n3β). Since the
graph Gn,β contains n1−2β copies of Hn2β , the graph Gn,β contains n1−2βn3β = n1+β edges and require
normalized total share size Ω(n1+β).

For 1/2 < β < 1, we construct a graph Gn,β with n vertices and n1+β edges that requires normalized
total share size Ω(n3/2) for linear and multi-linear schemes. Informally, we need to add edges to Hn while
maintaining the lower bound. To achieve this goal, we partition the vertices of Gn,β to two equal parts of
size n/2. In one part we construct a copy of Hn. This part contains (n/2)3/2 edges and its normalized total
share size is at least Ω(n3/2), hence normalized total share size of Gn,β is also at least Ω(n3/2). The other
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part contains arbitrary n1+β − (n/2)3/2 edges (this is possible as long as β < 1− 3/ log n).
Following a similar procedure, we can construct from the graphs of [46, 39] a graph with n1+β edges

that requires normalized total share size Ω(n log n).

7 Secret-sharing Schemes for k-Homogeneous Access Structures

We presented in Section 4 a connection between 2-server robust CDS protocols and (G, t)-secret-sharing
schemes; this connection was used to construct better secret-sharing schemes for almost all graphs. We
extend this connection to a more general case. We define (H, t)-secret-sharing schemes for hypergraphs
H , and we present a connection between k-server robust CDS protocols and (H, t)-secret-sharing schemes.
Then, this connection will be used to construct secret-sharing schemes for almost all k-homogeneous access
structures. (Recall that an access structure is homogeneous if all its minimal authorized sets are of size k.)

7.1 Construction of (H, t)-Secret-Sharing Schemes

There is a one-to-one correspondence between uniform hypergraphs and homogeneous access structures;
in particular, complete uniform hypergraphs correspond to threshold access structures. For a hypergraph
H = (V,E) and t < |V |, we define the access structure ΓH,t on V as ΓH,t = ΓH ∪ Γt+1, where ΓH is the
access structure whose minimal authorized sets are the hyperedges in E, and Γt is the t-out-of-n threshold
access structure.

Lemma 7.1. Let H = (V,E) be a k-hypergraph with |V | = n. Let c(n,m) be the message size of k-server
t-robust CDS protocols for functions with domain size n and secrets of size m. Then there is a (H, t)-secret-
sharing scheme with maximum share size at most k · c(n,m) + dlog(n)e.

Proof. Let f : [n]k → {0, 1} be the function defined as f(i1, . . . , in) = 1 if and only if {i1, . . . , in} ∈ E.
Let P be a k-server t-robust CDS protocol with secrets in S for the function f , and let Q1, . . . , Qk be the
servers of the protocol and let Π be a (t+ 1)-out-of-n secret-sharing scheme.

Given a secret s ∈ S, we execute the protocol P for s, and, for every 1 ≤ j ≤ k, we give the message
of Qj with input i to party i ∈ V . Moreover, we give to i a share of the scheme Π. The rest of the proof is
analogous to that of Lemma 4.2.

The following result is a direct consequence of Theorem 2.12 and Lemma 7.1.

Lemma 7.2. Let H = (V,E) be a k-hypergraph with |V | = n, and let t ≤ min{kn/2, 2
√
n/k} be an

integer. Let c(m,n) be the message size of k-server CDS protocols P with secrets of size m. Then, there is
a (H, t)-secret-sharing scheme with maximum share size

O
(
c(m,n)k3k2ktk log2k−1 t log2 n

)
.

If P is a linear protocol over F2m , then the scheme is also linear. Furthermore, there is a (H, t)-secret-
sharing scheme with secrets of size Θ(mtk2 log(t) log2(n)) in which the normalized message size is

O

(
c(m,n)

m
k3k−22ktk−1 log2k−2 t

)
.
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7.2 Secret-Sharing Schemes for Almost All k-Hypergraphs

Following the same procedure we developed for graphs, we construct secret-sharing schemes for almost all
k-hypergraphs from robust CDS protocols. In this case, we also use properties of the independent sets of
almost all k-hypergraphs, shown in Lemma 7.3. Its proof is in Appendix A.

Lemma 7.3. For every k > 2, for almost every k-hypergraph H the size of a maximum independent set in
H is smaller than k log n.

Now we use Lemma 7.2 to construct secret-sharing schemes for almost all k-hypergraphs. In Theo-
rem 7.4, we restrict our study to k-hypergraphs for a constant k. However, this approach is also valid for
non-constant k.

Theorem 7.4. Let 1 < k < n be a constant. Almost all k-homogeneous access structures with n parties
can be realized by the following schemes.

1. A secret-sharing scheme with maximum share size 2Õ(
√
k logn).

2. A linear secret-sharing scheme over F2 with maximum share size Õ(n(k−1)/2).

3. A multi-linear secret-sharing scheme with normalized maximum share size Õ(logk−1 n) and expo-
nentially long secrets of length 2n

k
.

Proof. By Lemma 7.3, almost all k-hypergraphs have maximal independent sets of size at most t = k log n.
Hence, for almost every k-hypergraph H , any (H, t)-secret-sharing schemes realizes ΓH . In order to con-
struct these schemes we use Lemma 7.2 and different CDS protocols with different message size c(m,n).
Since k is constant, we are able to construct schemes with maximum share size

O
(
c(m,n)k3k2kkk logk n log2k−1(k log n) log2(n)

)
= Õ

(
c(m,n) logk+2 n

)
,

and schemes with normalized maximum share size

O

(
c(m,n)

m
k3k−22kkk−1 logk−1 n log2k−2(k log n)

)
= Õ

(
c(m,n)

m
logk−1 n

)
.

First, we take the k-server CDS protocol from [61] that has message size c(n, 1) = 2Õ(
√
k logn). The

resulting scheme has maximum share size 2Õ
√
k logn. Second, we take the linear k-server CDS protocol

from [19, 59], c(n, 1) = n(k−1)/2. The resulting scheme has maximum share size Õ(n(k−1)/2). Third,
we take the multi-linear k-server CDS protocol from [2] in which the message size c(n,m)/m = O(1),
for exponentially long secrets of length 2n

k
. The resulting scheme has normalized maximum share size

Õ(logk−1 n).

Regarding lower bounds, it was proved in [4] that for almost all k-uniform access structures, the maxi-
mum share size for sharing a one-bit secret in a linear secret-sharing scheme is Ω(k−3/4n−1/22(h(k/n)/2)n),
where h(p) is the binary entropy function, namely, h(p) = −p log p− (1− p) log(1− p).
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[40] László Csirmaz. An impossibility result on graph secret sharing. Des. Codes Cryptography, 53(3):195–
209, 2009.
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[48] Paul Erdös and Alfréd Rényi. On random graphs. I. Publ. Math. Debrecen, 6:290–297, 1959.
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A Maximal independent sets

In this appendix, we present the proofs of Lemma 2.14, Lemma 2.15 and Lemma 7.3.

Proof of Lemma 2.14. Let 1/n ≤ p ≤ 1/2. In this case, we can write p = n−α for some 1/ log n ≤ α ≤ 1.
The probability that an edge e is not to be in G is 1− p. The probability that any t vertices v1, . . . , vt are an
independent set in G is

p′ = (1− p)(
t
2).
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Let p′′ the probability that there is an independent set of size t in G. By the union bound,

p′′ ≤
(
n

t

)
p′ ≤

(en
t

)t
(1− p)(

t
2) ≤ 2r, where

r = t

(
log e+ log n− log t+

1

2
(t− 1) log(1− p)

)
. (1)

Let t = 4 log n/ log( 1
1−p). For this value of t, it holds 1

2(t− 1) log(1− p) = −2 log n+ 1
2 log

(
1

1−p

)
,

and so

r = t

(
log e+ log n− log t− 2 log n+

1

2
log(

1

1− p
)

)
= t

(
− log n− log t+

1

2
log(

1

1− p
) + log e

)
.

Since 1/ log n ≤ α ≤ 1, we have n
n−1 ≤

1
1−p ≤ 2 and 0 < log 1

1−p ≤ 1. Hence, when n → ∞, we have
that t→∞ and r → −∞. Therefore, the probability that there is an independent set of size t in G tends to
0 when n→∞.

Using that log(1− x) =
∑∞

i=1−
xi

i < −x for any 0 < x < 1, we get that

t =
4 log n

log
(

1
1−n−α

) =
4 log n

− log(1− n−α)
< 4nα log n.

Now let p = 1 − n−α. Following the same argument, we get that the probability that there is an
independent set of size t in G is

p′′ ≤
(
n

t

)
p′ ≤

(en
t

)t
n−α(t2) =

(e
t

)t
nt(1−α t−1

2 ).

If α t−1
2 − 1 ≤ log−1/2 n, then p′′ → 0 when n→∞.

Proof of Lemma 2.15. In G (n, p), the expected value of the degree of each edge is smaller than pn = µ =
ω(log n). By a Chernov bound, for any δ ≥ 0, the probability that the degree of one vertex is at most
(1 + δ)µ, is at most ( eδ

(1+δ)1+δ
)µ. We take δ = 1. By the union bound, the probability that at least one vertex

has degree greater than 2µ is at most

n

(
eδ

(1 + δ)1+δ

)µ
= n

(e
4

)ω(logn)
= n1−ω(1) = n−ω(1).

Hence, with probability at least 1− n−ω(1) a graph in G (n, p) has degree at most 2µ.

Proof of Lemma 7.3. We construct a random k-hypergraph H taking subsets of size k with probability p =

1/2. The probability that t = k log n vertices v1, . . . , vt contains all
(
t
k

)
subsets of size k is p′ = p(

t
k), and

the probability that it happens for a set of size t in H is less than(
n

t

)
p′ ≤

(
n
t

)
2(tk)

=≤ 2t log( ent )−( tk )
k

≤ 2k
2 log2 n−logk n,

which tends to 2− logk n when n → ∞ for k > 2. The probability that there is no independent set of size
t is greater than 1 −

(
n
t

)
p′, which tends to 1 when n → ∞. Therefore, almost all k-hypergraphs have

independent sets of size smaller than k log n.
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