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Abstract. We consider threshold ring signatures (introduced by Bres-
son et al. [7]), where any t signers can sign a message while anonymizing
themselves within a larger (size-n) group. The signature proves that t
members of the group signed, without revealing anything else about their
identities.
Our contributions in this paper are two-fold. First, we strengthen exist-
ing definitions of threshold ring signatures in a natural way; we demand
that a signer cannot be de-anonymized even by their fellow signers. This
is crucial, since in applications where a signer’s anonymity is important,
we do not want that anonymity to be compromised by a single insider.
Our definitions demand non-interactive signing, which is important for
anonymity, since truly anonymous interaction is difficult or impossible
in many scenarios.
Second, we give the first rigorous construction of a threshold ring signa-
ture with size independent of n, the number of users in the larger group.
Instead, our signatures have size linear in t, the number of signers. This
is also a very important contribution; signers should not have to choose
between achieving their desired degree of anonymity (possibly very large
n) and their need for communication efficiency.

Keywords: Threshold ring signatures · Anonymity · Unique ring sig-
natures · Compact signatures

1 Introduction

It is often desirable for parties to anonymously sign on behalf of a group. A group
signature scheme [12] enables this; the signature proves that a member of the
group signed, but does not reveal which one. However, the downside of group
signatures is that the group must be set up and maintained by a trusted group
manager.1 Threshold (group) signatures similarly allow any t of the parties in

1 List signatures [11] are a related primitive. Like group signatures, list signatures
require a group manager to set up the the keys and parameters. However, in a
list signature scheme, signers may only sign a certain amount of times before their
anonymity is revoked.



2 Alexander Munch-Hansen, Claudio Orlandi, and Sophia Yakoubov

a group to sign on behalf of the group together. The signature proves that t
members of the group signed without revealing which ones. but, as in group
signatures, trusted setup is required for each group.

A ring signature scheme (introduced by Rivest et al. [29]) enables signing
on behalf of a group without the need for interactive or trusted setup. Instead,
everyone independently generates a key pair, and publishes their public key. The
signer chooses the group (or ring) to anonymize herself amongst at signing time,
and does so using that ring’s public keys. In this paper, we focus on threshold
ring signature schemes (introduced by Bresson et al. [7]), which are a natural
extension of ring signature schemes. In a threshold ring signature scheme, any t
signers can sign a message together while anonymizing themselves within a larger
(size-n) group. Like a ring signature scheme, a threshold ring signature scheme
allows the signers to pick the larger group they want to anonymize themselves
amongst in an ad-hoc way at signing time.

We make two major contributions in this paper: a strengthening of threshold
ring signature definitions, and a new construction with more compact signatures.
Our new definition demands that a signer cannot be de-anonymized even by
their fellow signers. In applications where a signer’s anonymity is important,
this protects their anonymity from insiders.

Our construction has signatures of size linear in t, the number of signers. All
prior rigorous constructions have signatures with size dependent on n, the size of
the larger group. Compact signatures are important; signers should not have to
choose between achieving their desired degree of anonymity (possibly very large
n) and their need for communication efficiency.

1.1 Application: Whistleblowing

We can imagine a set of people within a large corporation wanting to blow the
whistle on some corrupt activity within that organization; however, they are
afraid to come forward publicly because of the repercussions they might face.
On the other hand, blowing the whistle anonymously may not be effective, since
it is important that the public believe that the message came from within the
organization, from a sufficient number of organization members (and that it thus
has credibility). Threshold ring signatures are the perfect solution. The whistle-
blowers form a size-t sub-group, and anonymize themselves within the entire
size-n organization. Anyone can then verify that t members of the organization
all blew the whistle on the corrupt activity.

Small signature sizes are important here, since often the size n of an organi-
zation is unreasonably large. In this application, it also becomes especially im-
portant that each individual whistleblower retain anonymity, even against their
fellow whistleblowers. Otherwise, in order to de-anonymize all of the whistle-
blowers, all the organization administration would have to do is get one of the
whistleblowers’ cooperation.
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1.2 Our Contributions

As we mentioned earlier, we make two contributions: we give a stronger definition
of threshold ring signatures, and a construction that meets those definitions while
achieving signatures with size O(t).

Stronger Definitions Our most significant definitional contribution is a strength-
ening of the anonymity property. We require that an adversary not be able to tell
the difference between signatures produced by two different subsets of signers of
the same size t (within the same group of size n), as long as the two subsets con-
tain the same corrupt parties. All previous definitions of anonymity [21,27,28,32]
do not allow the sets of signers to contain any corrupt parties at all; this is a
dealbreaker in many applications, where one insider should not be able to bring
down the entire group.

We use a strong syntax that fits well with our stronger notion of anonymity.
We require that signers be able to produce partial signatures locally, without
interacting with their fellow signers; the partial signatures should preserve the
signers’ anonymity, and should be combinable into a threshold signature by
any third party. Having such a noninteractive structure is crucial for preserving
anonymity against fellow signers; if signing were interactive, signers might learn
their peers’ identities via e.g. their IP addresses.

Construction with Succinct Signatures We build the first threshold ring signature
scheme with signatures of size O(t); all previous constructions have signatures
with size dependent on n. For groups of signers of size t significantly smaller
than the larger group of size n they wish to anonymize themselves amongst, this
is crucial.

Naively, to produce a threshold ring signature, each of the t signers could
produce a ring signature, and their threshold ring signature would simply be
a concatenation of these. The issue here is that a verifier would need to be
convinced that these ring signatures were produced by distinct signers. An im-
mediate solution to this would be a zero-knowledge proof that each signature
was generated using a different secret key; however, this proof would be large,
inefficient, and producing it would require interaction between the signers.

Instead, we base our threshold ring signature scheme on a primitive called a
unique ring signature scheme (URS), introduced by Franklin and Zhang [17]2. A
unique ring signature scheme is a ring signature scheme which allows the linking
of two signatures produced by the same signer, if the two signatures contain
the same unique identifier produced during signing using a nonce. By using the
message and the public keys belonging to the size-n supergroup as the nonce,
we can construct a threshold ring signature simply by concatenating t unique

2 A similar approach to building a threshold ring signature scheme was mentioned by
Yuen et al. [31] where they would instead use a traceable ring signature scheme [18];
however, it was not formalized or proven. As far as we can tell, the definition of
security they use for a traceable ring signature scheme does not seem to allow such
a proof.
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ring signatures. (For definitional simplicity, we merge the notion of nonce and
message, requiring signers to sign the message and the set of public keys, and
guaranteeing linkability as long as two signatures verify for the same message.)
A verifier can check that no two unique ring signatures were produced by the
same signer, and so is convinced that t of the n users signed the message.

Any unique ring signature scheme (secure under our definitions, which are
slightly modified from those of Franklin and Zhang) can be used to construct a
threshold ring signature scheme in such a way. We present a new, intuitive unique
ring signature scheme with signatures of size O(1) which draws inspiration from
the construction of Dodis et al. [14]. As the field of traceable ring signatures is
larger than that of unique ring signatures, we briefly compare our URS to those.
One could also use a slightly modified traceable ring signature scheme, such as
proposed by Yuen et al., but unlike the work of Yuen et al., we leverage a random
oracle, allowing us to get smaller unique signatures. We additionally use an RSA
accumulator [4]3 and the generalized DDH assumption. These assumptions are
more standard than the Link-Decisional RSA assumption used in some traceable
ring signature constructions [1, 30].

At a high level, our unique ring signature scheme works as follows: each
signer in the ring hashes the message (taken to be the original message together
with the set of n public keys belonging to the super-set of users), and raises it
to the power of their secret signing key. By the generalized DDH assumption,
this does not reveal the signer’s identity. Each signer then proves using non-
interactive zero knowledge (NIZK) that they used a signing key corresponding
to one of the public keys belonging to the ring.4 It may seem that such a proof
must be linear in the number n of public keys, but we get around that by using
an accumulator [4] (a compact representation of an arbitrarily large set that
supports efficient proofs of membershi) to represent the set of public keys.

As required by our definitions, our construction is completely non-interactive;
each of the t signers produces a unique ring signature independently, and those
signatures are then simply concatenated to produce the threshold ring signature.
This concatenation can be done by any third party. An important consequence of
this is that the scheme is flexible, meaning that a signer can contribute a partial
signature at any point, resulting in a threshold signature with a threshold t that
is larger by 1.

3 We could instead use a bilinear map accumulator [9]; however, the use of such an
accumulator would require an a-priori upper bound on the ring size.

4 Our use of NIZK proofs requires the presence of a common reference string (CRS). At
first glance, since a CRS is a form of setup, this might seem to make our construction
a group signature scheme instead of a ring signature scheme. However, there is a
qualitative difference between a CRS (which is a global and reusable trusted setup)
and a per-user trusted setup (in group signatures, parties’ secret keys need to be
distributed by a trusted party). In particular, once the CRS is generated in a trusted
way (perhaps using an MPC ceremony), the parties in our system can generate their
own keys independently.
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1.3 Fully Compact Threshold Ring Signatures

While our threshold ring signature scheme is the first scheme to give signatures
of size independent of the ring size n, the signature size does still depend linearly
on the threshold t. A natural question to ask is,

Is it possible to build a threshold ring signature scheme with signatures of
constant size?

The answer is that it is possible; any threshold ring signature scheme can be
altered to have constant-size signatures with the use of succinct non-interactive
arguments of knowledge (SNARKs). This can be done simply by allowing any
third party — or perhaps one of the signers — to take the produced signature
(whose size might depend on n or t) and replace it with a SNARK of a verifying
signature for the given ring. Since SNARK sizes do not depend on the state-
ment being proven or the witness for that statement, this yields a constant-size
signature.

While this transformation is optimal from an asymptotic point of view, the
non-black box use of public-key cryptography inside a SNARK would make this
construction prohibive in practice.5

1.4 Related Work

Work Signature Size Adversarial Keys? Assumptions

Our work O(t) Yes Generalized DDH, RSA, RO
Bresson et al. [7] O(n log n) No RSA, RO

Petzoldt et al. [28] O(n) No Quadratic MQ-problem, RO
Liu et al. [31] O(t

√
n) No Q-Strong DH, Subgroup Decision in Gq, DDH-Inversion

Zhou et al. [33] O(n) No Syndrome Decoding Problem, Indistinguishability of Goppa Codes, RO
Chen et al. [13] O(n) No Ideal Lattice, Shortest Independent Vector Problem, RO

Okamoto et al. [27] O(tn) No Discrete Log, RO, Trusted Dealer
Haque et al. [21] O(n) Yes (Any) Trapdoor Commitments, QROM
Haque et al. [20] O(t) No SPB hashing, NIWI

Fig. 1: Threshold Ring Signature Constructions

In Figure 1 we list some known threshold ring signature constructions, their
signature sizes, whether they support adversarial key generation, and the as-
sumptions they leverage. All prior constructions of threshold ring signatures
have signatures whose size depends on the number n of users in the ring R. This
is not ideal, as the threshold t may be much smaller than n.

5 Even the most basic public-key type operation, a scalar multiplication in an elliptic
curve, requires billions of gates [22]. This needs to be multiplied by a function of n
for any existing threshold ring signature, or t for our construction. While this is the
state of the art, we cannot of course rule out that more efficient constructions might
emerge in the future, and this could be an interesting venue for further research.
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Concurrent Work Haque et al. [20], posted shortly after this paper, also con-
struct threshold ring signatures of size O(t). The advantage of their work is
that their construction does not require a common reference string (CRS),
which our construction uses for non-interactive zero knowledge (NIZK) proofs.
They get around the need for a CRS by using NIWI (non-interactive witness-
indistinguishable) proofs instead of NIZK proofs. However, the advantage of our
work is that we support adversarially generated public keys. In the scheme of
Haque et al., an adversary who is able to generate and register keys himself is
immediately able to break anonymity and unforgeability.6

Relying on honestly generated keys is significantly riskier than relying on an
honestly generated CRS. CRS generation occurs once, and therefore efficiency
is not too much of a concern: we can ensure security e.g. via secure multiparty
computation (which can be slow), by involving a large number of parties all
of whom are extremely unlikely to collude. However, taking such measures in
the generation of every party’s key pair, which can happen frequently, would be
unreasonable.

1.5 Outline

In Section 2, we define ring and threshold ring signatures. In Section 3, we
describe our threshold ring signature construction. Please refer to Section A
of the Supplementary Materials for a description of the tools and assumptions
necessary for our constructions, such as cryptographic accumulators and zero
knowledge proofs.

2 (Threshold) Ring Signature Definitions

In this section, we recall the definitions of ring signatures and threshold ring
signatures (focusing on the latter).

2.1 Ring Signature Definitions

Ring signatures were originally defined by Rivest et al. [29] as a natural extension
of group signature schemes. Group signatures require some trusted authority to
act as a group manager, predefining groups of signers and distributing keys to
members of those groups. These keys can then be used to anonymously sign
messages on behalf of the entire group. However, requiring a trusted authority
that distributes — and knows — signers’ keys can be a big drawback. Ring

6 This is by design; in the proof of anonymity, the authors need to create simulated
NIWI proofs that are independent of the identities of the signers. They do this by
additionally allowing a witness to demonstrate a relationship between two keys in the
ring, where this relationship never holds between keys that are honestly generated. If
an adversary was able to register maliciously generated keys, she could register two
keys that do have this relationship, and use this to forge signatures with arbitrarily
high threhsolds, as long as those two corrupt keys are in the ring in question.
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signatures instead allow signers to generate their own key pairs, and to form
groups in an ad-hoc way.

Ring Signature Syntax A ring signature scheme is defined as a tuple of four
algorithms (setup, keygen, sign, verify):

setup(1λ)→ pp:
An algorithm that takes a security parameter λ and outputs a set of public
parameters pp. These public parameters pp include the security parameter
itself, and any global parameters which can be used within the other algo-
rithms.

keygen(pp)→ (pk, sk):
An algorithm that takes the public parameters pp and outputs a key pair
(pk, sk).

sign(pp,msg, {pkj}j∈R, ski)→ σ:
An algorithm that takes the public parameters, a message msg ∈ {0, 1}∗ to
be signed, the set of public keys of the users within the ring {pkj}j∈R, and
the secret key ski of the signer i ∈ R (which must correspond to a public
key within the set of public keys {pkj}j∈R). Outputs a signature σ on the
message msg.

verify(pp,msg, {pki}i∈R, σ)→ accept/reject:
An algorithm that takes the public parameters, the message, the set of public
keys of the users within the ring, and a signature σ. Outputs accept or
reject, reflecting the validity of the signature σ on the message msg.

An important property of ring signatures is setup freeness, which requires
that signers’ keys be generated independently. (We note that most ring signature
schemes do have a setup algorithm that is run by a trusted authority. However,
this authority does not produce the secret keys for the signers; its only job is to
produce the public parameters such as moduli and generators used throughout
the scheme. The signers can then generate their keys independently using those
public parameters.)

Ring Signature Security Definitions Informally, a ring signature scheme
must satisfy the following properties [7, 14,23]:

– Correctness requires that a correctly generated signature must verify.
– Unforgeability requires that an adversary should not be able to forge a sig-

nature on behalf of another user.
– Anonymity requires that a signature should completely hide the identity of

the signer, even if the adversary has access to a signing oracle.
– Unlinkability requires that no adversary should be able to determine whether

two signatures were produced by the same signer, even if the adversary has
access to a signing oracle.

Remark 1. Note that anonymity implies unlinkability, and vice versa; however,
when access to signing oracles is removed, this is no longer the case.
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We omit the formal definitions of ring signatures from this paper, focusing
instead on threshold ring signatures.

2.2 Threshold Ring Signature Definitions

Threshold ring signatures are similar to ring signatures, but instead of allowing
any one signer to anonymize themselves among a set of signers, a threshold ring
signature scheme allows any t signers to anonymize themselves among a larger
set (or ring) of signers R. A verifier can then check that at least t signers in the
ring R signed the message. Note that a ring signature scheme can be viewed as
a threshold ring signature scheme with t = 1.

Threshold Ring Signature Syntax A threshold ring signature scheme is
usually defined as a tuple of four algorithms (setup, keygen, sign, verify), where
sign is interactive and requires the secret keys of t of the signers. We instead
choose to define a threshold ring signature scheme as a tuple of five algorithms,
by adding combisign. We let sign be locally executed by each signer i (requiring
only that signer’s secret key ski), and produce partial signatures σi; combisign
can then be run by any third party to combine those partial signatures into a
threshold signature.

We describe the syntax of combisign below. Notice that it does not require
the secret keys of any of the signers.

combisign(pp, {σi}i∈S , t)→ σ:
An algorithm that takes partial signatures {σi}i∈S from t signers, and out-
puts a combined signature σ.

The syntax of of setup, keygen, sign and verify remain unchanged from those
of a ring signature scheme, except that sign outputs partial signatures, and verify
takes the threshold t as input.

This syntax specification is very strong. In particular, it demands the follow-
ing desirable properties:

Setup Freeness:
Every signer can generate their own key pair. This is a feature of all ring
signature schemes.

Dynamic Choice of Ring Size n:
Different sets of signers can choose rings of different sizes.

Dynamic Choice of Threshold t:
Arbitrarily many signers’ partial signatures can be combined into a single
threshold signature; the signers don’t need to know t when they produce their
partial signature. Verification takes a threshold t, and checks that at least
that many signers have signed. The upside of this is what is called flexibility
[27], meaning that signers can contribute their partial signatures after others
have signed. Our syntax demands a weak notion of flexibility where signers
can contribute their signatures before combination via combisign; if combisign
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is as simple as e.g. concatenation of the partial signatures, the stronger
notion of flexibility — where signers can contribute even after combination
— follows.
The downside of this flexibility is that the number of signers cannot be
hidden by a signature σ.

Non-Interactive Signing:
As per our syntax, parties generate partial signatures locally; those par-
tial signatures can be combined into a threshold signature by any third
party. Non-interactive signing is essential in ensuring the signers’ privacy
(even against their peers), since anonymous interactive signing would require
anonymous communication, which is often difficult to achieve in practice.

Threshold Ring Signature Security Definitions We base our security def-
initions on Bresson et al. [7] and Haque et al. [21]. (In particular, we require
security against an adversary who can generate and register public keys, as re-
quired by Haque et al.) We strengthen the definition of anonymity to require
that signers remain anonymous even to their fellow signers.

Additionally, both of our security games are defined using partial signatures,
where a complete signature will be formed by combining the partial signatures
of all the signers. This allows for a simple statement of the games while still
demanding security against fellow members of the signing rings R. An adversary
wins the unforgeability game if he is able to forge a partial signature, and he wins
the anonymity game if he is able to distinguish between two partial signatures.

Definition 1 (TRS). A threshold ring signature scheme is secure if it satisfies
correctness (Definition 2), unforgeability (Definition 3), and anonymity (Defini-
tion 4).

Definition 2 (Correctness for TRS). Correctness requires that verification
return accept on any honestly generated signature.

More formally, let TRS = (setup, keygen, sign, combisign, verify) be a TRS
scheme. We say that TRS is correct if for all security parameters λ ∈ N, for
all messages msg ∈ {0, 1}∗, all rings R, and all signer sets S ⊆ R:

Pr


pp← TRS.setup(1λ),
{(pki, ski)← TRS.keygen(pp)}i∈R,
{σi ← TRS.sign(pp,msg, {pkj}j∈R, ski)}i∈S ,
σ ← TRS.combisign(pp, {σi}i∈S , t = |S|) :
TRS.verify(pp,msg, {pkj}j∈R, σ, t = |S|) = accept

 = 1

Definition 3 (Unforgeability for TRS). Unforgeability requires that no ef-
ficient adversary A is able to forge a valid signature σ for some ring R and
message msg∗ for which A has issued fewer than t corruption queries (on sign-
ers in R) or signing queries (for ring R and message msg∗), where t is the
threshold.

More formally, let TRS = (setup, keygen, sign, combisign, verify) be a TRS

scheme. Consider the game GameUnforgeTRS,A (1λ) in Figure 2 between a probabilistic
polynomial-time adversary A and a challenger CH.



10 Alexander Munch-Hansen, Claudio Orlandi, and Sophia Yakoubov

GameunforgeTRS,A (1λ)

A CH
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Setup phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

U Qcorrupt = ∅, Qsign = ∅

pp← TRS.setup(1λ)

{(pki, ski)← TRS.keygen(pp)}i∈U

pp, {pki}i∈U

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Query phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A may issue polynomially many corruption (C), signing (S) or registration (R) queries

C(i) / S(msg,R, i) / R(i, pki)

Corrupt :
add i to Qcorrupt, and look up ski ∈ {skj}j∈U ,

Sign :
ignore the query if i ∈ Qcorrupt
σi ← TRS.sign(pp,msg, {pkj}j∈R, ski)
add (msg,R, i) to Qsign

Register :
add i to U and to Qcorrupt, and store pki.

ski / σi / ⊥

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Challenge phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ∗,msg∗,R∗ ⊂ U , t

If all of the following checks pass, A wins:
TRS.verify(pp,msg∗, {pki}i∈R∗ , σ∗, t) = accept

Let Qmsg
∗,R∗

sign be the set of challenge signer indices

on which signing queries on the challenge message
and ring have been issued

|R∗ ∩ (Qcorrupt ∪Qmsg
∗,R∗

sign )| < t

Fig. 2: The unforgeability game for TRS

We say that TRS is unforgeable if for any efficient adversary A,

Pr[A wins GameunforgeTRS,A (1λ)] ≤ negl(λ)

for some negligible function negl(λ).

Remark 2. Note that in the unforgeability game, the challenger responds to
signing queries with partial signatures. This is to capture that the adversary
might know some of the secret keys (due to corruption queries), and is therefore
only interested in seeing the partial signatures by the honest parties. The same
holds true for the anonymity game.

Definition 4 (Anonymity for TRS). Anonymity requires that no efficient
adversary A be able to distinguish between partial signatures produced by two
different signers in the same ring.
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More formally, let TRS = (setup, keygen, sign, combisign, verify) be a TRS
scheme. Consider the game GameanonTRS,A(1λ) in Figure 3 between a probabilistic
polynomial-time adversary A and a challenger CH.

GameanonTRS,A(1λ)

A CH
. . . . . . . . . . . . . . . . . . . . .Setup phase: as in GameunforgeTRS,A (1λ) . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .First Query phase: as in GameunforgeTRS,A (1λ) . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Challenge phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

msg∗,R∗ ⊂ U , i∗0, i∗1

b←R {0, 1}
σi ← TRS.sign(pp,msg∗, {pkj}j∈R∗ , ski∗

b
)

σi∗
b

. . . . . . . . . . . . . . . . . Second query phase: as in first query phase . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . .Challenge response phase . . . . . . . . . . . . . . . . . . . . . . . . . .

b′ If all of the following checks pass, A wins:

b′ = b,

∀β ∈ {0, 1} : (msg∗,R∗, i∗β) 6∈ Qsign,
i∗β ∈ R∗, i∗β 6∈ Qcorrupt

Fig. 3: The anonymity game for TRS

We say that TRS is anonymous if for any efficient adversary A,

Pr[A wins GameanonTRS,A(1λ)] ≤ 1

2
+ negl(λ)

for some negligible function negl(λ).

3 Our Threshold Ring Signature Construction

A natural approach to building threshold ring signatures is having each of the t
signers produce a ring signature, and then appending to the list of t signatures
a zero knowledge proof that all of the signatures were produced using distinct
signing keys. However, this approach has two downsides.

1. Producing the zero knowledge proof requires interaction among the signers.
2. The zero knowledge proof may be complex. (One way to do this is to commit

to the secret keys used, order the commitments by secret key, prove that each
key was used to produce the corresponding signature, and use t range proofs
to prove that each committed key is strictly larger than the previous one
- since we need to prove that the signatures were produced by t distinct
signers)
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In order to circumvent these two issues, we leverage unique ring signatures
(URS) [17], which are a flavor of linkable ring signatures (LRS) [24]. Linkable
ring signatures are ring signatures where a verifier can tell whether two signatures
were produced by the same signer. If each of the t signers produces a linkable
ring signature, there is no need to additionally prove that the signatures were
produced using distinct signing keys, since this is immediately apparent.7 If
the underlying linkable ring signatures have size O(1), then the threshold ring
signatures will have size O(t).

However, this construction is flawed, since the linkable ring signatures also al-
low linking across different threshold ring signatures, which violates the anonymity
property we require of any threshold ring signature scheme (Definition 4).

To address this problem, we use unique ring signatures instead. Unique ring
signatures satisfies the additional property that each signature contains a unique
identifier. Traditionally, the signing algorithm produces an additional unique
identifer and two signatures by the same signer are now only linkable if the two
signatures contain the same identifier. This identifier can be produced in sev-
eral ways, but a natural way would be by using a nonce for each signature. For
definitional and notational simplicity however, we merge the nonce and the mes-
sage: in our definition of unique ring signatures, we require linkability between
any two signatures on the same message. In our construction of threshold ring
signatures, each of our signers sign the original message and the set of public
keys belonging to the signing ring using the unique ring signature scheme. By
using the message and set of public keys belonging to the signing ring as the
nonce, we ensure that the unique ring signatures used as components of two dif-
ferent threshold ring signatures remain unlinkable (under the assumption that
the same ring never signs the same message more than once).

The rest of this section proceeds as follows:

1. In Section 3.1, we state a (somewhat modified) definition of a unique ring
signature scheme (URS) [17].

2. In Section 3.2, we construct a URS scheme with signatures of size O(1).
3. In Section 3.3, we use our URS scheme to construct a TRS scheme with

signatures of size O(t).

3.1 Unique Ring Signature Definitions

We leverage the notion of unique ring signature (URS) schemes, as defined by
Franklin and Zhang [17].

We alter (and use) the definition of Franklin and Zhang in the following ways:

7 A similar idea was mentioned by Yuen et al. [31]; however, it was not formalized or
proven. In particular, a stronger linkability property — one that is similar to that
of uniqueness — is needed from the underlying traceable ring signature scheme in
order for the TRS construction to be secure. Additionally, since Yuen et al. focus on
avoiding the random oracle assumption and we do not, we obtain a TRS construction
with size O(t) signatures, while they obtain a TRS construction with size O(t

√
n)

signatures.)
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1. Franklin and Zhang require that even if an adversary has access to some t
secret keys belonging to a subset of ring members; then the adversary should
be unable to produce t+ 1 unique signatures for the same message and ring.

2. We definitively merge the notion of message and unique identifier; If a signer
can produce a correctly verifiable signature for some message with respect
to some ring, then this is also a unique identifier for said signer. This yields
a more efficient proof of correctness for the signature. This idea is also used
by Franklin and Zhang.

3. Franklin and Zhang require that each signer only signs any message once.
We require a stronger definition; we require linkability of any two signatures
on the same message with respect to the same ring (resulting in a stronger
definition of uniqueness, Definition 6)), and unlinkability across signatures
of different messages (resulting in cross-message unlinkability, Definition 7).

Unique Ring Signature Syntax We define a unique ring signature scheme
as a tuple of five algorithms (setup, keygen, sign, verify, link). The setup, keygen,
sign and verify algorithms all have the same input and output behavior as the
corresponding ring signature algorithms.

The link algorithm (described below) allows any verifier to determine whether
two signatures were produced by the same signer (on the same message).

link(pp, msg, (σ0, {pkj}j∈R0
), (σ1, {pkj}j∈R1

))→ {linked, unlinked}:
An algorithm that takes a message msg, two signatures (σ0, σ1) and public
keys belonging to members of rings (R0,R1). Outputs linked or unlinked,
depending on whether the two signatures were produced by the same signer.

Unique Ring Signature Security Definitions Informally, a unique ring
signature scheme must satisfy the following properties:

– Correctness requires that a correctly generated signature must verify. (This
is inherited from ring signatures.)

– Unforgeability requires that an adversary should not be able to forge a sig-
nature on behalf of another user. (This is inherited from ring signatures.)

– Linkability, adapted from linkable ring signatures [25], requires that no cor-
rupt signer can produce two signatures that verify for the same message and
appear unlinked.

– Uniquenes, which we strengthen, requires that no t − 1 corrupt signers can
produce t signatures that verify for the same message and appear unlinked.
With t = 2, it implies linkability; with t = 1, it implies unforgeability.)

– Cross-Message Unlinkability requires that no adversary can determine whether
two signatures that verify for different messages were produced by the same
signer. (We present this property as Definition 7.)

– Defamation Freeness requires that no adversary can produce a signature
that appears linked to an honest signer’s signature. We do not require this
property for our TRS construction, so we do not define it formally nor prove
that our construction meets it. This is loosely defined as an adversary forging
an identifier.
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Definition 5 (URS). A unique ring signature scheme is secure if it satisfies
correctness, uniqueness (Definition 6, which implies unforgeability and linkabil-
ity), and cross-message unlinkability (Definition 7).

Definition 6 (Uniqueness for URS). Let URS = (setup, keygen, sign, verify,
link) be a URS scheme. Consider the game GameuniqueURS,A(1λ) in Figure 4 between
a probabilistic polynomial-time adversary A and a challenger CH.

We say that URS is unique if for any efficient adversary A,

Pr[A wins GameuniqueURS,A(1λ)] ≤ negl(λ)

for some negligible function negl(λ).

Definition 7 (Cross-Message Unlinkability for URS). Given two signa-
tures for different messages it should be infeasible for an adversary to deter-
mine whether they were created by the same signer or not. More formally, let
URS = (setup, keygen, sign, verify, link) be a URS scheme. Consider the game
GamecmunlinkURS,A (1λ) in Figure 5 between a probabilistic polynomial-time adversary
A and a challenger CH.

We say that URS is cross-message unlinkable if for any efficient adversary
A,

Pr[A wins GamecmunlinkURS,A (1λ)] ≤ 1

2
+ negl(λ)

for some negligible function negl(λ).

3.2 A Unique Ring Signature Scheme

We describe a unique ring signature scheme in Construction 1 in terms of an un-
derlying accumulator scheme ACC, a non-interactive zero-knowledge argument
of knowledge scheme NIZKAoK, a group G (of order p, with generator g) in
which the generalized DDH problem is hard, and a random oracle H which maps
arbitrary strings to elements in G. We refer to Section A of the Supplementary
Materials for a description of these building blocks.

The non-interactive zero-knowledge argument of knowledge scheme NIZKAoK
will be used for the relation Rsig, which is described below. In Section A.2 of the
supplementary material we describe an instantiaion of this relation Rsig.

Rsig

φ = (G, g,ACC.pp,
aR, σ

′, h),
w = (pk, sk, wa)

 =

 (pk = gsk)
∧ACC.verify(ACC.pp, aR, pk, wa)
∧(σ′ = hsk)


Construction 1.

setup(1λ):
– Run ACC.pp← ACC.setup(1λ).
– Run (NIZKAoK.crs,NIZKAoK.td)← NIZKAoK.setup(1λ,Rsig).
– Set pp = (ACC.pp,NIZKAoK.crs).
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GameuniqueURS,A(1λ)

A CH
U Qcorrupt = ∅, Qsign = ∅

pp← URS.setup(1λ)

{(pki, ski)← URS.keygen(pp)}i∈U
pp, {pki}i∈U

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Query phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A may issue polynomially many queries corruption (C), signing (S) or registration (R) queries

C(i) / S(msg,R, i) / R(i, pki)

Corrupt :
add i to Qcorrupt, and look up ski ∈ {skj}j∈U

Sign :
ignore the query if i ∈ Qcorrupt or if i 6∈ R
σ ← URS.sign(pp,msg, {pkj}j∈R, ski)
add (msg,R, i) to Qsign

Register :
add i to U and to Qcorrupt, and store pki

ski / σ / ⊥

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Challenge phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

msg∗, {(σk,Rk)}k∈[t]

For any R, let Qmsg
∗,R

sign be the set of signer indices i such that

(msg∗,R∗, i) ∈ Qsign, where R∗ is any ring s.t. {pki}i∈R∗ = {pki}i∈R.

If all of the following checks pass, A wins:

@i1 ∈ R1, . . . , it ∈ Rt s.t.:

∀k 6= l ∈ [t], pkik 6= pkil

∀k ∈ [t], ik ∈ Rk ∩ (Qcorrupt ∪Qmsg
∗,Rk

sign ).

For k ∈ [t]:

URS.verify(pp,msg∗, {pkj}j∈Rk , σk) = accept

For l ∈ [t], l 6= k:

URS.link(pp,msg∗, (σk, {pkj}j∈Rk ), (σl, {pkj}j∈Rl)) = unlinked

Fig. 4: The uniqueness game for URS.
Note that t verifying pairwise-unlinked signatures only count as a win for the adversary
if the adversary has not corrupted (or queried the signing oracle on the appropriate
message and ring for) t or more of the relevant parties. Furthermore, the adversary is
not allowed to use the same public key for two of the signatures, but under different
rings. Otherwise, the adversary could legitimately assemble the necessary unlinked
signatures by using corrupt parties and signing oracle outputs, intuitively winning the
game.
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GamecmunlinkURS,A (1λ)

A CH
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Setup phase: as in GameomlinkURS,A(1λ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . First query phase: as in GameomlinkURS,A(1λ) . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Challenge phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

msg0,msg1,R0,R1, i0 ∈ R0 ∩R1, i1 ∈ R1

σ∗0 ← URS.sign(pp,msg0, {pkj}j∈R0 , ski0)

b←R {0, 1}
σ∗1 ← URS.sign(pp,msg1, {pkj}j∈R1 , skib)

σ∗0 , σ
∗
1

. . . . . . . . . . . . . . . . . . . . . . . . . . Second query phase: as in first query phase . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Challenge response phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b′ If all of the following checks pass, A wins:

b′ = b,msg0 6= msg1

i0 6∈ Qcorrupt, i1 6∈ Qcorrupt
(msg1, ·, i0) 6∈ Qsign, (msg1, ·, i1) 6∈ Qsign

Fig. 5: The cross-message unlinkability game for URS.
Note that, if the adversary queried the signing oracle on either of the challenge signer
identities and msg1, he could legitimately link the output of the signing oracle to
the second challenge signature, helping him determine whose secret key was used to
produce it. So, if such a signing query was asked, we do not count the adversary’s win.

keygen(pp):

– Pick sk ← Zp at random.

– Set pk = gsk.

– If pk is not prime (when interpreted as an integer), redo the first two
steps until it is. (We require the public keys to be prime so that they are
within the domain of the RSA accumulator.)

sign(pp,msg, {pkj}j∈R, sk):

– Check that each pkj is prime.

– Accumulate {pkj}j∈R as

aR ← ACC.accumulate(ACC.pp, {pkj}j∈R).

(Note that this is publicly computable from the set of public keys, and
thus does not need to be included in the threshold ring signature.)

– Let pk ∈ {pkj}j∈R be the public key corresponding to the secret key
sk. Compute an accumulator witness wa ← ACC.witcreate(ACC.pp,
{pkj}j∈R, pk).

– Compute σ′ = H(msg)sk.
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– Compute π proving that H(msg) was raised to the power of a secret key
corresponding to a public key in the accumulator. In other words,

π ← NIZKAoK.prove


NIZKAoK.crs,
φ = (G, g,ACC.pp,

aR, σ
′,H(msg)),

w = (pk, sk, wa)


– Return σ = (σ′, π).

verify(pp,msg, {pkj}j∈R, σ = (σ′, π)):
– Check that each pkj is prime.
– Accumulate {pkj}j∈R as

aR ← ACC.accumulate(ACC.pp, {pkj}j∈R)

– Verify the proof π; return

NIZKAoK.verify(NIZKAoK.crs, φ =

(G, g,ACC.pp, aR, σ
′,H(msg)), π).

link(pp,msg, (msg0, σ0 = (σ′0, π0)),
(msg1, σ1 = (σ′1, π1)), nonce):
return linked if σ′0 = σ′1, and unlinked otherwise.

Theorem 1. If NIZKAoK is a secure non-interactive zero knowledge argu-
ment of knowledge, if ACC is a secure accumulator, if H is a random oracle,
and if the generalized DDH problem is hard in G, then Construction 1 is a secure
unique ring signature scheme (Definition 5).

We prove Theorem 1 in Section B of the Supplementary Materials.

3.3 A Threshold Ring Signature Scheme

We build threshold ring signatures out of unique ring signatures in a generic
way. If the underlying unique ring signatures have size O(1), then the resulting
threshold ring signatures have size O(t), where t is the threshold. We require the
additional assumption that no message msg is ever signed twice by the same ring
R. This is because we use the underlying unique ring signature scheme to sign
the message together with the ring; if the same message is signed twice by the
same ring, then the partial signatures will be linkable across the two threshold
signature instances, and in this case we cannot guarantee anonymity.8

8 One could think to use public keys belonging to the signing subset S as part of
the message, instead of the keys belonging to the ring R; however, this has two
downsides. First, the signers must be aware of who their fellow signers are.

Second, the message must now be hidden from the adversary, as knowledge of the
message would allow the adversary to de-anonymize the signing subset (by repeatedly
deriving messages from the underlying message and any possible signing subset, and
seeing which output matches the messages it knows).

Hiding the message from the adversary complicates zero knowledge proofs neces-
sary in the underlying URS construction.
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We describe our TRS construction formally below, in terms of the underlying
URS. (We assume the public keys are always ordered in a canonical way (e.g.
lexicographically), so that in the underlying URS, the same message and set of
keys always hashes to the same value.)

Construction 2.

setup(1λ): Return URS.pp← URS.setup(1λ).
keygen(pp): Return (sk, pk)← URS.keygen(URS.pp).
sign(pp,msg, ski, {pkj}j∈R):

– Set msg′ = (msg, {pkj}j∈R).
– Return σi ← URS.sign(URS.pp,msg′, {pkj}j∈R, ski).

combisign(pp, {σi}i∈S , t = |S|): Return σ = {σi}i∈S . (So simple!)9

verify(pp,msg, {pkj}j∈R, σ = {σi}i∈S , t):
– If |σ| < t, return reject.
– Set msg′ = (msg, {pkj}j∈R).
– For σi ∈ σ, if URS.verify(URS.pp,msg′, {pkj}j∈R, σi) = reject, re-

turn reject.
– For all pairs of different signatures σi, σj in σ, if URS.link(URS.pp,
msg, σi, σj , {pkj}j∈R) = linked, return reject.10

– Return accept.

Remark 3. Note that, since combisign simply takes a concatenation of the partial
signatures, our construction satisfies flexibility [27]. Flexibility requires that a
signer i ∈ R can take an existing threshold signature σ on message msg using
the ring R that verifies with threshold t, and create a signature σ∗ on the same
msg and R, that verifies with threshold t + 1. This is trivially achieved in our
construction; signer i simply produces his own partial signature σi, and appends
it to the existing signature.

Remark 4. Note that there is an immediate transformation from this construc-
tion to a linkable threshold ring signature scheme. Our threshold ring signature
scheme uses a unique ring signature scheme as a primitive, providing a way of
using the signatures to verify the distinctness of the t signers while disallowing
linking across signatures. If one instead uses a regular linkable ring signature
scheme (where signatures from the same signer are linkable across messages and
rings), our TRS construction (Construction 2) would also be linkable across
multiple signatures. See Munch-Hansen [26] for details.

Theorem 2. If URS is a secure unique ring signature scheme (Definition 5),
then Construction 2 is a secure threshold ring signature scheme (Definition 1).

We prove Theorem 2 in Section C of the Supplementary Materials.

9 The signing set S is only mentioned here for the sake of clarity. The set of signers
is never leaked to the party who performs the combining of the signatures, as each
signature is anonymous and does not leak the individual signers.

10 Recall that the link algorithm simply checks equality of two sub-strings in σi, σj .
Thus the running time of verify can be made O(t log(t)) by sorting these strings and
checking for repetead entries.
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A Preliminaries

In this section, we introduce some primitives that we leverage in our construc-
tions. In Section A.1, we describe cryptographic accumulators; in Section A.2,
we describe non-interactive zero knowledge arguments of knowledge.

A.1 Accumulators

At a high level, a cryptographic accumulator [4] is defined as a compact rep-
resentation of a set S = {x1, . . . , xn} that supports proofs of membership in
the underlying set. One natural example of a cryptographic accumulator is a
Merkle hash tree; the root of the tree is the accumulator value corresponding
to the set S of leaf elements, and the authenticating path of a leaf element is
its membership witness. However, the disadvantage of Merkle hash trees is that
they are inefficient to use within zero knowledge proofs. Instead, in Section A.1,
we describe the RSA accumulator [4], which requires only arithmetic operations
and is thus more efficient to use within zero knowledge.

Baldimtsi et al. [2] give a thorough guide to accumulators and all of their
various flavors. In this paper, we only need a limited subset of accumulator
functionality, and we present simplified definitions of accumulators accordingly
(pared down from Baldimtsi et al. and the work cited therein). In particular,
we do not address dynamic changes to the accumulated sets (that is, we only
consider static accumulators). We also split the algorithm that was called gen in
previous work into two: a setup algorithm, and an accumulate algorithm. This
allows us to include the parameters produced by gen that are independent of the
accumulated set in the public parameters of our threshold ring signature scheme.

Accumulator Syntax An accumulator parameterized by a domain D has the
following algorithms:

setup(1λ)→ pp:
An algorithm that, given the security parameter, sets up the global public
parameters for the accumulator system.

accumulate(pp,S)→ aS :
An algorithm that, given the global public parameters pp and a set S ⊆ D,
returns an accumulator aS representing the set S. In this paper, we require
this algorithm to be deterministic.

witcreate(pp,S, x)→ wa:
An algorithm that, given the parameters pp, a set S ⊆ D and an element
x ∈ S, returns a membership witness wa for the element x.

verify(pp, x, a, wa)→ accept/reject:
An algorithm that, given the parameters pp, an element x, an accumulator
a and a witness wa, checks whether wa proves that x is in the underlying set
a.
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Accumulator Security Definitions Of course, an accumulator must be cor-
rect (that is, verification using an honestly produced witness must return accept).
The important security property of an accumulator is collision freeness as de-
fined below.

Definition 8 (Collision Freeness for Accumulators).

Informally, an accumulator is collision-free if it is hard to fabricate a mem-
bership witness wa for a value x that is not in some accumulated set a.

More formally, let λ ∈ N be the security parameter, and let ACC = (setup,
accumulate,witcreate, verify) be an accumulator scheme. Consider the following
game between a probabilistic polynomial-time adversary A and a challenger CH:

GamecolfreeACC,A(1λ)

A CH
pp pp← setup(1λ)

S∗ ⊆ D, x∗ 6∈ S∗, w∗a
a← accumulate(pp,S∗)
A wins if verify(pp, x∗, a, w∗a) = accept

ACC is collision-free for the domain D of elements if for any sufficiently large
security parameter λ, for any probabilistic polynomial-time adversary A, there
exists a negligible function ν in the security parameter λ such that the probability
that A wins the game is less than ν(λ).

The RSA Accumulator The RSA accumulator, which was the original accu-
mulator introduced by Benaloh and DeMare [4], is the one most suitable for our
needs. The domain D for the RSA accumulator is the set of prime integers. We
describe the RSA accumulator below.

setup(1λ):

1. Select two 1λ-bit safe primes p = 2p′ + 1 and q = 2q′ + 1 where p′ and
q′ are also prime, and let m = pq.

2. Select a random integer g′ ← Z∗m.

3. Let g = (g′)2 mod m.

4. Return pp = (m, g).

accumulate(pp = (m, g),S):
Return a = g

∏
x∈S x mod m.

witcreate(pp = (m, g),S, x):

Return wa = g
∏

y∈S,y 6=x y mod m.

verify(pp = (m, g), x, a, wa):
If x is a prime and wxa mod m = a, return accept. Otherwise, return reject.

The RSA accumulator is collision-free under the strong RSA assumption.
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A.2 Non-Interactive Zero Knowledge Arguments of Knowledge
(NIZKAoK)

Non-Interactive Zero-Knowledge (NIZK) proof and argument systems are a well
studied area and have been so for over 30 years [6, 15, 16]. Informally, a zero-
knowledge proof of knowledge allows a prover to convince a verifier that the
prover knows a witness w for a statement φ such that (φ,w) satisfy some re-
lation R. The difference between a proof and an argument is in the soundness
requirement; a proof guarantees that even an all-powerful prover cannot break
soundness, while an argument only guarantees soundness against efficient (com-
putationally bounded) provers. Generally, for practical purposes, an argument
is enough.

In this section we present the definition of a non-interactive zero knowl-
edge argument of knowledge (NIZKAoK), taken from the work of Groth and
Maller [19]. We also describe the concrete relation which we will need in Sec-
tion 3.2.

NIZKAoK Syntax A NIZKAoK scheme has the following algorithms, as de-
scribed by Groth and Maller [19]:

setup(1λ,R)→ (crs, td):
An algorithm that, given the security parameter, sets up the common refer-
ence string crs and the trapdoor td for the NIZKAoK system.

prove(crs, φ, w)→ π:
An algorithm that, given the common reference string crs for a relation R,
a statement φ and a witness w, returns a proof π that (φ,w) ∈ R.

verify(crs, φ, π)→ accept/reject:
An algorithm that, given the common reference string crs for a relation R,
a statement φ and a proof π, checks whether π proves the existence of a
witness w such that (φ,w) ∈ R.

simprove(crs, td, φ)→ π:
An algorithm that, given the common reference string crs for a relation R,
the trapdoor td and a statement φ, simulates a proof of the existence of a
witness w such that (φ,w) ∈ R.

NIZKAoK Security Definitions Of course, a NIZKAoK scheme must be cor-
rect (that is, verification using an honestly produced proof must return accept).
The important security properties of a NIZKAoK scheme are zero knowledge,
knowledge soundness, and simulation extractability, described below.

Definition 9 (Zero Knowledge for NIZKAoK). Informally, a NIZKAoK
scheme has zero knowledge if a proof does not leak any more information than
the truth of the statement.

More formally, let λ ∈ N be the security parameter, and let NIZKAoK =
(setup, prove, verify, simprove) be a NIZKAoK scheme. Consider the following
game between a probabilistic polynomial-time adversary A and a challenger CH:
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GamezkNIZKAoK,A(1λ)

A CH
crs (crs, td)← setup(1λ)

b←R {0, 1}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Query / Challenge phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A may issue polynomially many

prove queries φ,w

if b = 0 : π ← prove(crs, φ, w)

if b = 1 : π ← simprove(crs, td, φ)
π

b′

A wins if b = b′

NIZKAoK has zero knowledge if for any sufficiently large security parame-
ter λ, for any probabilistic polynomial-time adversary A, there exists a negligible
function ν in the security parameter λ such that the probability that A wins the
game is less than 1

2 + ν(λ).

Informally, knowledge soundness is the property that guarantees that it is
always possible to extract a valid witness from a proof that verifies. Simulation
extractability is a stronger version of knowledge soundness that it is always possi-
ble to extract a valid witness from a proof that verifies even if the adversary has
access to a simulation oracle. This is a flavor of non-malleability; an adversary
should not even be able to modify a simulated proof in order to forge a proof.

Definition 10 (Simulation Extractability for NIZKAoK). Informally, a
NIZKAoK scheme has simulation extractability if it is always possible to extract
a valid witness from a proof that verifies.

More formally, let λ ∈ N be the security parameter, and let NIZKAoK =
(setup, prove, verify, simprove) be a NIZKAoK scheme. Consider the following
game between a probabilistic polynomial-time adversary A and a challenger CH,
where transA denotes the adversary’s inputs and outputs, including its random-
ness11:

11 In the standard simulation-extractability for NIZKs the extractor extracts the wit-
ness from the proof only. The definition of Groth and Maller which we use here
is more general and also captures non-black box extractions which is used e.g., in
SNARKS.
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GameseNIZKAoK,A(1λ)

A CH
crs (crs, td)← setup(1λ), Qsim = ∅

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Query phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A may issue polynomially many

simulation queries φ π ← simprove(crs, td, φ)

π add π to Qsim

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Challenge phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φ∗, π∗

w∗ ← extractA(crs, td, transA)

If all of the following checks pass, A wins:

(φ∗, w∗) 6∈ R
verify(crs, φ∗, π∗) = accept

π∗ 6∈ Qsim

NIZKAoK has simulation extractability if for any sufficiently large security
parameter λ, for any probabilistic polynomial-time adversary A, there exists an
extraction algorithm extractA and a negligible function ν in the security param-
eter λ such that the probability that A wins the game is less than ν(λ).

NIZKAoK For Our Needs In Section 3.2 (and subsequently Section 3.3) we
use a NIZKAoK for a relation essentially proving that a signer knows some secret
key for a public key pki = gski that is within a set of signersR accumulated as aR
and this secret key is used to compute σ = H(msg)ski . Throughout Section 3.2
and Section 3.3 we are agnostic to how this specific proof can be instantiated,
but we now describe an instantiation of this proof that uses commit-and-prove
NIZKs.

Combining NIZKs using commit-and-prove We use the framework for black-box
modular composition of commit-and-prove NIZKs (CP-NIZKs) [5, 10]. A CP-
NIZK is, informally, a NIZK that can efficiently prove properties of committed
inputs through some commitment scheme. Let x be a public input and c a
commitment. A CP-NIZK is then a NIZK proving knowledge of (u,w, r) such
that u, r open c and the relation R(x;u,w) is true. In this general description, w
is some non-committed part of the witness (potentially nothing). Now, through
the commitments, we may compose several CP-NIZKs together in an efficient
manner. Given two CP-NIZKs for two relations R0 and R1, respectively, we
can prove their conjunction R(x0, x1, u, w0, w1) = R0(x0, u, w0)∧R1(x1, u, w1),
where u is a shared part of the witness. The prover commits to u as cu, generates
proofs π0, π1 from the respective schemes and outputs π = (cu, π0, π1). The
verifier then checks each proof of the respective inputs (x0, cu) and (x1, cu). The
following theorem follows directly from [10].
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Theorem 3 (Black-Box Composition of CP-NIZKs). The construction
above is a secure NIZK for the relation R.

In Section 3.2, we will want to use the following relation Rsig:

Rsig

φ = (G, g,RSAACC.pp,
aR, σ

′, h),
w = (pk, sk, wa)

 =


(pk = gsk)
∧RSAACC.verify(

RSAACC.pp, pk, aR, wa)
∧(σ′ = hsk)


A proof for this relation, however, is complicated due to the nature of the

construction in which we use it (a unique ring signature scheme), as we cannot
leak the public key pk used within the proof; this would naturally leak the
signer’s identity. So, we instead decompose Rsig into three minor commit-and-
prove schemes, and then combine these using Theorem 3. We decompose Rsig

into the three relations Rpk, RRSAACC and Rσ. Given commitments cpk and
csk to the public and secret keys, respectively, Rpk proves that sk corresponds to
pk; RRSAACC proves that pk belongs to the accumulator; and Rσ proves that
sk was indeed used to compute σ′ = H(msg)sk. By combining these, we prove
the complete relation Rsig. Formally we define the three relations as follows:

Rpk
(
φ = (pp, cpk, csk, g, g1, h1, g2, h2),
w = (pk, sk, r1, r2))

)
=

∧cpk = gpk1 hr11
∧csk = gsk2 hr22
∧pk = gsk


RRSAACC

(
φ = (G, g,RSAACC.pp, aR, g1, h1)
w = (pk,wa, r)

)
=

(
RSAACC.verify(RSAACC.pp, pk, aR, wa)∧
cpk = gpk1 hr1

)
Rσ
(
φ = (pp, csk, σ

′, h, g1, h1)
w = (sk, r)

)
=

(
σ′ = hsk

∧csk = gsk1 hr1

)
We can now obtain a proof for Rsig by composing proofs for Rpk, RRSAACC

and Rσ and applying Theorem 3.

Instantiating Relations We instantiate RRSAACC using the set membership
proof described in Section 4 of [5] while Rσ is a Schnorr-like proof. The protocol
for Rσ is described in Figure 6, and can be made non-interactive using the Fiat-
Shamir transformation. The relation Rpk can be instantiated using Bulletproofs
[8], a zero-knowledge scheme with short proofs that are compatible with [5].
Lastly, we note that if we use the transformation of Fiat and Shamir [16] to make
our proof non-interactive, we don’t automatically get simulation-extractability
(Definition 10). Therefore, we must augment the resulting non-interactive proof
by encrypting the witness to a public key pk embedded in the common reference
string. The corresponding secret key would be the trapdoor td, and in a real
execution, would not be known to anyone. We would also require a proof that
the encryption is correct.
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πextract

P(sk, r, σ′ = hsk, csk = gsk1 hr1) V(σ′ = hsk, csk = gsk1 hr1)

r1, r2 ←R Zq
t1 ← hr1

t2 ← gr11 h
r2
1

t1, t2

e e←R Zq

s1 = r1 + sk · e
s2 = r2 + r · e

s1, s2

hs1
?
= t1 · (σ′)e

gs11 h
s2
1

?
= t2 · cesk

Fig. 6: Proof for Relation Rσ

A.3 The Generalized Decisional Diffie-Hellman Problem

We leverage the Generalized Decisional Diffie-Hellman (Generalized DDH) Prob-
lem [3], described below.

Definition 11. The Generalized DDH Problem in group G asks that, given a
polynomial-length list L of tuples (u, v) of elements in a group G, an adversary
A determines whether there exists a fixed r such that for all (u, v) ∈ L u is a
random element of G and v = ur, or v and u are independent random elements
of G.

The generalized DDH problem is considered to be hard in group G if for all
efficient adversaries A, the probability that A solves a random instance of the
generalized DDH problem correctly is only negligibly greater than 1

2 . (We define
a random instance of the generalized DDH problem as an L contains independent
random elements with probability 1

2 , and elements v = ur for a random r and
independent random values u otherwise.)

B Proof of Security of Construction 1

We prove Theorem 1 in several steps. First, correctness is apparent on inspection.
Second, in Lemma 1 we address uniqueness (Definition 6). Last, in Lemma 2 we
address cross-message unlinkability (Definition 7).

Lemma 1. Construction 1 is unique under the assumptions listed in Theorem 1.

Proof. We will construct an algorithm B which will use an adversary A who can
break the uniqueness of the URS scheme in Construction 1 to break the discrete
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logarithm problem with non-negligible probability if NIZKAoK and ACC are
both secure, if the generalized DDH assumption holds, and if H is a random
oracle.

We augment our algorithm B with the following powers:

Programmable Random Oracle: We allow B to program the random oracle
H.

Simulation Extractor extractA: We give B access to the NIZKAoK simu-
lation extractor extractA corresponding to the adversary A. Such an effi-
cient extractor is guaranteed to exist, by the simulation extractability of
NIZKAoK (Definition 10).

Inputs and Outputs of A: We give B access to the inputs and outputs of A,
including its randomness tape. We denote this transcript as transA.

We build B in a sequence of games. The final game — G6 — describes the
full behavior of B. If the adversary A can distinguish interacting with B from
interacting with an honest challenger, it will have broken NIZKAoK, ACC, or
the generalized DDH assumption. If it cannot distinguish between the two, then
it must supply B with sufficiently many unlinked signatures with non-negligible
probability, which B can then use to solve an instance of the discrete logarithm
problem. (Note that B only solves the discrete logarithm problem with respect to
prime challenges; however, since there is a noticeable probability that a random
input to the discrete logarithm problem will be prime, this is sufficient.)

Game G0: B honestly executes the role of the challenger in the uniqueness game
described in Definition 6.

Game G1: This is the same as the previous game, but instead of computing
the proofs π honestly in response to signing queries, B uses the trapdoor
NIZKAoK.td to simulate the proofs using the NIZKAoK.simprove algo-
rithm.
This game is indistinguishable from G0 by the zero knowledge property of
NIZKAoK (Definition 9). Imagine that B interacts with a zero knowledge
challenger to obtain NIZKAoK.crs and the proofs π. If, in the game de-
scribed in Definition 9, the challenger chooses b = 0, the view of the adver-
sary will be as in the previous game; if instead the challenger chooses b = 1,
the view of the adversary will be as in this game. If it can guess b with
non-negligible probability, it will have broken zero-knowledge.

Game G2: This is the same as the previous game, but B keeps track of all of
the messages msg it is asked signing queries on, or which it is given forgeries
for. If it sees msg0 6= msg1 such that H(msg0) = H(msg1), it aborts.
B only aborts with negligible probability, since if A can find two messages
that hash to the same thing, it can be used to break the collision-resistance
of H.

Game G3: This is the same as the previous game, but B keeps track of all of the
signing setsR it is asked signing queries on behalf of, or which it is given forg-
eries on behalf of. If it ever sees two signer sets R,R′ such that {pki}i∈R 6=
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{pki}i∈R′ and aR = aR′ (where aR = ACC.accumulate(ACC.pp, {pki}i∈R)),
it aborts.
B only aborts with negligible probability, since if A can find two signer sets
that accumulate to the same value, it can be used to break the collision
freeness of ACC (Definition 8).

Game G4: This is the same as the previous game, but when the adversary
returns its unlinked signatures, B extracts the witnesses from those sig-
natures that were not previously returned in response to a signing oracle
query. Let L ⊂ [t] be the indices of such signatures. For (msg∗, {(σk =
(σ′k, πS,k),Rk)}k∈L), B extracts the witnesses wk = (pkik , skik , wa,k) ←
extractA(NIZKAoK.crs,NIZKAoK.td, transA).
If it holds that (φk = (G, g,ACC.pp, aRk

, σ′k,H(msg∗)), wk) 6∈ R and NIZKAoK.verify
(NIZKAoK.crs, φk, πk) = accept, B aborts.
Since in the previous two games B aborted if it ever saw two messages hash
to the same value or two signer sets accumulate to the same value, it must
be that the statement φk is one it has never returned a proof for.
B only aborts with negligible probability, since if A can find such a state-
ment φ and witness w that cause B to abort, A can trivially be used to
break the simulation extractability of NIZKAoK (Definition 10). (Just
imagine that B interacts with a simulation extractability challenger to obtain
NIZKAoK.crs and the simulated proofs π for signing query responses, and
forwards the proofs to A. It then forwards the proofs supplied by A to the
challenger. Of course, in the simulation extractability game, the adversary
gives only one proof π from which extraction should succeed; however, if
B picks a proof from {πS,k}k∈L at random to forward to the challenger, if
extraction fails for any of the proofs, B breaks simulation extractability with
non-negligible probability.)
If A succeeds in winning the uniqueness game and if B does not abort at this
point, B has successfully extracted witnesses {wk = (pkik , skik , wa,k)}k∈L
from the unique signatures (msg∗, {(σk = (σ′k, πS,k),Rk)}k∈[t]) such that

(pkik = gskik )∧ACC.verify(ACC.pp, aRk
, pkik , wa,k)∧(σ′k = H(msg∗)skik ).

For A to have won, it must also be true that there exists a k∗ ∈ L such that
ik∗ is not corrupt.

Game G5: This is the same as the previous game, but B now aborts if A can be
used to break the collision freeness property of ACC (Definition 8). Recall
that B computes aRk∗ as aRk∗ ← ACC.accumulate(ACC.pp, {pki}i∈Rk∗ ).
B aborts if ACC.verify(ACC.pp, pkik , aRk∗ , wa,k∗) = accept, and pkik∗ 6∈
{pki}i∈Rk∗ .
B only aborts with negligible probability, since if A finds pkik∗ , wa,k∗ ,Rk∗
that make B abort, A can trivially be used to break the collision freeness
property of ACC. (Just imagine that B interacts with a collision freeness
challenger to obtain ACC.pp.)
If A succeeds in winning the uniqueness game and if B does not abort at
this point, it must be that pkik ∈ {pki}i∈Rk

.
Game G6: If A successfully breaks the uniqueness property, we know that each

pair of signatures it returned appears unique. So, σ′k = H(msg)skik for k ∈ L
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are all distinct, and skik for k ∈ L must all be distinct as well. At least one
of those secret keys belongs to an honest party. Let i∗ = ik∗ be the identity
of that honest signer (whose secret key ski∗ was extracted by B).
In this game, B guesses i∗ at the beginning of the game. If B does not
abort in the previous game, pki∗ is guaranteed to be an actual public key
corresponding to one of the signers i∗ in the system (of which there are
polynomially many), so B has a non-negligible (one-in-polynomial) chance
of guessing correctly. At the beginning, when it is generating public-private
key pairs, it generates all the others honestly, but sets pki∗ to a random
prime element of G (for which it does not know the corresponding secret
key). (Note that pki∗ is still identically distributed to an honestly generated
public key.)
Now that B does not know ski∗ , it will have trouble coming up with σ′ =
H(msg)ski∗ for signing queries on msg on behalf of signer i∗. (Note that
the proof π in the signature is already being simulated, and so not knowing
ski∗ does not pose an obstacle to producing π.) Instead of computing them
honestly, B will now pick σ′ to be a random element of G (consistently
returning the same element per message msg that A asks for a signature
from signer i∗ on).
This game is indistinguishable from the previous game by the hardness of the
generalized decisional Diffie-Hellman problem, thanks to the use of the pro-
grammable random oracle H. Just imagine that B interacts with a generalized
DDH challenger at the beginning of the game to obtain (u1 = g, v1 = pki∗)
(aborting if pki∗ isn’t prime) and all (u = H(msg), v = σ′) pairs. B will store
the (u, v) tuples, and set H(msg) = u, σ = v as needed.
Finally, if B is correct in its guess of i∗, then it will have been able to use
A to compute the discrete log of pki∗ , since if A succeeds in winning the
unforgeability game, B can extract ski∗ such that pki∗ = gski∗ from A’s
forgery. (Just imagine that, instead of picking pki∗ randomly, B gets pki∗ as
a discrete log challenge.)

Lemma 2. Construction 1 is cross-message unlinkable under the assumptions
listed in Theorem 1 (however, it does not require the security of the RSA accu-
mulator).

Proof. Game G0: B honestly executes the role of the challenger in the cross-
message unlinkability game described in Definition 7.

Game G1: This is the same as the previous game, but instead of computing
the proofs π honestly in response to signing queries, B uses the trapdoor
NIZKAoK.td to simulate the proofs using the NIZKAoK.simprove algo-
rithm.
This game is indistinguishable from G0 by the zero knowledge property of
NIZKAoK (Definition 9) (as in the proof of Lemma 1).

Game G2: At the beginning of this game, B guesses the signer index i0 that A
will ask for a challenge on. It also guesses when A will ask the first hash query
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on the challenge message msg0 (“never” being a valid guess). B has a non-
negligible (one-in-polynomial) chance of guessing both those things correctly.
It sets pki0 to be a random prime element of G (such that the corresponding
secret key is not known) and H(msg0) to be a random element of G.
Now that B does not know ski0 , it will have trouble coming up with σ′ =
H(msg)ski∗ for signing queries (/ challenges) on msg on behalf of signer i0.
(Note that the proof π in the signature is already being simulated, and so not
knowing ski0 does not pose an obstacle to producing π; the only remaining
challenge is in producing σ′.) Instead of computing σ′ honestly, B will now
pick σ′ to be a random element of G (consistently returning the same element
per message msg that A asks for a signature from signer i0 on).
If B is incorrect in its guesses, it aborts.
Just like in the last game of the proof of Lemma 1, if B does not abort, this
game is indistinguishable from the previous game by the generalized DDH
assumption, thanks to the powers of the programmable random oracle.

Game G3: At the beginning of this game, B additionally guesses the signer
index i1 that A will ask for a challenge on. It also guesses when A will ask
the first hash query on the challenge message msg1 (“never” being a valid
guess). If B is incorrect in its guesses, it aborts. It handles signing queries /
challenges for i1 just like it does for i0.
If B does not abort, this game is indistinguishable from the previous game,
for the same reasons as above.
Note that now, the distribution of the challenge is independent of b, so the
adversary cannot win with probability greater than 1

2 .

C Proof of Security of Construction 2

We prove Theorem 2 in several steps. First, correctness is apparent on inspec-
tion. Second, in Lemma 3 we address anonymity. Last, in Lemma 4 we address
unforgeability.

Lemma 3. If URS satisfies cross-message unlinkability (Definition 7) then Con-
struction 2 satisfies anonymity (Definition 4).

Proof. We will construct an algoritm B which will break the cross-message un-
linkability of the underlying URS scheme against a URS challenger CH, by as-
suming we have an attacker A who can break the anonymity of the TRS scheme
in Construction 2.

Setup B receives from A the set of users U on which A wants to play the game.
B then sets up the game with the URS challenger CH, receiving the public
parameters pp as well as public keys for each user i ∈ U . It forwards this
information to the TRS adversary A.

First Query Phase Amay issue corruption, signing and registration queries
to B, which are handled as follows:
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Corruption or Registration for Party i: B forwards this query to CH,
and the answer from CH is then forwarded back to A.

Signing message msg by i ∈ R: B sets msg′ = (msg, {pkj}j∈R), and is-
sues a signing query to CH for (msg′,R, i), getting σi. B then returns σi
to A.

Challenge Once A is done issuing queries, A sends B a challenge message
msg∗, a ring R∗, and two users i∗0 and i∗1. B then sets msg0 = ⊥ (or
any other arbitrary value) and msg1 = (msg∗, {pki}i∈R∗}). B then sends
(msg0,msg1,R∗,R∗, i∗0, i∗1) to CH and gets back (σ∗0 , σ

∗
1). B forwards σ∗1 to

A.
Second Query Phase A is allowed to issue additional signing, registration

and corruption queries to B. These are handled in similar fashion to the
first query phase.

Challenge Response A returns a bit b′ to B. This bit b′ is simply fowarded
to CH.

If A has a non-negligible probability of winning the TRS anonymity game then
B has non-negligible probability of winning the URS cross-message unlinkability
game. This follows from σ∗1 being a partial signature for msg∗ using the ring
R∗ signed by either i∗0 or i∗1. If A can then with non-negligible probability guess
which case we are in, with b = 0 implying that i∗0 signed the message and b = 1
that i∗1 signed the message, then B will with non-negligible probability guess
correctly as well.

Lemma 4. If URS satisfies uniqueness (Definition 6) then Construction 2 sat-
isfies unforgeability (Definition 3).

Proof. We will construct an algorithm B which will break the uniqueness of the
underlying URS scheme against a URS challenger CH, by assuming we have an
attacker A who can break the unforgeability of the TRS scheme in Construc-
tion 2.

Setup B receives from A the set of users U on which A wants to play the game.
B then sets up the game with the URS challenger CH, receiving the public
parameters pp as well as public keys for each user i ∈ U . B forwards this
information to the TRS adversary A.

Query Amay issue corruption, signing and registration queries to B, which
B handles as in the proof of Lemma 3, by forwarding to the URS challenger
CH (with the appropriate modifications to the messages) and returning the
challenger’s response to the adversary.

Challenge A produces a signature σ∗ on some message msg∗ and under some
ring R∗ such that fewer than t members of R∗ are corrupt.

– B parses σ∗ = {σ∗1 , . . . , σ∗t }.
– Let msg′ = (msg∗, {pki}i∈R∗).
– B sends {(msg′, σ∗k,R∗)}k∈[t] to CH.

If A has a non-negligible probability of winning the TRS unforgeability game,
then B has non-negligible probability of winning the URS uniqueness game
against the challenger CH.
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