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Abstract. In ICISC-05, ePrint-10 and patarin-book, Patarin proved that
the number of solutions of (P1, . . . , P2q) with distinct P1, P2, . . ., P2q from
{0, 1}n satisfying P2i−1 ⊕ P2i = λi ( 6= 0), 1 ≤ i ≤ q is at least

(2n)2q
2nq

for all q ≤ 2n

134

where (2n)2q := 2n(2n−1) · · · (2n−2q+1). This result is known as Mirror
Theory. Mirror theory stands out to be a powerful tool to provide a high
security guarrantee for many block cipher (or even an ideal permutation)
based designs. Unfortunately, the proof of mirror theory contains some
unverifiable gaps and several mistakes. In this paper, we revisit the proof
strategy of ePrint-10 and provide a detailed proof of the mirror theory by
correcting the mistakes and filling up gaps. In particular, we prove the
mirror theory for all q ≤ 2n/33.1 (a wider range than what was originally
claimed by Patarin). As an application, we show that the maximum PRF-
advantage of sum of domain separated random permutation is exactly
1− (1− 2−n)q, ∀q ≤ 2n/33.1. Using similar proof strategy, we also prove
the following mirror theory for sum of two independent permutations: the
number of solutions of (P1, Q1, . . . , Pq, Qq) with distinct P1, P2, . . ., Pq
and distinct Q1, . . . , Qq satisfying Pi⊕Qi = λi for any fixed λi ∈ {0, 1}n,
1 ≤ i ≤ q is at least

(2n)q×(2n)q
2nq

× (1− 1.2q2

22n
− 108n3

22n
), for all q ≤ 2n

13
.
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1 Introduction

Block ciphers, the workhorses of symmetric-key cryptography, are used in dif-
ferent modes of operations to provide solutions for data confidentiality, data
integrity and authenticity etc. However, most of the modes of operation do not
exploit the invertible property of the block cipher [2,5,20,34] and hence block
cipher seems to be an over-engineered primitive for such cases. Instead of block
ciphers, pseudorandom functions (PRF) could be a more natural choice in such
modes of operation. But unlike block ciphers, which are available in plenty, prac-
tical candidates of PRF are rarely available. Although, a block cipher itself is a
good PRF, but it gives security only upto the birthday bound of its block size
due to the standard PRP-PRF result [4,35,6]. Hence, one can safely consider a
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block cipher as a PRF in a mode of operation when the block size is moderate
enough (e.g., block size is 128 bits). However, the solution is inadequate when
the block size is small (e.g., 64 bits), a scenario quite common in lightweight
applications [26]. This led to the search for a PRF which can be designed out of
block ciphers and also gives security higher than the usual birthday bound.

Luby-Rackoff backwards: To ponder this problem, Bellare et al. [3] studied
in designing PRFs out of block ciphers in the name of Luby-Rackoff backwards
that addressed the problem of converting a pseudorandom permutations (PRP)
into a PRF. Among many alternatives, xoring the outputs of two independent n-
bit block ciphers, denoted as XOR2, is one of them. However, the security analysis
of XOR2 was open till then. The importance of this construction and its domain
separated single permutation variant construction XOR1 (i.e. π(0‖·)⊕ π(1‖·)) 1

have gained attentions in the cryptographic community over the last few years
and the study of their security analysis remained the most challenging problem2

until [7], in which Dai et al. proved both the constructions are optimally secure
PRF.

History of XOR Function. In 2000, Lucks [19] proved that XOR2 achieves
2n/3 bit PRF security. Concurrent to this, Patarin, in 2008, gave an improved
security bound O(2n) on XOR2 construction using Hσ-technique [30]. Later, in
2013, he proved the similar bound for XOR2 construction using standard H-
technique [33]. Patarin [32], in 2010, gave 2n bit security of XOR1 construction.
The entire security analysis of this construction stands on the following result
which informally says that

“For a given system of bi-variate affine equations over a finite group with
non-equalities among the variables, the number of distinct solutions is always
greater than the average number of solutions.”.

Patarin named this notion as Theorem Pi⊕Pj in [28] (and later in [32] renamed
to Mirror Theory). This theorem was stated as a conjecture in [27] and proved
in [28]. For proving the optimal security of XOR1 construction, Theorem Pi⊕Pj
for ξmax = 2 is required, which has been acknowledged in the community as a
potential and strong approach to establish higher security of the construction.
Despite the strength of the approach, the proof of the theorem is very involved
and contains many unverifiable gaps. In fact, the authors of [7] stated that

“Patarin’s tight proof is very involved, using an approach he refers to as
“mirror theory” with some claims remaining open or unproved”.

Apart from the own standalone value of XOR2 or XOR1 function (generically we
call them as sum function), they are used as a major component in many im-
portant block cipher based designs [36,37,38,25,9,8,16,18,13,12,15] and tweakable

1 Here, π is an n-bit random permutation and throughout the paper, we use the ideal
primitive π instead of its computational counterpart Ek.

2 Bellare et al. in an unpublished work [1] first showed that XOR1 is a secure PRF up
to 21.5n/n queries. However, their analysis is sketchy and hard to verify.
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block cipher based designs [24,17]. However, the security proof of most of these
designs require to degenerate the final outputs to get rid of adaptiveness nature
of adversary. Hence the proof cannot use the fact that the sum function is a PRF.
Instead of that, these security proofs require (by applying the H-Coefficient tech-
nique [29]) a good lower bound on the number of distinct solutions to a system
of bi-variate affine equations and there comes the role of the mirror theory. How-
ever, the correctness of the proof of the mirror theory [28,32] is still a subject
of debate in the community. Despite of this, several authors have used this pre-
carious result to derive an optimal bound of some constructions [14,21,39]. This
triggers the need for a correct and verifiable proof of mirror theory, which even-
tually helps to correctly establish the security proof of the above constructions
and possibly can improve their security.

Mirror Theory Statements for ξmax = 2. We write (x)a
def
= x(x−1) · · · (x−

a + 1) for positive integers x and a. Patarin stated and proved the following
result [32]

1. Mirror Theory for a single permutation with ((ξmax, θ) = (2, 134)) ([32]).
The number of (P1, . . . , P2q) with distinct P1, P2, . . ., P2q from {0, 1}n satisfying

P2i−1 ⊕ P2i = λi ( 6= 0), 1 ≤ i ≤ q is at least
(2n)2q
2nq for all q ≤ 2n

134 .

In [30], Patarin proved a similar result involving q � 2n equations for the case
of independent random permutations:

2. Mirror Theory for a pair of permutations with ξmax = 2. ([30,33]).
There exists a set G ⊆ ({0, 1}n)q with size at most 2nq×(1−O( q

2n )) such that for
all (λ1, . . . , λq) ∈ G the number of (P1, Q1, . . . , Pq, Qq) with distinct P1, P2, . . .,
Pq and distinct Q1, . . . , Qq from {0, 1}n satisfying Pi ⊕Qi = λi , 1 ≤ i ≤ q is at
least

(2n)q × (2n)q
2nq

× (1−O(
q

2n
)).

As applications of the above results, one can immediately see that the XOR1 and
XOR2 functions behave almost like a random function.

Applications of Mirror Theory for any ξmax in Cryptography. Note
that, ξmax = 2 means that each variable in the system of equations are distinct.
For a general ξmax, a variable is used at most ξmax−1 times. He claimed a similar
result that for a given system of q many bi-varite affine equations, the number of
distinct solutions is always larger than the average number of solutions provided
q ≤ 2n/67.(ξmax − 1). This result in fact was stated as a conjecture (Conjecture
8.1) in [27] and proved in [28,23]. However, the proof is very sketchy with most
of the details missing (in fact, later we address several major issues present even
in the simpler case when ξmax = 2).
Over the years, mirror theory has been proven to be an extremely important
tool in the context of analysing the security bound of numerous cryptographic
designs. Mennink et al. [21] have shown the optimal security bound of EWCDM
using mirror theory as the underlying tool. Iwata et al. [14] used mirror theory to
shown the optimal security bound of CENC. Mirror theory has been used in prov-
ing the beyond birthday bound security of many nonce based MACs [10,11,12,22].
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However, the proof for all such construction requires the mirror theory result
with an arbitrary ξmax value and according to the current status, proof of this
result is still unverifiable.

Disclaimer. From now onwards we use the term “Mirror Theory” throughout
the paper to refer to the Mirror Theory with ξmax = 2 for a single or a pair of
permutation (as will be clear from the context).

1.1 Issues in the Proof of Mirror Theory [32,28,31,33]

Proof Approach due to Patarin. Let hα denote the number of distinct
solutions (P1, . . . , P2α) such that P1⊕P2 = λ1, . . . , P2α−1⊕P2α = λα where λi’s
are non-zero n-bit binary strings. We write H2α = 2nα · hα and J2α = (2n)2α.

Obviously, H2 ≥ J2. It is sufficient to show that H2α+2

J2α+2
≥ H2α

J2α
for all 1 ≤ α ≤

2n/θ for suitably small constant θ ≥ 1 (smaller is better). In other words,

hα+1 ≥
(2n − 2α)2

2n
hα = (2n − 4α)hα +

Θ(α2)

2n
· hα. (1)

To reach the lower bound as stated in Eqn. (1), Patarin begins with an useful
equation, called Orange equation [Theorem 5, [32]], as follows:

hα+1 = (2n − 4α+ 2δ)hα +
∑

(k,l)∈M

h′α(k, l),

where δ = #{i : 1 ≤ i ≤ α such that λi = λα+1} and M = {(i, j) | i 6= j ∈
[α], λi 6= λα+1, λj 6= λα+1, λi ⊕ λj 6= λα+1}, and h′α(k, l) represents the number
of ‘appropriate’ hα solutions with one added equation Pk ⊕ Pl = λα+1. It can
be easily shown that |M | = Θ(α2). Hence, for every (k, l) ∈M , it is sufficient to
show the following :

h′α(k, l) ≥ hα
2n

(
1− A

2n
− Bα

22n
− C∆α

22n

)
, (2)

for some constants A,B and C. We call Eqn. (2) the h′α-property [Sect B.3, [32]].
Note that the security strength θ would depend on these values of A,B and C. A
simple algebra on the orange equation followed by applying h′α-property, leads to
our target inequation as stated in Eqn. 1. Therefore, we can now focus to prove
the h′α-property for all α and for all nonzero λ1, · · · , λα. To prove this property,
Patarin derived the following equation [Theorem 15, [32]], called Purple equation
as follows:

h′α+1 = hα + (−4α+ T )h′α +
∑

(i,j)∈M ′
h
′′

α(i, j), (3)

where 0 ≤ T ≤ 10∆+14, ∆ being the maximum number of multicollisions among

λ1, · · · , λα+1. Here, h
′′

α (in general h
[µ]
α , µ ≥ 0) represents the number of injective

solutions of a system of equations, where there are α many “base” equations
(i.e. the original equations) and 2 (resp. µ) additional equations (called linking
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equations) between P1, · · · , P2α. Note that, h
[0]
α = hα and h′α = h

[1]
α . Similar to

Eqn. (3), one can write h
[µ]
α in terms of h

[µ−1]
α , h

[µ]
α and h

[µ+1]
α . This is called

the µ-th order purple equation. Thus, Eqn. (3) is called the “first order purple
equation”. Now, we discuss the issues in Patarin’s proof approach while proving
the h′α-property.

Issue-1: Label Dependency. First of all, note that all the h-terms in the
orange and the purple equations depend on two factors: (i) α+ 1 many constant
values λ1, · · · , λα+1 and (ii) the additional equations, which we call the linking
equations, that we consider. Although Patarin cautioned about this dependency,
he unified these terms and expressed these two equations without providing any
justification.

Once the orange and the purple equations are derived, the main strategy of
Patarin’s proof is to show that all the A-terms are negligible, where the µ-th
order A-term is defined as follows:

A[µ]
α

def
=

∣∣∣∣∣h[µ]α − h
[µ−1]
α

2n

∣∣∣∣∣ , µ ≥ 1.

An upper bound onA[1]-term can be obtained by subtracting the orange equation
(after multiplying it by 1/2n) from the first order purple equation. To get similar
upper bounds for µ-th order A-terms, Patarin used µ-th order and (µ − 1)-th
order purple equations. This would lead to a recurrence relation on an upper
bound of A-terms. In this way, Patarin derived a general upper bound on A-
terms, which he called the central theorem. However, Patarin did not state the
higher order purple equations.

Issue-2: Higher Order Central Theorem. First of all, the previous issue
of label dependency remains for the A-terms as well. We have also observed
that the first order A-term, i.e., A[1]-term, which we call the first order central
theorem [Theorem 16, [32]], is not written correctly. A more serious issue lies in
the expression of the higher order A-terms, i.e., A[µ] for µ ≥ 2, that we call the
general version of the central theorem. It states the following [Theorem 17, [32]]:∣∣∣∣∣h[µ]α+1 −

h
[µ−1]
α+1

2n

∣∣∣∣∣ ≤ 4α

∣∣∣∣∣h[µ]α − h
[µ−1]
α

2n

∣∣∣∣∣+ 4α2

∣∣∣∣∣hα[µ+ 1] +
h
[µ]
α

2n

∣∣∣∣∣+
26∆+ 30

22n
hα+1,

where ∆ = sup0≤i≤α+1[#j, 0 ≤ j ≤ α + 1, j 6= i, : λj = λi]. Patarin stated the
general version of the central theorem as a generalization of the first order central
theorem without giving any formal explanation in support of this. Nevertheless,
we have found that the expression is incorrect as there is no way to obtain the
hα+1-term on the right hand side of the inequality.

Issue-3: Missing Proof. Finally, Patarin claimed, almost magically, the fol-
lowing result [Theorem 18 of [32]] from the general version of the central theorem
without any justification for it.∣∣∣∣h′α − hα

2n

∣∣∣∣ ≤ hα
(

23kαk

(2n − 4α)k+1
(
1− 4α

2n −
4α2

22n

) +
26∆+ 30

22n
(
1− 4α

2n −
4α2

22n

)) .
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Note that, this result actually leads to proving the h′α-property.

Issue-4: Issue in ICISC-05 paper [28]. Patarin proved χ-bound in Theorem

9 of [28], where he defined χ
def
= O( 2α

22n )h2α−4. However, the proof assumed a
result which essentially boils down to proving the h′α-property (the core part of
the mirror theory) and this result has not been backed up by a verifiable proof
anywhere in the literature.

Issue-5: Missing Proof in [33]. Issues in the proof of Mirror theory for a pair
of independent permutations are somewhat similar to the issues that we have
pointed out for single permutation case. Patarin first proved this result using
Hσ technique in [30,31] to derive O(q/2n) bound and later used H-cofficient
technique [33] to derive the similar bound. Here, we point out the non-trivial
issues of the proof presented in all these papers3. To estimate the number of
solutions, Patarin started with orange equation, by which he showed only 2n/3
bound. Then, with a simple approximation of h′α, he slightly improved the bound
to 3n/4. In section 6, he derived an induction formula on h′α in which he only
proved first order purple theorem and given a bound on set N. These results
do not immediately give any generalized result that helps to prove 2n bound.
However, in Appendix C of [33], author chalked out a general proof strategy, but
again that is too less informative to derive a generic proof out of it. Therefore,
although the author claims that he has proved optimal security bound for mirror
theory with a pair of permutations, the paper lacks of a complete and generalized
proof.

Remark 1. We would like to mention here that chapter 15 of [23] deals with
mirror theory for ξmax = 2 using a slightly different approach than that of [32].
Authors have used Maximal Regression from the Mean value method (Theorem
15.7 and 15.8, pg 234 of [23]) to prove mirror theory. Although the proof is
incomplete and requires a proper repairing, we feel that this approach has a
potentiality to establish a correct proof of mirror theory for ξmax = 2 if one
carefully fills up the non-trivial gaps present in the proof.

In this paper we have mainly followed the proof approach of [32]. It enables us
to fill up the non-trivial gaps present in the proof of [32], for which we have
been able to establish a correct security proof of mirror theory for ξmax = 2.
Although there are several proofs of mirror theory present in the literature, but
as we have mentioned that all of them are either erroneous or incomplete. At
this point, we feel that instead of having several incomplete and erroneous proofs
of an important result, it is always worthy to have its one concrete and correct
security proof.

3 The paper [31] is an extended version of [30] and analysis of most of the proofs
of [30] are given in the extended version. Thus, we discuss the issues of the proofs
presented in [31].
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1.2 Our Contribution

The sole contribution of this paper is to prove the following two theorems. The
first one is the mirror theory result for a single permutation and the later one is
the mirror theory result for a pair of permutations.

Theorem 1 (Mirror Theory (ξmax, θ) = (2, 33.1) for Single Permuta-
tion). Let n ≥ 8, q ≤ 2n/θ and λ1, . . . , λq+1 are nonzero n-bit strings. The
number of pairwise distinct solutions (P1, . . . , P2q+2) ∈ ({0, 1}n)2q+2 to the fol-
lowing system of equations

E = {P1 ⊕ P2 = λ1, P3 ⊕ P4 = λ2, · · · , P2q+1 ⊕ P2q+2 = λq+1}

is at least
2n(2n − 1) · · · (2n − 2q − 1)

2n(q+1)
.

We note that our statement holds for a more wide range of number of queries q
than the original claim made by Patarin [32]. As an application of our theorem,
we state the following corollary, which gives a tight PRF bound 4 1− (1− 2−n)q

of XOR1 construction, for all q ≤ 2n/33.1. Proof of the corollary is deferred in
Appendix E.

Corollary 1. Let π be an n-bit random permutation and A be a distinguisher
that makes q distinct queries to either XOR1 or an (n − 1)-bit to n-bit random
function RF, where each query x ∈ {0, 1}n−1. Then for all q ≤ 2n/33.1, we have

Advprf
XOR1

(A) ≤ 1−
(

1− 1

2n

)q
.

As the second contribution of the paper, we state the mirror theory result for a
pair of indepenent permutations as follows:

Theorem 2 (Mirror Theory (ξmax, θ) = (2, 13) for a Pair of Permuta-
tions). Let n ≥ 5, q ≤ 2n/θ and λ1, . . . , λq+1 are n-bit strings. The number
of solutions ((P1, . . . , Pq+1), (Q1, . . . , Qq+1)) ∈ ({0, 1}n)q+1× ({0, 1}n)q+1 to the
following system of equations

E = {P1 ⊕Q1 = λ1, P2 ⊕Q2 = λ2, · · · , Pq+1 ⊕Qq+1 = λq+1},

such that all Pi’s are pairwise distinct and all Qi’s are pairwise distinct, is at
least

(2n(2n − 1) · · · (2n − q))2

2n(q+1)
·
(

1− 1.2q2

22n
− 108n3

22n

)
.

As an application of Theorem 2, we state the following corollary, which shows
that the PRF advantage of XOR2 construction is at most 1.2(q/2n)2+108n3/22n,
for all q ≤ 2n/13. Proof of the result is deferred in Appendix E.

4 A simple distinguisher returns 1 whenever it observes 0n output. In case of random
function it returns 1 with probability exactly 1 − (1 − 2−n)q, whereas it returns 0
with probability zero for the XOR1 construction as it never returns zero.
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Corollary 2. Let π1, π2 be a pair of n-bit random permutations and A be a
distinguisher that makes q distinct queries to either XOR2 or an n-bit to n-bit
random function RF. Then for all q ≤ 2n/13, we have

Advprf
XOR2

(A) ≤ 1.2q2

22n
+

108n3

22n
. (4)

This bound is better than the bound established in [30,33]. In fact, our bound
also supersedes the bound (q/2n)1.5 for q ≤ 2n/16 by Dai et al. [7]. However our
bound is not yet proven to be tight because there is no known attack against
XOR2 which uses less than 2n queries.5

It is needless to say that the application of these results are limited only in
proving the optimal PRF security of the sum function. But, we believe that this
would be the first stepping stone in making any further progress on different
variants of mirror theory.

Roadmap of the paper: We set up the neccessary background in Sect. 2. In
Sect. 3, we derive the orange and the purple equations - the two most basic
equations for the proof of mirror theory for same permuation and a pair of
independent permutations case. Followed by this, we quickly settle the proof of
Theorem 1 in Sect. 4 modulo the proof of the h′α property, the fundamental
lemma of the analysis. We devote Sect. 5 for proving the h′α property on top of
another two results, called derived inequality lemma and general order central
lemma. We prove these two results in Sect. 6. We devote Sect. 7 for proving
Theorem 2.

2 System of Bi-Variate Equations

In this section we give a graphical view of a system of bi-variate affine equations
for same permutation and a pair of independent permutations case. This equiva-
lent view of a system of equations stands out to be crucial for the understanding
of the rest of the paper.

2.1 System of Bi-variate Equations for Same Permutation

Labelled Acyclic Graph. Let V be a set integers {1, 2, . . . , υ} of size υ. We
denote the set of all doubleton sets of V as V(2) which represents the set of all
possible edges (undirected) over the vertex set V. Let G = (V,E, λ) be a simple
acyclic undirected edge-labelled graph, where E ⊆V(2) is the edge set of G and
λ : E → {0, 1}n is an edge labelling function that assigns an n-bit binary string
to all edges of E.

Injective Solution of Equations. The system of equations induced by such
a simple acylic undirected edge-labelled graph G is denoted EG, which is defined

5 A simple distinguisher for XOR2 (that makes 2n distinct queries) returns 0 whenever
it observes that the xor of the replies to its 2n distinct queries is 0n, and returns 1
otherwise.
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as EG = {Yi ⊕ Yj = λ{i,j}
def
= λ({i, j}) | {i, j} ∈ E}, where each vertices of G

correspond to a variable in the system of equations (i.e., vertex i corresponds
to the variable Yi) and each edges of G correspond to an equation in EG (i.e.,
edge {i, j} corresponds to the equation Yi ⊕ Yj = λ{i,j}). Note that a cycle in
the graph G implies the system of equations EG are not linearly independent.
As a linearly dependent equation may lead to an inconsistent system of affine
equations, we avoid cycles in the graph G and hence G is restricted to be acylic.
An injective function P : V → {0, 1}n is said to be a an injective solution if
Pi ⊕ Pj = λ{i,j} for all {i, j} ∈E, where Pa denotes P (a).

`-linked Graph: In this paper we are mostly interested in a special class of
simple acyclic undirected graphs called `-linked graph. For a positive integer `, a
graph is called `-linked, if it contains exactly one component P which is a path
of size 2` + 1 (i.e the number of edges is 2` + 1) and all other components are
path of length one. A zero linked graph (also called base graph) is simply the
graph of disjoint paths of length one. For ` ≥ 0, an `-linked graph G with 2α
vertices, for some α > `, contains exactly (i) α− ` many components which are
path of length one and (ii) total α+ ` many edges. Let P = (e1, e2, . . . , e2`+1) be
the path for an `-linked graph, where ` ≥ 1. Then, alternating even positioned
edges of P, namely e2, e4, . . . , e2`, are called the linking edges, alternating odd
positioned edges of P, namely e1, e3, . . . , e2`+1 are called linked-base edges and
all the other remaining edges are called unlinked-based edges. A base edge is
either a linked-base edge or an unlinked-base edge. Fig. 2.1 depicts an example
of an `-linked graph.

λi1
L1

L2

λi2
L3

L4 L2`

L2`+1

λi`+1 λj1 λj2 λjα−`−1

Fig. 2.1: An `-linked graph with `-linked label τ = (Bα, L
[2`+1]), where Bα =

{λi1 , λi2 , . . . , λi`+1 , λj1 , · · · , λjα−`−1}. Here, L1 = λi1 , L3 = λi2 , · · · , L2`+1 = λi`+1 .

Labels of Linked Graphs: Let G1 and G2 be two simple acylic undirected
edge-labelled graphs such that they are label isomporphic. Then, it is easy to
verify that the number of injective solutions of EG1

and EG2
are same. In other

words, the number of injective solutions is invariant under label isomorphism
(an isomorphism which preserves the labels). This result allows us to provide a
signature which uniquely associates all label isomorphic graphs.

Definition 1 (`-linked label). Let ` ≥ 1, Bα
def
= {λ1, . . . , λα} be a multiset,

where each λi ∈ {0, 1}n (called base labels) and L[2`+1] = (L1, L2, . . . , L2`+1),
also denoted as (L1 · L2 · . . . · L2`+1), be an ordered tuple, where each Li ∈
{0, 1}n. We call the pair τ

def
= (Bα, L

[2`+1]) `-linked label if there exists distinct
i1, . . . , i`+1 with

L1 = λi1 , L3 = λi2 , . . . , L2`+1 = λi`+1
.
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We call L2, L4, . . . , L2` linking labels which connect the base labels λi1 , λi2 , λi`+1
.

We call these base labels linked-based labels and all other base labels unlinked-base
labels. In particular, a 0-linked label is simply the multiset Bα.

Labeling `-linked graph. Given a `(≥ 1)-linked labels τ as defined above
and an `-linked graph G = (V,E) with |E| = α + `, we define a label function

λ
def
= λτ over E as follows: let P = (e1, e2, . . . , e2`+1) be the (2`+ 1)-sized path.

We define λ(ei) = Li, 1 ≤ i ≤ 2` + 1 and for all other α − ` − 1 edges (if any),
we assign elements from the multiset Bα \ {λi1 , . . . , λi`+1

} (of size α − ` − 1)
arbitrarily as their labels such that each element is being assigned exactly once.
Note that the label function is not unique as we can choose the order of the
path in two directions and the assignment of the remaining edges are arbitrary.
Clearly, all such labeling functions are label isomorphic and so the number of
solutions of the system of equations based on G = (V,E, λ) are same. Therefore,
the number of injective solutions is uniquely determined by the label τ .
In case of a zero-linked label Bα and a zero-linked graph G, there is no path in
G with more than one edge and thus we simply assign all elements from Bα to
edges of G.

Valid Labels. Let G be an `-linked graph and τ = (Bα, L
[2`+1]) be its label.

Then, we denote the set of all injective solutions of G as H(τ) and the number
of its injective solutions as h(τ).6 However, H(τ) and h(τ) depends on the exact
choice of labelling function λτ . Now, an injective solution exists for a zero-linked
system (also called base system) with label τ = Bα, provided elements of Bα

are non-zero elements of sn. Similarly, necessary conditions for existence of an
injective solution for a `-linked graph G with label τ = (Bα, L

[2`+1]) are the
following: (i) the elements of Bα and L are non-zero elements of {0, 1}n and
(ii) for all 1 ≤ i < j ≤ 2` + 1, Li ⊕ Li+1 ⊕ · · · ⊕ Lj 6= 0n. Any such label τ is
called valid. The set of all valid `-linked labels is denoted as V` and the set of
all L[2`+1] such that each element of L[2`+1] is non-zero elements of {0, 1}n and
L[2`+1] satisfying (ii), is denoted as V ′` .

2.2 System of Bi-variate Equations for a Pair of Independent
Permutations

We required a simple undirected acyclic edge-labelled graph for same permu-
tation case, but to give a graphical view of a system of bi-variate affine equa-
tions for a pair of independent permutations, we need a simple undirected acylic
edge-labelled bipartite graph G = (V,E, λ) whose vertex set V is partitioned
into two disjoint sets X = {x1, · · · , xv}, whose vertices are called x-nodes, and
Z = {z1, · · · , zv}, whose vertices are called z-nodes. As before, we consider G to
be acyclic, otherwise a dependent equation may lead to an inconsistent system
of equations. For such a acylic edge-labelled bipartite graph G, we denote its in-

duced system of equations as EG = {Xi⊕Zj = λ{xi,zj}
def
= λ({xi, zj}) | {xi, zj} ∈

E}. Note that node xi ∈ X corresponds to the variable Xi and node zi ∈ Z

6 Convention. For ` = 0, we simply write h(Bα, L
[1])

def
= h(Bα).
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corresponds to the variable Zi and an edge {xi, zj} corresponds to the equa-
tion Xi ⊕ Zj = λ{xi,zj}. The pair of injective functions P : X → {0, 1}n and
Q : Z → {0, 1}n is said to be a an injective solution if Pi ⊕ Qj = λ{xi,zj} for
all {xi, zj} ∈ E, where Pa, Qb denotes P (xa), Q(zb) respectively. Definition for
linked graph and labels of a linked graph for acyclic labelled bipartite graph is
exactly same as defined for single permutation case. However, the criterion for
valid label is somewhat different, which says that, for ` ≥ 1, necessary conditions
for existence of an injective solution for an l-linked labelled bipartite graph with
label τ = (Bα, L

[2`+1]) is the following: for all 1 ≤ i < j ≤ 2` + 1, with j − i
being an odd number, Li ⊕ Li+1 ⊕ · · · ⊕ Lj 6= 0n. Any such label τ is called
valid. The set of all valid `-linked labels is denoted by U` and the set of all
L[2`+1] satisfying the above condition is denote by U ′`.

Remark 2. We note that the validity conditions here are quite different than the
same permutation case, because here Pi’s have to be mutually distinct and so
should be the Qj ’s, but there can collision between Pi and Qj , i, j ∈ [v].

3 Orange, Purple and Combinatorial Lemmas

We begin this section by stating two useful equations called orange and pur-
ple equations, which are the starting point of the analysis for both the same
permutation and the independent permutation cases. In this section, we first
state the orange equation and the higher order purple equations for both the
same permutation and a pair of independent permutations followed by stating
a combinatorial result which we will use in our future analysis.

3.1 Orange and Purple Equations for Same Permutation

Notation. Let Bα+1 = {λ1, . . . , λα+1}, where each λi ∈ {0, 1}n, be a multiset
of valid 0-linked label of size α+ 1 and for ` ≥ 1, τ = (Bα+1, L

[2`+1]) ∈ V` be a
valid `-linked label, where each element of L[2`+1] is an element of {0, 1}n and
λα+1 = L1, λα = L3, . . . , λα−`+1 = L2`+1. Moreover, Bα = Bα+1 \ {λα+1} is
a multiset and L[3,2`+1] = (L3, . . . , L2`+1) is an ordered tuple. For ` ≥ 0, we
denote δBα−`(λα+1) as the number of i ∈ [α− `] such that λi = λα+1 and ∆ to
be the maximum of such δBα(λ) where the maximum is taken over all λ.

Orange Equation. To derive the orange equation, we want to estimate h(Bα+1)
in terms of h(Bα). For this, we state the following lemma, which we call the “or-
ange lemma” as follows:

Lemma 1 (Orange Lemma). With the notations as defined above, we have

h(Bα+1) = (2n − 4α+ 2δBα(λα+1)) · h(Bα) +
∑

L[3]∈M3

h(Bα, L
[3]), (5)

where M3
def
= M3(Bα+1) = {λa · x · λb ∈ V ′1 | a 6= b ∈ [α], x ∈ λα+1 ⊕ 〈λa, λb〉}.
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We call Eqn. (5) the “Orange Equation”.

Purple Equations of order `. To derive the purple equation of order ` ≥ 1,
we want to estimate h(Bα+1, L

[2`+1]) in terms of h(Bα, L
[3,2`+1]). For this, we

state the following lemma, which we call the “purple lemma” as follows:

Lemma 2 (Purple Lemma). With the notations as defined above, we have

h(Bα+1, L
[2`+1]) = h(Bα, L

[3,2`+1])−
∑

K[2`+1]

∈N2`+1

h(Bα,K
[2`+1])

+ 2δBα−`(λα+1)h(Bα, L
[2`+1]) +

∑
K[2`+3]

∈M2`+3

h(Bα,K
[2`+3]), (6)

where N2`+1
def
= N2`+1(τ) = {λa ·x ·L[3,2`+1] ∈ V ′` |a ∈ [α−`], x ∈ L2⊕〈L1⊕λi〉}

and M2`+3
def
= M2`+3(τ) = {λb · x · λa · y · L[3,2`+1] ∈ V ′`+1 | a 6= b ∈ [α− `],

x ∈ L1 ⊕ 〈λa, λb〉, y ∈ L2 ⊕ λa}.
We call Eqn. (6) the “Purple Equation of order `”. Proof of the orange and the
purple lemma is deferred to Appendix A. We also estimate an upper and a lower
bound on the size of M3,N2`+1 and M2`+3 in the following lemma, called “size
lemma”, whose proof is deferred in Appendix B.

Lemma 3 (Size Lemma). For any valid label τ = Bα+1, τ1 = (Bα+1, L
[2`+1])

and τ2 = (Bα+1, L
[2`+3]) we have

(a) 4α(α− 1)− 12α∆ ≤ |M3(Bα+1)| ≤ 4α(α− 1)

(b) 4(α− 1)− 4∆ ≤ |N3(τ)| ≤ 4(α− 1)

(c) |N2`+1(τ1)| − 4− 4∆ ≤ |N2`+3(τ2)| ≤ 4(α− 1)

(d) |M2`+3(τ1)| − 8(α− `− 1) + 4∆− 16∆(α− `− 2) ≤ |M2`+5(τ2)|
(e) |M2`+5(τ2)| ≤ 4(α− `− 1)(α− `− 2).

3.2 Orange and Purple Equations for a Pair of Independent
Permutations

In this section, we state the orange and purple equation for a pair of inde-
pendent permutations. Notations which are required for stating the equations
are almost same as defined in Subsect. 3.1, except the notion of valid label
τ = (Bα+1, L

[2`+1]) ∈ U ′`. As before, to derive the orange equation, we estimate
h(Bα+1) in terms of h(Bα), which we state in the form of the following lemma:

Lemma 4 (Orange Lemma for Independent Permutations). With the
similar notations as introduced in Subsect 3.1, we have

h(Bα+1) = (2n − 2α+ δBα(λα+1)) · h(Bα) +
∑

L[3]∈M′3

h(Bα, L
[3]), (7)

where M′3
def
= M′3(Bα+1) = {λi.λα+1.λj ∈ U ′3 | i 6= j ∈ [α]}.
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Note that, the set M3 defined in the context of same permutation is significantly
different from the set M′3 defined here. We call Eqn. (7) as “Orange Equation
for a Pair of Independent Permutations”. To derive the purple equation of order
` ≥ 1, we estimate h(Bα+1, L

[2`+1]) in terms of h(Bα, L
[3,2`+1]), which, we state

in the form of the following lemma:

Lemma 5 (Purple Lemma for Independent Permutations). With the
similar notations as introduced in Subsect 3.1, we have

h(Bα+1, L
[2`+1]) = h(Bα, L

[3,2`+1])−
∑

K[2`+1]

∈N′2`+1

h(Bα,K
[2`+1])

+ δBα−`(λα+1)h(Bα, L
[2`+1]) +

∑
K[2`+3]

∈M′2`+3

h(Bα,K
[2`+3]), (8)

where N′2`+1
def
= N′2`+1(τ) = {λi.(λi ⊕ L2 ⊕ L1).L[3,2`+1] ∈ U ′` | i ∈ [α − `]} ∪

{λi.L2.L
[3,2`+1] | i ∈ [α− `]} and M′2`+3

def
= M′2`+3(τ) = {λj .λα+1.λi.(λi ⊕L1 ⊕

L2).L[3,2`+1] ∈ U ′`+1 | i 6= j ∈ [α− `]}.

Again, note that the set N2`+1 and M2`+3 defined in the context of same permu-
tation is significantly different from the set N′2`+1 and M′2`+3 respectively. We
call Eqn. (8) as “Purple Equation of order ` for a Pair of Independent Permu-
tations”. We postpone the proof of Lemma 4 and Lemma 5 in Appendix A. As
before, we also estimate an upper and a lower bound on the size of M′3,N

′
2`+1

and M′2`+3 in the following lemma, proof of which is deferred in Appendix C.

Lemma 6 (Size Lemma for Independent Permutations). For any valid
label τ = Bα+1, τ1 = (Bα+1, L

[2`+1]) and τ2 = (Bα+1, L
[2`+3]) we have

(a) |M′3(τ)| = (α− δBα(λα+1))(α− δBα(λα+1)− 1)

(b) 2(α− 1−∆) ≤ |N′3 (τ)| ≤ 2(α− 1)

(c) |N′2`+1(τ1)| − 2− 2∆ ≤ |N′2`+3(τ2)| ≤ 2(α− `− 1)

(d) |M′2`+3(τ1)| − 2(α− `− 1) + 2∆−∆(α− `− 2) ≤ |M′2`+5(τ2)|
(e) |M′2`+5(τ2)| ≤ (α− `− 1)(α− `− 2).

3.3 A Combinatorial Lemma

In this section we state a combinatorial lemma, which would be useful in the
final analysis while proving both of our main theorems.

Lemma 7 (Combinatorial Lemma). Fix integers r, T . We define the double
sequence {akm}m,k of non-negative rationals, for 1 ≤ m ≤ T , as follows:

– akm = 0 for k < 0.
– For k = 0, · · · ,m− 1,
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• {akm}m,k satisfies the recurrence relation,

akm+1 ≤ ak−1m + 2βTakm + β2T 2ak+1
m +

Eξ

2n(2n − γT )T−m+k
(9)

for some constants β, γ, E, ξ > 0.
• {akm}m,k satisfies the inequality

akm ≤
2ξ

(2n − γT )T−m+k+1
(10)

Let Cr = 2eβ · 21/r + γ. Then for rn < T < 2n

Cr
, the following inequality holds,

a0T <
ξ

2n(2n − γT )
· 21/r

21/r − 1

(
2 +

21/r · E
21/r − 1

)
(11)

Interpretation of the Lemma. It is easy to see that from Eqn. (10), one
can easily obtains a crude estimation of a0T , which is O( ξ

2n ). Now, the essence
of the lemma is that one can iterate the binomial-type recurrence relation (9)
several times (refer Fig. D.1) followed by applying Eqn. (10) to the last level of
the iteration to get a much better estimation of a0T in (11), i.e. O(ξ/22n).

Proof. We write E′ = 2n · E. To prove the lemma, we first state the following
claim:

Claim 1. Let D = βT . Then, for every 1 ≤ d ≤ T − 1,

a0T ≤
2d∑
j=d

(
2d

j

)
Djaj−dT−d +

d−1∑
t=0

2t∑
j=t

(
2t

j

)
Dj E′ · ξ

(2n − γT )j+1
.

Proof of the claim is deferred in Appendix D.

Resuming the proof. Using d = rn in Claim 1 (as rn ≤ T − 1), we get,

a0T ≤
2rn∑
j=rn

(
2rn

j

)
Djaj−rnT−rn +

rn−1∑
t=0

2t∑
j=t

(
2t

j

)
Dj E′ · ξ

(2n − γT )j+1
. (12)

Using Eqn. (10), we have

2rn∑
j=rn

(
2rn

j

)
Djaj−rnT−rn =

2rn∑
j=rn

(
2rn

j

)
Dj 2ξ

(2n − γT )j+1

=
2ξ

2n − γT

2rn∑
j=rn

(
2rn

j

)(
D

2n − γT

)j
(?)

≤ 2ξ

2n − γT

2rn∑
j=rn

(
2eD

2n − γT

)j
, (13)
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where (?) follows from the inequality
(
n
k

)
≤
(
en
k

)k
, since that implies

(
2rn
j

)
≤(

2rne
j

)j
≤ (2e)j as j ≥ rn. As, T < 2n

2β·21/re+γ , we have 2 · 21/reD + γT =

(2β · 21/re+ γ)T < 2n, which implies 2eD
2n−γT < 1

21/r
. Therefore,

2rn∑
j=rn

(
2eD

2n − γT

)j
<

(
1

21/r

)rn ∞∑
j=0

2−j/r =
1

2n
· 21/r

21/r − 1
. (14)

Using Eqn. (13) and Eqn. (14), we have

2rn∑
j=rn

(
2rn

j

)
Djaj−rnT−rn <

2 · 21/r · ξ
2n(2n − γT )(21/r − 1)

. (15)

Similarly, we have

rn−1∑
t=0

2t∑
j=t

(
2t

j

)
Dj E′ · ξ

(2n − γT )j+1
<

E′ · ξ
2n − γT

·
rn−1∑
t=0

21/r

2t/r(21/r − 1)

<
E′ · ξ

2n − γT
·
(

21/r

21/r − 1

)2

. (16)

Thus, from (12), (15) and (16), we get

a0T <
21/r · ξ

(2n − γT )(21/r − 1)

(
1

2n−1
+

21/r · E′

21/r − 1

)
,

which proves the result of Lemma 7. ut

4 Proof of Theorem 1: Mirror Theory with (ξmax, θ) =
(2, 33.1)

Notation. For the simplicity of the notation, we use δ to denote δBq (λq+1),
for a fixed λq+1 ∈ {0, 1}n and ∆ to denote the maximum of δBq (λ), where the
maximum is taken over all λ ∈ {0, 1}n. It is to be noted that the labels of the base
edges of a zero-linked graph G can be re-ordered without changing the number
of solutions. This is because any such re-ordering would generate another zero-
linked graph G′ which is label isomorphic to G, and due to the Defn. 1, we can
uniquely associate all such label isomorphic graphs. This justification essentially
allows us to reorder λ values of Bq+1 so that δ + 1 = ∆ 7. In the foregoing
discussion, we will use the shorthand notation hα to denote h(Bα).

7 Suppose λ ∈ {0, 1}n is the value with maximum number of multicolli-
sions among the base labels λ1, · · · , λα+1. Set λα+1 = λ. Then δ + 1 =
#multicollisions of λα+1 among base labels = ∆. We would like to note here, that,
Patarin used an incorrect assumption in [32], where it was stated that labels can be
reordered so that δ = ∆, which is not possible.



16 Avijit Dutta, Mridul Nandi, Abishanka Saha

We define H2q = 2nqhq and J2q = (2n)2q. These notations allows us to reformu-

late the theorem statement hq+1 ≥ (2n)2q+2

2n(q+1) , as

H2q+2 ≥ J2q+2. (17)

It is obvious to see that Eqn. (17) holds true for q = 0, as H2 = 22n > (2n)2 = J2.
To prove Eqn. (17) via induction, we show the following:

H2q+2

J2q+2
≥ H2q

J2q
, 1 ≤ q ≤ 2n/33.1. (18)

Moreover, Eqn. (18) also holds true for all q such that 2q(2q + 1) ≤ 2n [28].
Therefore, we assume that 2n/2−1 − 1 < q ≤ 2n/33.1.8 If n ≥ 12, we have
2n/2−1 − 1 ≥ 2n, and hence q > 2n. Therefore, we just need to show that
Eqn. (18) holds true for 2n ≤ q ≤ 2n/33.1. To prove this, we need an important
result called “h′α property”, suggested by Patarin [32], which is the central
result of this paper. In the following lemma, we state the h′α property, proof of
which is deferred in Sect. 5.

Lemma 8 (h′α property). If 2n < q < 2n

6
√
2e+4

≈ 2n

27.1 , then for any L[3] ∈
M3(Bq), where M3(·) is defined in Lemma 1 of Sect. 3.1, we have

h(Bq, L
[3]) ≥ hq

2n

(
1− C1∆

2n
(
1− 4q

2n

) − C2q∆

22n
(
1− 4q

2n

)2
)
, (19)

where C1 = 2
√
2√

2−1 + 8
( √

2√
2−1

)2
and C2 = 24

( √
2√

2−1

)2
.

Resuming Proof of Theorem 1. We have assumed that 2n < q < 2n

33.1 , and

hence q satisfies the bounds given in Lemma 8 (i.e. 2n < q < 2n

6
√
2e+4

). Therefore,

we can apply the lemma to the orange equation (i.e., Eqn. (5)) and get,

hq+1

2n
= hq

(
1− 4q

2n
+

2δ

2n

)
+

1

2n

∑
L[3]∈M3

h(Bq, L
[3])

(1)

≥ hq

(
1− 4q

2n
+

2δ

2n
+
|M3|
22n

(
1− C1∆

2n
(
1− 4q

2n

) − C2q∆

22n
(
1− 4q

2n

)2)
)
,(20)

where (1) follows from Lemma 8. Note that,

H2q+2

H2q
= 2n

hq+1

hq
,
J2q+2

J2q
= (2n − (2q + 1))(2n − 2q). (21)

8 As 2q + 1 ≤ 2n/2 − 1⇒ 2q(2q + 1) ≤ 2n
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From Eqn. (20), Eqn. (21) and by plug-in |M3| ≤ 4q(q−1)−12q∆ (follows from
part (a) of Lemma 3) into Eqn. (20), we have

H2q+2

J2q+2
≥

1− 4q
2n + 2δ

2n + 4q(q−1)−12q∆
22n

(
1− C1∆

2n(1− 4q
2n )
− C2q∆

22n(1− 4q
2n )

2

)
1− 4q+1

2n + 2q(2q+1)
22n

H2q

J2q

(2)
=

1 +

1
2n + 2δ

2n + −6q−12q(δ+1)
22n − 4C1(δ+1)q2

23n(1− 4q
2n )
− 4C2(δ+1)q3

24n(1− 4q
2n )

2

1− 4q+1
2n + 2q(2q+1)

22n

 H2q

J2q

where (2) follows from the fact that (4q(q − 1) − 12q∆) < 4q2 and the indices
can be reordered so that ∆ = δ + 1. Let A denotes the numerator of (2). Then,
we have,

A =
2δ

2n

(
1− 6q

2n
− 2C1q

2

22n
(
1− 4q

2n

) − 2C2q
3

23n
(
1− 4q

2n

)2
)

+
1

2n

(
1− 18q

2n
− 4C1q

2

22n
(
1− 4q

2n

) − 4C2q
3

23n
(
1− 4q

2n

)2
)
.

Note that, A > 0 for q < 2n

33.1 , as the functions f(x) = 1 − 6x − 2C1
x2

1−4x −
2C2

x3

(1−4x)2 ≥ 0 and g(x) = 1−18x−4C1
x2

1−4x −4C2
x3

(1−4x)2 ≥ 0, ∀0 ≤ x ≤ 1
33.1 .

Therefore, we have proved that Eqn. (18) holds for 2n ≤ q ≤ 2n

33.1 . ut

5 Proof of Lemma 8 : h′
α-property

Before we begin the proof, we first introduce the notion of a derived multiset for
a given multiset Bq = {λ1, . . . , λq}, where λi ∈ {0, 1}n \ {0n}.
Derived `-linked Graph: Given a zero-linked graph with q base edges, we
derive a collection of `-linked graph with α(≤ q) base edges by removing some
q − α base edges followed by adding ` many linking edges connecting ` + 1
base edges (which turns out to be linked base edges). We define derived labels
corresponding to the derived graphs as follows:

Definition 2. We call the tuple (Bα, L
[2`+1]) is (`, d)-derived from a base label

Bq if Bα ⊆Bq with α = q−d, ` ≤ α− 1, and (Bα, L
[2`+1]), a valid linked label.

With this ammunition, we define the A-term. Let (Bα, L
[2`+1]) ∈ V` be a valid

label. Then we define the `-th order A term as follows:

A(Bα, L
[2`+1])

def
=

∣∣∣∣h(Bα, L
[2`+1])− h(Bα, L

[2`−1])

2n

∣∣∣∣ . (22)

According to our convention, we note that the 1st order A term (i.e. for ` = 1)
turns out to be:

A(Bα, L
[3])

def
=

∣∣∣∣h(Bα, L
[3])− h(Bα)

2n

∣∣∣∣ . (23)
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Having defined the first order and the `-th order A term, let us define the fol-
lowing: for ` ≥ 1, we define

A[`−1]
α

def
= max{A(Bα, L

[2`+1]) such that (Bα, L
[2`+1]) is (q−α, `)-derived from Bq}.

Recipe of the proof. Now, we give a brief outline of the proof of Lemma 8. We
carry out the proof in a modular way. We first state a derived inequality lemma

(i.e., Lemma 9) which gives an upper bound on A
[`−1]
α followed by stating a

general order central lemma (i.e., Lemma 10) which gives a recurrence relation
on A values. We combine this recurrence relation with the combinatorial lemma
to get an upper bound on A

[0]
q . This upper bound is sufficient to prove Lemma‘8.

In the following, we first state the derived inequality lemma, proof of which is
deferred in Sect. 6.

Lemma 9 (Derived Inequality Lemma). Let α
def
= q − d for two positive

integers q, d such that d < q. If (Bα, L
[2`+1]) is (`, d)-derived from a base label

Bq, then we have,

(a) h(Bα, L
[2`+1]) ≤ hq

(2n − 4q)d+`
, (b) A(Bα, L

[2`+1]) ≤ 2hq
(2n − 4q)d+`

.

Note that, these inequalities are applicable for (Bα, L
[2`+1]) only when it is

(`, d)-derived from the base label Bq. As A(Bα, L
[2`+1]) follows inequality (b) of

Lemma 9, for all (Bα, L
[2`+1]) that is (`, d)-derived from Bq, we get

A[`−1]
α ≤ 2hq

(2n − 4q)q−α+`
. ( by putting d = q − α) (24)

Now, it is to be noted that A(Bq, L
[3])

(†)
≤ A

[0]
q and we would like to establish

the following inequality:

A[0]
q ≤

hq
2n

(
C1∆

2n
(
1− 4q

2n

) +
C2q∆

22n
(
1− 4q

2n

)2). (25)

For the time being if we assume that the Eqn. (25) is correct, then from Eqn. (23),
Eqn. (25) and from (†), we have

h(Bα, L
[3])− h(Bα)

2n
≥ −hq

2n

(
C1∆

2n
(
1− 4q

2n

) +
C2q∆

22n
(
1− 4q

2n

)2),
which proves the h′α property lemma. Thus, our focus is now shifted to prove
the inequality stated in Eqn. (25). For proving this, we use the following lemma,
which we call the general order central lemma, proof of which is deferred in
Sect. 6.

Lemma 10 (General Order Central Lemma). With the notation A
[`−1]
α for

` ≥ 1, as defined above, we have the following recurrence relation:

A
[`]
α+1 ≤ A[`−1]

α + 6qA[`]
α + 9q2A[`+1]

α +
hq

(2n − 4q)q−α+`

(
8∆

2n
+

24q∆

2n(2n − 4q)

)
.
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Resuming Proof of Lemma 8. Now, we recognize that {A[`]
α }α≤q,`≤α−1 sat-

isfies the conditions for a double sequence as stated in the combinatorial lemma
(i.e. Lemma 7), with r = 2, T = q, β = 3, γ = 4, ξ = hq and E = 8∆+ 24q∆

(2n−4q) .

Thus, we can directly apply Eqn. (11) to get the following

A[0]
q <

hq
2n

 2
√
2√

2−1

2n
(
1− 4q

2n

) +

( √
2√

2− 1

)2
8∆

2n
(
1− 4q

2n

) +

( √
2√

2− 1

)2
24q∆

22n
(
1− 4q

2n

)2


(?)

≤ hq
2n


2

√
2√

2− 1
+ 8

( √
2√

2− 1

)2


︸ ︷︷ ︸
C1

∆

2n
(
1− 4q

2n

) + 24

( √
2√

2− 1

)2

︸ ︷︷ ︸
C2

q∆

22n
(
1− 4q

2n

)2
 ,

for q < 2n

6
√
2e+4

, where (?) follows from the fact that ∆ ≥ 1. This completes the

proof. ut

6 Proof of Lemma 9 and Lemma 10

6.1 Proof of Derived Inequality Lemma

As the order of coefficients does not matter, without loss of generality, we assume
that Bα = {λ1, · · · , λα} where Bq = {λ1, · · · , λq}. Let us represent a solution,
(P1, · · · , P2α) of EG where G is an ` -linked graph labeled by a valid label
τ = (Bα, L

[2`+1]), by a graph EG which is isomorphic to G, except that, the
node in G corresponding to the variable Yi, i ∈ [2α], is replaced by a node having
the value Pi, i ∈ [2α] in EG.

Let EG1
be the representation of a solution of EG1

where G1 is an zero-linked
graph with labelling τ = Bα. We recursively add d disjoint edges to EG1

. When
we add the ith edge, i = 1, · · · , d, we assign any one of 2n−4α+ 2δBα+i−1

(λα+i)
values

(
size of {0, 1}n \

(
{P1, · · · , P2α+i−1} ∪ {P1 ⊕ λα+i, · · · , P2α ⊕ λα+i}

))
to

one of the two nodes of the edge, and assign the value λα+i to that edge (See
Fig. 6.1).

Thus we get representations of
∏d−1
i=0 (2n−4(α′+i)+2δBα+i

(λα+i+1)) > (2n−4q)d

solutions to EG, where G is the zero-linked graph with labelling τ = Bq. Hence,

h(Bα) ≤ hq
(2n − 4q)d

.

Now, let EG2 be the representation of a solution of EG2 where G2 is an `-linked
graph with labelling τ = (Bα, L

[2`+1]). Let us reorder the indices such that L1 =
λ1, · · · , L2`+1 = λ`+1. We recursively remove the ` links from EG2

. When we re-
move the ith link from the last, L2(`−i+1), from EG2

, we put one of the 2n−4(α−
1)+2δB`−i+1

(λ`−i+2) values of {0, 1}n\
(
{P1, · · · , P2(`−i+1), P2(`−i+2)+1, · · · , P2α}∪

{P1 ⊕ λ`−i+2, · · · , P2(`−i+1) ⊕ λ`−i+2, P2(`−i+2)+1 ⊕ λ`−i+2, · · · , P2α ⊕ λ`−i+2}
)
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λ1 λ2 λ3 λα′

λ1 λ2 λ3 λα′ λα′+1
P2α′+2

2n − 4α′ + 2δBα′ (λα′+1) values

λ1 λ2 λ3 λα′ λα′+1 λα′+2
P2α′+2

2n − 4(α′ + 1)+ 2δBβ′+1
(λα′+2) values

λ1 λ2 λ3 λα′ λα′+1 λα′+2 λα
P2α

2n − 4(α− 1) + 2δBα−1
(λα) values

Fig. 6.1: Adding d edges to the graph EG1 resulting in
∏d−1
i=0 (2n − 4(α′ + i) +

2δBα′+i(λα′+i+1)) solutions of EG

λ1

L1

L2

λ2

L3

L2`−4

λ`−1

L2`−3

L2`−2

λ`
L2`−1

L2`

L2`+1

λ`+1 λ`+2 λα′

λ1

L1

L2

λ2

L3

L2`−4

λ`−1

L2`−3

L2`−2

λ`
L2`−1

λ`+1
P2`+1

2n − 4(α′ − 1) + 2δB`(λ`+1) values

λ`+2 λα′

λ1

L1

L2

λ2

L3

L2`−4

λ`−1

L2`−3

λ` λ`+1
P2`−1

2n − 4(α′ − 1) + 2δB`−1
(λ`) values

λ`+2 λα′

λ1

L1

λ2 λ`−1 λ` λ`+1P3

2n − 4(α′ − 1) + 2δB1(λ2) values

λ`+2 λα′

Fig. 6.2: Removing ` links from EG2 to get
∏`
i=1(2n−4(α′−1)+2δBi(λi+1)) solutions

to EG1

as the value of one of the nodes of the edge that got disjoint from the linked
system (See Fig. 6.2).
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Thus, we get
∏µ
i=1(2n − 4(α′ − 1) + 2δBi(λi+1)) > (2n − 4q)` solutions to EG1

from one solution of EG2
. Hence, we get

h(Bα, L
[2`+1]) ≤ hα

(2n − 4q)`
≤ hq

(2n − 4q)d+`
,

which completes part (a) of the lemma. ut
Now, for part (b) we have

A(Bα, L
[2`+1]) ≤

∣∣∣∣h(Bq, L
[2`+1])− h(Bq, L

[2`−1])

2n

∣∣∣∣
≤ hq

(2n − 4q)d+`
+

hq
2n(2n − 4q)d+`−1

≤ 2hq)

(2n − 4q)d+`
. ut

6.2 Proof of General Order Central Lemma

Notation. We write δ(`) to denote δBα−`(λα+1). We also use the shorthand

notation ha(L[2µ+1]) to represent h(Ba, L
[2µ+1]).

We prove the general order central lemma in two parts: in the first part we prove
central lemma of `+ 1-th order, ` ≥ 1, and in the second part we prove central
lemma of first order.

6.2.1 Central Lemma of ` + 1-th order (` ≥ 1). Let us consider the
purple equation with ` links and `+ 1 links respectively.

Purple Equation with `-links

hα+1(L[2`+1]) = hα(L[3,2`+1])−
∑

K[2`+1]

∈N2`+1

hα(K [2`+1])

+ 2δ(`)hα(L[2`+1]) +
∑

K[2`+3]

∈M2`+3

hα(K [2`+3]). (26)

Purple Equation with `+ 1-links

hα+1(L[2`+3]) = hα(L[3,2`+3])−
∑

K[2`+3]

∈N2`+3

hα(K [2`+3])

+ 2δ(`+1)hα(L[2`+3]) +
∑

K[2`+5]

∈M2`+5

hα(K [2`+5]). (27)
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By subtracting Eqn. (26) × 1
2n from Eqn. (27) and using the inequality δ(`+1) ≤

δ(`), we get

hα+1(L[2`+3])− hα+1(L[2`+1])

2n
≤ hα(L[3,2`+3])− hα(L[3,2`+1])

2n

+
∑

`
+
∑?

+
∑??

+ LO, (28)

where,∑
`

= 2δ(`)
(
hα(L[2`+3])− hα(L[2`+1])

2n

)
, ` = 0, . . . , α− 1.

∑?
=

∑
K[2`+3]∈N2`+3

(
hα(K [2`+3])− hα(K [2`+1])

2n

)
.

∑??
=

∑
K[2`+5]∈M2`+5

(
hα(K [2`+5])− hα(K [2`+3])

2n

)
.

LO =
1

2n

∑
K[2`+1]∈N2`+1

3K[2`+3] 6∈N2`+3

hα(K [2`+1]) +
1

2n

∑
K[2`+3]∈M2`+3

3K[2`+5] 6∈M2`+5

hα(K [2`+3]).

Now we bound each term on the right hand side of Eqn. (28).∣∣∣∑
`

∣∣∣ = 2δ(`)
∣∣∣∣hα(L[2`+3])− hα(L[2`+1])

2n

∣∣∣∣ (1)≤ 2∆A[`]
α . (29)∣∣∣∑?∣∣∣ ≤ ∑

K[2`+3]∈N2`+3

A(Bα,K
[2`+3]) ≤ |N2`+3|A[`]

α

(2)

≤ 4qA[`]
α . (30)

∣∣∣∑??∣∣∣ ≤ ∑
K[2`+5]∈M2`+5

A(Bα,K
[2`+5]) ≤ |M2`+5|A[`+1]

α

(3)

≤ 4q2A[`+1]
α . (31)

LO =
|N2`+1 \N2`+3|

2n
hq

(2n − 4q)q−α+`
+
|M2`+3 \M2`+5|

2n
hq

(2n − 4q)q−α+`+1

(4)

≤ 8∆

2n
hq

(2n − 4q)q−α+`
+

24q∆

2n
hq

(2n − 4q)q−α+`+1
=

hq ·∆′

(2n − 4q)q−α+`
.(32)

where ∆′ =
(

8∆
2n + 24q∆

2n(2n−4q)

)
. Note that (1) follows as δ(`) ≤ ∆ and due to the

definition of A
[`]
α . Moreover, (2), (3) and (4) follows from Lemma 3 as |N2`+2| ≤

4(α−1) ≤ 4q, M2`+5 ≤ 4(α−`−1)(α−`−2) ≤ 4q2, |N2`+1\N2`+3| ≤ 4+4∆ ≤ 8∆
(as ∆ ≥ 1) and |M2`+3 \M2`+5| ≤ 8(α− `−1)−4∆+ 16∆(α− `−2) ≤ 24α∆ ≤
24q∆.9 Now, by taking the absolute value of the both side of Eqn. (28), and

9 Here we make the abuse of notation by denoting the set of all K [2`+3] ∈ M2`+3

such that K [2`+5] 6∈ M2`+5 as M2`+3 \M2`+5. Similarly we denote the set of all
K [2`+1] ∈N2`+1 such that K [2`+3] 6∈N2`+3 as N2`+1 \N2`+3.
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using Eqn. (29)-Eqn. (32), we have

A(Bα+1, L
[2`+3]) ≤ A(Bα, L

[3,2`+3]) + (4q + 2∆)A[`]
α + 4q2A[`+1]

α +
hq ·∆′

(2n − 4q)q−α+`

≤ A[`−1]
α︸ ︷︷ ︸
(4)

+ 6q︸︷︷︸
(5)

A[`]
α + 9q2︸︷︷︸

(6)

A[`+1]
α +

hq ·∆′

(2n − 4q)q−α+`
, (33)

where (4) follows from the fact that (Bα, L
[3,2`+3]) is derived from Bq, (5) follows

from the fact that ∆ ≤ q and for (6) we just used 9q2 > 4q2. Taking maximum
of the left hand side of Eqn. (33) over all (Bα+1, L

[2`+3]) derived from Bq, we
get the purple-purple equation or the central lemma of (`+1)-th order as follows:

A
[`]
α+1 ≤ A[`−1]

α + 6qA[`]
α + 9q2A[`+1]

α +
hq

(2n − 4q)q−α+`

(
8∆

2n
+

24q∆

2n(2n − 4q)

)
.

(34)

6.2.2 Central Lemma of first order. By subtracting the (orange equation)× 1
2n

from the first order purple equation, and using Lemma 3 by setting ` = 1 and
the inequality δ(1) ≤ δ(0)(= δ), we get

hα+1(L[3])− hα+1

2n
≤
∑

0
−
∑

?
+
∑

??
+ LO, (35)

where,∑
?

=
∑

K[3]∈N3

(
hα(K [3])− hα

2n

) ∑
??

=
∑

K[5]∈M5

(
hα(K [5])− hα(K [3])

2n

)

LO = x
hα
2n︸︷︷︸

x≤4∆+4

− 1

2n

∑
K3∈M3\M5

hα(K [3]).

Now, we bound each term of the right hand side of Eqn. (35) as before using
Lemma 3 and Lemma 9, we get

A(Bα+1, L
[3]) ≤ 6qA[0]

α + 9q2A[1]
α +

hq
(2n − 4q)q−α

(
8∆

2n
+

24q∆

2n(2n − 4q)

)
.

(36)

Assuming the convention that A
[`]
α = 0 for ` < 0, we combine Eqn. (34) and

Eqn. (36) to obtain the desired result. ut

7 Proof of Theorem 2 : Mirror Theory with
(ξmax, θ) = (2, 13) for a Pair of Independent
Permutations

In this section, we prove Theorem 2, namely the mirror theory for a pair of
independent permutations. However, as most of the analysis carried out in this
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section will be similar to that of Theorem 1, we will skip unnecessary details
of the proof. We basically follow the similar proof plan that we had taken for
proving Theorem 1. We recall the notations that δ is used to denote δBq (λq+1)
for a fixed λq+1 ∈ {0, 1}n and ∆ is the maximum of δBq (λ), where the maximum
is taken over all λ ∈ {0, 1}n. As before, we use the shorthand notation hα to
denote h(Bα) and with a slight abuse of notation, we write H2q to denote 2nqhq
and J2q = (2n)2q. As we did in proving Theorem 1, we begin the proof by first
stating the corresponding h′α-property for a pair of independent permutations
case as follows:

Lemma 11 (h′α property for a pair of independent permutations). If
3n < q < 2n

3 3√2e+2
≈ 2n

12.27 , then for any L[3] ∈ M′3(Bq), where M′3(·) is defined

in Lemma 4 of Sect. 3.2, we have

h(Bq, L
[3]) ≥ hq

2n

(
1− C1∆

2n(1− 2q
2n )
− C2q∆

22n(1− 2q
2n )2

)
,

where C1 = 2
3√2

3√2−1 + 4
(

3√2
3√2−1

)2
and C2 = 3

(
3√2

3√2−1

)2
.

Resuming the proof. We have assumed that 3n < q ≤ 2n

13 , and hence q
satisfies the bound given in Lemma 11. Therefore, we apply Lemma 11 to the
orange equation for independent permutations (i.e., Eqn. (7)) to get

hq+1

2n
= hq

(
1− 2q

2n
+

δ

2n

)
+

1

2n

∑
L[3]∈M′3

h(Bq, L
[3])

(1)

≥ hq

(
1− 2q

2n
+

δ

2n
+
q(q − 1)− 2qδ

22n
· X
)
, (37)

where (1) follows from the fact that |M′3| = (q− δ)(q− δ−1) = q(q−1)− δ(2q−
δ − 1) ≥ q(q − 1) − 2qδ and X denotes

(
1− C1∆

2n(1− 2q
2n )
− C2q∆

22n(1− 2q
2n )2

)
. Moreover,

we have

H2q+2

H2q
= 2n

hq+1

hq
,

J2q+2

J2q
= (2n − q)2. (38)
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Now, from Eqn. (37), Eqn. (38) and by plug-in the value of X in Eqn. (37), we
have

H2q+2

J2q+2
≥

1− 2q
2n + δ

2n + q(q−1)−2qδ
22n

(
1− C1∆

2n(1− 2q
2n )
− C2q∆

22n(1− 2q
2n )2

)
1− 2q

2n + q2

22n

H2q

J2q

(2)

≥

(
1− 2q

2n + q2

22n

)
+ δ

2n −
q+2qδ
22n −

q2

22n

(
C1∆

2n(1− 2q
2n )

+ C2q∆

22n(1− 2q
2n )2

)
1− 2q

2n + q2

22n

H2q

J2q

=

1 +

δ
2n −

q+2qδ
22n −

q2

22n

(
C1∆

2n(1− 2q
2n )

+ C2q∆

22n(1− 2q
2n )2

)
1− 2q

2n + q2

22n

 H2q

J2q

(3)
=

1 +

δ
2n −

q+2qδ
22n −

q2

22n

(
C1(δ+1)

2n(1− 2q
2n )

+ C2q(δ+1)

22n(1− 2q
2n )2

)
1− 2q

2n + q2

22n

 H2q

J2q
,

where (2) follows from the fact that q(q− 1)− 2qδ < q2 and (3) follows from the
fact that the base labels can be re-ordered so that ∆ = δ + 1 10. We have,

δ

2n
− 2qδ

22n
− C1δq

2

23n(1− 2q
2n )
− C2δq

3

24n(1− 2q
2n )2

=
δ

2n

(
1− 2q

2n
− C1q

2

22n(1− 2q
2n )
− C2q

3

23n(1− 2q
2n )2

)
> 0

for q < 2n

13 , as the function f(x) = 1− 2x− C1x
2

1−2x −
C2x

3

(1−2x)2 > 0, ∀ 0 ≤ x ≤ 1
13 .

Thus, for 3n < q < 2n

13 we get

H2q+2

J2q+2
≥

1−
q

22n −
C1q

2

23n(1− 2q
2n )
− C2q

3

24n(1− 2q
2n )2

1− 2q
2n + q2

22n

 H2q

J2q
≥ (1− ε(q)) H2q

J2q
,

where ε(q) =
q

22n

1− 2q
2n+ q2

22n

. Therefore, by inducting on q, we have

H2q+2

J2q+2
≥ (1− ε(q))(1− ε(q − 1)) · · · (1− ε(3n))

H6n

J6n

(4)

≥ (1− ε(q))q−3nH6n

J6n

≥ (1− ε(q))qH6n

J6n

(5)

≥

(
1−

q2

22n

1− 2q
2n + q2

22n

)
H6n

J6n
, (39)

where (4) follows from the fact that ε(q) is increasing in q as the function g(x) =
x

(1−x)2 is increasing for 0 ≤ x < 1, and (5) follows from binomial theorem. Now,

we are left to bound H6n/J6n.

10 The base labels can be re-ordered in a similar way that we have applied for the same
permutation case. Due to the label isomorphism, the number of solutions remain
invariant.
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Bounding H6n/J6n: From the orange equation for a pair of independent per-
mutations, we can see that

h(Bα+1) ≥ h(Bα)(2n − 2α). (40)

Now, by doing the similar calculations as above on Eqn. (40), we derive the
following:

H2α+2

J2α+2
≥

(
1−

α2

22n

1− 2α
2n + α2

22n

)
H2α

J2α
,

for all 1 ≤ α < 2n. Iterating the inequality and using the fact that the function
x2

(1−x)2 is increasing for 0 ≤ x < 1, we get

H2α+2

J2α+2
≥

(
1−

α3

22n

1− 2α
2n + α2

22n

)
H2

J2

(6)
=

(
1−

α3

22n

1− 2α
2n + α2

22n

)
, (41)

where (6) follows due to H2 = J2 = 22n. Hence, by substituting α = 3n − 1 in
Eqn. (41), we get

H6n

J6n
≥

(
1−

(3n−1)3
22n

1− 2(3n−1)
2n + (3n−1)2

22n

)
. (42)

By substituting Eqn. (42) in Eqn. (39), we get the following which holds true
for all q ≤ 2n

13 .

H2q+2 ≥

(
1−

q2

22n

1− 2q
2n + q2

22n

)(
1− (3n− 1)3

(2n − (3n− 1))2

)
J2q+2

(7)

≥
(

1− 1.2q2

22n

)(
1− 108n3

22n

)
J2q+2 ≥

(
1− 1.2q2

22n
− 108n3

22n

)
J2q+2,

where (7) follows from the fact that for all q ≤ 2n

13 , 1− 2q
2n + q2

22n > 1.2 and that

for n ≥ 5, 1− (3n−1)3
(2n−(3n−1))2 ≥ 1− 108n3

22n .11 ut

7.1 Proof Outline of Lemma 11 : h′
α-property

We prove Lemma 11 in a similar way as we proved Lemma 8. We first define
derived `-linked graph and derived (`, d)-labels which are derived from base label
Bq = {λ1, · · · , λq}. Then, we analogusly define the `-th order A-term as,

A(Bα, L
[2`+1]) =

∣∣∣∣h(Bα, L
[2`+1])− h(Bα, L

[2`−1])

2n

∣∣∣∣ .
11 This 1−O(n3/22n)-bound can be further improved by using better bounding tech-

niques than (40)
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In addition to this, we also define the 1st order A term (for which one of the two
terms is from the base equations) as follows:

A(Bα, L
[3])

def
=

∣∣∣∣h(Bα, L
[3])− h(Bα)

2n

∣∣∣∣ .
Having defined the first order and the `-th order A term, let us define the fol-
lowing: for ` ≥ 1, we define

A[`−1]
α = max{A(Bα, L

[2`+1]) | (Bα, L
[2`+1]) is (`, q − α)-derived from Bq}.

Now, we state the derived inequality lemma for pair of independent permutations
as follows:

Lemma 12 (Derived Inequality Lemma for Independent Permutations).

Let α
def
= q − d for two positive integers q, d such that d < q. If (Bα, L

[2`+1]) is
(`, d) derived from a base label Bq, then we have,

(a)h(Bα, L
[2`+1]) ≤ hq

(2n − 2q)d+`
, (b)A(Bα, L

[2`+1]) ≤ 2hq
(2n − 2q)d+`

.

Proof of the lemma is no different than that of Lemma 9 and hence we skip its
proof. By algebraically manipulating the orange and purple equations for inde-
pendent permutations, using the size lemma for independent permutations (i.e.,
Lemma 6) and the derived inequality lemma for independent permutations (i.e.,
Lemma 12), we derive the general order central lemma for a pair of independent
permutations as we did for deriving Lemma 10:

Lemma 13 (General Order Central Lemma for Independent Permu-
tations). For ` = 0, · · · , α− 1,

A
[`]
α+1 ≤ A[`−1]

α + 3qA[`]
α +

9

4
q2A[`+1]

α +
hq

(2n − 2q)q−α+`

(
4∆

2n
+

3q∆

2n(2n − 2q)

)
Resuming the proof. Now, we use the combinatorial lemma by recognizing

the fact that {A[l]
α }α≤q,l≤α−1 satisfies the conditions for a double sequence as in

Lemma 7, with r = 3, T = q, β = 3
2 , γ = 2, ξ = hq and E = 4∆+ 3q∆

(2n−2q) , to get

A[0]
q <

hq
2n

 2
3√2

3√2−1

2n(1− 2q
2n )

+

(
3
√

2
3
√

2− 1

)2
4∆

2n(1− 2q
2n )

+

(
3
√

2
3
√

2− 1

)2
3q∆

22n(1− 2q
2n )2


(∗)
≤ hq

2n

2
3
√

2
3
√

2− 1
+ 4

(
3
√

2
3
√

2− 1

)2
 ∆

2n(1− 2q
2n )

+

(
3
√

2
3
√

2− 1

)2
3q∆

22n(1− 2q
2n )2


for q < 2n

3 3√2e+2
, where (∗) follows from the fact that∆ ≥ 1. As

∣∣∣h(Bq, L
[3])− hq

2n

∣∣∣ =

A(Bq, L
[3]) ≤ A[0]

q for all (Bq, L
[3]) derived from Bq, we get

h(Bq, L
[3]) ≥ hq

2n

(
1− C1∆

2n(1− 2q
2n )
− C2q∆

22n(1− 2q
2n )2

)
, (43)
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where C1 = 2
3√2

3√2−1 + 4
(

3√2
3√2−1

)2
and C2 = 3

(
3√2

3√2−1

)2
, which completes the

proof. ut

8 Conclusion and Future Works

In this paper, we provide a complete and verifiable proof of mirror theory for
single permutation case and a pair of independent permutations case. Our result
on mirror theory for single permutation case directly gives an optimal and tight
PRF security on XOR1 construction, whereas our result on mirror theory for
a pair of independent permutations give security bound of O(q2/22n) for XOR2

construction. However, our bound for XOR2 construction is not known to be tight
and hence it leaves the room for the bound to be improved. Also, our result is
applicable only for ξmax = 2 whereas Patarin[Theorem 6, [32]] claimed that the
same result holds for a general ξmax > 2 with θ = 134, and α ≤ 2n

(ξmax−1)·θ .

Unfortunately, there is no proof available in support of this claim (only a very
high-level sketchy proof can be found in [32]). One can inevitably notice from our
proof that the analysis of the same for general ξmax is much more complicated.
Nevertheless, this is an interesting problem to address. In fact, coming up with
a concrete security proof for general ξmax result eventually helps to correctly
establish the improved security bound of many cryptographic constructions.
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Supplementary Materials

A Proof of Orange Lemma and Purple Lemma

In this section, we prove orange lemma and purple lemma for both the single
permutation case (i.e., Lemma 1 and 2) and the pair of independent permuta-
tions case (i.e., Lemma 4 and 5). We prove orange and purple lemma for single
permutation in the first two subsections and the later two subsections include
the proof of purple lemma for a pair of independent permutations.

A.1 Proof of Lemma 1

To prove the lemma, we first begin with a system of base equations of size α:

Y1 ⊕ Y2 = λ1, Y3 ⊕ Y4 = λ2, . . . , Y2α−1 ⊕ Y2α = λα.

An injective solution in H(Bα) means a tuple of distinct values (P1, P2, . . . , P2α)
which satisfies the above system of equation. In order to extend this to a solution
of H(Bα+1), it is necessary and sufficient to choose

P2α+1 /∈ {P1, P2, . . . , P2α}︸ ︷︷ ︸
S1

∪ {λα+1 ⊕ P1, λα+1 ⊕ P2, . . . , λα+1 ⊕ P2α}︸ ︷︷ ︸
S2

and set P2α+2
def
= P2α+1 ⊕ λα+1. So the number of possible values of P2α+1 is

exactly 2n − |S1| − |S2| + |S1 ∩ S2| = 2n − 4α + |S1 ∩ S2|. A collision between
S1 and S2 essentially means that for some i 6= j (as equality cannot happen),
Pi = λα+1 ⊕ Pj . So we can write

h(Bα+1) =
∑

P 2α∈H(Bα)

(2n − 4α+ |S1 ∩S2|)

= (2n − 4α) · h(Bα) +
∑

P 2α∈H(Bα)

∑
i6=j

χ(Pi ⊕ Pj = λα+1), (44)

where, χ(E) is 1 if the statement E is true, 0 otherwise. Now we fix any P 2α ∈
H(Bα). There are three possibilities for the pair (i, j) in the view of χ(Pi⊕Pj =
λα+1).

– Case-1: Pi and Pj are in the same block (i.e. e
def
= {i, j} is an edge). In this

case, Pi ⊕ Pj = λα+1 is a consequence of the relations induced by Bα.

1. Case-1.1: If λα+1 6= λe then χ takes value zero always.

2. Case-1.2: If λα+1 = λe then χ takes value one always. Note that the
number of (i, j) from the same block under this case is exactly 2δ.
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Pi
λa λb

Pj

x = λα+1

Pi
λa λb

Pj

x = λα+1 ⊕ λb

Pi
λa λb

Pj

x = λα+1 ⊕ λa

Pi
λa λb

Pj

x = λα+1 ⊕ λa ⊕ λb

λ1 λ2

λa
x

λb

λα

Pi ⊕ Pj = λα+1

Fig.A.1: The four cases for which the link between λa and λb takes the four values
x = λα+1 ⊕ 〈λa, λb〉, when P2α+1 = Pi, P2α+2 = Pj and Pi and Pj are not in the same
block.

– Case-2: Pi and Pj are in different blocks. This case yields the scenario where
there are α base equations, and a linking equation between Pi and Pj . Let
λa and λb denote the labels of edges containing i and j respectively. Then,

λα+1 6= λa, λα+1 6= λb and λα+1 6= λa ⊕ λb (45)

must hold to have an injective solution. So we rewrite the sum∑
P 2α∈H(Bα)

∑
i 6=j

χ(Pi ⊕ Pj = λα+1)

in terms of (a, b) instead of (i, j). For any such i and j satisfying above we
have four possibilities of linking between λa and λb (See Fig A.1). Depending
on the vertices of the edges which are linked, one can show that∑

P 2α∈H(Bα)

∑
i 6=j

χ(Pi ⊕ Pj = λα+1) =
∑

λa.x.λb∈M3

h(Bα, λa · x · λb), (46)

where recall that, M3(Bα+1) = {λa · x · λb ∈ V ′1 | a 6= b ∈ [α], x ∈ λα+1 ⊕
〈λa, λb〉}.

Thus, from Eqn. (44) and Eqn. (46), we obtain the result.

A.2 Proof of Lemma 2

From the definition of the system of equations, h(Bα+1, L
[2`+1]) contains two

extra equations (namely Y2α+1 ⊕ Y2α+2 = λα+1
def
= L1 and Y2α ⊕ Y2α+1 = L2)



Proof of Mirror Theory for ξmax = 2 33

in addition of those of h(Bα, L
[3,2`+1]). Now, we begin with h(Bα, L

[3,2`+1])
which contains following system of α many base equations and `− 1 many link
equations:{

Y1 ⊕ Y2 = λ1, Y3 ⊕ Y4 = λ2, . . . , Y2α−1 ⊕ Y2α = λα.

Y2 ⊕ Y3 = L4, Y4 ⊕ Y5 = L6, . . . , Y2α−2 ⊕ Y2α−1 = L2`.

We fix an injective solution P 2α def
= (P1, . . . , P2α) ∈H(Bα, L

[3,2`+1]) and define
P2α+1 = P2α ⊕ L2 and P2α+2 = P2α ⊕ L1 ⊕ L2. We call a solution P 2α invalid
if either P2α+1 = Pi or P2α+2 = Pi holds for i ∈ [2α]. The number of solu-
tions in H(Bα+1, L

[2`+1]) is the number of valid (i.e. not invalid) solutions of
H(Bα, L

[3,2`+1]). In other words, we must choose P2α such that (see Fig A.2)

P2α /∈ {L2 ⊕ P1, . . . , L2 ⊕ P2α}︸ ︷︷ ︸
S′1

∪ {L2 ⊕ L1 ⊕ P1, . . . , L2 ⊕ L1 ⊕ P2α}︸ ︷︷ ︸
S′2

.

Therefore, by using principle of inclusion and exclusion,

λα+1

L1

L2

λα

L3

L4 L2`

L2`+1

λα−`+1 λα−` λα−`−2 λ1

P2α ∈ S′1
λα

L3

L4 L2`

L2`+1

λα−`+1 λα−` λa λ1
P2α

x = L2 ⊕ 〈λa〉

P2α ∈ S′2
λα

L3

L4 L2`

L2`+1

λα−`+1 λα−` λa λ1
P2α

x = L1 ⊕ L2 ⊕ 〈λa〉

P2α ∈ S′1 ∩S′2
λα

L3

L4 L2`

L2`+1

λα−`+1 λα−` λa
P2α

y = L2 ⊕ 〈λa〉

x = L1 ⊕ 〈λa, λb〉

λb λ1

Fig.A.2: The cases when a solution of h(Bα, L
[3,2`+1]) is not valid for h(Bα+1, L

[2`+1]).

h(Bα+1, L
[2`+1]) =

∑
P 2α

(1− χ(P 2α ∈ S′1)− χ(P 2α ∈ S′2) + χ(P 2α ∈ S′1 ∩S′2))

(47)
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where, the sum is taken over all P 2α ∈H(Bα, L
[3,2`+1]). Now, suppose P2α ∈ S′1,

i.e., P2α = Pi ⊕ L2 for some i ∈ [2α]. This restriction yields a scenario where
there are α base equations, ` − 1 linking equations from before, and a new
linking equation in between P2α and Pi. (Note that, here i 6≥ 2(α− `), because,
for i > 2(α− `), P2α is already connected to Pi via links and edges and another
link between P2α and Pi would introduce a cycle in the graph which leads no
solution due to valid label). Let λa be the label of the edge containing vertex Pi.
Therefore, the label of the linking edge (2α, i) is either L2 or L2⊕λa (depending
on which vertex of the edge labeled λa is connected to P2α by the link). Thus the
subset of solutions Pα ∈H(Bα, L

[3,2`+1]), that satisfies the condition P2α ∈ S′1,
forms the set of solutions, H(Bα,K

[2`+1]) where K [2`+1] = λa · x · L[3,2`+1],
a ∈ [α− `] and x = L2 or L2 ⊕ λa (See Figure A.3).

P2α
Pi

x = L2

λa

P2α
Pi

x = L2 ⊕ λa

λa

P2α = L2 ⊕ Pi

λα

L3

L4 L2`

L2`+1

λα−`+1 λα−`

λa

λ1
P2α

x

Fig.A.3: The two cases for which the link between P2α and λa takes the two values
x = L2 ⊕ 〈λa〉, when P2α ∈ V ′1 .

Similarly, the subset of solutions Pα ∈H(Bα, L
[3,2`+1]), that satisfies the con-

dition P2α ∈ S′2, forms the set of solutions, H(Bα,K
[2`+1]) where K [2`+1] =

λa · x · L[3,2`+1], a ∈ [α − `] and x = L1 ⊕ L2 or L1 ⊕ L2 ⊕ λa, given the edge
containing Pi. Therefore,∑

P 2α

(χ(P 2α ∈ S′1) + χ(P 2α ∈ S′2)) =
∑

K2`+1∈N2`+1

h(Bα,K
2`+1), (48)

where the L.H.S. sum is taken over H(Bα, L
[3,2`+1]), and recall that N2`+1 =

{λa ·x ·L[3,2`+1] ∈ V ′` |a ∈ [α−`], x ∈ L2⊕〈L1⊕λi〉}, where τ = (Bα+1, L
[2`+1]).

Now suppose P 2α ∈ S′1 ∩ S′2. Then there exist i 6= j ∈ [2(α − `)], such that
P2α = L2⊕Pi and P2α = L2⊕L1⊕Pj . These two constraints essentially implies
an equation of the form: Pi ⊕ Pj = L1. There are three possibilities for the pair
(i, j).
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– Case-1: Pi and Pj are in the same block (i.e. e
def
= {i, j} is an edge). In this

case, Pi⊕Pj = L1 is a consequence of the relations induced by (Bα, L
[3,2`+1]).

1. Case-1.1: If L1 6= λe then χ takes value zero always.

2. Case-1.2: If L1 = λe then χ takes value one always. In this scenario there
are α base equations, `−1 links from before (namely L4, · · · , L2`), and a
new link L2 between edges labeled λ2α and λe = L1. Hence in this case
we get h(Bα, L

[2`+1]) solutions. Note that the number of (i, j) from the
same base edge under this case is exactly 2δBα−`(λα+1).

– Case-2: Pi and Pj are in different blocks. In this case, it can be viewed as the
introduction of two linking equations P2α ⊕ Pi = L2 and Pi ⊕ Pj = L1, i.e.
introduction of two new links, one from vertex 2α to the edge ei containing
the vertex i with edge label λa, and another link from the vertices of ei
to the vertices of the edge ej containing the vertex j with edge label λb.
The label of the link from λa to λb can take four possible values, as it does
in the case of the Orange equation depending on the vertices to connect,
i.e., L1 ⊕ 〈λa, λb〉. For the link from the vertex 2α to vertex i, the possible
labels of the link are L2 and L2⊕λa. Hence this gives rise to h(Bα,K

[2`+3])
solutions, where K [2`+3] = λb · x · λa · y · L[3,2`+1], where a 6= b ∈ [α − `],
x ∈ L1 ⊕ 〈λa, λb〉 and y is uniquely determined by x (See Figure A.4).

P2α

Pi

y = L2

λa λb

Pj
x = L1 ⊕ λa

P2α

Pi

y = L2

λa λb

Pj
x = L1 ⊕ λa ⊕ λb

P2α
Pi

y = L2 ⊕ λa

λa λb

Pj
x = L1

P2α
Pi

y = L2 ⊕ λa

λa λb

Pj
x = L1 ⊕ λb

λα
L3

L4 L2`

L2`+1

λα−`+1 λα−`
λa

P2α

y

x
λb

λ1

P2α ⊕ Pi = L2

Pi ⊕ Pj = L1

Fig.A.4: The four cases for which the link between λa and λb takes the four values
x = L1 ⊕ 〈λa, λb〉, when P2α = L2 ⊕ Pi, P2α = L1 ⊕ L2 ⊕ Pj and Pi, Pj are not in the
same block.
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Hence, we have∑
P 2α

χ(P 2α ∈ S′1 ∩S′2) = 2δBα−`(λα+1)h[2`+1]
α +

∑
K2`+3∈M2`+3

h(Bα,K
2`+1), (49)

where the sum on LHS is taken over H(Bα, L
[3,2`+1]), and recall that M2`+3 =

{λb · x · λa · y · L[3,2`+1] ∈ V ′`+1 | a 6= b ∈ [α− `], x ∈ L1 ⊕ 〈λa, λb〉, y ∈ L2 ⊕ λa}.
By considering all the above cases and from Eqn. (47), Eqn. (48) and Eqn. (49),
we obtain the result.

A.3 Proof of Lemma 4

Let Bα+1 = {λ1, · · · , λα+1} be a multiset of size α+ 1. Let us suppose consider
that (P1, · · · , Pα, Q1, · · · , Qα) be an injective solution in H(Bα). This solution
can be extended to a solution in H(Bα+1) by choosing

Pα+1 6∈ {P1, · · · , Pα} ∪ {Q1 ⊕ λα+1, · · · , Qα ⊕ λα+1}

and setting Qα+1 = Pα+1⊕λα+1. By doing almost similar calculations as in the
single permutation case (see Subsect. A.1), we prove the result. ut

A.4 Proof of Lemma 5

Let Bα+1 = {λ1, · · · , λα+1} be a multiset of size α+ 1 and (Bα+1, L
[2`+1]) ∈ U ′`

be a valid `-linked labels, where λα+1 = L1, λα = L3, · · · , λα−`+1 = L2`+1.
Now we want to estimate h(Bα+1, L

[2`+1]) in terms of h(Bα, L
[2,2`+1]), where

Bα = {λ1, · · · , λα} is a multiset and L[3,2`+1] = (L3, · · · , L2`+1) is an ordered
tuple. h(Bα, L

[2`+1]) contains two extra equations (namely Pα+1 ⊕ Qα+1 =
λα+1, Qα+1 ⊕ Pα = L2) in addition to those of h(Bα, L

[3,2`+1]). Now we be-
gin with h(Bα, L

[3,2`+1]) which contains the following system of α many base
equations and `− 1 many link equations:

P1 ⊕Q1 = λ1, · · · , Pα ⊕Qα = λα

Pα−`+1 ⊕Qα−`+2 = L2`, · · · , Pα−1 ⊕Qα = L4

We fix an injective solution (Pα, Qα) ∈ H(Bα, L
[3,2`+1]) and define Qα+1 =

Pα ⊕ L2 and Pα+1 = Pα ⊕ L2 ⊕ L1.We call a solution (Pα, Qα) invalid if either
Pα+1 = Pi or Qα+1 = Qi holds for i ∈ [α]. The number of valid solutions of
H(Bα+1, L

[2`+1]) is the number of valid solutions of H(Bα, L
[3,2`+1]). In other

words we must choose Pα such that

Pα 6∈ {P1 ⊕ L2 ⊕ L1, · · · , Pα ⊕ L2 ⊕ L1} ∪ {Q1 ⊕ L2, · · · , Qα ⊕ L2}

Again, by doing almost identical calculations as in the single permutation case
(see Subsect. A.2), we prove the result. ut
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B Proof of Lemma 3 : Size Lemma

In this section, we prove each part of Lemma 3 in separate sections.

B.1 Proof of Part (a) of Size Lemma

Recall that, for τ = Bα+1, we have M3(τ) = {λb · x · λa ∈ V ′1 | a 6= b ∈ [α], x ∈
λα+1⊕ 〈λa, λb〉}. Now, we can choose (λa, λb) in α(α− 1) ways since a 6= b, and
for fixed values of λa and λb, x can take 4 values. But again, not all the 4α(α−1)
tuples λb · x · λa are valid. We can calculate the number of such invalid tuples
by considering the invalidity conditions.

x x = 0 x = λa x = λb x = λa ⊕ λb

λα+1 λα+1 = 0 λα+1 = λa λα+1 = λb λα+1
(∗)
= λa ⊕ λb

λα+1 ⊕ λa λα+1 = λa λα+1 = 0 λα+1
(∗)
= λa ⊕ λb λα+1 = λb

λα+1 ⊕ λb λα+1 = λb λα+1
(∗)
= λa ⊕ λb λα+1 = 0 λα+1 = λa

λα+1 ⊕ λa ⊕ λb λα+1
(∗)
= λa ⊕ λb λα+1 = λb λα+1 = λa λα+1 = 0

The gray equations cannot hold tirvially. Each of the unmarked equations can
happen in at most ∆ ways. The unmarked conditions fix either of λa or λb so
that the other one can take α−1 of the remaining values. Each of the (∗)-marked
equations can happen in at most ∆2 ways, which is ≤ (α+ 1)∆. Hence

4α(α− 1)− 8∆(α− 1)− 4(α+ 1)∆ < |M3(τ)| ≤ 4α(α− 1)

Now, it is easy to see that 8∆(α− 1) + 4(α+ 1)∆ = 12α∆− 4∆ ≤ 12α∆, which
proves part (a) of the lemma. ut

B.2 Proof of Part (b) of Size Lemma

Recall that, for any valid label τ = Bα+1, we have N3(τ) = {λa · x · λα ∈ V ′1 |
a ∈ [α − 1], x ∈ L2 ⊕ 〈λα+1, λa〉}. For each value of λa, a ∈ [α − 1], x can have
4 different values, namely, L2, L2 ⊕ λα+1, L2 ⊕ λa, L2 ⊕ λα+1 ⊕ λa, leading to
4(α−1) such tuples, λa ·x ·λα. However tuples for which either λα = x or λa = x
or λa = x⊕ λα are invalid and not in V . So we calculate the number of invalid
tuples.

x λα = x λa = x λi = x⊕ λα
L2 λα = L2 λa = L2 λa = λα ⊕ L2

L2 ⊕ λα+1 λα ⊕ L2 ⊕ λα+1 = 0 λa = L2 ⊕ λα+1 λa = λα ⊕ L2 ⊕ λα+1

L2 ⊕ λa λa = L2 ⊕ λα L2 = 0 L2 ⊕ λα = 0
λa ⊕ L2 ⊕ λα+1 λa = λα ⊕ L2 ⊕ λα+1 L2 ⊕ λα+1 = 0 λα ⊕ L2 ⊕ λα+1 = 0

The gray equations cannot hold because λα · L2 · λα+1 form a valid tuple. Oth-
erwise, the tuple λa · x · λα will not be a valid tuple in either of the four cases,
when

1. λa = L2
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2. λa = L2 ⊕ λα
3. λa = L2 ⊕ λα+1

4. λa = λα ⊕ L2 ⊕ λα+1

where each case can happen at most ∆ times, which proves part (b) of the
lemma. ut

B.3 Proof of Part (c) of Size Lemma

Recall that, for any valid label τ1 = (Bα+1, L
[2`+1]) and τ2 = (Bα+1, L

[2`+3]),

N2`+1(τ1) = {λa · x · L[3,2`+1] ∈ V ′` | a ∈ [α− `], x ∈ L2 ⊕ 〈L1, λa〉}

N2`+3(τ2) = {λa·x·L[3,2`+1]·L2`+2·L2`+3 ∈ V ′`+1 | a ∈ [α−`−1], x ∈ L2⊕〈L1, λa〉}

There are 4 tuples of the form, λα−` · x · L[3,2`+1], in N2`+1(τ1) that are not in
N2`+3(τ2). The tuples of the form λa · x · L[3,2`+1] · L2`+2 · L2`+3 that are not
valid, are the ones that satisfy either of the following conditions :

λa = x

λa = x⊕ L3

λa = x⊕ L3 ⊕ L4

· · ·

λa = x⊕
2`+1⊕
i=3

Li

λa = x⊕
2`+1⊕
i=3

Li ⊕ L2`+2

λa = x⊕
2`+1⊕
i=3

Li ⊕ L2`+2 ⊕ L2`+3.

The gray equations cannot hold because because λa · x · L[2`+1,3] is a valid tu-
ple belonging to N2`+1. To check the other invalidity conditions we check the

following table (where Z =
⊕2`+2

i=3 Li)

x λa = x⊕Z λa = x⊕Z ⊕L2`+3

L2 λa = L2 ⊕ Z λa = L2 ⊕ Z ⊕ L2`+3

L2 ⊕ λα+1 λa = λα+1 ⊕ L2 ⊕ Z λa = λα+1 ⊕ L2 ⊕ Z ⊕ L2`+3

L2 ⊕ λa L2 ⊕ Z = 0 L2 ⊕ Z ⊕ L2`+3 = 0
L2 ⊕ λa ⊕ λα+1 λα+1 ⊕ L2 ⊕ Z = 0 λα+1 ⊕ L2 ⊕ Z ⊕ L2`+3 = 0

Again, the gray equations cannot hold because we have assumed L[2`+1] is a valid
tuple. So the tuple λa · x · L[3,2`+3] is not valid in the four cases corresponding
to the dark equations of the above table, and each case can happen at most ∆
times. Hence, we have

|N2`+1| − 4− 4∆ ≤ |N2`+3| ≤ |N2`+1| − 4 ≤ · · · ≤ |N3| − 4` ≤ 4(α− 1). ut
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B.4 Proof of Part (d) and Part (e) of Size Lemma

We prove this result in two parts: in the first part we prove the result for ` = 0
and in the second part, we prove the result for ` ≥ 1.

B.4.1 First Part: |M5| in terms of |M3|: For any valid label τ1 = (Bα+1, L
[3])

M5(τ2) = {λb·x·λa·y·λα+1 ∈ V ′`+1 | a 6= b ∈ [α−1], y ∈ L2⊕〈λa〉, x ∈ λα+1⊕〈λa, λb〉}

There are 4(α − 1) tuples of the form, λb · x · λα, b ∈ [α − 1], as for each b, x
can take 4 values, and for each such x, y can take one value, and 4(α− 1) tuples
of the form, λα · x · λa, a ∈ [α − 1], that might be in M3(τ) (τ = Bα+1), but
are definitely not in M5(τ1).

Now, λb · x · λα will not be a valid tuple belonging to M3(τ), if and only if,
for some value of λb, x = 0, which happens when either either λb = λα+1 or
λb = λα+1 ⊕ λα. Either of the cases can happen in atmost ∆ ways giving us at
least (4(α− 1)− 2∆) tuples of the form λb · x · λα that are in M3(τ) but not in
M5(τ1).

Similarly, there are at least (4(α − 1) − 2∆) tuples of the form λα · x · λi that
are in M3(τ) but not in M5(τ1). The tuples of the form λb · x · λa · y · λα+1 that
are not valid, are the ones that satisfy either of the following conditions :

y = 0

y = λa

y = λa ⊕ x
y = λa ⊕ x⊕ λb

y = λα

y = λa ⊕ λα
y = λa ⊕ x⊕ λα

y = λa ⊕ x⊕ λb ⊕ λα

x y y = 0 y = λa
λα+1 L2 ⊕ λa λa = L2 L2 = 0

λα+1 ⊕ λa L2 L2 = 0 λa = L2

λα+1 ⊕ λb L2 ⊕ λa λa = L2 L2 = 0
λα+1 ⊕ λa ⊕ λb L2 L2 = 0 λa = L2

x y y = λa ⊕ x y = λa ⊕ x⊕ λb
λα+1 L2 ⊕ λa L2 = λα+1 λb = λα+1 ⊕ L2

λα+1 ⊕ λa L2 L2 = λα+1 λb = λα+1 ⊕ L2

λα+1 ⊕ λb L2 ⊕ λa λb = λα+1 ⊕ L2 L2 = λα+1

λα+1 ⊕ λa ⊕ λb L2 λb = λα+1 ⊕ L2 L2 = λα+1

x y y = λα y = λa ⊕ λα
λα+1 L2 ⊕ λa λa = L2 ⊕ λα L2 ⊕ λα = 0

λα+1 ⊕ λa L2 L2 = λα λa = L2 ⊕ λα
λα+1 ⊕ λb L2 ⊕ λa λa = L2 ⊕ λα L2 = λα

λα+1 ⊕ λa ⊕ λb L2 L2 = λα λa = L2 ⊕ λα

x y y = λa ⊕ x⊕ λα y = λa ⊕ x⊕ λb ⊕ λα
λα+1 L2 ⊕ λa λα+1 = L2 ⊕ λα λα+1 = λb ⊕ L2 ⊕ λα+1

λα+1 ⊕ λa L2 λα+1 = L2 ⊕ λα λα+1 = λb ⊕ L2 ⊕ λα
λα+1 ⊕ λb L2 ⊕ λa λα+1 = λb ⊕ L2 ⊕ λα λα+1 = L2 ⊕ λα

λα+1 ⊕ λa ⊕ λb L2 λα+1 = λb ⊕ L2 ⊕ λα λα+1 = L2 ⊕ λα
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The gray equations listed in the above four tables cannot hold because λα · L2 ·
λα+1 is a valid tuple. Number of tuples of the form λb · x · λa · y · λα+1 such that
λa satisfies one of the 8 invalidity conditions given in the first and third tables is
at most ∆(α−2), because there can be α−2 choices for λb. Similarly, number of
tuples of the form λb ·x ·λa · y ·λα+1 such that λb satisfies one of the 8 invalidity
conditions given in the second and fourth tables is at most ∆(α− 2). Hence, we
have

|M3(τ)| − 8(α− 1) + 4∆− 16∆(α− 2) ≤ |M5(τ1)| ≤ 4(α− 1)(α− 2). (50)

B.4.2 Second Part: |M2`+5| in terms of |M2`+3| Recall that, for any
valid label τ1 = (Bα+1, L

[2`+1]) and τ2 = (Bα+1, L
[2`+3])

M2`+3(τ1) = {λb · x · λa · y · L[3,2`+1] ∈ V ′`+1 |
a 6= b ∈ [α− `], y ∈ L2 ⊕ 〈λa〉, x ∈ λα+1 ⊕ 〈λa, λb〉}

M2`+5(τ2) = {λb · x · λa · y · L[3,2`+1] · L2`+2 · L2`+3 ∈ V ′`+2 |
a 6= b ∈ [α− `− 1], y ∈ L2 ⊕ 〈λa〉, x ∈ λα+1 ⊕ 〈λa, λb〉}

There are 4(α− `−1) tuples of the form, λb ·x ·λα−` ·y ·L[3,2`+1], b ∈ [α− `−1]
(because for each b, x can take 4 values, and for each such x, y can take one value),
and 4(α− `−1) tuples of the form, λα−` ·x ·λa ·y ·L[3,2`+1], a ∈ [α− `−1], that
might be in M2`+3(τ1), but are definitely not in M2`+5(τ2). λb ·x·λα−` ·y·L[3,2`+1]

will not be a valid tuple belonging to M2`+3(τ1) if and only if for some value of
λb, x = 0, which happens when either of the following holds:

– • λb = λα+1

– • λb = λα+1 ⊕ λα−`

as L[3,2`+1] is already a valid tuple.

Now either of the cases can happen in atmost ∆ ways giving us at least (4(α−
`− 1)− 2∆) tuples of the form λb · x · λα−` · y · L[3,2`+1] that are in M2`+3(τ1)
but not in M2`+5(τ2).

Similarly there are at least (4(α− `− 1)− 2∆) tuples of the form λα−` · x · λa ·
y · L[3,2`+1] that are in M2`+3(τ1) but not in M2`+5(τ2). The tuples of the form
λb · x · λa · y ·L[3,2`+1] ·L2`+2 ·L2`+3 that are not valid, are the ones that satisfy
either of the following conditions :
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y = 0

y = λa

y = λa ⊕ x
y = λa ⊕ x⊕ λb

y = L3

y = λa ⊕ L3

y = λa ⊕ x⊕ L3

y = λa ⊕ x⊕ λb ⊕ L3

· · · · · ·

y =

2`+1⊕
i=3

Li

y = λa ⊕
2`+1⊕
i=3

Li

y = λa ⊕ x⊕
2`+1⊕
i=3

Li

y = λa ⊕ x⊕ λb ⊕
2`+1⊕
i=3

Li

y =

2`+2⊕
i=3

Li

y = λa ⊕
2`+2⊕
i=3

Li

y = λa ⊕ x⊕
2`+2⊕
i=3

Li

y = λa ⊕ x⊕ λb ⊕
2`+2⊕
i=3

Li

y =

2`+3⊕
i=3

Li

y = λa ⊕
2`+3⊕
i=3

Li

y = λa ⊕ x⊕
2`+3⊕
i=3

Li

y = λa ⊕ x⊕ λb ⊕
2`+3⊕
i=3

Li

The gray equations listed above cannot hold because because λb ·x·λa ·y ·L[3,2`+1]

is a valid tuple belonging to M2`+3(τ1). To check the other invalidity conditions

we check the following tables (where Z =
⊕2m+2

i=3 Li)

x y y = Z y = Z ⊕ λa
λα+1 L2 ⊕ λa λa = L2 ⊕ Z L2 ⊕ Z = 0

λα+1 ⊕ λa L2 L2 ⊕ Z = 0 λa = L2 ⊕ Z
λα+1 ⊕ λb L2 ⊕ λa λa = L2 ⊕ Z L2 ⊕ Z = 0

λα+1 ⊕ λa ⊕ λb L2 L2 ⊕ Z = 0 λa = L2 ⊕ Z

x y y = Z ⊕ λa ⊕ x y = Z ⊕ λa ⊕ x⊕ λb
λα+1 L2 ⊕ λa λα+1 ⊕ L2 ⊕ Z = 0 λb = λα+1 ⊕ L2 ⊕ Z

λα+1 ⊕ λa L2 λα+1 ⊕ L2 ⊕ Z = 0 λb = λα+1 ⊕ L2 ⊕ Z
λα+1 ⊕ λb L2 ⊕ λa λb = λα+1 ⊕ L2 ⊕ Z λα+1 ⊕ L2 ⊕ Z = 0

λα+1 ⊕ λa ⊕ λb L2 λb = λα+1 ⊕ L2 ⊕ Z λα+1 ⊕ L2 ⊕ Z = 0

x y y = Z ⊕L2`+3 y = Z ⊕L2`+3 ⊕ λi
λα+1 L2 ⊕ λa λa = L2 ⊕ Z ⊕ L2`+3 L2 ⊕ Z ⊕ L2`+3 = 0

λα+1 ⊕ λa L2 L2 ⊕ Z ⊕ L2`+3 = 0 λa = L2 ⊕ Z ⊕ L2`+3

λα+1 ⊕ λb L2 ⊕ λa λa = L2 ⊕ Z ⊕ L2`+3 L2 ⊕ Z ⊕ L2`+3 = 0
λα+1 ⊕ λa ⊕ λb L2 L2 ⊕ Z ⊕ L2`+3 = 0 λa = L2 ⊕ Z ⊕ L2`+3

x y y = Z ⊕L2`+3 ⊕ λa ⊕ x y = Z ⊕L2`+3 ⊕ λa ⊕ x⊕ λb
λα+1 L2 ⊕ λi = a λα+1 ⊕ L2 ⊕ Z ⊕ L2`+3 = 0 λb = λα+1 ⊕ L2 ⊕ Z ⊕ L2`+3

λα+1 ⊕ λa L2 λα+1 ⊕ L2 ⊕ Z ⊕ L2`+3 = 0 λb = λα+1 ⊕ L2 ⊕ Z ⊕ L2`+3

λα+1 ⊕ λb L2 ⊕ λa λb = λα+1 ⊕ L2 ⊕ Z ⊕ L2`+3 λα+1 ⊕ L2 ⊕ Z ⊕ L2`+3 = 0
λα+1 ⊕ λa ⊕ λb L2 λb = λα+1 ⊕ L2 ⊕ Z ⊕ L2`+3 λα+1 ⊕ L2 ⊕ Z ⊕ L2`+3 = 0
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Again, the gray equations listed in the above four tables cannot hold because
we have assumed L[2,2`+3] is a valid tuple. Number of tuples of the form λb · x ·
λa · y · L[3,2`+3] such that λa satisfies one of the 8 invalidity conditions given in
the first and third tables is at most ∆(α− `− 2), because there can be α− `− 2
choices for λb. Similarly, number of tuples of the form λb ·x ·λa ·y ·L[3,2`+3] such
that λb satisfies one of the 8 invalidity conditions given in the second and fourth
tables is at most ∆(α− `− 2). Hence for ` ≥ 1,

|M2`+3(τ1)|−8(α−`−1)+4∆−16∆(α−`−2) ≤ |M2`+5(τ2)| ≤ 4(α−`−1)(α−`−2).
(51)

Now, by combining Eqn. (50) and Eqn. (51), we get the result for all ` ≥ 0. ut

C Proof of Lemma 6 : Size Lemma for Independent
Permutations

In this section, we prove each part of Lemma 6 in separate sections.

C.1 Proof of Part (a) of the Lemma

For τ = Bα+1, we have M′3(τ) = {λi · λα+1 · λj ∈ U ′3 | i 6= j ∈ [α]}. Now for
a tuple λi · λα+1 · λj to be valid, the two conditions must hold, λi 6= λα+1 and
λj 6= λα+1. There are exactly (α− δ) many labels from which we can choose λi
and λj . As i 6= j, we get |M′3(τ)| = (α− δ)(α− δ − 1). ut

C.2 Proof of Part (b) of the Lemma

Recall that, for any valid label τ = Bα+1, we have N′3 (τ) = {λi · (λi⊕L1⊕L2) ·
λα ∈ U ′3 | i ∈ [α−1]}∪{λi·L2·λα ∈ U ′3 | i ∈ [α−1]}. The tuple λi·(λi⊕L1⊕L2)·λα
is valid only under the condition that λi 6= λα ⊕ L1 ⊕ L2, which can happen in
at least α − 1 − ∆ ways, so α − 1 − ∆ ≤ |{λi · (λi ⊕ L1 ⊕ L2) · λα ∈ U ′3 | i ∈
[α − 1]}| ≤ α − 1. Similarly, λi · L2 · λα is valid if and only if λi 6= L2, so
α− 1−∆ ≤ |{λi · L2 · λα ∈ U ′3 | i ∈ [α− 1]}| ≤ α− 1. ut

C.3 Proof of Part (c) of the Lemma

Recall that, for any valid label τ1 = (Bα+1, L
[2`+1]) and τ2 = (Bα+1, L

[2`+3]),
we have

N′2`+1(τ1) = {λi.(λi ⊕ L2 ⊕ L1).L[3,2`+1] ∈ U ′` | i ∈ [α− `]}
∪ {λi.L2.L

[3,2`+1] ∈ U ′` | i ∈ [α− `]}

N′2`+3(τ2) = {λi.(λi ⊕ L2 ⊕ L1).L[3,2`+3] ∈ U ′`+1 | i ∈ [α− `− 1]}
∪ {λi.L2.L

[3,2`+3] ∈ U ′`+1 | i ∈ [α− `− 1]}
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Firstly, λα−`.(λα−` ⊕ L2 ⊕ L1).L[3,2`+1] and λα−`.L2.L
[3,2`+1] ∈N′2`+1 but does

not belong to N′2`+3.

Any other valid `-linked label, λi.(λi ⊕ L2 ⊕ L1).L[3,2`+1] in N′2`+1, such that

λi.(λi ⊕ L2 ⊕ L1).L[3,2`+3] 6∈N′2`+1 must satisfy the equality:

λi = L1 ⊕ L2 ⊕ · · · ⊕ L2`+3.

This equality can hold in atmost ∆ ways, hence,

|{λi.(λi ⊕ L2 ⊕ L1).L[3,2`+1] ∈ U ′` | i ∈ [α− `]}| − 1−∆
≤ |{λi.(λi ⊕ L2 ⊕ L1).L[3,2`+3] ∈ U ′`+1 | i ∈ [α− `− 1]}| ≤ α− `− 1.

Similarly, any other λi.L2.L
[3,2`+1] in N′2`+1, such that λi.L2.L

[3,2`+3] 6∈ N′2`+3,
must satisfy the equality

λi = L2 ⊕ L3 ⊕ · · · ⊕ L2`+2,

which can happen in at most ∆ ways. Hence

|{λi.L2.L
[3,2`+1] ∈ U ′` | i ∈ [α− `]}| − 1−∆

≤ |{λi.L2.L
[3,2`+3] ∈ U ′`+1 | i ∈ [α− `− 1]}| ≤ α− `− 1.

ut

C.4 Proof of Part (d) and (e) of the Lemma 6

Recall that, for any valid label τ1 = (Bα+1, L
[2`+1]) and τ2 = (Bα+1, L

[2`+3]),
we have

M′2`+3(τ) = {λj .λα+1.λi.(λi ⊕ L1 ⊕ L2).L[3,2`+1] ∈ U ′`+1 | i 6= j ∈ [α− `]}

M′2`+5(τ) = {λj .λα+1.λi.(λi ⊕ L1 ⊕ L2).L[3,2`+3] ∈ U ′`+2 | i 6= j ∈ [α− `− 1]}
Firstly, if λα−` 6= λα+1, there are (α − ` − 1 − ∆) many tuples of the form
λα−`.λα+1.λi.(λi⊕L1⊕L2).L[3,2`+1] in M′2`+3, but λ.λα+1.λi.(λi⊕L1⊕L2).L[3,2`+3] 6∈
M′2`+5. This is because λα−`.λα+1.λi.(λi ⊕L1 ⊕L2).L[3,2`+1] will not be a valid
tuple if

λi = λα+1,

which can happen in at most ∆ ways. Similarly, if λα−` 6= λα+1, there are
(α− `− 1−∆) many tuples of the form λj .λα+1.λα−`.(λα−`⊕L1⊕L2).L[3,2`+1]

in M′2`+3, but λj .λα+1.λα−`.(λα−` ⊕ L1 ⊕ L2).L[3,2`+3] 6∈M′2`+5.

For any other λj .λα+1.λα−`.(λα−` ⊕ L1 ⊕ L2).L[3,2`+1] ∈ M′2`+3, such that

λj .λα+1.λα−`.(λα−` ⊕ L1 ⊕ L2).L[3,2`+3] 6∈M′2`+5, it must satisfy

λj = L2 ⊕ L3 ⊕ L2`+2,

which can happen in atmost ∆, which gives us at most ∆(α− `− 1) such tuples
(as λi can be chosen in α− `− 2 ways). Hence

|M′2`+3(τ1)|−2(α−`−1)+2∆−∆(α−`−2) ≤ |M′2`+5(τ2)|
(?)

≤ (α−`−1)(α−`−2)

where (?) follows from the fact that i 6= j ∈ [α− `− 1]. ut
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D Proof of Claim 1

As akm+1 = 0 for k < 0, we have the following inequality for k < 0:

akm+1 ≤ ak−1m + 2Dakm +D2ak+1
m , (52)

as all the terms ak−1m , akm, a
k+1
m are non-negative. We use this truncated recur-

rence relation for akm when k < 0. Our claim holds for d = 1 as is evident if we
put m+ 1 = T and k = 0 in (9). For d = 2, we see,

a0T = a−1T−1 + 2Da0T−1 +D2a1T−1 +
E′ · ξ

2n − γT
≤ a−2T−2 + 2Da−1T−2 +D2a0T−2 (?)

+2D

(
a−1T−2 + 2Da0T−2 +D2a1T−2 +

E′ · ξ
(2n − γT )2

)
+D2

(
a0T−2 + 2Da1T−2 +D2a2T−2 +

E′ · ξ
(2n − γT )3

)
+

E′ · ξ
2n − γT

= 6D2a0T−2 + 4D3a1T−2 + a2T−2

+
E′ · ξ

2n − γT
+ 2D · E′ · ξ

(2n − γT )2
+D2 · E′ · ξ

(2n − γT )3
,

where (?) follows from (52). Hence our claim is true for d = 2. We make the
inductive hypothesis that it holds for some p > 1 and prove that it holds for p+1
as well. We check the terms in

∑2p
j=0

(
2p
j

)
Djaj−pT−p which gives rise to the term

aj−p−1T−p−1 when (9) or (52) is applied. We see those terms are aj−p−2T−p , aj−p−1T−p , aj−pT−p,

and they contribute D2aj−p−1T−p−1, 2Daj−p−1T−p−1, aj−p−1T−p−1, respectively (See Fig. D.1).

Hence the coefficient of aj−p−1T−p−1 in this (p+ 1)th level of iteration would be

((
2p

j − 2

)
+ 2

(
2p

j − 1

)
+

(
2p

j

))
Dj =

(
2p+ 2

j

)
Dj .
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a0T

a
[−1]
T−1 2Da

[0]
T−1 D2a

[1]
T−1

a
[−2]
T−2 4Da

[−1]
T−2 6Da

[0]
T−2 4D3a

[1]
T−2 D4a

[2]
T−2

a
[−3]
T−3 6Da

[−2]
T−3 15D2a

[−1]
T−3 20D3a

[0]
T−3 15D4a

[1]
T−3 6D5a

[2]
T−3 D6a

[3]
T−3

. . . . . . . . . . . . . . . . . . . . . . . . . . .

E·ξ
(2n−4T )

+
2∑
j=1

(
2
j

)
Dj E·ξ

(2n−4T )j+1

+
4∑
j=2

(
4
j

)
Dj E·ξ

(2n−4T )j+1

+
...

Fig.D.1: How the terms of akm add up at every iteration of the recurrence relation

Also each of the aj−pT−p, for j ≥ p, would add E·ξ
(2n−γT )j+1 to the (p+ 1)th level of

iteration. Hence from our inductive hypothesis,

a0T ≤
2p∑
j=p

(
2d

j

)
Djaj−pT−p +

p−1∑
t=0

2t∑
t=r

(
2t

j

)
Dj E′ · ξ

(2n − γT )j+1

=

2p∑
j=0

(
2p

j

)
Djaj−pT−p +

p−1∑
t=0

2t∑
j=t

(
2t

j

)
Dj E′ · ξ

(2n − γT )j+1

≤
2(p+1)∑
j=0

(
2p+ 2

j

)
Djaj−p−1T−p−1 +

p−1∑
t=0

2t∑
j=t

(
2t

j

)
Dj E′ · ξ

(2n − γT )j+1

+

2p∑
j=p

(
2p

j

)
Dj E′ · ξ

(2n − γT )j+1

≤
2(p+1)∑
j=p+1

(
2p+ 2

j

)
Djaj−p−1T−p−1 +

p∑
t=0

2t∑
j=t

(
2t

j

)
Dj E′ · ξ

(2n − γT )j+1
.

Hence our claim holds for p+ 1 whenever it holds for p. Hence our claim holds
for every d > 1. ut

E Proof of Corollary 1 and Corollary 2

E.1 Proof of Corollary 1

Let τ = {(x1, y1), (x2, y2), . . . , (xq, yq)} be the transcript that result from the
interaction between A and the corresponding oracle, where xi ∈ {0, 1}n−1 is the
i-th query of A and yi be its corresponding response. We call τ to be a bad
transcript if there exists at least one i ∈ [q] such that yi = 0n. Otherwise, τ is
said to be a good transcript.
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According to the H-Coefficient technique, we bound the probability of the oc-
curence of bad transcripts in the ideal world. Let Dre (resp. Did) be the random
variable that takes the transcript induced by the real world (resp. ideal world)
distribution. Let Θgood (resp. Θbad) denotes the set of all good (resp. bad tran-
scripts). Then, we have

Pr[Did ∈ Θbad] = Pr[∃i such that yi = 0n]

= 1− Pr[∀i such that yi 6= 0n]

(1)
= 1− (1− 2−n)q, (53)

where (1) follows as the yi’s are independently and uniformly sampled in the
ideal world. Therefore, for a good transcript τ , each yi is a non-zero n-bit string.
Therefore, for a good transcript τ = {(x1, y1), (x2, y2), . . . , (xq, yq)}, which is
realized in the real world, we can write

E =


π(0‖x1)⊕ π(1‖x1) = y1

π(0‖x2)⊕ π(1‖x2) = y2
...

...
...

...

π(0‖xq)⊕ π(1‖xq) = yq.

Computing the real interpolation probability for a good transcript τ , i.e., com-
puting Pr[Dre = τ ], is equivalent to count the number of permutations π satis-
fying E. Note that, as τ is a good transcript, this count is essentially (2n)2q/2

nq

that follows from our main theorem of the paper as we are dealing with ξmax = 2.
Therefore,

Pr[Dre = τ ] ≥ 1

2nq
= Pr[Did = τ ]( the ideal interpolation probability of τ).

Thus, the ratio of real to ideal interpolation probability becomes at least 1.
Hence, by the result of H-Coefficient technique,

Advprf
XOR1

(A) ≤ 1− (1− 2−n)q,

which proves the result.

E.2 Proof of Corollary 2

In this proof, there is no bad transcript. Therefore, for any transcript τ , probabil-
ity of realizing it in the real worls is equivalent to count the number of distinct so-
lutions to the following system of equations: E = {π1(x1)⊕π2(x1) = y1, π1(x2)⊕
π2(x2) = y2, . . . , π1(xq)⊕π2(xq) = yq}, which is (2n)q · (2n)q/2

nq · (1− ε), where

ε = 1.2q2/22n + 108n3

22n that follows from our main theorem of the paper as we
are dealing with ξmax = 2. Therefore,

Pr[Dre = τ ] ≥ 1

2nq
·
(

1− 1.2q2

22n
− 108n3

22n

)
.

Hence, by the result of H-Coefficient technique, our result follows.
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