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Abstract

A ring signature (introduced by Rivest et al. [RST01]) allows a signer to sign a message
without revealing their identity by anonymizing themselves within a group of users (chosen by
the signer in an ad-hoc fashion at signing time). The signature proves that one member of the
group is the signer, but does not reveal which one.

We consider threshold ring signatures (introduced by Bresson et al. [BSS02]), where any
t signers can sign a message together while anonymizing themselves within a larger (size-n)
group. The signature proves that t members of the group signed, without revealing anything
else about their identities.

Our contributions in this paper are two-fold. First, we strengthen existing definitions of
threshold ring signatures in a natural way; we demand that a signer cannot be de-anonymized
even by their fellow signers. This is crucial, since in applications where a signer’s anonymity is
important, we do not want that anonymity to be compromised by a single insider.

Second, we give the first rigorous construction of a threshold ring signature with size inde-
pendent of n, the number of users in the larger group. Instead, our signatures have size linear
in t, the number of signers. This is also a very important contribution; signers should not have
to choose between achieving their desired degree of anonymity (possibly very large n) and their
need for communication efficiency.
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1 Introduction

A ring signature (introduced by Rivest et al. [RST01]) allows a user to sign a message without
revealing their identity by anonymizing themselves within some group of users. The signature
proves that one member of the group signed, but does not reveal which one. (A similar primitive
is a group signature; however, in a group signature scheme one group is fixed during setup, while
in a ring signature scheme the signer chooses members of the group at signing time.)

We consider threshold ring signatures (introduced by Bresson et al. [BSS02]), where any t
signers can sign a message together while anonymizing themselves within a larger (size-n) group.
The signature proves that t members of the group signed without revealing which ones. Like
ring signatures, threshold ring signatures allow the signers to pick the larger group they want to
anonymize themselves amongst in an ad-hoc way at signing time.

Our contributions in this paper are two-fold. First, we strengthen existing definitions of thresh-
old ring signatures in a natural way; we demand that a signer cannot be de-anonymized even by
their fellow signers. Second, we give the first rigorous construction of a threshold ring signature
with size independent of n, the number of users in the larger group. Instead, our signatures have
size linear in t, the number of signers. This is a very important contribution; signers should not
have to choose between achieving their desired degree of anonymity (possibly very large n) and
their need for communication efficiency.

1.1 Applications

Cryptocurrency Wallets One possible application of threshold ring signatures is a shared cryp-
tocurrency wallet. To use a shared wallet, some implementations require that a threshold t of the
wallet owners sign a transaction; privacy demands that the owners not have to reveal their identities
to do so. In this scenario, all of a wallet’s owners would constitute the larger size-n group, while the
ones signing are the size-t sub-group. Efficiency is of utmost importance due to the sheer amount
of transactions performed in most cryptocurrencies; communication complexity should be kept to
a minimum.

One might think to use regular threshold signatures in this setting, but this would have several
downsides. First, it would require the wallet owners to run a setup protocol to arrive at their signing
keys, which can be impractical (depending on the number of parties sharing the wallet). Second, a
party sharing multiple wallets would need to store separate keys specific to each wallet. Threshold
ring signatures have neither of these drawbacks — parties only need one signing key (regardless of
how many wallets they share), and do not need to run any setup.

Whistleblowing Another possible application is whistleblowing. We can imagine a set of people
within a large corporation wanting to blow the whistle on some corrupt activity within that organi-
zation; however, they are afraid to come forward publicly because of the repercussions they might
face. On the other hand, blowing the whistle anonymously may not be effective, since it is impor-
tant that the public believe that the message came from within the organization, from a sufficient
number of organization members (and that it thus has credibility). Threshold Ring signatures are
the perfect solution. The whistleblowers form a size-t sub-group, and anonymize themselves within
all n members of the organization. Anyone can then verify that t members of the organization all
blew the whistle on the corrupt activity.
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Small signature sizes are important here, since often the size n of an organization is unreasonably
large. In this application, it also becomes especially important that each individual whistleblower
retain anonymity, even against their fellow whistleblowers. Otherwise, in order to de-anonymize
all of the whistleblowers, all the organization administration would have to do is get one of the
whistleblowers’ cooperation.

1.2 Our Contributions

As we mentioned earlier, we make two contributions: we give stronger definitions, and a more
efficient construction, of threshold ring signatures.

Stronger Definitions In our definition of anonymity, we require that an adversary not be able
to tell the difference between signatures produced by two different subsets of signers of the same
size t (within the same group of size n), as long as the two subsets contain the same corrupt parties.
All previous definitions of anonymity [YLA+11, PBB12, OTYO18, HS20] do not allow the sets of
signers to contain any corrupt parties at all; this is a dealbreaker in many applications, where one
insider should not be able to bring down the entire group.

Efficient Construction We build the first threshold ring signature scheme with signatures of
size O(t); all previous constructions have signatures with size dependent on n. For groups of signers
of size t significantly smaller than the larger group of size n they wish to anonymize themselves
amongst, this is crucial.

Naively, to produce a threshold ring signature, each of the t signers could produce a ring signa-
ture, and their threshold ring signature would simply be a concatenation of these. The issue here
is that a verifier would need to be convinced that these ring signatures were produced by distinct
signers. An immediate solution to this would be a zero-knowledge proof that each signature was
generated using a different secret key; however, this proof however would be large, inefficient, and
producing it would require interaction between the signers.

Instead, we base our threshold ring signature scheme on a primitive called a traceable ring
signature scheme (TrRS), introduced by Fujisaki and Suzuki [FS07].1. A traceable ring signature
scheme is a ring signature scheme which allows the linking of two signatures produced by the same
signer, if the same nonce was used during signing. By using the message and the public keys
belonging to the size-n supergroup as the nonce, we can construct a threshold ring signature simply
by concatenating t traceable ring signatures. (For compactness, the nonce is hashed, so its size need
not affect the size of the signatures.) A verifier can check that no two traceable ring signatures
were produced by the same signer, and so is convinced that t of n users signed the message.

Any traceable ring signature scheme (secure under our definitions) can be used to construct a
threshold ring signature scheme in such a way. We present a new, intuitive traceable ring signature
scheme construction with signatures of size O(1). Unlike the work of Yuen et al., we leverage
a random oracle, allowing us to get smaller traceable signatures. We additionally use an RSA
accumulator and the generalized DDH assumption. These assumptions are more standard than
the Link-Decisional RSA assumption used in some other traceable ring signature constructions
[TW05, ACST06].

1A similar approach to building a threshold ring signature scheme was mentioned by Yuen et al. [YLA+13];
however, it was not formalized or proven. As far as we can tell, the definition of security they use for a traceable
ring signature scheme does not seem to allow such a proof.
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At a high level, our traceable ring signature scheme works as follows: a signer hashes the nonce
(taken to be the message together with the set of n public keys belonging to the super-set of users),
and raises it to the power of their secret signing key. By the generalized DDH assumption, this
does not reveal the signer’s identity. They then prove (in non-interactive zero knowledge) that they
used a signing key corresponding to one of the public keys belonging to the super-set. It may seem
that such a proof must be linear in the number n of public keys, but we get around that by using
an accumulator to represent the set of public keys. An accumulator is a compact representation of
an arbitrarily large set that supports efficient proofs of membership.

Note that our construction is completely non-interactive; each of the t signers produces a trace-
able ring signature independently, and those signatures are then simply concatenated to produce
the threshold ring signature. The concatenation can be done by any third party.

1.3 The Quest for Compact Signatures: Hardness of Lower Bounds

A very intriguing question is whether there is a fundamental lower bound for threshold ring signature
size. Could we get signatures with size independent of t as well as n, or is that impossible?

Here, we give a somewhat dissatisfying answer: we sketch a construction with constant-size
signatures that uses obfuscation — the transformation of a program in a way that hides its inner
workings while preserving its behavior. (There are many flavors of obfuscation, ranging from virtual
black box obfuscation which is known not to be possible for all programs, to indistinguishability
obfuscation for which there exist candidate constructions.) Since obfuscation is a very strong
assumption, and candidate constructions are very inefficient, such a threshold ring signature would
not be useable in practice. However, the existence of such a construction implies that it would be
hard to show a lower bound on signature size.

Our obfuscation-based construction uses a common reference string (CRS) which consists of a
signature verification key, and an obfuscated program which holds the corresponding secret signing
key. The program takes as input the public keys of a ring S of signers ({pki}i∈S), a message msg,
and some number t of ring members’ signatures (on {pki}i∈S and msg). It checks the t signatures
it receives, and if they all verify under different keys pk ∈ {pki}i∈S , it signs a statement of the form
“t members of the ring defined by public keys {pki}i∈S signed the message msg”.

The program’s signature, which will have constant size, will constitute the threshold ring signa-
ture. Note that the statement itself need not count towards the threshold ring signature size, since
it can be reconstructed from the other inputs to the threshold ring signature verification algorithm.
It should be impossible to extract a signature from the program without actually having t ring
members’ signatures (unforgeability), and it is clearly impossible to deduce anything about the
signers’ identities from the program’s signature (anonymity).

When using indistinguishability obfuscation to instantiate this, the program’s signature can be
a puncturable PRF output on the statement; the public verification key would then be a second
obfuscated program. Using standard indistinguishability obfuscation techniques ([SW13]), this
construction could be proven secure when leveraging constrained signatures ([BW13]) and similar
primitives in the setting of static adversary corruptions, with program size dependent on some
upper bound on the number of signing queries the adversary makes.
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2 Preliminaries

In this section, we introduce some primitives that we leverage in our constructions. In Section 2.1,
we describe cryptographic accumulators; in Section 2.2, we describe non-interactive zero knowledge
arguments of knowledge.

2.1 Accumulators

At a high level, a cryptographic accumulator [Bd94] is defined as a compact representation of a set
S = {x1, . . . , xn} that supports proofs of membership in the underlying set. One natural example
of a cryptographic accumulator is a Merkle hash tree; the root of the tree is the accumulator value
corresponding to the set S of leaf elements, and the authenticating path of a leaf element is its
membership witness. However, the disadvantage of Merkle hash trees is that they are inefficient
to use within zero knowledge proofs. Instead, in Section 2.1.3, we describe the RSA accumula-
tor [Bd94], which requires only arithmetic operations and is thus more efficient to use within zero
knowledge.

Baldimtsi et al. [BCY20] give a thorough guide to accumulators and all of their various flavors.
In this paper, we only need a limited subset of accumulator functionality, and we present simplified
definitions of accumulators accordingly (pared down from Baldimtsi et al. and the work cited
therein). In particular, we do not address dynamic changes to the accumulated sets (that is, we
only consider static accumulators). We also split the algorithm that was called gen in previous work
into two: a setup algorithm, and an accumulate algorithm.

2.1.1 Accumulator Syntax

An accumulator parameterized by a domain D has the following algorithms:

setup(1λ)→ params: An algorithm that, given the security parameter, sets up the global parame-
ters for the accumulator system.

accumulate(params,S)→ aS : An algorithm that, given the global parameters params and a set
S ⊆ D, returns an accumulator aS representing the set S. In this paper, we require this
algorithm to be deterministic.

witcreate(params,S, x)→ wa: An algorithm that, given the global parameters params, a set S ⊆ D
and an element x ∈ S, returns a membership witness wa for the element x.

verify(params, x, a, wa)→ accept/reject: An algorithm that, given the global parameters params,
an element x, an accumulator a and a witness wa, checks whether wa proves that x is in the
underlying set a.

2.1.2 Accumulator Security Definitions

Of course, an accumulator must be correct (that is, verification using an honestly produced witness
must return accept). The important security property of an accumulator is collision freeness as
defined below.
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Definition 1 (Collision Freeness for Accumulators). Informally, an accumulator is collision-free
if it is hard to fabricate a membership witness wa for a value x that is not in some accumulated set
a.

More formally, let λ ∈ N be the security parameter, and let ACC = (setup, accumulate,witcreate,
verify) be an accumulator scheme. Consider the following game between a challenger and a proba-
bilistic polynomial-time adversary A:

GamecolfreeACC,A(1λ)

A CH

params params← setup(1λ)

S∗ ⊆ D, x∗ 6∈ S∗, w∗a

Let a ← accumulate(params,S∗). We say that A wins the game if verify(params, x∗, a, w∗a) =
accept.

ACC is collision-free for the domain D of elements if for any sufficiently large security parameter
λ, for any probabilistic polynomial-time adversary A, there exists a negligible function ν in the
security parameter λ such that the probability that A wins the game is less than ν(λ).

2.1.3 The RSA Accumulator

The RSA accumulator, which was the original accumulator introduced by Benaloh and DeMare [Bd94],
is the one most suitable for our needs. The domain D for the RSA accumulator is the set of prime
integers. We describe the RSA accumulator in Construction 1.

Construction 1 (RSA Accumulator).

setup(1λ):

1. Select two 1λ-bit safe primes p = 2p′+ 1 and q = 2q′+ 1 where p′ and q′ are also prime,
and let m = pq.

2. Select a random integer g′ ← Z∗m.

3. Let g = (g′)2 mod m.

4. Return params = (m, g).

accumulate(params = (m, g),S): Return a = g
∏

x∈S x mod m.

witcreate(params = (m, g),S, x): Return wa = g
∏

y∈S,y 6=x y mod m.

verify(params = (m, g), x, a, wa): If wxa mod m = a, return accept. Otherwise, return reject.
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2.2 Non-Interactive Zero Knowledge Arguments of Knowledge (NIZKAoK)

Non-Interactive Zero-Knowledge (NIZK) proof and argument systems are a well studied area and
have been so for over 30 years [BFM88, FS87, FLS90]. Informally, a zero-knowledge proof of
knowledge allows a prover to convince a verifier that the prover knows a witness w for a statement
φ such that (φ,w) satisfy some relation R. The difference between a proof and an argument is in the
soundness requirement; a proof guarantees that even an all-powerful prover cannot break soundness,
while an argument only guarantees soundness against efficient (computationally bounded) provers.
Generally, for practical purposes, an argument is enough. Traditionally, zero-knowledge proofs and
arguments of knowledge are interactive. Fiat and Shamir [FS87] give an easy transformation from
any public coin interactive protocol to a non-interactive one, where the challenge from the verifier
is replaced with a hash of all previous messages.

In this section we present the definition of a non-interactive zero knowledge argument of knowl-
edge (NIZKAoK), taken from the work of Groth and Maller [GM17]. We also describe the concrete
relation which we will need in Section 4.2.

2.2.1 NIZKAoK Syntax

A NIZKAoK scheme has the following algorithms, as described by Groth and Maller [GM17]:

setup(1λ,R)→ (crs, td): An algorithm that, given the security parameter, sets up the global com-
mon reference string crs and the trapdoor td for the NIZKAoK system.

prove(crs, φ, w)→ π: An algorithm that, given the common reference string crs for a relation R,
a statement φ and a witness w, returns a proof π that (φ,w) ∈ R.

verify(crs, φ, π)→ accept/reject: An algorithm that, given the common reference string crs for
a relation R, a statement φ and a proof π, checks whether π proves the existence of a witness
w such that (φ,w) ∈ R.

simprove(crs, td, φ)→ π: An algorithm that, given the common reference string crs for a relation
R, the trapdoor td and a statement φ, simulates a proof of the existence of a witness w such
that (φ,w) ∈ R.

2.2.2 NIZKAoK Security Definitions

Of course, a NIZKAoK scheme must be correct (that is, verification using an honestly produced
proof must return accept). The important security properties of a NIZKAoK scheme are zero
knowledge, knowledge soundness, and simulation extractability, described below.

Definition 2 (Zero Knowledge for NIZKAoK). Informally, a NIZKAoK scheme has zero knowledge
if a proof does not leak any more information than the truth of the statement.

More formally, let λ ∈ N be the security parameter, and let NIZKAoK = (setup, prove, verify,
simprove) be a NIZKAoK scheme. Consider the following game between a challenger and a proba-
bilistic polynomial-time adversary A:
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GamezkNIZKAoK,A(1λ)

A CH

crs (crs, td)← setup(1λ)

b←R {0, 1}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Query / Challenge phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A may issue polynomially many

prove queries φ,w

if b = 0 : π ← prove(crs, φ, w)

if b = 1 : π ← simprove(crs, td, φ)

π

b′

We say that A wins the game if b = b′.
NIZKAoK has zero knowledge if for any sufficiently large security parameter λ, for any prob-

abilistic polynomial-time adversary A, there exists a negligible function ν in the security parameter
λ such that the probability that A wins the game is less than 1

2 + ν(λ).

Informally, knowledge soundness is the property that guarantees that it is always possible to
extract a valid witness from a proof that verifies. Simulation extractability is a stronger version of
knowledge soundness that it is always possible to extract a valid witness from a proof that verifies
even if the adversary has access to a simulation oracle. This is a flavor of non-malleability; an
adversary should not even be able to modify a simulated proof in order to forge a proof.

Definition 3 (Simulation Extractability for NIZKAoK). Informally, a NIZKAoK scheme has sim-
ulation extractability if it is always possible to extract a valid witness from a proof that verifies.

More formally, let λ ∈ N be the security parameter, and let NIZKAoK = (setup, prove, verify,
simprove) be a NIZKAoK scheme. Consider the following game between a challenger and a prob-
abilistic polynomial-time adversary A, where transA denotes the adversary’s inputs and outputs,
including its randomness:
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GameseNIZKAoK,A(1λ)

A CH

crs (crs, td)← setup(1λ)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Query phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A may issue polynomially many

simulation queries φ

π π ← simprove(crs, td, φ)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Challenge phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φ∗, π∗

w∗ ← extractA(crs, td, transA)

We say that A wins the game if (φ∗, w∗) 6∈ R, verify(crs, φ∗, π∗) = accept, and π was not
returned by the challenger CH in answer to a simulation query.

NIZKAoK has simulation extractability if for any sufficiently large security parameter λ, for
any probabilistic polynomial-time adversary A, there exists an extraction algorithm extractA and a
negligible function ν in the security parameter λ such that the probability that A wins the game is
less than ν(λ).

2.2.3 NIZKAoK For Our Needs

Thanks to Goldreich [GMW91], we know that an interactive proof (specifically, a Σ-protocol) exists
for any NP relation. Thanks to Fiat and Shamir [FS87], we know that any such proof can be turned
non-interactive. However, these proofs are more compact and efficiently computable / verifiable
for some relations than for others. Specifically, equality of exponents is known to be efficient. In
Section 4.2, we will want to use the following relation R:

R


φ = (params =

(RSAACC.params, p, g ∈ G),
aS , h, σ

′),
w = (pk, sk, wa)

 =


(pk = gsk)
∧RSAACC.verify(

RSAACC.params, aS , pk, wa)
∧(σ′ = hsk)


Proofs for this relation are reasonably efficient to compute and verify, as they consist largely of

simple statements about exponents. (Recall that verification in the RSA accumulator is also just a
simple exponentiation.)
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2.3 The Generalized Decisional Diffie-Hellman Problem

We leverage the Generalized Decisional Diffie-Hellman (Generalized DDH) Problem [BDZ03], de-
scribed below.

Definition 4. The Generalized DDH Problem in group G asks that, given a polynomial-length list
L of tuples (u, v) of elements in a group G, an adversary A determines whether there exists a fixed
r such that for all (u, v) ∈ L u is a random element of G and v = ur, or v and u are independent
random elements of G.

The generalized DDH problem is considered to be hard in group G if for all efficient adversaries
A, the probability that A solves a random instance of the generalized DDH problem correctly is
only negligibly greater than 1

2 .

3 (Threshold) Ring Signature Definitions

In this section, we recall the definitions of ring signatures and threshold ring signatures (focusing
on the latter).

3.1 Ring Signature Definitions

Ring signatures were originally defined by Rivest et al. [RST01] as a natural extension of group
signature schemes. Group signatures require some trusted authority to act as a group manager,
predefining groups of signers and distributing keys to members of those groups. These keys can
then be used to anonymously sign messages on behalf of the entire group. However, requiring a
trusted authority that distributes — and knows — signers’ keys can be a big drawback. Ring
signatures instead allow signers to generate their own key pairs, and to form groups in an ad-hoc
way. In Figure 1 we list some known ring signature constructions, their signature sizes, and the
assumptions they leverage.

Work Signature Size Building Blocks Assumptions

[RST01] O(n) Symmetric Encryption, Trapdoor Permutation Ideal Cipher
[DKNS04] O(1) Sigma Protocols, Accumulators Strong RSA, RO
[ACST06] O(1) Accumulators, SoKs Link Decisional RSA
[BDR15] O(1) Any signature scheme, Groth-Sahai Commitments Asymetric Pairing of Composite Order, q-SDH

Figure 1: Comparison of Select Ring Signature Schemes

3.1.1 Ring Signature Syntax

A ring signature scheme is defined as a tuple of four algorithms (setup, keygen, sign, verify):

setup(1λ)→ params: An algorithm that takes a security parameter λ and outputs a set of public
parameters params. These public parameters params include the security parameter itself,
and any global parameters which can be used within the other algorithms.

keygen(params)→ (pk, sk): An algorithm that takes the public parameters params and outputs a
key pair (pk, sk).
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sign(params,msg, {pkj}j∈S , ski)→ σ: An algorithm that takes the public parameters, a message
msg ∈ {0, 1}∗ to be signed, the set of public keys of the users within the ring {pkj}j∈S , and
the secret key ski of the signer i ∈ S (which must correspond to a public key within the set
of public keys {pkj}j∈S). Outputs a signature σ on the message msg.

verify(params,msg, {pki}i∈S , σ)→ accept/reject: An algorithm that takes the public parame-
ters, the message, the set of public keys of the users within the ring, and a signature σ.
Outputs accept or reject, reflecting the validity of the signature σ on the message msg.

An important property of ring signatures is setup freeness, which requires that signers’ keys be
generated independently. (We note that most ring signature schemes do have a setup algorithm
that is run by a trusted authority. However, this authority does not produce the secret keys for
the signers; its only job is to produce the public parameters such as moduli and generators used
throughout the scheme.)

3.1.2 Ring Signature Security Definitions

Informally, a ring signature scheme must satisfy the following properties [BSS02, DKNS04, Liu19]:

– Correctness requires that a correctly generated signature must verify.

– Unforgeability requires that an adversary should not be able to forge a signature on behalf of
another user.

– Anonymity requires that a signature should completely hide the identity of the signer, even
if the adversary has access to a signing oracle.

– Unlinkability requires that no adversary should be able to determine whether two signatures
were produced by the same signer, even if the adversary has access to a signing oracle.

Remark 1. Note that anonymity implies unlinkability, and vice versa; however, when access to
signing oracles is removed, this is no longer the case.

We omit the formal definitions of ring signatures from this paper, focusing instead on threshold
ring signatures.

3.2 Threshold Ring Signature Definitions

Threshold ring signatures are similar to ring signatures, but instead of allowing any one signer to
anonymize themselves among a set of signers, a threshold ring signature scheme allows any t signers
to anonymize themselves among a larger set of signers S. A verifier can then check that at least
t signers in the ring S signed the message. Note that a ring signature scheme can be viewed as a
threshold ring signature scheme with t = 1.

In Figure 2 we list some known threshold ring signature constructions, their signature sizes,
and the assumptions they leverage. Prior constructions of threshold ring signatures have signatures
whose size depends on the number n of users in the group S. This is not ideal, as the threshold
t may be much smaller than n. Our focus in this paper is constructing a threshold ring signature
scheme with signature size independent of n, while also satisfying a stronger and more practical
notion of anonymity.
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Work Signatue Size Building Blocks Assumptions

Our work O(t) TrRS scheme Generalized DDH, RSA, RO
Petzoldt et al. [PBB12] O(n) multivariate polynomials Quadratic MQ-problem
Chen et al. [CHGL18] O(n) lattices Ideal Lattice
Bresson et al. [BSS02] O(n log n) One-way functions RSA
Zhou et al. [ZZY+17] O(n) Coding based Syndrome Decoding Problem

Okamoto et al. [OTYO18] O(tn) Short term keys from a TTP Discrete Log
Haque et al. [HS20] O(n) Trapdoor Commitments / Polynomial interpolation Trapdoor commitments
Liu et al. [YLA+13] O(t

√
n) One-time signature scheme Discrete Log

Figure 2: Threshold Ring Signature Constructions

3.2.1 Threshold Ring Signature Syntax

A threshold ring signature scheme is defined as a tuple of five algorithms (setup, keygen, sign,
combisign, verify). The algorithms setup, keygen, sign and verify are syntactically the same as in
a ring signature scheme, with the exceptions that (1) sign now outputs a partial signature σi for
signer i, and (2) verify now additionally takes the threshold t as input. The algorithm combisign,
described below, combines partial signatures into one signature. It may be run by any third party,
as it does not require any signers’ secrets.

combisign(params, {σi}i∈S′)→ σ: An algorithm that takes partial signatures {σi}i∈S′ from t sign-
ers, and outputs a combined signature σ.

This syntax specification is very strong. In particular, it demands the following desirable prop-
erties:

Setup Freeness: Every signer can generate their own key pair.

Non-interactive Signing: As per the syntax described above, any third party can combine the
partial signatures produced by sign into a single signature, without use of the signers’ secret
keys. Thus, there is no single point of failure in the signing process.

Dynamic Choice of n and of Threshold t: Arbitrarily many signers’ partial signatures can be
combined into a single threshold signature; verification takes a threshold t, and checks that
at least that many signers have signed. The downside of this flexibility is that the number of
signers cannot be hidden by a signature σ.

3.2.2 Threshold Ring Signature Security Definitions

We base our security definitions on Bresson et al. [BSS02] and Haque et al. [HS20]. We make the
simplifying assumption that the same ring of signers never signs the same message twice; that is,
properties such as unforgeability and anonymity only need to hold if the signing oracle was never
queried on the challenge message msg∗ and challenge signer ring S∗. In practice, this is reasonable
since it is easily circumvented by always appending a unique nonce or timestamp to every message.

Definition 5 (TRS). A threshold ring signature scheme is secure if it satisfies correctness (Defi-
nition 6), unforgeability (Definition 7), and anonymity (Definition 8).

Definition 6 (Correctness for TRS). Correctness requires that verification return accept on any
honestly generated signature. More formally, let TRS = (setup, keygen, sign, combisign, verify) be a
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TRS scheme. We say that TRS is correct if for all security parameters λ ∈ N, for all messages
msg ∈ {0, 1}∗, for all signer universes U , all rings S ⊆ U , and all signer sets S ′ ∈ S:

Pr


params← TRS.setup(1λ),
{(pki, ski)← TRS.keygen(params)}i∈S ,
{σi ← TRS.sign(params,msg, {pkj}j∈S , ski)}i∈S′ ,
σ ← TRS.combisign(params, {σi}i∈S′) :
TRS.verify(params,msg, {pkj}j∈S , σ, t = |S ′|) = accept

 = 1

Definition 7 (Unforgeability for TRS). Unforgeability requires that no efficient adversary A is
able to forge a valid signature σ for some ring S for which A knows fewer than t secret keys. More
formally, let TRS = (setup, keygen, sign, combisign, verify) be a TRS scheme. Consider the game

GameUnforgeTRS,A (1λ) between an adversary A and a challenger CH.

GameunforgeTRS,A (1λ)

A CH

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Setup phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

U Qcorrupt = ∅, Qsign = ∅

params← TRS.setup(1λ)

{(pki, ski)← TRS.keygen(params)}i∈U

params, {pki}i∈U

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Query phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A may issue polynomially many

corruption or signing queries

Corrupt(i)/Sign(msg,S,S ′)

Corrupt :

Look up ski ∈ {skj}j∈U , add pk to Qcorrupt

Sign : for i ∈ S ′,
σi ← TRS.sign(params,msg, {pkj}j∈S , ski)

σ ← TRS.combisign(params, {σj}j∈S′)
add (msg,S,S ′) to Qsign

ski/σ, {σj}j∈S′

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Challenge phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ∗,msg∗,S∗ ⊂ U , t

If all of the following checks pass, A wins:

TRS.verify(params,msg∗, {pki}i∈S∗ , σ∗, t) = accept

(msg∗,S∗, ·) 6∈ Qsign
|S∗ ∩Qcorrupt| < t

We say that TRS is unforgeable if for any efficient adversary A,

Pr[A wins GameunforgeTRS,A (1λ)] ≤ negl(λ)

for some negligible function negl(λ).
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Remark 2. Note that the challenger responds to signing queries not only with the combined sig-
nature, but also with all of the partial signatures. This is to capture that the adversary might know
some of the secret keys (due to corruption queries), and is therefore only interested in seeing the
partial signatures by the honest parties.

Definition 8 (Anonymity for TRS). Anonymity requires that no efficient adversary A be able to
distinguish between signatures produced by two different subsets of the same ring. More formally, let
TRS = (setup, keygen, sign, combisign, verify) be a TRS scheme. Consider the game GameanonTRS,A(1λ)
between an adversary A and a challenger CH.

GameanonTRS,A(1λ)

A CH

. . . . . . . . . . . . . . . . . . . . . . . Setup phase: as in GameunforgeTRS,A (1λ) . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . .Query phase: as in GameunforgeTRS,A (1λ). . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Challenge phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

msg∗,S∗ ⊂ U ,S ′∗0,S ′
∗
1

b←R {0, 1}
for i ∈ S ′∗b ,
σi ← TRS.sign(params,msg∗, {pkj}j∈S∗ , ski)

σ∗ σ∗ ← TRS.combisign(params, {σj}j∈S′∗)

b′ If all of the following checks pass, A wins:

b′ = b,

(msg∗,S∗, ·) 6∈ Qsign,
|S ′∗0| = |S ′

∗
1|,S ′

∗
0 ⊆ S ′

∗
,S ′∗1 ⊆ S ′

∗
,

((S ′∗0 ∪ S ′
∗
1) \ (S ′∗0 ∩ S ′

∗
1)) ∩Qcorrupt = ∅

We say that TRS is anonymous if for any efficient adversary A,

Pr[A wins GameanonTRS,A(1λ)] ≤ 1

2
+ negl(λ)

for some negligible function negl(λ).

Remark 3. Note that this is a stronger notion of anonymity than any that appear in prior literature,
since anonymity must hold even if members of the ring are corrupt, as long as the corrupt members
are present in either both or neither of the challenge signing sets S ′∗0,S ′

∗
1.

4 Our Threshold Ring Signature Construction

A natural approach to building threshold ring signatures is having each of the t signers produce a
ring signature, and then appending to the list of t signatures a zero knowledge proof that all of the
signatures were produced using distinct signing keys. However, this approach has two downsides.
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1. Producing the zero knowledge proof requires interaction among the signers.

2. The zero knowledge proof may be complex. (One way to do this is to commit to the secret
keys used, order the commitments by secret key, prove that each key was used to produce the
corresponding signature, and use t range proofs to prove that each committed key is strictly
larger than the previous one.)

In order to circumvent these two issues, we leverage traceable ring signatures (TrRS) [FS07],
which are a flavor of linkable ring signatures (LRS)[LWW04]. Linkable ring signatures are ring
signatures where a verifier can tell whether two signatures were produced by the same signer. If
each of the t signers produces a linkable ring signature, there is no need to additionally prove that
the signatures were produced using distinct signing keys, since this is immediately apparent.2 If
the underlying linkable ring signatures have size O(1), then the threshold ring signatures will have
size O(t).

However, this construction is flawed, since the linkable ring signatures also allow linking across
different threshold ring signatures, which violates the anonymity property we require of any thresh-
old ring signature scheme (Definition 8).

To address this problem, we use traceable ring signatures instead. Traceable ring signatures
are nonce-based: the signing algorithm additionally takes a nonce, and two signatures by the same
signer are only linkable if the same nonce is used to produce them. By using the message and
set of public keys belonging to the signing ring as the nonce, we ensure that the linkable ring
signatures used as components of two different threshold ring signatures remain unlinkable (under
the assumption that the same ring never signs the same message more than once).

The rest of this section proceeds as follows:

1. In Section 4.1, we state the definition of a traceable ring signature scheme (TrRS).

2. In Section 4.2, we construct a TrRS scheme with signatures of size O(1). In our construction,
instead of allowing the nonce to take any value, we mandate that the nonce always contains
the message. (In particular, this implies that two signatures on different messages are never
linkable.) We make this restriction for the sake of concrete efficiency; without this restriction,
our construction of traceable ring signatures would require an additional element.

3. In Section 4.3, we use our TrRS scheme to construct a TRS scheme with signatures of size
O(t).

4.1 Traceable Ring Signature Definitions

We leverage the notion of traceable ring signature (TrRS) schemes, introduced by Fujisaki and
Suzuki [FS07]. We alter the definition of Fujisaki and Suzuki in several ways:

1. Fujisaki and Suzuki require that if the same signer signed different messages with the same
nonce twice, their identity be revealed. We do not reveal the signer’s identity in such a case,
as this is a stronger notion of traceability than we require.

2 A similar idea was mentioned by Yuen et al. [YLA+13]; however, it was not formalized or proven. In particular,
a stronger linkability property — one-more linkability, which we introduce in Definition 10 — is needed from the
underlying linkable ring signature scheme in order for the TRS construction to be secure. Additionally, since Yuen
et al. focus on avoiding the random oracle assumption and we do not, we obtain a TRS construction with size O(t)
signatures, while they obtain a TRS construction with size O(t

√
n) signatures.)
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2. Fujisaki and Suzuki require that the public keys belonging to all ring members always be an
implicit part of the nonce. While we can certainly accomodate this, we do not make this
restriction.

3. Fujisaki and Suzuki’s definition of linkability assumes that the adversary has access to all
n secret keys belonging to ring members; then, the adversary should be unable to produce
n + 1 unlinked signatures with the same nonce. However, we need a stronger definition of
linkability. We allow the adversary access to any t secret keys belonging to a subset of ring
members; then, the adversary should be unable to produce t+ 1 unlinked signatures with the
same nonce.

4.1.1 Traceable Ring Signature Syntax

We define a traceable ring signature scheme as a tuple of five algorithms (setup, keygen, sign,
verify, link). The setup and keygen algorithms have the same input and output behavior as the
corresponding ring signature algorithms. We modify the sign and verify algorithms to take a nonce
nonce ∈ {0, 1}∗ as an additional argument (described below). The link algorithm (also described
below) allows any verifier to determine whether two signatures were produced by the same signer
(using the same nonce).

sign(params,msg, {pkj}j∈S , sk, nonce)→ σ: An algorithm that takes the same arguments as RS.sign,
with the addition of a nonce nonce. It has the same output as RS.sign: a signature σ.

verify(params,msg, {pkj}j∈S , σ, nonce): An algorithm that takes the same arguments as RS.verify
with the addition of a nonce nonce. Outputs either accept or reject.

link(params, (msg0, σ0, {pkj}j∈S0), (msg1, σ1, {pkj}j∈S1), nonce)→ {linked, unlinked}: An algorithm
that takes two messages (msg0,msg1), signatures (σ0, σ1) and public keys belonging to mem-
bers of rings (S0,S1), as well as a nonce nonce. Outputs linked or unlinked, depending on
whether the two signatures were produced by the same signer.

The nonces allow a single signer to create two unlinkabe signatures (which is explicitly disallowed
in an LRS scheme); for a TrRS, this is a desirable property.

4.1.2 Traceable Ring Signature Security Definitions

Informally, a traceable ring signature scheme must satisfy the following properties:

– Correctness requires that a correctly generated signature must verify. (This is inherited from
ring signatures, with appropriate syntactic modifications.)

– Linkability Correctness requires that signatures correctly generated by the same signer with
the same nonce appear linked. (This is inherited from linkable ring signatures, with appropri-
ate syntactic modifications. This is a very natural property which we do not define formally
in the interest of space.)

– Unforgeability requires that an adversary should not be able to forge a signature on behalf of
another user. (This is inherited from ring signatures, with appropriate syntactic modifications.
In particular, we allow the adversary to have asked signing queries for the challenge signer
and challenge message with a nonce other than the challenge nonce.)

17



– Linkability requires that no corrupt signer can produce two signatures that verify under the
same nonce and appear unlinked. (This is inherited from ring signatures, with appropriate
syntactic modifications.)

– One-More Linkability requires that no t − 1 corrupt signers can produce t signatures that
verify under the same nonce and appear unlinked. (We present this property as Definition 10.
With t = 2, it implies linkability; with t = 1, it implies unforgeability.)

– Cross-Nonce Unlinkability requires that no adversary can determine whether two signatures
that verify under different nonces were produced by the same signer. (We present this property
as Definition 11.)

– Unframeability requires that no adversary can produce a signature that appears linked to an
honest signer’s signature. We do not require this property for our TRS construction, so we
do not define it formally or prove that our construction meets it.

Definition 9 (TrRS). A traceable ring signature scheme is secure if it satisfies correctness, linkabil-
ity correctness, one-more linkability (Definition 10, which implies unforgeability), and cross-nonce
unlinkability (Definition 11).

In order to use linkability to prove the security of our TRS scheme, we need a somewhat stronger
linkability property than what appears in the literature. Linkability for a linkable ring signature
scheme typically requires that an adversary who corrupted one signer in a ring cannot produce
two signatures which appear unlinked; linkability for a traceable ring signature scheme requires
that an adversary who corrupted all signers in a ring cannot produce n + 1 signatures with the
same nonce which appear unlinked. We generalize these properties to require that an adversary
who corrupts some t− 1 signers cannot produce t signatures with the same nonce which verify and
appear unlinked. We call this property one-more linkability. For t = 2, this implies linkability for
a linkable ring signature scheme; for t = n, this implies linkability for a traceable ring signature
scheme; for t = 1, this implies unforgeability.

Definition 10 (One-More Linkability for TrRS). let TrRS = (setup, keygen, sign, verify, link) be a
TrRS scheme. Consider the game GameomlinkTrRS,A(1λ) between an adversary A and a challenger CH.
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GameomlinkTrRS,A(1λ)

A CH

U Qcorrupt = ∅, Qsign = ∅

params← TrRS.setup(1λ)

{(pki, ski)← TrRS.keygen(params)}i∈U

params, {pki}i∈U

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Query phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A may issue polynomially many

corruption or signing queries

Corrupt(i)/Sign(msg,S, i, nonce)

Corrupt :

Look up ski ∈ {skj}j∈U , add pk to Qcorrupt

Sign :

σ ← TrRS.sign(params,msg, {pkj}j∈S , ski, nonce)

add (msg,S, i, nonce) to Qsign

ski/σ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Challenge phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

{(msgk, σk,Sk)}k∈[t], nonce

If all of the following checks pass, A wins:

|(S1 ∪ · · · ∪ St) ∩Qcorrupt| ≤ t− 1

For k ∈ [t]:

TrRS.verify(params,msgk, {pkj}j∈Sk , σk, nonce) = accept

(msgk,Sk, ·, nonce) 6∈ Qsign
For l ∈ [t], l 6= k:

TrRS.link(params, (msgk, σk, {pkj}j∈Sk ),

(msgl, σl, {pkj}j∈Sl), nonce) = unlinked

We say that TrRS is one-more linkable if for any efficient adversary A,

Pr[A wins GameomlinkTrRS,A(1λ)] ≤ negl(λ)

for some negligible function negl(λ).

Definition 11 (Cross-Nonce Unlinkability for TrRS). Given two signatures using different nonces,
it should be infeasible for an adversary to determine whether they were created by the same signer
or not. More formally, let TrRS = (setup, keygen, sign, verify, link) be a TrRS scheme. Consider the
game GamecnunlinkTrRS,A (1λ) between an adversary A and a challenger CH.
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GamecnunlinkTrRS,A (1λ)

A CH

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Setup phase: as in GameomlinkTrRS,A(1λ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Query phase: as in GameomlinkTrRS,A(1λ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Challenge phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

msg0,msg1,S0,S1, i0 ∈ S0 ∩ S1, i1 ∈ S1, nonce0, nonce1

σ∗0 ← TrRS.sign(params,msg0, {pkj}j∈S0 , ski0 , nonce0)

b←R {0, 1}
σ∗1 ← TrRS.sign(params,msg1, {pkj}j∈S1 , skib , nonce1)

σ∗0 , σ
∗
1

b′ If all of the following checks pass, A wins:

b′ = b, nonce0 6= nonce1

i0 6∈ Qcorrupt, i1 6∈ Qcorrupt
(·, ·, i0, nonce0) 6∈ Qsign, (·, ·, i0, nonce1) 6∈ Qsign
(·, ·, i1, nonce0) 6∈ Qsign, (·, ·, i1, nonce1) 6∈ Qsign

We say that TrRS is cross-nonce unlinkable if for any efficient adversary A,

Pr[A wins GamencunlinkTrRS,A (1λ)] ≤ 1

2
+ negl(λ)

for some negligible function negl(λ).

4.2 A Traceable Ring Signature Scheme

We describe a traceable ring signature scheme in Construction 2 in terms of an underlying ac-
cumulator scheme RSAACC, a non-interactive zero-knowledge argument of knowledge scheme
NIZKAoK, a group G (of order p, with generator g) in which the generalized DDH problem is
hard, and a random oracle H which maps arbitrary strings to elements in G.

NIZKAoK will be used for the relation R, which is described below.

R


φ = (params =

(RSAACC.params, p, g ∈ G),
aS , h, σ

′),
w = (pk, sk, wa)

 =


(pk = gsk)
∧RSAACC.verify(

RSAACC.params, aS , pk, wa)
∧(σ′ = hsk)


Construction 2.

setup(1λ):

– Run RSAACC.params← RSAACC.setup(1λ).

– Run (NIZKAoK.crs,NIZKAoK.td)← NIZKAoK.setup(1λ,R).
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– Set params = (RSAACC.params,NIZKAoK.crs).

keygen(params):

– Pick sk ← Zp at random.

– Set pk = gsk.

– If pk is not prime (when interpreted as an integer), redo the first two steps until it is.

sign(params,msg, {pkj}j∈S , sk, nonce):

– Check that for each pk ∈ S, pk is prime.

– Accumulate {pkj}j∈S as aS ← RSAACC.accumulate(RSAACC.params, {pkj}j∈S).
(Note that this is publicly computable from the set of public keys, and thus does not
need to be included in the threshold ring signature.)

– Let pk ∈ {pkj}j∈S be the public key corresponding to the secret key sk. Compute an
accumulator witness wa ← RSAACC.witcreate(RSAACC.params, {pkj}j∈S , pk).

– Compute σ′ = H(msg, nonce)sk.

– Compute π proving that H(msg, nonce) was raised to the power of a secret key corre-
sponding to a public key in the accumulator. In other words,

π ← NIZKAoK.prove(NIZKAoK.crs, φ = (params, aS ,H(msg, nonce), σ′), w = (pk, sk, wa)).

– Return σ = (σ′, π).

verify(params,msg, {pkj}j∈S , σ = (σ′, π)):

– Check that for each pk ∈ S, pk is prime.

– Accumulate {pkj}j∈S as aS ← RSAACC.accumulate(RSAACC.params, {pkj}j∈S).

– Verify the proof π; return

NIZKAoK.verify(NIZKAoK.crs, φ = (params, aS ,H(msg, nonce), σ′), π)

link(params, (msg0, σ0 = (σ′0, π0)), (msg1, σ1 = (σ′1, π1)), nonce): return linked if σ′0 = σ′1, and
unlinked otherwise.

4.2.1 Proof of Security

Theorem 1. If NIZKAoK is a secure non-interactive zero knowledge argument of knowledge, if
RSAACC is a secure accumulator, if H is a random oracle, and if the generalized DDH problem
is hard in G, then Construction 2 is a secure traceable ring signature scheme (Definition 9) as long
as each nonce always includes the message.

We prove Theorem 1 in several steps. First, correctness and linkability correctness are apparent
on inspection. Second, in Lemma 1 we address one-more linkability (Definition 10). Last, in
Lemma 2 we address cross-nonce unlinkability (Definition 11).

Lemma 1. If NIZKAoK is a secure non-interactive zero knowledge argument of knowledge, if
RSAACC is a secure accumulator, if H is a random oracle, and if the generalized DDH problem
is hard in G, then Construction 2 is one-more-linkable.
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Proof. We will construct an algorithm B which will use an A who can break the one-more-linkability
of the TrRS scheme in Construction 2 to break the discrete logarithm problem with non-negligible
probability if NIZKAoK and RSAACC are both secure, if the generalized DDH assumption
holds, and if H is a random oracle.

We augment our algorithm B with the following powers:

Programmable Random Oracle: We allow B to program the random oracle H.

Simulation Extractor extractA: We give B access to the NIZKAoK simulation extractor extractA
corresponding to the adversary A. Such an efficient extractor is guaranteed to exist, by the
simulation extractability of NIZKAoK (Definition 3).

Inputs and Outputs of A: We give B access to the inputs and outputs of A, including its ran-
domness tape. We denote this transcript as transA.

We build B in a sequence of games. The final game — G6 — describes the full behavior of B.
If the adversary A can distinguish interacting with B from interacting with an honest challenger,
it will have broken NIZKAoK, RSAACC, or the generalized DDH assumption. If it cannot
distinguish between the two, then it must supply B with sufficiently many unlinked signatures with
non-negligible probability, which B can then use to solve an instance of the discrete logarithm
problem. (Note that B only solves the discrete logarithm problem with respect to prime challenges;
however, since there is a non-negligible probability that a random input to the discrete logarithm
problem will be prime, this is sufficient.)

Game G0: B honestly executes the role of the challenger in the one-more-linkability game described
in Definition 10.

Game G1: This is the same as the previous game, but instead of computing the proofs π honestly
in response to signing queries, B uses the trapdoor NIZKAoK.td to simulate the proofs
using the NIZKAoK.simprove algorithm.

This game is indistinguishable from G0 by the zero knowledge property of NIZKAoK (Defini-
tion 2). Imagine that B interacts with a zero knowledge challenger to obtain NIZKAoK.crs
and the proofs π. If, in the game described in Definition 2, the challenger chooses b = 0,
the view of the adversary will be as in the previous game; if instead the challenger chooses
b = 1, the view of the adversary will be as in this game. If it can guess b with non-negligible
probability, it will have broken zero-knowledge.

Game G2: This is the same as the previous game, but B keeps track of all of the messages msg
and nonces nonce it is asked signing queries on, or which it is given forgeries for. If it
sees (msg0, nonce0) 6= (msg1, nonce1) such such that H(msg0, nonce0) = H(msg1, nonce1), it
aborts.

B only aborts with negligible probability, since if A can find two messages that hash to the
same thing, it can be used to break the collision-resistance of H.

Game G3: This is the same as the previous game, but B keeps track of all of the signing sets S it is
asked signing queries on behalf of, or which it is given forgeries on behalf of. If it ever sees two
signer sets S 6= S ′ such that aS = aS′ (where aS = RSAACC.accumulate(RSAACC.params,
{pki}i∈S)), it aborts.
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B only aborts with negligible probability, since if A can find two signer sets that accumulate
to the same value, it can be used to break the collision freeness of RSAACC (Definition 1).

Game G4: This is the same as the previous game, but when the adversary returns its unlinked sig-
natures ({(msgk, σk = (σ′k, πk),Sk)}k∈[t], nonce), B extracts the witness wk = (pkik , skik , wa,k)←
extractA(NIZKAoK.crs,NIZKAoK.td, transA).

If it holds that (φk = (params, aSk ,H(msgk, nonce), σ′k), wk) 6∈ R and
NIZKAoK.verify(NIZKAoK.crs, φk, πk) = accept, B aborts.

Note that for A to have succeeded in breaking one-more linkability, it must be that A never
asked B a signing query on msgk on behalf of Sk with nonce. Since in the previous two games
B aborted if it ever saw two message, nonce pairs hash to the same value or two signer sets
accumulate to the same value, it must be that the statement φ is one it has never returned a
proof for.

B only aborts with negligible probability, since if A can find such a statement φ and witness
w that cause B to abort, A can trivially be used to break the simulation extractability of
NIZKAoK (Definition 3). (Just imagine that B interacts with a simulation extractability
challenger to obtain NIZKAoK.crs and the proofs π.)

If A succeeds in winning the one-more linkability game and if B does not abort at this point,
B has successfully extracted witnesses {wk = (pkik , skik , wa,k)}k∈[t] from the unlinked signa-

tures ({(msgk, σk = (σ′k, πk),Sk)}k∈[t], nonce) such that (pkik = gskik ) ∧ RSAACC.verify(

RSAACC.params, aSk , pkik , wa,k)∧ (σ′k = H(msgk, nonce)skik ). For A to have won, it must
also be true that B never signed msgk on behalf of Sk with nonce nonce in response to a
signing query.

Game G5: This is the same as the previous game, but B now aborts if A can be used to break
the collision freeness property of RSAACC (Definition 1). Recall that B computes aSk as
aSk ← RSAACC.accumulate(RSAACC.params, {pki}i∈Sk). B aborts if RSAACC.verify(
RSAACC.params, pk, aSk , wa,k) = accept, and pkik 6∈ {pki}i∈Sk .

B only aborts with negligible probability, since if A finds pkik , wa,k,Sk that make B abort,
A can trivially be used to break the collision freeness property of RSAACC. (Just imagine
that B interacts with a collision freeness challenger to obtain RSAACC.params.)

If A succeeds in winning the one-more linkability game and if B does not abort at this point,
it must be that pkik ∈ {pki}i∈Sk .

Game G6: If A successfully breaks the one-more-linkability property, we know that the following
conditions hold:

1. None of the t signatures are on message — signer set combinations for which B answered
signing queries for nonce nonce.

2. All t signatures verify (so B is able to extract the witnesses w1 = (pki1 , ski1 , wa,1), . . . , wt =
(pkit , skit , wa,t)).

3. At most t− 1 signers in the union of the signing sets are corrupt.

4. Each pair of signatures appears unlinked.
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Since in our scheme we assume the message is always part of the nonce, we also have msg1 =
· · · = msgt = msg.

If each pair of signatures appears unlinked, then we know that the signatures σ′1 = H(msg, nonce)ski1 ,
. . . , σ′t = H(msg, nonce)skit are all distinct, so ski1 , . . . , skit must all be distinct. Since at
most t−1 signers in the union of the signing sets are corrupt, at least one of those secret keys
was never given to A by B. Let i∗ be the identity of the signer whose secret key was never
given to A, but whose signature was one of the t unlinked signatures produced by A (and
whose secret key ski∗ was thus extracted by B).

In this game, B guesses i∗ at the beginning of the game. If B does not abort in the previous
game, pki∗ is guaranteed to be an actual public key corresponding to one of the signers i∗ in the
system (of which there are polynomially many), so B has a non-negligible (one-in-polynomial)
chance of guessing correctly. At the beginning, when it is generating public-private key pairs,
it generates all the others honestly, but sets pki∗ to a random prime element of G (for which
it does not know the corresponding secret key). (Note that pki∗ is still identically distributed
to an honestly generated public key.)

Now that B does not know ski∗ , it will have trouble coming up with σ′ = H(msg, nonce)ski∗

for signing queries on msg and nonce on behalf of signer i∗. (Note that the proof π in the
signature is already being simulated, and so not knowing ski∗ does not pose an obstacle to
producing π.) Instead of computing them honestly, B will now pick σ′ to be a random element
of G (consistently returning the same element per message msg and nonce nonce that A asks
for a signature from signer i∗ on).

This game is indistinguishable from the previous game by the hardness of the generalized
decisional Diffie-Hellman problem, thanks to the use of the programmable random oracle H.
Just imagine that B interacts with a generalized DDH challenger at the beginning of the game
to obtain (u1 = g, v1 = pki∗) (aborting if pki∗ isn’t prime) and all (u = H(msg, nonce), v = σ′)
pairs. B will store the (u, v) tuples, and set H(msg, nonce) = u, σ = v as needed.

Finally, if B is correct in its guess of i∗, then it will have been able to use A to compute the
discrete log of pk, since if A succeeds in winning the unforgeability game, B can extract ski∗

such that pki∗ = gski∗ from A’s forgery. (Just imagine that, instead of picking pki∗ randomly,
B gets pki∗ as a discrete log challenge.)

Lemma 2. If NIZKAoK is a secure non-interactive zero knowledge argument of knowledge, if
RSAACC is a secure accumulator, if H is a random oracle, and if the generalized DDH problem
is hard in G, then Construction 2 is cross-nonce unlinkable.

Proof. Game G0: B honestly executes the role of the challenger in the strong anonymity game
described in Definition 11.

Game G1: This is the same as the previous game, but instead of computing the proofs π honestly
in response to signing queries, B uses the trapdoor NIZKAoK.td to simulate the proofs
using the NIZKAoK.simprove algorithm.

This game is indistinguishable from G0 by the zero knowledge property of NIZKAoK (Defi-
nition 2) (as in the proof of Lemma 1).
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Game G2: At the beginning of this game, B guesses the signer index i0 that A will ask for a chal-
lenge on. It also guesses when A will ask the first hash query on the challenge message msg0
and nonce nonce0 (“never” being a valid guess). B has a non-negligible (one-in-polynomial)
chance of guessing both those things correctly. It sets pki0 to be a random prime element of G
(such that the corresponding secret key is not known) and H(msg0, nonce0) to be a random
element of G.

Now that B does not know ski0 , it will have trouble coming up with σ′ = H(msg, nonce)ski∗ for
signing queries (/ challenges) on msg and nonce on behalf of signer i0. (Note that the proof π
in the signature is already being simulated, and so not knowing ski0 does not pose an obstacle
to producing π; the only remaining challenge is in producing σ′.) Instead of computing σ′

honestly, B will now pick σ′ to be a random element of G (consistently returning the same
element per message msg and nonce nonce that A asks for a signature from signer i0 on).

If B is incorrect in its guesses, it aborts.

Just like in the last game of the proof of Lemma 1, if B does not abort, this game is indistin-
guishable from the previous game by the generalized DDH assumption, thanks to the powers
of the programmable random oracle.

Game G3: At the beginning of this game, B additionally guesses the signer index i1 that A will
ask for a challenge on. It also guesses when A will ask the first hash query on the challenge
message msg1 and nonce nonce1 (“never” being a valid guess). If B is incorrect in its guesses,
it aborts. It handles signing queries / challenges for i1 just like it does for i0.

If B does not abort, this game is indistinguishable from the previous game, for the same
reasons as above.

Note that now, the distribution of the challenge ciphertext is independent of b, so the adversary
cannot win with probability greater than 1

2 .

4.3 A Threshold Ring Signature Scheme

We build threshold ring signatures out of traceable ring signatures in a generic way. If the underlying
traceable ring signatures have size O(1), then the resulting threshold ring signatures have size O(t),
where t is the threshold. We require the additional assumption that no message msg is ever signed
twice by the same ring S. This is because we set our nonces to be the message together with the
public keys of the ring members; if the same message is signed twice by the same ring, then the same
nonce will be used across those two signatures, and in this case we cannot guarantee anonymity.3

We describe our TRS construction formally below, in terms of the underlying TrRS. (We assume
the public keys are always ordered in a canonical way (e.g. lexicographically), so that in the
underlying TrRS, the same message and set of keys always hashes to the same value.)

Construction 3.

3 One could think to use public keys belonging to the signing subset S′ to generate the nonce, instead of the
keys belonging to the ring S; however, this has two downsides. First, the signers must be aware of who their
fellow signers are. Second, the nonce must now be hidden from the adversary, as knowledge of the nonce would
allow the adversary to de-anonymize the signing subset (by repeatedly deriving nonces from the message any any
possible signing subset, and seeing which output matches the nonce it knows). Hiding the nonce from the adversary
complicates zero knowledge proofs necessary in the underlying TrRS construction.

25



setup(1λ): Return TrRS.params← TrRS.setup(1λ).

keygen(params): Return (sk, pk)← TrRS.keygen(params).

sign(params,msg, ski, {pkj}j∈S):

– Set nonce = (msg, {pkj}j∈S).

– Return σi ← TrRS.sign(TrRS.params,msg, {pkj}j∈S , ski, nonce).

combisign(params, {σi}i∈S′): Return σ = {σi}i∈S′ . (So simple!)

verify(params,msg, {pkj}j∈S , σ = {σi}i∈S′ , t):

– If |σ| < t, return reject.

– Set nonce = (msg, {pkj}j∈S).

– For σi ∈ σ, if TrRS.verify(TrRS.params,msg, {pkj}j∈S , σi, nonce) = reject, return
reject.

– For all pairs of different signatures σi, σj in σ, if TrRS.link(TrRS.params, (msg, σi),
(msg, σj), {pkj}j∈S , nonce) = linked, return reject.

– Return accept.

4.3.1 Proof of Security

Theorem 2. If TrRS is a secure traceable ring signature scheme (Definition 9), then Construction 3
is a secure threshold ring signature scheme (Definition 5).

We prove Theorem 2 in several steps. First, correctness is apparent on inspection. Second, in
Lemma 3 we address anonymity. Last, in Lemma 4 we address unforgeability.

Lemma 3. If TrRS satisfies cross-nonce unlinkability (Definition 11) then Construction 3 satisfies
anonymity (Definition 8).

Proof. We will construct an algorithm B which will break the cross-nonce unlinkability of the
underlying TrRS scheme against a TrRS challenger CH, by assuming we have an attacker A who
can break the anonymity of the TRS scheme in Construction 3. Let G0 represent the TRS anonymity
game where the challenger always uses S ′0, and Gd represent the TRS anonymity game where the
challenger always use S ′1 (we will define d later). We introduce a number of games (G1, . . . ,Gd−1)
in between, such that Gj is designed to be indistinguishable from Gj−1 for 1 ≤ j ≤ d. If A can
can break the anonymity of the TRS scheme, it can tell the difference between G0 and Gd; thus,
for some j, it can tell the difference between Gj and Gj−1. If it does, we leverage A to break the
cross-nonce unlinkability of TrRS.

Below, we use indexing notation L[j] to denote an element within some list L. L[1] refers to
the first element of L, and L[|L|] (where | · | is the cardinality function) refers to the last element
of L. L[j, . . . , k] denotes a range of the list L; L[j, . . . , k] = L[j], . . . , L[k]. If j = k, we get
L[j, . . . , j] = L[j]; if k > j, we get an empty list.

Game Gj, j ∈ [0, . . . , d]:
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Setup B recieves from A the set of users U on which A wants to play the game. B then sets
up the game with the TrRS challenger CH, receiving the public parameters params as
well as public keys for each user i ∈ U . It forwards this information to the TRS adversary
A.

Query A may now issue corruption and signing queries to B, which are handled as follows:

Corruption of Party i: B forwards this query to CH, and the answer from CH is then
forwarded back to A.

Signing message msg by S ′ ⊆ S: B sets nonce = (msg, {pki}i∈S), and issues t = |S ′|
signing queries to CH, one for each i ∈ S ′ (with the same msg and S, and with nonce
nonce). CH returns {σi}i∈S′ . B then runs σ ← TRS.combisign(params, {σi}i∈S′),
and sends σ to A.

Challenge Once A is done issuing queries, A sends B a challenge message msg∗, a ring
S∗, and two signing sets — S ′0 and S ′1, such that |S ′0| = |S ′1| = t. B sets nonce =
(msg∗, {pki}i∈S∗}). Let L0 be a list of signer indices present in S ′0 but not in S ′1 (L0 =
S ′0\S ′1), and L1 be a list of signer indices present in S ′1 but not in S ′0 (L1 = S ′1\S ′0).
Note that because |S ′0| = |S ′1|, we have |L0| = |L1|. We define d = |L0| = |L1|. Let
L = [S ′0∩S ′1] +L0[1, . . . , j] +L1[j+ 1, . . . , d] such that L contains the users i which are
both in S ′0 and S ′1 and then some users from S ′0 and others from S ′1. This corresponds
to L slowly evolving from containing only users in S ′0 to containing only users in S ′1. B
issues signing queries to CH for i ∈ L (all with msg∗, S∗, nonce). CH returns {σ∗i }i∈L.
B then runs σ∗ ← TRS.combisign(params, {σ∗i }i∈S′), and sends σ∗ to A. A returns a
bit b.

Note that the probability that A returns b = 1 in any Gj , j ∈ [1, . . . , d] can only be negligibly
different than the probability that he returns b = 1 in Gj−1. Otherwise, B can use A to break
TrRS cross-nonce unlinkability. B would send the CH a challenge request on i0 = L0[j + 1]
with nonce0 = ⊥ (or some arbitrary different value), and i1 = L1[j+1] with nonce1 = nonce.
B uses the values σ∗1 returned by CH in combisign. If CH picks b = 0 (and uses L0[j + 1] in
the computation of σ∗1 , A’s view is identical to that of Gj+1), and if CH picks b = 1 (and uses
L1[j + 1] in the computation of σ∗1 , A’s view is identical to that of Gj). When B receives b
from A, it passes that bit on to CH.

Lemma 4. If TrRS satisfies one-more linkability (Definition 10) then Construction 3 satisfies
unforgeability (Definition 7).

Proof. We will construct an algorithm B which will break the one-more linkability of the underlying
TrRS scheme against a TrRS challenger CH, by assuming we have an attacker A who can break
the unforgeability of the TRS scheme in Construction 3.

Setup B recieves from A the set of users U on which A wants to play the game. B then sets up the
game with the TrRS challenger CH, receiving the public parameters params as well as public
keys for each user i ∈ U . B forwards this information to the TRS adversary A.

Query A may now issue corruption and signing queries to B, which B handles in the same
fashion as for the anonymity game Lemma 3, by forwarding to the TrRS challenger CH with
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the appropriate nonce nonce = (msg, {pki}i∈S), and returns the challenger’s response to the
adversary.

Challenge A produces a signature σ∗ on some message msg∗ and under some ring S∗ such that
fewer than t of the members of S are corrupt.

– B parses σ∗ = {σ∗1 , . . . , σ∗t }
– B sends {(msgk, σ∗k,S)}k∈[t], nonce = (msg, {pki}i∈S) to CH.

If A has a non-negligible probability of winning the TRS unforgeability game, then B has non-
negligible probability of winning the TrRS one-more linkability game against the challenger
CH.

5 Conclusion

In this paper, we made two contributions to the field of threshold ring signature schemes. First,
we gave a stronger security definition for TRS anonymity which is more natural in practice. In
particular, our definition demands that signers cannot be de-anonymized even by their fellow signers
and ring-members. This is crucial, as in many applications, it is unrealistic to assume that there
are no insiders in the ring.

Secondly, we construct the first TRS scheme with signatures of size O(t) (where t is the number
of signers), independent of the number n of parties in the ring S. We achieve this by using a TrRS
scheme as a building block. To this end, we strengthen the definitions of TrRS, and propose a new
TrRS construction from standard assumptions which produces signatures of constant size.
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