
BETA: Biometric Enabled Threshold Authentication

Shashank Agrawal1, Saikrishna Badrinarayanan2, Payman Mohassel3, Pratyay
Mukherjee4, and Sikhar Patranabis5

1Visa Research, shashank.agraval@gmail.com
2Visa Research, bsaikrishna7393@gmail.com

3Facebook, payman.mohassel@gmail.com
4Visa Research, pratyay85@gmail.com

5ETH Zürich, sikharpatranabis@gmail.com

In the past decades, user authentication has been dominated by server-side password-
based solutions that rely on “what users know”. This approach is susceptible to breaches
and phishing attacks, and poses usability challenges. As a result, the industry is gradually
moving to biometric-based client-side solutions that do not store any secret information on
servers. This shift necessitates the safe storage of biometric templates and private keys, which
are used to generate tokens, on user devices.

We propose a new generic framework called Biometric Enabled Threshold Authentication
(BETA) to protect sensitive client-side information like biometric templates and crypto-
graphic keys. Towards this, we formally introduce the notion of Fuzzy Threshold Tokenizer
(FTT) where an initiator can use a “close” biometric measurement to generate an authenti-
cation token if at least t (the threshold) devices participate. We require that the devices only
talk to the initiator, and not to each other, to capture the way user devices are connected
in the real world. We use the universal composability (UC) framework to model the security
properties of FTT, including the unforgeability of tokens and the privacy of the biometric val-
ues (template and measurement), under a malicious adversary. We construct three protocols
that meet our definition.

Our first two protocols are general feasibility results that work for any distance function,
any threshold t and tolerate the maximal (i.e. t− 1) amount of corruption. They are based
on any two round UC-secure multi-party computation protocol in the standard model (with a
CRS) and threshold fully homomorphic encryption, respectively. We show how to effectively
use these primitives to build protocols in a constrained communication model with just four
rounds of communication.

For the third protocol, we consider inner-product based distance metrics (cosine similarity,
Euclidean distance, etc.) specifically, motivated by the recent interest in its use for face
recognition. We use Paillier encryption, efficient NIZKs for specific languages, and a simple
garbled circuit to build an efficient protocol for the common case of n = 3 devices with one
compromised.

1

Contents

1 Introduction 3
1.1 Our Contributions . 4
1.2 Related Work . 7

2 Technical Overview 8
2.1 MPC based protocol . 8
2.2 Threshold FHE based protocol . 9
2.3 Cosine Similarity: single corruption . 10
2.4 Organization . 12

3 Preliminaries 13
3.1 Threshold Signature . 13

4 Formalizing Fuzzy Threshold Tokenizer (FTT) 14
4.1 Security Definition . 14

4.1.1 Ideal Functionality FTS
ftt . 15

4.2 Discussion . 17

5 Any Distance Measure from MPC 18
5.1 Construction . 19

6 Any Distance Measure using Threshold FHE 21
6.1 Construction . 21

7 Cosine Similarity: Single Corruption 23
7.1 Construction . 24
7.2 Euclidean Distance . 27

8 Open Problems 27

A Cryptographic Definitions 32
A.1 Basic primitives . 32
A.2 Additively Homomorphic Encryption . 37
A.3 Threshold Fully Homomorphic Encryption . 37
A.4 Secure Multiparty Computation . 38

B Security Proofs 40
B.1 Proof of Theorem 1 . 40

B.1.1 Description of Simulator . 40
B.1.2 Hybrids . 42

B.2 Proof of Theorem 3 . 46
B.2.1 Description of Simulator . 46
B.2.2 Hybrids . 50

B.3 Proof of Theorem 5 . 63
B.3.1 Description of Simulator . 64
B.3.2 Hybrids . 66

2

1 Introduction

Traditionally, password-based authentication has been the dominant approach for authenti-
cating users on the Internet, by relying on “what users know”. However, this approach has its
fair share of security and usability issues. It typically requires the servers to store a (salted)
hash of all passwords, making them susceptible to offline dictionary attacks. Indeed, large-
scale password breaches in the wild are extremely common [lis, prc]. Passwords also pose
challenging usability problems. High entropy passwords are hard to remember by humans,
while low entropy passwords provide little security, and research has shown that introducing
complex restrictions on password choices can backfire [GFN+17, Sec A.3].

There are major ongoing efforts in the industry to address some of these issues. For
example, “unique” biometric features such as finger-print [pix], facial scans [appa], and iris
scans [sam] are increasingly popular first or second factor authentication mechanisms for
logging into devices and applications. Studies show that biometrics are much more user-
friendly [ess], particularly on mobile devices, as users do not have to remember or enter any
secret information. At the same time, a (server-side) breach of biometric data is much more
damaging because, unlike passwords, there is no easy way to change biometric information
regularly.

Therefore, the industry is shifting away from transmitting or storing user secrets on the
server-side. For example, biometric templates and measurements are stored and processed
on the client devices where the matching also takes place. A successful match then unlocks
a private signing key for a digital signature scheme which is used to generate a token on a
fresh challenge. Instead of the user data, the token is transmitted to the server, who only
stores a public verification key to verify the tokens. (Throughout the paper, we shall use the
terms token and signature interchangeably.) Thus, a server breach does not lead to a loss of
sensitive user data.

Most prominently, this is the approach taken by the FIDO Alliance [fid], the world’s
largest industry-wide effort to enable an interoperable ecosystem of hardware-, mobile- and
biometric-based authenticators that can be used by enterprises and service providers. This
framework is also widely adopted by major Internet players and incorporated into all major
browsers in the form of W3C standard Web Authentication API [w3s].

Hardware-based protection. With biometric data and private keys (for generating to-
kens) stored on client devices, a primary challenge is to securely protect them. As pointed
out before, this is particularly crucial with biometrics since unlike passwords they are not
replaceable. The most secure approach for doing so relies on hardware-based solutions such
as secure enclaves [appb] that provide physical separation between secrets and applications.
However, secure hardware is not available on all devices, can be costly to support at scale,
and provides very little programmability.

Software-based protection. Software-based solutions such as white-box cryptography
are often based on ad-hoc techniques that are regularly broken [whi]. The provably se-
cure alternative, i.e. cryptographic obfuscation [BGI+01, GGH+13], is not yet practical for
real-world use-cases and its mathematical foundation is not yet well understood. A simple
alternative approach is to apply “salt-and-hash” techniques, often used to protect passwords,
to biometric templates before storing them on the client device. Here, näıve solutions fail
because biometric matching is almost always a fuzzy match that checks whether the distance
between two vectors is above a threshold or not.

3

Using fuzzy extractors. It is tempting to think that a better way to implement the
hash-and-salt approach for biometric data is through a cryptographic primitive known as
fuzzy extractor [DRS04, Boy04]. However, as also discussed by Dupont et al. [DHP+18], this
approach only works for high-entropy biometric data and is susceptible to offline dictionary
attacks.

Distributed cryptography to the rescue. Our work is motivated by the fact that most
users own and carry multiple devices (laptop, smart-phone, smart-watch, etc.) and have
other IoT devices around when authenticating (smart TV, smart-home appliances, etc.).
We introduce a new framework for client-side biometric-based authentication that securely
distributes both the biometric template as well as the secret signing key among multiple
devices. These devices can collectively perform biometric matching and token generation
without ever reconstructing the template or the signing key on any one device. We refer to
this framework as Biometric Enabled Threshold Authentication (BETA for short) and study
it at length in this paper.

Before diving deeper into the details, we note that while our primary motivation stems
from a client-side authentication mechanism, our framework is quite generic and can be used
in other settings. For example, it can also be used to protect biometric information on the
server-side by distributing it among multiple servers who perform the matching and token
generation (e.g., for a single sign-on authentication token) in a fully distributed manner.

1.1 Our Contributions

To concretely instantiate our framework BETA, we formally introduce the notion of fuzzy
threshold tokenizer (FTT). We provide a universally composable (UC) security definition for
FTT and design several protocols that realize it. We first briefly describe the notion of a
Fuzzy Threshold Tokenizer.

Fuzzy Threshold Tokenizer. Consider a set of n parties/devices, a distribution W over
vectors in Z`q, a threshold t on the number of parties, a distance predicate Dist and an
unforgeable threshold signature scheme TS. Initially, in a global setup phase, a user generates
some public and secret parameters (in a trusted setting), and distributes them amongst the
n devices she owns. Further, she also runs the setup of the scheme TS and secret shares the
signing key amongst the devices. In an enrollment phase, user samples a biometric template
−→w ∈ Z`q according to W and securely shares it amongst all the devices. Any set of t devices
can, together, completely reconstruct the biometric template −→w and the signing key of the
threshold signature scheme. Then, during an online sign on session, an initiating device P ,
with a candidate biometric measurement −→u as input, can interact in a protocol with a set S
of (t− 1) other devices. At the end of this, if −→u is “close enough” to the template −→w (with
respect to distance predicate Dist), the initiating device P obtains a token (signature) on a
message of its choice.

It is important to note that we do not allow the other participating (t − 1) devices to
interact amongst themselves1 and all communication goes through the initiating device P .
This is a critical requirement on the communication model for FTT since in a typical usage
scenario, one or two primary devices (e.g., a laptop or a smart-phone) play the role of the
initiating device and all other devices are only paired/connected to the primary device. (These

1Note that corrupt parties can of course freely interact amongst themselves.

4

devices may not even be aware of the presence of other devices.) Indeed, this requirement
makes the design of constant-round FTT protocols significantly more challenging. Further, in
any round of communication, we only allow unidirectional exchange of messages, i.e., either
P sends a message to some subset of the other (t− 1) devices or vice versa.

Security definition. Consider a probabilistic polynomial time adversary A that corrupts
a set T of devices where |T | < t. Informally, the security properties that we wish to capture
in an FTT scheme are as follows:

(i) Privacy of biometric template: From any sign on session initiated by a corrupt device,
A should not be able to learn any information about the biometric template −→w apart
from just the output of the predicate Dist(−→u ,−→w) for its choice of measurement −→u . If the
sign on session was initiated by an honest device, A should learn no information about
−→w . Crucially, we do not impose any restriction on the entropy of the distribution from
which the template is picked.

(ii) Privacy of biometric measurement: For any sign on session initiated by an honest device,
A should learn no information whatsoever about the measurement −→u .

(iii) Token unforgeability : A should not be able to compute a valid token (that verifies
according to the threshold signature scheme TS) unless it initiated a sign on session on
behalf of a corrupt party with a measurement −→u such that Dist(−→u ,−→w) = 1. Furthermore,
A should only be able to compute exactly one token from each such session.

Our first contribution is a formal modeling of the security requirements of a fuzzy thresh-
old tokenizer via a real-ideal world security definition in the universal composability (UC)
framework [Can01]. We refer the reader to Section 4 for the formal definition and a detailed
discussion on its intricacies.

Our next contribution is a design of several protocols that realize this primitive.

Protocol-1(πmpc). Given any threshold signature scheme TS, for any distance measure
Dist, any n, t, we construct a four round2 UC-secure FTT protocol πmpc. Our construction
is based on any two-round (over a broadcast channel) UC-secure multi-party computation
(MPC) protocol [MW16, PS16, GS18, BL18] in the CRS model that is secure against up to
all but one corruption along with other basic primitives. πmpc tolerates up to (t− 1) (which
is maximal) malicious devices.

Protocol-2 (πtfhe). Given any threshold signature scheme TS, for any distance measure
Dist, any n, t, we construct a four round UC-secure FTT protocol πtfhe. Our construction is
based on any t out of n threshold fully homomorphic encryption scheme (TFHE) and other
basic primitives. Like πmpc, this protocol is secure against (t− 1) malicious devices.

2Recall that by one communication round, we mean a unidirectional/non-simultaneous message exchange
channel over a peer-to-peer network. That is, in each round either the initiator sends messages to some subset
of the other participating devices or vice versa. In contrast, one round of communication over a broadcast
channel means that messages are being sent simultaneously by multiple (potentially all) parties connected to
the channel and all of them receive all the messages sent in that round. All our FTT protocols use peer-to-peer
channels which is the default communication model in this paper.

5

The above two feasibility results are based on two incomparable primitives (two round
MPC and threshold FHE). On the one hand, two-round MPC seems like a stronger notion
than threshold FHE. But, on the other hand, two-round MPC is known from a variety of as-
sumptions like LWE/DDH/Quadratic Residuosity, while threshold FHE is known only from
LWE. Further, the two protocols have very different techniques which may be of independent
interest.

Protocol-3 (πip). We design the third protocol πip specifically for the cosine similarity dis-
tance metric, which has recently been shown to be quite effective for face recognition (CosFace
[WWZ+18], SphereFace [LWY+], FaceNet [SKP15]). We pick a threshold of three for this
protocol as people nowadays have at least three devices on them most of the time (typically,
a laptop, a smart-phone and a smart-watch). πip is secure in the random oracle model as long
as at most one of the devices is compromised. We use Paillier encryption, efficient NIZKs for
specific languages, and a simple garbled circuit to build an efficient four-round protocol.

Efficiency analysis of πip. Finally, we perform a concrete efficiency analysis of our third
protocol πip. We assume that biometric templates and measurements have ` features (or
elements) and every feature can be represented with m bits. Let λ denote the computational
security parameter and s denote the statistical security parameter. In the protocol πip, we use
Paillier encryption scheme to encrypt each feature of the measurement and its product with
the shares of the template. The initiator device proves that the ciphertexts are well-formed
and the features are of the right length. For Paillier encryption, such proofs can be done
efficiently using only O(`m) group operations [DJ01, CDN01].

The other devices use the homomorphic properties of Paillier encryption to compute
ciphertexts for inner-product shares and some additional values. They are sent back to the
initiator but with a MAC on them. Then the other devices generate a garbled circuit that
takes the MAC information from them and the decrypted ciphertexts from the initiator to
compute if the cosine value exceeds a certain threshold. The garbled circuit constructed here
only does 5 multiplications on numbers of length O(m + log ` + s). Oblivious transfers can
be preprocessed in the setup phase between every pair of parties so that the online phase
is quite efficient (only symmetric-key operations). Furthermore, since only one of the two
helping devices can be corrupt, only one device needs to transfer the garbled circuit [MRZ15],
further reducing the communication overhead. (We have skipped several important details
of the protocol here, but they do not affect the complexity analysis. See Section 2.3 for a
complete overview of the protocol.)

An alternate design appropach is to use the garbled circuit itself to compute the inner-
product. However, there are two disadvantages of this approach. First, it does not scale
efficiently with feature vector length. The number of multiplications to be done inside the
garbled circuit would be linear in the number of features, or the size of the circuit would be
roughly O(m2`). This is an important concern because the number of features in a template
can be very large (e.g., see Figure 1 in the NISTIR draft on Ongoing Face Recognition Vendor
Test (FRVT) [nis]). Second, the devices would have to prove in zero knowledge that the bits
fed as input to the circuit match the secret shares of the template given to them in the
enrollment phase. This incurs additional computational overheads.

6

1.2 Related Work

Fuzzy identity based encryption, introduced by Sahai and Waters [SW05], allows for de-
crypting a ciphertext encrypted with respect to some identity id if the decryptor possesses
the secret key for an identity that almost matches id. However, unlike FTT, at the time
of decryption, the decryptor is required to know both identities and which positions match.
Recall that one of our main goals is to distribute the biometric template across all devices so
that no one device ever learns it.

Function secret sharing, introduced by Boyle et al. [BGI15], enables to share the com-
putation of a function f amongst several users. Another interesting related primitive is
homomorphic secret sharing [BGI+18]. However, both these notions don’t quite fit in our
context because of the limitations on our communication model and the specific security
requirements against a malicious adversary.

Secure multiparty computation protocols in the private simultaneous messages model
[FKN94, IK97, BIK17a] consider a scenario where there is a client and a set of servers that
wish to securely compute a function f on their joint inputs wherein the communication
model only involves interaction between the client and each individual server. However, in
that model, the adversary can either corrupt the client or a subset of servers but not both.

The work of Dupont et al. [DHP+18] construct a fuzzy password authenticated key ex-
change protocol where each of the two parties have a password with low entropy. At the end
of the protocol, both parties learn the shared secret key only if the two passwords are “close
enough” with respect to some distance measure. In our work, we consider the problem of
generating signatures and also multiple parties. Another crucial difference is that in their
work, both parties hold a copy of the password whereas in our case, the biometric template
is distributed between parties and therefore is never exposed to any party. There is also a
lot of work on distributed password authenticated key exchange [BCV16] (and the references
within) but their setting considers passwords (and so, equality matching) and not biometrics.

There has been a lot of work in developing privacy-preserving ways to compare biometric
data [BCP13, BDCG13, DSB17] but it has mostly focused on computing specific distance
measures (like Hamming distance) in the two-party setting where each party holds a vector.
There has also been some privacy-preserving work in the same communication model as ours
[CSS12, JL13, BIK+17b] but it has mainly focused on private aggregation of sensitive user
data.

Generating tokens for user authentication in a threshold manner has been of interest
lately. Agrawal et al. [AMMR18] propose new threshold encryption schemes and suggest that
they can be used for enterprise network authentication, multi-device IoT authentication, etc.
Agrawal et al. [AMMM18] and Baum et al. [BFH+19] build threshold protocols for single
sign-on authentication. They distribute the password dictionary and the secret key for token
generation among a set of servers such that no t−1 among them can generate a token on their
own. Their setting is somewhat similar to ours but the distance function is just an equality
check, which does not work for biometric data. However, they consider both signatures and
MACs as tokens.

7

2 Technical Overview

2.1 MPC based protocol

Emulating General Purpose MPC. Our starting point is the observation that suppose all
the parties could freely communicate, then any UC-secure MPC protocol against a malicious
adversary in the presence of a broadcast channel would intuitively be very useful in the
design of an FTT scheme if we consider the following functionality: the initiator P ∗ has
input (msg, S,−→u), every party Pi ∈ S has input (msg, S), their respective shares of the
template −→w and the signing key. The functionality outputs a signature on msg to party P ∗

if Dist(−→u ,−→w) = 1 and |S| = t. Recently, several works [MW16, PS16, BP16, GS18, BL18]
have shown how to construct two round UC-secure MPC protocols in the CRS model in the
presence of a broadcast channel from standard cryptographic assumptions. However, the
issue with following this intuitive approach is that the communication model of our FTT
primitive does not allow all parties to interact amongst each other - in particular, the parties
in the set S can’t directly talk to each other and all communication has to be routed through
the initiator. Armed with this insight, our goal now is to emulate a two round MPC protocol
π in our setting.

For simplicity, let us first consider n = t = 3. That is, there are three parties: P1, P2, P3.
Consider the case when P1 is the initiator. Now, in the first round of our FTT scheme,
P1 sends msg to both parties. Then, in round 2, we have P2 and P3 send their round one
messages of the MPC protocol π. In round 3 of our FTT scheme, P1 sends its own round one
message of the MPC protocol to both parties. Along with this, P1 also sends P2’s round one
message to P3 and vice versa. So now, at the end of round 3 of our FTT scheme, all parties
have exchanged their first round messages of protocol π.

Our next observation is that since we care only about P1 getting output, in the underlying
protocol π, only party P1 needs to receive everyone else’s messages in round 2. Therefore,
in round 4 of our FTT scheme, P2 and P3 can compute their round two messages based on
the transcript so far and just send them to P1. This will enable P1 to compute the output of
protocol π.

Challenges. Unfortunately, the above scheme is insecure. Note that in order to rely on the
security of protocol π, we crucially need that for any honest party Pi, every other honest party
receives the same first round message on its behalf. Also, we require that all honest parties
receive the same messages on behalf of the adversary. In our case, since the communication
is being controlled and directed by P1 instead of a broadcast channel, this need not be true
if P1 was corrupt and P2, P3 were honest. Specifically, one of the following two things could
occur: (i) P1 can forward an incorrect version of P3’s round one message of protocol π to P2

and vice versa. (ii) P1 could send different copies of its own round 1 message of protocol π
to both P2 and P3.

Signatures to Solve Challenge 2. To solve the first problem,we simply enforce that P3

sends a signed copy of its round 1 message of protocol π which is forwarded by P1 to P2.
Then, P2 accepts the message to be valid if the signature verifies. In the setup phase, we
can distribute a signing key to P3 and a verification key to everyone, including P2. Simi-
larly, we can ensure that P2’s actual round 1 message of protocol π was forwarded by P1 to P3.

Pseudorandom Functions to Solve Challenge 2. Tackling the second problem is a bit
trickier. The idea is instead of enforcing that P1 send the same round 1 message of protocol

8

π to both parties, we will instead ensure that P1 learns their round 2 messages of protocol π
only if it did indeed send the same round 1 message of protocol π to both parties. We now
describe how to implement this mechanism. Let us denote msg2 to be P1’s round 1 message
of protocol π sent to P2 and msg3 (possibly different from msg2) to be P1’s round 1 message
of protocol π sent to P3. In the setup phase, we distribute two keys k2, k3 of a pseudorandom
function (PRF) to both P2, P3. Now, in round 4 of our FTT scheme, P3 does the following:
instead of sending its round 2 message of protocol π as is, it encrypts this message using
a secret key encryption scheme where the key is PRF(k3,msg3). Then, in round 4, along
with its actual message, P2 also sends PRF(k3,msg2) which would be the correct key used by
P3 to encrypt its round 2 message of protocol π only if msg2 = msg3. Similarly, we use the
key k2 to ensure that P2’s round 2 message of protocol π is revealed to P1 only if msg2 = msg3.

The above approach naturally extends for arbitrary n, t. by sharing two PRF keys between
every pair of parties. There, each party encrypts its round 2 message of protocol π with a
secret key that is an XOR of all the PRF evaluations. There are additional subtle issues
when we try to formally prove that the above protocol is UC-secure and we refer the reader
to Section 5 for more details.

2.2 Threshold FHE based protocol

The basic idea behind second our protocol is to use an FHE scheme to perform the distance
predicate computation between the measurement −→u and the template −→w . In particular, in
the setup phase, we generate the public key pk of an FHE scheme and then in the enroll-
ment phase, each party is given an encryption ct−→w of the template. In the sign on phase, an
initiator P ∗ can compute a ciphertext ct−→u that encrypts the measurement and send it to all
the parties in the set S which will allow them to each individually compute a ciphertext ct∗

homomorphically that evaluates Dist(−→u ,−→w). However, the first challenge is how to decrypt
this ciphertext ct∗? In other words, who gets the secret key sk of the FHE scheme in the
setup? If sk is given to all parties in S, then they can, of course, decrypt ct−→u but that violates
privacy of the measurement. On the other hand, if sk is given only to P ∗, that allows P ∗ to
decrypt ct−→w violating privacy of the template.

Threshold FHE. Observe that this issue can be overcome if somehow the secret key is
secret shared amongst all the parties in S in such a way that each of them, using their secret
key share ski, can produce a partial decryption of ct∗ that can then all be combined by P ∗

to decrypt ct∗. In fact, this is exactly the guarantee of threshold FHE. This brings us to the
next issue that if only P ∗ learns whether Dist(−→u ,−→w) = 1, how do the parties in S successfully
transfer the threshold signature shares? (recall that the transfer should be conditioned upon
Dist evaluating to 1) One natural option is, in the homomorphic evaluation of the ciphertext
ct, apart from just checking whether Dist(−→u ,−→w) = 1, perhaps the circuit could then also
compute the partial signatures with respect to the threshold signature scheme if the check
succeeds. However, the problem then is that, for threshold decryption, there must be a com-
mon ciphertext available to each party. In this case, however, each party would generate a
partial signature using its own signing key share resulting in a different ciphertext and in
turn preventing threshold decryption.

Partial Signatures. To overcome this obstacle, at the beginning of the sign-on phase, each
party computes its partial signature σi and information-theoretically encrypts it via one-

9

time pad with a uniformly sampled one-time key Ki. The parties then transfer the partial
signatures in the same round in an encrypted manner without worrying about the result of
the decryption. Now, to complete the construction, we develop a mechanism such that:

− Whenever the FHE decryption results in 1, P ∗ learns the set of one-time secret keys
{Ki} and hence reconstructs the set of partial signatures {σi}.

− Whenever the FHE decryption results in 0, P ∗ fails to learn any of the one-time secret
keys, which in turn ensures that each of the partial signatures remains hidden from P ∗.

To achieve that, we do the following: each party additionally broadcasts ctKi , which is
an FHE encryption of its one-time secret key Ki, to every other party during the enrollment
phase. Additionally, we use t copies of the FHE circuit being evaluated as follows: the ith

circuit outputs Ki if Dist(−→u ,−→w) = 1 – that is, this circuit is homomorphically evaluated
using the FHE ciphertexts ct−→u , ct−→w , ctKi .

3 Now, at the end of the decryption, if Dist(−→u ,−→w)
was indeed equal to 1, P ∗ learns the set of one-time keys {Ki} via homomorphic evaluation
and uses these to recover the corresponding partial signatures.

Consider the case where the adversary A initiates a session with a measurement −→u such
that Dist(−→u ,−→w) = 0. Our security proof formally establishes that the adversary A learns
no information about each one-time key Ki of the honest parties and hence about the cor-
responding signature share. At a high level, we exploit the simulation and semantic security
guarantees of the threshold FHE scheme to: (a) simulate the FHE partial decryptions to
correctly output 0 and (b) to switch each ctKi to be an encryption of 0. At this point, we
can switch each Ki to be a uniformly random string and hence “unrecoverable” to A. We
refer the reader to Section 6 for more details on this.

NIZKs. One key issue is that parties may not behave honestly - that is, in the first round,
P ∗ might not run the FHE encryption algorithm honestly and similarly, in the second round,
each party might not run the FHE partial decryption algorithm honestly which could lead
to devastasting attacks. To solve this, we require each party to prove honest behavior using
a non-interactive zero knowledge argument (NIZK). Finally, as in the previous section, to
ensure that P ∗ sends the same message ct−→u to all parties, we use a signature-based verification
strategy, which adds two rounds resulting in a four round protocol.

2.3 Cosine Similarity: single corruption

In this section, we build a protocol for a specific distance measure4 (Cosine Similarity). It is
more efficient compared to our feasibility results. On the flip side, it tolerates only one cor-
ruption: that is, our protocol is UC-secure in the Random Oracle model against a malicious

adversary that can corrupt only one party. For two vectors −→u ,−→w , CS.Dist(−→u ,−→w) = 〈−→u ,−→w〉
||−→u ||·||−→w ||

where ||−→x || denotes the L2-norm of the vector. Dist(−→u ,−→w) = 1 if CS.Dist(−→u ,−→w) ≥ d where
d is chosen by Dist. Without loss of generality, assume that distribution W samples vectors
−→w with ||−→w || = 1. Then, we check if 〈−→u ,−→w〉 > (d · 〈−→u ,−→u 〉)2 instead of CS.Dist(−→u ,−→w) > d.
This syntactic change allows more flexibility.

3Note that the creation and broadcasting of these ciphertexts can happen in parallel within a single round
of communication between P ∗ and the other parties in the set S.

4Our construction can also be extended to work for the related Euclidean Distance function but we focus
on Cosine Similarity in this section.

10

Distributed Garbling. Our starting point is the following. Suppose we had t = 2. Then,
we can just directly use Yao’s [Yao86] two party semi-honest secure computation protocol as
a building block to construct a two round FTT scheme. In the enrollment phase, secret share
−→w into −→w1,

−→w2 and give one part to each party. The initiator requests for labels via oblivious
transfer (OT) corresponding to his share of −→w and input −→u while the garbled circuit, which
has the other share of −→w hardwired, reconstructs −→w , checks if 〈−→u ,−→w〉 > (d · 〈−→u ,−→u 〉)2 and
if so, outputs a signature. This protocol is secure against a malicious initiator who only has
to evaluate the garbled circuit, if we use an OT protocol that is malicious secure in the CRS
model. However, to achieve malicious security against the garbler, we would need expensive
zero knowledge arguments that prove correctness of the garbled circuit. Now, in order to
build an efficient protocol that achieves security against a malicious garbler and to work with
threshold t = 3, the idea is to distribute the garbling process between two parties.

Consider an initiator P1 interacting with parties P2, P3. We repeat the below process for any
initiator and any pair of parties that it must interact with. For ease of exposition, we just
consider P1, P2, P3 in this section. Both P2 and P3 generate one garbled circuit each using
shared randomness generated during setup and the evaluator just checks if the two circuits
are identical. Further, both P2 and P3 get the share −→w2 and a share of the signing key in
the enrollment and setup phase respectively. Note that since the adversary can corrupt at
most one party, this check would guarantee that the evaluator can learn whether the garbled
circuit was honestly generated. In order to ensure that the evaluator does not evaluate both
garbled circuits on different inputs, we will also require the garbled circuits to check that
P1’s OT receiver queries made to both parties was the same. The above approach is inspired
from the three party secure computation protocol of Mohassel et al. [MRZ15].

However, the issue here is that P1 needs a mechanism to prove in zero knowledge that
it is indeed using the share −→w1 received in the setup phase as input to the garbled circuit.
Moreover, even without this issue, the protocol is computationally quite expensive. For co-
sine similarity, the garbled circuit will have to perform a lot of expensive operations - for
vectors of length `, we would have to perform O(`) multiplications inside the garbled circuit.
As mentioned in the introduction, because the number of features in a template (`) can be
very large for applications like face recognition, our goal is to improve the efficiency and
scalability of the above protocol by performing only a constant number of multiplications
inside the garbled circuit.

Additive Homomorphic Encryption. Our strategy to build an efficient protocol is to use
additional rounds of communication to offload the heavy computation outside the garbled
circuit and also along the way, solve the issue of the initiator using the right share −→w1. In
particular, if we can perform the inner product computation outside the garbled circuit in
the first phase of the protocol, then the resulting garbled circuit in the second phase would
have to perform only a constant number of operations. In order to do so, we leverage the tool
of efficient additively homomorphic encryption schemes [Pai99, ElG84]. In our new protocol,
in round 1, the initiator P1 sends an encryption of −→u . P1 can compute 〈−→u ,−→w1〉 by itself.
Both P2 and P3 respond with encryptions of 〈−→u ,−→w2〉 computed homomorphically using the
same shared randomness. P1 can decrypt this to compute 〈−→u ,−→w〉. The parties can then run
the garbled circuit based protocol as above in rounds 3 and 4 of our FTT scheme: that is, P1

requests for labels corresponding to 〈−→u ,−→w〉 and 〈−→u ,−→u 〉 and the garbled circuit does the rest
of the check as before. While this protocol is correct and efficient, there are still several issues.

11

Leaking Inner Product. The first problem is that the inner product 〈−→u ,−→w〉 is currently
leaked to the initiator P1 thereby violating the privacy of the template −→w . To prevent this,
we need to design a mechanism where no party learns the inner product entirely in the clear
and yet the check happens inside the garbled circuit. A natural approach is for P2 and P3 to
homomorphically compute an encryption of the result 〈−→u ,−→w2〉 using a very efficient secret
key encryption scheme. In our case, just a one time pad suffices. Now, P1 only learns an
encryption of this value and hence the inner product is hidden, while the garbled circuit,
with the secret key hardwired into it, can easily decrypt the one-time pad.

Input Consistency. The second major challenge is to ensure that the input on which P1

wishes to evaluate the garbled circuit is indeed the output of the decryption. If not, P1 could
request to evaluate the garbled circuit on suitably high inputs of his choice, thereby violat-
ing unforgeability! In order to prevent this attack, P2 and P3 homomorphically compute
not just x = 〈−→u ,−→w2〉 but also a message authentication code (mac) y on the value x using
shared randomness generated in the setup phase. We use a simple one time mac that can be
computed using linear operations and hence can be done using the additively homomorphic
encryption scheme. Now, the garbled circuit also checks that the mac verifies correctly and
from the security of the mac, P1 can not change the input between the two stages. Also,
we require P1 to also send encryptions of 〈−→u ,−→u 〉 in round 1 so that P2, P3 can compute a
mac on this as well, thereby preventing P1 from cheating on this part of the computation too.

Ciphertext Well-formedness. Another important issue to tackle is to ensure that P1 does
indeed send well-formed encryptions. To do so, we rely on efficient zero knowledge arguments
from literature [DJ01, CDN01] when instantiating the additively homomorphic encryption
scheme with the Paillier encryption scheme [Pai99]. For technical reasons, we also need the
homomorphic encryption scheme to be circuit-private. We refer the reader to Section 7 for
more details. Observe that in our final protocol, the garbled circuit does only a constant
number of multiplications, which makes protocol computationally efficient and scalable.

Optimizations. To further improve the efficiency of our protocol, as done in Mohassel et
al. [MRZ15], we will require only one of the two parties P2, P3 to actually send the garbled
circuit. The other party can just send a hash of the garbled circuit and the initiator can
check that the hash values are equal. We refer to Section 7 for more details on this and other
optimizations.

2.4 Organization

The rest of the paper is organized as follows. Section 3 presents notations used and prelimi-
nary background material. Section 4 formally introduces the notion of FTT and gives a UC
security definition for it. Section 5 describes our four round FTT protocol for any distance
measure based on UC-secure MPC. Section 6 describes our four round FTT protocol for
any distance measure based on threshold FHE. Finally, Section 7 describes our efficient four
round FTT protocol for the Euclidean and Cosine Similarity distance measures. The reader
may refer Appendix A for additional background material and cryptographic definitions. All
proofs of security are deferred to Appendix B. We list some interesting open problems in
Section 8.

12

3 Preliminaries

Let P1, . . . ,Pn denote the n parties and λ the security parameter. Recall that the L2 norm
of a vector −→x = (−→x 1, . . . ,

−→x n) is defined as ||−→x || =
√−→x 2

1 + . . .+−→x 2
n. 〈−→u ,−→w〉 denotes the

inner product between two vectors −→u ,−→w .

Definition 1. (Cosine Similarity) For any two vectors −→u ,−→w ∈ Z`q, the Cosine Similarity
between them is defined as follows:

CS.Dist(−→u ,−→w) =
〈−→u ,−→w〉
||−→u || · ||−→w ||

.

When using this distance measure, we say that Dist(−→u ,−→w) = 1 if and only if CS.Dist(−→u ,−→w)
≥ d where d is a parameter specified by Dist(·).

3.1 Threshold Signature

Definition 2 (Threshold Signature [Bol03]). Let n, t ∈ N. A threshold signature scheme
TS is a tuple of four algorithms (Gen,Sign, Comb,Ver) that satisfy the correctness condition
below.

– Gen(1λ, n, t)→ (pp, vk, JskKn). A randomized algorithm that takes n, t and the security
parameter λ as input, and generates a verification-key vk and a shared signing-key JskKn.

– Sign(ski,m) =: σi. A deterministic algorithm that takes a mesage m and signing key-
share ski as input and outputs a partial signature σi.

– Comb({σi}i∈S) =: σ/⊥. A deterministic algorithm that takes a set of partial signatures
{ski}i∈S as input and outputs a signature σ or ⊥ denoting failure.

– Ver(vk, (m,σ)) =: 1/0. A deterministic algorithm that takes a verification key vk and
a candidate message-signature pair (m,σ) as input, and outputs 1 for a valid signature
and 0 otherwise.

Correctness. For all λ ∈ N, any t, n ∈ N such that t ≤ n, all (pp, vk, JskKn) generated by
Gen(1λ, n, t), any message m, and any set S ⊆ [n] of size at least t, if σi = Sign(ski,m)
for i ∈ S, then Ver(vk, (m,Comb({σi}i∈S))) = 1.

Definition 3 (Unforgeability). A threshold signatures scheme TS = (Gen,Sign, Comb,Ver)
is unforgeable if for all n, t ∈ N, t ≤ n, and any PPT adversary A, the following game outputs
1 with negligible probability (in security parameter).

– Initialize. Run (pp, vk, JskKn) ← Gen(1λ, n, t). Give pp, vk to A. Receive the set of
corrupt parties C ⊂ [n] of size at most t − 1 from A. Then give JskKC to A. Define
γ := t− |C|. Initiate a list L := ∅.

– Signing queries. On query (m, i) for i ⊆ [n] \ C return σi ← Sign(ski,m). Run this step
as many times A desires.

– Building the list. If the number of signing query of the form (m, i) is at least γ, then
insert m into the list L. (This captures that A has enough information to compute a
signature on m.)

– Output. Eventually receive output (m?, σ?) fromA. Return 1 if and only if Ver(vk, (m?, σ?))
= 1 and m? 6∈ L, and 0 otherwise.

13

4 Formalizing Fuzzy Threshold Tokenizer (FTT)

In this section we formally introduce the notion of fuzzy threshold tokenizer (FTT) and give
a UC-secure definition. We first describe the algorithms/protocols in the primitive followed
by the security definition in the next subsection.

Definition 4 (Fuzzy Threshold Tokenizer (FTT)). Given a security parameter λ ∈ N, a
threshold signature scheme TS = (TS.Gen,TS.Sign,TS.Combine, TS.Verify), biometric space
parameters q, ` ∈ N, a distance predicate Dist : Z`q × Z`q → {0, 1}, n ∈ N parties P1, . . . ,Pn
and a threshold of parties t ∈ [n], a FTT scheme/protocol consists of the following tuple
(Setup,Enrollment, SignOn,Ver) of algorithms/protocols:

– Setup(1λ, n, t,TS)→ (ppsetup, {si, skTSi }i∈[n], vk) : The Setup algorithm is run by a trusted

authority. It first runs the key-generation of the threshold signature scheme, ({skTSi }i∈[n],
vk) ← Gen(1λ, n, t). It generates other public parameters ppsetup and secret values
s1, . . . , sn for each party respectively. It outputs (vk, ppsetup) to every party and se-

crets (skTSi , si) to each party Pi. (ppsetup will be an implicit input in all the algorithms
below.)

– Enrollment(n, t, q, `,−→w ,Dist) → ({ai}i∈[n]) : On input the parameters and a template
−→w ∈ Z`q from any party, this algorithm is run by the trusted authority to choose a
random sample −→w ←W. Then, each party Pi receives some information ai.

– SignOn(·) : SignOn is a distributed protocol involving a party P ∗ along with a set S of
parties. Party P∗ has input a measurement −→u , message msg and its secret information
(s∗, skTS∗). Each party Pi ∈ S has input (si, skTSi). At the end of the protocol, P ∗ obtains
a (private) token Token (or ⊥, denoting failure) as output. Each party Pi ∈ S gets
output (msg, i, S). The trusted authority is not involved in this protocol.

– Ver(vk,msg,Token)→ {0, 1} : Ver is an algorithm which takes input verification key vk,
message m and token Token, runs the verification algorithm of the threshold signature
scheme b := TS.Verify(vk, (msg,Token)), and outputs b ∈ {0, 1}. This can be run locally
by any party or even any external entity.

Communication Model. In the SignOn(·) protocol, only party P∗ can communicate di-
rectly with every party in the set S. We stress that the other parties in S can not interact
directly with each other.

4.1 Security Definition

We formally define security via the universal composability (UC) framework [Can01]. Sim-
ilar to the simplified UC framework [CCL15] we have a default authenticated channel. This
simplifies the definition of our protocols and can be removed easily by composing with an
ideal authenticated channel functionality (e.g. [Can04]).

Consider n parties P1, . . . , Pn. We consider a fixed number of parties in the system through-
out the paper. That is, no new party can join the execution subsequently. Let πTS be an
FTT scheme parameterized by a threshold signature scheme TS. Consider an adversarial
environment Z. We consider a static corruption model where there are a fixed set of corrupt

14

parties decided a priori.5 Informally, it is required that for every adversary A that corrupts
some subset of the parties and participates in the real execution of the protocol, there exist
an ideal world adversary Sim, such that for all environments Z, the view of the environment
is same in both worlds. We describe it more formally below.

Real world. In the real execution, the FTT protocol πTS is executed in the presence of
an adversary A. The adversary A takes as input the security parameter λ and corrupts a
subset of parties. Initially, the Setup algorithm is implemented by a trusted authority. The
honest parties follow the instructions of πTS. That is, whenever they receive an “Enrollment”
query from Z, they will run the Enrollment phase of πTS. Similarly, whenever they receive a
“Sign on” query from Z with input (msg,−→u , S), they will initiate a SignOn(·) protocol with
the parties in set S and using input (msg, S, skTSi). If a SignOn(·) protocol is initiated with
them by any other party, they participate honestly using input skTSi . A sends all messages of
the protocol on behalf of the corrupt parties following any arbitrary polynomial-time strategy.

Ideal world. The ideal world is defined by an trusted ideal functionality FTS
ftt described in

Figure 1 that interacts with n (say) ideal parties P1, . . . ,Pn and an ideal world adversary,
a.k.a. the simulator Sim via secure (and authenticated) channels. The simulator can corrupt
a subset of the parties and may fully control them. The parties (or the simulator) do not
interact among themselves. We discuss the ideal functionality in more detail later below.

The environment sets the inputs for all parties including the adversaries in both the worlds.
However, the environment does not observe any internal interaction. For example, in the ideal
world such interactions takes between the ideal functionality and another entity (a party, or
the simulator); in real world such interactions take place among the real parties. The output
of the environment after an execution consists of the inputs/outputs of the honest parties
and the entire view of the adversary (simulator in the ideal world). For ideal functionality
F , adversary A, simulator Sim, environment Z and a protocol π we denote the output of Z
by random variable IDEALF ,Sim,Z in the ideal world and REALπ,A,Z in the real world. We
describe the ideal functionality for a FTT scheme in Figure 1 and we elaborate on it in the
next subsection.

Definition 5 (UC-Realizing FTT). Let TS be a threshold signature scheme (Definition 3),
FTS

ftt be an ideal functionality as described in Figure 1 and πTS be a FTT scheme. πTS UC-
realizes FTS

ftt if for any real world PPT adversary A, there exists a PPT simulator Sim such
that for all environments Z,

IDEALFTS
ftt ,Sim,Z ≈c REALπTS,A,Z

Intuitively, for any adversary there should be a simulator that can simulate its behavior such
that no environment can distinguish between these two worlds. Also, our definition can also
capture setup assumptions such as random oracles by considering a G-hybrid model with an
ideal functionality G for the setup.

4.1.1 Ideal Functionality FTS
ftt

The ideal functionality we consider is presented formally in Figure 1. We provide an infor-
mal exposition here. Contrary to most of the UC ideal functionalities, our ideal functionality

5However, we allow the attacker to decide on the corrupt set adaptively after receiving the public values.

15

Ideal Functionality FTS
ftt

Given a threshold signature scheme (TS.Gen,TS.Sign,TS.Combine,TS.Verify), the functionality FTS
ftt

is parameterized by a security parameter λ ∈ N, biometric space parameters q, ` ∈ N, a distance
predicate Dist : Z`q × Z`q → {0, 1}, number of parties n ∈ N and a threshold of parties t ∈ [n].
It interacts with an ideal adversary (the simulator) Sim and n parties P1, . . . ,Pn via the following
queries.

− On receiving a query of the form (“Setup”, sid, aux) from Sim, do as follows only if sid is
unmarked:

1. run (vk, {skTSi }i∈[n])← TS.Gen(1λ);

2. send (“VerKey”, sid, vk, aux) to all parties including Sim;

3. receive a response (“Corrupt”, sid, C ⊆ [n]) from Sim;

4. send (“KeyShares”, sid, {skTSi }i∈C) to Sim;

5. store the tuple (sid, vk, {skTSi }i∈[n]) and mark this session as “Live”.

− On receiving a query of the form (“Enroll”, sid, −→w) from P, only if sid is marked “Live”:

1. store the tuple (sid,−→w);

2. send (“Enrolled”, sid) to everyone and mark sid as “Enrolled”.

− On receiving a query of the form (“SignOn”, sid, vk, m, P, −→u , S ⊆ [n])
from P, if the session sid is not marked “Enrolled”, ignore this query. Else, re-
trieve the record (sid, pp, vk, {skTSi }i∈[n]) and let {Pj}j∈S be the parties in the set. Send
(“Signing Req”, sid,m,P, S) to all {Pj}j∈S in the set S. Then:

1. if Dist(−→u ,−→w) = 1, |S| = t and all parties in the set S send (“Agreed”, sid,m, P) then:
generate {Tokenj ← TS.Sign(skTSj ,msg)}j∈S and send (“Parts”, sid, {Tokenj}j∈S) to P.

2. otherwise, return (“SignOn failed”, sid,−→u) to P.

Figure 1: The ideal functionality FTS
ftt .

FTS
ftt is parameterized with a threshold signature scheme TS = (TS.Gen, TS.Sign, TS.Combine,

TS.Verify) (see discussion about this choice later in this section). The ideal functionality is
parameterized with a distance predicate Dist, which takes two vectors, a template and a can-
didate measurement and returns 1 if and only if the two vectors are “close”. Additionally, the
functionality is parameterized with other standard parameters and a probability distribution
over the biometric vectors.

The ideal functionality has an interface to handle queries from different parties. For
a particular session, the first query it responds to “Setup” from Sim. In response, the
functionality FTS

ftt generates the key pairs of the given threshold signature scheme, gives the
shares for the corrupt parties to the simulator and marks this session “Live”. Then, an
“Enroll” query can be made by any party. FTS

ftt chooses a template −→w at random from the
distribution W, stores it and marks the session as “Enrolled”.

For any “Enrolled” session, FTS
ftt can receive many “SignOn” queries (the previous

two queries are allowed only once per session). This is ensured by not marking the session
in response to any such query. The “SignOn” query from a party Pi contains a set S of
parties (i.e. their identities), a message to be signed and a candidate measurement −→u . In

16

response, FTS
ftt reaches out to all parties in S for a response. Then, FTS

ftt checks whether
the measurement −→u is “close enough” by computing b := Dist(−→u ,−→w). If b is 1, the size of
the set S = t and all parties in S send an agreement response, FTS

ftt generates the partial
signatures (tokens) on behalf of the parties in S and sends them only to the initiator Pi;
otherwise, it sends a message denoting failure to Pi. Note that the signatures (or even the
failure messages) are not sent to the simulator unless the initiator Pi is corrupt. This is
crucial for our definition (see more discussion in Section 4.2.) as it ensures that if a “SignOn”
query is initiated by an honest party, then the simulator does not obtain anything directly,
except when there is a corrupt party in S via which it knows such a query has been made
and only learns the tuple (m,Pi, S) corresponding to the query. In fact, no one except the
initiator learns whether “SignOn” was successful. Intuitively, a protocol realizing FTS

ftt must
guarantee that a corrupt party can not compute a valid sign-on token (signature) just by
participating in a session started by an honest party. In our definition of FTS

ftt , such a token
would be considered as a forgery. To the best of our knowledge, this feature has not been
considered in prior works on threshold signatures.

4.2 Discussion

Use of Threshold Signatures. Note that our definition and the ideal functionality FTS
ftt

are both parameterized by a threshold signature scheme. A tuple of algorithms/protocols is
said to be a UC-secure FTT scheme only when they securely realize the ideal functionality
while both are instantiated with the same threshold signature scheme. We emphasize that
we do not rely on the security/unforgeability of the threshold signature in the UC defini-
tion. A protocol can be secure according to the definition even if the underlying threshold
signature scheme is insecure. However, the ideal functionality FTS

ftt possesses the desired
properties (intuitively explained in the introduction) only if instantiated with a correct and
secure threshold signature. Thus, to achieve a meaningful notion of correctness and security
from our FTT primitive, we require that the underlying threshold signature scheme is correct
and secure.

Privacy of Tokens/Signatures. A main feature of our framework is privacy of tokens
(signatures), in that only the party that initiates a sign-on session receives a token. Other
participants in that session learn nothing about the token, not even whether the session is
successful in generating one. As discussed in the introduction, it is crucial for our appli-
cation that no corrupt party be able to compute a valid token just by participating in a
sign-on session initiated by an honest party (who possibly has a close biometric match). To
capture this in the ideal functionality we must enforce that such a token be counted as a
forgery. We do so by first explicitly allowing only the initiator of a “SignOn” query to obtain
a response (consisting of partial signatures) from the functionality. Further, contrary to the
UC-definition of signatures, we do not allow the simulator to generate signatures. Otherwise,
in that particular scenario (honest initiator and corrupt participants), simulator on learning
the message, can just compute a token on its own. Instead, since in FTS

ftt , the functionality
generates all signatures, the simulator would be unable to obtain such signatures. The only
way for the simulator to obtain a valid token is to make an explicit “SignOn” query via a
corrupt party (with a “close” measurement) which exactly captures the desired guarantee.
To formalize this, we parameterize FTS

ftt with a concrete threshold signature, on which the
real world (Definition 4) protocol too must be based on.

17

Comparison with Fuzzy PAKE [DHP+18]. We emphasize that our setting is funda-
mentally different from the exciting notion of Fuzzy Password Authenticated Key Exchange
(PAKE) recently introduced by Dupont et al. [DHP+18]. In their two party primitive, the
goal is to establish a shared secret key to be used for subsequent mutual authentication (as
in traditional key exchange). A common (random) key is established only when both parties
use “close” enough biometric data. Obviously, authenticated channels can not be assumed in
their setting and they mainly try to protect against a man-in-the-middle adversary. Further,
they require that the protocol must detect (and mark the session as interrupted) if a “bad”
(not close) biometric input is used. To do so, they also capture offline attacks on low-entropy
biometric distributions explicitly through a separate “TestPassword” query (also present in
an earlier work [CHK+05]) from the simulator.

Our functionality has an in-built authenticated channel between every pair of parties as
the goal is to generate a token in a distributed manner that may be used for authenticating
to an external server. In our case, offline attacks are already implicitly captured. That is,
since the template stays inside the ideal functionality, the simulator’s best bet to get a valid
token is to correctly guess a biometric measurement and use a “SignOn” query. The success
probability increases with each such query. For low entropy biometrics, the simulator may
learn a close match after only a few queries. However, it is crucial to note that our primitive
guarantees that even after potentially learning the biometric template, any party can gener-
ate a valid token only via an online sign-on query (if, of course, a secure threshold signature is
used). Also, we do not require that sessions are to be interrupted if a “bad” biometric input
is used - to the contrary, no party in our system is allowed to learn whether the querying
party was successful in the sign on session.

Comparison with UC-secure blind signatures [KZ08]. To capture blind signatures, it
is necessary to hide the message (to be signed) from the simulator. On the other hand, while
they also use a concrete signature scheme within the ideal functionality, the simulator gets to
pick the particular signature scheme and choose the signing key. In contrast, in our setting,
we want the simulator to learn the message to be signed, but not to choose the signature
scheme or to be able to generate signatures (in particular when the message is chosen by an
honest party).

5 Any Distance Measure from MPC

In this section, we show how to construct a four round secure fuzzy threshold tokenizer
using any two round malicious UC-secure MPC protocol in a broadcast channel as the main
technical tool. Our tokenizer scheme satisfies Definition 1 for any n, t, for any distance
measure. Formally, we show the following theorem:

Theorem 1. Assuming unforgeable threshold signatures and a two round UC-secure MPC
protocols in the CRS model in a broadcast channel, there exists a four round secure fuzzy
threshold tokenizer protocol for any n, t and any distance predicate.

Such two round MPC protocols can be built assuming DDH/LWE/QR/N th Residuosity
[MW16, PS16, GS18, BL18]. Threshold signatures can be built assuming LWE/Gap-DDH/RSA
[BGG+18, Bol03, Sho00]. Instantiating this, we get the following corollary:

Corollary 2. Assuming LWE, there exists a four round secure FTT protocol for any n, t and
any distance predicate.

18

We describe the construction below and defer the proof to Appendix B.1.

5.1 Construction

Notation. Let π be a two round UC-secure MPC protocol in the CRS model in the pres-
ence of a broadcast channel that is secure against a malicious adversary that can corrupt
upto (t − 1) parties. Let π.Setup denote the algorithm used to generate the CRS. Let
(π.Round1, π.Round2) denote the algorithms used by any party to compute the messages
in each of the two rounds and π.Out denote the algorithm to compute the final output. Let
(TS.Gen,TS.Sign,TS.Combine,TS.Verify) be a threshold signature scheme, (SKE.Enc,SKE.Dec)
be a secret key encryption scheme, (Share,Recon) be a (t, n) threshold secret sharing scheme
and PRF be a pseudorandom function. We now describe the construction of our four round
secure fuzzy threshold tokenizer protocol πAny for any n and t.

Setup: The following algorithm is executed by a trusted authority:

− Generate crs← π.Setup(1λ).

− For each i ∈ [n], compute (ski, vki)← Gen(1λ).

− For every i, j ∈ [n], compute (kPRFi,j , kPRFj,i) as uniformly random strings.

− Compute (ppTS, vkTS, skTS1 , . . . , skTSn)← TS.Gen(1λ, n, t).

− For each i ∈ [n], give (crs, ppTS, vkTS, skTSi , ski, {vkj}j∈[n], {kPRFj,i , kPRFi,j }j∈[n]) to party Pi.

Enrollment: In this phase, any party Pi that wishes to enroll queries the trusted authority
which then does the following:

− Sample a random vector −→w from the distribution W.

− Compute (−→w1, . . . ,
−→wn)← Share(1λ,−→w , n, t).

− For each i ∈ [n], give (−→w i) to party Pi.

SignOn Phase: In the SignOn phase, let’s consider party P∗ that uses input vector −→u , a
message msg on which it wants a token. P∗ interacts with the other parties in the below four
round protocol.

Round 1: (P∗ →) 6 Party P∗ does the following:

1. Pick a set S consisting of t parties amongst P1, . . . ,Pn. For simplicity, without loss of
generality, we assume that P∗ is also part of set S.

2. To each party Pi ∈ S, send (msg, S).

Round 2: (→ P∗) Each Party Pi ∈ S (except P∗) does the following:

1. Participate in an execution of protocol π with parties in set S using input yi = (−→w i, skTSi)
and randomness ri to compute circuit C defined in Figure 2. Compute first round message
msg1,i ← π.Round1(yi; ri).

2. Compute σ1,i = Sign(ski,msg1,i).

6The arrowhead denotes that in this round messages are outgoing from party P∗.

19

3. Send (msg1,i, σ1,i) to party P∗.

Round 3: (P∗ →) Party P∗ does the following:

1. Let TransDiFuz denote the set of messages received in round 2.

2. Participate in an execution of protocol π with parties in set S using input y∗ = (−→w∗, skTS∗ ,−→u ,msg) and randomness r∗ to compute circuit C defined in Figure 2. Compute first round
message msg1,∗ ← π.Round1(y∗; r∗).

3. To each party Pi ∈ S, send (TransDiFuz,msg1,∗).

Round 4: (→ P∗) Each Party Pi ∈ S (except P∗) does the following:

1. Let TransDiFuz consist of a set of messages of the form (msg1,j , σ1,j), ∀j ∈ S \P∗. Output
⊥ if Verify(vkj ,msg1,j , σ1,j) 6= 1.

2. Let τ1 = {msg1,j}j∈S denote the transcript of protocol π after round 1. Compute second
round message msg2,i ← π.Round2(yi, τ1; ri).

3. Let (TransDiFuz,msg1,∗) denote the message received from P∗ in round 3. Compute

eki = ⊕j∈SPRF(kPRFi,j ,msg1,∗) and cti = SKE.Enc(eki,msg2,i).

4. For each party Pj ∈ S, compute ekj,i = PRF(kPRFj,i ,msg1,∗).

5. Send (cti, {ekj,i}j∈S) to P∗.

Output Computation: Every party Pj ∈ S outputs (msg,P∗, S). Additionally, party P∗
does the following to generate a token:

1. For each party Pj ∈ S, compute ekj = ⊕j∈Sekj,i, msg2,j = SKE.Dec(ekj , ctj).

2. Let τ2 denote the transcript of protocol π after round 2. Compute the output of π:
{Tokeni}i∈S ← π.Out(y∗, τ2; r∗).

3. Reconstruct the signature as Token = TS.Combine({Tokeni}i∈S).

4. If TS.Verify(vkTS,msg,Token) = 1, then output {Tokeni}i∈S . Else, output ⊥.

Inputs:

− Party Pi ∈ S has input (−→w i, skTSi).

− Party P∗ ∈ S additionally has input (−→u ,msg).

Computation:

− Compute −→w = Recon({−→w i}i∈S). Output ⊥ to P∗ if the reconstruction fails or if Dist(−→u ,−→w) = 0.

− Compute Tokeni = TS.Sign(skTSi ,msg). Output {Tokeni}i∈S to party P∗.

Figure 2: Circuit C

Token Verification: Given a verification key vkTS, message msg and a token {Tokeni}i∈S ,
where |S| = t, the token verification algorithm does the following:

1. Compute Token← TS.Combine({Tokeni}i∈S).

2. Output 1 if TS.Verify(vkTS,msg,Token) = 1. Else, output 0.

20

6 Any Distance Measure using Threshold FHE

In this section, we construct a FTT protocol for any distance measure using any fully homo-
morphic encryption (FHE) scheme with threshold decryption. Our token generation protocol
satisfies the definition in Section 4 for any n, t, and works for any distance measure. Formally,
we show the following theorem:

Theorem 3. Assuming threshold fully-homomorphic encryption, non-interactive zero knowl-
edge argument of knowledge (NIZK) and unforgeable threshold signatures, there exists a four
round secure FTT protocol for any n, t and any distance predicate.

Threshold FHE, NIZKs and unforgeable threshold signatures can be built assuming LWE
[BGG+18, PS19]. Instantiating this, we get the following corollary:

Corollary 4. Assuming LWE, there exists a four round secure FTT protocol for any n, t and
any distance predicate.

We describe the construction below and defer the proof to Appendix B.2.

6.1 Construction

Notation. Let (TFHE.Gen, TFHE.Enc, TFHE.PartialDec, TFHE.Eval, TFHE.Combine) be a
threshold FHE scheme and let (TS.Gen,TS.Sign,TS.Combine,TS.Verify) be a threshold sig-
nature scheme. Let (Prove,Verify) be a NIZK scheme and (Gen,Sign,Verify) be a strongly-
unforgeable digital signature scheme and Commit be a non-interactive commitment scheme.
We now describe the construction of our four round secure FTT protocol πAny−TFHE for any
n and k.

Setup Phase: The following algorithm is executed by a trusted authority:

− Generate (pkTFHE, skTFHE1 , . . . , skTFHEN) ← TFHE.Gen(1λ, n, t) and (ppTS, vkTS, skTS1 , . . . ,
skTSn) ← TS.Gen(1λ, n, t).

− For each i ∈ [n], compute comi ← Commit(skTFHEi ; rcomi) and (ski, vki)← Gen(1λ).

− For each i ∈ [n], give the following to party Pi: (pkTFHE, skTFHEi , ppTS, vkTS, skTSi , (vk1, . . .,
vkn), ski, (com1, . . . , comn), rcomi).

Enrollment: In this phase, any party Pi that wishes to register a fresh template queries the
trusted authority, which then executes the following algorithm:

− Sample a template −→w from the distribution W over {0, 1}`.

− Compute and give ct−→w to each party Pi, where ct−→w = TFHE.Enc(pkTFHE,−→w).

SignOn Phase: In the SignOn phase, let’s consider party P∗ that uses input vector −→u ∈
{0, 1}` and a message msg on which it wants a token. P∗ interacts with the other parties in
the below four round protocol.

− Round 1: (P∗ →) 7 Party P∗ does the following:

1. Compute ciphertext ct−→u = TFHE.Enc(pkTFHE,−→u ; r−→u).

7The arrowhead denotes that in this round messages are outgoing from party P∗.

21

2. Compute π−→u ← Prove(st−→u ,wit−→u) for st−→u = (ct−→u , pkTFHE) ∈ L1 using witness
wit−→u = (−→u , r−→u) (language L1 is defined in Figure 3).

3. Pick a set S consisting of t parties amongst P1, . . . ,Pn. For simplicity, without loss
of generality, we assume that P∗ is also part of set S.

4. To each party Pi ∈ S, send (ct−→u , π−→u).

Statement: The statement st is as follows: st = (ct, pk).

Witness: The witness wit is as follows: wit = (x, r).

Relation: R1(st,wit) = 1 if and only if ct = TFHE.Enc(pk, x; r).

Figure 3: NP language L1

− Round 2: (→ P∗) Each party Pi ∈ S (except P∗) does the following:

1. Abort and output ⊥ if Verify(π−→u , st−→u) 6= 1 for language L1 where the statement
st−→u = (ct−→u , pkTFHE).

2. Sample a uniformly random one-time key Ki ← {0, 1}λ and compute ctKi =
TFHE.Enc (pkTFHE,Ki; rKi).

3. Compute πKi ← Prove(stKi ,witKi) for stKi = (ctKi , pkTFHE) ∈ L1 using the witness
witKi = (Ki, rKi) (language L1 is defined in Figure 3).

4. Compute signatures σi,0 = Sign(ski, ct−→u) and σi,1 = Sign(ski, ctKi).

5. Send the following to the party P∗: (ctKi , πKi , σi,0, σi,1).

− Round 3: (P∗ →) Party P∗ checks if there exists some party Pi ∈ S such that Verify(πKi ,

stKi) 6= 1 for language L1 where stKi = (ctKi , pkTFHE). If yes, it outputs ⊥ and aborts.
Otherwise, it sends {(ctKi , πKi , σi,0, σi,1)}Pi∈S to each party Pi ∈ S.

− Round 4: (→ P∗) Each party Pi ∈ S (except P∗) does the following:

1. If there exists some party Pj ∈ S such that Verify(πKj , stKj) 6= 1 for language L1

where stKj = (ctKj , pkTFHE) (OR) Verify(vkj , ct−→u , σj,0) 6= 1 (OR) Verify(vkj , ctKj , σj,1)
6= 1, then output ⊥ and abort.

2. Otherwise, for each Pj ∈ S, do the following:

− Compute ctC,j = TFHE.Eval(pkTFHE, CDist, ct−→w , ct−→u , ctKj) using circuit C (Fig-

ure 4). Note that ctC,j is either an encryption Kj or an encryption of 0λ.

Inputs: A template −→w ∈ {0, 1}`, measurement −→u ∈ {0, 1}` and string K ∈ {0, 1}λ.

Computation: If Dist(−→u ,−→w) = 1, output K. Else, output 0λ.

Figure 4: Circuit C

− Compute a partial decryption: µi,j = TFHE.PartialDec(skTFHEi , ctC,j).

− Compute πi,j ← Prove(sti,j ,witi) for sti,j = (ctC,j , µi,j , comi) ∈ L2 using witi =
(skTFHEi , rcomi) (language L2 is defined in Figure 5).

22

3. Compute partial signature Tokeni = TS.Sign(skTFHEi ,msg) and ciphertext cti = Ki⊕
Tokeni.

4. Send (cti, {(πi,j , µi,j)}Pj∈S) to P∗.

Statement: The statement st is as follows: st = (ct, µ, com).

Witness: The witness wit is as follows: wit = (skTFHE, r).

Relation: R2(st,wit) = 1 if and only if: (a) TFHE.PartialDec(skTFHE, ct) = µ and
(b) Commit(skTFHE, r) = com.

Figure 5: NP language L2

− Output Computation: Every party Pi ∈ S outputs (msg,P∗, S). Additionally, party
P∗ does the following to generate a token:

1. For each Pj ∈ S, do the following:

1. For each Pi ∈ S, abort if Verify(πi,j , sti,j) 6= 1 for language L2 where sti,j =
(ctC,j , µi,j , comi).

2. Set Kj = TFHE.Combine({µi,j}Pi∈S). If Kj = 0λ, output ⊥.

3. Otherwise, recover partial signature Tokenj = Kj ⊕ ctj .

2. Reconstruct the signature as Token = TS.Combine({Tokeni}i∈S).

3. If TS.Verify(vkTS,msg,Token) = 1, then output {Tokeni}Pi∈S . Else, output ⊥.

Token Verification: Given a verification key vkTS, message msg and a set of partial tokens
{Tokeni}Pi∈S , the token verification algorithm outputs 1 if TS.Verify(vkTS,msg,Token) = 1,
where Token = TS.Combine({Tokeni}Pi∈S).

7 Cosine Similarity: Single Corruption

In this section, we construct an efficient four round secure fuzzy threshold tokenizer in the
Random Oracle (RO) model for Euclidean Distance and Cosine Similarity. Our protocol
satisfies Definition 1 for any n with threshold t = 3 and is secure against a malicious adversary
that can corrupt any one party. The special case of n = 3 corresponds to the popularly
studied three party honest majority setting. We first focus on the Cosine Similarity distance
measure. At the end of the section, we explain how to extend our result for Euclidean
Distance. Formally:

Theorem 5. Assuming unforgeable threshold signatures, two message OT in the CRS model,
circuit-private additively homomorphic encryption and NIZKs for NP languages L1, L2 de-
fined below, there exists a four round secure fuzzy threshold tokenizer protocol for Cosine
Similarity. The protocol works for any n, threshold t = 3 and is secure against a malicious
adversary that can corrupt any one party.

We describe the construction below and defer the proof to Appendix B.3.

23

Paillier Encryption Scheme. The Paillier encryption scheme [Pai99] is an example of a
circuit-private additively homomorphic encryption based on the N th residuosity assumption.
With respect to Paillier, we can also build NIZK arguments for languages L1 and L2 defined
below, in the RO model. Formally:

Imported Theorem 1 ([DJ01]). Assuming the hardness of the N th residuosity assumption,
there exists a NIZK for language L1, defined below, in the RO model.

Imported Theorem 2 ([CDN01]). Assuming the hardness of the N th residuosity assump-
tion, there exists a NIZK for language L2, defined below, in the RO model.

The above NIZKs are very efficient and only require a constant number of group opera-
tions for both prover and verifier. Two message OT in the CRS model can be built assuming
DDH/LWE/Quadratic Residuosity/N th residuosity [NP01, PVW08, HK12]. Threshold sig-
natures can be built assuming LWE/Gap-DDH/RSA [BGG+18, Bol03, Sho00]. Instantiating
the primitives used in Theorem 5, we get the following corollary:

Corollary 6. Assuming the hardness of the N th residuosity assumption and LWE, there
exists a four round secure fuzzy threshold tokenizer protocol for Cosine Similarity in the RO
model. The protocol works for any n, t = 3 and is secure against a malicious adversary that
can corrupt any one party.

NP Languages.
Let (AHE.Setup,AHE.Enc,AHE.Add,AHE.ConstMul,AHE.Dec) be an additively homomorphic
encryption scheme. Let epk← AHE.Setup(1λ), m = poly(λ).
Language L1:
Statement: st = (ct, pk). Witness: wit = (x, r).
Relation: R1(st,wit) = 1 if ct = AHE.Enc(epk, x; r) AND x ∈ {0, 1}m

Language L2:
Statement: st = (ct1, ct2, ct3, pk). Witness: wit = (x2, r2, r3).
Relation: R2(st,wit) = 1 if

ct2 = AHE.Enc(epk, x2; r2) AND ct3 = AHE.ConstMul(pk, ct1, x2; r3).

7.1 Construction

Let RO denote a random oracle, d be the threshold value for Cosine Similarity. Recall that
we denote Dist(−→u ,−→w) = 1 if CS.Dist(−→u ,−→w) ≥ d. Let (Share,Recon) be a (2, n) threshold
secret sharing scheme, TS = (TS.Gen,TS.Sign,TS.Combine, TS.Verify) be a threshold sig-
nature scheme, (SKE.Enc, SKE.Dec) denote a secret key encryption scheme, PRF denote a
pseudorandom function, (Garble,Eval) denote a garbling scheme for circuits, (Prove,Verify)
be a NIZK system in the RO model, AHE = (AHE.Setup,AHE.Enc, AHE.Add,AHE.ConstMul,
AHE.Dec) denote a circuit-private additively homomorphic encryption scheme and OT =
(OT.Setup,OT.Round1,OT.Round2,OT.Output) be a two message oblivious transfer protocol
in the CRS model.

We now describe the construction of our four round secure fuzzy threshold tokenizer pro-
tocol πCS for Cosine Similarity.

Setup: The trusted authority does the following:

24

− Compute (ppTS, vkTS, skTS1 , . . . , skTSn)← TS.Gen(1λ, n, k).

− For i ∈ [n], generate crsi ← OT.Setup(1λ) and pick a random PRF key ki.

− For i ∈ [n], give (ppTS, vkTS, skTSi , {crsj}j∈[n], {kj}j∈[n]\i) to party Pi.

Enrollment: In this phase, any party Pi that wishes to enroll, queries the trusted authority
which then does the following:

− Sample a random vector −→w from the distribution W. Without loss of generality, let’s
assume that the L2-norm of −→w is 1.

− For each i ∈ [n], do the following:

− Compute (−→w i,
−→v i)← Share(1λ,−→w , n, 2).

− Compute (eski, epki)← AHE.Setup(1λ).

− Let −→w i = (wi,1, . . . ,wi,`). ∀j ∈ [`], compute Jwi,jK = AHE.Enc(epki,wi,j).

− Give (−→w i, ski, pki, {Jwi,jK}j∈[`]) to party Pi and (−→v i, pki, {Jwi,jK}j∈[`]) to all the other
parties.

SignOn Phase: In the SignOn phase, let’s consider party Pi that uses an input vector
−→u = (u1, . . . , u`) and a message msg on which it wants a token. Pi picks two other parties
Pj and Pk and interacts with them in the below protocol.

Round 1: (Pi →) 8 Party Pi does the following:

1. Let S = (Pj ,Pk) with j < k.

2. For each j ∈ [`], compute the following:

− JujK = AHE.Enc(epki, uj ; r1,j). π1,j ← Prove(st1,j ,wit1,j) for st1,j = (JujK, epki) ∈ L1

using wit1,j = (uj , r1,j).

− Ju2
jK = AHE.ConstMul(epki, JujK, uj ; r2,j). π2,j ← Prove(st2,j ,wit2,j) for st2,j = (JujK,

JujK, Ju2
jK, epki) ∈ L2 using wit2,j = (uj , r1,j , r2,j).

− Jwi,j · ujK = AHE.ConstMul(epki, Jwi,jK, uj ; r3,j). π3,j ← Prove(st3,j ,wit3,j) for st3,j =
(Jwi,jK, JujK, Jwi,j · ujK, epki) ∈ L2 using wit3,j = (uj , r1,j , r3,j).

3. To both parties in S, send msg1 = (S,msg, {JujK, Ju2
jK, Jwi,j · ujK, π1,j , π2,j , π3,j}j∈[`]).

Round 2: (→ Pi) Both parties Pj and Pk do the following:

1. Abort if any of the proofs {π1,j , π2,j , π3,j}j∈[`] don’t verify.

2. Generate randomness (a, b, e, f, p, q, rz)← PRF(ki,msg1).

3. Using the algorithms of AHE, compute Jx1K, Jx2K, Jy1K, Jy2K, Jz1K, Jz2K as follows:

− x1 = 〈−→u ,−→w i〉, y1 = 〈−→u ,−→u 〉, z1 = (〈−→u ,−→v i〉+ rz).

− x2 = (a · x1 + b), y2 = (e · y1 + f), z2 = (p · z1 + q)

4. Send (Jx2K, Jy2K, Jz1K, Jz2K) to Pi.
8The arrowhead denotes that in this round messages are outgoing from party Pi.

25

Round 3: (Pi →) Party Pi does the following:

1. Abort if the tuples sent by both Pj and Pk in round 2 were not the same.

2. Compute x1 = 〈−→u ,−→w i〉, x2 = AHE.Dec(eski, Jx2K).

3. Compute y1 = 〈−→u ,−→u 〉, y2 = AHE.Dec(eski, Jy2K).

4. Compute z1 = AHE.Dec(eski, Jz1K), z2 = AHE.Dec(eski, Jz2K).

5. Generate and send msg3 = {otrecs,t ← OT.Round1(crsi, st)}s∈{x,y,z},t∈{1,2}.

Round 4: (Pj → Pi) Party Pj does the following:

1. Compute C̃ = Garble(C) for the circuit C described in Figure 6.

2. For each s ∈ {x, y, z}, t ∈ {0, 1}, let lab0
s,t, lab1

s,t denote the labels of the garbled circuit

C̃ corresponding to input wires st. Generate otsens,t = OT.Round2(crsi, lab0
s,t, lab1

s,t, otrecs,t).
Let otsen = {otsens,t }s∈{x,y,z},t∈{1,2}

3. Compute pad = PRF(ki,msg3). Set ctj = SKE.Enc(pad,TS.Sign(skTSj ,msg)).

4. Send (C̃, otsen, ctj) to Pi.

Round 4: (Pk → Pi) Party Pk does the following:

1. Compute (C̃, otsen, pad) exactly as done by Pj .

2. Set ctk = SKE.Enc(pad,TS.Sign(skTSk ,msg)).

3. Send (RO(C̃, otsen), ctk) to Pi.

Output Computation: Parties Pj ,Pk output (msg,Pi, S). Party Pi does:

1. Let (C̃, otsen, ctj) be the message received from Pj and (msg4, ctk) be the message received

from Pk. Abort if RO(C̃, otsen) 6= msg4.

2. For each s ∈ {x, y, z}, t ∈ {0, 1}, compute labs,t = OT.Output(otsens,t , otrecs,t , r
ot
s,t). Let lab =

{labs,t}s∈{x,y,z},t∈{0,1}. Compute pad = Eval(C̃, lab).

3. Compute Tokenj = SKE.Dec(pad, ctj),Tokenk = SKE.Dec(pad, ctk), Tokeni = TS.Sign(skTSi ,
msg), Token← TS.Combine({Tokens}s∈{i,j,k}).

4. Output {Tokens}s∈{i,j,k} if TS.Verify(vkTS,msg,Token). Else, output ⊥.

Token Verification: Given a verification key vkTS, message msg and token (Tokeni, Tokenj ,
Tokenk), the token verification algorithm does the following:

1. Compute Token← TS.Combine({Tokens}s∈{i,j,k}).

2. Output 1 if TS.Verify(vkTS,msg,Token) = 1. Else, output 0.

26

Inputs: (x1, x2, y1, y2, z1, z2). Hardwired values: (a, b, e, f, p, q, rz, pad, d2). Computation:

− Abort if x2 6= (a · x1 + b) (or) y2 6= (e · y1 + f) (or) z2 6= (p · z1 + q)

− Compute IP = (z1 − rz) + x1

− If IP2 ≥ (d2 · y1), output pad. Else, output ⊥.

Figure 6: Circuit C to be garbled.

7.2 Euclidean Distance

Recall that given two vectors −→u ,−→w , the square of the Euclidean Distance EC.Dist between
them relates to their Cosine Similarity CS.Dist as follows: EC.Dist(−→u ,−→w) = (〈−→u ,−→u 〉 +
〈−→w ,−→w〉− 2 ·CS.Dist(−→u ,−→w)). Thus, it is easy to observe that the above protocol and analysis
easily extends for Euclidean Distance too.

8 Open Problems

We list some interesting open problems for future work.

− Can we define game-based security definitions and design more efficient protocols for
FTT that satisfy those? Typically, game-based definitions are weaker than simulation-
based ones and hence easier to design more efficient protocols for.

− Can we design protocols that tolerate adaptive corruptions of the parties by the adver-
sary? Currently, all our protocols are secure only against an adversary that performs
static corruptions before the protocol begins.

− Can we design a definition and protocols that allow parties to dynamically join and
leave the system? This captures the setting where users or enterprises add or remove
new devices. Our current framework only captures a static setting with an apriori fixed
number of parties and there are several challenges on the definitional front and in protocol
design to capture this. For instance, it is not even clear how the threshold signatures
would work once more parties join.

− Can we design protocols that allow for rotation of signature keys over time as is common
in real world systems?

References

[AMMM18] Shashank Agrawal, Peihan Miao, Payman Mohassel, and Pratyay Mukherjee.
PASTA: PASsword-based threshold authentication. In David Lie, Mohammad
Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages
2042–2059. ACM Press, October 2018.

[AMMR18] Shashank Agrawal, Payman Mohassel, Pratyay Mukherjee, and Peter Rindal.
DiSE: Distributed symmetric-key encryption. In David Lie, Mohammad Man-
nan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages 1993–
2010. ACM Press, October 2018.

27

[appa] About Face ID advanced technology. https://support.apple.com/en-us/
HT208108. Accessed on June 7, 2020.

[appb] iOS Security — iOS 12. https://www.apple.com/business/site/docs/iOS Security
Guide.pdf. Page-8, Accessed on June 7, 2020.

[BCP13] Julien Bringer, Hervé Chabanne, and Alain Patey. SHADE: Secure HAmming
DistancE computation from oblivious transfer. In Andrew A. Adams, Michael
Brenner, and Matthew Smith, editors, FC 2013 Workshops, LNCS, pages 164–
176. Springer, Heidelberg, April 2013.

[BCV16] Olivier Blazy, Céline Chevalier, and Damien Vergnaud. Mitigating server
breaches in password-based authentication: Secure and efficient solutions. In
Kazue Sako, editor, CT-RSA 2016, volume 9610 of LNCS, pages 3–18. Springer,
Heidelberg, February / March 2016.

[BDCG13] Carlo Blundo, Emiliano De Cristofaro, and Paolo Gasti. Espresso: Efficient
privacy-preserving evaluation of sample set similarity. In Roberto Di Pietro,
Javier Herranz, Ernesto Damiani, and Radu State, editors, Data Privacy Man-
agement and Autonomous Spontaneous Security, 2013.

[BFH+19] Carsten Baum, Tore K. Frederiksen, Julia Hesse, Anja Lehmann, and Avishay
Yanai. Proactively secure distributed single sign-on, or how to trust a hacked
server. Cryptology ePrint Archive, Report 2019/1470, 2019. https://eprint.iacr.
org/2019/1470.

[BGG+18] Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim, Peter
M. R. Rasmussen, and Amit Sahai. Threshold cryptosystems from threshold
fully homomorphic encryption. In Hovav Shacham and Alexandra Boldyreva,
editors, CRYPTO 2018, Part I, volume 10991 of LNCS, pages 565–596. Springer,
Heidelberg, August 2018.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In
Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 1–18. Springer,
Heidelberg, August 2001.

[BGI15] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057
of LNCS, pages 337–367. Springer, Heidelberg, April 2015.

[BGI+18] Elette Boyle, Niv Gilboa, Yuval Ishai, Huijia Lin, and Stefano Tessaro. Foun-
dations of homomorphic secret sharing. In Anna R. Karlin, editor, ITCS 2018,
volume 94, pages 21:1–21:21. LIPIcs, January 2018.

[BIK17a] Amos Beimel, Yuval Ishai, and Eyal Kushilevitz. Ad hoc PSM protocols: Secure
computation without coordination. In Jean-Sébastien Coron and Jesper Buus
Nielsen, editors, EUROCRYPT 2017, Part III, volume 10212 of LNCS, pages
580–608. Springer, Heidelberg, April / May 2017.

28

https://support.apple.com/en-us/HT208108
https://support.apple.com/en-us/HT208108
https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf
https://eprint.iacr.org/2019/1470
https://eprint.iacr.org/2019/1470

[BIK+17b] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practi-
cal secure aggregation for privacy-preserving machine learning. In Bhavani M.
Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS
2017, pages 1175–1191. ACM Press, October / November 2017.

[BL18] Fabrice Benhamouda and Huijia Lin. k-round multiparty computation from k-
round oblivious transfer via garbled interactive circuits. In Jesper Buus Nielsen
and Vincent Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of
LNCS, pages 500–532. Springer, Heidelberg, April / May 2018.

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signa-
tures based on the gap-Diffie-Hellman-group signature scheme. In Yvo Desmedt,
editor, PKC 2003, volume 2567 of LNCS, pages 31–46. Springer, Heidelberg,
January 2003.

[Boy04] Xavier Boyen. Reusable cryptographic fuzzy extractors. In Vijayalakshmi Atluri,
Birgit Pfitzmann, and Patrick McDaniel, editors, ACM CCS 2004, pages 82–91.
ACM Press, October 2004.

[BP16] Zvika Brakerski and Renen Perlman. Lattice-based fully dynamic multi-key
FHE with short ciphertexts. In Matthew Robshaw and Jonathan Katz, edi-
tors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 190–213. Springer,
Heidelberg, August 2016.

[Can01] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press,
October 2001.

[Can04] Ran Canetti. Universally Composable Signature, Certification, and Authenti-
cation. In 17th IEEE Computer Security Foundations Workshop, (CSFW-17
2004), 28-30 June 2004, Pacific Grove, CA, USA, page 219, 2004.

[CCL15] Ran Canetti, Asaf Cohen, and Yehuda Lindell. A simpler variant of universally
composable security for standard multiparty computation. In Rosario Gennaro
and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of
LNCS, pages 3–22. Springer, Heidelberg, August 2015.

[CDN01] Ronald Cramer, Ivan Damg̊ard, and Jesper Buus Nielsen. Multiparty compu-
tation from threshold homomorphic encryption. In Birgit Pfitzmann, editor,
EUROCRYPT 2001, volume 2045 of LNCS, pages 280–299. Springer, Heidel-
berg, May 2001.

[CHK+05] Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D.
MacKenzie. Universally composable password-based key exchange. In Ronald
Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 404–421.
Springer, Heidelberg, May 2005.

[CSS12] T.-H. Hubert Chan, Elaine Shi, and Dawn Song. Privacy-preserving stream
aggregation with fault tolerance. In Angelos D. Keromytis, editor, FC 2012,
volume 7397 of LNCS, pages 200–214. Springer, Heidelberg, February / March
2012.

29

[DHP+18] Pierre-Alain Dupont, Julia Hesse, David Pointcheval, Leonid Reyzin, and Sophia
Yakoubov. Fuzzy password-authenticated key exchange. In Jesper Buus Nielsen
and Vincent Rijmen, editors, EUROCRYPT 2018, Part III, volume 10822 of
LNCS, pages 393–424. Springer, Heidelberg, April / May 2018.

[DJ01] Ivan Damg̊ard and Mats Jurik. A generalisation, a simplification and some ap-
plications of Paillier’s probabilistic public-key system. In Kwangjo Kim, editor,
PKC 2001, volume 1992 of LNCS, pages 119–136. Springer, Heidelberg, Febru-
ary 2001.

[DRS04] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to
generate strong keys from biometrics and other noisy data. In Christian Cachin
and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages
523–540. Springer, Heidelberg, May 2004.

[DSB17] Trung Dinh, Ron Steinfeld, and Nandita Bhattacharjee. A lattice-based ap-
proach to privacy-preserving biometric authentication without relying on trusted
third parties. In ISPEC, 2017.

[ElG84] Taher ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. In G. R. Blakley and David Chaum, editors, CRYPTO’84,
volume 196 of LNCS, pages 10–18. Springer, Heidelberg, August 1984.

[ess] Advantages and disadvantages of biometrics. https://
www.ukessays.com/dissertation/examples/information-systems/
advantages-and-disadvantages-of-biometrics.php?vref=1. Accessed on June
7, 2020.

[fid] FIDO Alliance. https://fidoalliance.org/. Accessed on June 7, 2020.

[FKN94] Uriel Feige, Joe Kilian, and Moni Naor. A minimal model for secure computation
(extended abstract). In 26th ACM STOC, pages 554–563. ACM Press, May 1994.

[GFN+17] Paul A Grassi, JL Fenton, EM Newton, RA Perlner, AR Regenscheid, WE Burr,
JP Richer, NB Lefkovitz, JM Danker, YY Choong, KK Greene, and MF Theo-
fanos. Nist special publication 800-63b: Digital identity guidelines: Authentica-
tion and lifecycle management. June 2017.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and
Brent Waters. Candidate indistinguishability obfuscation and functional en-
cryption for all circuits. In 54th FOCS, pages 40–49. IEEE Computer Society
Press, October 2013.

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Applica-
tions. Cambridge University Press, 2004.

[GS18] Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure compu-
tation from minimal assumptions. In Jesper Buus Nielsen and Vincent Rijmen,
editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 468–499.
Springer, Heidelberg, April / May 2018.

[HK12] Shai Halevi and Yael Tauman Kalai. Smooth projective hashing and two-message
oblivious transfer. Journal of Cryptology, 25(1):158–193, January 2012.

30

https://www.ukessays.com/dissertation/examples/information-systems/advantages-and-disadvantages-of-biometrics.php?vref=1.
https://www.ukessays.com/dissertation/examples/information-systems/advantages-and-disadvantages-of-biometrics.php?vref=1.
https://www.ukessays.com/dissertation/examples/information-systems/advantages-and-disadvantages-of-biometrics.php?vref=1.
https://fidoalliance.org/

[IK97] Yuval Ishai and Eyal Kushilevitz. Private simultaneous messages protocols with
applications. In ISTCS ’97, Washington, DC, USA, 1997.

[JL13] Marc Joye and Benôıt Libert. A scalable scheme for privacy-preserving aggrega-
tion of time-series data. In Ahmad-Reza Sadeghi, editor, FC 2013, volume 7859
of LNCS, pages 111–125. Springer, Heidelberg, April 2013.

[KZ08] Aggelos Kiayias and Hong-Sheng Zhou. Equivocal blind signatures and adaptive
UC-security. In Ran Canetti, editor, TCC 2008, volume 4948 of LNCS, pages
340–355. Springer, Heidelberg, March 2008.

[lis] List of data breaches. https://en.wikipedia.org/wiki/List of data breaches. Ac-
cessed on June 7, 2020.

[LWY+] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song.
Sphereface: Deep hypersphere embedding for face recognition. In CVPR.

[MRZ15] Payman Mohassel, Mike Rosulek, and Ye Zhang. Fast and secure three-party
computation: The garbled circuit approach. In Indrajit Ray, Ninghui Li, and
Christopher Kruegel, editors, ACM CCS 2015, pages 591–602. ACM Press, Oc-
tober 2015.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via
multi-key FHE. In Marc Fischlin and Jean-Sébastien Coron, editors, EURO-
CRYPT 2016, Part II, volume 9666 of LNCS, pages 735–763. Springer, Heidel-
berg, May 2016.

[nis] NISTIR Draft on Ongoing Face Recognition Vendor Test Part 1: Verifica-
tion. https://pages.nist.gov/frvt/reports/11/frvt report 2020 01 21.pdf. Accessed
on June 7, 2020.

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In S. Rao
Kosaraju, editor, 12th SODA, pages 448–457. ACM-SIAM, January 2001.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Jacques Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages
223–238. Springer, Heidelberg, May 1999.

[pix] Google Pixel Fingerprint. https://support.google.com/pixelphone/answer/
6285273?hl=en. Accessed on June 7, 2020.

[prc] Privacy Rights Clearinghouse – Data Breaches. https://www.privacyrights.org/
data-breaches. Accessed on June 7, 2020.

[PS16] Chris Peikert and Sina Shiehian. Multi-key FHE from LWE, revisited. In Martin
Hirt and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS,
pages 217–238. Springer, Heidelberg, October / November 2016.

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from
(plain) learning with errors. In Alexandra Boldyreva and Daniele Micciancio,
editors, CRYPTO 2019, Part I, volume 11692 of LNCS, pages 89–114. Springer,
Heidelberg, August 2019.

31

https://en.wikipedia.org/wiki/List_of_data_breaches
https://pages.nist.gov/frvt/reports/11/frvt_report_2020_01_21.pdf
https://support.google.com/pixelphone/answer/6285273?hl=en
https://support.google.com/pixelphone/answer/6285273?hl=en
https://www.privacyrights.org/data-breaches
https://www.privacyrights.org/data-breaches

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework
for efficient and composable oblivious transfer. In David Wagner, editor,
CRYPTO 2008, volume 5157 of LNCS, pages 554–571. Springer, Heidelberg,
August 2008.

[sam] Samsung Galaxy: Iris Scans for Security. https://www.samsung.com/global/
galaxy/galaxy-s8/security/. Accessed on June 7, 2020.

[Sho00] Victor Shoup. Practical threshold signatures. In Bart Preneel, editor, EURO-
CRYPT 2000, volume 1807 of LNCS, pages 207–220. Springer, Heidelberg, May
2000.

[SKP15] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified
embedding for face recognition and clustering. In CVPR, 2015.

[SW05] Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald
Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 457–473.
Springer, Heidelberg, May 2005.

[w3s] Web Authentication: W3 Standard. https://www.w3.org/TR/2018/
CR-webauthn-20180320/. Accessed on June 7, 2020.

[whi] White-Box Competition. https://whibox-contest.github.io/. Accessed on June 7,
2020.

[WWZ+18] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou,
Zhifeng Li, and Wei Liu. Cosface: Large margin cosine loss for deep face recog-
nition. In CVPR, 2018.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended ab-
stract). In 27th FOCS, pages 162–167. IEEE Computer Society Press, October
1986.

A Cryptographic Definitions

A.1 Basic primitives

Definition 6. (Pseudorandom Function). A pseudorandom function (PRF) is a polynomial-
time computable function

F : {0, 1}λ × {0, 1}` −→ {0, 1}`′ ,

such that for all PPT algorithms A, we have∣∣∣Pr
[
AF (K,·) = 1

]
− Pr

[
AG(·) = 1

]∣∣∣ ≤ negl(λ),

where K
R←− {0, 1}λ and G is uniformly sampled from the set of all functions that map {0, 1}`

to {0, 1}`′.

Definition 7. (Symmetric-Key Encryption). A symmetric-key encryption scheme SKE
consists of the following polynomial-time algorithms:

32

https://www.samsung.com/global/galaxy/galaxy-s8/security/
https://www.samsung.com/global/galaxy/galaxy-s8/security/
https://www.w3.org/TR/2018/CR-webauthn-20180320/
https://www.w3.org/TR/2018/CR-webauthn-20180320/
https://whibox-contest.github.io/

− SKE,Gen(λ): A probabilistic algorithm that takes the security parameter λ as input and
outputs a secret-key sk.

− SKE.Enc(sk,m): A probabilistic algorithm that takes as input a key sk and a plaintext m.
Outputs a ciphertext ct.

− SKE.Dec(sk, ct): A deterministic algorithm that takes as input a key sk and a ciphertext
ct. Outputs the decrypted plaintext m′.

The following correctness and security properties should be satisfied:

− Correctness. For any message m, letting sk = SKE,Gen(λ), we have with overwhelm-
ingly large probability

SKE.Dec(sk,SKE.Enc(sk,m)) = m.

− Security. A symmetric-key encryption scheme SKE is said to be CPA-secure if for all
PPT algorithms A and any two arbitrary plaintext messages m0 and m1, we have

|Pr [A ((m0,m1), ct0) = 1]− Pr [A ((m0,m1), ct1) = 1]| ≤ negl(λ),

where sk = SKE,Gen(λ) and ctb = SKE.Enc(sk,mb) for b ∈ {0, 1}.

Definition 8. (Public-Key Encryption). A public-key encryption scheme PKE consists
of the following polynomial-time algorithms:

− PKE.Gen(λ): A probabilistic algorithm that takes the security parameter λ as input and
outputs a public key pk and a secret key sk.

− SKE.Enc(pk,m): A probabilistic algorithm that takes as input a public key pk and a
plaintext m. Outputs a ciphertext ct.

− SKE.Dec(sk, ct): A deterministic algorithm that takes as input a key sk and a ciphertext
ct. Outputs the decrypted plaintext m′.

The following correctness and security properties should be satisfied:

− Correctness. For any message m, letting (pk, sk) = PKE.Gen(λ), we have with over-
whelmingly large probability

PKE.Dec(sk,PKE.Enc(pk,m)) = m.

− Security. A public-key encryption scheme is said to be CPA-secure if for all PPT
algorithms A and any two arbitrary plaintext messages m0 and m1, we have

|Pr [A (pk, (m0,m1), ct0) = 1]− Pr [A (pk, (m0,m1), ct1) = 1]| ≤ negl(λ),

where (pk, sk) = PKE.Gen(λ) and ctb = PKE.Enc(pk,mb) for b ∈ {0, 1}.

Definition 9. (Garbled Circuits). A garbling scheme for a class of circuits C with n-bit
inputs consists of the following polynomial-time algorithms:

33

− Garble(C ∈ C): A probabilistic algorithm that takes a circuit C ∈ C as input and outputs

a garbled circuit Ĉ and a set of labels
←−
` = {`j,0, `j,1}j∈[n].

− Eval((x1, . . . , xn) ∈ {0, 1}n, {`j,xj}j∈[n], Ĉ): A deterministic algorithm that takes as input

a string (x1, . . . , xn) ∈ {0, 1}n, a set of labels {`j,xj}j∈[n] and a garbled circuit Ĉ, and
outputs a bit y ∈ {0, 1}.

The following correctness and security properties should be satisfied:

− Correctness. For any circuit C ∈ C and any string (x1, . . . , xn) ∈ {0, 1}n, if (Ĉ, {`j,0, `j,1}j∈[n])
= Garble(C), we have

Eval((x1, . . . , xn), {`j,xj}j∈[n], Ĉ) = C(x1, . . . , xn).

− Security. There exists a PPT algorithm Sim such that for any circuit C ∈ C and any
string (x1, . . . , xn) ∈ {0, 1}n, letting (Ĉ, {`j,0, `j,1}j∈[n]) = Garble(C), it holds that the
ensembles

(Ĉ, {`j,xj}j∈[n]) and Sim(1λ, C(x))

are computationally indistinguishable.

Definition 10. (Non-Interactive Commitments). A non-interactive commitment scheme
is a probabilistic polynomial-time algorithm Commit that takes as input a message m together
with random coins r ∈ {0, 1}λ, and returns a commitment com. The opening of a commitment
com consists of strings (m, r) such that com = Commit(m; r). As for security, commitment
schemes should satisfy two properties called hiding and binding:

− Hiding: A commitment scheme is perfectly (resp., computationally or statistically) hid-
ing, if for all m0,m1, it holds that the ensembles

{Commit(m0; r0)}r0←{0,1}λ and {Commit(m1; r1)}r1←{0,1}λ

are identically distributed (resp., computationally or statistically close).

− Binding: A commitment scheme is computationally (resp., perfectly) binding, if for all
PPT (resp., computationally unbounded) adversaries A we have

Pr
[
A(1λ) = ((m0, r0), (m1, r1))

]
≤ negl(λ),

whenever Commit(m0; r0) = Commit(m1; r1).

Definition 11. (Two-Message Oblivious Transfer.) A two-message oblivious trans-
fer (OT) protocol in the common reference string (CRS) model is a tuple OT = (OT.Setup,
OT.Round1, OT.Round2, OT.Output) defined as follows:

− OT.Setup(1λ): A PPT algorithm that, given the security parameter λ, outputs a common
reference string crs.

− OT.Round1(crs, β): A PPT algorithm that, given crs and a bit β ∈ {0, 1}, outputs a
message m1 and a secret state st.

34

− OT.Round2(crs, (µ0, µ1),m1): A PPT algorithm that, given crs, a pair of strings µ0, µ1 ∈
{0, 1}` (where ` is a parameter of the scheme) and a message m1, outputs a message m2.

− OT.Output(crs, st, β,m2): A deterministic algorithm that, given crs, a secret state st, a
bit β ∈ {0, 1} and a message m2, it outputs a string µ′ ∈ {0, 1}`.

The following correctness and security properties should be satisfied:

− Correctness. For any λ ∈ N, any bit β ∈ {0, 1}, and any pair of strings µ0, µ1 ∈ {0, 1}`,
letting crs = OT.Setup(1λ), (m1, st) = OT.Round1(crs, β), m2 = OT.Round2(crs, (µ0, µ1),
msg1) and µ′ = OT.Output(crs, st, β,m2), we have µ′ = µ with overwhelmingly large
probability.

− Receiver Privacy. For any λ ∈ N and for any PPT adversary A, letting crs =
OT.Setup(1λ), we have

|Pr[A(crs,OT.Round1(crs, 0)) = 0]− Pr[A(crs,OT.Round1(crs, 1) = 0]| ≤ negl(λ),

where the probabilities are defined over the random coins used internally by the OT.Round1

algorithm.

− Sender Privacy. For any λ ∈ N, any m1 = m1(λ) and any (µ0, µ1) = (µ0(λ), µ1(λ)),
there exists a PPT simulator Sim = (OT.Sim.Setup,OT.Sim.Round2) such that letting
crs = OT.Setup(1λ), (ĉrs, τ) = OT.Sim.Setup(1λ), and β = OT.Sim.Round2(τ,m1), the
following holds for any PPT adversary A:

|Pr[A(crs,m1,m2) = 0]− Pr[A(ĉrs,m1, m̂2,β) = 0]| ≤ negl(λ),

where

m2 = OT.Round2(crs, (µ0, µ1),m1) , m̂2,β = OT.Round2(ĉrs, (µβ, µβ),m1).

Definition 12. (Non-Interactive Zero-Knowledge.) Let R be a relation and let the lan-
guage L be a set of statements {st ∈ {0, 1}n} such that for each statement st ∈ L, there exists
a corresponding witness wit such that (st,wit) ∈ R. A non-interactive zero-knowledge (NIZK)
proof system for R is a tuple of PPT algorithms NIZK = (NIZK.Setup,Prove,Verify) defined
as follows:

− NIZK.Setup(1λ, 1n): A PPT algorithm that, given the security parameter λ and the state-
ment length parameter n, outputs a common random string crs.

− Prove(crs, (st,wit)): A PPT algorithm that, given crs, a statement st ∈ {0, 1}n and a
witness wit such that (st,wit) ∈ R, outputs a proof π.

− Verify(crs, st, π): A deterministic algorithm that, given crs, a statement st ∈ {0, 1}n and
a proof π, either outputs 1 (accept) or 0 (reject).

The following completeness and security properties should be satisfied:

35

− Completeness. For any parameters λ, n ∈ N and any (st,wit) ∈ R, letting crs =
NIZK.Setup(1λ, 1n), and π = Prove(crs, (st,wit)), we have

Verify(crs, st, π) = 1

with probability 1, where the probability is taken over the internal random coins used by
the NIZK.Setup and Prove algorithms.

− Computational Extractability. There exists an efficient PPT extractor NIZK.Ext =
(NIZK.Ext1, NIZK.Ext2) such that:

− For any parameters λ, n ∈ N and for any polynomially bounded cheating prover P ∗,
we have:

|Pr [P ∗(crs) = 1]− Pr [P ∗(ĉrs) = 1]| ≤ negl(λ),

where crs← NIZK.Setup(1λ, 1n) and (ĉrs, τ)← NIZK.Ext1(1
λ, 1n).

− For any parameters λ, n ∈ N and for any polynomially bounded cheating prover P ∗,
we have:

Pr [(st,wit) ∈ R if Verify(ĉrs, st, π) = 1] = 1,

where:

1. (ĉrs, τ)← NIZK.Ext1(1
λ, 1n),

2. (st, π)← P ∗(ĉrs), and

3. wit = NIZK.Sim2((ĉrs, τ), st, π).

− Adaptive (Computational) Zero Knowledge. There exists an efficient PPT sim-
ulator NIZK.Sim = (NIZK.Sim1,NIZK.Sim2) such that for any parameters λ, n ∈ N and
for any non-uniform polynomially bounded “cheating” verifier V ∗ = (V ∗1 , V

∗
2), we have

|Pr [V ∗2 (crs, st, π, ξ) = 1 ∧ (st ∈ L)]− Pr [V ∗2 (ĉrs, st, π̂, ξ) = 1 ∧ (st ∈ L)]| ≤ negl(λ),

where:

− Real Experiment:

1. crs = NIZK.Setup(1λ, 1n)

2. (st,wit, ξ)← V ∗1 (crs)

3. π = Prove(crs, (st,wit))

− Ideal Experiment:

1. (ĉrs, τ)← NIZK.Sim1(1
λ, 1n)

2. (st,wit, ξ)← V ∗1 (ĉrs)

3. π̂ = NIZK.Sim2((ĉrs, τ), st).

36

A.2 Additively Homomorphic Encryption

Definition 13. (Additively Homomorphic Encryption). An additively homomorphic
encryption scheme AHE is a PKE scheme such that the message space M is associated with
two efficiently computable operations (+, ∗) and there exists the following PPT algorithms:

− AHE.Add(ct0, ct1): Takes as input two ciphertexts ct0 and ct1 and outputs a ciphertext
ct∗.

− AHE.ConstMul(ct0,m1): Takes as input a ciphertext ct0 and a message m1 and outputs
a ciphertext ct∗.

such that the following properties are satisfied:

− Additive Homomorphism. For any two arbitrary plaintext messages m0 and m1,
letting (pk, sk) = PKE.Gen(λ) and ctb = PKE.Enc(pk,mb) for b ∈ {0, 1}, we have

AHE.Dec(sk,AHE.Add(ct0, ct1)) = m0 + m1.

− Constant Multiplication. For any two arbitrary plaintext messages m0 and m1, let-
ting (pk, sk) = PKE.Gen(λ) and ct0 = PKE.Enc(pk,m0), we have

AHE.Dec(sk,AHE.ConstMul(ct0,m1)) = m0 ∗m1.

A.3 Threshold Fully Homomorphic Encryption

Definition 14. (Threshold Fully Homomorphic Encryption (TFHE)) Let P = {P1,
. . . , Pn } be a set of parties and let S be a class of efficient access structures on P. A TFHE
scheme for S is a tuple of PPT algorithms TFHE = (TFHE.Gen, TFHE.Enc, TFHE.PartialDec,
TFHE.Eval, TFHE.Combine) with the following properties:

− TFHE.Gen(1λ, 1d,A): On input the security parameter λ, a depth bound d, and an access
structure A ∈ S, the setup algorithm outputs a public key pkTFHE, and a set of secret key
shares skTFHE1 , ..., skTFHEn .

− TFHE.Enc(pkTFHE, µ): On input a public key pkTFHE, and a plaintext µ, the encryption
algorithm outputs a ciphertext ct.

− TFHE.Eval(pkTFHE, C, ct1, . . . , ctk): On input a public key pkTFHE, a circuit C of depth at
most d, and a set of ciphertexts ct1, . . . , ctk, the evaluation algorithm outputs a cipehrtext
ct∗.

− TFHE.PartialDec(skTFHEi , ct): On input a a secret key share skTFHEi and a ciphertext ct,
the partial decryption algorithm outputs a partial decryption µi.

− TFHE.Combine(pk, {µi}i∈S): On input a public key pk and a set of partial decryptions
{µi}i∈S for some subset S ⊆ {P1, . . . ,Pn}, the combination algorithm either outputs a
plaintext µ or the symbol ⊥.

37

As in a standard FHE scheme, we require that a TFHE scheme satisfies compactness,
correctness, and security. We discuss these informally below. For formal definitions, re-
fer [BGG+18].

Compactness. Informally, a TFHE scheme is said to be compact if the bit-length of a
ciphertext output by the evaluation algorithm and the bit-length of any partial decryption of
such a ciphertext is a priori upper bounded by some fixed polynomial, which is independent
of the size of the circuit evaluated.

Correctness. Informally, a TFHE scheme is said to be correct if recombining partial de-
cryptions of a ciphertext output by the evaluation algorithm returns the correct evaluation
of the corresponding circuit on the underlying plaintexts.

Semantic Security. Informally, a TFHE scheme is said to provide semantic security if
a PPT adversary cannot efficiently distinguish between encryptions of arbitrarily chosen
plaintext messages µ0 and µ1, even given the secret key shares corresponding to a subset S
of the parties, so long as S is an invalid access structure set.

Simulation Security: Informally, a TFHE scheme is said to provide simulation security
if there exists an efficient algorithm TFHE.Sim that takes as input a circuit C of depth at
most d, a set of ciphertexts ct1, . . . , ctk, and the output of C on the corresponding plaintexts,
and outputs a set of partial decryptions corresponding to some subset of parties, such that
its output is computationally indistinguishable from the output of a real algorithm that
homomorphically evaluates the circuit C on the ciphertexts ct1, . . . , ctk and outputs partial
decryptions using the corresponding secret key shares for the same subset of parties. In
particular, the computational indistinguishability holds even when a PPT adversary is given
the secret key shares corresponding to a subset S of the parties, so long as S is an invalid
access structure set.

A.4 Secure Multiparty Computation

Parts of this section have been taken verbatim from [Gol04].
A multi-party protocol is cast by specifying a random process that maps pairs of inputs

to pairs of outputs (one for each party). We refer to such a process as a functionality. The
security of a protocol is defined with respect to a functionality f . In particular, let n denote
the number of parties. A non-reactive n-party functionality f is a (possibly randomized)
mapping of n inputs to n outputs. A multiparty protocol with security parameter λ for
computing a non-reactive functionality f is a protocol running in time poly(λ) and satisfying
the following correctness requirement: if parties P1, . . . , Pn with inputs (x1, . . . , xn) respec-
tively, all run an honest execution of the protocol, then the joint distribution of the outputs
y1, . . . , yn of the parties is statistically close to f(x1, . . . , xn).

A reactive functionality f is a sequence of non-reactive functionalities f = (f1, . . . , f`)
computed in a stateful fashion in a series of phases. Let xji denote the input of Pi in phase j,
and let sj denote the state of the computation after phase j. Computation of f proceeds by
setting s0 equal to the empty string and then computing (yj1, . . . , y

j
n, sj)← fj(s

j−1, xj1, . . . , x
j
n)

for j ∈ [`], where yji denotes the output of Pi at the end of phase j. A multi-party protocol
computing f also runs in ` phases, at the beginning of which each party holds an input and
at the end of which each party obtains an output. (Note that parties may wait to decide on
their phase-j input until the beginning of that phase.) Parties maintain state throughout the
entire execution. The correctness requirement is that, in an honest execution of the protocol,

38

the joint distribution of all the outputs {yj1, . . . , y
j
n}`j=1 of all the phases is statistically close

to the joint distribution of all the outputs of all the phases in a computation of f on the same
inputs used by the parties.

Defining Security. We assume that readers are familiar with standard simulation-based
definitions of secure multi-party computation in the standalone setting. We provide a self-
contained definition for completeness and refer to [Gol04] for a more complete description.
The security of a protocol (with respect to a functionality f) is defined by comparing the
real-world execution of the protocol with an ideal-world evaluation of f by a trusted party.
More concretely, it is required that for every adversary A, which attacks the real execution of
the protocol, there exist an adversary Sim, also referred to as a simulator, which can achieve
the same effect in the ideal-world. Let’s denote −→x = (x1, . . . , xn).

The real execution In the real execution of the n-party protocol π for computing f is
executed in the presence of an adversary Adv. The honest parties follow the instructions of
π. The adversary Adv takes as input the security parameter k, the set I ⊂ [n] of corrupted
parties, the inputs of the corrupted parties, and an auxiliary input z. Adv sends all messages
in place of corrupted parties and may follow an arbitrary polynomial-time strategy.

The interaction of Adv with a protocol π defines a random variable REALπ,Adv(z),I(k,
−→x)

whose value is determined by the coin tosses of the adversary and the honest players. This
random variable contains the output of the adversary (which may be an arbitrary function
of its view) as well as the outputs of the uncorrupted parties. We let REALπ,Adv(z),I denote
the distribution ensemble {REALπ,Adv(z),I(k,

−→x)}k∈N,〈−→x ,z〉∈{0,1}∗ .

The ideal execution – security with abort . In this second variant of the ideal model,
fairness and output delivery are no longer guaranteed. This is the standard relaxation used
when a strict majority of honest parties is not assumed. In this case, an ideal execution for
a function f proceeds as follows:

− Send inputs to the trusted party: As before, the parties send their inputs to the
trusted party, and we let x′i denote the value sent by Pi. Once again, for a semi-honest
adversary we require x′i = xi for all i ∈ I.

− Trusted party sends output to the adversary: The trusted party computes f(x′1, . . . ,
x′n) = (y1, . . . , yn) and sends {yi}i∈I to the adversary.

− Adversary instructs trust party to abort or continue: This is formalized by
having the adversary send either a continue or abort message to the trusted party. (A
semi-honest adversary never aborts.) In the latter case, the trusted party sends to each
uncorrupted party Pi its output value yi. In the former case, the trusted party sends the
special symbol ⊥ to each uncorrupted party.

− Outputs: Sim outputs an arbitrary function of its view, and the honest parties output
the values obtained from the trusted party.

The interaction of Sim with the trusted party defines a random variable IDEALf⊥,Adv(z)(k,
−→x)

as above,and we let {IDEALf⊥,Adv(z),I(k,
−→x)}k∈N,〈−→x ,z〉∈{0,1}∗ where the subscript ”⊥” indicates

that the adversary can abort computation of f .
Having defined the real and the ideal worlds, we now proceed to define our notion of

security.

39

Definition 15. Let k be the security parameter. Let f be an n-party randomized functionality,
and π be an n-party protocol for n ∈ N.

1. We say that π t-securely computes f in the presence of malicious (resp., semi-honest)
adversaries if for every PPT adversary (resp., semi-honest adversary) Adv there exists a
PPT adversary (resp., semi-honest adversary) Sim such that for any I ⊂ [n] with |I| ≤ t
the following quantity is negligible:

|Pr[REALπ,Adv(z),I(k,
−→x) = 1]− Pr[IDEALf,Adv(z),I(k,

−→x) = 1]|

where −→x = {xi}i∈[n] ∈ {0, 1}∗ and z ∈ {0, 1}∗.

2. Similarly, π t-securely computes f with abort in the presence of malicious adversaries
if for every PPT adversary Adv there exists a super-polynomial time adversary Sim such
that for any I ⊂ [n] with |I| ≤ t the following quantity is negligible:

|Pr[REALπ,Adv(z),I(k,
−→x) = 1]− Pr[IDEALf⊥,Adv(z),I(k,

−→x) = 1]|.

B Security Proofs

B.1 Proof of Theorem 1

Consider an environment Z who corrupts t∗ parties where t∗ < t. Additionally, for the two-
round MPC protocol π used in our protocol πAny, let π.Ext denote the extractor, that, on
input the adversary’s round one messages, extracts its inputs and let π.Sim.Setup denote the
algorithm used by π.Sim to compute the simulated CRS. The strategy of the simulator Sim
for our protocol πAny against the environment Z is described below. Let π.Sim denote the
simulator of the underlying two round MPC. Further, let π.Sim use algorithm (π.Sim1, π.Sim2)
to compute the first and second round messages respectively. Note that since we consider
a rushing adversary in the proof of security, the algorithm π.Sim1(·) does not require the
adversary’s input or output.

B.1.1 Description of Simulator

− Setup: Sim does the following:

1. Generate crssim ← π.Sim.Setup(1λ).

2. For each i ∈ [n], compute (ski, vki)← Gen(1λ).

3. For each i, j ∈ [n], compute (kPRFi,j , kPRFj,i) as uniformly random strings.

4. Query the ideal functionality with ”Setup” and the list of corrupt parties. For each
corrupt party Pi, receive (ppTS, vkTS, skTSi) from the ideal functionality.

5. For each i ∈ [n], if Pi is corrupt, give (crs, ppTS, vkTS, skTSi , ski, {vkj}j∈[n], {kPRFj,i , kPRFi,j }j∈[n])
to the enivironment Z.

− Enrollment: Sim does the following:

− If it receives an enrollment query from the adversary on behalf of any corrupt party,
it forwards it to the ideal functionality.

− If an enrollment query was initiated by an honest party, Sim does nothing.

40

− Then, for each enrollment query, for each corrupt party Pi, Sim picks −→w i uniformly
at random and forwards to Z.

SignOn Phase: Case 1 - Honest Party as P∗
Suppose an honest party P∗ uses an input vector u and a message msg for which it wants
a token by interacting with a set of parties S. Sim gets the tuple (msg, S) from the ideal
functionality FDiFuz and interacts with the adversary A as below:

− Round 1: (Sim→) 9 Sim sends (msg, S) to the adversary A for each corrupt party
Pi ∈ S.

− Round 2: (→ Sim) On behalf of each corrupt party Pi ∈ S, receive (msg1,i, σ1,i) from
the adversary.

− Round 3: (Sim→) Sim does the following:

1. On behalf of each honest party Pj in S \ P∗, compute msg1,j ← π.Sim1(1
λ,Pj) and

σ1,j = Sign(skj ,msg1,j).

2. Let TransDiFuz denote the set of tuples of the form (msg1,i, σ1,i) received in round 2
and computed in the above step.

3. Compute the simulated first round message of protocol π on behalf of honest party
P∗ as follows: msg1,∗ ← π.Sim1(1

λ,P∗).
4. Send (TransDiFuz,msg1,∗) to the adversary for each corrupt party Pi ∈ S.

− Round 4: (→ Sim) For each corrupt party Pi ∈ S, receive (cti, {ekj,i}j∈S) from the
adversary.

− Message to Ideal Functionality FDiFuz: Sim does the following:

1. Run π.Sim(·) on the transcript of the underlying protocol π.

2. If π.Sim(·) decides to instruct the ideal functionality of π to deliver output to the
honest party P∗ in protocol π, then so does Sim to the functionality FDiFuz in
our distributed fuzzy secure authentication protocol. Note that in order to do so,
π.Sim(·) might internally use the algorithm π.Ext(·). Essentially, this step guarantees
Sim that the adversary behaved honestly in the protocol.

3. Else, Sim outputs ⊥.

SignOn Phase: Case 2 - Malicious Party as P∗
Suppose a malicious party is the initiator P∗. Sim interacts with the adversary A as below:

− Round 1: (→ Sim) Sim receives (msg, S) from the adversary A on behalf of each honest
party Pj .

− Round 2: (Sim→) Sim does the following:

1. On behalf of each honest party Pj in S, compute and send the pair msg1,j ←
π.Sim1(1

λ,Pj) and σ1,j = Sign(skj ,msg1,j) to the adversary.

9The arrowhead denotes that in this round messages are outgoing from the simulator.

41

− Round 3: (→ Sim) Sim receives a tuple (TransDiFuz,msg1,∗) from the adversary A on
behalf of each honest party Pj .

− Round 4: (Sim→) Sim does the following:

1. On behalf of each honest party Pj , do the following:

1. Let TransDiFuz consist of a set of messages of the form (msg1,i, σ1,i), ∀i ∈ S \P∗.
Output ⊥ if Verify(vki,msg1,i, σ1,i) 6= 1.

2. Let τ1 denote the transcript of protocol π after round 1. That is, τ1 =
{msg1,i}i∈S .

2. Let τ2 denote the subset of τ1 corresponding to all the messages generated by honest
parties.

3. If τ2 not equal for all the honest parties, output “SpecialAbort”.

4. If msg1,∗ not equal for all the honest parties, set a variable flag = 0.

5. Query to Ideal Functionality FDiFuz:

1. Compute inpA = π.Ext(τ1, crssim).

2. Query the ideal functionality FDiFuz with inpA to receive output outA.

6. Compute the set of second round messages msg2,j of protocol π on behalf of each
honest party Pj as π.Sim2(τ1, inpA, outA,Pj).

7. On behalf of each honest party Pj , do the following:

1. Let (TransDiFuz,msg1,∗) denote the message received from the adversary in round

3. Compute ekj = ⊕i∈SPRF(kPRFj,i ,msg1,∗).

2. If flag = 0, compute ctj = SKE.Enc(rand, 0|msg2,j |) where rand is a string chosen
uniformly at random.

3. Else, compute ctj = SKE.Enc(ekj ,msg2,j).

4. For each party Pi ∈ S, compute eki,j = PRF(kPRFi,j ,msg1,∗).

5. Send (ctj , {eki,j}i∈S) to the adversary.

B.1.2 Hybrids

We now show that the above simulation strategy is successful against all environments Z.
That is, the view of the corrupt parties along with the output of the honest parties is com-
putationally indistinguishable in the real and ideal worlds. We will show this via a series
of computationally indistinguishable hybrids where the first hybrid Hyb0 corresponds to the
real world and the last hybrid Hyb5 corresponds to the ideal world.

1. Hyb0 - Real World: In this hybrid, consider a simulator SimHyb that plays the role of
the honest parties as in the real world.

2. Hyb1 - Special Abort: In this hybrid, SimHyb outputs “SpecialAbort” as done by Sim
in round 4 of Case 2 of the simulation strategy. That is, SimHyb outputs “SpecialAbort”
if all the signatures verify but the adversary does not send the same transcript of the
first round of protocol π to all the honest parties.

3. Hyb2 - Simulate MPC messages: In this hybrid, SimHyb does the following:

− In the setup phase, compute the CRS as crssim ← π.Sim.Setup(1λ).

42

− Case 1: Suppose an honest party plays the role of P∗, do:

− In round 3, compute the first round messages msg1,j of protocol π on behalf of
every honest party Pj ∈ S and the first round message msg1,∗ on behalf of the
party P∗ by running the algorithm π.Sim1(·) as done in the ideal world.

− Then, instead of P∗ computing the output by itself using the protocol messages,
instruct the ideal functionality to deliver output to P∗. That is, execute the
“message to ideal functionality” step exactly as in the ideal world.

− Case 2: Suppose a corrupt party plays the role of P∗, do:

− In round 2, compute the first round messages msg1,j of protocol π on behalf of
every honest party Pj ∈ S by running the algorithm π.Sim1(·) as done in the
ideal world.

− Interact with the ideal functionality exactly as done by Sim in the ideal world.
That is, query the ideal functionality on the output of the extractor π.Ext(·)
on input (τ1, crssim) and receive output outA.

− Compute the set of second round messages msg2,j of protocol π on behalf of
each honest party Pj as π.Sim2(τ1, inpA, outA,Pj).

4. Hyb3 - Switch PRF Output in Case 2: In this hybrid, suppose a corrupt party plays
the role of P∗, SimHyb computes the value of the variable flag as done by the simulator
Sim in round 4 of the simulation strategy. That is, SimHyb sets flag = 0 if the adversary
did not send the same round 1 messages of protocol π to all the honest parties Pj ∈ S.
Then, on behalf of every honest party Pj , SimHyb does the following:

− If flag = 1, compute ctj as in Hyb1.

− If flag = 0, compute ctj = SKE.Enc(rand,msg2,j) where rand is chosen uniformly at
random and not as the output of the PRF anymore.

5. Hyb4 - Switch Ciphertext in Case 2: In this hybrid, suppose a corrupt party plays the
role of P∗, SimHyb does the following: if flag = 0, compute ctj = SKE.Enc(rand, 0|msg2,j |)
as in the ideal world.

6. Hyb5 - Switch Template Shares: In this hybrid, for each corrupt party Pi, for each
enrollment query, SimHyb picks the vector −→u i as a uniformly random vector as in the
ideal world instead of as a secret sharing of the template −→u . This hybrid corresponds to
the ideal world.

We will now show that every pair of successive hybrids is computationally indistinguishable.

Lemma 1. Assuming the strong unforgeability of the signature scheme, Hyb0 is computa-
tionally indistinguishable from Hyb1.

Proof. The only difference between the two hybrids is that in Hyb1, SimHyb might output
“SpecialAbort”. We now show that SimHyb outputs “SpecialAbort” in Hyb1 only with negli-
gible probability.

Suppose not. That is, suppose there exists an environment Z that can cause SimHyb to
output “SpecialAbort” in Hyb1 with non-negligible probability, then we will use Z to construct
an adversary ASign that breaks the strong unforgeability of the signature scheme which is a
contradiction.

43

Aπ begins an execution of the DiFuz protocol interacting with the environment Z as in
Hyb1. For each honest party Pj , ASign interacts with a challenger CSign and gets a verification
key vkj which is forwarded to Z as part of the setup phase of DiFuz. Then, during the course
of the protocol, ASign forwards signature queries from Z to CSign and the responses from CSign
to Z.

Finally, suppose Z causes ASign to output “SpecialAbort” with non-negligible probability.
Then, it must be the case that for some tuple of the form (msg1,j , σ1,j) corresponding to
an honest party Pj , the signature σ1,j was not forwarded to Z from CSign but still verified
successfully. Thus, ASign can output the same tuple (msg1,j , σ1,j) as a forgery to break
the strong unforgeability of the signature scheme with non-negligible probability which is a
contradiction.

Lemma 2. Assuming the security of the MPC protocol π, Hyb1 is computationally indistin-
guishable from Hyb2.

Proof. Suppose there exists an environment Z that can distinguish between the two hybrids
with non-negligible probability. We will use Z to construct an adversary Aπ that breaks the
security of the protocol π which is a contradiction.

Aπ begins an execution of the DiFuz protocol interacting with the environment Z and an exe-
cution of protocol π for evaluating circuit C (Figure 2) interacting with a challenger Cπ. Now,
suppose Z corrupts a set of parties P, Aπ corrupts the same set of parties in the protocol
π. First, the registration phase of protocol DiFuz takes place. Then, Aπ receives a string crs
from the challenger Cπ which is either honestly generated or simulated. Aπ sets this string
to be the crs in the setup phase of the DiFuz protocol with A. The rest of the setup protocol
is run exactly as in Hyb0.

Case 1: Honest party as P∗
Now, since we consider a rushing adversary for protocol π, on behalf of every honest party
Pj , Aπ first receives a message msgj from the challenger Cπ. Aπ sets msgj to be the message
msg1,j in round 3 of its interaction with Z and then computes the rest of its messages to
be sent to Z exactly as in Hyb1. Aπ receives a set of messages corresponding to protocol π
from Z on behalf of the corrupt parties in P which it forwards to Cπ as its own messages for
protocol π.

Case 2: Corrupt party as P∗
As in the previous case, on behalf of every honest party Pj , Aπ first receives a message msgj
from the challenger Cπ. Aπ sets msgj to be the message msg1,j in round 2 of its interaction
with Z. Then, in round 4, if the signatures verify, Aπ forwards the set of messages corre-
sponding to protocol π received from Z on behalf of the corrupt parties in P to Cπ as its own
messages for protocol π. Then, on behalf of every honest party Pj , Aπ receives a message
msgj from the challenger Cπ as the second round message of protocol π. Aπ sets msgj to be
the message msg2,j in round 4 of its interaction with Z and computes the rest of its messages
to be sent to Z exactly as in Hyb1.

Notice that when the challenger Cπ sends honestly generated messages, the experiment be-
tween Aπ and Z corresponds exactly to Hyb1 and when the challenger Cπ sends simulated
messages, the experiment corresponds exactly to Hyb2. Thus, if Z can distinguish between

44

the two hybrids with non-negligible probability, Aπ can use the same guess to break the
security of the scheme π with non-negligible probability which is a contradiction.

Lemma 3. Assuming the security of the pseudorandom function, Hyb2 is computationally
indistinguishable from Hyb3.

Proof. Suppose there exists an environment Z that can distinguish between the two hybrids
with non-negligible probability. We will use Z to construct an adversary APRF that breaks
the security of the pseudorandom function which is a contradiction.

The adversary APRF interacts with the environment Z in an execution of the protocol
DiFuz. For each honest party Pj , APRF also interacts with a challenger CPRF in the PRF
security game. For each j, CPRF sends the PRF keys corresponding to the set of corrupt
parties (< k) as requested by APRF which is then forwarded to Z during the setup phase.
Then, APRF continues interacting with Z up to round 3 as in Hyb1. Now, in round 4, suppose
it computes the value of the variable flag to be 0 (as computed in Hyb3), then APRF does the
following: for each honest party Pj , forward the message msg1,∗ received in round 3. Then,
set the XOR of the set of responses from CPRF to be the value ekj used for generating the
ciphertext ctj .

Now notice that when the challenger CPRF responds with a set of honest PRF evaluations
for each honest party j, the interaction between APRF and Z exactly corresponds to Hyb2

and when the challenger responds with a set of uniformly random strings, the interaction
between APRF and Z exactly corresponds to Hyb3. Thus, if Z can distinguish between the
two hybrids with non-negligible probability, ADPRF can use the same guess to break the
pseudorandomness property of the PRF scheme with non-negligible probability which is a
contradiction.

Lemma 4. Assuming the semantic security of the secret key encryption scheme, Hyb3 is
computationally indistinguishable from Hyb4.

Proof. Suppose there exists an environment Z that can distinguish between the two hybrids
with non-negligible probability. We will use Z to construct an adversary ASKE that breaks
the semantic security of the encryption scheme which is a contradiction.

The adversary ASKE interacts with the environment Z as in Hyb3. Then, on behalf
of every honest party Pj , before sending its round 4 message, ASKE first sends the tuple
(msg2,j , 0

|msg2,j |) to the challenger CSKE of the secret key encryption scheme. Corresponding
to every honest party, it receives a ciphertext which is either an encryption of msg2,j or

0|msg2,j | using a secret key chosen uniformly at random. Then, ASKE sets this ciphertext to
be the value ctj and continues interacting with the environment Z exactly as in Hyb2. Notice
that when the challenger CSKE sends ciphertexts of msg2,j , the experiment between ASKE and

Z corresponds exactly to Hyb3 and when the challenger CSKE sends ciphertexts of 0|msg2,j |, the
experiment corresponds exactly to Hyb4. Thus, if Z can distinguish between the two hybrids
with non-negligible probability, ASKE can use the same guess to break the semantic security
of the encryption scheme with non-negligible probability which is a contradiction.

Lemma 5. Assuming the security of the secret sharing scheme, Hyb4 is computationally
indistinguishable from Hyb5.

Proof. The only difference between the two hybrids is that in Hyb4, for every enrollment
with a template −→u , each corrupt party Pi gets a vector −→u i that is picked as a share of
−→u by running the secret sharing algorithm Share whereas, in Hyb5, these values are picked

45

uniformly at random by the simulator. Since the number of corrupt parties is less than
the threshold used in the secret sharing scheme and no information about any other honest
party’s share is known to the simulator, it is easy to see that if there exists an environment
that can distinguish between these two hybrids, we can build an adversary A that breaks the
security of the threshold secret sharing scheme which is a contradiction.

B.2 Proof of Theorem 3

Consider an environment Z who corrupts t∗ parties where t∗ < t. Additionally, let NIZK.Sim
and NIZK.Ext denote the simulator and extractor algorithms for the NIZK argument system
used in our protocol πAny−TFHE. The strategy of the simulator Sim for our protocol against
the environment Z is described below. Note that throughout the description, we assume that
Sim maintains a record/transcript corresponding to each completed session, and that it can
efficiently retrieve the record corresponding to a past session at any point of time.

B.2.1 Description of Simulator

Setup Phase:

In the setup phase, the simulator Sim executes the following algorithm:

1. Generate (pkTFHE, skTFHE1 , . . . , skTFHEn)← TFHE.Gen(1λ, n, t).

2. For each i ∈ [n], compute (ski, vki)← Gen(1λ).

3. Interact with the ideal functionality FTS
ftt as follows:

1. Issue a “Setup” query to FTS
ftt .

2. Receive in response a tuple of the form (“KeyShares”, {skTSi }i∈C), where C ⊆ [n]
contains the identities of all corrupt parties.

4. For each corrupt party Pi, compute comi = Commit(skTFHEi ; rcomi).

5. For each honest party Pi, compute comi = Commit(0λ; rcomi).

6. Provide the following to each corrupt party Pi for i ∈ C:

(pkTFHE, skTFHEi , ppTS, vkTS, skTSi , (vk1, . . . , vkn), ski, (com1, . . . , comn), rcomi).

Registration Phase

Suppose that some party P∗ issues a query of the form (“Register”, sid, −→w) to the ideal
functionality FTS

ftt . If FTS
ftt responds with (“Registered”, sid,Pi), the simulator Sim executes

the following algorithm:

1. Create the following dummy ciphertext: ct−→w = TFHE.Enc(pkTFHE,−→w∗), where −→w∗ is any
arbitrarily chosen template independent of the actual template −→w .

2. Send ct−→w to each corrupt party Pi for i ∈ C.

46

SignOn Phase: Case 1 - Honest Party as P∗

Suppose that in some session with id sid, an honest party P∗ issues a query of the form
(“SignOn”, sid, vk, msg, P∗, −→u , S ⊆ [n]), where −→u is the measurement, msg is the message
for which P∗ wants a token, and S ⊆ [n] is the set of t parties with which P∗ wishes to
interact.

Let S = S0 ∪ S1, where S0 is the set of all honest parties in S and S1 is the set of all
corrupt parties in S. Sim interacts with the ideal functionality FTS

ftt and the adversary A as
follows.

− Initial Step: Sim receives the message (“Signing Req”, sid,msg,Pi) issued by the ideal
functionality FTS

ftt to each corrupt party Pi in the set S.

− Round 1: (Sim→) On behalf of party P∗, Sim does the following:

1. Compute a dummy ciphertext ct−→u = TFHE.Enc(pkTFHE,−→u ∗), where −→u ∗ is any
arbitrarily chosen measurement.

2. Compute a simulated proof π−→u ← NIZK.Sim(st−→u) for st−→u = (ct−→u , pkTFHE) ∈ L1.

3. To each corrupt party Pi ∈ S1, send (ct−→u , π−→u).

− Round 2: (→ Sim) On behalf of party P∗, Sim receives a tuple (ctKi , πKi , σi,0, σi,1)
from each corrupt party Pi ∈ S1.

− Round 3: (Sim→) Sim proceeds as follows:

1. TFHE Ciphertext Validation-1: In order to check that each corrupt party Pi ∈
S1 generated ctKi honestly, Sim does the following:

1. Extract the one-time key Ki as:

(Ki, rKi) = NIZK.Ext(πKi , stKi),

where stKi = (ctKi , pkTFHE).

2. If ctKi 6= TFHE.Enc(pkTFHE,Ki; rKi), output ⊥ and abort.

2. Otherwise, on behalf of each honest party Pj in the set S0, Sim does the following:

1. Compute a dummy ciphertext ctKj = TFHE.Enc(pkTFHE, 0λ).

2. Compute a simulated proof πKj ← NIZK.Sim(stKj) for the statement stKj =

(ctKj , pkTFHE) ∈ L1.

3. Compute the signatures as:

σj,0 = Sign(skj , ct−→u), σj,1 = Sign(skj , ctKj).

3. Finally, on behalf of P∗, Sim forwards the following to each corrupt party in S1:

{(ctK` , πK` , σ`,0, σ`,1)}P`∈S .

− Round 4: (→ Sim) On behalf of party P∗, Sim receives the following from each corrupt
party Pi ∈ S1:

(cti, {(πi,`, µi,`)}P`∈S).

47

− TFHE Ciphertext Validation-2: At this point, Sim performs the following valida-
tion step: in order to check that each corrupt party Pi ∈ S1 generated µi,` honestly for
each party P` ∈ S, Sim does the following:

1. Extract the TFHE partial decryption key skTFHEi as:

(skTFHEi , rcomi)− NIZK.Ext(πi,`, sti,`),

where sti,` = (ctC,`, µi,`, comi) and P` is some party in the set S.

2. If comi 6= Commit(skTFHEi , rcomi) or µi,` 6= TFHE.PartialDec(skTFHEi , ctC,`) for some
party P` ∈ S, output ⊥ and abort.

− Signature Validation: Next, Sim performs the following validation steps:

1. In order to check that each corrupt party Pi ∈ S1 generated σi,0 and σi,1 honestly,
Sim checks if Verify(vki, ct−→u , σi,0) = 1 and Verify(vki, ctKi , σi,1) = 1. If not, it outputs
⊥ and aborts.

− Token Validation: In order to check that each corrupt party Pi ∈ S1 generated cti
honestly, Sim does the following for each corrupt party Pi ∈ S1:

1. Use the previously extracted one-time key Ki to recover the corresponding partial
token on the message msg as: Tokeni = Ki ⊕ ctiz.

2. If Tokeni 6= TS.Sign(skTSi ,msg), output ⊥ and abort.

− Message to Ideal Functionality: Send (“Agreed”, sid,msg,Pi) to the ideal function-
ality FTS

ftt on behalf of each corrupt party Pi ∈ S1. In other words, Sim instructs the
ideal functionality to deliver the output to P∗ depending on whether the measurement
matches the template.

SignOn Phase: Case 2 - Malicious Party as P∗

Suppose that in some session with id sid, a corrupt party P∗ issues a query of the form
(“SignOn”, sid, vk, msg, P∗, −→u , S ⊆ [n]), where −→u is the measurement, msg is the message
for which P∗ wants a token, and S ⊆ [n] is the set of t parties with which P∗ wishes to
interact.

As before, let S = S0 ∪ S1, where S0 is the set of all honest parties in S and S1 is the set
of all corrupt parties in S. Sim initializes a variable flag to 0, and interacts with the ideal
functionality FTS

ftt and the adversary A as follows.

− Round 1: (→ Sim) On behalf of each honest party Pj ∈ S0, Sim does the following:

1. Receive a ciphertext ct−→u ,j and a proof π−→u ,j from the party P∗.
2. Extract the corresponding measurement −→u as:

(−→u , r−→u ,j) = NIZK.Ext(π−→u ,j , st−→u ,j),

where st−→u ,j = (ct−→u ,j , pkTFHE).

3. Output ⊥ and abort if TFHE.Enc(pkTFHE,−→u ; r−→u ,j) 6= ct−→u ,j .

48

− Routing-Consistency Check-1: Sim checks if there exists a pair of honest parties
(Pj ,Pj′) such that ct−→u ,j 6= ct−→u ,j′ :

1. If such a pair of honest parties exists, Sim sets flag to 1.

2. Else, Sim sets ct−→u = ct−→u ,j for any honest party Pj ∈ S0.

− Round 2: (Sim→) On behalf of each honest party Pj ∈ S0, Sim does the following:

1. Generate and store a one-time key Kj ← {0, 1}λ.

2. Compute a dummy ciphertext ctKj = TFHE.Enc(pkTFHE, 0λ).

3. Compute a simulated proof πKj ← NIZK.Sim(stKj) for stKj = (ctKj , pkTFHE) ∈ L1.

4. Generate a pair of signatures (σj,0, σj,1) as: σj,0 = Sign(skj , ct−→u ,j), σj,1 = Sign(skj , ctKj).

5. Send the following to the party P∗: (ctKj , πKj , σj,0, σj,1).

− Round 3: (→ Sim) On behalf of each honest party Pj ∈ S0, Sim receives the following
from the corrupt party P∗:

{(ctK`,j , πK`,j , σ`,j,0, σ`,j,1)}P`∈S),

and subsequently executes the following steps:

1. TFHE Ciphertext and Signature Validation: For each honest party Pj ∈ S0,
output ⊥ and abort if any of the following events occur:

1. There exists some party P` ∈ S such that Verify(πK`,j , stK`,j) 6= 1 for language
L1 where stK`,j = (ctK`,j , pkTFHE).

2. There exists some party P` ∈ S such that Verify(vk`, ct−→u ,j , σ`,j,0) 6= 1 (OR)
Verify(vk`, ctK`,j , σ`,j,1) 6= 1.

2. Routing-Consistency Check-2: Check if there exists a pair of honest parties
(Pj ,Pj′) such that

{ctK`,j}P`∈S0 6= {ctK`,j′}P`∈S0 .

If such a pair of honest parties exists, then abort by outputting “SpecialAbort”.

3. Finally, if flag currently is set to 1, then abort by outputting “SpecialAbort”.

− Round 4: (Sim→) On behalf of each honest party Pj ∈ S0, Sim sends the following
to the corrupt party P∗:

(ctj , {(πj,`, µj,`)}P`∈S),

by executing the following steps:

1. For each corrupt party Pi ∈ S1, extract the corresponding one-time key Ki as:

(Ki, rKi) = NIZK.Ext(πKi , stKi),

where stKi = (ctKi , pkTFHE).

2. Issue the following query to the ideal functionality FTS
ftt : (“SignOn”, sid, vk,msg,P∗,−→u , S)

using he previously extracted measurement −→u .

49

3. Upon receipt of the messages {(“Signing Req”, sid,msg,P`)}P`∈S from FTS
ftt , re-

spond with (“Agreed”, sid,msg,Pj) on behalf of each honest party Pj ∈ S0.
4. If the ideal functionality FTS

ftt responds with (“Parts”, sid,−→u ,msg, S, {Token`}P`∈S),
then do the following:

1. Compute the TFHE ciphertext ctC,` corresponding to each P` ∈ S as:

ctC,` = TFHE.Eval(pkTFHE, CDist, ct−→w , ct−→u , ctK`).

2. On behalf of each honest party Pj ∈ S0, simulate a partial decryption µj,` corre-
sponding to each P` ∈ S by invoking the following: µj,` = TFHE.Sim(CDist, ct−→w , ct−→u ,
ctC` ,K`).

3. On behalf of each honest party Pj ∈ S0, compute the one-time encryption of
the token as: ctj = Kj ⊕ Tokenj .

5. Else, if the ideal functionality FTS
ftt responds with (“SignOn failed”, sid,−→u ,msg, S),

then do the following:

1. Compute the TFHE ciphertext ctC,` corresponding to each P` ∈ S as:

ctC,` = TFHE.Eval(pkTFHE, CDist, ct−→w , ct−→u , ctK`).

2. On behalf of each honest party Pj ∈ S0, simulate a partial decryption µj,` corre-
sponding to each P` ∈ S by invoking the following: µj,` = TFHE.Sim(CDist, ct−→w , ct−→u ,
ctC` , 0

λ).

3. On behalf of each honest party Pj ∈ S0, simulate the one-time encryption of
the token as: ctj ← {0, 1}λ.

6. On behalf of each honest party Pj ∈ S0, compute a simulated proof πj,` correspond-
ing to each P` ∈ S as: πj,` ← NIZK.Sim(stj,`), where stj,` = (ctC,`, µj,`, comj).

7. Finally, on behalf of each honest party Pj ∈ S0, send (ctj , {(πj,`, µj,`)}P`∈S) to the
corrupt party P∗.

B.2.2 Hybrids

We now show that the above simulation strategy is successful against all environments Z.
That is, the view of the corrupt parties along with the output of the honest parties is com-
putationally indistinguishable in the real and ideal worlds. We will show this via a series
of computationally indistinguishable hybrids where the first hybrid Hyb0 corresponds to the
real world and the last hybrid Hyb7 corresponds to the ideal world.

1. Hyb0 - Real World: In this hybrid, consider a simulator SimHyb that plays the role of
the honest parties as in the real world.

2. Hyb1 - Special Abort: In this hybrid, SimHyb acts exactly as in Hyb0 except the
following:

1. SignOn Phase: Case 2. Suppose a corrupt party P∗ initiates the sign-on phase.
In this case, SimHyb outputs “SpecialAbort” (as done by Sim in round 3 of the
simulation strategy) if either of the following two scenarios occur:

50

1. The adversary, acting on behalf of the initiating party, does not route the same
TFHE ciphertext (encrypting the measurement −→u) to all the honest parties
in the first round of the sign-on protocol, but all the corresponding signatures
verify.

2. The adversary, acting on behalf of the initiating party, does not route the
same TFHE ciphertext (encrypting the one-time key Kj corresponding to some
honest party Pj) to all the honest parties in the third round of the sign-on
protocol, but all the corresponding signatures verify.

3. Hyb2 - NIZK Extraction-1: In this hybrid, SimHyb acts exactly as in Hyb1 except the
following:

1. SignOn Phase: Case 1. Suppose an honest party P∗ initiates the sign-on phase.
SimHyb does the following as in the ideal world:

1. Round 3: SimHyb does the following:

1. For each corrupt party Pi ∈ S1, SimHyb extracts the one-time key Ki as:

(Ki, rKi) = NIZK.Ext(πKi , stKi),

where stKi = (ctKi , pkTFHE).

2. If there exists some corrupt party Pi ∈ S1 such that ctKi 6= TFHE.Enc
(pkTFHE,Ki; rKi), SimHyb outputs ⊥ and aborts.

2. Post-Round 4: SimHyb does the following :

1. For each corrupt party Pi ∈ S1, SimHyb extracts the TFHE partial de-
cryption key skTFHEi as:

(skTFHEi , rcomi) = NIZK.Ext(πi,`, sti,`),

where sti,` = (ctC,`, µi,`, comi) and P` is some party in the set S.

2. If there exists some corrupt party Pi ∈ S1 such that µi,` 6= TFHE.PartialDec
(skTFHEi , ctC,`) for some party P`, SimHyb outputs ⊥ and aborts.

3. Next, for each corrupt party Pi ∈ S1, SimHyb uses the previously extracted
one-time key Ki to recover the corresponding partial token on the message
msg as:

Tokeni = Ki ⊕ cti.

4. If there exists some corrupt party Pi ∈ S1 such that Tokeni 6= TS.Sign(skTSi ,
msg), SimHyb outputs ⊥ and aborts.

3. Switching Honest Party Outputs: Finally, SimHyb no longer computes
the output on behalf of honest parties as in the real world. Instead, as in the
ideal world, SimHyb sends (“Agreed”, sid,msg,Pi) on behalf of each corrupt
party to the ideal functionality after validating the ciphertexts and tokens as
done in the ideal world, and the honest parties receive output from the ideal
functionality.

51

4. Hyb3 - NIZK Extraction-2: In this hybrid, SimHyb acts exactly as in Hyb2 except the
following:

1. SignOn Phase: Case 2. Suppose a corrupt party P∗ initiates the sign-on phase.
SimHyb does the following as in the ideal world:

1. Round 1: SimHyb does the following:

1. On behalf of each honest party Pj ∈ S0, receive a ciphertext ct−→u ,j and a
proof π−→u ,j from the party P∗.

2. Extract the corresponding measurement −→u as:

(−→u , r−→u ,j) = NIZK.Ext(π−→u ,j , st−→u ,j),

where st−→u ,j = (ct−→u ,j , pkTFHE).

3. Output ⊥ and abort if TFHE.Enc(pkTFHE,−→u ; r−→u ,j) 6= ct−→u ,j .

2. Round 4: SimHyb does the following for each corrupt party Pi ∈ S1, :

1. Extract the one-time key Ki as:

(Ki, rKi) = NIZK.Ext(πKi , stKi),

where stKi = (ctKi , pkTFHE).

2. Output ⊥ and abort if TFHE.Enc(pkTFHE,Ki; rKi) 6= ctKi .

5. Hyb4 - Simulate NIZK Proofs: In this hybrid, SimHyb acts exactly as in Hyb3 except
the following:

1. SignOn Phase: Case 1. Suppose an honest party P∗ initiates the sign-on phase.
SimHyb does the following as in the ideal world:

1. Round 1: On behalf of party P∗, SimHyb computes a simulated proof:

π−→u ← NIZK.Sim(st−→u),

where st−→u = (ct−→u , pkTFHE) ∈ L1.

2. Round 3: On behalf of each honest party Pj in the set S0, SimHyb computes
a simulated proof:

πKj ← NIZK.Sim(stKj),

where stKj = (ctKj , pkTFHE) ∈ L1.

2. SignOn Phase: Case 2. Suppose a corrupt party P∗ initiates the sign-on phase.
SimHyb does the following as in the ideal world:

1. Round 2: On behalf of each honest party Pj in the set S0, SimHyb computes
a simulated proof:

πKj ← NIZK.Sim(stKj),

where stKj = (ctKj , pkTFHE) ∈ L1.

2. Round 4: On behalf of each honest party Pj ∈ S0, SimHyb computes a sim-
ulated proof πj,` corresponding to each P` ∈ S as:

πj,` ← NIZK.Sim(stj,`),

where stj,` = (ctC,`, µj,`, comj).

52

6. Hyb5 - Switch Commitments: In this hybrid, SimHyb acts exactly as in Hyb4 except
the following: in the setup phase, corresponding to each honest party Pj ∈ S0, SimHyb
computes the commitment to its TFHE threshold decryption key as:

comj = Commit(0λ; rcomj),

as done in the ideal world.

7. Hyb6 - Simulate TFHE Partial Decryptions: In this hybrid, SimHyb acts exactly as
in Hyb5 except the following:

1. SignOn Phase: Case 2. Suppose a corrupt party P∗ initiates the sign-on phase.
SimHyb does the following in round 4 of the sign-on phase as in the ideal world:

1. SimHyb issues the following query to the ideal functionality FTS
ftt using the

previously extracted measurement −→u :

(“SignOn”, sid, vk,msg,P∗,−→u , S).

Upon receipt of the messages {(“Signing Req”, sid,msg,P`)}P`∈S from FTS
ftt , it

responds with (“Agreed”, sid,msg,Pj) on behalf of each honest party Pj ∈ S0.
2. Suppose that the ideal functionality FTS

ftt responds with:

(“Parts”, sid,−→u ,msg, S, {Token`}P`∈S).

On behalf of each honest party Pj ∈ S0, SimHyb simulates a partial decryption
µj,` corresponding to each P` ∈ S by invoking the following:

µj,` = TFHE.Sim(CDist, ct−→w , ct−→u , ctK` ,K`).

3. On the other hand, suppose that the ideal functionality FTS
ftt responds with:

(“SignOn failed”, sid,−→u ,msg, S).

On behalf of each honest party Pj ∈ S0, SimHyb simulates a partial decryption
µj,` corresponding to each P` ∈ S by invoking the following:

µj,` = TFHE.Sim(CDist, ct−→w , ct−→u , ctK` , 0
λ).

8. Hyb7 - Switch TFHE Ciphertexts: In this hybrid, SimHyb acts exactly as in Hyb6

except the following:

1. Registration Phase SimHyb creates the following dummy encryption of the tem-
plate as:

ct−→w = TFHE.Enc(pkTFHE,−→w∗),

where −→w∗ is any arbitrarily chosen template independent of the actual template −→w .

2. SignOn Phase: Case 1. Suppose an honest party P∗ initiates the sign-on phase.
SimHyb does the following as in the ideal world:

1. Round 1: On behalf of the initiating party P∗, SimHyb computes a dummy
encryption of the measurement as:

ct−→u = TFHE.Enc(pkTFHE,−→u ∗),

where −→u ∗ is any arbitrarily chosen measurement.

53

2. Round 3: On behalf of each honest party Pj ∈ S0, SimHyb computes a
dummy TFHE encryption of the one-time encryption key Kj as:

ctKj = TFHE.Enc(pkTFHE, 0λ).

3. SignOn Phase: Case 2. Suppose a corrupt party P∗ initiates the sign-on phase.
SimHyb does the following as in the ideal world: in round 3 of the sign-on phase, on
behalf of each honest party Pj ∈ S0, SimHyb computes a dummy TFHE encryption
of the one-time encryption key Kj as:

ctKj = TFHE.Enc(pkTFHE, 0λ).

9. Hyb8 - Switch One-time Encryption Ciphertexts: In this hybrid, SimHyb acts
exactly as in Hyb7 except the following:

1. SignOn Phase: Case 2. Suppose a corrupt party P∗ initiates the sign-on phase.
SimHyb does the following in round 4 of the sign-on phase as in the ideal world:

1. As in the previous hybrids, SimHyb uses the extracted measurement −→u to query
the ideal functionality FTS

ftt .

2. Suppose that the ideal functionality FTS
ftt responds with:

(“SignOn failed”, sid,−→u ,msg, S).

On behalf of each honest party Pj ∈ S0, simulate the one-time encryption of
the token as:

ctj ← {0, 1}λ.

Observe that this hybrid corresponds to the ideal world execution.

We will now show that every pair of successive hybrids is computationally/statistically
indistinguishable.

Lemma 6. Assuming that the signature scheme is strongly existentially unforgeable, Hyb0 is
computationally indistinguishable from Hyb1.

Proof. The only difference between the two hybrids is that in Hyb1, SimHyb might output
“SpecialAbort”. We now show that SimHyb outputs “SpecialAbort” in Hyb1 only with negli-
gible probability. Note that this immediately implies Lemma B.2.2.

Suppose not. That is, suppose there exists an environment Z that can cause SimHyb
to output “SpecialAbort” in Hyb1 with non-negligible probability, then we will use Z to
construct an adversary ASign that breaks the strong unforgeability of the signature scheme
with non-negligible probability, which is a contradiction.
ASign begins an execution of the protocol interacting with the environment Z as in Hyb0.

Now, suppose Z corrupts a set of parties P1, and let P0 = S \S1 be the set of honest parties.
For each honest party Pj ∈ S0, ASign interacts with a challenger CSign and gets a verification
key vkj which is forwarded to Z as part of the setup phase of DiFuz. Then, during the course
of the protocol, ASign forwards signature queries corresponding to honest parties from Z to
CSign and the responses from CSign to Z.

Finally, suppose Z causes ASign to output “SpecialAbort” with non-negligible probability.
This in turn implies that one of the following cases must occur with non-negligible probability:

54

1. There exists a pair of honest parties (Pj ,Pj′) in the set of honest parties S0 such that

ct−→u ,j 6= ct−→u ,j′ .

Note that Z is allowed to forward exactly |S0|-many signature queries on the same
measurement ciphertext ct−→u (one query corresponding to each honest party). This in
turn implies that at least one of the two signatures σj,j,0 (on message ct−→u ,j) and σj′,j′,0 (on
message ct−→u ,j′) produced by Z was not received from the challenger CSign.

We assume without loss of generality that the signature σj′,j′,0 was not produced as a
result of a query to the challenger CSign. Note that since ASign outputs “SpecialAbort”,
it follows that this signature verifies correctly, i.e., we have:

Verify(vkj′ , ct−→u ,j′ , σj′,j′,0) = 1.

Then ASign can output the tuple (ct−→u ,j′ , σj′,j′,0) as a valid forgery to break the strong
unforgeability of the signature scheme.

2. There exists a pair of honest parties (Pj ,Pj′) in the set of honest parties S0 such that

{ctK`,j}P`∈S0 6= {ctK`,j′}P`∈S0 .

Note that for a given honest party P` ∈ S0, Z is allowed to forward exactly |S0|-many
signature queries on ctK` (one query corresponding to each honest party). This in turn
implies that, without loss of generality, there exists a signature σ`,j′,1 (on message ctK`,j′)
produced by Z that was not received from the challenger CSign.

In addition, since ASign outputs “SpecialAbort”, it follows that this signature verifies
correctly, i.e., we have:

Verify(vk`, ctK`,j′ , σ`,j′,1) = 1.

Then ASign can output the tuple (ctK`,j′ , σ`,j′,1) as a valid forgery to break the strong
unforgeability of the signature scheme.

In summary, if there exists an environment Z that can cause SimHyb to output “SpecialAbort”
in Hyb1 with non-negligible probability, then there exists an algorithm ASign that breaks the
strong unforgeability of the signature scheme with non-negligible probability, which is a con-
tradiction.

Lemma 7. Assuming that the NIZK argument system is simulation extractable, the commit-
ment scheme is computationally binding, and the TFHE scheme satisfies decryption correct-
ness, Hyb1 is computationally indistinguishable from Hyb2.

Proof. Suppose there exists an environment Z that can distinguish between Hyb1 and Hyb2

with non-negligible probability. Thus implies that with non-negligible probability, in Hyb2,
SimHyb sends the “agreed” message to the ideal functionality even if the honest parties are
unable to compute the token by running the actual output computation phase in Hyb1. This
in turn implies that one of the following cases must be true when an honest party P∗ initiates
the sign-on protocol:

55

1. Case-1: In round 3 of the sign-on phase, some corrupt party Pi ∈ S1 generates an
invalid ciphertext ctKi and a corresponding NIZK proof, but with non-negligible proba-
bility, SimHyb fails to detect this via NIZK extraction and hence does not abort. This
immediately implies the existence of an algorithm that can break the simulation ex-
tractability of the NIZK argument system with non-negligible probability, which is a
contradiction.

2. Case-2: In round 4 of the sign-on phase, some corrupt party Pi ∈ S1 generates an
invalid partial decryption µi,` and a corresponding NIZK proof, but with non-negligible
probability, SimHyb fails to detect this via NIZK extraction and hence does not abort.
This immediately implies the existence of an algorithm that can break the simulation
extractability of the NIZK argument system with non-negligible probability, which is a
contradiction.

3. Case-3: In round 4 of the sign-on phase, some corrupt party Pi ∈ S1 generates a
partial decryption µi,` and a corresponding NIZK proof that is invalid with respect to

the witness (skTFHEi , ri), but Pi produces a dummy witness (s̃kTFHEi , r̃comi) 6= (skTFHEi , rcomi)
that validates the NIZK proof and produces the same commitment comi, i.e., we have

Commit(skTFHEi , rcomi) = Commit(s̃kTFHEi , r̃comi) = comi.

This immediately implies the existence of an algorithm that can break the computation-
ally binding property of the commitment scheme with non-negligible probability, which
is a contradiction.

4. Case-4: In round 4 of the sign-on phase, some corrupt party Pi ∈ S1 generates an invalid
token Tokeni, but SimHyb fails to detect this. This is only possible if the NIZK extraction
procedure produces, with non-negligible probability, a witness (K̃i, r̃Ki) 6= (Ki, rKi).
Assuming that the TFHE scheme produces correct decryptions, this immediately implies
the existence of an algorithm that can break the simulation extractability of the NIZK
argument system with non-negligible probability, which is a contradiction.

Thus, except with negligible probability, in Hyb2, SimHyb does not send the “agreed”
message to the ideal functionality whenever the honest party is unable to compute the token
by running the actual output computation phase in Hyb1. This completes the proof of the
lemma.

Lemma 8. Assuming that the NIZK argument system is simulation extractable, the commit-
ment scheme is computationally binding, and the TFHE scheme satisfies decryption correct-
ness, Hyb2 is computationally indistinguishable from Hyb3.

Proof. Suppose there exists an environment Z that can distinguish between Hyb2 and Hyb3

with non-negligible probability. This implies that one of the following cases must be true
when a corrupt party P∗ initiates the sign-on protocol:

1. Case-1: In round 1 of the sign-on phase, the corrupt initiator P∗ generates an invalid
measurement ciphertext ct−→u and a corresponding NIZK proof, but with non-negligible
probability, SimHyb fails to detect this via NIZK extraction and hence does not abort.
This immediately implies the existence of an algorithm that can break the simulation

56

extractability of the NIZK argument system with non-negligible probability, which is a
contradiction.

2. Case-2: In round 4 of the sign-on phase, some corrupt party Pi ∈ S1 generates an
invalid partial decryption µi,` and a corresponding NIZK proof, but with non-negligible
probability, SimHyb fails to detect this via NIZK extraction and hence does not abort.
This immediately implies the existence of an algorithm that can break the simulation
extractability of the NIZK argument system with non-negligible probability, which is a
contradiction.

3. Case-3: In round 4 of the sign-on phase, some corrupt party Pi ∈ S1 generates a
partial decryption µi,` and a corresponding NIZK proof that is invalid with respect to

the witness (skTFHEi , ri), but Pi produces a dummy witness (s̃kTFHEi , r̃comi) 6= (skTFHEi , rcomi)
that validates the NIZK proof and produces the same commitment comi, i.e., we have

Commit(skTFHEi , rcomi) = Commit(s̃kTFHEi , r̃comi) = comi.

This immediately implies the existence of an algorithm that can break the computation-
ally binding property of the commitment scheme with non-negligible probability, which
is a contradiction.

This completes the proof of the lemma.

Lemma 9. Assuming that the NIZK argument system satisfies the zero knowledge property,
Hyb3 is computationally indistinguishable from Hyb4.

Proof. The only difference between the two hybrids is that in Hyb3, SimHyb computes the
messages of the NIZK argument system by running the honest prover algorithm Prove(·),
while in Hyb4, they are computed by running the simulator NIZK.Sim(·).

Suppose there exists an environment Z that can distinguish between the two hybrids with
non-negligible probability. We will use Z to construct an adversary ANIZK that breaks the
zero-konwledge property of the NIZK argumnt system with non-negligible probability, which
is a contradiction.
ANIZK begins an execution of the fuzzy threshold token generation protocol πAny−TFHE

interacting with the environment Z. At the same time, ANIZK begins interacting with a
challenger CNIZK in a zero-knowledge experiment against the NIZK argument system. Now,
suppose Z corrupts a set of parties P1, and let P0 = P \ P1 be the set of honest parties.

The challenger CNIZK uniformly samples a bit b ← {0, 1}. ANIZK executes the simulation
exactly as done by SimHyb in hybrid Hyb3, except the following:

1. SignOn Phase: Case 1. Suppose an honest party P∗ initiates the sign-on phase.
ANIZK does the following:

1. Round 1: On behalf of party P∗, ANIZK computes a proof π−→u as follows:

1. ATFHE queries the challenger CNIZK with the tuple (st−→u ,wit−→u), where

st−→u = (ct−→u , pkTFHE) ∈ L1, wit−→u = (−→u , r−→u).

57

2. If b = 0, the challenger CNIZK responds with

π−→u ← Prove(st−→u ,wit−→u).

3. If b = 1, the challenger CNIZK responds with

π−→u ← NIZK.Sim(st−→u).

4. Now, ANIZK uses the same proof π−→u received from CTFHE for the simulation.

2. Round 3: On behalf of each honest party Pj in the set S0, ANIZK computes a proof
πKj as follows:

1. ATFHE queries the challenger CNIZK with the tuple (stKj ,witKj), where

stKj = (ctKj , pkTFHE) ∈ L1, witKj = (Kj , rKj).

2. If b = 0, the challenger CNIZK responds with

πKj ← Prove(stKj ,witKj).

3. If b = 1, the challenger CNIZK responds with

πKj ← NIZK.Sim(stKj).

4. Now, ANIZK uses the same proof πKj received from CTFHE for the simulation.

2. SignOn Phase: Case 2. Suppose a corrupt party P∗ initiates the sign-on phase.
ANIZK does the following:

1. Round 3: On behalf of each honest party Pj in the set S0, ANIZK computes a proof
πKj as follows:

1. ATFHE queries the challenger CNIZK with the tuple (stKj ,witKj), where

stKj = (ctKj , pkTFHE) ∈ L1, witKj = (Kj , rKj).

2. If b = 0, the challenger CNIZK responds with

πKj ← Prove(stKj ,witKj).

3. If b = 1, the challenger CNIZK responds with

πKj ← NIZK.Sim(stKj).

4. Now, ANIZK uses the same proof πKj received from CTFHE for the simulation.

2. Round 4: On behalf of each honest party Pj in the set S0, ANIZK computes a proof
πj,` corresponding to each P` ∈ S as follows:

1. ATFHE queries the challenger CNIZK with the tuple (stj,`,witj), where

stj,` = (ctC,`, µj,`, comj) ∈ L2, witj = (skTFHEj , rcomj).

2. If b = 0, the challenger CNIZK responds with

πj,` ← Prove(stj,`,witj).

58

3. If b = 1, the challenger CNIZK responds with

πj,` ← NIZK.Sim(stj,`).

4. Now, ANIZK uses the same proof πj,` received from CTFHE for the simulation.

ANIZK now continues with the rest of the simulation as in Hyb3. Notice that when the
bit b chosen by the challenger CNIZK is 0, the simulation experiment between ANIZK and Z
corresponds exactly to Hyb3. On the other hand, when the bit b chosen by the challenger
CNIZK is 1, the experiment between ANIZK and Z corresponds exactly to Hyb4.

Thus, if the environment Z can distinguish between the two hybrids with non-negligible
probability, then the algorithm ANIZK can break the zero-konwledge property of the NIZK
argumnt system with non-negligible probability, which is a contradiction.

Remark: We note that since the NIZK argument system is simulation extractable, the
values extracted by the simulator from the adversary’s proofs (in Hyb2) do not change even
the simulator is computing simulated proofs in Hyb3 instead of generating the proofs honestly.

Lemma 10. Assuming that the commitment scheme is computationally hiding, Hyb4 is com-
putationally indistinguishable from Hyb5.

Proof. The only difference between the two hybrids is that in Hyb4, corresponding to each
honest party Pj ∈ S0, SimHyb computes the commitment to its TFHE threshold decryption
key as:

comj = Commit(skTFHEj ; rcomj),

as done in the real world, while in Hyb4, corresponding to each honest party Pj ∈ S0, SimHyb
computes the commitment to its TFHE threshold decryption key as:

comj = Commit(skTFHEj ; rcomj),

as done in the ideal world.
Suppose there exists an environment Z that can distinguish between the two hybrids

with non-negligible probability. We will use Z to construct an adversary Acom that breaks
the hiding property of the commitment scheme with non-negligible probability, which is a
contradiction.
Acom begins an execution of the fuzzy threshold token generation protocol πAny−TFHE

interacting with the environment Z. At the same time, Acom begins interacting with a chal-
lenger Ccom in a hiding security experiment against the commitment scheme. Now, suppose
Z corrupts a set of parties P1, and let P0 = P \ P1 be the set of honest parties.

The challenger Ccom uniformly samples a bit b ← {0, 1}. For each honest party Pj ∈
S0, Acom sends the corresponding TFHE decryption key skTFHEj to the challenger Ccom. In
response, the challenger responds with a commitment comj where:

1. If b = 0, the challenger Ccom sets

comj = Commit(skTFHEj ; rcomj).

2. If b = 1, the challenger Ccom sets

comj = Commit(0λ; rcomj)

59

Acom now continues with the rest of the simulation as in Hyb4 using the commitments
produced by the the challenger Ccom. Note that since all NIZK proofs are simulated in Hyb4,
the simulation does not require Acom to have knowledge of the randomness rcomj used by Ccom
to generate each commitment comj .

Now, observe that when the bit b chosen by the challenger Ccom is 0, the simulation
experiment between Acom and Z corresponds exactly to Hyb4. On the other hand, when the
bit b chosen by the challenger Ccom is 1, the experiment between Acom and Z corresponds
exactly to Hyb5.

Thus, if the environment Z can distinguish between the two hybrids with non-negligible
probability, then the algorithm Acom can break the hiding security of the commitment scheme
with non-negligible probability, which is a contradiction.

Lemma 11. Assuming that the TFHE scheme satisfies simulation security, Hyb5 is compu-
tationally indistinguishable from Hyb6.

Proof. Suppose there exists an environment Z that can distinguish between the two hy-
brids with non-negligible probability. We will use Z to construct an adversary ATFHE that
breaks the simulation security of the TFHE scheme with non-negligible probability, which is
a contradiction.
ATFHE begins an execution of the fuzzy threshold token generation protocol πAny−TFHE

interacting with the environment Z. At the same time, ATFHE begins interacting with a
challenger CTFHE in a simulation security experiment against the commitment scheme. Now,
suppose Z corrupts a set of parties P1, and let P0 = P \ P1 be the set of honest parties. In
the TFHE experiment, ATFHE corrupts the same set of parties by querying their respective
partial decryption keys.

The challenger CTFHE uniformly samples a bit b ← {0, 1}. Now suppose a corrupt party
P∗ initiates the sign-on phase. ATFHE executes the simulation exactly as done by SimHyb in
hybrid Hyb5, except in round 4 of the sign-on phase, where it does the following:

1. ATFHE uses the extracted measurement −→u to query the ideal functionality FTS
ftt .

2. Suppose that the ideal functionality FTS
ftt responds with:

(“Parts”, sid,−→u ,msg, S, {Token`}P`∈S).

On behalf of each honest party Pj ∈ S0, ATFHE simulates a partial decryption µj,`
corresponding to each P` ∈ S as follows:

1. ATFHE queries the challenger CTFHE with the tuple (CDist, ct−→w , ct−→u , ctK` ,K`).

2. If b = 0, the challenger CTFHE responds with

µj,` = TFHE.PartialDec(skTFHEj ,TFHE.Eval(pkTFHE, CDist, ct−→w , ct−→u , ctK`)).

3. if b = 1, the challenger CTFHE responds with

µj,` = TFHE.Sim(CDist, ct−→w , ct−→u , ctK` ,K`).

4. Now, ATFHE uses the same partial decryption µj,` received from CTFHE for the sim-
ulation.

60

3. On the other hand, suppose that the ideal functionality FTS
ftt responds with:

(“SignOn failed”, sid,−→u ,msg, S).

On behalf of each honest party Pj ∈ S0, ATFHE simulates a partial decryption µj,`
corresponding to each P` ∈ S as follows:

1. ATFHE queries the challenger CTFHE with the tuple (CDist, ct−→w , ct−→u , ctK` , 0
λ).

2. If b = 0, the challenger CTFHE responds with

µj,` = TFHE.PartialDec(skTFHEj ,TFHE.Eval(pkTFHE, CDist, ct−→w , ct−→u , ctK`)).

3. if b = 1, the challenger CTFHE responds with

µj,` = TFHE.Sim(CDist, ct−→w , ct−→u , ctK` , 0
λ).

4. Once again, ATFHE uses the same partial decryption µj,` received from CTFHE for
the simulation.

ATFHE now continues with the rest of the simulation as in Hyb5. Notice that when the
bit b chosen by the challenger CTFHE is 0, the simulation experiment between ATFHE and Z
corresponds exactly to Hyb5. On the other hand, when the bit b chosen by the challenger
CTFHE is 1, the experiment between ATFHE and Z corresponds exactly to Hyb6.

Thus, if the environment Z can distinguish between the two hybrids with non-negligible
probability, then the algorithm ATFHE can break the simulation security of the TFHE scheme
with non-negligible probability, which is a contradiction.

Lemma 12. Assuming that the TFHE scheme satisfies semantic security, Hyb6 is computa-
tionally indistinguishable from Hyb7.

Proof. Suppose there exists an environment Z that can distinguish between the two hy-
brids with non-negligible probability. We will use Z to construct an adversary ATFHE that
breaks the simulation security of the TFHE scheme with non-negligible probability, which is
a contradiction.
ATFHE begins an execution of the fuzzy threshold token generation protocol πAny−TFHE

interacting with the environment Z. At the same time, ATFHE begins interacting with a
challenger CTFHE in a simulation security experiment against the commitment scheme. Now,
suppose Z corrupts a set of parties P1, and let P0 = P \ P1 be the set of honest parties. In
the TFHE experiment, ATFHE corrupts the same set of parties by querying their respective
partial decryption keys.

The challenger CTFHE uniformly samples a bit b← {0, 1}. ATFHE executes the simulation
exactly as done by SimHyb in hybrid Hyb6, except the following:

1. Registration Phase. ATFHE creates an encryption of the template as follows:

1. ATFHE queries the challenger CTFHE with the tuple (−→w ,−→w∗), where −→w∗ is any arbi-
trarily chosen template independent of the actual template −→w .

2. If b = 0, the challenger CTFHE responds with

ct−→w = TFHE.Enc(pkTFHE,−→w).

61

3. if b = 1, the challenger CTFHE responds with

ct−→w = TFHE.Enc(pkTFHE,−→w∗).

4. Now, ATFHE uses the same ciphertext ct−→w received from CTFHE for the simulation.

2. SignOn Phase: Case 1. Suppose an honest party P∗ initiates the sign-on phase.
ATFHE does the following:

1. Round 1: On behalf of the initiating party P∗, SimHyb computes an encryption
of the measurement as follows:

1. ATFHE queries the challenger CTFHE with the tuple (−→u ,−→u ∗), where −→u ∗ is any
arbitrarily chosen template independent of the actual template −→u .

2. If b = 0, the challenger CTFHE responds with

ct−→u = TFHE.Enc(pkTFHE,−→u).

3. if b = 1, the challenger CTFHE responds with

ct−→u = TFHE.Enc(pkTFHE,−→u ∗).

4. Now, ATFHE uses the same ciphertext ct−→u received from CTFHE for the simula-
tion.

2. Round 3: On behalf of each honest party Pj ∈ S0, ATFHE computes an encryption
of the one-time encryption key Kj as follows:

1. ATFHE queries the challenger CTFHE with the tuple (Kj , 0
λ).

2. If b = 0, the challenger CTFHE responds with

ctKj = TFHE.Enc(pkTFHE,Kj).

3. if b = 1, the challenger CTFHE responds with

ctKj = TFHE.Enc(pkTFHE, 0λ).

4. Now, ATFHE uses the same ciphertext ctKj received from CTFHE for the simula-
tion.

3. SignOn Phase: Case 2. Suppose a corrupt party P∗ initiates the sign-on phase. In
round 3 of the sign-on phase, on behalf of each honest party Pj ∈ S0, ATFHE computes
an encryption of the one-time encryption key Kj as follows:

1. ATFHE queries the challenger CTFHE with the tuple (Kj , 0
λ).

2. If b = 0, the challenger CTFHE responds with

ctKj = TFHE.Enc(pkTFHE,Kj).

3. if b = 1, the challenger CTFHE responds with

ctKj = TFHE.Enc(pkTFHE, 0λ).

4. Now, ATFHE uses the same ciphertext ctKj received from CTFHE for the simulation.

62

ATFHE now continues with the rest of the simulation as in Hyb6. Notice that when the
bit b chosen by the challenger CTFHE is 0, the simulation experiment between ATFHE and Z
corresponds exactly to Hyb6. On the other hand, when the bit b chosen by the challenger
CTFHE is 1, the experiment between ATFHE and Z corresponds exactly to Hyb7.

Thus, if the environment Z can distinguish between the two hybrids with non-negligible
probability, then the algorithm ATFHE can break the semantic security of the TFHE scheme
with non-negligible probability, which is a contradiction.

Lemma 13. Hyb7 is statistically indistinguishable from Hyb8.

Proof. The only difference between the two hybrids is that when a corrupt party P∗ initiates
the sign-on phase and the ideal functionality FTS

ftt responds with (“SignOn failed”, sid,−→u ,msg, S),
SimHyb proceeds as follows:

− In Hyb7, SimHyb simulates the one-time encryption of the token on behalf of each honest
party Pj ∈ S0 as:

ctj = Tokenj ⊕Kj ,

where Kj is a uniformly sampled string in {0, 1}λ.

− On the other hand, in Hyb8, SimHyb simulates the one-time encryption of the token on
behalf of each honest party Pj ∈ S0 as:

ctj ← {0, 1}λ.

Now observe that in both hybrids, when a corrupt party P∗ initiates the sign-on phase
and FTS

ftt responds with (“SignOn failed”, sid,−→u ,msg, S), SimHyb simulates the TFHE en-
cryption of the one-time encryption key Kj as:

ctKj = TFHE.Enc(pkTFHE, 0λ),

which means that in either hybrid, the environment Z statistically has no information about
Kj other than via ctj . SinceKj is a uniformly sampled string in {0, 1}λ, it immediately follows
that the distributions of ctj in hybrids Hyb7 and Hyb8 are statistically indistinguishable.

B.3 Proof of Theorem 5

Consider an environment Z who corrupts a party PA. The strategy of the simulator Sim for
our protocol πCS against the environment Z is described below. Let Sim.Garble denote the
simulator for the garbling scheme. Let NIZK.Sim denote the simulator of the NIZK argu-
ment system and let NIZK.Ext denote the corresponding extractor. Let OT.Sim denote the
simulator of the OT protocol - let OT.Sim.Setup denote the algorithm used by the simulator
to generate a simulated CRS and OT.Sim.Round2 denote the algorithm used to generate the
second round OT message against a malicious receiver.

63

B.3.1 Description of Simulator

− Setup: First, Sim queries the ideal functionality with “Setup” and the identity of the
corrupt party PA and receives (ppTS, vkTS, skTSA) from the ideal functionality. Then, for
each i ∈ [n], Sim does the following:

− Generate crssimi ← OT.Sim.Setup(1λ) and a random PRF key (ki).

− Give crsi to Z. If Pi 6= PA, also give ki to Z.

− Enrollment: Sim does the following:

− If an enrollment query was initiated by an honest party, Sim does nothing.

− If it receives an enrollment query from Z on behalf of the corrupt party PA, it
forwards it to the ideal functionality.

− Then, for each enrollment query, for each i ∈ [n], do the following:

− Pick (−→w i,
−→v i) uniformly at random.

− Compute (eski, epki)← AHE.Setup(1λ).

− Let −→w i = (wi,1, . . . ,wi,`). For all j ∈ [`], compute Jwi,jK = AHE.Enc(epki,wi,j).

− If Pi = PA, give (−→w i, eski, epki, {Jwi,jK}j∈[`]) to Z. Else, give (−→v i, epki, {Jwi,jK}j∈[`])
to Z.

SignOn Phase: Case 1 - Honest Party as Pi
Consider an honest party Pi that uses an input vector −→u and a message msg for which it
wants a token by interacting with a set S of two parties, one of which is PA. Sim gets
the tuple (msg, S) from the ideal functionality FDiFuz and interacts with the adversary Z as
below:

− Round 1: (Sim→) 10 Sim does the following:

1. For each j ∈ [`], compute the following:

− Compute ciphertexts JujK, Ju2
jK, Jwi,j · ujK as encryptions of 0. That is, JujK =

AHE.Enc(epki, 0), Ju2
jK = AHE.Enc(epki, 0) and Jwi,j · ujK = AHE.Enc(epki, 0).

− π1,j ← NIZK.Sim(st1,j) for the statement st1,j = (JujK, epki) ∈ L1.

− π2,j ← NIZK.Sim(st2,j) for the statement st2,j = (JujK, JujK, Ju2
jK, epki) ∈ L2.

− π3,j ← NIZK.Sim(st3,j) for the statement st3,j = (Jwi,jK, JujK, Jwi,j · ujK, epki) ∈
L2.

2. Send msg1 = (S,msg, {JujK, Ju2
jK, Jwi,j · ujK, π1,j , π2,j , π3,j}j∈[`]) to A.

− Round 2: (→ Sim) On behalf of the corrupt party PA, receive (Jx2K, Jy2K, Jz1K, Jz2K)
from the adversary.

− Round 3: (Sim→) Sim does the following:

1. Abort if the ciphertexts (Jx2K, Jy2K, Jz1K, Jz2K) were not correctly computed using the
algorithms of AHE, vector −→v i and randomness derived from PRF key ki.

2. Generate and send msg3 = {otrecs,t = OT.Round1(crsi, 0)}s∈{x,y,z},t∈{1,2}.
10The arrowhead denotes that in this round messages are outgoing from the simulator.

64

− Round 4: (→ Sim) On behalf of the corrupt party PA, receive (C̃, otsen, ct) from the
adversary.

− Message to Ideal Functionality FDiFuz: Sim does the following:

1. Abort if (C̃, otsen) were not correctly computed using the respective algorithms and
randomness derived using PRF key ki.

2. Abort if SKE.Dec(pad, ct) 6= TS.Sign(skTSA ,msg) where pad is derived using PRF key
ki.

3. Else, instruct the ideal functionality FDiFuz to deliver output to the honest party Pi.

SignOn Phase: Case 2 - Malicious Party as Pi
Suppose a malicious party is the initiator Pi. Sim interacts with the adversary A as below:

− Round 1: (→ Sim) Sim receives msg1 = (S,msg, {JujK, Ju2
jK, Jwi,j · ujK, π1,j , π2,j , π3,j}j∈[`])

from the adversary A on behalf of two honest parties Pj ,Pk.

− Round 2: (Sim→) Sim does the following:

1. Message to Ideal Functionality FDiFuz:

1. Run the extractor NIZK.Ext on the proofs {π1,j , π2,j , π3,j}j∈[`] compute −→u .

2. Query the ideal functionality FDiFuz with inpA = (msg,−→u , S) to receive output
outA.

2. Generate (Jx2K, Jy2K, Jz1K, Jz2K) as encryptions of random messages using public key
pki and uniform randomness. Send them to A.

− Round 3: (→ Sim) Sim receives msg3 = {otrecs,t }s∈{x,y,z},t∈{1,2} from the adversary A on
behalf of both honest parties Pj and Pk.

− Round 4: (Sim→) Sim does the following:

1. Pick a value pad uniformly at random.

2. if outA 6= ⊥:

− Let outA = (Tokenj ,Tokenk).

− Compute (C̃sim, labsim)← Sim.Garble(pad).

− Let labsim = {labs,t}s∈{x,y,z},t∈{0,1}
− For each s ∈ {x, y, z} and each t ∈ {0, 1}, compute otsens,t = OT.Sim.Round2(labs,t).

− Compute otsen = {otsens,t }s∈{x,y,z},t∈{0,1}.
− Set ctj = SKE.Enc(pad,Tokenj) and ctk = SKE.Enc(pad,Tokenk).

3. if outA = ⊥:

− Compute (C̃sim, labsim)← Sim.Garble(⊥).

− Let labsim = {labs,t}s∈{x,y,z},t∈{0,1}
− For each s ∈ {x, y, z} and each t ∈ {0, 1}, compute otsens,t = OT.Sim.Round2(labs,t).

− Compute otsen = {otsens,t }s∈{x,y,z},t∈{0,1}.
− Set ctj = SKE.Enc(pad, rj) and ctk = SKE.Enc(pad, rk) where rj and rk are

picked uniformly at random.

4. Send (C̃sim, otsen, ctj) and (RO(C̃sim, otsen), ctk) to A.

65

B.3.2 Hybrids

We now show that the above simulation strategy is successful against all environments Z.
That is, the view of the corrupt parties along with the output of the honest parties is com-
putationally indistinguishable in the real and ideal worlds. We will show this via a series
of computationally indistinguishable hybrids where the first hybrid Hyb0 corresponds to the
real world and the last hybrid Hyb11 corresponds to the ideal world.

1. Hyb0 - Real World: In this hybrid, consider a simulator SimHyb that plays the role of
the honest parties as in the real world.

2. Hyb1 - Remove PRF In this hybrid, SimHyb, on behalf of every honest party, uses uni-
formly random strings instead of the output of the pseudorandom function throughout
the protocol.

When Honest Party is Pi:

3. Hyb2 - Case 1: Aborts and Message to Ideal Functionality. In this hybrid,
SimHyb aborts if the adversary’s messages were not generated in a manner consistent
with the randomness output in the setup phase and also runs the query to the ideal
functionality.

That is, SimHyb runs the “Message To Ideal Functionality” step as done by Sim after
round 4 of Case 1 of the simulation strategy. SimHyb also performs the Abort check step
in step 1 of round 3 of Case 1 of the simulation.

4. Hyb3 - Case 1: Simulate NIZKs. In this hybrid, SimHyb computes simulated NIZK
arguments in round 1 of Case 1 as done by Sim in the ideal world.

5. Hyb4 - Case 1: Switch Ciphertexts. In this hybrid, SimHyb computes the ciphertexts
in round 1 of Case 1 using random messages as done in the ideal world.

6. Hyb5 - Case 1: Switch OT Receiver Messages. In this hybrid, SimHyb computes
the OT receiver messages in round 3 of Case 1 using random inputs as done in the ideal
world.

When Corrupt Party is Pi:

7. Hyb6 - Case 2: Message to Ideal Functionality. In this hybrid, SimHyb runs
the “Message To Ideal Functionality” step as done by Sim in round 2 of Case 2 of the
simulation strategy. That is, SimHyb queries the ideal functionality using the output of
the extractor NIZK.Ext on the proofs given by A in round 1.

8. Hyb7 - Case 2: Simulate OT Sender Messages. In this hybrid, SimHyb computes
the CRS during the setup phase and the OT sender messages in round 4 of Case 2 using
the simulator OT.Sim as done in the ideal world.

9. Hyb8 - Case 2: Simulate Garbled Circuit. In this hybrid, SimHyb computes the
garbled circuit and associated labels in round 4 of Case 2 using the simulator Sim.Garble
as done in the ideal world.

66

10. Hyb9 - Case 2: Switch Ciphertexts. In this hybrid, SimHyb computes the ciphertexts
in round 2 of Case 2 using random messages as done in the ideal world.

11. Hyb10 - Case 2: Switch Ciphertexts. In this hybrid, in round 4 of the simulation,
SimHyb computes the ciphertexts ctj as done in the ideal world. In particular, if the
value outA = ⊥, SimHyb computes ctj as encryption of a uniformly random value.

12. Hyb11: Random Shares. In this hybrid, in both cases, whether honest party or ma-
licious party is the initiator, SimHyb runs the enrollment phase as in the ideal world.
That is, each pair (−→w i,

−→v i) is picked uniformly at random instead of as output of the
secret sharing scheme. This hybrid corresponds to the ideal world.

We will now show that every pair of successive hybrids is computationally indistinguish-
able.

Lemma 14. Hyb0 is statistically indistinguishable from Hyb1.

Proof. When an honest party initiates the protocol as the querying party Pi, let’s say it
interacts with parties Pj and Pk such that Pj is corrupt. In Hyb0, on behalf of Pi, SimHyb
checks that the messages sent by both parties Pj and Pk are same and if so, computes the
output on behalf of the honest party. Since Pk is honest, this means that if the messages sent
by both parties are indeed the same, the adversary A, on behalf of Pj , did generate those
messages honestly using the shared randomness generated in the setup phase and the shared
values generated in the registration phase.

In Hyb1, on behalf of Pi, SimHyb checks that the messages sent by the adversary on behalf
of Pj were correctly generated using the shared randomness and shared values generated in
the setup and registration phases and if so, asks the ideal functionality to deliver output to the
honest party. Thus, the switch from Hyb0 to Hyb1 is essentially only a syntactic change.

Lemma 15. Assuming the zero knowledge property of the NIZK argument system, Hyb1 is
computationally indistinguishable from Hyb2.

Proof. The only difference between the two hybrids is that in Hyb1, SimHyb computes the
messages of the NIZK argument system by running the honest prover algorithm Prove(·),
while in Hyb2, they are computed by running the simulator NIZK.Sim(·). Thus, we can show
that if there exists an environment Z that can distinguish between the two hybrids with
non-negligible probability, we can design a reduction ANIZK that can distinguish between real
and simulated arguments with non-negligible probability thus breaking the zero knowledge
property of the NIZK argument system which is a contradiction.

Lemma 16. Assuming the security of the pseudorandom function, Hyb1 is computationally
indistinguishable from Hyb2.

Proof. The only difference between the two hybrids is that in Hyb1, SimHyb runs the ac-
tual PRF algorithm to compute the randomness for OT, encryption and the garbled circuit
whereas, in Hyb2, SimHyb uses uniformly random strings instead. Observe that since the
proofs are already simulated, these PRF keys are not used anywhere else in the protocol.
Thus, it is easy to see that if there exists an environment that can distinguish between these
two hybrids, we can build an adversary A that breaks the security of the pseudorandom
function which is a contradiction.

67

Lemma 17. Assuming the semantic security of the additively homomorphic encryption
scheme AHE, Hyb3 is computationally indistinguishable from Hyb4.

Proof. The only difference between the two hybrids is that in Hyb3, SimHyb computes the
ciphertexts in round 1 by encrypting the honest party’s actual inputs (−→u ,−→w i), while in
Hyb4, the ciphertexts encrypt random messages. Thus, we can show that if there exists an
environment Z that can distinguish between the two hybrids with non-negligible probability,
we can design a reduction AAHE that can distinguish between encryptions of the honest
party’s actual inputs and encryptions of random messages with non-negligible probability thus
breaking the semantic security of the encryption scheme AHE which is a contradiction.

Lemma 18. Assuming the security of the oblivious transfer protocol OT against a malicious
sender, Hyb4 is computationally indistinguishable from Hyb5.

Proof. The only difference between the two hybrids is that in Hyb4, SimHyb computes the
OT receiver’s messages as done by the honest party in the real world, while in Hyb5, the
OT receiver’s messages are computed by using random messages as input. Thus, we can
show that if there exists an environment Z that can distinguish between the two hybrids
with non-negligible probability, we can design a reduction AOT that can distinguish between
OT receiver’s messages of the honest party’s actual inputs and random inputs with non-
negligible probability thus breaking the security of the oblivious transfer protocol OT against
a malicious sender which is a contradiction.

Lemma 19. Assuming the argument of knowledge property of the NIZK argument system,
Hyb5 is computationally indistinguishable from Hyb6.

Proof. The only difference between the two hybrids is that in Hyb6, SimHyb also runs the
extractor NIZK.Ext on the proofs given y the adversary to compute its input −→u . Thus, the
only difference between the two hybrids is if the adversary can produce a set of proofs {πj}
such that, with non-negligible probability, all of the proofs verify successfully, but SimHyb
fails to extract −→u and hence SimHyb aborts.

However, we can show that if there exists an environment Z that can this to happen
with non-negligible probability, we can design a reduction ANIZK that breaks the argument
of knowledge property of the system NIZK with non-negligible probability which is a contra-
diction.

Lemma 20. Assuming the security of the oblivious transfer protocol OT against a malicious
receiver, Hyb6 is computationally indistinguishable from Hyb7.

Proof. The only difference between the two hybrids is that in Hyb6, SimHyb computes the
OT sender’s messages by using the actual labels of the garbled circuit as done by the honest
party in the real world, while in Hyb7, the OT sender’s messages are computed by running the
simulator OT.Sim. In Hyb7, the crs in the setup phase is also computed using the simulator
OT.Sim.

Thus, we can show that if there exists an environment Z that can distinguish between
the two hybrids with non-negligible probability, we can design a reduction AOT that can
distinguish between the case where the crs an OT sender’s messages were generated by running
the honest sender algorithm from the case where the crs and the OT sender’s messages
were generated using the simulator OT.Sim with non-negligible probability thus breaking

68

the security of the oblivious transfer protocol OT against a malicious receiver which is a
contradiction.

Lemma 21. Assuming the correctness of the extractor NIZK.Ext and the security of the
garbling scheme, Hyb7 is computationally indistinguishable from Hyb8.

Proof. The only difference between the two hybrids is that in Hyb7, SimHyb computes the
garbled circuit by running the honest garbling algorithm Garble using honestly generated
labels, while in Hyb8, SimHyb computes a simulated garbled circuit and simulated labels by
running the simulator Sim.Garble on the value outA output by the ideal functionality. From
the correctness of the extractor NIZK.Ext, we know that the output of the garbled circuit
received by the evaluator Z in Hyb7 is identical to the output of the ideal functionality outA
used in the ideal world. Thus, we can show that if there exists an environment Z that can
distinguish between the two hybrids with non-negligible probability, we can design a reduction
AGarble that can distinguish between an honestly generated set of input wire labels and an
honestly generated garbled circuit from simulated ones with non-negligible probability thus
breaking the security of the garbling scheme which is a contradiction.

Lemma 22. Assuming the circuit privacy property of the additively homomorphic encryption
scheme AHE, Hyb8 is computationally indistinguishable from Hyb9.

Proof. The only difference between the two hybrids is that in Hyb8, SimHyb computes the
ciphertexts sent in round 2 by performing the homomorphic operations on the adversary’s
well-formed ciphertexts sent in round 1 exactly as in the real world, while in Hyb9, SimHyb
generates ciphertexts that encrypt random messages. Thus, we can show that if there exists an
environment Z that can distinguish between the two hybrids with non-negligible probability,
we can design a reduction AAHE that can break the circuit privacy of the circuit private
additively homomorphic encryption scheme AHE which is a contradiction.

Lemma 23. Assuming the semantic security of the secret-key encryption scheme SKE, Hyb9

is computationally indistinguishable from Hyb10.

Proof. The only difference between the two hybrids is in the scenario when the malicious party
initiates the session, and in round 4, the value outA received from the ideal functionality is
⊥. In Hyb9, the simulator computes the ciphertext ctj as an encryption of the token Tokenj
as done by the honest party in the real world whereas in Hyb10, the simulator computes the
ciphertext ctj in this case as an encryption of a random string. Observe that the secret key
used for encrypting is not used anywhere else in the experiment. Thus, it is easy to see that
if there exists an environment Z that can distinguish between the two hybrids with non-
negligible probability, we can use Z to construct an adversary ASKE that breaks the semantic
security of the encryption scheme which is a contradiction.

Lemma 24. Assuming the security of the secret sharing scheme, Hyb10 is computationally
indistinguishable from Hyb11.

Proof. The only difference between the two hybrids is that in Hyb10, for every enrollment
with a template −→w , for each i ∈ [n], the corrupt party Pi gets a vector −→w i or −→v i that is
picked as a share of −→w by running the secret sharing algorithm Share whereas, in Hyb11,
these values are picked uniformly at random by the simulator. Since the threshold used
in the secret sharing scheme is two and no information about the honest parties’ share is
even known to the simulator, it is easy to see that if there exists an environment that can

69

distinguish between these two hybrids, we can build an adversary A that breaks the security
of the threshold secret sharing scheme which is a contradiction.

70

	Introduction
	Our Contributions
	Related Work

	Technical Overview
	MPC based protocol
	Threshold FHE based protocol
	Cosine Similarity: single corruption
	Organization

	Preliminaries
	Threshold Signature

	Formalizing Fuzzy Threshold Tokenizer (FTT)
	Security Definition
	Ideal Functionality Fftt TS

	Discussion

	Any Distance Measure from MPC
	Construction

	Any Distance Measure using Threshold FHE
	Construction

	Cosine Similarity: Single Corruption
	Construction
	Euclidean Distance

	Open Problems
	Cryptographic Definitions
	Basic primitives
	Additively Homomorphic Encryption
	Threshold Fully Homomorphic Encryption
	Secure Multiparty Computation

	Security Proofs
	Proof of [thm:optimalmpc]Theorem 1
	Description of Simulator
	Hybrids

	Proof of Theorem 3
	Description of Simulator
	Hybrids

	Proof of [thm:cosine]Theorem 5
	Description of Simulator
	Hybrids

