
On the design of Bit Permutation Based Ciphers

The Interplay Among S-box, Bit Permutation and
Key-addition

Sumanta Sarkar1, Yu Sasaki2, Siang Meng Sim3

1 TCS Innovation Labs, India
sumanta.sarkar1@tcs.com

2 NTT Secure Platform Laboratories, Japan
yu.sasaki.sk@hco.ntt.co.jp

3 DSO National Laboratories, Singapore
crypto.s.m.sim@gmail.com

Abstract. Bit permutation based block ciphers, like PRESENT and GIFT,
are well-known for their extreme lightweightness in hardware implemen-
tation. However, designing such ciphers comes with one major challenge –
to ensure strong cryptographic properties simply depending on the com-
bination of three components, namely S-box, a bit permutation and a
key addition function. Having a wrong combination of components could
lead to weaknesses. In this article, we studied the interaction between
these components, improved the theoretical security bound of GIFT and
highlighted the potential pitfalls associated with a bit permutation based
primitive design. We also conducted analysis on TRIFLE, a first-round
candidate for the NIST lightweight cryptography competition, where our
findings influenced the elimination of TRIFLE from second-round of the
NIST competition. In particular, we showed that internal state bits of
TRIFLE can be partially decrypted for a few rounds even without any
knowledge of the key.

Keywords: lightweight cryptography, block cipher, bit permutation, S-box,
differential cryptanalysis, linear cryptanalysis, PRESENT, GIFT, TRIFLE

1 Introduction

Block ciphers are often inspired by the principle of confusion and diffusion [25].
The Substitution Permutation Network (SPN) has been widely followed in
constructing block ciphers, for example, Rijndael [12] that became the block
cipher standard AES1. Confusion property comes from the substitution layer
(SubBytes) which applies some S-boxes in parallel. The output of the substitution
layer is processed by two linear operations, namely, byte permutation (ShiftRows)

1In this article we will use AES instead of Rijndael.

and matrix multiplication (MixColumns). The wide-trail strategy proposed in
AES [11] allows designers to measure the strength of SPN ciphers against two
basic attacks, namely, differential cryptanalysis [6] and linear cryptanalysis [21].
The core strategy is to count the number of active S-boxes for some rounds. The
four round propagation [12] shows that the resistance of AES against differential
and linear cryptanalysis depends on the permutation layer. Then AES adopted
maximum distance separable (MDS) matrices for MixColumns as these matrices
have the optimal diffusion property. The key-addition operation introduces secret
key material into the internal state of a cipher during computation, and often
accompanied with round constant addition which breaks any structural symmetry
to avoid attacks like slide attacks [7] and invariant subspace attacks [18]. Extreme
lightweight primitive designs like SKINNY [5] and GIFT [3] add key materials to
only half of the internal state each round (like Feistel network) to save on the
hardware implementation cost.

One of the ISO/IEC 29192-2:2019 lightweight block cipher standards PRESENT
[8] followed the SPN, however, in order to reduce the hardware cost it completely
removed diffusion matrix. Essentially one round of PRESENT comprises of the
S-box layer, a bit permutation and key-addition operation. Such construction is
given a more specific name — Substitution-bitPermutation Network (SbPN) [3].
As the bit permutation does not cost anything in hardware (simple wiring), the
only cost is the S-box implementation and some XOR gates for the key-addition.
The novelty of PRESENT is that it uses 4-bit S-boxes with differential branch
number 3, and the output of S-boxes is optimally diffused by a bit permutation.
The bit permutation plays a crucial role: despite the absence of diffusion matrices,
together with the S-box it ensures strong cryptographic properties. Later GIFT [3]
took the design of PRESENT to the next level – strengthens the resistance against
linear cryptanalysis, which is the PRESENT Achilles heel, and further reduced the
hardware implementation cost. It proposes a new paradigm called Bad Output
must go to Good Input (BOGI) which allows designers to select S-box lighter
than that of PRESENT, and accordingly chooses a bit permutation to maintain
strong security. To further reduce the hardware cost, GIFT made an aggressive yet
careful move to add key materials to only half of the internal state in each round.
Without careful analysis, this is a risky move as a wrong combination with other
cipher components could lead to unexpected and undesirable properties.

Over the last decade lightweight cryptography has been enriched with interest-
ing designs and primitive constructions, that it has also drawn the attention of US
National Institute of Standards and Technology (NIST). NIST is in the process of
standardising lightweight cryptography [22]. To this call NIST has received several
authenticated encryption based on GIFT, for example GIFT-COFB [2], HyENA [10],
Simple [15] and SUNDAE-GIFT [1]. Moreover, there are also multiple submissions
whose designs are inspired by GIFT, in particular a submission called TRIFLE [13]
whose underlying block cipher TRIFLE-BC is inspired by GIFT.

A study on TRIFLE-BC and Motivation of this paper. TRIFLE-BC con-
structed its S-box using cellular automata (CA) rules, and combined a PRESENT-

2

like bit permutation with GIFT-128 key-addition. The intention was to maintain
low hardware cost while achieving low side-channel protection cost as well.

The first observation on TRIFLE were reported by one of the authors of this
paper on April 25, 2019 [23], which was the origin of this research. On June 19,
2019, Liu and Isobe submitted their article on ePrint [19] (later published by SAC
2019 [20]) which included the 44-round key recovery on TRIFLE-BC and 11-round
key recovery on TRIFLE (AEAD) by differential cryptanalysis. Soon after we
reported our extended analysis to the mailing list on June 26, 2019 [26], which
was independently done from [19]. On July 6, 2019, Flórez Gutiérrez reported the
50-round (full-round) key recovery on TRIFLE-BC by linear cryptanalysis [17].

On August 30, 2019, NIST announced the second round candidates and
TRIFLE was not selected. On October 7, 2019, NIST released the reasons [28].
([37], [39], [16] in NIST’s report correspond to [23], [26], [20] in this paper.)

Several observations have been made that highlight undesirable properties
in the block cipher TRIFLE-BC. NIST believes that these properties are
cause for concern. In particular, the combination of S-box fixed points
[37], subspace transitions, ability to decrypt a quarter of the state over
two rounds without knowledge of the key, and long single active bit trails
[39] could be combined to mount attacks. An iterative differential char-
acteristic on reduced-round TRIFLE-BC that leveraged these properties
was independently described by Liu and Isobe [16].

We believe that a series of our reports was a main reason for NIST not to select
TRIFLE for the second round. Note that the full-round linear cryptanalysis [17]
was not mentioned by NIST.

Although new cipher design proposals often include their design rationale,
the experiences in fail design attempts or consequences of violating certain design
criteria are often omitted. This could lead to misunderstanding of the design
philosophy and designing ciphers with undesirable properties. While the design
principle of SPN is well-understood thanks to the popularisation of Rijndael
(AES), SbPN has not gotten much attention.

In this paper, we revisit the design principle of PRESENT and GIFT. As evident
from the design rationale of GIFT and PRESENT that in SbPN, the S-box and
bit permutation are closely intertwined. Therefore, one has to be careful while
adopting SbPN for cipher design, and should choose the components of SbPN
appropriately. For instance, some crucial aspects of SbPN have been overlooked
by TRIFLE-BC which render weaknesses into the cipher. In this paper we give a
critical view on this, and come up with a general guideline for designing such
ciphers.

Main contributions. We revisited the design philosophy of PRESENT and GIFT,
looking at the interplay among the S-box, bit permutation and key-addition
operations. (1) We enhanced the BOGI paradigm of GIFT, introducing what we
called the BOGI+ criteria to improve the theoretical differential/linear bounds
of primitives that adopt BOGI paradigm. (2) Using the BOGI+ criteria, we

3

reaffirmed the computer-aided bounds of GIFT with our pen-and-paper analy-
sis. (3) We presented the essence of the SbPN design strategies and lastly (4)
highlighted the weaknesses of TRIFLE-BC that this a direct consequence of SbPN
design oversight.

Outline of the paper. First, we give a quick recap of SbPN components in
Sect. 2. Next, we analyse the interaction between these components in Sect. 3. We
summarise the potential pitfalls when selecting the components in Sect. 4. Finally,
we present a case study on TRIFLE-BC in Sect. 4.1 and conclude in Sect. 5.

2 SbPN Components

Definition 1. [3] Substitution-bit Permutation network (SbPN) is a subclassifi-
cation of Substitution-Permutation network, where the permutation layer only
comprises of bit permutation. An m/n-SbPN cipher is an n-bit cipher in which
substitution layer comprises of m-bit (Super-)S-boxes.

In this work, we focus on bit permutation based ciphers that use 4-bit S-boxes,
or 4/n-SbPN ciphers. For brevity, we use SbPN instead for the rest of this paper.

A round function of an SbPN cipher typically consists of 3 core operations:

SubNibbles An S-box layer that applies 4-bit S-boxes to all nibbles of the state.
PermBits A bit permutation layer that bit-wise permutes the state.
AddKey Key-addition that XORs the round keys (subkeys) to the state.

Depending on the design, the constant-addition operation may either XOR
the round constants directly to the internal state or to the key state as part
of the key schedule. For most of our discussion, the constant-addition and key
schedule are irrelevant, thus we only bring them up only when necessary.

For the rest of this section, we recap some properties of S-boxes (used in
SubNibbles), characteristics of bit permutation (used in PermBits) and types of
key-addition (used in AddKey).

2.1 Properties of S-boxes

Let Fm2 be the vector space formed by the 2m binary m-tuples. An S-box is a
mapping S : Fm2 → Fm2 . We call S as an m×m S-box (or simply m-bit S-box).
In general S-boxes are chosen to be bijective, however, non-bijective S-box has
also been used, e.g., in [14].

Differential and linear cryptanalysis are the basic attacks that the designer
needs to take care of. In order to resist the differential cryptanalysis, the S-box
should have low differential uniformity (DU). Let

DS(δ,∆) = {#x : S(x)⊕ S(x⊕ δ) = ∆}.

4

Then DU of S is defined as

DU(S) = max
δ 6=0,∆6=0

DS(δ,∆).

If DU(S) = k, then S is called k-differential uniform. DU(S) values are always even,
and 2 is the lowest possible. S-boxes that are 2-differential uniform are called
almost perfect non-linear (APN). So far APN permutations are only known to
exist over Fm2 when m is odd, and for m = 6 when m is even [9]. The differential
distribution table (DDT) is the collection of all DS(δ,∆) values.

On the other hand in linear cryptanalysis, the attacker exploits the probabilis-
tic linear relations, also called linear approximations, between the input plaintext,
key, and the ciphertext. Basically the attacker looks for relations

m−1⊕
0

aixi =

m−1⊕
0

biyi,

that happen with high probability, where (x0, . . . , xm−1) and (y0, . . . , ym−1) are
the input and output of an S-box respectively, and (a0, . . . , am−1) ∈ Fm2 and
(b0, . . . , bm−1) ∈ Fm2 are called input and output mask respectively. The maximum
probability for all the non-zero input and output mask pairs is called the linear
probability of S denoted as LS . For all possible input and output mask pairs the
probabilistic bias of the relations is recorded in the Linear Approximation Table
(LAT).

Definition 2 (4-bit Optimal S-box). A 4-bit S-box is optimal if both the
maximum differential and linear probabilities are 2−2.

It is important to know the number of active S-boxes after a certain number
of rounds. For instance, if c is the number of differentially active S-boxes in r
rounds, and DU(S) = k, then the complexity of the differential cryptanalysis is at
least (k

2m)c. On the other hand if ` is the number of linearly active S-boxes and
LS = p, then the complexity of the linear cryptanalysis is at least p`.

Additionally, there are two important security notions called branch numbers.

Definition 3 (Differential Branch Number). For an m-bit S-box S, its
differential branch number denoted as DBN(S) is defined as

DBN(S) = min
x,y∈Fm

2 , x 6=y
{wt(x⊕ y) + wt(S(x)⊕ S(y))}.

In [24], it was proved that DBN(S) ≤ d 2m3 e. For 4-bit S-boxes, the bound is 3
and it is tight. For example, PRESENT uses a 4-bit S-box with DBN(S) = 3.

Next we define linear branch number for which we first define correlation
coefficient. For any α, β ∈ Fm2 the correlation coefficient of S with respect to
(α, β) is given by

CS(α, β) =
∑
x∈Fm

2

(−1)β·S(x)+α·x.

5

Definition 4 (Linear Branch Number). For an m-bit S-box S, its linear
branch number denoted as LBN(S) is defined as

LBN(S) = min
α,β∈Fm

2 \{0}, CS(α,β)6=0
{wt(α) + wt(β)}.

In [24], it was also proved that LBN(S) ≤ m− 1. In case of 4, the maximum
possible LBN is 3. As a bit permutation based block cipher lacks the diffusion
layer like MixColumns of AES, one way to increase the number of active S-boxes
is to use S-boxes with higher branch numbers.

XOR-Permutation Equivalence. Let P and Q be two bit permutations of
Fm2 and ci, co ∈ Fm2 are some constants. Then two m-bit S-boxes S and S ′ are
said to be XOR-permutation equivalent if the following holds for all x ∈ Fm2 ,

S ′(x) = (Q ◦ S ◦ P)(x⊕ ci)⊕ co.

Note that any bit permutation of Fm2 is actually an m×m permutation matrix.
Several properties remain invariant in the equivalent class. For example,

differential uniformity, linear probability, differential branch number and linear
branch number are the same for two XOR-permutation equivalent S-boxes.

Hamming weight 1 transitions. For any Hamming weight 1 input difference
δ that has no transition to Hamming weight 1 output difference ∆, we call it
good input or otherwise bad input. Conversely, any Hamming weight 1 output
difference ∆ that has no transition from Hamming weight 1 input difference δ,
we call it good output or otherwise bad output. The same analogue applies to the
linear masking of an S-box.

Definition 5 (Score of an S-box). [3] The row score and column score of an
S-box is the number of good input and good output respectively. The score of an
S-box is the sum of the row and column score.

BOGI paradigm. Given an S-box, one can determine the score of the S-box. If
the score is at least 4, it is possible to construct a bit permutation that, together
with the S-box, guarantees certain security bounds. Refer to [3] for more details.

Remark: One might find that the score metric is similar to the CarD1S and
CarL1S metric described in [30]. Car∗1S counts the number of times a Hamming
weight 1 input causes an Hamming weight 1 output, but it does not capture
the position of these transitions. The score metric is a more refined description
of the Hamming weight 1 transitions, allowing one to design SbPN cipher with
minimally guaranteed security. Consider an S-box SA with the following differ-
ential transitions 1 → 2, 2 → 4, 4 → 8, 8 → 1, and another S-box SB with
1→ 1, 1→ 2, 2→ 1, 2→ 2. Under the Car∗1S metric, both SA and SB have
CarD1S = 4 and are indifferent unless verified with computer-aided tool. Under
the score metric, SA with score 0 is obviously not suitable for SbPN ciphers, while
SB has score 4 and can be used with BOGI paradigm to achieve a minimally
guaranteed security bound.

6

Affine subspace transition. Let a⊕ V be a (affine) subspace, where V ⊆ Fm2
and a ∈ Fm2 , it is a linear subspace if a ∈ V . If there exists b⊕ V ′ such that

∀x ∈ a⊕ V, S(x) ∈ b⊕ V ′,

then a⊕ V → b⊕ V ′ is a (affine) subspace transition through the S-box S.

2.2 Characteristics of Bit Permutation

Apart from “Our observation”, this section is an abstract from the design rationale
of GIFT [3]. We recommend reading Sect. 3.2 of [3] for a better understanding.
For concise, we denote bit-position 4i+ x as bit x, where 0 ≤ i ≤ n/4.

PRESENT bit permutation. To analyse the PRESENT bit permutation, the design-
ers partition the 16 S-boxes into 4 groups, namely {S0,S1,S2,S3}, {S4,S5,S6,S7},
{S8,S9,S10,S11} and {S12,S13,S14,S15}, and presented the following four prop-
erties [8]: (1) The input bits to an S-box come from 4 distinct S-boxes of the
same group. (2) The input bits to a group of four S-boxes come from 16 different
S-boxes. (3) The four output bits from a particular S-box enter four distinct
S-boxes, each of which belongs to a distinct group of S-boxes in the subsequent
round. (4) The output bits of S-boxes in distinct groups go to distinct S-boxes.

GIFT bit permutation. The designers revisited the analysis on the bit permu-
tation and presented an elegant way to decompose the bit permutation, providing
better insights and proposed framework to construct any bit permutation that is
a multiple of 16 (and at least 64-bit) [3]. The bit permutation is partitioned into
several identical 16-bit permutations, so called the group mapping. Each group
mapping maps 16-bit output bits of 4 S-boxes to input bits of another 4 S-boxes.
The grouping of the S-boxes is denoted as S-box mapping.

GIFT S-box mapping: The S-boxes Si are partitioned in two ways — Quotient
group Qx = {S4x, S4x+1, S4x+2, S4x+3} and Remainder group Rx = {Sx, Sq+x,
S2q+x, S3q+x} where q = n/16 and 0 ≤ x ≤ q − 1. S-box mapping maps Qx to
Rx, where the specific bit permutation is defined by the group mapping.

Projecting the S-box mapping description on PRESENT bit permutation, the
PRESENT S-box mapping coincide with the S-box mapping for n = 64.

Group mapping: The mapping of the output bits from a Quotient group to the
input of a Remainder group in the next round. The output bits from an S-box in
the Quotient group goes to 4 distinct S-boxes in the Remainder group.

For GIFT, its group mapping is described as follows:

7

PPPPPPPPQxr
Rxr+1

Sr+1
x Sr+1

q+x Sr+1
2q+x Sr+1

3q+x

Sr4x (0, π(0)) (1, π(1)) (2, π(2)) (3, π(3))
Sr4x+1 (1, π(1)) (2, π(2)) (3, π(3)) (0, π(0))
Sr4x+2 (2, π(2)) (3, π(3)) (0, π(0)) (1, π(1))
Sr4x+3 (3, π(3)) (0, π(0)) (1, π(1)) (2, π(2))

Table 1: G-group mapping
where (l,m) denotes the output bit l of the S-box in
the corresponding row will map to the input bit m of
the S-box in the corresponding column in the next

round.

0

0

1

1

2

2

3

3

4

16

5

17

6

18

7

19

8

32

9

33

10

34

11

35

12

48

13

49

14

50

15

51

Sr
3

Sr+1
12

Sr
2

Sr+1
8

Sr
1

Sr+1
4

Sr
0

Sr+1
0

Fig. 1: G-group mapping of
GIFT-64

π(·) is a bijective permutation on {0, 1, 2, 3} that is determined by the prop-
erties of the DDT (resp. LAT) of the S-box. The only requirement for the
permutation is that it must map bad output to good input, hence the name
BOGI. Conversely, one may choose an XOR-permutation equivalent S-box that
works with identity permutation π(i) = i as in GIFT. For simplicity, we assume π
to be identity and denote such group mapping as G-group mapping.

PRESENT bit permutation could also be described in a similar manner:

PPPPPPPPQxr
Rxr+1

Sr+1
x Sr+1

q+x Sr+1
2q+x S

r+1
3q+x

Sr4x (0, 0) (1, 0) (2, 0) (3, 0)
Sr4x+1 (0, 1) (1, 1) (2, 1) (3, 1)
Sr4x+2 (0, 2) (1, 2) (2, 2) (3, 2)
Sr4x+3 (0, 3) (1, 3) (2, 3) (3, 3)

Table 2: P-group mapping
where (l,m) denotes the output bit l of the S-box in
the corresponding row will map to the input bit m of
the S-box in the corresponding column in the next

round.

0

0

1

1

2

2

3

3

4

16

5

17

6

18

7

19

8

32

9

33

10

34

11

35

12

48

13

49

14

50

15

51

Sr
3

Sr+1
12

Sr
2

Sr+1
8

Sr
1

Sr+1
4

Sr
0

Sr+1
0

Fig. 2: P-group mapping of
PRESENT

We denote PRESENT-like group mappings as P-group mappings. The main
difference between P-group and G-group mapping is that the latter always maps
bit i to bit π(i), while the former has 16 distinct bit position mapping (i, j).

Optimal bit permutation. A full diffusion is where any single bit flip has
an influence over the entire internal state. For an 4/n-SbPN cipher, suppose a
single input bit is flipped, the maximum number of affected bits after r round is
4r. Thus, a bit permutation is optimal if full diffusion (starting from any bit) is
achieved in dlog4(n)e rounds.

Our observation. The aforementioned 4 properties of PRESENT bit permutation
is not sufficient to ensure full diffusion for an 128-bit bit permutation. One
could duplicate and concatenate 2 copies of PRESENT bit permutation without

8

interaction, this will satisfy the 4 properties but will never achieve full diffusion
because there is no mixing between the two halves of the internal state. The
reason that it doesn’t work is simple — there is no clear definition on how the
S-boxes are grouped.

On the other hand, the GIFT S-box mapping has been shown to be optimal
permutation for both 64-bit and 128-bit [3]. We conjecture that GIFT S-box map-
ping provides an optimal permutation for any arbitrary block size that is multiple
of 16. In addition, we proposed using GIFT S-box mapping as the framework to
build 4/n-SbPN ciphers, especially for 64-bit and 128-bit, and not just satisfying
the 4 properties of PRESENT bit permutation.

2.3 Types of Key-addition

In conventional designs, key materials are added to the entire internal state. In
recent lightweight designs, like SKINNY [5] and GIFT [3], the key materials are only
added to half of its internal state (so-called partial key-addition). One obvious
benefit is to reduce hardware footprint. While one of the drawbacks is having a
weaker related-key differential bounds for lower number of rounds.

Related-key differential bounds. In a nutshell, related-key differential crypt-
analysis is an attack model where differences can be introduced in the master
key. Naturally, if it takes r rounds for the all key materials of the master key to
be added to the internal state, the highest related-key differential probability
for the first r − 1 rounds is 1. Since partial key-addition takes more rounds to
introduce all the key materials into the internal state, it directly increases r.

Invariant subspace analysis. This is a weak key attack, introduced by [18],
that exploits subspaces which are preserved through arbitrary number of rounds.
A “simple” way to break any subspace structures is through the addition of
round constants, as discussed in [4]. However, as seen in [16,27], round constants
may not work if the designers are not careful, hence the scare quote for simple.
To reduce the dependency of the round constant to prevent invariant subspace
attacks, we are interested to analyse the properties of the S-box and key-addition
against these attacks. Counter-intuitively, when designing SbPN ciphers, having
partial key-addition could actually help finding suitable S-box candidates easier.
This is because we can relax some of the conditions necessary for S-boxes to be
resistant against invariant subspace attack. Details will be explained in Sect. 3.2.

3 Interaction Between Components

In this section, we discuss the pair combination of the 3 main components of
SbPN.

9

3.1 S-box & Bit Permutation

One of the most important analysis to be performed for new cipher design is
resistance against differential and linear cryptanalysis. A common approach is to
use some computer-aided tool to find out the upper bound for the differential
probability or linear bias of the SbPN structure. The designers of RECTANGLE [29]
(4/64-SbPN cipher) adopted this approach and provided experimental evidence.
However, due to the bit-oriented nature of the SbPN structure, analysing larger
state size (say 128-bit) and large number of rounds is computationally infeasible.

Another approach is to provide theoretical proof that the combination of
a particular S-box and a bit permutation guarantees some upper bound. Such
theoretical arguments also serve as a guideline to design primitives with strong
cryptographic properties. The designers of PRESENT [8] are one of the first to
propose a theoretical argument for 4/64-SbPN. Combining DBN 3 S-boxes with a
64-bit optimal bit permutation, they proved that any 5 consecutive rounds of
PRESENT have at least 10 differentially active S-boxes (denoted as 10-AS/5-round).

A third approach is a hybrid method. First, select components satisfying
certain cryptographic criteria to guarantee some theoretical upper bound, and
then perform the computer-aided analysis to obtain more accurate results. This
approach requires much lower computational effort than the first approach and
obtain more accurate bounds (usually better bounds) than using the second
approach alone. The designers of GIFT [3] first introduced the BOGI paradigm
that, with the correct combination of S-box and bit permutation, guarantees at
least 7-AS/5-round; and used computer-aided search to show that GIFT achieves
at least 18-AS/9-round, the same number of active S-boxes ratio as PRESENT.

Theorem 1. (BOGI paradigm) If an SbPN construction satisfies all the differ-
ential (resp. linear) BOGI criteria, the longest consecutive single active S-box
differential (resp. linear) trail is 3. And the 4/n-SbPN structure has at least
7-AS/5-round, where n ≥ 64 is multiple of 16.

Proof. BOGI criteria ensures that there is no consecutive single bit transition
(having single active bit input and output), thus the longest consecutive single
active S-box trail is 3, only the middle S-box can have single bit transition
(1–1–1). Beyond that, there are at least 2 active bits at input of the preceding
S-box and output of the succeeding S-box which leads to at least 7 active S-boxes
(2–1–1–1–2). For n ≥ 64, the active bits different S-boxes of the same round will
not go to the same S-box because of the Quotient and Remainder grouping. Thus,
there are at least 7-AS/5-round (1–1–1–2–2 or 2–2–1–1–1). ut

Although S-boxes with DBN = 3 provide strong cryptographic properties
(10-AS/5-round) for SbPN structure, it is known that there is no 4-bit optimal
S-boxes simultaneously having DBN = 3 and LBN = 3. BOGI paradigm did a
trade-off to have good cryptographic properties on both the differential and linear
cases simultaneously at a cost of a weaker theoretical bound (7-AS/5-round).

For the rest of this section, we first analyse the various possible differential or
linear characteristics, followed by proposing new criteria to improve the theoretic

10

bounds of BOGI paradigm (we called it BOGI+ criteria). Lastly, we apply our
results to improve the theoretic bound for GIFT.

Differential/Linear characteristics with single active S-box. To simplify
the discussion, we assume that some G-group mapping with identity π, and all
the S-box mappings use this same group mapping.

For any r-round differential/linear characteristic, suppose that there is some
round with 1 active S-box. By Theorem 1, the trail will eventually split and have
multiple active S-boxes in some round. For the average number of active S-boxes
to maintain below the ratio of 2, one of the two patterns must occur:

Fig. 3: Net pattern Fig. 4: Cross pattern
Each box represents an S-box and red boxes are S-boxes with Hamming weight 1
transition. The solid black lines are the active bits trail and dashed red lines form the
special pattern.

For the net pattern (Fig. 3), although it propagates to more than 2 active
S-boxes at some round, if it manages to converge back to 2 active S-boxes, it
can achieve 11-AS/6-round. If it can further converge to 1 single active S-box,
then it could lead to an iterative 6-round structure. Thus, the focus is to analyse
the conditions for the four Hamming weight 1 transitions to occur between
the net pattern. Notice that the 2 active S-boxes, SD and SE , belonged to the
same remainder group as they originated from a same S-box SC . Thus, they are
in different quotient groups but in the same position (same row of the group
mapping). For them to propagate to 4 S-boxes that belong to only 2 quotient
groups, hence allowing converging to occur, SF and SG must have the active
input bit at the same bit position, say bit x. Similarly for SH and SI at bit y. In
addition, since the input bits to SF and SH came from a same S-box, we must
have x 6= y. Finally, for output of SF and SG (resp. with the other S-box pair SH
and SI) to go to the same S-box SJ (resp. SK), the active output bit positions,

11

say bit f and g, must be different, i.e. f 6= g and h 6= i. In summary, such net
pattern needs 4 distinct Hamming weight 1 transitions:

x 7→ f, x 7→ g, y 7→ h, y 7→ i.

That said, we have the following lemma.

Lemma 1. Assume an SbPN construction satisfies all the BOGI criteria, any
S-box that allows a net pattern has 4 distinct Hamming weight 1 transitions; and
both its row and column score at most 2.

A cross pattern (Fig. 4) could potentially be iterative, resulting in 2-AS/round
characteristic, as observed in the differential characteristic of PRESENT and
GIFT-64. But such iterative pattern is acceptable as long as this pattern is
not propagated from a single active S-box, and does not converge to a single
active S-box. Otherwise, a trail can start or end with 3 consecutive single active
S-boxes and with this cross pattern as the main body. Such characteristics have
(2r − 3)-AS/r-round or even 11r-AS/7r-round iterative pattern. Note that the
cross pattern cannot occur immediately after the splitting because the S-boxes SC
and SD are in the same remainder group and different quotient groups. Therefore,
the focus is on the conditions for the Hamming weight 1 transition at SC ,SD
and SI ,SJ . Originated from SB, SC and SD are in the same remainder group
with different active input bit positions, say bit c and d, and we know c 6= d. For
SE and SF to be in the quotient group, the active output bit positions of SC
and SD must be the same bit position, bit x. Similar argument for SI and SJ in
the backward direction, i.e. i 6= j. In short, for a cross pattern to begin with a
single active S-box requires the following 2 Hamming weight 1 transitions:

c 7→ x, d 7→ x.

For a cross pattern to converge to a single active S-box, it requires a different
pair of Hamming weight 1 transitions:

y 7→ i, y 7→ j.

Lemma 2. Assume an SbPN construction satisfies all the BOGI criteria, any
S-box that allows a single active S-box to propagate to a cross pattern has a row
score of at most 2; any S-box that has a cross pattern converging to a single active
S-box has a column score of at most 2.

There could be other patterns that eventually converge back to a single S-box,
but those patterns will result in a trail with more than 2-AS/round or require
an S-box with even lower scores. Suppose the initial split lead to 3 or 4 active
S-boxes, with 3 consecutive single active S-boxes, the trail has 3-AS/3-round.
Upon propagating to 3 (resp. 4) active S-boxes, the trail now has 6-AS/4-round
(resp. 7-AS/4-round) active S-boxes. Since all 3 (resp. 4) active S-boxes are in
different quotient groups, any further propagation to more active S-boxes will
result in a trail with more than an average of 2 active S-boxes per round. For all
the active S-boxes to have Hamming weight 1 transitions, it would require either
the row or column score to be lower than 2.

12

New criteria for guaranteed good bounds (BOGI+ criteria). Here, we
introduce new criteria that guarantee higher theoretical bound. As they are built
upon BOGI paradigm, we call them the BOGI+ criteria.

Theorem 2. (BOGI+ criteria) Assume an SbPN construction satisfies all the
differential (resp. linear) BOGI criteria, if the differential (resp. linear) property
of the S-box satisfies exactly one of the follow criteria:

• has a differential (resp. linear) row score of 3,

• has a differential (resp. linear) column score of 3,

then a 4/n-SbPN structure has at least (2r − 3)-AS/r-round, where r ≥ 9.

If both criteria are satisfied, then a 4/nSbPN construction has at least 2r-
AS/r-round, where r ≥ 9.

Proof. For any r-round characteristic, if each round has at least 2 active S-boxes,
then we have at least 2r-AS/r-round and we are done. Otherwise, there exists
some round with exactly 1 active S-box.

If both criteria are satisfied, both the net and cross patterns cannot occur,
then the longest characteristic with 1 active S-box at some round and has an
average below 2-AS/round is 8 round, an example is shown in Fig. 5. Thus for
r ≥ 9, we have at least 2r-AS/r-round.

Fig. 5: 14 active S-boxes in a 8-round characteristic. Each box represents an
S-box, 1-1 transition S-boxes are in red.

If exactly one of the two criteria is satisfied, say the S-box has column score
3 but row score 2, by Lemma 1 the net pattern cannot occur. But there could be
a characteristic starting with 3 consecutive single active S-boxes, followed by an
iterative cross pattern (2-AS/round) without converging back to 1 active S-box
(by Lemma 2). This results in an r-round characteristic with (2r − 3) active
S-boxes, where r ≥ 9. ut

13

Improved theoretical bound for GIFT. Using the above results, we can
improve the theoretical bound of GIFT. Tab. 3 and 4 shows the 1-1 bit DDT and
1-1 bit LAT of the GIFT S-box respectively.

Table 3: 1-1 bit DDT of GIFT S-box.

∆O

1 2 4 8

∆I

1 0 0 0 2

2 0 0 0 0

4 0 0 0 0

8 0 0 0 0

Table 4: 1-1 bit LAT of GIFT S-box.

β
1 2 4 8

α

1 0 0 2 4

2 0 0 0 2

4 0 0 0 0

8 0 0 0 0

For the differential case, from Tab. 3 we see that both the row and column
have score 3. By Theorem 2, there are at least 18 differentially active S-boxes
in 9 rounds. For the linear case, although the BOGI+ criteria are not satisfied,
we know from Lemma 1 that the net pattern is not possible. By enumerating
the possible cross patterns based on the LAT of GIFT S-box, we can see that the
cross pattern is not possible either2. Thus, there are at least 18 linearly active
S-boxes in 9 rounds.

3.2 S-box & Add Round Keys

In [16], the authors studied the resistance criteria of an S-box against invariant
subspace attacks [18] for the case of full key-addition. To achieve a high level
resistance against invariant subspace attack, an S-box should have the following
two conditions [16]: (1) There are no affine subspace transitions of dimension
more than 2. (2) There are no affine subspace transitions of dimension 2 that can
be connected (output subspace of one coincides with input subspace of another).

Interestingly, these two conditions could be relaxed when a cipher design uses
partial key-addition. Similar to [16], we assume that any subspace is preserved
over the linear layer (in our case, the bit permutation layer). First, we give an
example before generalising our observation.

Example 1. Suppose the partial key-addition adds key bits to bit 1 and 2 of every
nibble. Consider the following subspace transition of an S-box: 0⊕ {0, 2, 4, 6} →
1⊕ {0, 2, 4, 6}. After the SubNibbles, supposed that the PermBits preserves the
affine subspace 1⊕{0, 2, 4, 6}, if the AddKey XORs x ∈ {1, 3, 5, 7} to each nibble,
the subspace will return to 0⊕{0, 2, 4, 6} and we will have an invariant subspace.
However, notice that 1⊕{0, 2, 4, 6} will not be sent back to 0⊕{0, 2, 4, 6} because
bit 0 is not updated by the partial key-addition. Hence, this subspace transition
posts no threat to the cipher. 4

In summary, we can check if the partial key-addition and/or constant-addition
could link any subspace transition from the output back to the input of the
S-box. If it doesn’t, then this S-box candidate is still resistant against invariant

2Due to the page constraints, we omit the case-by-case analysis.

14

subspace attack. That said, we introduce a third condition for S-boxes to have
high resistance against invariant subspace attacks: (3) Exceptions can be made if
none of the necessary values for connecting the affine subspaces can be attained
by the key-addition or add-constant.

3.3 Bit Permutation & Add Round Keys

With the partial key-addition, designers need to take care of how the internal
state is masked with the key materials. Without loss of generality, we assume the
order of operations to be PermBits – AddKey – SubNibbles, this is because the
XOR gates of AddKey can be moved across the bit wiring (PermBits) trivially.

One desirable property is that none of the internal state bit values can be
determined with probability 1 after SubNibbles. Since S-boxes are applied to the
internal state nibble-wise, each nibble should be masked by some key bit prior
to the SubNibbles operation. In addition, taking into consideration of efficient
software implementation, more specifically the bit-slice implementation, the key
materials should be added to the same bit position of each nibble. For example,
GIFT-128 adds the key materials to bit 1 and bit 2 of each nibble.

Although this approach works well for G-group mappings, it doesn’t work
that well with P-group mappings. From the P-group mapping (see Tab. 2 and
Fig. 2), we see that if bit i of each nibble in round r+ 1 is masked with the some
key bits, then only the output of Sr4x+i is masked with those key bits.

This implies that for any partial key-addition that doesn’t add key material
to bit i, during the backward computation some nibble will have no obscurity
and one can inverse the S-box to know the input values trivially.

The problem lies with the nature of P-group mapping having distinct bit
position mappings. Having irregular partial key-addition could resolve this issue
but it could potentially make the cipher description confusing and software
implementation less efficient. On the other hand, a G-group mapping does not
have this issue because masking bit i of each nibble implies masking bit π−1(i)
of each nibble, no nibble will be left unmasked.

In summary, partial key-addition works fine with G-group mapping but not
as well with P-group mapping.

4 Highlights on security aspects of SbPN Design

We have seen in the previous section that various components have different
cause and effect when combined with other components. It creates a “chicken
and egg” situation for the order of component selections. As different designers
have different design rationale in mind, there is no standard procedure for
designing an 4/n-SbPN cipher that would suit everyone. Nevertheless, having
strong cryptographic properties is a common goal for all cipher designers. That
said, we summarise our results thus far and classify them according to the relevant
cryptanalysis techniques.

15

Differential/Linear cryptanalysis. Having an S-box with differential and
linear branch number 3 is great for proving high security bounds when com-
bined with either P-group mapping or G-group mapping. But if such option is
unavailable, one should minimally select an S-box with score 4 and combine with
G-group mapping. If both differential and linear rely on the score 4 property,
make sure that π can simultaneously satisfy both the differential and linear BOGI
criteria. If that doesn’t work, one should search for other S-box candidates.

If there is an abundant choice of S-boxes with score 4, selecting one with row
and/or column score 3 will directly improve its theoretical bound. Otherwise,
further analysis like computer-aided tool is necessary to get more accurate bounds.

Invariant subspace attack and related-key differential. In the process of
analysing the affine subspace transition through the S-box, one can consider the
position of the key-addition and constant-addition to see if any affine subspaces
can be preserved. This could potentially find S-box candidates that otherwise
would been discarded by the first two conditions in Sect. 3.2.

A full key-addition tend to have better related-key differential bounds but
also makes invariant subspace attack more probable. Nonetheless, with stronger
key schedule and further analysis, invariant subspace attack could be mitigated.

Partial encryption or decryption. Although partial key-addition could save
a substantial amount of hardware resources, one should avoid using P-group
mappings together with partial key-addition as it could result determining part
of the internal state information without having to guess any key materials.

4.1 A case study on TRIFLE-BC

TRIFLE is one of the 56 first-round candidates for the NIST lightweight cryptog-
raphy standardization process. Its underlying cipher TRIFLE-BC adopts SbPN.
The block size and the key size of TRIFLE-BC are 128 bits. It computes 50 rounds
in total, and each round consists of the following 3 operations that are of interest
to us.

• SubNibbles applies the 4-bit S-box 0c9735e46ba2d18f to each nibble.
• BitPermutation moves bit-position i to bi/4c+(i%4)×32 for i = 0, 1, . . . , 127.
• During AddRoundKey, a 64-bit round key computed by a key schedule algo-

rithm is XORed to bit 1 and 2 of the state.

A state is often denoted by a 4 × 32 matrix. The bit i in the vector form,
where 0 ≤ i ≤ 127, corresponds to the bit in the (bi/4c)-th column from the left
and (i mod 4)-th row from the top.

Long single active S-box trail. The DBN takes a crucial role to ensure the
security of SbPN. However, as pointed out by the designers, DBN = 2 for the
TRIFLE S-box, besides there are 4 differential propagation with DBN = 2; 8→ 4,

16

4→ 2, 2→ 1, and 1→ 8. Clearly, attackers can construct a differential charac-
teristic only with those four transitions, which leads to an r-round differential
characteristic only with r active S-boxes.

This property ensures only a weak security. The designers of TRIFLE realized
this property, hence tried to mitigate the damage from this property by limiting
the probability of each propagation to 2−3. However as independently pointed
out by Liu et al. [20], this still allows r-round differential characteristics with
probability 2−3r+2, where the factor 22 comes from the fact that the first round
input and the last round output can have more than 1 active bits, thus the
probability can be 2−2 for those 2 rounds.

Keyless Partial Decryption. The bad interaction between the partial key-
addition and the bit permutation pointed out in Sect. 3.3 actually occurs in
TRIFLE-BC.

TRIFLE-BC XORs key material to bit 1 and bit 2 or each nibble while adopting
the P-group mapping. While in the forward direction (encryption), 2 of the 4
input bits to every S-box is masked with some secret key material, it is not the
case from the backward direction (decryption).

0

0

1

1

2

2

3

3

4

32

5

33

6

34

7

35

8

64

9

65

10

66

11

67

12

96

13

97

14

98

15

99

Sr
3

Sr+1
24

Sr
2

Sr+1
16

Sr
1

Sr+1
8

Sr
0

Sr+1
0

Fig. 6: TRIFLE-BC group mapping

0

0

1

1

2

2

3

3

4

32

5

33

6

34

7

35

8

64

9

65

10

66

11

67

12

96

13

97

14

98

15

99

Sr
3

Sr+1
24

Sr
2

Sr+1
16

Sr
1

Sr+1
8

Sr
0

Sr+1
0

Fig. 7: GIFT-128 group mapping

As one can see from Fig. 6, 2 of the 4 S-boxes (black and green) in the previous
round of TRIFLE-BC is not masked by any key material. Such property does not
exist in PRESENT because all bits are masked with some key material. Whereas
for GIFT (Fig. 7), bit i is mapped to bit i, thus 2 of the 4 output bits to every
S-box is masked with some key material.

Namely, the attacker can compute some inverse S-boxes in round r even
without knowing any round key bits in round r as summarized below.

Let Xr
i denote bit i of the state just before SubNibbles at round r.

Given 4 bit values in bit positions {Xr+1
i , Xr+1

i+32, Xr+1
i+64, Xr+1

i+96}, where
i ∈ {0, 3, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23, 24, 27, 28, 31}, the values of {Xr

4i,
Xr

4i+1, Xr
4i+2, Xr

4i+3} are fully determined independently of the key.

By using the above, part of the internal state bits of TRIFLE that can be
recovered without subkey guesses during the 3-round decryption are depicted in
Fig. 8.

17

BitPermutation

AddRoundKey / AddRoundConstant

SubNibbles

BitPermutation

AddRoundKey / AddRoundConstant

SubNibbles

BitPermutation

AddRoundKey / AddRoundConstant

Data State Key State

SubNibbles

Fig. 8: Partially decrypted state bits without subkey guess. In the data state,
row i corresponds to bit i, columns correspond to the S-boxes. Black cells are
ciphertext bits and gray cells are decrypted bits without subkey. Different shades
of gray is for the convenience to trace the bit permutation.

5 Conclusion

In this article we have provided an extensive insight of SbPN designs. We have
introduced BOGI+ criteria which is further refinement of the BOGI criteria as
given by GIFT, and with this new criteria we have been able to improve the
theoretical bounds of active S-boxes in GIFT. Our analysis goes much deeper and
explains the interplay between S-box, bit permutation and key addition and how
to choose them for a secure SbPN design. We highly recommend designers to
follow our guidelines while creating a new SbPN cipher, and avoid flaws that
render weaknesses as observed in a recent SbPN cipher TRIFLE-BC.

Acknowledgements

The authors would like to thank Thomas Peyrin for the meaningful discussion
on the study of TRIFLE-BC.

18

References

1. Banik, S., Bogdanov, A., Peyrin, T., Sasaki, Y., Sim, S.M., Tischhauser, E., Todo,
Y.: SUNDAE-GIFT, submission to NIST Lightweight Cryptography project (2019)

2. Banik, S., Chakraborti, A., Iwata, T., Minematsu, K., Nandi, M., Peyrin, T.,
Sasaki, Y., Sim, S.M., Todo, Y.: GIFT-COFB, submission to NIST Lightweight
Cryptography project (2019)

3. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: A
small present - towards reaching the limit of lightweight encryption. In Fischer, W.,
Homma, N., eds.: Cryptographic Hardware and Embedded Systems - CHES 2017 -
19th International Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings.
Volume 10529 of Lecture Notes in Computer Science., Springer (2017) 321–345

4. Beierle, C., Canteaut, A., Leander, G., Rotella, Y.: Proving resistance against
invariant attacks: How to choose the round constants. In Katz, J., Shacham, H., eds.:
Advances in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part II.
Volume 10402 of Lecture Notes in Computer Science., Springer (2017) 647–678

5. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency
variant MANTIS. In Robshaw, M., Katz, J., eds.: Advances in Cryptology -
CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 14-18, 2016, Proceedings, Part II. Volume 9815 of Lecture Notes
in Computer Science., Springer (2016) 123–153

6. Biham, E., Shamir, A.: Differential cryptanalysis of the full 16-round DES. In
Brickell, E.F., ed.: CRYPTO’92. Volume 740 of LNCS., Springer, Heidelberg (August
1993) 487–496

7. Biryukov, A., Wagner, D.A.: Slide attacks. In Knudsen, L.R., ed.: Fast Software
Encryption, 6th International Workshop, FSE ’99, Rome, Italy, March 24-26, 1999,
Proceedings. Volume 1636 of Lecture Notes in Computer Science., Springer (1999)
245–259

8. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In Paillier, P., Verbauwhede, I., eds.: Cryptographic Hardware and Embedded
Systems - CHES 2007. Volume 4727 of LNCS., Springer (2007) 450–466

9. Browning, K., Dillon, J., McQuistan, M., Wolfe, A.: An APN permutation in
dimension six. Finite Fields: Theory and Applications 518 (2010) 33–42

10. Chakraborti, A., Datta, N., Jha, A., Nandi, M.: HyENA, submission to NIST
Lightweight Cryptography project (2019)

11. Daemen, J., Rijmen, V.: AES and the wide trail design strategy. In Knudsen,
L.R., ed.: Advances in Cryptology - EUROCRYPT 2002, International Conference
on the Theory and Applications of Cryptographic Techniques, Amsterdam, The
Netherlands, April 28 - May 2, 2002, Proceedings. Volume 2332 of Lecture Notes
in Computer Science., Springer (2002) 108–109

12. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer (2002)

13. Datta, N., Ghoshal, A., Mukhopadhyay, D., Patranabis, S., Picek, S., Sadhukhan,
R.: TRIFLE, submission to NIST Lightweight Cryptography project (2019)

14. DES: Data encryption standard. In: In FIPS PUB 46, Federal Information
Processing Standards Publication. (1977) 46–2

19

15. Gueron, S., Lindell, Y.: Simple, submission to NIST Lightweight Cryptography
project (2019)

16. Guo, J., Jean, J., Nikolic, I., Qiao, K., Sasaki, Y., Sim, S.M.: Invariant subspace
attack against midori64 and the resistance criteria for s-box designs. IACR Trans.
Symmetric Cryptol. 2016(1) (2016) 33–56

17. Gutiérrez, A.F.: (July 6, 2019) OFFICIAL COMMENT: TRIFLE. Email to lwc-
forum. (2019) Available at https://csrc.nist.gov/CSRC/media/Projects/

Lightweight-Cryptography/documents/round-1/official-comments/

TRIFLE-official-comment.pdf.
18. Leander, G., Abdelraheem, M.A., AlKhzaimi, H., Zenner, E.: A cryptanalysis of

PRINTcipher: The invariant subspace attack. In Rogaway, P., ed.: CRYPTO 2011.
Volume 6841 of LNCS., Springer, Heidelberg (August 2011) 206–221

19. Liu, F., Isobe, T.: Iterative differential characteristic of trifle-bc. Cryptology ePrint
Archive, Report 2019/727 (2019) https://eprint.iacr.org/2019/727.

20. Liu, F., Isobe, T.: Iterative differential characteristic of TRIFLE-BC. In Pater-
son, K.G., Stebila, D., eds.: Selected Areas in Cryptography - SAC 2019 - 26th
International Conference, Waterloo, ON, Canada, August 12-16, 2019, Revised
Selected Papers. Volume 11959 of Lecture Notes in Computer Science., Springer
(2019) 85–100

21. Matsui, M.: Linear cryptoanalysis method for DES cipher. In Helleseth, T., ed.:
EUROCRYPT’93. Volume 765 of LNCS., Springer, Heidelberg (May 1994) 386–397

22. NIST: Round 1 of the nist lightweight cryptography project (2019)
23. Sarkar, S.: (April 25, 2019) Re: TRIFLE S-box has some structural

weakness. Email to lwc-forum. (2019) Available at https://csrc.nist.

gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/

official-comments/TRIFLE-official-comment.pdf.
24. Sarkar, S., Syed, H.: Bounds on differential and linear branch number of permu-

tations. In Susilo, W., Yang, G., eds.: Information Security and Privacy, Cham,
Springer International Publishing (2018) 207–224

25. Shannon, C.E.: Communication theory of secrecy systems. Bell System Technical
Journal, Vol 28, pp. 656 - 715 (October 1949)

26. Sim, S.M.: (June 26, 2019) OFFICIAL COMMENT: TRIFLE. Email to lwc-
forum. (2019) Available at https://csrc.nist.gov/CSRC/media/Projects/

Lightweight-Cryptography/documents/round-1/official-comments/

TRIFLE-official-comment.pdf.
27. Sim, S.M., Peyrin, T., Sarkar, S., Sasaki, Y.: (June 26, 2019) OFFICIAL

COMMENT: TRIFLE. Official comments received on TRIFLE. (2019)
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/

documents/round-1/official-comments/TRIFLE-official-comment.pdf.
28. Turan, M.S., McKay, K., ada alk, Chang, D., Bassham, L.: Status report on the

first round of the nist lightweight cryptography standardization process. NISTIR
8268 (2019) https://csrc.nist.gov/publications/detail/nistir/8268/final.

29. Zhang, W., Bao, Z., Lin, D., Rijmen, V., Yang, B., Verbauwhede, I.: RECTANGLE:
a bit-slice lightweight block cipher suitable for multiple platforms. SCIENCE
CHINA Information Sciences 58(12) (2015) 1–15

30. Zhang, W., Bao, Z., Rijmen, V., Liu, M.: A new classification of 4-bit optimal s-boxes
and its application to present, RECTANGLE and SPONGENT. In Leander, G.,
ed.: Fast Software Encryption - 22nd International Workshop, FSE 2015, Istanbul,
Turkey, March 8-11, 2015, Revised Selected Papers. Volume 9054 of Lecture Notes
in Computer Science., Springer (2015) 494–515

20

https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/official-comments/TRIFLE-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/official-comments/TRIFLE-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/official-comments/TRIFLE-official-comment.pdf
https://eprint.iacr.org/2019/727
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/official-comments/TRIFLE-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/official-comments/TRIFLE-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/official-comments/TRIFLE-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/official-comments/TRIFLE-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/official-comments/TRIFLE-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/official-comments/TRIFLE-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/official-comments/TRIFLE-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/official-comments/TRIFLE-official-comment.pdf
https://csrc.nist.gov/publications/detail/nistir/8268/final

	On the design of Bit Permutation Based Ciphers

