
Succinct Diophantine-Satisfiability Arguments

Patrick Towa1,2, Damien Vergnaud3,4

1 IBM Research – Zurich
2 DIENS, École Normale Supérieure, CNRS, PSL University, Paris, France

3 Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
4 Institut Universitaire de France

Abstract. A Diophantine equation is a multi-variate polynomial equa-
tion with integer coefficients, and it is satisfiable if it has a solution
with all unknowns taking integer values. Davis, Putnam, Robinson and
Matiyasevich showed that the general Diophantine satisfiability problem
is undecidable (giving a negative answer to Hilbert’s tenth problem) but
it is nevertheless possible to argue in zero-knowledge the knowledge of a
solution, if a solution is known to a prover.
We provide the first succinct honest-verifier zero-knowledge argument for
the satisfiability of Diophantine equations with a communication com-
plexity and a round complexity that grows logarithmically in the size of
the polynomial equation. The security of our argument relies on stan-
dard assumptions on hidden-order groups. As the argument requires to
commit to integers, we introduce a new integer-commitment scheme that
has much smaller parameters than Damgård and Fujisaki’s scheme. We
finally show how to succinctly argue knowledge of solutions to several
NP-complete problems and cryptographic problems by encoding them
as Diophantine equations.



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Hidden-Order-Group Generators and Hardness Assumptions . . . . 9
2.3 Non-interactive Commitments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Argument Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Interactive Arguments in the Random–Oracle Model. . . . . . . . . . . 14
Fiat–Shamir Heuristic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Integer Commitments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1 Damgård–Fujisaki Commitments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 A new Integer-Commitment Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 17

Correctness & Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Argument System FS .ΠH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Arguing Knowledge of Openings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Multi-Integer Commitments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Succinct Inner-Product Arguments on Integers . . . . . . . . . . . . . . . . . . . . . 24
4.1 Formal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Relations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Main Insights. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Protocol Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Prover-Communication Complexity. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Verification via a Single Multi-Exponentiation. . . . . . . . . . . . . . . . . 28

4.2 Completeness and Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Challenge-Tree Generators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Succinct Arguments for Multi-Integer Commitments . . . . . . . . . . . . . . . . 44
5.1 Succinct Arguments of Openings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 Aggregating Arguments of Openings to Integer Commitments . . . 45

Protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Completeness and Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Shorter Parameters for Integer Commitments . . . . . . . . . . . . . . . . . 47
5.4 Succinct Base-Switching Arguments . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Succinct Argument for Diophantine Equations . . . . . . . . . . . . . . . . . . . . . 49
6.1 Arguments via Polynomial-Degree Reductions . . . . . . . . . . . . . . . . . 50

Reducing Arbitrary Polynomials to Polynomials of Degree at
most 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Diophantine Equations as Circuits. . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Main Insights. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Protocol Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



Prover-Communication Complexity. . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Verification Effiency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.3 Completeness and Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.1 Arguing Knowledge of RSA signatures . . . . . . . . . . . . . . . . . . . . . . . 64
7.2 Argument of Knowledge of (EC)DSA Signatures . . . . . . . . . . . . . . 66

DSA Signatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
ECDSA Signatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.3 Argument of Knowledge of List Permutation . . . . . . . . . . . . . . . . . . 68
7.4 3-SAT Satisfiability Argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.5 Integer-Linear-Programming Satisfiability Argument . . . . . . . . . . . 70

A Succinct Inner-Product Argument on Integers . . . . . . . . . . . . . . . . . . . . . 74
A.1 Verification via a Single Multi-Exponentiation . . . . . . . . . . . . . . . . 74

Explicit Expression for the Final Bases. . . . . . . . . . . . . . . . . . . . . . . 74
Reduction to Powers of 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

1 Introduction

A Diophantine equation is a multi-variate polynomial equation with integer co-
efficients, and it is satisfiable if it has a solution with all unknowns taking integer
values. Davis, Putnam, Robinson and Matiyasevich [29] showed that any compu-
tational problem can be modeled as finding a solution of such equations, thereby
proving that the general Diophantine satisfiability problem is undecidable and
giving a negative answer to Hilbert’s tenth problem. For instance, several classi-
cal NP-problems such as 3-SAT, Graph 3-colorability or Integer Linear Program-
ming can be readily encoded as Diophantine equations. Several cryptographic
problems such as proving knowledge of an RSA signature, that a committed
value is non-negative or that encrypted votes are honestly shuffled by a mix-net,
can also be encoded as Diophantine equations.

Efficient zero-knowledge arguments of knowledge of solutions to Diophantine
equations, if a solution is known to a party, can thus be useful for many prac-
tical cryptographic tasks; and doing so requires to do zero-knowledge proofs on
committed integers.

1.1 Prior Work

Integer Commitments. Fujisaki and Okamoto [19] presented the first efficient
integer commitment scheme and also suggested a zero-knowledge protocol for
verifying multiplicative relations over committed values. Such a commitment
scheme allows to commit to any x ∈ Z in a group of unknown order, with a
Pedersen-like commitment scheme. This makes the security analysis more intri-
cate since division modulo the unknown group order cannot be performed in
general. As an evidence that this setting is error-prone, it was shown by Michels
that the Fujisaki–Okamoto proof system was flawed. Damgård and Fujisaki [15]

3



later proposed a statistically-hiding and computationally binding integer com-
mitment scheme under standard assumptions in a hidden-order group G with
an efficient argument of knowledge of openings to commitments, and arguments
of multiplicative relations over committed values. This primitive gives rise to a
(honest-verifier) zero-knowledge proof of satisfiability of a Diophantine equation
with M multiplications over Z that requires Ω(M) integer commitments and re-
quires Ω(M) proofs of multiplicative relations [15, 28]. These complexities have
not been improved since then.

Circuit Satisfiability over Zp. Similarly, it is possible to design a zero-knowledge
proof of satisfiability of an arithmetic circuit over Zp using Pedersen’s commit-
ment scheme [30] in a group G of public prime order p. An immediate solution
is to use the additive homomorphic properties of Pedersen’s commitment and
zero-knowledge protocols for proving knowledge of the contents of commitments
and for verifying multiplicative relations over committed values [12,31].

For an arithmetic circuit with M multiplication gates, this protocol requires
Ω(M) commitments and Ω(M) arguments of multiplication consistency and has
a communication complexity of Ω(M) group elements. In 2009, Groth [23] pro-
posed a sub-linear size zero-knowledge arguments for statements involving linear
algebra and used it to reduce this communication complexity to O

(√
M

)
group

elements. This breakthrough initiated a decade of progress for zero-knowledge
proofs for various statements (see e.g., [5, 8, 10, 24] and references therein). It
culminated with the argument system “Bulletproofs” proposed by Bünz, Bootle,
Boneh, Poelstra, Wuille and Maxwell [10] which permits to prove the satisfiabil-
ity of such an arithmetic circuit with communication complexity O(log(M)) and
round complexity O(log(M)). The corner stone of their protocol is an argument
that two committed vectors satisfy an inner-product relation. It has logarithmic
communication and round complexity in the vector length; and its security only
relies on the discrete-logarithm assumption and does not require a trusted setup.

Circuit satisfiability over any finite field is an NP-complete problem so the
“Bulletproofs” argument system has a widespread application. However, as men-
tioned above, in many cryptographic settings, it is desirable to prove statements
such as “the committed value x is a valid RSA signature on a message m for an
RSA public key (N, e)”. In this case, the prover has to convince the verifier that
xe = H (m) mod N , or in other words that there exists an integer k such that
xe + k N = H (m) where this equality holds over the integers for |k | ≤ Ne−1 and
H is some cryptographic hash function. In order to use directly an argument
of satisfiability of an arithmetic circuit to prove the knowledge of a pair (x, k)
which satisfies this equation, one needs to use a group G a prime order p with
p > Ne (and to additionally prove that x < N and k < Ne). For a large e, this
approach results in a proof with prohibitive communication complexity.

Moreover, in various settings, such as the Integer-Linear-Programming prob-
lem, there is no a priori upper-bound on the sizes of the integer solutions during
setup when p is defined. Being able to argue on integers instead of residue classes
modulo a fixed prime integer then becomes necessary. Besides, generic reductions

4



to circuit satisfiability over prime-order fields for some simple problems natu-
rally defined over the integers may return circuits with a very large number of
multiplication gates and even the “Bulletproofs” argument system could produce
large proofs. Modeling computational problems using Diophantine equations is
more versatile, and a succinct argument system for Diophantine satisfiability
thus has many potential applications.

1.2 Contributions

We provide the first succinct argument for the satisfiability of Diophantine equa-
tions with a communication complexity and a round complexity that grows loga-
rithmically in the size of the polynomial equation5. It is statistical honest-verifier
zero-knowledge and is extractable under standard computational assumptions
over hidden-order groups such as RSA groups or ideal-class groups.

Integer Commitments. Section 3 introduces a new computationally hiding and
binding commitment scheme that allows to commit to vectors of integers. It is
close to Damgård and Fujisaki’s seminal proposal, but has much smaller pa-
rameters. Denoting by λ the security parameter and letting 2bG be an upper
bound on the group order, the version of our scheme which allows to commit
to n integers at once has parameters consisting of O(bG + log n) bits instead of
Ω (nbG · polylog(λ)) as with the generalized version of Damgård and Fujisaki’s
scheme.

Damgård and Fujisaki’s commitment scheme, for n = 1, is a variant of Peder-
sen’s commitment in a hidden-order group G: given two group elements g, h ∈ G,
the commitment to an integer value x ∈ Z is C = gxhr , where r is an integer
of appropriate size. The hiding property of their scheme crucially relies on the
fact that g ∈ 〈h〉, which is not always guaranteed as the group may not be
cyclic. Damgård and Fujisaki’s proposed a Schnorr-type [31] protocol to prove
such statements, but their challenge set is restricted to {0, 1} to guarantee sound-
ness under the assumptions on the group. Their protocol must then be repeated
logarithmically many times to achieve negligible soundness, and the resulting
parameters are large. The situation is worse when n is large as commitments are
computed as gx11 · · · g

xn
n hr and a proof for each gi must be computed.

Our scheme is based on the observation that proving that g2 ∈
〈
h2

〉
can

be done more efficiently in a single protocol run under the assumptions on the
group. Our commitments are thus computed as (gxhr )2 ∈ G. We further such
how to aggregate the proofs of several such statements to reduce the size of our
parameters when n is large.

5 Our goals and techniques differs completely from those proposed by Bünz, Fisch and
Szepieniec [11] where they used what they called Diophantine Argument of Knowl-
edge (DARK) to construct a commitment scheme for polynomials over prime finite
fields (using the so-called Kronecker substitution for determining the coefficients of
a polynomial by evaluating it at a single value, see e.g., [20, p. 245]).

5



Succinct Inner-Product Arguments on Integers. Section 4 presents a succinct
argument that two integer vectors committed with our scheme satisfy an inner-
product relation. That is, an argument of knowledge of vectors a and b ∈ Zn (and
of a randomness r ∈ Z) that open a commitment C and such that 〈a, b〉 = z given
a public integer z. Succinct here means that the communication complexity of
the prover is of order O(` + log(n)bG), where ` is the bit length of the largest
witness. The complexity is measured in bits as during the protocol, the prover
sends logarithmically many group elements and three integers, but these latter
could be arbitrarily large.

The argument of Bünz et al. [10] for inner-product relations over Zp is not
applicable to integers as their proof of extractability relies on the generalized
discrete-logarithm assumption for which there is no equivalent in hidden-order
groups that may not even be cyclic, and on the invertibility of elements in Z∗p
since it requires to solve linear systems over Zp. Besides, their argument is not
zero-knowledge and is on vectors committed with the non-hiding version of Ped-
ersen’s scheme (i.e., with nil randomness). Therefore, whenever it is used as a
sub-protocol in another one, techniques specific to the larger protocol must al-
ways be used to guarantee that it is zero-knowledge. del Pino, Seiler and Lyuba-
shevsky [16] later solved this issue by adapting the argument of Bünz et al. in
prime-order groups to make it perfectly honest-verifier zero-knowledge with the
full-fledged Pedersen’s scheme.

Our protocol uses halve-then-recurse techniques similar to those of Bünz et al.
for the Section-3.2 commitment scheme in hidden-order groups and thus allows
to succinctly argue on integers, but only uses the integrality of Z as a ring since
one cannot invert modulo the unknown order. (Note that these techniques are
themselves inspired by the recursive inner-product argument of Bootle et al. [8].)
In particular, we prove that even though one cannot a priori solve in Z the linear
system of Bünz et al. required to prove the extractability of their protocol, one
can instead solve a “relaxed” system in Z. Then, under the assumptions on the
hidden-order group, we show that the solution to the relaxed system is enough to
extract a representation of the commitment in the public bases. In groups with
public prime orders, the assumption that discrete-logarithm relations are hard to
compute allows to conclude that this representation of the commitment actually
leads to a valid witness, but this assumption is not a priori translatable to
hidden-order groups. Instead, we prove that a similar assumption in the subgroup
generated by a randomly sampled element is weaker than the assumptions on the
group, and that suffices to prove the extractability of the protocol. The details
of these technical challenges are outlined in Section 4.1.

Furthermore, as the group order is unknown to all parties, the argument
is only statistically honest-verifier zero-knowledge. To ensure this property, the
randomness range of the prover is carefully6 adapted to allow for simulatability
without knowledge of a witness.

6 As another evidence that cryptography in hidden-order groups is error prone, Fouque
and Poupard [18] broke the RDSA signature from [7] for which this randomness range
was not wisely selected.

6



Succinct Arguments for Multi-Integer Commitments. Section 5 then gives several
succinct protocols related to multi-integer commitments. These protocols are
important building blocks in our Diophantine satisfiability argument system but
may also find applications in other settings.

We show how to succinctly argue knowledge of an opening (a1, . . . , an, r) to a
commitment. The protocol has bit communication complexity O (` + log(n)bG).
This argument system is based on the same halve-then-recurse techniques as in
Section 4. We also propose a protocol that allows to aggregate arguments of
knowledge of openings to m such commitments for any m ≥ 2. With the same
notation, the bit communication complexity of this aggregated protocol is only
O (` + log(n)bG + log(m)) (i.e., the number of group elements does not increase
with m). It is worth mentioning that the techniques used in it can be applied to
additively-homomorphic commitment schemes in public-order groups.

We also show how to obtain short parameters for our new integer-vector com-
mitment scheme and the inner-product argument with communication complex-
ity O (` + log(n)bG + log(m)) bits, i.e., arguments that group elements g1, . . . , gm, h
for m ≥ 2 satisfy g2i ∈

〈
h2

〉
for i ∈ {1, . . . ,m} with communication complexity

O(bG + log m) bits instead of O(mbG) bits obtained by repeating m times the
protocol for one group element. Finally, we show how to succinctly argue knowl-
edge of the same vector of integers in Zn committed with our schemes using m
different bases for any m ≥ 2 (and different randomness).

Succinct Arguments for Diophantine Equations. Section 6 presents our suc-
cinct protocol to argue satisfiability of Diophantine equations. Our approach
is inspired by Skolem’s method [32] which consists in reducing the degree of
the polynomial by introducing new variables to obtain a new polynomial of
degree at most 4, in such a way that the satisfiability of one polynomial im-
plies that of the other. Tailoring Skolem’s method to the problem of arguing
satisfiability, we show how to reduce the satisfiability of any polynomial in
Z[x1, . . . , xν] of total degree δ with µ monomials to the existence of vectors
aL =

[
aL,1 · · · aL,n

]
, aR =

[
aR,1 · · · aR,n

]
and aO =

[
aO,1 · · · aO,n

]
in Zn, for

n ≤ νblog δc + (δ − 1)µ, such that aO,i = aL,iaR,i for all i ∈ {1, . . . , n}, and that
satisfy 1 ≤ Q ≤ 1 + 2ν(blog δc − 1) + (δ − 2)µ linear constraints of the form

〈wL,q, aL〉 + 〈wR,q, aR〉 + 〈wO,q, aO〉 = cq,

where wL,q,wR,q,wO,q ∈ Z
n and cq ∈ Z for all q ∈ {1, . . . ,Q}. Our reduction is

constructive as it allows to infer the vectors and the constraints directly from
the original polynomial.

Bootle et al. [8] then Bünz et al. [10] gave an argument system for proving
knowledge of vectors in Zp (instead of Z) that satisfy such constraints. They
use this protocol to argue for the satisfiability of arithmetic circuits over Zp.
Our argument shares similarities with theirs, but again there are key technical
differences that arise from the fact that Z is not a field. Indeed, as one cannot
invert nor reduce integers modulo the unknown orders of the bases, we use
different techniques notably to prevent the integers involved in the argument

7



from increasing too much, and to ensure consistency between the variables in
the entry-wise product and those in the linear constraints. Guaranteeing this
latter consistency requires to construct new polynomials for the argument that
do not involve inverting integers. Besides, one cannot use their commitment-key
switching technique which consists in interpreting ga as a commitment to xa
to the base gx

−1 in groups of public prime order. Finally, extra precaution must
be taken to guarantee the zero-knowledge property as integers are not reduced
modulo p and may carry information about the witness. These challenges and
the ways we overcome them are described in details in Section 6.2.

As a result, the communication complexity of our Diophantine-satisfiability
argument has a communication-complexity of O (δ` +min(ν, δ) log (ν + δ) bG + H)
bits, if the absolute value of all the polynomial coefficients is upper-bounded
by 2H for some integer H. In contrast, the overall communication complex-
ity using Damgård and Fujisaki’s multiplication argument is upper-bounded by
O

((
ν+δ
δ

) (
δ` + log

((
ν+δ
δ

))
H + bG

))
and lower-bounded by Ω

((
ν+δ
δ

)
(` + bG)

)
.

Applications. Section 7 finally presents several applications of our Diophantine-
satisfiability argument. We provide explicit reductions to Diophantine satisfia-
bility for the following problems:

– argument of knowledge of a (possibly committed) RSA e-th root in ZN of
some public value with in O (log(log(e))bG) bits. This has application to cre-
dential systems when combined with proofs of non-algebraic statements [13];

– argument of knowledge of O (log(log p)bG) bits for ECDSA signatures with
a prime p, and of O

(
log(log q)bG + log(log p)

)
bits for DSA signatures with

primes p and q. The signed message is public, but can be committed if the
argument is combined with proofs of non-algebraic statements [13];

– argument that two committed lists of integers of length n are permutations
of each other with O (` + log(n)bG) bits;

– argument of satisfiability of a 3-SAT Boolean formula with m clauses and n
variables with O (log(n + m)bG) bits;

– argument of satisfiability of Integer-Linear-Programming problem of the
form x ∈ Nn andAxT ≥ bT, forA ∈ Zm×n and b ∈ Zm, with O (` + log(4n + 3m)
bG + log ‖A‖∞ + log ‖b‖∞) bits.

2 Preliminaries

This section introduces the notation used throughout the paper, recalls stan-
dard assumptions on generators of hidden-order groups, and defines commitment
schemes and argument systems.

2.1 Notation

For x ∈ Z, |x | denotes its absolute value. All logarithms are in base 2. For any
two integers a ≤ b ∈ Z, ~a; b� denotes the set {a} if a = b and {a, a + 1, . . . , b} if

8



a < b. For an integer n ≥ 1, ~n� stands for the set ~1; n�. Given a vector a ∈ Zn,
aX denotes the vector

[
a1X a2X · · · anX

]
∈ Zn[X ].

For a given group (G, ·), TG denotes the binary complexity of computing group
operations. For h ∈ G,

√
〈h2〉 denotes the subgroup

{
g ∈ G : ∃α ∈ Z, g2 = h2α

}
.

For g ∈ Gn, if n is even, set g1 B
[
g1 · · · gn/2

]
and g2 B

[
gn/2+1 · · · gn

]
, and

if n is odd, set g1 B
[
g1 · · · gbn/2c 1G

]
and g2 B

[
gdn/2e · · · gn

]
. For a ∈ Zn, if

n is even, set a1 B
[
a1 · · · an/2

]
and a2 B

[
an/2+1 · · · an

]
, and if n is odd, set

a1 B
[
a1 · · · a bn/2c 0

]
and a2 B

[
a dn/2e · · · an

]
.

For n ∈ N∗, z ∈ Z and g =
[
g1 . . . gn

]
∈ Gn, let gz B

[
gz1 · · · g

z
n

]
∈ Gn. For

a =
[
a1 . . . an

]
∈ Zn, define ga B

∏n
i=1 g

ai

i . For g and h in Gn, g ◦ h ∈ Gn denotes
their Hadamard product, i.e., their component-wise product.

2.2 Hidden-Order-Group Generators and Hardness Assumptions

A hidden-order-group generator G is an algorithm which takes as an input a
security parameter 1λ and returns the description of a finite Abelian group (G, ·)
and an integer P ≥ 2. Integer P is assumed to be smaller than the order of G,
but to still be a super-polynomial function of the security parameter. The role
of P is mainly to adjust the soundness of the protocols herein, as their challenge
spaces will typically be

�
0; PΩ(1) − 1

�
.

It is also assumed that given the description of G, the group law and the
inversion of group elements can be efficiently computed, that group elements can
be sampled uniformly at random and that an upper bound 2bG on ord(G) can
be efficiently computed, with bG B bG(λ) polynomial in λ (it is further assumed
that bG = Ω(λ)). Recall that the bit complexity of an elementary operation in a
group G is denoted TG.

The following assumptions are classical for hidden-order-group generators
and were introduced by Damgård and Fujisaki [15]. They are best illustrated for
P such that natural integers less than P are factorizable in polynomial time in λ
(e.g., λlog

Ω(1) (λ) given current knowledge in computational number theory), and
for G as the group Z∗N for an RSA modulus N with prime factors p and q such
that p = q = 3 mod 4, gcd(p − 1, q − 1) = 2 and the number of divisors of p − 1
and q − 1 with prime factors less than P is of magnitude O(λ). However, these
assumptions are believed to also hold over generators of ideal-class groups.

Definition 2.1 (Strong-Root Assumption). A group generator G satisfies
the (T, ε)-strong-root assumption if for all λ ∈ N, for every adversary A that
runs in time at most T (λ),

Pr


gn = h ∧ n > 1:

(G, P) ← G
(
1λ

)
h ←$ G

(g, n) ← A(G, P, h)


≤ ε(λ).

This assumption is simply a generalization of the strong RSA assumption [4,19]
to hidden-order groups.

9



Definition 2.2 (Small-Order Assumption). A group generator G satisfies
the (T, ε)-small-order assumption if for all λ ∈ N, for every adversary A that
runs in time at most T (λ),

Pr

[
gn = 1G ∧ g2 , 1

0 < n < P :
(G, P) ← G

(
1λ

)
(g, n) ← A(G, P)

]
≤ ε(λ).

The small-order assumption simply states that it should be hard to find
low-order elements in the group (different from 1G), except for square roots of
unity which may be easy to compute (e.g., −1 in RSA groups). In the group
Z∗N for N = pq with p and q prime such that gcd(p − 1, q − 1) = 2, Damgård
and Fujisaki [15] showed that factoring N can be reduced to this problem in
polynomial time if integers less than P are factorizable in polynomial time in λ.

Definition 2.3 (Orders with Low Dyadic Valuation). A group generator
G satisfies the low-dyadic-valuation assumption on orders if for all λ ∈ N, for
every (G, P) ← G

(
1λ

)
, for every g ∈ G, ord(g) is divisible by 2 at most once.

Notice that in the group Z∗N for N = pq with p and q prime such that p = q = 3
mod 4, the order of any element is divisible by 2 at most once since 2 divides
p − 1 and q − 1 exactly once.

Definition 2.4 (Many Rough-Order Elements or µ-Assumption). An
integer is said to be P-rough if all its prime factors are greater than or equal to
P. A group generator G satisfies the µ-assumption that there are many rough-
order elements in the groups generated by G (or simply the µ-assumption) if for
all λ ∈ N,

Pr

[
ord(h) is P-rough :

(G, P) ← G
(
1λ

)
h ←$ G

]
≥ µ(λ).

2.3 Non-interactive Commitments

This section defines commitment schemes. The following definitions are given
in a model in which the scheme algorithms (and the adversary) are given ac-
cess to a random oracle. The reason is that the algorithms may have to check
non-interactive proofs computed with a random oracle before carrying on with
their computation. Therefore, the number of random-oracle queries made by an
adversary can affect the security of the scheme.

Formally, a (non-interactive) commitment scheme consists of the following
algorithms.

Setup
(
1λ

)
→ pp : generates public parameters on the input of a security param-

eter 1λ. These parameters are implicit inputs to the other algorithms.
KG (pp) → ck : computes a commitment key on the input of public parameters.

The parameters and the commitment key further define a message space
denoted Xpp,ck .

10



Com (ck, x) → (C, d) : computes a commitment C to a value x and an opening
or decommitment information d on the input of a commitment key ck . It is
further assumed that if x < Xpp,ck , then the algorithm returns ⊥.

ComVf (ck,C, x, d) → b ∈ {0, 1}: deterministically returns a bit indicating whether
the decommitment d is valid (bit 1) for C and x w.r.t. key ck , or not (bit 0).
It is assumed that if C = ⊥ or if x < Xpp,ck , then it returns 0.

A commitment scheme is correct if for all λ ∈ N, for all pp ← Setup
(
1λ

)
, for

all ck ← KG (pp) and all x ∈ Xpp,ck ,

Pr [ComVf (ck,C, x, d) = 1: (C, d) ← Com(ck, x)] = 1.

Give a random oracle H , a commitment scheme is
(
T, qH , ε

)
-hiding (

(
qH , ε

)
-

statistically hiding) if for all λ ∈ N, for every adversary A that runs it time at
most T (λ) (computationally unbounded, i.e., T (λ) = ∞) and makes at most qH
queries to H ,

��������������������

Pr



b = b′ :

pp ← Setup
(
1λ

)
(ck, x0, x1, st ) ← AH ( ·) (pp)
b←$ {0, 1}
(C, d) ← Com(ck, xb)
b′ ← A(st,C)
for e ∈ {0, 1}

if xe ∈ Xpp,ck and x1−e < Xpp,ck
b′ ←$ {0, 1}



− 1/2

��������������������

≤ ε(λ).

Note that in the definition, the adversary is the party computing the commit-
ment key. One could consider a weaker variant of the definition with trusted key
generation in which the key is necessarily honestly generated.

Give a random oracle H , a commitment scheme is
(
T, qH , ε

)
-binding if for

all λ ∈ N, for every adversary A that runs in time at most T (λ) and makes at
most qH queries to H ,

Pr

[
ComVf (ck,C, xi, di) = 1

∧ x0 , x1
:

pp ← Setup
(
1λ

)
ck ← KG (pp)(
C, (xi, di)i=0,1

)
← AH ( ·) (pp, ck )


≤ ε(λ).

Discussion. The syntax above separates the commitment-key generation algo-
rithm from the setup algorithm, although these are often tacitly combined, espe-
cially for commitments in public-order groups. The main reason is that doing so
allows to define the hiding property for schemes even when the keys are possibly
invalid. This question does not arise for schemes with keys that are elements
of a prime-order group G = 〈g〉 (e.g., Pedersen’s scheme [30]) since any element
h ∈ G∗ is a valid commitment key. However, when the scheme is defined over an
unknown-order group G which may not be cyclic, and that keys are elements of
the subgroup generated by an element (as it is the case for Damgård–Fujisaki
commitments recalled in Section 3.1), say h, there may not be an efficient way to

11



test whether another element g ∈ G is in 〈h〉. Computing a commitment with an
invalid key may then not guarantee that the commitment is hiding. That is why
the definition of the hiding property allows the key to be adversarially generated
so that if the definition is satisfied, commitments computed with a potentially
invalid key do not reveal information about the committed values.

On the other hand, the definition of the binding property does not consider
adversarially generated keys. To understand why, it might be helpful to rather
think of an interactive commitment protocol between Alice and Bob. Bob gener-
ates a key and sends it to Alice, and Alice commits to a value that she later opens
to Bob. It now becomes clear that Alice’s committed value should remain hidden
before she opens the commitment, and so even if she does not trust Bob’s key.
Yet, Bob, who needs to ensure that Alice does not later open to a value different
from the committed one, is the party who computed the key and thus need not
verify that it is valid. The situation is the same with Pedersen’s scheme, as its
binding property relies on the fact that the discrete-logarithm relation between
g and h is unknown to the party who computes the commitment.

2.4 Argument Systems

This section defines argument systems for families of languages. The languages
are parametrized by public parameters and Common-Reference String (CRS).
As a simple example, given an Abelian group G (which could be non-cyclic) and
an element h ∈ G (the parameters) and another element g ∈ 〈h〉 (the CRS),
consider the language of group elements C ∈ G such that there exists x, y ∈ Z for
which C = gxhy. This language is clearly parametrized by the parameters and
the CRS, and one can give an argument system for this parametrized language in
the same vein as what is subsequently done in the paper. However, to lighten the
notation, arguments will be (abusively) referred to as arguments for languages
rather than arguments for families of languages.

Formally, an argument system (or protocol) for a language L = Lpp,crs (or
equivalently, for the corresponding relation R = Rpp,crs) consists of a quadruple
Π =

(
Setup,CRSGen,Prove,Vf

)
such that Setup

(
1λ

)
→ pp returns public param-

eters on the input of a security parameter, CRSGen(pp) → crs returns a CRS,
and 〈Prove(crs, x,w) 
 Vf (crs, x)〉 → (τ, b) ∈ {0, 1}∗ × {0, 1} are interactive algo-
rithms (τ denotes the transcript of the interaction and b the decision bit of Vf).
The public parameters are assumed to be tacit inputs to algorithms Prove and
Vf, even though they may at times be made explicit for instantiated protocols,
especially when the CRS is the empty string (in which case the CRS is omitted
from the syntax).

Completeness. Π is complete if for all λ ∈ N, for all pp ← Setup
(
1λ

)
, crs ←

CRSGen (pp), for all (x,w) ∈ R, Pr [(∗, 1) ← 〈Prove(crs, x,w) 
 Vf (crs, x)〉] = 1.

12



Soundness. Π satisfies (T, ε)-soundness if for all λ ∈ N, for every adversary A
that runs in time at most T (λ),

Pr


b = 1 ∧ x < L :

pp ← Setup
(
1λ

)
; crs ← CRSGen (pp)

(st, x) ← A(crs )
(τ, b) ← 〈A(st, x) 
 Vf (crs, x)〉


≤ ε(λ).

This definition of soundness formalizes the idea that an adversary should not
be able to convince the verifier that a word x is in L although it is actually
in L̄ B {0, 1}∗ \ L. Groth, Ostrovsky and Sahai [22, 25] relaxed the notion of
soundness so that a protocol which satisfies the relaxed notion only guarantees
that an adversary cannot convince the verifier that a word is in L when it is
actually in the complement Λ̄ of language Λ ⊇ L (to be completely formal,
Λ should also parametrized by pp and crs). They called this new notion co-
soundness or culpable soundness. It means that a malicious could still convince
the verifier that a word is L when it is actually in Λ \ L. However, for many
applications, this notion is sufficient.

Formally, a protocol Π for a Language L satisfies (T, ε,Λ ⊇ L)-soundness if
for all λ ∈ N, for every adversary A that runs in time at most T (λ),

Pr


b = 1 ∧ x < Λ :

pp ← Setup
(
1λ

)
; crs ← CRSGen (pp)

(st, x) ← A(crs )
(τ, b) ← 〈A(st, x) 
 Vf (crs, x)〉


≤ ε(λ).

Extractability. Π is (TA,TProve∗,TE, ε)-extractable if for every deterministic algo-
rithm Prove∗ running in time at most TProve∗ (λ), there exists an algorithm (called
extractor) E (pp, x) → w such that for all λ ∈ N, for every adversary A running
in time at most TA (λ),

∗ Pr


(x,w) < R :

pp ← Setup
(
1λ

)
; crs ← CRSGen (pp)

(st, x, s) ← A(crs )
w ← E〈Prove∗ (crs,x,s)
Vf (crs,x)〉(crs, x)


≤ ε(λ),

∗ the running time of E is at most TE in expectation, with TE depending on
TProve∗ and

εA,Prove∗ (λ) B Pr


β = 1 :

pp ← Setup
(
1λ

)
; crs ← CRSGen (pp)

(st, x, s) ← A(crs )
(τ, β) ←

〈
Prove∗(crs, x, s) 
 Vf (crs, x)

〉

.

The above definition means that if Π is extractable, E can extract a valid
witness from any prover Prove∗ with the running time of E depending on the
running time of Prove∗ and on the success probability of

(
A,Prove∗

)
, except with

probability at most ε(λ). Π is thus an argument of knowledge, which implies that
it is sound. The string s given to Prove∗ can considered as an internal state which
includes its random string.

Similarly to the notion of soundness, the notion of extractability can be
extended to a notion of culpable extractability w.r.t. a relation Σ ⊇ R.

13



Honest-Verifier Zero-Knowledge. Π is (T,TSim, ε)-honest-verifier zero-knowledge
((TSim, ε)-statistically honest-verifier zero-knowledge) if there exists an algorithm
Sim running in time at most TSim(λ) such that for all λ ∈ N, for every adversary
A running in time at most T (λ) (for every computationally unbounded adversary
A),

���Pr
[

(x,w) ∈ R ∧ b = 1 :

pp ← Setup
(
1λ

)
(crs, st, x,w) ← A(pp)
(τ, β) ← 〈Prove(crs, x,w) 
 Vf (crs, x)〉
b← A(st, (τ, β))



− Pr



(x,w) ∈ R ∧ b = 1 :

pp ← Setup
(
1λ

)
(crs, st, x,w) ← A(pp)
(τ, β) ← Sim(crs, x)
b← A(st, (τ, β))



����������

≤ ε(λ).

Note that the common-reference string is generated by the adversary in this
definition. The reasons are the same as for the commitment key in the definition
of the hiding property of commitment schemes. A weaker definition in which the
common-reference string is honestly generated could also be considered.

Π is said to be public coin if all messages sent by Vf are chosen uniformly at
random and independently of the messages sent by algorithm Prove.

Interactive Arguments in the Random–Oracle Model. Interactive argu-
ments could also be defined in a model in which the protocol algorithms are given
access to a random oracle (in this paper, it will primarily be in case CRSGen needs
to compute a non-interactive proof that the CRS is well-formed). The soundness
and zero-knowledge properties of the protocol may then be affected by the num-
ber of random-oracle queries made by the parties, e.g., if the protocol involves
as sub-protocol the Fiat–Shamir (see the next section) non-interactive variant of
another protocol, as it is the case in Section 4. The definitions of these properties
should then be adapted to include an upper-bound qH on the number of queries
that the adversary can make.

For instance, given a random-oracle H , one can define
(
TA,TProve∗,TE, qH , ε

)
-

extractability in the same way as (TA,TProve∗,TE, ε)-extractability in the standard
model was define, but with the difference that A and Prove∗ are given oracle
access to H and can together make at most qH (λ) queries. The other definitions
are adapted in a similar fashion.

Fiat–Shamir Heuristic. The Fiat–Shamir heuristic [17] can be used to turn
a public-coin, interactive argument system into a non-interactive one in the
random-oracle model [6]. Given a random oracle H , the messages of the verifier
are computed by evaluating H at the word and the transcript of the interactive
protocol until that point of the computation of the prover. With oracle access
to H , the prover can then compute a full transcript (or argument), further de-
noted π instead of τ, without interacting with the verifier, and this latter can
also verify the transcript without any interaction.

14



The non-interactive argument system derived from an interactive one Π =(
Setup,CRSGen,Prove,Vf

)
via the Fiat–Shamir heuristic with a random oracle

H is denoted FS .ΠH B
(
Setup,CRSGen,FS .ProveH ,FS .VfH

)
. Note that the

original interactive protocol Π may already be in the random-oracle model as in
the previous section, but it is further assumed to be with a different oracle (that
is not made explicit in the notation for simplicity).

Completeness. A non-interactive protocol FS .ΠH is said to be complete if for
all λ ∈ N, for all pp ← Setup

(
1λ

)
, crs ← CRSGen(pp), for all (x,w) ∈ R,

Pr
[
FS .VfH

(
crs, x,FS .ProveH (crs, x,w)

)
= 1

]
= 1.

As in the interactive case, the following notions of soundness and extractabil-
ity can be extended to those of culpable soundness and culpable extractability.

Soundness. FS .ΠH satisfies
(
T, qH , ε

)
-soundness if for all λ ∈ N, for every ad-

versary A that runs in time at most T (λ) and makes at most qH (λ) queries to
H ,

Pr

FS .VfH (crs, x, π) = 1 ∧ x < L :

pp ← Setup
(
1λ

)
; crs ← CRSGen(pp)

(x, π) ← AH ( ·) (crs )


≤ ε(λ).

Extractability. FS .ΠH is
(
TA,TProve∗,TExt, qH , ε

)
-extractable if for every deter-

ministic algorithm Prove∗ running in time at most TProve∗ (λ) there exists an
algorithm

(
Ext0(Q, q) → Q′, Ext1(pp, x) → w) such that for all λ ∈ N, for every

adversary A running in time at most TA (λ), if Prove∗ and A together make at
most qH (λ) queries to H ,

∗ Pr


(x,w) < R :

pp ← Setup
(
1λ

)
; crs ← CRSGen(pp); Q ← ∅

(x, s) ← AExt0 (Q, ·) (crs )
w ← ExtProve∗Ext0 (Q, ·) (crs,x,s)

1 (crs, x)


≤ ε(λ),

∗ the running time of Ext is at most TExt in expectation, with TExt depending
on TProve∗ and

εA,Prove∗ B Pr



b = 1 :

pp ← Setup
(
1λ

)
; crs ← CRSGen(pp)

(x, s) ← AH ( ·) (crs )
π ← Prove∗H ( ·) (crs, x, s)
b← FS .VfH ( ·) (crs, x, π)



.

Algorithm (Ext0,Ext1) is given access to a Prove∗ oracle which can be rewound
to any step of its computation and run anew with fresh Ext0 randomness.

Zero-Knowledge. ΠH is
(
TA,TSim, qH , ε

)
-zero-knowledge if there exists an algo-

rithm Sim running in time at most TSim(λ) such that Sim(0,Q, q) → (h,Q) and
Sim(1,Q, crs, x) → (π,Q), and such that for all λ ∈ N, for every adversary A

15



that runs in time at most T (λ) and is given oracle access to H and Prove,

��Pr [b = 1:
pp ← Setup

(
1λ

)
; (crs, st ) ← AH ( ·) (pp)

b← AH ( ·),FS .ProveH (crs, ·) (st )



− Pr


b = 1:

pp ← Setup
(
1λ

)
; Q ← ∅

(crs, st ) ← AH ( ·) (pp)
b← AOSim0 (Q, ·),OSim1 (Q,crs, ·) (st )



��������
≤ ε(λ),

with OSim0
an oracle that computes (h,Q) ← Sim(0,Q, q) on input (Q, q) and

returns h, and OSim1
an oracle that computes (π,Q) ← Sim(1,Q, crs, x) if (x,w) ∈

R and returns π, and returns ⊥ if (x,w) < R. Set Q can be considered as a
state which stores all pairs (q, h) of queries and responses. The total number of
random-oracle calls incured by direct H queries and by Prove queries from A
can be at most qH .

3 Integer Commitments

This section recalls a scheme due to Damgård and Fujisaki which allows to com-
mit to integers7. Then comes a new integer-commitment scheme with parameters
smaller than those of Damgård and Fujisaki’s scheme, and which are also more
efficient to compute. For the version of our scheme which allows to commit to
n integers, the parameters are of O(bG + log n) bits instead of Ω(nbG log P) as
with the generalized version of Damgård and Fujisaki’s scheme, where 2bG is an
upper bound on the group order.

3.1 Damgård–Fujisaki Commitments

The Damgård–Fujisaki commitment scheme [15, 19], parameterized by a group
generator G, consists of the following algorithms:

Setup
(
1λ

)
→ pp : run (G, P) ← G

(
1λ

)
, generate h ←$ G and return (G, P, h).

Recall that these parameters are implicit inputs to all the other algorithms.
KG(pp) → ck : generate α ←$

�
0; 2bG+λ

�
(2bG is an upper bound on ord(G)),

compute and return g ← hα.
Com(g, x ∈ Z) → (C, d) : generate r ←$

�
0; 2bG+λ

�
, compute C ← gxhr , set d ←

(r, 1G) and return (C, d).
ComVf (g,C, x, d) → b ∈ {0, 1} : parse d as (r, g̃). If C = gxhr g̃ and g̃2 = 1G, return

1, else return 0.

7 Couteau, Peters and Pointcheval [14] proved that in the case of RSA groups (with
Blum integers), the security of Damgård and Fujisaki’s scheme is provable under (a
variant of) the RSA assumption instead of the strong RSA assumption. This also
holds for our scheme. However, this result does not concern generic hidden-order
groups.

16



Equivalently, the commitment-algorithm could simply set the decommitment
information d to r, and the commitment-verification would return 1 if the equal-
ity C2 =

(
gxhd

)2
holds and 0 otherwise. The squaring in the verification is due

to the fact that the small-order assumption does not exclude the possibility to
efficiently compute square roots of unity, and they thus relaxed the verification
equation to allow for sound argument of knowledge of openings to commitments.
In other words, the scheme would still be binding without the squaring in the
verification equation, and the relaxation is simply an artifact to allow for sound
arguments.

More precisely, suppose that the verification were not relaxed, i.e., that it
would only check that C = gxhd. Two accepting transcripts (D, e1, z1, t1) and
(D, e2, z2, t2) of a standard Schnorr-type argument of knowledge of an opening
would imply that Ce1−e2 = gz2−z1 ht2−t1 . Assuming e1, e2 ∈ ~0; P − 1�, e1 , e2,
and that e1 − e2 divides z2 − z1 and t2 − t1 (Damgård and Fujisaki showed
that this latter event occurs with probability negligibly close to 1/2 under the
assumptions on the group generator), the previous equality would imply that(
g(z2−z1)/(e1−e2) h(t2−t1)/(e1−e2)C−1

)e1−e2
= 1G, and the small-order assumption would

only allow to conclude that C2 =
(
g(z2−z1)/(e1−e2) h(t2−t1)/(e1−e2)

)2
. The trivial at-

tack in which an adversary computes C as gxhd g̃ with g̃ ∈ G such that g̃2 = 1G
would then not be excluded by the protocol.

Properties. Damgård and Fujisaki’s scheme is correct, is computationally binding
under the strong-root and the µ-assumption, and is statistically hiding. Note
that hiding property crucially relies on the fact that g ∈ 〈h〉. To guarantee the
statistical hiding property of the scheme without trusted key generation, the party
which computes g is then also required to compute a non-interactive proof that
g ∈ 〈h〉. The commitment algorithm would then verify the proof and proceed as
above if it is valid, and otherwise return ⊥. Damgård and Fujisaki proposed to
compute such a proof with a Schnorr-type protocol (made non-interactive via
the Fiat–Shamir heuristic) with {0, 1} as challenge set; i.e., given α ∈ Z such that
g = hα, the prover generates k ←$

�
0; 2bG+2λ

�
and sends f ← hk to the verifier,

this later chooses and sends to the prover a challenge c ←$ {0, 1}, the prover
replies with z ← k − cα (computed in Z), and the verifier accepts if and only
if hzgc = f . To attain a soundness error of at most 1/P, the proof must then
be repeated at least dlog Pe times. With the Fiat–Shamir heuristic, each proof
consists of (c, z), and the total proof in the public parameters then consists of
dlog Pe (bG + 2λ + 2) = Ω (bG log P) bits (recall that P is super-polynomial in λ,
e.g., λlog λ).

3.2 A new Integer-Commitment Scheme

This section introduces a novel integer-commitment scheme that is close to
Damgård and Fujisaki’s scheme, but with an argument (rather than a proof)
of only O(bG) (with b such that ord(G) ≤ 2bG) bits in non-trusted keys, and the
argument only requires a single protocol run to reach the same soundness error.

17



As the soundness of the protocol relies on computational assumptions on the
group generator, the scheme is only computationally hiding, whereas Damgård
and Fujisaki’s cut-and-choose protocol is perfectly sound (the prover is not as-
sumed to be computationally bounded) but inefficient.

Formally, let G be a group generator and let FS .ΠH be a Fiat–Shamir non-
interactive argument system with random oracleH for the language {g ∈ G, ` ∈ N∗ :
∃α ∈

�
0; 2`
�
, g = hα

}
, given parameters (G, P, h, 1) (integer 1 is just to indicate

that there is only one group element g in the word for which the proof is com-
puted) and the empty string as CRS. The proof of the hiding property will
require the protocol to satisfy culpable soundness w.r.t. the language

√
〈h2〉. The

scheme, parameterized by G and further denoted C , consists of the following
algorithms.

Setup
(
1λ

)
→ pp : run (G, P) ← G

(
1λ

)
, generate h ←$ G and return (G, P, h).

Recall that these parameters are implicit inputs to all the other algorithms.
KG(pp) → ck : generate α ←$

�
0; 2bG+λ

�
, compute g ← hα and a proof π ←

FS .ΠH .Prove((G, P, h, 1), (g, bG + λ), α), and return (g, π).
Com ((g, π) , x ∈ Z) → (C, d) : if FS .ΠH .Vf ((G, P, h, 1), (g, bG + λ), π) = 0, then

return ⊥; else generate r ←$

�
0; 2bG+λ

�
, compute C ← (gxhr )2, set d ← r

and return (C, d).
ComVf ((g, π) ,C, x, d) → b ∈ {0, 1} : if C2 =

(
gxhd

)4
return 1, else return 0.

Comparison with Damgård–Fujisaki Commitments. As for Damgård and Fu-
jisaki’s commitments, the squaring in the verification equation (compared to
the computation of commitments) is again to later allow for sound arguments
of knowledge of openings. The main difference compared to Damgård and Fu-
jisaki’s commitments is that commitments are computed as (gxhr )2 instead of
gxhr . It is simply due to the fact that π only guarantees that g2 ∈

〈
h2

〉
, not

that g ∈ 〈h〉, hence the power 2 in the computation of commitments to ascertain
that they are hiding. However, only requiring that g2 ∈

〈
h2

〉
instead of g ∈ 〈h〉

is precisely what allows to have much smaller arguments that can be computed
in a single protocol run.

Correctness & Security. We now prove the correctness and the security of
the commitment scheme C .

Theorem 3.1. C is correct.

Proof. The correctness of C immediately follows from its definition. ut

Theorem 3.2. Assuming FS .ΠH to be
(
T, qH , εsnd,

√
〈h2〉

)
-sound, scheme C is(

T, qH , 2−λ+1 + εsnd
)
-hiding.

Proof. Unless the adversary can contradict the culpable soundness of FS .ΠH ,
the key (g, π) it returns is such that g2 = h2α for some α ∈ Z. As the distribution

18



of (gxhr )4 = h4(αx+r ) for r ←$

�
0; 2bG+λ

�
is the same as the distribution of h4z

for z ←$

�
αx mod ord

(
h4

)
; αx mod ord

(
h4

)
+ 2bG+λ

�
, which is at a statistical

distance of at most 2−λ+1 from the distribution of h4z for z ←$

�
0; ord

(
h4

)
− 1
�
,

the claim follows. ut

Theorem 3.3. For any T : N∗ → N∗, scheme C is
(
T, qH , εstrg + εzk + 2−λ

)
-

binding if FS .ΠH is
(
T,TSim, qH , εzk

)
-zero-knowledge and if the (TSim +O(T + bG),

εstrg
)
-strong-root assumption holds on G.

Proof. Suppose that there exists an adversary A running in time T and contra-
dicts the binding property of the scheme with probability at least ε. Consider
then an algorithm B which runs a trapdoor setup algorithm which is exactly
as Setup

(
1λ

)
(in particular, it computes hα for α ←$

�
0; 2bG+λ

�
, which re-

quires at most 2(bG + λ + 1) group operations with the square-and-multiply
algorithm), except that it simulates an argument of knowledge of α with the
simulator of FS .ΠH . The runtime of this trapdoor setup algorithm is then of
order TSim +O(bG + λ) = TSim +O(bG) (since bG = Ω(λ) by assumption). Adver-
sary A can then distinguish B from the challenger of the binding game with an
advantage of at most εzk, so A contradicts the binding property of the scheme
with probability at least ε−εzk on the input of parameters returned by algorithm
B. Given two pairs of integers (x, d), (x ′, d ′) and a group element C such that
x , x ′ and C2 =

(
gxhd

)4
=

(
gx
′

hd′
)4
, the equality h4(α(x−x′)+d−d′) = 1G holds. Let

0 ≤ ρ < ord(h) denote the unique integer such that α = ord(h) bα/ ord(h)c + ρ.
Note that the distribution of (x, d) and (x ′, d ′) only depends on ρ as A is only
given g (and not α) as input. Since bα/ ord(h)c is uniformly distributed over
a set of size at least 2λ, the probability that α(x − x ′) + d − d ′ = 0 is at most
2−λ. Lemma 3.4 then shows that denoting by TB the running time of B and
setting n B 4 (α(x − x ′) + d − d ′), the inequality ε − εzk − 2−λ ≤ εstrg holds un-
der the

(
TB +O(log n), εstrg

)
-strong-root assumption. Remark that the integers

returned by A are necessarily less than 2O(T ) as an algorithm running in time
T can return a value of at most O(T ) bits (the algorithm might be using an
alphabet different from {0, 1}, hence the big O). Therefore, log n = O(T + bG).
Since TB = T + TSim +O(bG), the claim follows. ut

Lemma 3.4. Consider the problem (depending on λ) of computing a value n ∈
Z∗ such that hn = 1 on the input of (G, P) ← G

(
1λ

)
and of a group element

h ←$ G. If there exists an algorithm A that solves this problem in time T with
probability at least ε, then there exists an algorithm that solves the strong-root
problem in time at most T +O(log n) with probability at least ε.

Proof. Let A be an algorithm as in the statement of the lemma. Consider an
algorithm B which, on the input of (G, P) ← G

(
1λ

)
and of a group element

h ←$ G, runs A as a subroutine on the input of (G, P) and h. If A returns an
integer n ∈ Z∗ such that hn = 1 note that h |n |+1 = h. Algorithm B then computes
|n| + 1 (which can be done in time at most O(log n)) and returns (h, |n| + 1). ut

19



Argument System FS.ΠH . It only remains to provide a protocol FS .ΠH to
argue knowledge of an integer α ∈ Z such that g2 = h2α, which is sufficient
for the commitment scheme to be computationally hiding. We first give an in-
teractive protocol Π for the language

{
g ∈ G, ` ∈ N∗ : ∃α ∈

�
0; 2`
�
, g = hα

}
given

parameters (G, P) ← G
(
1λ

)
and that satisfies culpable soundness w.r.t.

√
〈h2〉,

and then apply the Fiat–Shamir heuristic to obtain FS .ΠH .
In more detail, the (interactive) protocol Π is as follows: the prover generates

k ←$

�
0; 2`+λP

�
, computes t ← hk and sends t to the verifier; the verifier chooses

c ←$ ~0; P − 1� and sends it to the prover; the prover then replies with r ← k−cα,
and the verifier accepts if and only if hrgc = t. With the Fiat–Shamir heuristic,
the proof consists of (c, r), i.e., 2 blog Pc + ` + λ + 3 bits. For ` = bG + λ, that is
2 blog Pc + bG + 2λ + 3 = O(bG) bits (recall that P ≤ 2bG and bG = Ω(λ)).

Properties. We now show that Π is complete, statistically honest-verifier zero-
knowledge and satisfies culpable extractability w.r.t.

√
〈h2〉 under the assump-

tions introduced in Section 2.2.

Theorem 3.5. Π is complete.

Proof. It immediately follows from the definition of Π. ut

Theorem 3.6. Π is
(
O ((` + λ + log P) TG) , 2−λ+1

)
-statistically honest-verifier zero-

knowledge.

Proof. To simulate such a proof conditioned on a challenge c, it suffices to gen-
erate k ←$

�
0; 2`+λP

�
, compute t ← hkgc and set r ← k. As the distribution of(

hk+cα, c, k
)
for k ←$

�
0; 2`+λP

�
is at a 2−λ+1 statistical distance from the distri-

bution of
(
hk, c, k − cα

)
for k ←$

�
0; 2`+λP

�
, the protocol is honest-verifier 2−λ+1-

statistically zero-knowledge. The simulator simply generates k ←$

�
0; 2`+λP

�
and c ←$ ~0; P − 1�, computes hkgc and returns

(
hkgc, c, k

)
. As hkgc can be

computed in O(` + λ + log P) group operations with classical sliding-window al-
gorithms [2], the simulator runs in time O ((` + λ + log P) TG). ut

Theorem 3.7. Π is
(
TA,TProve∗,TE, εord + εstrg + 1 − µ,

√
〈h2〉

)
-extractable with

TE B
(
ε2 − 1/P

)−1
TProve∗ + O(TProve∗ log P), and TA and TProve∗ such that TA +(

ε2 − 1/P
)−1

TProve∗ +O
(
TProve∗TG log P + log2 P

)
≤ min

(
T strg,Tord

)
.

Proof. To prove that the protocol satisfies culpable extractability (and thus cul-
pable soundness), notice that given two valid transcripts (t, c, r) and (t, c′, r ′) such
that c , c′, the equality hr−r

′

= gc
′−c holds. Assume without loss of generality

that c′ > c, and let d B gcd (r − r ′, c′ − c). The extended Euclidean algorithm
applied to r − r ′ and c′ − c returns, in time O (log(r − r ′) log(c′ − c)), integers u
and v such that d = u(r − r ′) + v(c′ − c) and |u|, |v | ≤ max (|r − r ′ |, |c′ − c|) /d.

20



– If d = c′−c, then the equality hr−r
′

= gc
′−c implies that

(
h(r−r′)/(c′−c)g−1

)c′−c
=

1. The fact that 0 < c′ − c < P and the small-order assumption therefore
implies that h2(r−r′)/(c′−c) = g2, i.e., (r − r ′)/(c′ − c) is a valid (culpable)
witness.

– If d < c′ − c, since the equality hr−r
′

= gc
′−c implies that hd = (guhv)(c′−c),(

(guhv)(c′−c)/d h−1
)d
= 1 although d < c′ − c < P. The small-order assump-

tion thus implies that g̃2 = 1 for g̃ B (guhv)(c′−c)/d h−1. If g̃ = 1G, then
(guhv, (c′ − c)/d) is a solution to the strong-root problem. If, g̃ , 1G, further
distinguish two sub-cases:
∗ if (c′ − c)/d is odd, then g̃(c′−c)/d = g̃ and therefore h = (guhv g̃)(c′−c)/d,
i.e., (guhv g̃, (c′ − c)/d) is a solution to the strong-root problem

∗ if (c′ − c)/d is even, then the low-dyadic-valuation assumption implies
that ord

(
(guhv)(c′−c)/d

)
is odd, which is impossible if ord(h) is P-rough

(and necessarily odd) as ord(g̃h) = 2 ord(h) in this case.

Note that since the absolute value of integers returned by the algorithm
Prove∗ of a prover (A,Prove∗) are necessarily less than 2O(TProve∗ ), computing the
witness (r − r ′)/(c′ − c) in case d = c′ − c can be done in time O(TProve∗ log P).
Besides, in any of the cases in which there is a reduction to the strong-root
problem, computing (c′ − c)/d can be done in time O

(
log2 P

)
as d ≤ c′ − c < P,

and computing guhv g̃ can be done in O (max (TProve∗, log P)) group operations
using the square-and-multiply algorithm, i.e., in time O (max (TProve∗, log P) TG)
(recall that TG is the bit complexity of performing group operations), after u
and v have been computed in time O (TProve∗ log P) with the extended Euclidean
algorithm. The solution to the strong-root problem can thus be computed in
time O

(
TProve∗TG log P + log2 P

)
given two accepting transcripts.

To obtain two valid transcripts with distinct challenges, it suffices to run the
proving algorithm once, rewind it to the computation step right after it sent
its first message and run it anew on fresh verifier randomness. If both runs are
valid and the challenges are distinct, then return the two transcripts, otherwise
restart. The expected runtime of this procedure is at most

(
ε2 − 1/P

)−1
TProve∗

if ε denotes the success probability of the prover.
Define then an extractor E as an algorithm that runs the previous procedure

and returns the witness (r − r ′)/(c′ − c) in case c′ − c | r − r ′, and otherwise
returns ⊥. The running time of E is then

(
ε2 − 1/P

)−1
TProve∗ + O(TProve∗ log P)

in expectation.
Moreover, for T strg and Tord such that TA +

(
ε2 − 1/P

)−1
TProve∗ +O (TProve∗TG

log P + log2 P
)
≤ min

(
T strg,Tord

)
, the previous case analysis shows that a valid

witness cannot be extracted with probability at εord + εstrg + 1 − µ under the(
T strg, εstrg

)
-strong-root assumption, the

(
Tord, εord

)
-small-order assumption, the

low-dyadic-valuation assumption and the µ-assumption over G. The theorem
thus follows. ut

21



Arguing Knowledge of Openings. As for Damgård and Fujisaki’s commit-
ments, one can efficiently argue knowledge of openings, i.e., of integers x and r
such that a given commitment C satisfies C2 = (gxhr )4.

The protocol imposes an upper bound of ` on the bit length of the witness,
with ` being part of the (public) word. It is simply to adapt the randomness range
of the prover (and of the honest-verifier zero-knowledge simulator) to ensure that
the protocol remains statistically honest-verifier zero-knowledge; and ` can be
arbitrarily large. The protocol does not guarantee that the largest absolute value
in the extracted witness is at most ` bits long 8. In technical terms, the protocol
is for the relation

{(
C ∈ G, ` ∈ N∗; x, r ∈

�
0; 2`
�)

: C2 = (gxhr )4
}
that satisfies cul-

pable extractability for the relation Σ B
{
(C ∈ G, ` ∈ N∗; x, r ∈ Z) : C2 = (gxhr )4

}
.

More precisely, consider the problem of arguing in zero-knowledge knowledge
of integers x and r such that C2 = (gxhr )4 and |x |, |r | ≤ 2` , for a group element
C chosen by the prover and public bases h and g, and a public proof π that
g ∈

√
〈h2〉. The prover first verifies π and aborts if it is invalid. The prover

generates y, s ←$

�
0; P2`+λ

�
, computes and sends D ← (gyhs)2 to the verifier.

The verifier then chooses e ←$ ~0; P − 1�, sends it to the prover, and this latter
replies with z ← y− ex and t ← s− er (computed in Z). The verifier then accepts
if and only if

(
gzht )2 Ce = D. Further denote the protocol by ΠC .

Theorem 3.8. ΠC is complete.

Proof. This fact immediately follows from the definition of ΠC . ut

Theorem 3.9. ΠC is
(
O ((` + λ + log P) TG) , qH , 2−λ+1 + εsnd

)
-statistically honest-

verifier zero-knowledge if ΠH is
(
T, qH , εsnd,

√
〈h2〉

)
-sound.

Proof. Unless the adversary can contradict the culpable soundness of ΠH , there
exists α ∈ Z such that g2 = h2α. Assuming |x | and |r | to be at most ` bits long, for
y, s ←$

�
0; P2`+λ

�
, the distribution of

(
h2(αy+s), e, y − ex, s − er

)
is at a statistical

distance of at most 2−λ+1 from the distribution of
(
h2(α(y+ex)+(s+ex)), e, y, s

)
=(

(gyhs)2 Ce, e, y, s
)
. Since (gyhs)2 Ce can be computed in O(` + λ + log P) group

operations with classical sliding-window algorithms [2], the statement follows.
ut

Theorem 3.10. ΠC is
(
TA,TProve∗,

(
ε2 − 1/P

)−1
TProve∗, ε

ext, Σ
)
-extractable for

any TA and TProve∗ such that TA + bG log(P)TProve∗TG ≤ Ω
(
min

(
T strg, Tord

))
,

with εext B
(
1/2 − 2−λ − (1 − µ)

)−1 (
εord + εstrg + 1 − µ

)
+ εzk

ΠH
.

Proof. To prove culpable extractability, note that from two accepting transcripts
(D, e1, z1, t1) and (D, e2, z2, t2) (with the same D ∈ G) such that e1 , e2, the equal-
ity Ce2−e1 =

(
gz1−z2 ht1−t2

)2 follows. If (e2− e1) divides (z1− z2) and (t1− t2), then

8 To prove such statements using hidden-order groups, Lipmaa’s range argument [28],
corrected by Couteau, Peters and Pointcheval [14], is suitable.

22



the low-order assumption implies that C =
(
g(z1−z2)/(e2−e1) h(t1−t2)/(e2−e1)

)2
g̃C for

some group element g̃C such that g̃2C = 1, i.e., ((z1− z2)/(e2−e1), (t1−t2)/(e2−e1)
is a valid witness for C. Besides, one can show that e1− e2 does not divide z2− z1
or t2 − t1 with probability at most

(
1/2 − 2−λ − (1 − µ)

)−1 (
εord + εstrg + 1 − µ

)
under the

(
T strg, εstrg

)
-strong-root assumption, the

(
Tord, εord

)
-small-order as-

sumption, the low-dyadic-valuation assumption and the µ-assumption over G,
and assuming that the running time of the prover

(
A,Prove∗

)
is such that

TA + log(P)bGTProve∗TG ≤ Ω
(
min

(
T strg, Tord

))
. This part is a special case of

Lemma 4.4 and is similar to a part of the extractability proof of the proto-
col proposed by Damgård and Fujisaki to argue knowledge of openings to their
commitments.

To obtain two valid transcripts with distinct challenges, it suffices to run
the proving algorithm once, rewind it to the computation step right after it
sent its first message and run it anew on fresh verifier randomness. If both
runs are valid and the challenges are distinct, then return the two transcripts,
otherwise restart. If a prover (A,Prove∗) convince the verifier with probability
at least ε, the expected runtime of this procedure is at most

(
ε2 − 1/P

)−1
TProve∗ .

Define then an extractor E which first simulates a proof π that g ∈
√
〈h2〉 with

FS .ΠH .Sim and then runs the previous procedure. The theorem then follows.
ut

Multi-Integer Commitments. The above commitments can be generalized
to vectors of integers just like Damgård–Fujisaki commitments (as did Couteau,
Peters and Pointcheval [14]). That is to say, the scheme can be extended to
commit to several integers at once.

Formally, let G be a group generator and suppose that there exists a non-
interactive argument system FS .ΠH with random oracle H for the language{
g1, . . . , gn ∈ G, ` ∈ N

∗ : ∃α1, . . . , αn ∈
�
0; 2`
�
,∀i ∈ ~n� gi = hαi } given parameters

(G, P, h, n) and the empty string as CRS.

Setup
(
1λ, n

)
→ pp : run (G, P) ← G

(
1λ

)
, generate h ←$ G and return (G, P, h, n).

KG(pp) → ck : generate αi ←$

�
0; 2bG+λ

�
for i ∈ ~n�, compute gi ← hαi and

π ← FS .ΠH .Prove
(
(G, P, h, n) , (g, bG + λ), (αi)ni=1

)
, and return (g, π).

Com ((g, π) , x1, . . . , xn ∈ Z) → (C, d) : if FS .ΠH .Vf ((G, P, h, n) , (g, bG + λ), π) = 0

return ⊥; generate r ←$

�
0; 2bG+λ

�
, compute C ←

(∏n
i=1 gxii hr

)2
, set d ← r

and return (C, d).
ComVf ((g, π) ,C, x1, . . . , xn, d) → b ∈ {0, 1} : if C2 =

(∏
i g

xi
i hd

)4
return 1, else

return 0.

The only missing component is an interactive protocol Π that satisfies culpable
soundness w.r.t.

{
g1, . . . , gn ∈ G : ∃α1, . . . , αn ∈ Z,∀i ∈ ~n� g2i = h2αi

}
. A possible

solution is to run n times in parallel the protocol from the case n = 1 for each
of the αi values. However, they achieve an overall 2−λ statistical distance from

23



n simulated arguments, the range of the prover’s randomness in the Section–
3.2 protocol must be multiplied by n so that each argument is 2−λn−1-zero-
knowledge. A better solution is to use the protocol of Section 5.3, which results
in arguments of O(bG+ log n) bits. This should be compared to the Ω(nbG log P)-
bit parameters of the generalized Damgård–Fujisaki commitments.

4 Succinct Inner-Product Arguments on Integers

This section gives a statistically honest-verifier zero-knowledge, logarithmic-size
inner-product argument on integers committed in hidden-order groups with the
scheme from Section 3.2. That is, an argument of knowledge of vectors a and
b ∈ Zn, and of a randomness r ∈ Z such that C2 =

(
gahb f r

)4
and 〈a, b〉 = z

given public bases g and h, a public commitment C and a public integer z;
and the bit-communication complexity of the protocol is logarithmic in of order
O(` + log nbG) where ` is an upper-bound on the bit length of the largest integer
witness and 2bG an upper-bound on the order of the group.

4.1 Formal Description

This section formalizes the protocol and gives precise statements as to the prop-
erties it satisfies.

Relations. The protocol is a honest-verifier zero-knowledge argument for:

R B
{(

C ∈ G, z ∈ Z, ` ∈ N∗; a, b ∈ Zn, r ∈ Z
)

: C2 =
(
gahb f r

)4
∧ 〈a, b〉 = z

∧


[
a b r

]∞ < 2`
}

given parameters (G, P, f , n) with f ∈ G and n ∈ N∗, and (g, h, πcrs ) ∈ G2n×{0, 1}∗

as CRS.
The relation imposes the largest value (in absolute value) in the witness[

a b r
]
to be at most ` bits long, with ` being part of the (public) word. As

for the argument of knowledge of openings in Section 3.2, it is again to adapt
the randomness range of the prover and of the honest-verifier zero-knowledge
simulator to make sure that the protocol remains statistically honest-verifier
zero-knowledge; and ` can be arbitrarily large. However, the protocol does not
necessarily return a witness with integers of at most ` bits in absolute value. In
other words, the protocol satisfies culpable extractability w.r.t. the relation

Σ B
{(

C ∈ G, z ∈ Z, ` ∈ N∗; a, b ∈ Zn, r ∈ Z
)

: C2 =
(
gahb f r

)4
∧ 〈a, b〉 = z

}
.

The argument for R is actually reduced to a logarithm-size argument (given on
Figure 2) for the following relation in which the inner product is also committed:

R ′ B
{(

C ∈ G, ` ∈ N∗; a, b ∈ Zn, r ∈ Z
)

: C2 =
(
gahbe〈a,b〉 f r

)4
∧


[
a b r

]∞ < 2`
}

24



given parameters (G, P, f , n) with f ∈ G and n ∈ N∗, and (g, h, e, πcrs ) ∈ G2n+1 ×

{0, 1}∗ as CRS. Again, the protocol does not guarantee that the extracted witness
satisfies the bounds on its bit length – denote by Σ′ the relation defined as R ′
without the restriction on the size of the witness.

During the reduction, the verifier chooses a base e ∈ 〈 f 〉 and proves to the
prover that e is in

√
〈 f 2〉, which guarantees to the prover that the commitment

Ce2z remains hiding. (As explained in Section 3, this precaution is not needed
in groups of public prime orders.) However, since the protocol in Section 3.2 is
only honest-verifier, and that the extractability of the argument system partly
relies on the fact that the prover does not know a discrete-logarithm relation
between e and f , the verifier must compute a non-interactive argument with a
random oracle. In other words, the extractability of the argument relies on the
zero-knowledge property of the protocol in Section 3.2. Moreover, the CRS of
the protocol includes a proof that g and h are in

√
〈 f 2〉

n
, and the argument is

only guaranteed to be honest-verifier zero-knowledge if it is indeed the case; that
is, the zero-knowledge property of the argument relies on the soundness of the
protocol. This mirroring in the properties of two protocols is simply due to the
fact that at the beginning of the inner-product argument, the prover becomes
the verifier of the protocol for g, h ∈

√
〈 f 2〉

n
.

Main Insights. The goal is to have a protocol for R ′ in which the prover
sends only 2dlog ne + 2 group elements and three integers of at most O(` + bG +
log(n) log(P)) bits. The main idea is to have the prover first send a constant
number of commitments that depend on the witness vectors (which are in Zn), so
that the verifier can thereafter choose integer linear combinations (defined by an
integer x) of the witness vectors that are of length n/2 (to ease the explanation,
further assume n to be a power of 2 in this section). These new vectors then
serve as witness for a new commitment derived from the original commitment
on which the proof is computed, the commitments sent by the prover and x; in
bases of length n/2 and determined by the original bases and x. The prover and
the verifier can thus recursively run the protocol with vectors of length n/2. After
log n recursive calls, the vectors are of length 1, and the parties run a protocol
that two committed integers a and b satisfy ab = z for a public z.

In more detail, given a, b ∈ Zn and r ∈ Z such that C2 =
(
gahbe〈a,b〉 f r

)4
, the

prover first sends commitments U ←
(
g1

a2h2
b1e〈a2,b1〉 f su

)2
and V ←

(
g2

a1h1
b2

e〈a1,b2〉 f sv
)2
, for su and sv with uniform distribution over an integer set large

enough for the commitments to be hiding. The verifier chooses x ←$ ~0; P − 1�,
sends it to the prover, and this latter computes a′ ← a1 + xa2, b′ ← xb1 +b2 and
t ← sv + r x + su x2. Remark that all these operations are performed in Z and do
not require to invert any integer. Now note that

((
gx1 ◦ g2

)a′ (h1 ◦ hx
2

)b′ e〈a
′,b′〉 f t

)4
=

(
Ux2

CxV
)2
,

25



which means that the prover and verifier can run the protocol again with gx1 ◦ g2
and h1 ◦ h

x
2 as bases and a′ and b′ (all of size n/2 instead of n) as witness for

Ux2

CxV .
To understand how a witness consisting of integer vectors can be extracted,

suppose that one can obtain three transcripts
(
U,V, x j, a

′
j, b
′
j, t
′
j

)3
i=1

such that((
g1

x j ◦ g2
)a′j (

h1 ◦ h2
x j

)b′j e
〈
a′j,b

′
j

〉
f tj

)4
=

(
Ux2

j Cx j V
)2

for all j ∈ ~3�. The goal is to find a representation of C in the bases g, h, e and
f . To do so, consider the linear system:

X



ν1
ν2
ν3


=



0
1
0


for X B



1 1 1
x1 x2 x3
x21 x22 x23


and indeterminate



ν1
ν2
ν3


.

It does not necessarily have a solution in Z3 (and this is the first major difference
with Bulletproofs in groups with public prime orders). However, denoting by
adj(X) the adjugate matrix of X (which is in Z3×3), the column vector

νC B adj(X)


0
1
0


satisfies XνC = X adj(X)



0
1
0


=



0
det(X)

0



since X adj(X) = det(X)I3. Therefore, via linear combinations with coefficient
determined by νC , one can obtain aC, bC ∈ Z

n and zC, rC ∈ Z such that U2detX =(
gaChbC ezC f rC

)4
. If the challenges x1, x2, x3 are pairwise distinct, then detX ,

0, and Lemma 4.4 shows that under the assumptions on the group generator,
2 detX must divide (with overwhelming probability) 4zC , 4rC and each of the
components of 4aC , 4bC . Therefore, up to a relabeling of 2aC/detX and so on,
one can extract aC, bC ∈ Z

n and zC, rC ∈ Z such that U =
(
gaChbC ezC f rC

)2
g̃C

for g̃C ∈ G that satisfies g̃2C = 1G.
Nonetheless, it is not yet certain that zC = 〈aC, bC〉. To guarantee it, it suf-

fices to extract similar representations for U and V , and replacing U, C and

V by those representations in the equality
((
gx1 ◦ g2

)a′ (
h1 ◦ h

x
2

)b′
e〈a
′,b′〉 f t

)4
=(

Ux2

CxV
)2

for any x ∈ {x1, x2, x3}. This leads to a discrete-logarithm relation
1G = g1

pg1 (x)g2
pg2 (x)h1

ph1 (x)h2
ph2 (x)epe (x) f p f (x) with pg1, pg2, ph1, ph2, pe, pf poly-

nomials in Z[x] of degree at most 2. Lemma 4.5 essentially states that it is hard to
find discrete-logarithm relations in the subgroup generated by a group element
f ←$ G (this is the second main difference with Bulletproofs in groups with pub-
lic prime orders). It thus implies that if the bases are all in 〈 f 〉 with exponents
chosen uniformly at random over a large integer set, these polynomials must all
be zero (with overwhelming probability) when evaluated at x; and pg1, ph2 and
pe together lead to an integer polynomial of degree 4, with leading coefficient
zC − 〈ac, bC〉, which must then be nil when evaluated at x. Therefore, starting

26



with five accepting transcripts instead of three entails that this polynomial of
degree 4 must be nil and thus zC = 〈ac, bC〉, i.e., aC, bC ∈ Zn, rC ∈ Z is a valid
witness for C.

As for the zero-knowledge property of the scheme, the ranges of su and sv
at each of the log n recursion step are chosen so that the statistical distance of
(U,V ) to a pair of uniform values in

〈
f 2

〉
is at most

(
log(n)2λ

)−1
. It then remains

to compute an upper-bound on the bit length of the witness at the last step of
the protocol so that the randomness of the prover can be chosen from a set of
which the bit length is λ times larger. The calculation is detailed in the proof of
Theorem 4.2.

Protocol Algorithms. The argument system for relation R is further denoted
Π. It uses as building blocks a group generator G and the Fiat–Shamir non-
interactive variant FS .Π̃H with a random oracle H of a protocol Π̃ for the
language

{
(g, h) ∈ G2n : ∃α, β ∈ Z2n,∀i ∈ ~n� gi = f αi ∧ hi = f βi

}

given parameters (G, P, f , 2n) and the empty string as CRS. Π̃H is later assumed
to satisfy culpable soundness w.r.t. the language

{
(g, h) ∈ G2n : ∃α, β ∈ Z2n,∀i ∈ ~n� g2i = f 2αi ∧ hi = f 2βi

}
.

The protocol algorithms are then as follows:

– Π.Setup
(
1λ, n ∈ N∗

)
runs (G, P′) ← G

(
1λ

)
, computes P B

⌊
P′1/3

⌋
(the power

1/3 is to ensure extractability under the assumptions on the group genera-
tor), generates f ←$ G and returns pp ← (G, P, n, f ) as public parameters.

– Π.CRSGen(pp) generates αi, βi ←$

�
0; 2bG+2λ

�
for i ∈ ~n�, computes gi ←

f αi , hi ← f βi and πcrs ← FS .Π̃H .Prove ((G, P, f , 2n), (g, h) , α, β), and re-
turns (g, h, πcrs ).

– Π.Prove and Π.Vf are as on Figure 1. They run as sub-routines the proving
and verification algorithms of a protocol Π′ for relation R ′.
◦ Π̃.Setup

(
1λ, n ∈ N∗

)
is the same as Π.Setup

(
1λ, n ∈ N∗

)
.

◦ Π̃.CRSGen(pp) computes g and h as Π.CRSGen(pp), and also e ← f γ for
γ ←$

�
0; 2bG+2λ

�
. It then computes a proof πcrs ← FS .Π̃H .Prove ((G, P, f ,

2n + 1), (g, h, e) , α, β, γ) that the bases gi, hi for i ∈ ~n� and e are in√
〈 f 2〉, and eventually returns the tuple (g, h, e, πcrs )

◦ Π′.Prove and Π′.Vf are as on Figure 2, except that Π′.Prove first verifies
the CRS and aborts if it is invalid. In the presentation on Figure 2, the
CRS does not include the proof that it is well-formed and the prover
does not perform any preliminary verification (i.e., the CRS is assumed
to be honestly generated). The reason is that Π.Prove already does this
verification; if Π′ were to be used as a stand-alone protocol, those verifi-
cation would be necessary. Π′.Prove and Π′.Vf additionally take as input

27



a variable i which keeps track of the recursion depth during the protocol
execution to adjust the randomness of the prover.

P
(
n, f , g, h, πcrs,C, z, `; a, b, r

)
V

(
n, f , g, h, πcrs,C, z, `

)
C2 =

(
gahb f r

)4
∧ 〈a, b〉 = z ∧ 

[
a b r

]∞ < 2`

if FS .Π̃H .Vf
(
(G, P, f , 2n), (g, h) , πcrs

)
= 0 α ←$

�
0; 2b+2λ

�
; e ← f α

then return ⊥ π ← FS .Π̃H .Prove((G, P, f , 1), e, α)
e,π
←−−−

if FS .Π̃H .Vf ((G, P, f , 1), e, π) = 0
then return ⊥

run the protocol on Figure 2 on input
(
1, n, f , g, h, e,C1 B Ce2z, `; a, b, r

)
Fig. 1. Inner-Product Argument on Integers.

Prover-Communication Complexity. Throughout the protocol, the prover
sends 2n′+2 group elements (with n′ = dlog ne), two integers (a′ and b′) less than
2`Pn′ in absolute value and an integer (u) less than

(
2n′2bG+λPn′+3 + 2` (P − 1)n

′+2
)(

1 + 2λ
)
in absolute value. The bit communication complexity of the prover

is then of order O (` + log(n)(bG + log P) + λ +max (log log n + bG + λ, `)). Since
log P ≤ bG = Ω(λ), that is O (` + log(n)bG +max (log log n + bG, `)), or even
O (` + log(n)bG) bits (n is here assumed to be greater than 1).

Verification via a Single Multi-Exponentiation. As described on Figure 2,
the verifier computes a new commitment U

x2
i

i Cxi
i Vi, and new vectors gxi1 ◦ g2

and h1 ◦ h
xi
2 at each recursion step i. In total, the verifier then has to com-

pute n′ B dlog ne 3-exponentiation with exponents less than P2 and two
⌈
n2−i

⌉
-

exponentiations with exponents less than P for i = 0, . . . , n′−1. At the last stage
of the protocol, the verifier also has to check that

(
gxn′+1a

′

hxn′+1b
′

ea
′b′ f u

)4
=(

C
x2
n′+1

n′+1 Γ
xn′+1∆

)2
, i.e., a 7-exponentiation with exponents (in absolute value) less

than the bit length of the largest exponent.
Alternatively, the verifier could simply generate the challenges after receiv-

ing the Ui and Vi values, delay its verification to the last stage of the pro-
tocol and then do a single multi-exponentiation. As shown below, this multi-
exponentiation is a (2n + 2n′ + 5)-exponentiation, which results in computational
savings in practice since computing a k-exponentiation with `-bit exponents re-
quires ` group operations with a pre-computed table of 2k group elements follow-
ing classical sliding-window methods [2], which is much faster than computing

28



P
(
i, n, f , g, h, e,Ci, `; a, b, r

)
V

(
i, n, f , g, h, e,Ci, `

)
C2
i =

(
gahbe〈a,b〉 f r

)4
∧


[
a b r

]∞ < 2`

if n = 1

α, β ←$

�
0; 2`+λPi

�
s ←$

�
0; 2(i − 1)2bG+λ

�
t ←$

�
0; 2(i − 1)2bG+2λPi+2 + 2`+λ (P − 1)i+1

�
Replace i − 1 by 1 if i = 1

Γ ←
(
gαhβeαb+aβ f s

)2
∆←

(
eαβ f t

)2
Γ,∆
−−−→

xi ←$ ~0; P − 1�
xi
←−−

a′ ← α + axi
b′ ← β + bxi
u ← t + sxi + r x2i

a′,b′,u
−−−−−−→ (

gxia
′

hxib
′

ea
′b′ f u

)4 ?
=

(
Cxi
i
Γxi∆

)2
else

su, sv ←$

�
0; 2 (dlog ne + i − 1) 2bG+λ

�
Ui ←

(
g1

a2h2
b1e〈a2,b1〉 f su

)2
Vi ←

(
g2

a1h1
b2e〈a1,b2〉 f sv

)2
Ui,Vi
−−−−−→

xi ←$ ~0; P − 1�
xi
←−−

a′ ← a1 + xia2
b′ ← xib1 + b2
t ← sv + r xi + su x2i

recurse on
(
i + 1, dn/2e, f , gxi1 ◦ g2, h1 ◦ h

xi
2 , e, Ci+1 B U

x2
i

i
Cxi
i

Vi, `; a′, b′, t
)

Fig. 2. Argument for Relation R ′.

k separate single exponentiations with `-bit exponents (which requires k` group
operations with a single group element in memory) and multiplying the result.
Of course, if n is large, then the pre-computation might be prohibitively long
with the standard multi-exponentiation method, in which case one would rather
split the multi-exponentiation in small batches of appropriate size. In any case,

29



delaying the verification until the last step already has the benefit of eliminating
latency in the verification.

To reduce the verification to a single multi-exponentiation, the commitment
at the last stage and the bases g and h must be expressed in terms of the
challenges xi and of the initial vectors g and h alone.

Ultimate Commitment. Given that Ci+1 B U
x2
i

i Cxi
i Vi for all i ∈ ~n′�, the com-

mitment Cn′+1 at the last step of the protocol is equal to

U
x2
n′

n′

n′−1∏
i=1

U
x2
i xi+1 · · ·xn′

i Cx1 · · ·xn′
n′−1∏
i=1

V xi+1 · · ·xn′
i Vn′ .

Expression for g and h. It now remains to express the bases g and h at the last
step of the recursion in terms of gi, hi for i ∈ ~n� and x j for j ∈ ~n′�.

First assume n to be a power of 2 and let n′ B log n. In this case,

g =

n∏
i=1

g
∏

j∈Si
x j

i and h =
n∏
i=1

h
∏

j∈~n�\Si
x j

i

with

Si B
{
j ∈
�
n′
�

: n′ + 1 − jth bit of i − 1 is 0
}
.

In case n is not a power of 2, finding an explicit expression for the exponents
x j to which gi is raised is much more intricate. For instance, in case n = 5,
g = gx1x2x31 gx1x32 gx2x33 gx34 g5. The above expression is no longer true since, for
example, the exponent g5 is 1 although the first and second bits of 4 are nil and
the exponent of g4 is x3 even though the first bit of 3 is 1. Appendix A.1 then
gives an explicit expression in case n is not a power of 2.

Another possibility is to expand, g and h to vectors g̃ and h̃ of size 2n
′

by inserting 1G at specific positions so that the result of the folding procedure
applied g̃ and h̃ are the same as the result of the procedure applied to g and h
(i.e., g and h). This reduces the multi-exponentiation to the case in which the
size of the vectors is a power of 2. We give an algorithm to do so in Appendix A.1
and prove its correctness.

Verification Efficiency. In case n is a power of 2 (the previous paragraph shows
that the problem can always be reduced to this case), the verifier then only has
to check that

*
,

n∏
i=1

g
∏

j∈Si
x j

i
+
-

4xn′+1a
′

*
,

n∏
i=1

h
∏

j∈~n�\Si
x j

i
+
-

4xn′+1b
′

e4a
′b′ f 4u

=
*.
,
Uxn′
n′

n′−1∏
i=1

Uxi xi+1 · · ·xn′
i Cx1 · · ·xn′

n′−1∏
i=1

V xi+1 · · ·xn′
i Vn′

+/
-

2x2
n′+1

Γ
2xn′+1∆

2,

30



i.e., do a (2n + 2n′ + 5)-exponentiation with exponents (in absolute value) less
than

4 max
*...
,

2`P2n′+1,

|a′b′ |<︷  ︸︸  ︷
22`P2n′,

|u |<︷                                                   ︸︸                                                   ︷(
2n′2bG+λPn′+1 + 2` (P − 1)n

′+2
) (

1 + 2λ
)+///

-

.

Verification thus requires O(` + bG + log(n) log(P)) group operations (n ≥ 2).

4.2 Completeness and Security

This section proves that Π is complete, honest-verifier zero-knowledge and ex-
tractable. The proof of extractability of Π is based on the proof of extractability
of Π′ and on Lemma 4.5. The proof of extractability of Π′ is itself based on
Lemma 4.5 and Lemma 4.4, and Lemma 4.4 relies on Lemma 4.3.

Theorem 4.1 (Completeness). Π is complete.

Proof. The completeness of the protocol immediately follows from the complete-
ness of protocol ΠH , from the fact that each step i ∈ ~n′�,((

gxi1 ◦ g2
)a′ (

h1 ◦ h
xi
2

)b′
e〈a
′,b′〉 f t

)4
=

(
gxi1 ◦ g2

)4(a1+xia2) (
h1 ◦ h

xi
2

)4(xib1+b2)
e4(x2〈a2,b1〉+x〈a,b〉+〈a1,b2〉)

f 4(sv+rxi+su x2
i )

= g1
4xi (a1+xia2)g2

4(a1+xia2)h1
4(xib1+b2)h2

4xi (xib1+b2)e4(x2〈a2,b1〉+x〈a,b〉+〈a1,b2〉)

f 4(sv+rxi+su x2
i )

=

(
U

x2
i

i Cxi
i Vi

)2
,

and from the completeness of the last step of the protocol (i.e., i = n′ + 1). The
second equality stem from the fact that for any two vectors G,H ∈ Gn and any
vector k ∈ Zn, (G ◦H)k = GkFk. ut

Theorem 4.2 (Honest-Verifier Zero-Knowledge). If Π̃ is
(
TΠ̃, qH , ε

snd
Π̃

)
-

sound, then protocol Π is
(
TΠ̃,O ((` + bG + log(P) log(n)) TG) , qH , 2−λ+2 + εsnd

Π̃

)
-

honest-verifier zero-knowledge.

Proof. If the initial length n of the vectors is at least 2, note that at each step
i ∈ ~n′�, the length of the vectors is ni B

⌈
n2−i+1

⌉
, so dlog nie + i − 1 = n′. Since

e2 ∈
〈

f 2
〉
(the verifier is honest), and since the group elements in the parameters

are also in
〈

f 2
〉
unless the adversary can contradict the soundness of Π̃, the pair

(Ui,Vi) is at a 2−λ+1/n′ statistical distance from a pair
(

f 2su , f 2sv
)
for su, sv ←$

31



�
0; 2n′2bG+λ

�
, and the tuple (Ui,Vi)n

′

i=1 is thus at a statistical distance of at most
2−λ+1 from a 2n′-tuple with components generated as f 2s for s ←$

�
0; 2n′2bG+λ

�
.

At the last step of the protocol (i.e., for i = n′+1), note that |a |, |b| ≤ 2`Pn′+1

and that the absolute value of the randomness r in the commitment Cn′+1 is less
than 2n′2bG+λPn′+1+2` (P − 1)n

′

. Indeed, if n = 1 the statement is immediate and
if n ≥ 2, at the first step of the protocol i = 1, max a′ = max a1+ x1 max a2 ≤ 2`P.
If min a2 < 0, then min a′ = min a1 + x1 min a2 ≥ −2`P, and if min a2 ≥ 0, then
min a′ = min a1 ≥ −2` ≥ −2`P; and similarly for b′. A simple induction then
shows that |a |, |b| ≤ 2`Pn′+1. Besides, the randomness of the commitment C1 is
at most 2` in absolute value, and under the assumption that the randomness
in Ci is at most 2n′2bG+λPi + 2` (P − 1)i−1 in absolute value for i ∈ ~n′�, the
randomness in Ci+1 is less than

2n′2bG+λ +
(
2n′2bG+λPi + 2` (P − 1)i−1

)
(P − 1) + 2n′2bG+λ(P − 1)2

= 2n′2bG+λ
(
1 + Pi (P − 1) + (P − 1)2

)
+ 2` (P − 1)i

≤ 2n′2bG+λ
(
Pi (P − 1) + P2

)
+ 2` (P − 1)i

≤ 2n′2bG+λPi+1 + 2` (P − 1)i .

Moreover, it is also greater than −2` (P − 1)i since the randomness su and sv are
always positive. The statement then holds for all i ∈ ~n′ + 1�.

It follows that at the last step of the protocol, (assuming n′ ≥ 1,)

sxn′+1 + r x2n′+1 ≤ 2n′2bG+λ +
(
2n′2bG+λPn′+1 + 2` (P − 1)n

′
)

(P − 1)2

≤ 2n′2bG+λ
(
1 + Pn′+1(P − 1)2

)
+ 2` (P − 1)n

′+2

≤ 2n′2bG+λPn′+3 + 2` (P − 1)n
′+2.

Consequently, for α, β ←$

�
0; 2`+λPn′+1

�
, s ←$

�
0; 2 max(n′, 1)2bG+λ

�
and

t ←$ ~0; 2 max(n′, 1)2bG+2λPn′+3+ 2`+λ (P − 1)n
′+2
�
, the distribution of

*.....
,

Γ︷                 ︸︸                 ︷(
gαhβeαb+aβ f s

)2
,

∆=(eαβ f t )2︷                                                 ︸︸                                                 ︷(
gxn′+1a

′

hxn′+1b
′

ea
′b′ f u

)2
C
−x2

n′+1

n′+1 Γ
−xn′+1, xn′+1,

a′︷       ︸︸       ︷
α + axn′+1,

b′︷       ︸︸       ︷
β + bxn′+1,

u︷                  ︸︸                  ︷
t + sxn′+1 + r x2n′+1

+//
-

is at a statistical distance of at most 2−λ from the distribution of((
gαhβeαb+aβ f s

)2
,
(
gxn′+1αhxn′+1βeαβ f t

)2
C
−x2

n′+1

n′+1 Γ
−xn′+1, xn′+1, α, β, t

)
,

which is itself at a statistical distance of at most 2−λ from the distribution of(
f 2s,

(
gxn′+1αhxn′+1βeαβ f t

)2
C
−x2

n′+1

n′+1 f −2sxn′+1, xn′+1, α, β, t
)
.

32



Recall also that

Cn′+1 = U
x2
n′

n′

n′−1∏
i=1

U
x2
i xi+1 · · ·xn′

i Cx1 · · ·xn′
n′−1∏
i=1

V xi+1 · · ·xn′
i Vn′ .

Therefore, the transcript
(
(Ui,Vi, xi)n

′

i=1 , Γ,∆, xn′+1, a′, b′, u
)
of an honest protocol

execution is at a statistical distance of at most 2−λ+2 from a tuple(
(Ui,Vi, xi)n

′

i=1 , f 2s,
(
gxn′+1αhxn′+1βeαβ f t

)2
C
−x2

i

n′+1 f −2sxn′+1, xn′+1, α, β, t
)

with, for all i ∈ ~n′ + 1�, xi ←$ ~0; P − 1�, su,i, sv,i ←$

�
0; 2n′2bG+λ

�
, Ui ←

gsu, i , Vi ← gsv, i , α, β ←$

�
0; 2`+λPn′+1

�
, s ←$

�
0; 2 max(n′, 1)2bG+λ

�
, t ←$�

0; 2 max(n′, 1)2bG+2λPn′+3 + 2`+λ (P − 1)n
′+2
�
and Cn′+1 computed as above. Note

the latter distribution is independent of the witness. Besides, each Ui and Vi can
be computed in O(bG + λ + log log n) group operations and the group element(
gxn′+1αhxn′+1βeαβ f t

)2
C
−x2

i

n′+1 f −2sxn′+1 can be computed in

O (` + bG + λ + log(P) log(n) + log log n) = O(` + bG + log(P) log(n))

group operations (log P ≤ bG = Ω(λ)). A simulated transcript can thus be com-
puted in time O ((` + bG + log(P) log(n)) TG), hence the theorem. ut

Lemma 4.3. Let n be a natural integer and let a0, . . . , an, b and N be integers,
with N ≥ 1. Assuming that the ai integers are not all nil modulo N, the number
of tuples (x0, . . . , xn) ∈ Zn+1N such that a0x0 + · · · + anxn + b = 0 mod N is either
0 or Nn gcd(a0, . . . , an, N ).

Proof. The lemma can be proved by induction on n as follows. For n = 0, note
that the equation a0x0 + b = 0 mod N has no solution if gcd(a0, N ) - b. If
gcd(a0, N ) | b, let a′0 be such that a0 = gcd(a0, N )a′0, and define b′ and N ′

similarly. Integers a′0 and N ′ are then coprime, and let u and v be integers such
that a′0u+N ′v = 1. Consider now the equation a′0x0+b′ = 0 mod N ′. Multiplying
it by u shows that x0 = −b′u mod N ′. It follows that the integers x0 solutions
to the equation a′0x0 + b′ = 0 mod N ′ are of the form −b′u + k N ′ for k ∈ Z.
Besides, for two integers k0 and k1, −b′u + k0N ′ = −b′u + k1N ′ mod N if and
only if gcd(a0, N ) | k1 − k0. Therefore, if gcd(a0, N ) | b, the solutions x0 to the
equation a0x0 + b = 0 mod N are −b′u + k N ′ for 0 ≤ k ≤ gcd(a0, N ).

Now suppose the statement to be true for n ≥ 0 and consider the equa-
tion a0x0 + · · · + an+1xn+1 + b = 0 mod N for some integers a0, . . . , an+1, b and
N ≥ 1. For a fixed value xn+1 ∈ ZN , as in the case n = 0, there is no solution
if gcd(a0, . . . , an, N ) - an+1xn+1 + b; and if gcd(a0, . . . , an, N ) | an+1xn+1 + b, then
the induction hypothesis implies that there are Nn gcd(a0, . . . , an, N ) solutions
in ZN . It now remains to determine the number of values xn+1 ∈ ZN such that
an+1xn+1+b = 0 mod gcd(a0, . . . , an, N ). To this end, let un+1 and vn+1 be integers
such that an+1un+1 + gcd(a0, . . . , an, N )vn+1 = gcd(a0, . . . , an+1, N ). As in the case

33



n = 0, there is no solution if gcd(a0, . . . , an+1, N ) - b, and if gcd(a0, . . . , an+1, N ) |
b, then the solutions to the equation an+1xn+1 + b = 0 mod gcd(a0, . . . , an, N ) are
exactly xn+1 = −bun+1 + kn+1d ′ for 0 ≤ kn+1 < gcd(a0, . . . , an+1, N ) and d ′ ∈ Z
such that gcd(a0, . . . , an, N ) = gcd(a0, . . . , an+1, N )d ′. The values xn+1 ∈ ZN for
which the equation a0x0 + · · · + an+1xn+1 + b = 0 mod N is satisfied in case
gcd(a0, . . . , an+1, N ) | b are then exactly −bun+1 + kn+1d ′+ k gcd(a0, . . . , an, N ) for
0 ≤ kn+1 < gcd(a0, . . . , an+1, N ) and 0 ≤ k < N ′, where N ′ ∈ Z is such that N =
gcd(a0, . . . , an, N )N ′. Therefore, the number of solutions to the equation a0x0 +
· · ·+an+1xn+1+b = 0 mod N is either 0 or Nn gcd(a0, . . . , an, N ) gcd(a0, . . . , an+1, N )
N ′ = Nn+1 gcd(a0, . . . , an+1, N ). The statement of the lemma is then true for all
n ∈ N. ut

Lemma 4.4. Consider the problem (depending on λ) of computing, on input
(G, P) ← G

(
1λ

)
and f ←$ G and ( f xi )ni=0 (for integers xi ←$

�
0; 22bG+λ(n + 1)

�
)

an element C ∈ G and integers a0, . . . , an, b, δ such that 1 < |δ | < P, δ does not
divide b or at least one of the ai integers, and Cδ = f a0

0 · · · f an
n f b.

Under the
(
T strg, εstrg

)
-strong-root assumption, the

(
Tord, εord

)
-small-order

assumption, the low-dyadic-valuation assumption and the µ-assumption over G,
the probability that any probabilistic algorithm running in time T solves this
problem is at most

(
1/2 − 2−λ − (1 − µ)

)−1 (
εord + εstrg + 1 − µ

)
, if T is such that

(n + 1) max(log(n + 1), 1) log(P)bGTTG ≤ Ω
(
min

(
T strg,Tord

))
.

Proof. Let A be an algorithm as in the statement of the lemma and assume
without loss of generality that δ > 0 (if δ < 0, raise the equality to the power
−1). The equality Cδ = f a0

0 · · · f an
n f b implies that Cδ = f

∑
i ai xi+b. The goal is

to show that in case δ does not divide
∑

i ai xi + b, algorithm A can be used to
violate the assumptions on generator G; and to show that conditioned on the
event in which A solves the problem, the probability that δ divides

∑
i ai xi + b

is at most 1/2 + 2−λ + (1 − µ).
More precisely, if δ does not divide

∑
i ai xi + b, let d B gcd

(
δ,

∑
i ai xi + b

)
and u, v ∈ Z such that d = uδ + v

(∑
i ai xi + b

)
. Then, f d = ( f uCv)δ , i.e.,(

( f uCv)δ/d f −1
)d
= 1G. Since 1 ≤ d < δ < P by assumption, the small-order

assumption over G implies that the element g̃ B ( f uCv)δ/d f −1 is such that
g̃2 = 1G with probability at least εord. If g̃ = 1G and d > 1, then

(
( f uCv)δ/d , d

)
is a solution to the strong-root problem. Otherwise,

∗ if δ/d is odd, then g̃δ/d = g̃ and therefore, ( f uCv g̃, δ/d) is a solution to the
strong-root problem

∗ if δ/d is even, then the low-dyadic-valuation assumption on orders implies
that ord

(
( f uCv)δ/d

)
is odd, which is impossible if ord( f ) is P-rough (and

thus odd) since ord( f g̃) = 2 ord( f ) in this case.

Consequently, δ does not divide
∑

i ai xi +b with probability at most εord+εstrg+
1 − µ.

Since |ai |, |b| ≤ 2O(T ),
∑

i ai xi + b can be computed in time O ((n + 1)T (bG+
log(n + 1))). Then, u and v can be computed in time O((T +bG+ log(n+1)) log P)

34



with the extended Euclidean algorithm as |
∑

i ai xi + b| ≤ n(n + 1)2O(T )22bG+λ +
2O(T ) and |δ | ≤ P; and u and v are such that |u|, |v | ≤ max

(
|δ |, |

∑
i ai xi + b|

)
/d.

Besides, computing δ/d can be done in time O
(
log2 P

)
and then f uCv g̃ in

O (max (T + bG + log(n + 1), log P)) = O (T + bG + log(n + 1)) group operations
since P ≤ 2bG . The solution to the strong-root problem can thus be computed in
time

O ((n + 1)(bG + log(n + 1))T + (T + bG + log(n + 1)) log(P)TG) ,

after the bases f0, . . . , fn have been computed in O((n + 1) max(log(n + 1), 1)bG)
group operations.

It remains to show that δ divides
∑

i ai xi + b with probability at most 1/2 +
2−λ + 1 − µ conditioned on the event in which A solves the problem. To do so,
consider the event in which it occurs. Let p and j respectively be a prime and a
positive integer such that pj divides δ and pj does not divide b or at least one of
the ai integers. Such p and j necessarily exist for an assumption of the lemma
is that δ does not divide b or at least one of the ai integers. Note that pj cannot
divide all the ai integers as it would otherwise divide b as well, since it divides∑

i ai xi + b. Moreover, if µ-assumption that there are many rough-order elements
in the groups generated by G holds, p does not divide ord( f ). Therefore, if the
µ-assumption holds, pj does not divide ai ord( f ) for some i ∈ ~0; n�.

For i ∈ ~0; n�, let 0 ≤ ρi < ord( f ) be the unique integer such that xi =
ord( f ) bxi/ ord( f )c+ ρi, and note that f xi = f ρi . Then,

∑
i ai xi+b =

∑
i ai ord( f )

bxi/ ord( f )c+
∑

i ai ρi+b = 0 mod pj and ai ord( f ) , 0 mod pj for some i ∈ ~0; n�.
Lemma 4.3 shows that the equation

∑
i AiXi + B = 0 mod pj with Ai B ai ord( f )

and B B
∑

i ai ρi + b has at most pjn gcd
(
a0 ord( f ), . . . , an ord( f ), pj

)
solutions,

and gcd
(
a0 ord( f ), . . . , an ord( f ), pj

)
is at most pj−1 since ai ord( f ) , 0 mod pj

for some i ∈ ~0; n�. However, the variables Xi B bxi/ ord( f )c are identically dis-
tributed and independent of the values returned by A (G, P, f , f ρ0, . . . , f ρn ); and
their distribution is at a statistical distance of at most ord( f )2−2bG−λ(n + 1)−1 ≤
2−bG−λ(n+1)−1 from the uniform distribution over

�
0;

⌊
(n + 1)22bG+λ/ ord( f )

⌋�
⊇�

0; (n + 1)2bG+λ
�
. Besides, if a variable X is uniformly distributed over the set�

0; (n + 1)2bG+λ
�
, then the distribution of X mod pj is at a statistical of at most

pj2−bG−λ(n + 1)−1 ≤ (P − 1)2−bG−λ(n + 1)−1 from the uniform distribution over
Zp j . The distribution of the random vector

[
X0 mod pj · · · Xn mod pj

]
is then

at a statistical of at most P2−bG−λ ≤ 2−λ from the uniform distribution over
Zn+1
p j . Consequently, the equation

∑
i ai xi + b = 0 mod pj can then be satisfied

with probability at most 2−λ + pj (n+1)−1/
(
pj

)n+1
≤ 1/2 + 2−λ and thus, δ divides∑

i ai xi + b with probability at most 1/2 + 2−λ + 1 − µ.
In summary, denoting by ε the probability that A solves the problem of the

statement of the lemma, ε ≤ εord + εstrg + 1 − µ +
(
1/2 + 2−λ + 1 − µ

)
ε, which is

equivalent to ε ≤
(
1/2 − 2−λ − (1 − µ)

)−1 (
εord + εstrg + 1 − µ

)
. ut

Lemma 4.5 (Discrete-Logarithm Relations). Let n be a non-negative in-
teger. Consider the problem (depending on λ) of computing, on the input of

35



(G, P) ← G
(
1λ

)
and of group elements f ←$ G and ( f xi )ni=0 (for xi ←$

�
0; 22bG+λ

(n + 1)�), integers a0, . . . , an, b such that f a0

0 · · · f an
n f b = 1G although at least one

of a0, . . . , an, b is non-zero. Under the
(
T strg, εstrg

)
-strong-root assumption, the(

Tord, εord
)
-small-order assumption, the low-dyadic-valuation assumption and

the µ-assumption over G, the probability that any probabilistic algorithm run-
ning in time at most T solves this problem is at most

εstrg +max
(
2−bG−λ+1,

(
1/2 − 2−λ − (1 − µ)

)−1 (
εord + εstrg +1 − µ)

)
if T is such that (n + 1) max(log(n + 1), 1) log(P)bGTTG ≤ Ω

(
min

(
T strg,Tord

))
.

Proof. Let A be an algorithm as in the statement of the lemma and denote the
probability that it solves the problem by ε. If a0 = · · · = an = 0, then b , 0 by
assumption and Lemma 3.4 shows that since f b = 1G, there exists an algorithm
that solves the strong-root problem in time at most T +O(log b) with probability
at least ε, and since b = 2O(T ), ε ≤ εstrg. Now turn to the case in which ai , 0
for some i ∈ ~0; n�. If n = 0, then f a0x0+b = 1G by assumption. Writing x0
as x0 = ord( f ) bx0/ ord( f )c + ρ0 for 0 ≤ ρ0 < ord( f ), the random variable
X0 B bx0/ ord( f )c is independent of the values returned by A (G, P, f , f ρ0 ),
and is at a statistical distance of at most ord( f )2−2bG−λ ≤ 2−bG−λ from the
uniform distribution over

�
0;

⌊
22bG+λ/ ord( f )

⌋�
⊇
�
0; 2bG+λ

�
. However, for A0 B

a0 ord( f ) and B B a0ρ0 + b, the equation A0X0 + B = 0 in Z has no solution if
A0 - B and exactly one otherwise. Therefore, the probability that a0x0 + b = 0
in Z is at most 2−bG−λ+1, and there exists an algorithm that solves the strong-
root problem in time at most O(T ) with probability at least ε − 2−b−G−λ+1, so
ε ≤ εstrg + 2−bG−λ+1.

If n > 0, it suffices to prove that the probability that f a0

0 · · · f an
n f b = 1G and∑

i ai xi + b = 0 is at most
(
1/2 − 2−λ − (1 − µ)

)−1 (
εord + εstrg + 1 − µ

)
. Then, in

case f
∑

i ai xi+b = 1G and
∑

i ai xi + b , 0, Lemma 3.4 shows that this probability
is at most εstrg . This then would imply that

ε ≤ εstrg +
(
1/2 − 2−λ − (1 − µ)

)−1 (
εord + εstrg + 1 − µ

)
.

Suppose that
∑

i ai xi + b = 0 (which implies that f a0

0 · · · f an
n f b = 1G). Let

d B gcd(a0, . . . , an) and note that d necessarily divides b. Besides,
∑

i ai xi+b = 0
if and only if

∑
i (ai/d)xi + (b/d) = 0 and therefore, f a0/d

0 · · · f an/d
n f b/d = 1G with

gcd(a0/d, . . . , an/d) = 1. However, 12
G
= 1G = f a0/d

0 · · · f an/d
n f b/d although the

integers ai/d cannot all be even as they are coprime. Lemma 4.4 then implies
that

∑
i ai xi + b = 0 with probability at most

(
1/2 − 2−λ − (1 − µ)

)−1 (
εord + εstrg

+1 − µ) . ut

Theorem 4.6 (Extractability of Π′). Under the
(
T strg, εstrg

)
-strong-root as-

sumption, the
(
Tord, εord

)
-small-order assumption, the low-dyadic-valuation as-

sumption and the µ-assumption over G, protocol Π′ (with honest CRS gener-
ation) is

(
TA,TProve∗,TE, εext, Σ′

)
-extractable for any TA and TProve∗ such that

36



TA + n log(n + 1) log(P)bGTProve∗TG ≤ Ω
(
min

(
T strg,Tord

))
, with

TE = O
(
nbGTG + nlog 5+logα log(n + 1) log(P)TProve∗/ε

)
for any α > (1 − 5/P)−2 assuming that εA,Prove∗ ≥ 5nlogα/((α − 1)P), and with

εext = εord + εstrg +max
(
2−b−λ+1,

(
1/2 − 2−λ − (1 − µ)

)−1 (
εord + εstrg + 1 − µ

))
+

(
1/2 − 2−λ − (1 − µ)

)−1 (
εord + εstrg + 1 − µ

)
.

Proof. To prove that the system satisfies witness-extended emulation, it suffices
to show that at the (n′ + 1)th step of the protocol, a witness for commitment
Cn′+1 can be extracted by rewinding the prover, and then that for i from n′ + 1
down to 2, given a witness for Ci, a witness for Ci−1 can again be extracted
by rewinding the prover sufficiently many times. One a witness for the initial
commitment C1 is extracted, it is then possible to generate a transcript with the
same distribution as in the interaction with the honest verifier since the protocol
is public coin.

Henceforward, and until the end of this proof, the underscript i indicating the
current step of the protocol will be omitted as the specific step should always be
clear from the context. The underscripts in what follows rather indicate several
challenges at the same protocol step. It might be convenient for the reader to
think of these latter as underscripts j; for instance, at the ith step of the protocol,
x1, x2 and x3 are actually challenges xi,1, xi,2 and xi,3, i.e., xi, j for j = 1, 2, 3.

Now consider the case i = n′ + 1 (recall that n′ B dlog ne). Given five tran-

scripts
(
Γ,∆, x j, a′j, b

′
j, u j

)5
j=1

such that
(
g
x j a

′
j hx jb

′
j ea

′
jb
′
j f u j

)4
=

(
Cx2

j Γx j∆

)2
for all

j ∈ ~5�, the goal is to extract a representation of C in the bases g, h, e and f .
To do so, consider the linear system



1 1 1
x1 x2 x3
x21 x22 x23





ν1
ν2
ν3


=



0
0
1



with unknowns ν1, ν2 and ν3. Denote by X the matrix


1 1 1
x1 x2 x3
x21 x22 x23


. It is a Van-

dermonde matrix, and its determinant is thus (x3− x2)(x3− x1)(x2− x1). Even if
detX , 0, this system may not have a solution in Z, but it does in Q. Moreover,
Cramer’s rule implies that

ν1 detX = det



0 1 1
0 x2 x3
1 x22 x23


, ν2 detX = det



1 0 1
x1 0 x3
x21 1 x23


and ν3 detX = det



1 1 0
x1 x2 0
x21 x22 1


.

37



It follows that

ν1

δ1︷                  ︸︸                  ︷
(x3 − x1)(x2 − x1)(x3 − x2) =

γ1︷︸︸︷
1 (x3 − x2)

ν2

δ2︷                  ︸︸                  ︷
(x3 − x2)(x1 − x2)(x3 − x1) =

γ2︷︸︸︷
1 (x3 − x1)

ν3

δ3︷                  ︸︸                  ︷
(x2 − x3)(x1 − x3)(x2 − x1) =

γ3︷︸︸︷
1 (x2 − x1)

and that

detX
∑
j

δ jγj x2j = δ detX,
∑
j

δ jγj x j = 0 and
∑
j

δ jγj = 0

for δ B δ1δ2δ3 and δ j B δ/δ j for j ∈ ~3�; and δ, δ j and γj are in Z for all
j ∈ ~3�. Besides, note that |δ | ≤ P3 ≤ P′. In other words, the linear system



1 1 1
x1 x2 x3
x21 x22 x23





ν1
ν2
ν3


=



0
0
δ



has a (unique) solution in Z if detX , 0, and it is


δ1γ1
δ2γ2
δ3γ3


. Therefore, assuming

x1, x2 and x3 to be pairwise distinct, one can extract, via linear combinations of
the responses, integers aC , bC , zC and rC such that C2δ =

(
gaC hbC ezC f rC

)4
, and

δ , 0; and the bit length of the linear coefficients is of order O(log P). However,
g can be expressed in terms of g1, . . . , gn and x1, . . . , xn, and the exponent of gn
in the expression of g is 1. Similarly, h can be expressed in terms of h1, . . . , hn

and x1, . . . , xn, and the exponent of h1 in the expression of h is 1. Lemma 4.4
then implies that if |δ | > 1, 2δ divides 4aC , 4bC , 4zC and 4rC with probability at
least 1 −

(
1/2 − 2−λ − (1 − µ)

)−1 (
εord + εstrg + 1 − µ

)
. The small-order assump-

tion then implies that C =
(
gaC/δhbC/δezC/δ f rC/δ

)2
g̃C for some group element

g̃C such that g̃2C = 1G, i.e., up to a relabeling of the integers 2aC/δ, 2bC/δ, 2zC/δ
and 2rC/δ, there exist a group element g̃C and integers aC , bC , zC and rC such
that C =

(
gaC hbC ezC f rC

)2
g̃C and g̃2C = 1G.

Likewise, by considering the linear systems X



ν1
ν2
ν3


=



0
1
0


and X



ν1
ν2
ν3


=



1
0
0


,

with probability at least the same probability as above, there exist group el-
ements g̃Γ and g̃∆ and integers aΓ, a∆, bΓ, b∆, zΓ, z∆, rΓ and r∆ such that Γ =(
gaΓhbΓezΓ f rΓ

)2
g̃Γ, ∆ =

(
ga∆hb∆ez∆ f r∆

)2
g̃∆ and g̃2

Γ
= g̃2

∆
= 1G.

38



Consequently, for any (x, a′, b′, u) ∈
{(

x j, a′j, b
′
j, u j

)5
j=1

}
,

(
gxa

′

hxb′ea
′b′ f u

)4
=

(
gaC hbC ezC f rC

)4x2 (
gaΓhbΓezΓ f rΓ

)4x(
ga∆hb∆ez∆ f r∆

)4
,

Furthermore, Lemma 4.5 entails that

a′x = aC x2 + aΓx + a∆
b′x = bC x2 + bΓx + a∆

a′b′ = zC x2 + zΓx + z∆
u = rC x2 + rΓx + r∆

unless one can find a non-trivial discrete-logarithm relation in 〈 f 〉. That is be-
cause the exponent of gn is 1 in the expression of g in terms of the initial group
elements g1, . . . , gn and of the challenges x1, . . . , xn′ , and since the exponent of
h1 in the expression of h is 1 in terms of h1, . . . , hn and of x1, . . . , xn′ . Multiplying
the third equality by x2 then implies that(

aC x2 + aΓx + a∆
) (

bC x2 + bΓx + a∆
)
− zC x4 + zΓx3 + z∆x2 = 0,

i.e., the above polynomial in Z[x] is of degree 4 and has at least 5 integer roots
if the challenges x1, . . . , x5 are pairwise distinct. It is thus the zero polynomial,
aCbC = zC and (aC, bC, rC ) is a valid culpable witness for C.

It now remains to show that for i from n′ down to 1, given a witness for the
commitment at the i + 1th step, a witness for the commitment at the ith step
can be extracted. To this end, consider five transcripts

(
U,V, x j, a

′
j, b
′
j, t
′
j

)5
i=1

such
that ((

g1
x j ◦ g2

)a′j (
h1 ◦ h2

x j
)b′j e

〈
a′j,b

′
j

〉
f tj

)4
=

(
Ux2

j Cx j V
)2

for all j ∈ ~5�. The objective is to find an expression for C in the bases g1, g2,
h1, h2, e and f .

As in the case i = n′ + 1, by considering the linear systems X



ν1
ν2
ν3


=



1
0
0


,

X



ν1
ν2
ν3


=



0
1
0


and X



ν1
ν2
ν3


=



0
0
1


, one can extract integers δU, δC, δV , zU, zC, zV ,

rU, rC, rV , and integer vectors aU, aC, aV , bU, bC, bV ∈ Zdn2
−i+2e such that

U2δU =
(
gaUhbU ezU f rU

)4
C2δC =

(
gaChbC ezC f rC

)4
V2δV =

(
gaV hbV ezV f rV

)4
.

39



Moreover, if the challenges are pairwise distinct, δU, δC, δV , 0. Lemma 4.4 and
the small-order assumption imply that one can actually extract integers zU , zC ,
zV , rU , rC , rV , and integer vectors aU, aC, aV , bU, bC, bV ∈ Zdn2

−i+2e such that

U =
(
gaUhbU ezU f rU

)2
g̃U

C =
(
gaChbC ezC f rC

)2
g̃C

V =
(
gaV hbV ezV f rV

)2
g̃V

for some g̃U, g̃C, g̃V ∈ G that satisfy g̃2U = g̃2C = g̃2V = 1G.

Therefore, for any (x, a′, b′, t ′) ∈
{(

x j, a
′
j, b
′
j, t
′
j

)5
i=1

}
,

1G = g1
4(xa′−aU,1x2−aC,1x−aV ,1)g24(a′−aU,2x2−aC,2x−aV ,2)h14(b′−bU,1x2−bC,1x−bV ,1)

h2
4(xb′−bU,2x2−bC,2x−bV ,2)e4(〈a′,b′〉−zU x2−zC x−zV ) f 4(t′−rU x2−rC x−rV ) .

Lemma 4.5 then implies that

xa′ = aU,1x2 + aC,1x + aV,1 (1)

a′ = aU,2x2 + aC,2x + aV,2 (2)

b′ = bU,1x2 + bC,1x + bV,1 (3)

xb′ = bU,2x2 + bC,2x + bV,2 (4)

〈a′, b′〉 = zU x2 + zC x + zV (5)

t ′ = rU x2 + rC x + rV (6)

since the expressions of the components of g1, g2, h1, h2 in terms of the challenges
x1, . . . , xi−1 (if i ≥ 2) and of the initial bases g1, . . . , gn, h1, . . . , hn are such that
for each component, there exists an initial basis with 1 as an exponent. Indeed, if
i = 1, then the statement is true by definition. If i ≥ 2, denote by g(i) and h(i) the
vectors at step i. Then, g(i) = g(i − 1)xi−11 ◦ g(i)2 and h(i) = h(i − 1)1 ◦h(i − 1)xi−12 ,
which shows that if the statement is true for i − 1, then it is true for i and the
statement is then true for all i ∈ ~n′ + 1�.

Equations 1 and 2 imply that

aU,2x3 +
(
aC,2 − aU,1

)
x2 +

(
aV,2 − aC,1

)
x − aV,1 = 0. (7)

Similarly, Equations 3 and 4 entail that

bU,1x3 +
(
bC,1 − bU,2

)
x2 +

(
bV,1 − bC,2

)
x − bV,2 = 0. (8)

Besides, from Equations 2, 3 and 5,〈
aU,2x2 + aC,2x + aV,2, bU,1x2 + bC,1x + bV,1

〉
− zU x2 + zC x + zV = 0, (9)

and the coefficient of x in this polynomial is〈
aC,2, bV,1

〉
+

〈
aV,2, bC,1

〉
− zC .

40



If the 5 challenges are pairwise distinct, the polynomials in Equations 7, 8 and
9 are necessarily nil as they are of degree at most 4. Therefore, bV,1 = bC,2,
aV,2 = aC,1 and zC = 〈aC, bC〉. That is, (aC, bC, rC ) is a valid witness for C.

Given a prover (A,Prove∗) with success probability at least ε, define then E
as an algorithm which first generates bases g, h, e as in the real protocol (which
requires O(nbG) group operations). It continues by running the challenge-tree
generator of del Pino, Seiler and Lyubashevsky’s forking lemma [16] (corrected
in Section 4.2) with blackbox access to Prove∗. Since the extractor needs 5
transcripts at each recursion step, their challenge-tree generator runs in time
O

(
nlog 5+logα log(n + 1)TProve∗/ε

)
for any α > (1 − 5/P)−2, assuming that the

prover succeeds with probability at least 5nlogα/((α − 1)P). Then, algorithm E
can extract a valid witness in time O(n log(n + 1) log(P)TProve∗ ) unless the ex-
traction fails at one of the protocol steps, since a witness at each recursion step
can be computed via linear combinations with coefficients of O(log P) bits of
integer vectors of length n derived from integers returned by Prove∗ (so at most
2O(TProve∗ ) in absolute value). Extraction fails with probability at most

εord + εstrg +max
(
2−b−λ+1,

(
1/2 − 2−λ − (1 − µ)

)−1 (
εord + εstrg + 1 − µ

))
+

(
1/2 − 2−λ − (1 − µ)

)−1 (
εord + εstrg + 1 − µ

)
,

hence the theorem. ut

Corollary 4.7 (Extractability of Π). Under the
(
T strg, εstrg

)
-strong-root as-

sumption, the
(
Tord, εord

)
-small-order assumption, the low-dyadic-valuation as-

sumption and the µ-assumption over G, protocol Π is
(
TA,TProve∗,TE, qH , εext, Σ

)
-

extractable for any TA and TProve∗ such that TA + n log(n+1) log(P)bGTProve∗TG ≤
Ω

(
min

(
T strg,Tord

))
, with TE = 3TΠ̃H .Sim + 2TΠ′.E +O((b + log n + `)TG) and

εext = εord + εstrg + εzk
Π̃
+

(
1/2 − 2−λ − (1 − µ)

)−1 (
εord + εstrg + 1 − µ

)
+max

(
2−b−λ+1,

(
1/2 − 2−λ − (1 − µ)

)−1 (
εord + εstrg + 1 − µ

))
,

if FS .Π̃H is
(
TΠ̃H .Sim, qH , ε

zk
Π̃H

)
-statistically honest-verifier zero-knowledge.

Proof. Given integers α, α′, r, r ′ and integer vectors a, a′, b, b′ such that
(
C f 2αz

)2
=(

gahb f α〈a,b〉 f r
)4

and
(
C f 2α

′z
)2
=

(
ga
′

hb
′

f α
′〈a′,b′〉 f r

′
)4
, it follows that

1G =
(
ga−a

′

hb−b
′

f α(〈a,b〉−z) f α
′(〈a′,b′〉−z) f r−r

′
)4
.

Lemma 4.5 shows that if α, α′ ←$

�
0; 2b+2λ

�
, then a = a′, b = b′ and z = 〈a, b〉

unless one can find a non-trivial discrete-logarithm relation in 〈 f 〉.
with probability at least

1 − εstrg −max
(
2−b−λ+1,

(
1/2 − 2−λ − (1 − µ)

)−1 (
εord + εstrg + 1 − µ

))
.

41



Consider then an algorithm Π.E that generates bases as in the real protocol
but simulates πcrs and π with FS .Π̃H .Sim (the time to generate the bases is
already included in TΠ′.E). It generates α ←$

�
0; 2b+2λ

�
, computes C f 2αz and

runs Π′.E with Prove∗ as subroutine from the computation step after this latter
has verified π, on the inputs of protocol Π′. It then obtains an integer r and
integer vectors a and b such that

(
C f 2αz

)2
=

(
gahb f α〈a,b〉 f r

)4
. It generates

anew α′ ←$

�
0; 2b+2λ

�
, computes C f 2α

′z , simulates π and runs Π′.E as before a
second time. Since Π′.E cannot extract a valid witness for Σ′ with probability
at most

εord + εstrg +max
(
2−b−λ+1,

(
1/2 − 2−λ − (1 − µ)

)−1 (
εord + εstrg + 1 − µ

))
+

(
1/2 − 2−λ − (1 − µ)

)−1 (
εord + εstrg + 1 − µ

)
,

the analysis above then shows that Π.E cannot extract a valid witness for Σ with
probability at most

εord + εstrg + εzk
Π̃
+max

(
2−b−λ+1,

(
1/2 − 2−λ − (1 − µ)

)−1 (
εord + εstrg + 1 − µ

))
+

(
1/2 − 2−λ − (1 − µ)

)−1 (
εord + εstrg + 1 − µ

)
.

Note that the bounds on the failure probability of Π′.E already accounted for
the probability of finding non-trivial discrete-logarithm relations in 〈 f 〉.

As z = 〈a, b〉 and the components of a and b are of absolute value less than 2` ,
|z | ≤ n22` and C f 2αz and C f 2α

′z can both be computed in O(bG+`+ log n) group
operations. Therefore, Π.E runs in time 3TΠ̃H .Sim + 2TΠ′.E +O((b + log n + `)TG)
and the theorem follows. ut

Challenge-Tree Generators. For any prover (A,Prove∗) with success proba-
bility at least ε > 0, the challenge-tree generator of del Pino, Seiler and Lyuba-
shevsky’s forking lemma [16] is claimed to run in time O

(
nlogm+logα log(n)

TProve∗/ε) for any α > (1 − 5/P)−2, with m denoting the arity of the tree that
must be generated. However, we explain that their analysis does not apply to
their algorithm, and show how to modify their algorithm to obtain the claimed
bound.

More precisely, the task of their algorithm is to generate a rooted tree of
height n′ = dlog ne (the number of recursion steps) in which each node at height
1 ≤ i ≤ n′ − 1 has mi children (m = max mi), and to label each node with a
challenge so that no two siblings in the tree have the same label. Moreover, the
executions of Prove∗ with the challenges on the paths from the root to each leaf
must be accepting. These conditions must all be met for the extractor of the
Bulletproofs to be bale extract a witness at each recursion step.

To generate such challenge trees, Bootle et al. [8] had proposed a recursive
tree-finder algorithm that, given fixed challenges x1, . . . , xi−1, generates a chal-
lenge xi uniformly at random at each recursion step i > 1 and makes a recursive

42



call with x1, . . . , xi. A challenge is then appended to the tree if the recursive call
returns a non-empty tree. At the last recursion step (i.e., at each leaf of the tree),
the algorithm runs the protocol with the generated challenge and returns the
challenge (as single node) only if the execution is successful. At each recursion
step i < n′, the algorithm repeats the procedure of generating fresh challenges
and making recursive calls as many times as necessary to obtain mi challenges
that eventually lead to a success.

The main issue with their algorithm as pointed out by del Pino, Seiler and
Lyubashevsky is that for challenges x1, . . . , xi−1, the prover may only have negli-
gible success probability if the first i − 1 challenges are fixed to x1, . . . , xi−1, even
though the overall success probability of the prover might be non-negligible if all
challenges are generated uniformly at random. As a consequence, in case such
x1, . . . , xi−1 is chosen, the tree-finder algorithm may run for an arbitrarily long
time.

To resolve this issue, del Pino, Seiler and Lyubashevsky’s idea was then to
estimate the probability that a certain xi leads to a success probability that is not
too small compared to the success probability of the prover with fixed x1, . . . , xi−1
before appending xi to the tree, and then recursively call the tree-finder algorithm.
More precisely, if εi (x1, . . . , xi−1) denotes the success probability of the prover
with the first i−1 challenges fixed to x1, . . . , xi−1 if i > 1 (set ε1 = ε), their idea is
to generate a challenge xi that is distinct from its siblings and estimate whether
εi+1(x1, . . . , xi) ≥ εi (x1, . . . , xi−1)/α for some constant α > 1 (to conduct their
analysis, α must actually be greater than (1−5/P)−2). To perform this estimation
for a generated xi, the tree-finder algorithm runs the protocol with the first
i challenges fixed to x1, . . . , xi a certain number Ti = O

(
nlogm+logαTProve∗/ε

)
of times and counts the number of successful executions. Challenge xi is then
appended to the tree only if this number is higher than a certain threshold. If
the threshold is not reached, the algorithm generates a fresh challenge xi.

Using probabilistic methods, they attempt to show that the probability that
with this number Ti of protocol runs, for a certain challenge xi, (1) the probability
that εi+1 ≥ εi/α and that the threshold is reached is high, and (2) the probability
that εi+1 < εi/α although the threshold is reached is low. The second part lead
to a proof that the probability that no node in the final tree is labeled with a
challenge xi such that εi+1 < εi/α is high.

However, an issue in the proof of the first step is in the use of heavy-row
arguments: the authors claimed that the probability that xi is such that εi+1 ≥
εi/α is at least 1 − 1/α, which is not the guaranteed by heavy-row arguments.
Instead, heavy-row arguments guarantee that the probability that xi is such that
εi+1 ≥ εi/α conditioned on the event in which xi leads to a success is at least
1 − 1/α. Without the conditioning, the best known bound is only εi (1 − 1/α).

We thus propose to modify their tree-finder algorithm as follows: the algo-
rithm does not generate a challenge xi and start counting, but instead generates
xi and runs the protocol until the end. If the execution is not successful, then
the algorithm generates a fresh challenge xi. If the execution is successful, then
the algorithm proceeds with the counting. This way, when the algorithm starts

43



counting, xi is already known to lead to a success and their running-time anal-
ysis applies. The expected running time to generate a value xi that leads to a
success is TProve∗/εi.

Now recall that a challenge xi is only appended to the tree if it subsequently
leads to a high number of successes. The analysis of del Pino, Seiler and Lyuba-
shevsky then continued by showing that, in expectation, a constant of xi must
be drawn before appending one to the tree, assuming that only xi such that
εi+1 ≥ εi/α are chosen. Therefore, the expected running time until our algorithm
appends a challenge xi to the tree is of order O((1/εi +Ti)TProve∗ ) in expectation;
and since εi ≥ ε/αi−1, 1/εi = o(Ti), and O((1/εi +Ti)TProve∗ ) = O(Ti). Their anal-
ysis of the expected running time of the whole tree-finder algorithm in case only
challenges such that εi+1 ≥ εi/α are chosen then shows that the expected time
of our algorithm is of order O

(
nlogm+logα log(n + 1)TProve∗/ε

)
; and our algorithm

certainly returns a challenge-tree with transcripts that are all accepting, not just
with probability 1/4 as theirs.

5 Succinct Arguments for Multi-Integer Commitments

This section gives several succinct protocols related to multi-integer commit-
ments. The first protocol allows to succinctly argue knowledge of an opening
to a multi-integer commitment, and is based on the same halve-then-recurse
techniques as in Section 4. Then comes a protocol that allows to aggregate ar-
guments of knowledge of openings to several commitments (and the techniques
used in it can be applied to additively-homomorphic commitment scheme in
public-order groups). With the same aggregation techniques, we then show how
to obtain short parameters for the commitment scheme in Section 3.2 and the
inner-product argument in Section 4. Finally, we show how to succinctly argue
knowledge of the same opening to several commitments in different bases.

5.1 Succinct Arguments of Openings

It is worth noting that the halving techniques used in protocol Π′ can also be used
to argue knowledge of openings to the multi-integer commitments presented in
Section 3.2. To argue knowledge of integers a1, . . . , an, r (with n ≥ 2) of absolute
value less than 2` and such that C2 = (gahr )4 for positive integers n and `, group
elements h, g1, . . . , gn,C ∈ G and a proof πcrs that g ∈

√
〈h2〉

n
, the prover starts

by verifying πcrs and aborts if it is invalid. Next, she computes U ← g1
a2 hsU

and V ← g2
a1 hsV for sU and sV uniformly random over the same range as in

protocol Π′, and sends them to the verifier. The verifier chooses x ←$ ~0; P − 1�,
sends it to the prover, and this latter computes a′ ← a1+ xa2. They then recurse
(without verifying πcrs) with dn/2e as new vector-length, gx1 ◦ g2 and h as new
bases, Ux2

CxV as commitment, and the prover uses a′ and sv + r x + sU x2 as new
witness. When the vector length is 1, they run the protocol in Section 3.2.

As in the inner-product protocol, the bit communication complexity of the
prover is of the order of O (` + log(n)bG) bits.

44



This should compared with the complexity of the straightforward protocol
which consists in adapting the protocol in Section 3.2 with vector of length 1 to
the case of vectors of length n. The bit complexity of this latter protocol is of
order O (bG + n (` + λ + log P)), and O (n (` + λ + log P)) with the Fiat–Shamir
heuristic.

5.2 Aggregating Arguments of Openings to Integer Commitments

This section shows how to aggregate several arguments of knowledge of openings
to integer commitments, i.e., given m commitments C1, . . . ,Cm, how to argue at
once knowledge of integer vectors aj ∈ Zn and integers r j such that C2

j = (ga j hrj )4

for all j ∈ ~m�. These techniques can also be applied to Pedersen commitments
in public-order groups, in which case the size of the proof is constant in m (the
only effect of m is on the extraction probability).

More formally, the protocol is for the relation
{(
C ∈ Gm, ` ∈ N∗; a1, . . . , am ∈ Z

n, r ∈ Zm
)

: ∀ j ∈ ~m� C2
j =

(
ga j hrj

)4
∧


[
aj r j

]∞ < 2`
}
,

given parameters (G, P, h, n,m) and (g, πcrs ) ∈ Gn × {0, 1}∗ as CRS. The protocol
satisfies culpable extractability w.r.t. the language define similarly but without
the bounds on the witness.

The construction is generic in the sense that it builds upon any protocol for
a single commitment. Of course, aggregating arguments is only interesting if it
leads to savings in terms of communication size and computational costs com-
pared to m parallel executions of the protocol for a single inner product. Applied
to the protocol in Section 4.1, the number of group elements sent by the prover
in the aggregated argument is 2dlog(n)e + 1 instead of m(2dlog ne + 1) group ele-
ments for m parallel executions of the protocol, but the last two integers in the
aggregated argument are mP times larger. Moreover, the verification of the ag-
gregated argument requires a single multi-exponentiation instead of m, but with
exponents that are mP times larger than for m separate multi-exponentiations.

Protocol. The main building block is a protocol Π for the relation in Sec-
tion 5.2. At the beginning of the protocol, the verifier chooses integers ξ1, . . . , ξm
←$ ~0; P − 1� and sends them to the prover. The prover and the verifier then
compute Cξ1

1 · · ·C
ξm
m . With (G, P, h, n) as parameters, and g and the proof that g ∈√

〈h2〉
n
as CRS, the parties run Π on the input of Cξ1

1 · · ·C
ξm
m and `+blog(mP)c+1

as maximum length (if ` is the maximum bit length of the integers in the wit-
ness); and the prover uses ξ1a1 + · · · + ξmam ∈ Zn and ξmr1 + · · · + ξmrm ∈ Z as
witness.

The underlying idea is simple: if the prover indeed knows openings to all
commitments, then this latter should be able to open random linear combination
of C1, . . . ,Cm, and this is enough to convince the verifier as the prover can guess
the combination ξ1, . . . , ξm in advance with only negligible probability.

45



Alternatively, the verifier could send a single integer ξ ←$ ~0; P − 1�, which
would define a vector Ξ B

[
1 ξ · · · ξm−1

]
. Although this would reduce the com-

munication from the verifier to the prover, the integers in the witness would be
Pm times larger instead of mP times. In case optimizing the communication size
from the prover is more important (e.g., for non-interactive arguments with the
Fiat–Shamir heuristic, although the computational cost of the prover increases),
the first variant is preferable. It should be noted that in public-order groups, one
should rather favor the second variant since the integers can always be reduced
modulo the group order.

Completeness and Security. The protocol is complete by construction. More-
over, if Π is (T,TSim, ε)-honest-verifier zero-knowledge, then so is the protocol.

As for extractability, note that for any matrix Ξ ∈ Zm×m, denoting by ej ∈ Z
m

the canonical row vector with 1 at position j and 0 elsewhere for j ∈ ~m�,
and by adj(Ξ) the adjugate matrix of Ξ, the vector xj B ej adj(Ξ) satisfies
xjΞ = ej adj(Ξ)Ξ = det(Ξ)ej since adj(Ξ)Ξ = det(Ξ)Im. Assuming that for all

i ∈ ~m�, the equality
(
Cξi,1
1 · · ·Cξi,m

m

)2
= (gai hri )4 holds for some integer vectors

ai ∈ Z
m and integers ri, it follows that C2detΞ

j =
(
g
∑m

i=1 x j, iai h
∑m

i=1 x j, iri
)4

for all
j ∈ ~m�.

Consider then an extractor which first generates Ξ1 ←$ ~0; P − 1�m. If Ξ1 =

0Zm , then it generates a new vector Ξ1 and otherwise runs the protocol with
Prove∗ with Ξ1 as first message from the verifier. If the protocol execution fails,
then the extractor rewinds the Prove∗ to the beginning of the protocol and
generates a fresh vector Ξ1.

Note that conditioned on the event in which Ξ1 , 0Zm , Prove∗ convinces
the verifier with probability at least ε − P−m. Moreover, conditioned on the first
message Ξ1, a heavy-row argument implies that with probability at least 1/2,
the row vector Ξ1 is such that the verifier of the sub-protocol Π is convinced
with probability at least (ε − P−m)/2 on input Cξ1,1

1 · · ·Cξ1,m
m .

The extractor then runs Π.E on Prove∗ from the computation step after it
has received Ξ1. If Π.E does not return a value in at most twice the expected
value of its running time with a prover that succeeds with probability at least
(ε − P−m)/2, the extractor generates a new vector Ξ1 and proceeds as before.
Denote by H (as in “heavy”) the event in which Ξ1 is such that the verifier of
Π is convinced with probability at least (ε − P−m)/2, and by T the event in
which Π.E returns a value in at most twice the expected value of its running
time with a prover that succeeds with probability at least (ε − P−m)/2 for a
given Cξ1,1

1 · · ·Cξ1,m
m (Markov’s inequality implies that this event occurs with

probability at most 1/2). The extractor returns a value in the event H ∩ T and
Pr[T ∩ H] = Pr[T |H] Pr[H] ≥ 1/4. Therefore, the generator restarts from the
generation of Ξ1 an expected number of times at most 4 and at each repetition,
its running time is at most ε̃−1(1− P−m)−1TProve∗ + 2TΠ.E (ε̃/2), with ε̃ B ε − P−m

and TΠ.E (ε̃/2) the expected running time of Π.E given a prover that succeeds
with probability at least ε̃/2. The term TProve∗ comes from the fact that the

46



generator must determine whether Ξ1 leads to a success. The expected running
time is at most 4

(
ε̃−1(1 − P−m)−1TProve∗ + 2TΠ.E (ε̃/2)

)
.

Now, for i ∈ {2, . . . ,m}, the extractor generates Ξi ←$ ~0; P − 1�m. If Ξ1, . . . ,Ξi

are linearly dependent over Q, then the extractor generates a new vector Ξi ←$

~0; P − 1�m. Slinko [33, Corollary 2] proved that this event occurs with proba-
bility at most P−m+i−1. It follows that for fixed Ξ1, . . . ,Ξi−1, conditioned on the
event in which Ξ1, . . . ,Ξi are linearly independent, Prove∗ convinces the veri-
fier with probability at least ε − P−m+i−1. The extractor proceeds as in the case
i = 1 but with P−m+i−1 ≤ P−1 instead of P−m. Note, however, that the extractor
must determine whether Ξ1, . . . ,Ξi are linearly independent, and it can do so
by computing its rank, i.e., the rank of a matrix with coefficient in ~0; P − 1�.
Using Bareiss algorithm [3] which requires O(m3) arithmetic operations on in-
tegers less than O

(
mm/2Pm

)
, i.e., it can be done in time O

(
m5(log m + log P)2

)
.

Besides, the extractor must determine whether Ξi leads to a success, which
takes time at most TProve∗ . At any step i ∈ ~m�, the expected running time is
thus at most 4

(
ε̃−1O

((
1 − P−1

)−1 (
m5(log m + log P)2 + TProve∗

))
+ 2TΠ.E (ε̃/2)

)
for ε̃ B ε − P−1.

Consequently, the extractor can obtain vectors ai ∈ Z
n and integers ri such

that
(
Cξi,1
1 · · ·Cξi,m

m

)2
= (gai hri )4 for all i ∈ ~m� and for some Ξ ∈ Zm×m such

that detΞ , 0 in expected time at most

4m
(
O

(
ε̃−1

(
1 − P−1

)−1 (
m5(log m + log P)2 + TProve∗

))
+ 2TΠ.E (ε̃/2)

)
.

Lemma 4.4 then shows that with probability at least

1 −
(
1/2 − 2−λ − (1 − µ)

)−1 (
εord + εstrg + 1 − µ

)
,

detΞ divides 2
∑m

i=1 xi, jai and 2
∑m

i=1 xi, jri for all j ∈ ~m� under the
(
T strg, εstrg

)
-

strong-root assumption, the
(
Tord, εord

)
-small-order assumption, the low-dyadic-

valuation assumption and the µ-assumption over G, if TΠ.E (ε̃/2) plus the time
to compute 2

∑m
i=1 xi, jai and 2

∑m
i=1 xi, jri, which is denoted T , is such that n(bG +

log n)TTG + (T + bG + log n) log(P)TG ≤ Ω
(
min

(
T strg,Tord

))
. The coefficient of

adj(Ξ) are of order O(mPm) in absolute value, and the components of ai and ri
are at most 2O(TΠ.E (ε̃/2)) in absolute value. Therefore, 2

∑m
i=1 xi, jai and 2

∑m
i=1 xi, jri

can be computed in time O (nmTΠ.E (ε̃/2)(log m + m log P)) .

5.3 Shorter Parameters for Integer Commitments

The keys of the multi-integer commitment scheme in Section 3.2 include a proof
that that they were well-formed, i.e., that if the scheme allows to commit to
m integers, then the group elements g1, . . . , gm in the key are all in

√
〈h2〉 for

h ←$ G. One can of course run m times in parallel the protocol in Section 3.2,
which would result in arguments of O(mbG) bits. Alternatively, one could use
the same techniques as in Section 5.2 to aggregate these arguments and obtain
a single argument of O(bG + log m) bits.

47



In more detail, the protocol is a proof system for the language
{
g1, . . . , gm ∈ G, ` ∈ N

∗ : ∃α1, . . . , αm ∈
�
0; 2`
�
,∀i ∈ ~m� gi = hαi

}
,

given parameters (G, P, h,m) and the empty string as CRS. It guarantees that
gi ∈

√
〈h2〉 for all i ∈ ~m�. At the beginning of the protocol, the verifier chooses

integers ξ1, . . . , ξm ←$ ~0; P − 1� and sends them to the prover. The prover and
the verifier compute g

ξ1
1 · · · g

ξm
m , and run the protocol of Section 3.2 (i.e., for the

case m = 1) on the input of gξ11 · · · g
ξm
m and ` + blog(mP)c + 1 as maximum bit

length; and the prover uses ξ1x1+· · ·+ξmxm ∈ Z as witness. With the Fiat–Shamir
heuristic, the proof then consists of 2 blog Pc + ` + blog(mP)c + λ + 4 bits. For
` = bG + λ, that is O(bG + log m) bits (recall that P ≤ 2bG and bG = Ω(λ)).
The same arguments as in Section 5.2 imply that this protocol is complete,
statistically honest-verifier zero-knowledge and extractable.

Similarly, the CRS of the inner-product protocol in Section 4.1 includes an
argument that the bases g and h ∈ Gn (for some n ∈ N∗) are in

√
〈 f 2〉

n
for f ←$ G.

The same technique can then be used to obtain an argument of O(bG + log n)
bits instead of O(nbG) bits.

5.4 Succinct Base-Switching Arguments

This section shows how to succinctly argue knowledge of an integer vector a ∈
Zn and of integers r1, . . . , rm such that (a, r1) , . . . , (a, rm) respectively open to
commitments C1, . . . ,Cm w.r.t. bases (g1, h) , . . . , (gm, h) ∈ Gn+1. Said otherwise,
the same vector a is committed in m different bases. Formally, the protocol is
for the relation{(

C ∈ Gm, ` ∈ N∗; a ∈ Zn, r ∈ Zm
)

: ∀ j ∈ ~m� C2
j =

(
gj

ahrj
)4
∧


[
a r

] < 2`
}
,

given parameters (G, P, h, n,m) and (g1, . . . , gm, πcrs ) ∈ Gm×n × {0, 1}∗ as CRS,
and πcrs is an argument that each of the components of all the gj vectors are in√〈

h2
〉
.

The idea underlying the protocol is again to use linear combinations to reduce
C1, . . . ,Cm to a single group element, and run the succinct argument for multi-
integer openings on the linear combination of the basis. More precisely, the
verifier generates ξ ←$ ~0; P − 1�m and sends it to the prover. Both parties
compute C ← Cξ = Cξ1

1 · · ·C
ξm
m and g ← g

ξ1
1 ◦ · · · ◦ g

ξm
m . They then run the

protocol for multi-integer openings on the input of C and g, and the prover uses
a and ξ1r1 + · · · + ξmrm as witness. The new witness is then at most mP times
larger than the original one.

The completeness and the zero-knowledge property of the scheme are imme-
diate. Concerning its extractability, notice that if for all i ∈ ~m� one can obtain
vectors ai ∈ Zm and integers r j such that C2ξi =

(
g
ξi,1
1 ◦ · · · ◦ g

ξi,m
m

)4ai
h4ri , with

ξ1, . . . , ξm vectors in ~0; P − 1�m that are linearly independent over Q, then one
can first compute xj B ej adj(Ξ), where ej ∈ Zm denotes the canonical row vector
with 1 at position j and 0 elsewhere for all j ∈ ~m�, Ξ denotes the matrix with

48



rows ξ1, . . . , ξm and adj(Ξ) its adjugate. Then, since xjΞ = det(Ξ)ej , it follows
that for all j ∈ ~m�,

C2detΞ
j =

m∏
i=1

(
g1
ξi,1 ◦ · · · ◦ gm

ξi,m
)4x j, ia j h

∑
i 4x j, irj

=

m∏
i=1

(
g1

x j, iξi,1 ◦ · · · ◦ gm
x j, iξi,m

)4a j h
∑

i 4x j, irj

=
(
g1

∑
i x j, iξi,1 ◦ · · · ◦ gm

∑
i x j, iξi,m

)4a j h
∑

i 4x j, irj

= gj
4det(Ξ)a j h

∑
i 4x j, irj .

The second and third equalities respectively rely on the fact that for any two vec-
tors e, f ∈ Gn and any vector c ∈ Zn, (e ◦ f )c = ecf c, and for any two integers c, d,
ec ◦ ed = ecd. Using rewinding techniques similar to those in the extractability
proof the aggregated arguments then shows that the protocol is extractable.

6 Succinct Argument for Diophantine Equations

This sections gives a succinct argument to argue satisfiability of Diophantine
equations. Although Davis, Putnam, Robinson and Matiyasevich [29] showed
that there does not exist an algorithm that can decide whether any Diophantine
equation has a solution (thereby giving a negative answer to Hilbert’s tenth
problem), one can argue in zero-knowledge knowledge of a solution, if a solution is
known to the prover, which convinces the verifier that the equation is satisfiable.

Damgård and Fujisaki gave [15, Section 4.2] a protocol to argue, given three
commitments C1,C2,C3 computed with their scheme, knowledge of openings
x1, x2, x3 such that x3 = x1x2. Therefore, to show the satisfiability of an ν-
variate polynomial

∑
i∈Nν aix

i1
1 · · · x

iν
ν of total degree δ using their scheme, if the

polynomial can be computed in M (ν, δ) multiplications, then one would have to
compute 2M (ν, δ) + 1 integer commitments and compute M (ν, δ) multiplication-
consistency arguments. As Damgård and Fujisaki’s scheme is additively homo-
morphic, the verifier can verify addition itself.

Computing a monomial xi11 · · · x
iν
ν can be done in at most δ−1 multiplications

since the polynomial is of total degree δ. Without any further restriction on the
polynomial than its number of variables ν and its total degree δ, the best bound
on the number of multiplications (between variables) one can give is δ − 1 as δ
could be less than ν, and all ik at most 1. Evaluating an ν-variate polynomial
of total degree δ thus a priori requires (δ − 1)

(
ν+δ
δ

)
multiplications as such a

polynomial has at most
(
ν+δ
δ

)
monomials. This can be improved to

(
ν+δ
δ

)
−ν−1 ≤(

ν+δ
δ

)
multiplications by evaluating all possible monomials (even those which

may have coefficient 0) recursively by increasing degree and storing the previous
evaluations. There exist more efficient methods for specific polynomials (e.g.,
recursive Horner’s method for polynomials with a small numbers of monomials

49



of large degree) but no better upper-bound on the number of multiplications is
known for generic polynomials.

Consider a prover that wants to argue the satisfiability of a (generic) ν-
variate polynomial of total degree δ with integer coefficients whose absolute
value is upper-bounded by 2H for some integer H. The communication complex-
ity of the arguments of the first multiplication gates are of order Ω(log P +
` + bG) if ` denotes the maximum bit length of any coordinate in the so-
lution. Since the total degree of the polynomial is δ, the bit length of the
witness at the maximum-depth multiplication gates can be as large as δ` +
log

((
ν+δ
δ

))
H and the communication complexity of the argument of the satis-

fiability of the Diophantine equation (i.e., the proof that the polynomial actu-
ally evaluates to 0) is Ω

(
δ` + log

((
ν+δ
δ

))
H + bG

)
. The overall communication

complexity with Damgård and Fujisaki’s scheme is therefore upper-bounded by
O

((
ν+δ
δ

) (
δ` + log

((
ν+δ
δ

))
H + bG

))
and lower-bounded by Ω

((
ν+δ
δ

)
(` + bG)

)
for

generic polynomials.
This section shows how to argue the satisfiability of Diophantine equations

with a communication complexity of order O (δ` +min(ν, δ) log (ν + δ) bG + H) .

6.1 Arguments via Polynomial-Degree Reductions

Our approach to argue for Diophantine satisfiability is different and is inspired
by Skolem’s method [32]. The idea is to give a systematic method to turn any
polynomial equation to another of degree at most 4 by increasing the number of
variables so that the satisfiability of one polynomial implies that of the other. The
resulting polynomial is such that its satisfiability is equivalent to the satisfiability
(over the integers) of a Hadamard product of the form aL ◦aR = aO and of linear
equations with the entries of aL, aR and aO as indeterminate. The length of
these latter vectors is the number of variables in the resulting polynomial, and
if the original polynomial is ν-variate and of total degree at most δ, then the
new polynomial has at most νblog δc + (δ − 1)µ variables, where µ ≤

(
ν+δ
δ

)
is the

number of monomials in the original polynomial.
On this account, if one can argue for the satisfiability of such Hadamard prod-

ucts and linear constraints, then one can argue for the satisfiability of the original
polynomial. In the protocol given in Section 6.2, the prover only sends logarith-
mically many group elements in the length of the vectors in the Hadamard
product, and a constant number of integers. The bit length of those integers is
upper-bounded by O (δ` + bG +min(ν, δ) log (ν + δ) log P + H) if the bit length
of the witness is upper-bounded by ` and the bit length of each coefficient of the
polynomial is at most H.

Reducing Arbitrary Polynomials to Polynomials of Degree at most 4.
We now give a systematic procedure to reduce any Diophantine equation into
an equation of degree at most 4 of which the satisfiability can be reduced to the
satisfiability of a Hadamard product and linear constraints; and the Hadamard

50



product and the constraints can be read immediately from the resulting poly-
nomial. The presentation is gradual as it starts with ν-variate affine equations,
proceeds with ν-variate Diophantine equations in which the degree in each vari-
able is at most 1, further tackles univariate polynomials of arbitrary degree and
then considers arbitrary Diophantine equations. The method applies to every
multivariate integer polynomial, but for specific polynomials, more astute tech-
niques could lead to a smaller number of new variables and/or constraints.

Step 1–Affine Equations. Given an integer polynomial a1x1+ · · ·+ aν xν + b ∈
Z[x1, . . . , xν], set aO ←

[
x1 · · · xν

]
and for all i ∈ ~ν�, set aL,i = 1 and

aR,i = xi. The equation a1x1 + · · · + aν xν + b = 0 is satisfied if and only if〈[
a1 · · · aν

]
, aO

〉
= −b and aL ◦ aR = aO. Note that no variable or linear

constraint was added to the system of equations.
Step 2–Restricted Diophantine Equations. Consider an integer polynomial∑

i∈Nν aix
i1
1 · · · x

iν
ν ∈ Z[x1, . . . , xν] of total degree δ such that ai , 0Z =⇒ i ∈

{0, 1}ν, i.e., the polynomial is of degree at most 1 in each variable. For all
i ∈ Nν \ {0Nν } such that ai , 0Z, let { j1, . . . , jw(i) } be the subset of ~ν� such
that j1 < · · · < jw(i) and i j1 = · · · = iw(i) = 1, with w(i) denoting the Ham-
ming weight of i (which is necessarily less than δ). If w(i) > 1, introduce new
variables

ui,1 ← x j1 x j2, ui,2 ← ui,1x j3, . . . , ui,w(i)−1 ← ui,w(i)−2x jw (i),

with the convention that ui,0 B x j1 . Note that
∑

i∈Nν aix
i1
1 · · · x

iν
ν = 0 if and

only if ∑
i∈Nν : ai,0Z
w(i)>1

w(i)−1∑
k=1

(
ui,k − ui,k−1x jk+1

)2
+ *

,

∑
i∈Nν

aiui,w(i)−1+
-

2

= 0,

with the convention that u0Nν ,−1 = 1. This latter polynomial is of degree 4,
and the equation is satisfied if and only if the linear equation

∑
i∈Nν aiui,w(i)−1 =

0 is as well as the constraints ui,k − ui,k−1x jk+1 = 0. Set then

aL ←
[
x j1 ui,1 · · · ui,w(i)−2

]

aR ←
[
x j2 x j3 · · · x jw (i)

]

aO ←
[
ui,1 ui,2 · · · ui,w(i)−1

]
,

and introduce the linear constraints aL,i+1 − aO,i = 0 for i ∈ {1, . . . ,w(i) − 2}.
The procedure introduces at most δ − 1 new variables and δ − 2 new linear
constraints per monomial, and since there are at most

(
ν+δ
δ

)
monomials in an

ν-variate polynomial of total degree δ, that is at most (δ − 1)
(
ν+δ
δ

)
variables

and (δ − 2)
(
ν+δ
δ

)
constraints.

Step 3–Univariate Polynomials. Given a polynomial Z = a0 + a1x + · · · +
aδ xδ ∈ Z[x] of degree δ ≥ 2, introduce variables

u1 ← x2, u2 ← u2
1, . . . , u blog δc ← u2

blog δc−1.

51



Now notice that a0 + a1x + · · · + aδ xδ = 0 if and only if

(
u1 − x2

)2
+

blog δc∑
i=2

(
ui − u2

i−1

)2
+

(
Z ′(x, u1, . . . , u blog δc )

)2
= 0,

where Z ′(x, u1, . . . , u blog δc ) is blog δc + 1-variate integer polynomial in which
the degree of each variable is at most 1, i.e., if and only if Z ′(x, u1, . . . , u blog δc ) =
0 and the constraints u1 − x2 = 0 and ui+1 − u2

i = 0 are satisfied.
Since

δ∑
i=0

ai xi = a0 +

blog δc∑
k=0

2k+1−1∑
i=2k

ai xi = a0 +

blog δc∑
k=0

2k+1−1∑
i=2k

ai xi0ui11 · · · u
ik−1
k−1

uk,

where i0, . . . , ik−1 is the binary decomposition of i and ai B 0 for i > δ, this
give an explicit expression for Z ′.

Set then aL ← aR ←
[
x u1 · · · u blog δc−1

]
and aO ←

[
u1 u2 · · · u blog δc

]
,

and introduce constraints

aL,i+1 − aO,i = aR,i+1 − aO,i = 0

for all i ∈ ~blog δc − 1�.
As the second step shows that the satisfiability of Z ′ can be reduced

to a Hadamard product and linear constraints, the satisfiability of Z can
be reduced to a Hadamard product and linear constraints. This procedure
introduces blog δc new variables and 2 (blog δc − 1) new linear constraints. It
is important for Step 4 to remark that the number of monomial of Z ′ is at
most the same as the number of monomials in Z.

Step 4–Arbitrary Diophantine Equations. For any integer polynomial Z =∑
i∈Nν aix

i1
1 · · · x

iν
ν ∈ Z[x1, . . . , xν] (for ν ≥ 2) of total degree δ, apply Step 3

to Z considering it as a polynomial in Z[x2, . . . , xν][x1], i.e., a polynomial in
x1 with coefficients in Z[x2, . . . , xν]. Let Z ′ be the resulting polynomial with
coefficients in Z[x2, . . . , xν] and of degree at most 1 in each variable as in Step
3. Repeat Step 3 with Z ′ and variable x2. After Step 3 has been repeated for
each x1, . . . , xν, at most νblog δc new variables and 2ν(blog δc −1) new linear
constraints have been introduced, the resulting polynomial is of degree at
most 1 in all variables and has coefficients in Z. Concerning its total degree,
note that during the process, for each monomial xi11 · · · x

iν
ν , the term xik

k
is

replaced by at most one variable if ik ≤ 2 and by the product of log ik+1 ≤ ik
variables if ßk > 2 for all k ∈ ~ν�, so the total degree remains at most δ.
Now apply then Step 2 to the resulting polynomial.

In summary, the procedure reduces the satisfiability of any polynomial in
Z[x1, . . . , xν] of total degree δ with µ monomials (µ ≤

(
ν+δ
δ

)
necessarily) to the

satisfiability of a Hadamard product aL ◦ aR = aO, with aL, aR and aO integer
vectors of length at most νblog δc + (δ−1)µ, and Q linear constraints of the form

〈wL,q, aL〉 + 〈wR,q, aR〉 + 〈wO,q, aO〉 = cq

52



for all q ∈ ~Q� with Q ≤ 1 + 2ν(blog δc − 1) + (δ − 2)µ and with wL,q,wR,q,wO,q

integer vectors and cq ∈ Z. The coefficients of the linear constraints introduced
by the procedure are in {−1, 0, 1}, except for one of which the coefficients are the
coefficients of the original polynomial.

Example. As a simple illustration of the procedure, consider the polynomial
2x3+xy−1. The procedure introduces new variables u ← x2, v ← xy and w ← ux,
and the equation 2x3+ xy−1 = 0 is satisfiable if and only if

(
u − x2

)2
+ (v − xy)2+

(w − ux)2 + (2w + v − 1)2 = 0 also is, which allows to write a Hadamard product
and linear constraints which are satisfiable if and only if this latter equation is.

Diophantine Equations as Circuits. It is worth noting that any polynomial
in Z[x1, . . . , xν] can naturally be viewed as an arithmetic circuit with integer
inputs, and addition gates correspond to addition between two integers and
similarly for multiplication gates. Nevertheless, different circuits can compute
the same polynomial. For instance, the polynomial xy + 2y = y(x + 2) can be
computed by multiplying x and y, multiplying y by 2 and adding the result, or
by adding 2 to x and multiplying the result by y. The fewer multiplication gates
there are in a circuit that represents a polynomial, the smaller the communication
cost of the protocol for its satisfiability will be. In any case, one can always use
the circuit directly inferred by its representation as sum of monomials.

Bootle, Cerulli, Chaidos, Groth and Petit [8, Appendix A] described a proce-
dure to turn any arithmetic circuit over Zp into a circuit with only multiplication
gates together with a list of linear constraints to ensure consistency between the
outputs of a multiplication gate and the inputs of the gates at the next depth
level of the circuit. The procedure replaces addition gates and multiplication
by a constant with linear constraints and only retains multiplication gates. It
ensures that the new circuit and the constraints are satisfiable if and only if the
original circuit is satisfiable.

More precisely, their procedure converts any arithmetic circuit with n mul-
tiplication gates into a Hadamard product aL ◦ aR = aO, with aL, aR and aO in
Znp, and Q ≤ 2n linear constraints of the form

〈wL,q, aL〉 + 〈wR,q, aR〉 + 〈wO,q, aO〉 = cq

for q ∈ ~Q�, with wL,q,wR,q,wO,q ∈ Z
n
p and cq ∈ Zp. The vectors aL, aR respec-

tively denote the vectors of left and right inputs to the multiplication gates, and
aO the vector of outputs.

Unfortunately, their procedure cannot be directly use for circuits over the
integers as it requires to re-write a linear equation y = Ax (with indeterminate
x) as an equation z = A′x, with A′ in reduced row-echelon form obtained from
A via Gaussian elimination. Computing A′ may thus possibly require to invert
entries of A. Yet, for any matrix A ∈ Zm×n, there exist [1, Theorem 14.4.6]
invertible integer matrices Q ∈ GLm(Z) and P ∈ GLn(Z) such that Q−1AP is a
matrix of the form diag(d1, . . . , dk, 0, . . . , 0), with all di positive integers such that

53



d1 | d2 | · · · | dk . Given this observation, the equation y = Ax can be re-written
as z = A′x, with A′ of the previous form, i.e., zi = di xi for i ∈ ~k�, and the
circuit cannot be satisfied if zi , 0 for any k > i. By introducing new variables
zi B di xi, and increasing the number of constraints to include the constraints
zi − di xi = 0, one could probably proceed as they did and have at most Q ≤ 3n
constraints to satisfy.

The issue with using this procedure to argue for Diophantine satisfiability
is that one cannot readily infer the constraints from the initial polynomial and
one must always determine them on a case-by-case basis. Besides, if one uses the
circuit directly inferred by the monomials of the polynomial without introducing
new variables to decrease its degree (which would amount to modifying the
circuit), computing xδ1 for instance requires δ−1 multiplications instead of blog δc
as with our method.

6.2 Protocol

Section 6.1 shows how to reduce the satisfiability of any polynomial in Z[x1, . . . , xν]
of total degree δ with µ monomials (µ ≤

(
ν+δ
δ

)
necessarily) to the satisfiability of

a Hadamard product aL ◦ aR = aO, with aL, aR and aO integer vectors of length
at most νblog δc + (δ − 1)µ, and 1 + 2ν(blog δc − 1) + (δ − 2)µ linear constraints
of the form

〈wL,q, aL〉 + 〈wR,q, aR〉 + 〈wO,q, aO〉 = cq

for all q ∈ ~Q�, with wL,q,wR,q,wO,q integer vectors and cq ∈ Z.
To argue for Diophantine satisfiability, it thus suffices to give a protocol pro-

tocol such relations. The following protocol is actually for more general relations
in which variables of the polynomial can be committed (with the scheme in
Section 3), which allows to argue on committed values while saving the cost of
encoding the commitment scheme as an integer polynomial. More precisely, the
protocol is for the relation
{(
WL,WR,WO ∈ Z

Q×n,WV ∈ Z
Q×m,V ∈ Gm, c ∈ ZQ, ` ∈ N∗; aL, aR, aO ∈ Z

n, v, ρ ∈ Zm
)

:

aL ◦ aR = aO ∧WLa
T
L +WRa

T
R +WOa

T
O =WVv

T + cT ∧ ∀i ∈ ~m�V2
i = (evi f ρi )4

}

given parameters (G, P, n,Q,m, f ) such that f ∈ G and n,Q,m ∈ N∗, and (g, h, πcrs )
∈ G2n × {0, 1}∗. For fixed parameters n, Q and m, Section 6.1 shows that the pro-
tocol allows to prove the satisfiability of any polynomial in Z[X1, . . . , Xν] of total
degree δ and with µ monomials if νblog δc+ (δ−1)µ ≤ n and 1+2ν (blog δc − 1)+
(δ − 2)µ+m ≤ Q. The additional term m in the number of constraints compared
to the previous section is to ensure the consistency between the committed vari-
ables v and the ones in the inner product.

Bünz et al. [10] gave a protocol for a similar relation in Zp instead of Z to
argue for the satisfiability of arithmetic circuits over Zp (without the bounds
related to integer polynomials as it was not their target) that is inspired by the
one of Bootle et al. [8]. The general idea of our protocol for this relation is similar
to the two previous ones, but there are key differences that arise from the fact
that Z is not a field. These differences are highlighted in the overview below

54



Building Blocks. The protocol builds mainly on the protocol on Figure 2, and on
three auxiliary protocols: a protocol Πcrs to prove that the CRS is well-formed
(as in Section 5.3), a protocol Π′ to aggregate arguments of opening to integer
commitments (see Section 5.2) and a protocol Π̃ to argue knowledge of an integer
vector that opens to commitments in different bases (Section 5.4), i.e., a base-
switching argument. These arguments may be in the random-oracle model with
an oracle H .

Main Insights. The main idea of the protocol is to reduce the verification of
the Hadamard product and of the linear constraints to a single inner-product
argument over the integers, and then invoke the protocol on Figure 2.

Starting with the product aL ◦aR−aO = 0Zn , the idea to verify all n equations
at once is to consider each entry as the coefficient of a n-variate polynomial of
total degree 1 and evaluate the polynomial at a vector y ←$ ~0; P − 1�n chosen
by the verifier by computing 〈aL ◦aR −aO, y〉. If the polynomial is non-zero, then
the evaluation will be zero will only negligible probability (this is the analog
to the Schwartz-Zippel lemma in integral rings), i.e., 〈aL ◦ aR, y〉 = 〈aO, y〉 with
high probability. The reason we choose y ←$ ~0; P − 1�n instead of choosing
y ←$ ~0; P − 1� and setting y ←

[
1 y · · · yn−1

]
(as did Bootle et al. and Bünz et

al., and in which case the Schwartz-Zippel argument would still apply) is that
it makes the integers in 〈aL ◦ aR, y〉 only mP times larger than those in aL ◦ aR
instead of Pm. Similarly, the Q equations WLa

T
L +WRa

T
R +WOa

T
O =WVv

T + cT

are reduced to a single equation by multiplying on the left by a random vector
z←$ ~0; P − 1�Q. Naturally, the prover must commit to the inputs aL, aR and the
outputs aO in the witness before receiving the values y and z for the Schwartz-
Zippel lemma to apply since the coefficients of the polynomial cannot depend
on the random point at which it is later evaluated. The inputs are committed in
a group element CI with some bases (g, h) and the outputs in a group element
CO with bases g.

Now the goal is to verify both 〈aL ◦ aR − aO, y〉 = 0 and zWLa
T
L + zWRa

T
R +

zWOa
T
O − zWVv

T + zcT = 0 with a single inner-product. To do so, we introduce
another variable X and construct two vectors of polynomials of small degree l (X )
and r (X ) in Zn[X ] of which the inner product is denoted t(X ) B 〈l (X ), r (X )〉.
The coefficients of l (X ) and r (X ) depend on the two relations to be proved,
and are designed so that some coefficients of t(X ) force these relations while
being computable from public values, i.e., so that the verifier can prevent the
prover from cheating. The explicit construction of l (X ) and r (X ) is given below.
After the prover has committed to the coefficient of t(X ) that the verifier cannot
compute on his own, this polynomial is be evaluated at a random point x chosen
by the verifier. However, the prover cannot simply send t(x) to the verifier as
it contains information about the witness, and adding a random integer will
not help as Z is infinite unlike Zp. This is the first main difference with the
argument of Bünz et al. For this reason, the verifier cannot check that t(x)
is correctly computed with the committed coefficients of t, and the argument
cannot be directly reduced to the full inner-product argument in Section 4.

55



Fortunately, the prover can instead argue that she knows the committed co-
efficients of t and the openings to the committed v with the aggregated argument
Π′, assuming that they are committed in the same base (e, f ). After these argu-
ments, we notice that the verifier is able to compute et (x) at any x of her choice
from the coefficients of t that she could compute on her own (and which force the
relations of interest with y and z) and the committed coefficients. The verifier
can then choose x, send it to the prover, and then together proceed with an
argument of knowledge of l (x) and r (x) of which the inner product is committed
to with the base e using the protocol on Figure 2.

It now remains to define such polynomials l (X ) and r (X ) in Zn[X ]. Consider
first the relation with z. The goal is to make use of WV , V and c which are
public to force the equality with the rest that contains private parts by making
sure that the coefficient of t(X ) will be computable from the public information.
As the relation is an inner product itself, notice that aL and zWL cannot be in
the same polynomial, and similarly for aR and zWR and aO and zWO. If the
relation aL ◦ aR − aO = 0Zn were already enforced (with 〈aL ◦ aR − aO, y〉 = 0),
one could put aL and zWR at the same degree in l (X ), put aR and zWL at the
same degree in r (X ), and make sure that the sum of those degrees is equal to
the degree at which a0 is in one of the polynomials (say l (X )), and leverage the
equality aL ◦ aR − aO = 0Zn to eliminate parasite terms that are not publicly
computable. With this reasoning, the minimal degree a0 can be is then 2, and
the others at degree 1.

The relation 〈aL ◦ aR − aO, y〉 = 0Zn must still be proved, and unfortunately
since one cannot invert integers modulo the unknown orders of the bases, this
verification cannot be embedded in the same degrees as the relation with z. It
must then be shifted to higher degrees, and a different polynomial than that of
Bünz et al. must be defined (this is the second main difference). The same rea-
soning as before leads to additional terms aLX3−aOX4 in l (X ) and to additional
terms yX2 − y ◦ aRX3 in r (X ), and the term of degree 6 of t(X ) is then 0.

The polynomials l (X ) and r (X ) are then respectively defined as (aL + zWR) X+
aOX2 + aLX3 − aOX4 and −1n + zWO + (aR + zWL ) X +yX2 +y ◦ aRX3. Note that
for t(X ) B 〈l (X ), r (X )〉 =

∑7
i=1 tiX i with

t2 = 〈aL, zWL〉 + 〈zWR, aR〉 + 〈aO, zWO〉 + 〈zWR, zWL〉

−
〈
aO, 1

n〉 + 〈aL, aR〉
= 〈aL, zWL〉 + 〈zWR, aR〉 + 〈aO, zWO〉 + 〈zWR, zWL〉︸          ︷︷          ︸

δ(z)

= 〈zWV , v〉 + δ(z) and
t6 = 〈aL, y ◦ aR〉 − 〈aO, y〉 = 〈aL ◦ aR − aO, y〉 = 0.

Since c is public and the verifier can compute δ(z) on his own, the verifier can
compute et2 from the commitments V.

A last hurdle arises from the fact the verifier must be guaranteed that the
vector aR in the term y ◦ aRX3 of r (X ) is really the same as the input vector
to which the prover committed to at the beginning of the protocol. In Zp, one

56



can easily do so by simply interpreting a commitment of the form haR as a
commitment to y ◦ aR in the basis

[
hy−11

1 · · · hy−1n
n

]
. Nonetheless, the order of the

group elements hi are unknown in the present case (this is the third major
difference with the proofs in groups of public order). That is why the prover
must commit to aL and y ◦ aR in a new group element C ′I after receiving y
and argue that (aL, aR) opens to both CI and C ′I respectively in the bases (g, h)
and (g, h′) with h′ =

[
hy1
1 · · · hyn

n

]
. To do so, the prover and the verifier run the

base-switching argument Π̃.

Protocol Algorithms. The protocol is denoted Π. The parameter-generation
algorithm and the CRS generator are as in Section 4.1. The algorithms of the
prover and the verifier are given on Figure 3. On that figure, W denotes the
matrix

[
WL WR WO WV

]
. The values `′, ˜̀ and `2 are given in Section 6.2.

Prover-Communication Complexity. To estimate the communication com-
plexity of the entire protocol from Figure 3, we estimate the complexity of each
of its sub-protocol. To do so, one must assess the bit length of the integer wit-
nesses given to each sub-protocol of the protocol on Figure 3, and this requires
to give upper bounds on the polynomial evaluations in the protocol.

Heights of l (X ) and r (X ). Since l (X ) = (aL + zWR) X + aOX2 + aLX3 − aOX4 ∈

Zn[X ], the height (i.e., the maximum of the absolute values of the coefficients)
of the polynomials in l (X ) is at most 2` − 1 + Q ‖W ‖∞ (P − 1) (recall that W =[
WL WR WO WV

]
). Concerning r (X ) = −1n + zWO + (aR + zWL ) X + yX2 + y ◦

aRX3, the height of the polynomials in r (X ) is at most

max
(
2` − 1 +Q ‖W ‖∞ (P − 1), (P − 1)(2` − 1)

)
≤ P

(
2` − 1 +Q ‖W ‖∞

)
.

Prover Complexity in Π′. The height of t(X ) = 〈l (X ), r (X )〉 is at most

7nP
(
2` − 1 +Q ‖W ‖∞ P

) (
2` − 1 +Q ‖W ‖∞

)
.

The bit length of the height of t(X ) is thus at most

3 + blog nc + blog Pc + 2 +max (`, blog(Q ‖W ‖∞)c + 1) + 1

+max (`, blog Pc + blog(Q ‖W ‖∞)c + 2) + 1

= 7 + blog nc + blog Pc +max (`, blog(Q ‖W ‖∞)c + 1)
+max (`, blog Pc + blog(Q ‖W ‖∞)c + 2)

≤ 10 + blog nc + 2 (blog Pc + ` + blog(Q ‖W ‖∞)c) .

Therefore, the maximum bit length of the witness in this call is at most

`′ ← max (bG + λ + 4, 10 + blog nc + 2 (blog Pc + ` + blog(Q ‖W ‖∞)c)) .

Π′ is used to aggregate m+5 arguments, so the bit-communication complexity
of Π′ is of order O (`′ + log(m + 5) + log P + log(n)bG), i.e.,

O (` + log(n)bG + log Q + log(m + 5) + log ‖W ‖∞) .

57



P
(

f , g, h, e, πcrs,W,V, c, `; aL, aR, aO, v, ρ
)

V

aL ◦ aR = aO ∧WLa
T
L +WRa

T
R +WOaT

O
=WVv

T + cT ∧ ∀i ∈ ~m�V2
i =

(
evi f ρi

)4


[
aL aR aO v ρ

]∞ < 2`

return ⊥ if FS .ΠHcrs .Vf
(
(G, P, f , 2n + 1), (g, h, e) , πcrs

)
= 0

ρI , ρO ←$

�
0; 2bG+λ+3

�
CI ←

(
gaLhaR f ρI

)2
CO ←

(
gaO f ρO

)2
CI ,CO
−−−−−−→

y ←$ ~0; P − 1�n

z←$ ~0; P − 1�Q
y,z
←−−

l (X ) ← (aL + zWR ) X + aOX2 + aLX3 − aOX4

r (X ) ← −1n + zWO + (aR + zWL ) X + yX2 + y ◦ aRX3

l (X ), r (X ) ∈ Zn[X ] and 1n B
[
1 1 · · · 1

]
∈ Zn

t(X ) ← 〈l (X ), r (X )〉 =
∑7
i=1 tiX i

t(X ) ∈ Z[X ] and t6 = 0

∀i ∈ ~7� \ {2, 6}, si ←$

�
0; 2bG+λ+3

�
,Ti ←

(
eti f si

)2
Commit to the non-zero coefficients of t(X ) except for t2
ρ′I ←$

�
0; 2bG+λ+3

�
, C′I ←

(
gaLhy◦aR f ρ

′
I

)2
Commit to the inputs in (g, h′) with h′ B

[
hy11 hy22 · · · hynn

]

TB
[
T1 T3 T4 T5 T7

]
,C′I

−−−−−−−−−−−−−−−−−−−−−−−→

(τ′,b′)←〈Π′.Prove(m+5, f ,e,T,V,`′;t,s)
Π′.Vf(m+5, f ,e,T,V,`′)〉
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Argue knowledge of representations of (Ti )i,2,6 and (Vj )mj=1 in (e, f )
if b′ = 0 return ⊥(

τ̃,b̃
)
←

〈
Π̃.Prove

(
2, f , (g,h), (g,h′),CI ,C

′
I ,
˜̀;aL,aR,ρI ,ρ

′
I

)

Π̃.Vf

(
2, f , (g,h), (g,h′),CI ,C

′
I ,
˜̀
)〉

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Argue that CI and C′I are commitments to the same inputs in (g, h) and (g, h′)
if b̃ = 0 return ⊥

x ←$ ~0; P − 1�
x
←−

l, r← l (x), r (x) ∈ Zn

σ ← ρI x + ρ′I x3 + ρO
(
x2 − x4

)
+ s1x + 〈zWV , ρ〉 x2

+
∑

3≤i,6≤7 si xi // ρ =
[
ρ1 · · · ρm

]

WL,WR,WO ← hzWL , gzWR , hzWO

Cl,r ← Cx
I

C′I
x3

C(x2−x4)
O

(
h−1

n
h′x

2

W x
L

W x
R

WO

)2
Cl,r is a commitment to l and r in (g, h)

C = C(x) ← Cl,rT x
1

(
e2(〈z,c〉+δ(z))VzWV

)x2 ∏
3≤i,6≤7 T xi

i

C =
(
glhre〈l,r〉 fσ

)2
run the protocol on Figure 2 on input

(
1, n, f , g, h, e,C, `2; l, r, σ

)
Fig. 3. Succinct Argument of Diophantine-Equation Satisfiability.

58



Prover Complexity in Π̃. The bit length of the witness in this call is at most ˜̀←
max (bG + λ + 4, `). As Π̃ is used to argue about two bases, the bit complexity
of Π̃ is of order O

(
˜̀+ log P + log(n)bG

)
, i.e., O (` + log(n)bG) .

Prover Complexity in the Protocol on Figure 2. The largest absolute value of the
components in l = l (x) and r = r (x) is at most P5

(
2` − 1 +Q ‖W ‖∞

)
. Besides,

the height of the polynomial

σ(X ) B ρI X + ρ′I X3 + ρO
(
X2 − X4

)
+ s1X + 〈zWV , ρ〉 X2 +

∑
3≤i,6≤7

si xi

is at most 2bG+λ+3+mQ ‖W ‖∞ P(2`−1) (given by the term of degree 2). The abso-
lute value of randomness σ is thus at most P8

(
2bG+λ+3 + mQ ‖W ‖∞ P

(
2` − 1

))
.

Therefore, the bit length of the integer witnesses (in absolute value) in the exe-
cution of the protocol on Figure 2 is at most

`2 ← 5 + blog Pc +max (bG + λ + 4, ` + blog (mQ ‖W ‖∞ P)c + 1) .

In case m = 0, it is only bG+ λ+4. The bit complexity of the call to this protocol
is then of order

O (` + log(n)bG + log Q + log m + log ‖W ‖∞) .

(The term log m vanishes in case m = 0.)

Overall Prover-Communication Complexity. Based on the previous estimations,
the prover sends O (` + log(n)bG + log Q + log m + log ‖W ‖∞) bits during the pro-
tocol (the term log m disappears in case m = 0). Therefore, for a polynomial in
Z[X1, . . . , Xν] of total degree δ, with µ monomials and with coefficients less than
2H in absolute value, assuming that νblog δc+(δ−1)µ ≤ n and 1+2ν (blog δc − 1)+
(δ − 2)µ + m ≤ Q, the communication complexity of the protocol is of order

O
(
` + log

(
δ

(
ν + δ

δ

))
bG + H

)
= O (` +min(ν, δ) log (ν + δ) bG + H) .

The term H = blog ‖W ‖∞c+1 comes from the fact that the procedure gives linear
constraints determined by the coefficients of the polynomial.

Verification Effiency. Similarly to Section 4.1, the verifications of Π′, Π̃ and
the protocol on Figure 2 can each be done via single multi-exponentiations, with
exponents of at most O (` + bG + log(n) log(P) + log Q+ log m + log ‖W ‖∞) bits.
For a polynomial in Z[X1, . . . , Xν] of total degree δ, with µ monomials and with
coefficients less than 2H in absolute value, that is O (` + bG +min(ν, δ) log (ν + δ)
log P + H) bits.

59



6.3 Completeness and Security

This section formally states the properties achieved by the protocol.

Theorem 6.1 (Completeness). Π is complete if Πcrs , Π′ and Π̃ are.

Proof. The completeness of Π immediately follows from its definition and from
the completeness of Πcrs , Π′ and Π̃, and the completeness of the protocol on
Figure 2.

Theorem 6.2 (Honest-Verifier Zero-Knowledge Property). If Π′ and Π̃
are respectively (TΠ′,TΠ′.Sim, εΠ′ ) and

(
TΠ̃,TΠ̃.Sim, εΠ̃

)
-honest-verifier zero-knowledge,

and if FS .ΠHcrs is is
(
T
ΠHcrs

, qH , εsnd
ΠHcrs

)
-sound, then Π is

(
T,O(bG) + TΠ′.Sim + TΠ̃.Sim

+T2.Sim, ε
zk

ΠHcrs
+ εΠ′ + εΠ̃ + ε2

)
- honest-verifier zero-knowledge for T ≤ min(T

ΠHcrs
,TΠ′,

TΠ̃,T2), where (T2,T2.Sim, ε2) denote the bounds from Theorem 4.2.

Proof. It suffices to define a simulator which, instead of computing the com-
mitments CI,CO,C ′I,T1,T3,T4,T5,T7 in the protocol, computes elements as f α for
α ←$

�
0; 2bG+λ+3

�
. These are then at a statistical distance of at most 2−λ from

the values computed in a real protocol execution, unless the CRS is ill-formed
(which occurs with probability at most εzk

ΠHcrs
). The protocol also runs the simu-

lator of Π′, Π̃ and the simulator of the protocol on Figure 2.

Theorem 6.3 (Extractability). If FS .Πcrs is
(
TΠ̃crs .Sim, qΠcrs

, εzk
Π̃

)
-statistically

honest-verifier zero-knowledge, Π′ is
(
TΠ′,A,TΠ′,Prove∗,TΠ′.E, qΠ′, εextΠ′

)
-extractable

and Π̃ is
(
TΠ̃, qΠ̃, ε

snd
Π̃

)
-sound, then under the

(
T strg, εstrg

)
-strong-root assump-

tion, the
(
Tord, εord

)
-small-order assumption, the low-dyadic-valuation assump-

tion and the µ-assumption over G, then Π is
(
TA,TProve∗,TE, qH , εext, Σ

)
-extractable

for TA and TProve∗ such that TA + TProve∗ ≤ min
(
TΠ̃.Sim,TΠ̃

)
and TA and TProve∗

satisfy the bounds for TΠ′,A and TΠ′,Prove∗ and for T2,A and T2,Prove∗ , TE explicited
in the proof of the theorem, qH ≤ min

(
qΠcrs

, qΠ̃, qΠ′
)
and ε ≤ εzk

Π̃
+εext

Π′
+εsnd

Π̃
+ε2,

where T2,A, T2,Prove∗ and ε2 denote the bounds from Theorem 4.6.

Proof. Suppose that for fixed vectors y and z and nine pairwise-distinct chal-
lenges x1, . . . , x9, one can obtain representations

(
glhre〈l,r〉 f σ

)4
of C2(x j ) for

j ∈ ~8� (l, r and σ depend on x j). Denoting by X the Vandermonde matrix of
x1, . . . , x8, by adj(X ) its adjugate matrix and by ej (for j ∈ ~8�) the canonical row
vector with 1 at position j and 0 elsewhere, the linear equations XνT = det(X)eTj
with indeterminate ν ∈ Z8 have unique solutions if detX , 0, and these solu-
tions are adj(X)eTj . Therefore, one can solve the equation XνT = det(X)eT2 and
compute via linear combinations integer vectors aL and aR and an integer ρI

60



such that C2detX
I =

(
gaLhaR e〈aL,aR 〉 f ρI

)4
since

C2(x) =
(
Cx
I C ′I

x3

Cx2−x4

O

)2 (
h−1

n+yx2

hxzWLgxzWRhzWO
)4

*
,
T x
1

(
e2(〈z,c〉+δ(z))VzWV

)x2 ∏
3≤i,6≤7

T xi

i
+
-

2

(10)

for all x ∈ {x1, . . . , x9}. Likewise, by considering the equation XνT = det(X)eT4 ,
one can compute integer vector a′L and a′R and an integer ρ′I such that C ′I

2detX =(
ga
′
Lha

′
R e〈a

′
L,a
′
R〉 f ρ

′
I

)4
. Moreover, let e be the row vector with 1 at position 3, −1 at

position 5 and 0 elsewhere. The equation XνT = det(X)eT has a unique solution
if det(X) , 0, and it is adj(X)eT. It follows that one can compute integer vectors
aO,L and aO,R and an integer ρO such that C2detX

O =
(
gaO,LhaO,R e〈aO,L,aO,R〉 f ρO

)4
.

Besides, assume to be given integers t j and s j for j ∈ ~7� \ {2, 6}, and vi and
ρi for i ∈ ~m� such that T2

j =
(
etj f sj

)4 and V2
i = (evi f ρi )4.

Lemma 4.4 shows that 2 det X divides all the integers in the representations
of C2detX

I , C ′I
2detX and C2detX

O unless one can find non-trivial discrete-logarithm
relations (the probability of this latter event is already accounted for in the
bounds of Theorem 4.6). That is to say, one can obtain representations of C2

I ,
C ′I

2 and C2
O (these integers obtained by dividing by 2 det X are further denoted as

before). Inserting these representations in Equation 10 for any x ∈ {x1, . . . , x9},
it follows that

l = (aL + zWR) x + aO,L x2 + a′L x3 − aO,L x4

r = −1n + zWO + (aR + zWL ) x + yx2 + a′Rx3 + aO,R
(
x2 − x4

)
and that

〈l, r〉 = 〈aL, aR〉 x +
〈
a′L, a

′
R

〉
x3 +

〈
aO,L, aO,R

〉 (
x2 − x4

)
+ s1x + (〈zWV , v〉 + 〈z, c〉 + δ(z)) x2 +

∑
3≤i,6≤7

ti xi,

unless one can obtain a non-trivial discrete-logarithm relation in 〈 f 〉. As the
equation is satisfied for nine values of x although the polynomials are of degree
at most 8 in x, then one can infer from the terms of degree 2, 6 and 8 that

0 = 〈aL, zWL〉 + 〈zWR, aR〉 +
〈
aO,L, zWO

〉
−

〈
aO,L, 1

n〉
+ 〈aL, aR〉 − 〈zWV , v〉 − 〈z, c〉 −

〈
aO,L, aO,R

〉
0 =

〈
a′L, a

′
R

〉
−

〈
aO,L, y

〉
and

0 =
〈
aO,L, aO,R

〉
.

Assuming an additional guarantee that a′L = aL and a′R = y ◦aR, these equations
thus imply that

〈zWL, aL〉 + 〈zWR, aR〉 +
〈
zWO, aO,L

〉
= 〈zWV , v〉 + 〈z, c〉 and〈

aL ◦ aR − aO,L, y
〉
= 0.

61



If these equalities are verified for m vectors y1, . . . , ym ∈ Z
m that are linearly

independent over Q and for Q vectors z1, . . . , zQ ∈ ZQ that are linearly indepen-
dent over Q, then aL ◦ aR = aO,L and WLa

T
L +WRa

T
R +WOa

T
O,L = WVv

T + cT,
with vi committed in Vi with randomness ρi for all i ∈ ~m�. In other words,
aL, aR, aO,L, v, ρ is a valid witness.

The idea is now to gradually define an extractor for the entire protocol with
a bottom-up approach starting from the extractor for the protocol on Figure 2
assuming vectors y, z and an integer x to be fixed. The next extractor E2 builds
on the previous extractor and can extract a witness given fixed vectors y and
z (sent as the first message from the verifier) as inputs. The following oracle
E1 takes a fixed vector y and builds on E2. The last extractor E takes no fixed
values except for the protocol inputs builds then builds on E1.

The running time of each of these extractor has a success probability which of
course depends on the success probability of the prover with the fixed inputs, and
for instance, what E1 does is simply to generate a vector z that leads to a success,
and then using a heavy-row argument, one can show that with probability 1/2
over the choice of z, the success of the prover decreases by a factor at most 1/2
if z is fixed to the chosen value, and then E1 can run E2 with its fixed inputs
and z, and extract a witness in reasonable expected time. The idea for the other
steps is the same.

Consider now an algorithm E2 that runs the prover from the computation
step right after it receives y and z, and suppose that for some fixed vectors y and
z, the success probability of the prover is at least η > 0. Algorithm E2 runs Π′.E
on the prover to extract representation of (Ti)i,2,6 and (Vj )mj=1. It continues by
executed protocol Π̃ with the prover. As Π̃ is assumed to be sound, the extractor
is guaranteed that with probability at least 1− εsnd

Π̃
, the inputs committed in CI

with bases (g, h) are the same as those committed in CO with bases (g, h′) if the
execution of Π̃ succeeds.
E2 generates x ←$ ~0; P − 1�, sends it to the prover and runs the protocol

until the end. If the execution fails, E2 generates a fresh value x and proceeds
as before. If the execution succeeds, then a heavy-row argument implies that
with probability at least 1/2 (over the choice of x), x is such that the prover
succeeds in the rest of the protocol with probability at least η/2. Algorithm E2
then computes C(x) as in the real protocol and runs the extractor of the protocol
on Figure 2 (denote it Π2.E). If this latter does not return a value in at most
twice the expected value of its running time with a prover that succeeds with
probability at least η/2 (Markov’s inequality shows that this event occurs with
probability at most 1/2), algorithm E2 generates a fresh value x and proceeds
as before. If it does, E2 returns the same value.

Denote by H the event in which x is such that the verifier of is convinced
with probability at least η/2 and by T the event in which Π2.E returns a value in
at most twice the expected value of its running time with a prover that succeeds
with probability at least η/2. Algorithm E2 returns a value in the event H ∩ T
and Pr[T ∩ H] = Pr[T |H] Pr[H] ≥ 1/4, so E2 restarts from the generation of x
an expected number of times at most 4. Furthermore, at each repetition, its

62



running time is at most TProve∗/η + TΠ2.E (η/2), with TΠ2.E (η/2) denoting the
expected running time of Π2.E with a prover that succeeds with probability at
least η/2. Therefore, the expected running time given a prover that succeeds
with probability at least η is at most 4

(
TProve∗/η + 2TΠ2.E (η/2)

)
.

E2 then repeats this process eight other times, with the restriction that
the new challenge x j (for j = 2, . . . , 9) is distinct from the ones previously
chosen ones, i.e., x j has a uniform distribution over ~0; P − 1� \ {x1, . . . , x j−1}.
Note that in this case the prover succeeds with probability at least η − ( j −
1)/P ≥ η − 8/P C η ′. Therefore, the total running time of E2 is at most
36

(
TProve∗/η

′ + 2TΠ2.E (η ′/2)
)
.

Now, for a fixed vector y1 ∈ Zn, suppose that a prover convinces the verifier
with probability at least θ > 0 conditioned on the vector y in the first message
from the verifeir being y1; and consider an algorithm E1 which has black-box
access to a prover Prove∗ and proceeds as follows. E1 starts by generating a vector
z1. If z1 = 0ZQ , then it generates new vectors and otherwise playing the role of
the verifier, runs with the prover the entire protocol with (y1, z1) as first message
from the verifier. If the execution is unsuccessful, then E1 rewinds Prove∗ to the
beginning of the protocol and generates a new vector z1.

Note that conditioned on the event in which z1 is non-zero, Prove∗ convinces
the verifier with probability at least θ−P−Q. Moreover, conditioned on the event
in which the first message (y1, z1) leads to at least one successful execution, a
heavy-row argument implies that with probability at least 1/2 (over the choice
of z1), the first message (y1, z1) is such that prover Prove∗ convinces the verifier
with probability at least

(
θ − P−Q

)
/2.

Algorithm E1 then runs E2 on Prove∗ from the computation step right after
the first message from the verifier is sent. If E2 returns a value in at most twice
its expected running time with a prover that succeeds with probability at least
η B

(
θ − P−Q

)
/2, then E1 returns that value and otherwise rewinds Prove∗ to

the beginning of the protocol and generates fresh vectors y1 and z1.
Similarly to the analysis of E2, the expected running of E1 is at most

4
(
η−1

(
1 − P−Q

)−1
TProve∗ + 2TE2 (η/2)

)
.

The term
(
1 − P−Q

)−1
simply comes from the expected time necessary to gener-

ate a non-zero vector z1.
Now, for j = 2, . . . ,Q, algorithm E2 generates zj ←$ ~0; P − 1�Q. If z1, . . . , zj

are linearly dependent over Q, then E2 generates a new vector zj . Slinko [33,
Corollary 2] proved that this event occurs with probability at most P−Q+j−1.
Consequently, conditioned on the event in which z1, . . . , zj are linearly indepen-
dent, Prove∗ convinces the verifier with probability at least θ−P−Q+j−1 ≥ θ−P−1.
Algorithm E2 then proceeds as in the case j = 1 with θ − P−1 instead of θ − P−Q.

The total running time of E1 is thus at most

4Q
(
η−1

(
1 − P−1

)−1
TProve∗ + 2TE2 (η/2)

)

63



with η B
(
θ − P−1

)
/2. Note that if any two vectors zi, zj for i, j ∈ ~Q� lead to

distinct witness returned by E2, then one obtains a non-trivial discrete-logarithm
relation in 〈 f 〉.

The extractor E of the entire protocol can now be defined similarly to E1
to generate linearly independent vectors y1, . . . , yn ∈ Z

n. Assuming that it has
black-box access to a prover that succeeds with probability at least ε, its running
time is at most

4n
(
θ−1

(
1 − P−1

)−1
TProve∗ + 2TE1 (θ/2)

)
with θ B

(
ε − P−1

)
/2. ut

7 Applications

In this section, we apply the Diophantine-satisfiability argument from Section 6
to several computational problems. The methodology is always the same: en-
code the problem as a polynomial, apply the degree-reduction procedure from
Section 6.1 and then run the protocol from Section 6.2.

7.1 Arguing Knowledge of RSA signatures

It is often useful for a user to prove that an organization has supplied him with
a signature or a certificate without revealing it. A natural approach is to commit
to the value of the signature and to prove its knowledge without revealing any
information on it. If the user can additionally prove it in such a way that the
signature cannot be linked to its issuance and multiple proofs cannot be linked
to each other, then one can use the primitive in privacy-preserving applications.
Camenisch and Stadler [12] presented a proof of knowledge of committed x ∈ Z∗N
such that xe = y mod N , where (N, e) is an RSA public key. Their proof is in a
group G of known order N (obtained for instance by finding a prime number p
such that N divides (p − 1) and considering G as the subgroup of Z∗p of order
N). The main issue with this approach is that it requires at least that the prover
knows N at the time the commitment scheme is set up. It also requires a new
instance of the commitment scheme for each RSA moduli.

As mentioned above, Damgård and Fujisaki [15] proposed an efficient proof of
knowledge of the contents of commitments and proofs of multiplicative relations
over committed values. They stated that this scheme allows to prove in zero-
knowledge the knowledge of an RSA signature since the verification equation
can also be written as xe − λN = y for some integer λ < Ne−1. This gives a
proof with communication complexity with Ω(ebG) bits which makes it usable
only for very small e. One can use the elegant technique from [12] to improve
this to Ω(log(e)bG) using the square-and-multiply algorithm in the exponent
(see [12,13] for details). In the following, we show that our succinct Diophantine
satisfiability argument can be used to exponentially reduce this communication
complexity.

64



Let N be some RSA integer and let e be a public RSA exponent with e =
(e0, e1, . . . , eT−1) ∈ {0, 1}T as binary representation, i.e.,

e =
T−1∑
i=0

ei2i .

with eT−1 = 1. Suppose that one wants to prove the knowledge of some x ∈ Z∗N
such that xe = y mod N for some public value y (typically the hash value of a
message). Suppose that the prover commits to x using our integer commitment
scheme and wants to prove that the opening of V is an e-th root of the public y

modulo N .

First define integers (y1, . . . , yT−1) such that

yi =

{
x if ei = 1
1 if ei = 0

for i ∈ {0, . . . ,T − 1}. Set then zT−1 = x and define by induction

wi = z2i mod N

λi =
⌊
z2i /N

⌋
B wi = z2i − λiN (11)

zi−1 = yi · wi mod N

µi = b(yi · wi)/Nc B zi−1 = yi · wi − µiN (12)

for i downward from T − 1 to 0 such that if xe = y mod N . Then, z−1 = y.
Reciprocally, if there exist five integer sequences (w0, . . . ,wT−1), (y0, . . . , yT−1,

yT ), (λ0, . . . , λT−1), (z0, . . . , zT−1), (µ0, . . . , µT−1) such that w0y0−µ0N = y, Equa-
tions (11) and (12) hold for all i ∈ {0, . . . ,T − 1} and

{yi : ei = 0, i ∈ {0, . . . ,T − 1}} = {1} and {yi : ei = 1, i ∈ {0, . . . ,T }} = {x} (13)

where x, the unique element in the latter set, is committed in V , then xe =
y mod N .

One can now write down explicitly a Diophantine equation in such a way
that the equation is satisfiable under the linear constraints (13) if and only if
the value committed in V is an e-th root of the public y modulo N :

T−1∑
i=0

(
wi − z2i − λiN

)2
+

T−1∑
i=0

(zi − yiwi − µiN )2 = 0

This Diophantine equation is directly suited for the reduction from Sec-
tion 6.1 without introducing new variables. It indeed suffices to set

aL ←
[
z

[
w 1

]
λ µ

]

aR ←
[
z

[
y x

]
0 0

]

aO ←
[
w

[
y z

]
0 0

]
∈ Z4T+1.

65



Besides, there are 10T + 3 linear equations that these vectors must satisfy (2T
for the terms in the sum of squares in the Diophantine equation, 4T for the zeros
in aR and a0, 2T for the consistency of z, T for the consistency of w, T for the
consistency of y with V and 3 for the consistency of x and y).

Now, to estimate the bit complexity of the argument, note that each witness
is upper-bounded by N and the maximum coefficient of the linear constraints is
O(N ). According to the bounds in Section 6.2, the bit length of the argument is
of order O (log(T )bG + log N ) = O (log(log(e))bG + log N ).

Finally, note that even if it is not necessary to commit to the value x, this
technique can be used to argue knowledge of a modular e-th root modulo N
with communication complexity O (log(log(e))bG) bits (in a group with bG =
Ω(log N )). In particular for e < 2O(λ/ log(λ)) this improves asymptotically the
communication of the well-known protocol due to Guillou-Quisquater [26] which
has communication complexity O (log(λ)/ log(e) · log(N )).

7.2 Argument of Knowledge of (EC)DSA Signatures

The Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Al-
gorithm (ECDSA) [27] are standardized discrete-logarithm based efficient digital
signature schemes. The underlying groups of public prime order are usually stan-
dardized and it may seem at first thought that one can use commitments in these
groups (together with the classical zero-knowledge toolbox) in order to design
a zero-knowledge argument of possession of an (EC)DSA signature. However, it
turns out that this is not so easy since the verification equations of these sig-
natures involve arithmetic modulo two different prime numbers. In this section,
we show how one can use our Diophantine satisfiability argument and the ap-
proach we already used for RSA signatures to efficiently prove the knowledge of
an (EC)DSA signature without revealing any further information.

DSA Signatures. The DSA signature scheme consists of the following proce-
dures (given two parameters λ1 and λ2).

KG(λ1, λ2) → (vk, sk ) : Generate a prime q of bit-length λ2 uniformly at random
and a prime p of bit-length λ1 uniformly at random such that q divides
p − 1. Choose an integer h ∈ {2, . . . , p − 2} uniformly at random and set
g = h(p−1)/q mod p (in the rare case that g = 1, try again with a different h).
Choose x ∈ Zq uniformly at random, and compute the integer y = gx mod p.
The verification key is vk ← (p, q, g, y,H ) where H is a cryptographic hash
function H : {0, 1}∗ → {0, 1}λ2 , while the signing key is sk ← (p, q, g, x,H ).

Sign(sk,m) → σ : Choose a secret k ∈ Z∗q uniformly at random, then compute
gk mod p and set r =

(
gk mod p

)
mod q. Repeat the whole process until

r , 0. Next, compute s = k−1(H (m) + r x) mod q and repeat the signing
process from the beginning until s , 0. The signature of the message m is
the pair σ ← (r, s).

66



Vf (vk,m, σ) → b ∈ {0, 1} : To verify a signature pair σ = (r, s) of a message m
for vk , first check that 0 < r, s < q. Then, compute
– w = s−1 mod q
– u1 = H (m) · w mod q
– u2 = r · w mod q
– v = (gu1 yu2 mod p) mod q

Accept the signature (i.e., return 1) if and only r = v.

If a user wants to prove the knowledge of such a signature σ = (r, s) for a
public message m and a public verification key is vk = (p, q, g, y,H ), she has to
prove the knowledge of a 6-tuple of integers (r,w, α, β, µ1, µ2) such that

α = H (m) · w − µ1 · q
β = r · w − µ2 · q

β , 0

r =
(
gαyβ mod p

)
mod q.

In order to prove the last equality, introduce the value ρ =
(
gαyβ mod p

)
and

µ3 such that

r = ρ − µ3 · q.

Write gi = g2
i

mod p and yi = y2
i

mod p for i ∈ {0, . . . , λ2 − 1} and

α =

λ2−1∑
i=0

αi2
i with αi ∈ {0, 1} for i ∈ {0, . . . , λ2 − 1}

β =

λ2−1∑
i=0

βi2
i with αi ∈ {0, 1} for i ∈ {0, . . . , λ2 − 1}.

The values αi and βi for i ∈ {0, . . . , λ2 − 1} have to be kept secret by the user.
Starting from ρ−1 = 1, recursively construct

νi = ρi−1 · (1 + αi · (gi − 1)) mod p B νi = ρi−1 · (1 + αi · (gi − 1)) + δip
ρi = νi · (1 + βi · (yi − 1)) mod p B ρi = νi · (1 + βi · (yi − 1)) + εip

such that ρ j = g
∑ j

i=0 αi2
i
y
∑ j

i=0 βi2
i

mod p for j ∈ {0, . . . , λ2 − 1} and in particular
ρλ2 = ρ. It thus leads to the Diophantine equation

λ2−1∑
i=0

(
α2
i − αi

)2
+

(
β2i − βi

)2
+ (νi − ρi−1 · (1 + αi · (gi − 1)) − δip)2

+

λ2−1∑
i=0

(ρi − νi · (1 + βi · (yi − 1)) − εip)2 +
(
r − ρλ2 + µ3 · q

)2
+(α −H (m) · w + µ1 · q)2 + (β − r · w + µ2 · q)2

+ *
,
α −

λ2−1∑
i=0

αi2
i+
-

2

+ *
,
β −

λ2−1∑
i=0

βi2
i+
-

2

= 0,

67



with (α, α0, . . . , αλ2 ), (β, β0, . . . , βλ2 ), (ρ0, . . . , ρλ2 ), (ν0, . . . , νλ2 ), (δ0, . . . , δλ2 ),
(ε0, . . . , ελ2 ) and (r,w, µ1, µ2, µ3) as unknowns.

Using the approach from Section 6.2, the bit length of the argument is of order
O (log(λ2)bG + log(λ1)). Note also that this argument could be combined with
proofs of non-algebraic statements [13] to obtain proofs on committed messages.

ECDSA Signatures. For ECDSA signatures, the underlying group is an ellip-
tic curve E(Zp) defined over Zp. The group law involves arithmetic operations
modulo p, but the group order is usually some prime number q (of bit size equal
to the bit size of p). The main difference in an ECDSA signature (r, s) ∈ Z2p is
that the verification equation checks that r is the abscissa of some point on the
elliptic curve obtained by a double scalar multiplication with exponents derived
from (r, s) and the hash value of the signed message. It is therefore possible
to follow the same strategy as for DSA by adding more variables in order to
handle the more intricate group law on the elliptic curve. More precisely, one
need only add a constant number of variables per bit in the exponents and us-
ing the approach from Section 6.2, the bit length of the argument is of order
O (log(log p)bG).

7.3 Argument of Knowledge of List Permutation

Consider the classical problem of proving knowledge of openings (x1, . . . , xn) and
(y1, . . . , yn) (together with the corresponding randomness) of two commitment
vectors (V1, . . . ,Vn) and (V ′1, . . . ,V

′
n), and of a permutation π ∈ Sn (the symmetric

group of order n) such that yi = xπ (i) for all i ∈ ~n�.
To provide a succinct argument of such a statement, one can write down

a simple Diophantine equation that is satisfiable (under additional linear con-
straints) if and only if the statement indeed holds. Denote Vi = exi f ρi and
V ′i = eyi f ηi for i ∈ ~n�. Note that if there exists such a permutation π, one can
consider the associated permutation binary matrix U = (ui, j ) ∈ Zn×n defined by
ui, j = 1 if j = π(i) and ui, j = 0 otherwise. Such a matrix has exactly one “1”
per row and per column (and is null at all other indices). Therefore, xi = yj for
integers i, j ∈ ~n� if ui, j = 1. In particular, for all i ∈ ~n�

n∑
j=1

(
ui, j

(
xi − yj

))2
= 0. (14)

Conversely, if there exists a permutation matrix U = (ui, j ) ∈ Zn×n such that
Equation (14) holds for all i ∈ ~n�, then there exist a permutation π ∈ Sn, such
that yi = xπ (i) for all i ∈ ~n�. Consider then the following Diophantine equation

n∑
i=1

n∑
j=1

(
ui, j

(
xi − yj

))2
+

(
u2
i, j − ui, j

)2
= 0

68



with the 2n linear constraints:
n∑
i=1

ui, j = 1 for all j ∈ ~n�
n∑
j=1

ui, j = 1 for all i ∈ ~n� .

Note that these constraints could have been direclty embedded in the Diophan-
tine equation.

Following the ideas in Section 6.1, by introducing variables vi, j ← ui, j xi for
i, j ∈ ~n�, the previous equation is equivalent to the satisfiability of the equation

n∑
i=1

n∑
j=1

(
vi, j − ui, j yj

)2
+

(
u2
i, j − ui, j

)2
+

(
vi, j − ui, j xi

)2
= 0.

This polynomial is now in a form which allows to immediately read a Hadamard
product between variables and linear equations of which the satisfiability is
equivalent to the satisfiability of the Diophantine equation. It suffices to set

aL ←
[
x̂ ŷ u

]
aR ←

[
u u u

]
aO ←

[
v v u

]
∈ Z3n

2

.

where u is the vector of dimension n2 obtained by concatenating the rows of U,
x̂ is the vector of dimension n2 obtained by repeating n times each coordinate of
x and ŷ =

[
y · · · y

]
is a vector of dimension n2.

Besides, there are 7n2 + 2n linear equations that these vectors must satisfy
and the vectors x and y are committed individually (i.e., 2n commitments). To
estimate the bit complexity of the argument, note that if have ‖x‖∞ < 2` (and
thus ‖y‖∞ < 2`), then, according to the analysis in Section 6.2, the bit length of
the argument is of order O

(
` + log

(
3n2

)
bG

)
= O (` + log(n)bG).

7.4 3-SAT Satisfiability Argument

3-SAT is the prototypical NP-complete problem of deciding the satisfiability of
a Boolean formula in conjunctive normal form, with each clause limited to at
most three literals. Consider two integers m, n ≥ 1 and a set of clause C1, . . . ,Cm

where each Ci is the disjunction of exactly three literals from the set of Boolean
variables x1, . . . , xn (a literal is a variable xi or its negation ¬xi). The problem is
decide whether there exists an assignment of (x1, . . . , xn) ∈ {0, 1}n such that all
clauses are satisfied. Write each clause Ci for i ∈ ~m� as Ci =

(
li,1 ∨ li,2 ∨ li,3

)
,

with li,1, li,2 and li,3 denoting the literals in Ci.
Such a Boolean 3-SAT formula can be readily turned into an equi-satisfiable

Diophantine equation. Indeed, for i ∈ ~m� and j ∈ ~3� and k ∈ ~n�, define

ε3(i−1)+j,k =




1 if li, j = xk
−1 if li, j = ¬xk

0 otherwise

so that setting l B
[
l1,1 l1,2 l1,3 · · · lm,1 lm,2 lm,3

]
, x B

[
x1 · · · xn

]
and E B[

εi,k
]
1≤i≤3m,1≤k≤n

, the equality lT = A · xT holds. The Diophantine equation

69



must ensure that (1) xi ∈ {0, 1}, i.e., x j

(
1 − x j

)
= 0 for j ∈ ~n�, and that (2) the

clauses are all satisfied, i.e.,
(
1 − li,1

) (
1 − li,2

) (
1 − li,3

)
= 0 for all i ∈ ~m�. The

satisfiability of the 3-SAT instance is then equivalent to the satisfiability of the
Diophantine equation

n∑
j=1

(
x j − x2j

)2
+

m∑
i=1

(
1 − li,1 − li,2 − li,3 + li,1li,2 + li,1li,3 + li,2li,3 − li,1li,2li,3

)2
= 0

Following the ideas in Section 6.1, by introducing variables ui,1 ← li,1li,2, ui,2 ←
li,1li,3, ui,3 ← li,2li,3, vi ← ui,1li,3 for i ∈ ~m�, the previous equation is equivalent
to the satisfiability of the equation

n∑
j=1

(
x j − x2j

)2
+

m∑
i=1

(
1 − li,1 − li,2 − li,3 + ui,1 + ui,2 + ui,3 − vi

)2
+

m∑
i=1

((
ui,1 − li,1li,2

)2
+ (ui,2 − li,1li,3)2 + (ui,3 − li,2li,3)2 +

(
vi − ui,1li,3

))2
= 0.

This polynomial is now in a form which allows to immediately read a Hadamard
product between variables and linear equations of which the satisfiability is
equivalent to the satisfiability of the Diophantine equation. It suffices to set

aL ←
[
x l(1) l(1) l(2) l(3)

]

aR ←
[
x l(2) l(3) l(3) u1

]

aO ←
[
x u1 u2 u3 v

]
∈ Zn+4m.

Besides, there are 2n + 9m linear equations that these vectors must satisfy (3m
from matrix E, m for the final Diophantine equation and 2n + 5m for the consis-
tencies in aL, aR and a0).

Now, to estimate the bit complexity of the argument, note that since ‖x‖∞ ≤ 1
and ‖E‖∞ ≤ 1, all witnesses and all variables are upper-bounded by 1, and
according to the bounds in Section 6.2, the bit length of the argument is of
order O (log(n + 4m)bG) = O (log(n + m)bG).

7.5 Integer-Linear-Programming Satisfiability Argument

A (decisional) Integer-Linear-Programming (ILP) problem is a feasibility linear
program in which the variables are integers: given two positive integers m and n,
a matrix A ∈ Zm×n and a vector b ∈ Zm, the problem consists in deciding whether
there exists a vector x ∈ Nn such that AxT ≥ bT. This problem is a classical
NP-complete problem and it models many real-life optimization problems, and
the following shows how to succinctly argue knowledge of a solution to it using
the techniques presented in Section 6.

In other to prove the positivity of an integer x, as previously done in the
literature [9,14,28], one can rely on Lagrange’s four-square theorem which states

70



that every natural integer can be represented as the sum of four integer squares.
Actually, as remarked by Groth [21], one can also rely on Legendre’s three-
square theorem which states that every natural number x = 1 mod 4 can be
represented as the sum of three integer squares. Both theorems are effective and
there exists efficient polynomial-time algorithms to find the decomposition as a
sum of squares (see [9, 14,21,28] and references therein for details).

To argue the satisfiability of the ILP problem, it is thus equivalent to argue
knowledge of vectors y1, y2, y3 ∈ Zn and vectors z1, z2, z3 ∈ Zm such that

4x j + 1 − y21, j − y22, j − y23, j = 0 ∀ j ∈ ~n� and
n∑
j=1

4ai j x j − 4bi + 1 − z21,i − z22,i − z23,i = 0 ∀i ∈ ~m� .

The satisfiability of the ILP problem is then equivalent to the satisfiability of
the Diophantine equation

n∑
j=1

(
4x j − y21, j − y22, j − y23, j + 1

)2
+

m∑
i=1

*.
,

n∑
j=1

4ai j x j − 4bi − z21,i − z22,i − z23,i + 1+/
-

2

= 0.

Following the ideas in Section 6.1, by introducing variables u1, j ← y21, j , u2, j ←

y22, j , u3, j ← y23, j , v1,i ← z21,i, v2,i ← z22,i and v3,i ← z23,i, the previous equation
equation is equivalent to the satisfiability of the equation

n∑
j=1

(
4x j − u1, j − u2, j − u3, j + 1

)2
+

m∑
i=1

*.
,

n∑
j=1

4ai j x j − 4bi − v1,i − v2,i − v3,i + 1+/
-

2

+

n∑
j=1

(
u1, j − y21, j

)2
+

(
u2, j − y22, j

)2
+

(
u3, j − y23, j

)2
+

m∑
i=1

(
v1,i − z21,i

)2
+

(
v2,i − z22,i

)2
+

(
v3,i − z23,i

)2
= 0.

This polynomial is now in a form which allows to immediately read a Hadamard
product between variables and linear equations of which the satisfiability is
equivalent to the satisfiability of the Diophantine equation. It suffices to set

aL ←
[
x y1 y2 y3 z1 z2 z3

]

aR ←
[
0 y1 y2 y3 z1 z2 z3

]

aO ←
[
0 u1 u2 u3 v1 v2 v3

]
∈ Z4n+3m.

Besides, there are 4(n + m) linear equations that these vectors must satisfy.
Now, to estimate the bit complexity of the argument, note that if ‖x‖∞ < 2` ,

then ���
∑n

j=1 4ai j x j − 4bi + 1��� < 4
(
n ‖A‖∞ 2` + ‖b‖∞

)
+1 for all i ∈ ~m�. Therefore,

according to the bounds in Section 6.2, the bit length of the argument is of order
O (` + log(4n + 3m)bG + log ‖A‖∞ + log ‖b‖∞).

71



Acknowledgements

This work was supported by the French ANR ALAMBIC Project (ANR-16-
CE39-0006) and the EU H2020 Research and Innovation Program under Grant
Agreement No. 786725 (OLYMPUS).

References

1. M. Artin. Algebra. Pearson, 2010.
2. R. M. Avanzi. The complexity of certain multi-exponentiation techniques in cryp-

tography. Journal of Cryptology, 18(4):357–373, Sept. 2005.
3. E. H. Bareiss. Sylvester’s identity and multistep integer-preserving Gaussian elim-

ination. Math. Comput., 22(103):565–578, 1968.
4. N. Bari and B. Pfitzmann. Collision-free accumulators and fail-stop signature

schemes without trees. In W. Fumy, editor, EUROCRYPT’97, volume 1233 of
LNCS, pages 480–494. Springer, Heidelberg, May 1997.

5. S. Bayer and J. Groth. Zero-knowledge argument for polynomial evaluation with
application to blacklists. In T. Johansson and P. Q. Nguyen, editors, EURO-
CRYPT 2013, volume 7881 of LNCS, pages 646–663. Springer, Heidelberg, May
2013.

6. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In D. E. Denning, R. Pyle, R. Ganesan, R. S. Sandhu, and
V. Ashby, editors, ACM CCS 93, pages 62–73. ACM Press, Nov. 1993.

7. I. Biehl, J. A. Buchmann, S. Hamdy, and A. Meyer. A signature scheme based on
the intractability of computing roots. Des. Codes Cryptogr., 25(3):223–236, 2002.

8. J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit. Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In M. Fischlin and
J.-S. Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages
327–357. Springer, Heidelberg, May 2016.

9. F. Boudot. Efficient proofs that a committed number lies in an interval. In B. Pre-
neel, editor, EUROCRYPT 2000, volume 1807 of LNCS, pages 431–444. Springer,
Heidelberg, May 2000.

10. B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs:
Short proofs for confidential transactions and more. In 2018 IEEE Symposium on
Security and Privacy, pages 315–334. IEEE Computer Society Press, May 2018.

11. B. Bünz, B. Fisch, and A. Szepieniec. Transparent SNARKs from DARK compilers.
In A. Canteaut and Y. Ishai, editors, EUROCRYPT 2020, Part I, volume 12105
of LNCS, pages 677–706. Springer, Heidelberg, May 2020.

12. J. Camenisch and M. Stadler. Efficient group signature schemes for large groups
(extended abstract). In B. S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of
LNCS, pages 410–424. Springer, Heidelberg, Aug. 1997.

13. M. Chase, C. Ganesh, and P. Mohassel. Efficient zero-knowledge proof of algebraic
and non-algebraic statements with applications to privacy preserving credentials.
In M. Robshaw and J. Katz, editors, CRYPTO 2016, Part III, volume 9816 of
LNCS, pages 499–530. Springer, Heidelberg, Aug. 2016.

14. G. Couteau, T. Peters, and D. Pointcheval. Removing the strong RSA assump-
tion from arguments over the integers. In J. Coron and J. B. Nielsen, editors,
EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages 321–350. Springer,
Heidelberg, Apr. / May 2017.

72



15. I. Damgård and E. Fujisaki. A statistically-hiding integer commitment scheme
based on groups with hidden order. In Y. Zheng, editor, ASIACRYPT 2002,
volume 2501 of LNCS, pages 125–142. Springer, Heidelberg, Dec. 2002.

16. R. del Pino, V. Lyubashevsky, and G. Seiler. Short discrete log proofs for FHE and
ring-LWE ciphertexts. In D. Lin and K. Sako, editors, PKC 2019, Part I, volume
11442 of LNCS, pages 344–373. Springer, Heidelberg, Apr. 2019.

17. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In A. M. Odlyzko, editor, CRYPTO’86, volume 263 of
LNCS, pages 186–194. Springer, Heidelberg, Aug. 1987.

18. P.-A. Fouque and G. Poupard. On the security of RDSA. In E. Biham, editor,
EUROCRYPT 2003, volume 2656 of LNCS, pages 462–476. Springer, Heidelberg,
May 2003.

19. E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular
polynomial relations. In B. S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of
LNCS, pages 16–30. Springer, Heidelberg, Aug. 1997.

20. J. v. z. Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University
Press, USA, 3rd edition, 2013.

21. J. Groth. Non-interactive zero-knowledge arguments for voting. In J. Ioannidis,
A. Keromytis, and M. Yung, editors, ACNS 05, volume 3531 of LNCS, pages 467–
482. Springer, Heidelberg, June 2005.

22. J. Groth. Simulation-sound NIZK proofs for a practical language and constant
size group signatures. In X. Lai and K. Chen, editors, ASIACRYPT 2006, volume
4284 of LNCS, pages 444–459. Springer, Heidelberg, Dec. 2006.

23. J. Groth. Linear algebra with sub-linear zero-knowledge arguments. In S. Halevi,
editor, CRYPTO 2009, volume 5677 of LNCS, pages 192–208. Springer, Heidelberg,
Aug. 2009.

24. J. Groth and M. Kohlweiss. One-out-of-many proofs: Or how to leak a secret and
spend a coin. In E. Oswald and M. Fischlin, editors, EUROCRYPT 2015, Part II,
volume 9057 of LNCS, pages 253–280. Springer, Heidelberg, Apr. 2015.

25. J. Groth, R. Ostrovsky, and A. Sahai. Perfect non-interactive zero knowledge for
NP. In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages
339–358. Springer, Heidelberg, May / June 2006.

26. L. C. Guillou and J.-J. Quisquater. A practical zero-knowledge protocol fitted
to security microprocessor minimizing both trasmission and memory. In C. G.
Günther, editor, EUROCRYPT’88, volume 330 of LNCS, pages 123–128. Springer,
Heidelberg, May 1988.

27. D. Johnson, A. Menezes, and S. A. Vanstone. The elliptic curve digital signature
algorithm (ECDSA). Int. J. Inf. Sec., 1(1):36–63, 2001.

28. H. Lipmaa. On diophantine complexity and statistical zero-knowledge arguments.
In C.-S. Laih, editor, ASIACRYPT 2003, volume 2894 of LNCS, pages 398–415.
Springer, Heidelberg, Nov. / Dec. 2003.

29. Y. V. Matiyasevich. Enumerable sets are diophantine. Sov. Math., Dokl., 11:354–
358, 1970.

30. T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In J. Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 129–
140. Springer, Heidelberg, Aug. 1992.

31. C.-P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, Jan. 1991.

32. T. Skolem. Diophantische Gleichungen. Ergebnisse der Mathematik und ihrer
Grenzgebiete. New York, Chelsea Pub. Co., 1950.

73



33. A. Slinko. A generalization of Komlos theorem on random matrices. New Zealand
J. Math., 30(1):81–86, 2001.

A Succinct Inner-Product Argument on Integers

This section gives further details about the integer-product argument system
given in Section 4.

A.1 Verification via a Single Multi-Exponentiation

In this section, we tackle the verification of inner-product arguments via single
multi-exponentiation in case the vector length is not a power of 2. To do so,
we give an explicit expression of the bases at the last step of the recursion.
Alternatively, we give an algorithm which allows to always reduce to the case
of powers of 2 by inserting neutral elements at specific positions in the original
vector.

Explicit Expression for the Final Bases. This section gives an explicit
expression of the bases g and h at the last step of the recursion in terms of g,
h ∈ Gn and the x j challenges for j ∈ ~n′� (with n′ = dlog ne) in case n is not a
power of two.

As a first step, the following lemma shows that the size of the vectors of
group elements at the (i + 1)th step of the protocol, which is dddn/2e /2e · · · /2e
(i times), is actually equal to

⌈
n2−i

⌉
.

Lemma A.1. For any two integers n ≥ 1 and i ≥ 0,
⌈⌈

n2−i+1
⌉
/2

⌉
=

⌈
n2−i

⌉
.

Proof. Let w denote the Hamming weight of n. As n ≥ 1, w ≥ 1 as well. Then,
write n as 2ν1 + · · · + 2νw , with 0 ≤ ν1 < · · · < νw = blog nc, and thus n2−i+1 =
2ν1−i+1 + · · · + 2νw−i+1.

If i > blog nc = νw, then 0 <
⌈
n2−i+1

⌉
≤ 2,

⌈⌈
n2−i+1

⌉
/2

⌉
= 1, and 0 < n2−i =

2ν1−i + · · · + 2νw−i < 1, so
⌈
n2−i

⌉
= 1.

If i ≤ blog nc, the set {1 ≤ k ≤ w : νk > i − 1} is non-empty as it always con-
tains w. Let ` denotes its minimum. Rewrite then n2−i+1 as 2ν1−i+1+ · · ·+2ν`−i+1+
· · · + 2νw−i+1. Note that by definition, ν` ≥ i.

If ` = 1, then
⌈
n2−i+1

⌉
= 2ν`−i+1 + · · ·+ 2νw−i+1 and

⌈⌈
n2−i+1

⌉
/2

⌉
= 2ν`−i + · · ·+

2νw−i = n2−i =
⌈
n2−i

⌉
. If ` > 1, further distinguish two cases:

– if ν`−1 = i − 1, then
⌈
n2−i+1

⌉
= 2 + 2ν`−i+1 + · · · + 2νw−i+1 and

⌈⌈
n2−i+1

⌉
/2

⌉
=⌈

n2−i+1
⌉
/2 = 1 + 2ν`−i + · · · + 2νw−i. Besides, n2−i = 2ν1−i + · · · + 2−1 + 2ν`−i +

· · · + 2νw−i, and therefore
⌈
n2−i

⌉
= 1 + 2ν`−i + · · · + 2νw−i =

⌈⌈
n2−i+1

⌉
/2

⌉

– if ν`−1 > i − 1, then
⌈
n2−i+1

⌉
= 1 + 2ν`−1−i+1 + 2ν`−i+1 + · · · + 2νw−i+1 and⌈⌈

n2−i+1
⌉
/2

⌉
= 1 + 2ν`−1−i + · · · + 2νw−i =

⌈
n2−i

⌉
.

74



ut

Now consider the case of g. Notice that the gi elements that are raised to the
power x1 in the expression of g are such that 1 ≤ i ≤ bn/2c, and the elements
that are raised to the power x2 are such that 1 ≤ i ≤ bdn/2e /2c or bn/2c + 1 ≤
i ≤ bn/2c + bdn/2e /2c. Likewise, the elements that are raised to the power x3 are
such that

1 ≤ i ≤ bddn/2e /2e /2c

bdn/2e /2c + 1 ≤ i ≤ bdn/2e /2c + bddn/2e /2e /2c

bn/2c + 1 ≤ i ≤ bddn/2e /2e /2c

bn/2c + bdn/2e /2c + 1 ≤ i ≤ bn/2c + bdn/2e /2c + bddn/2e /2e /2c .

In general, the elements gi that are raised to the power x j (for j ≥ 2) are such
that 1+ k ∗

⌊⌈
n2j−2

⌉
/2

⌋
≤ i ≤ 1+ k ∗

⌊⌈
n2j−2

⌉
/2

⌋
+

⌊⌈
n2−j+1

⌉
/2

⌋
for 0 ≤ k ≤ j − 2,

with k ∗
⌊⌈

n2j−2
⌉
/2

⌋
defined as k

⌊⌈
n2j−2

⌉
/2

⌋
if k is odd and k/2 ∗

⌊⌈
n2j−3

⌉
/2

⌋
if

k is even and greater than 0 (if k = 0, it is simply 0). That is, if v2(k) denotes
the dyadic valuation of k, k ∗

⌊⌈
n2j−2

⌉
/2

⌋
= k2−v(k)

⌊⌈
n2j−2−v(k)

⌉
/2

⌋
.

As for h, the elements hi that are raised to the power x j (for j ≥ 2) in the
expression of h are such that i is in the complement of the union of the above
intervals.

Reduction to Powers of 2. This section shows to how to reduce the verifica-
tion to the case in which the vector length is a power of 2. The idea is to expand,
as does Algorithm Span, g and h to vectors g̃ and h̃ of size 2n

′ by inserting 1G at
specific positions so that the result of the folding procedure applied g̃ and h̃ are
the same as the result of the procedure applied to g and h (i.e., g and h). This
reduces the multi-exponentiation to the case in which the size of the vectors is
a power of 2.

Now, to prove that the result of the folding procedure applied g̃ and h̃ are
g and h, notice that it suffices to show that for any integers n ≥ 2 and x, and
any vector g ∈ Gn, Span (dn/2e,Fold(n, x, g)) = Fold

(
2 dlog ne, x,Span(n, g)

)
.

Indeed, in the case of the vector g (of size n, and recall that n′ B dlog ne) at the
initial protocol step and of the last base g for instance, if the above statement
is true, then

g = Span(1, g)
= Span (1,Fold (2, xn′, (· · ·Fold (n, x1, g) · · · )))

= Fold
(
2, xn′,

(
· · ·Fold

(
2n
′

, x1,Span (n, g)
)
· · ·

))
= Fold

(
2, xn′,

(
· · ·Fold

(
2n
′

, x1, g̃
)
· · ·

))
.

To prove that Span (dn/2e,Fold(n, x, g)) = Fold
(
2 dlog ne, x,Span(n, g)

)
for

any integers n ≥ 2 and x, and any vector g ∈ Gn, distinguish the following cases:

75



Algorithm Span
Require: integer n ≥ 1, vector g ∈ Gn

Ensure: vector g̃ ∈ G2
dlog ne

if HammingWeight(n) = 1 then // n is a power of 2
return g

end if
i ← Lsb(n) // least significant bit of n counting from 1

I ←
{⌈

n2−i
⌉
+ j2 dlog ne−i+1 : 0 ≤ j < 2i−1

}

while i < blog nc do
i ← i + 1
if

⌊(
n mod 2i

)
2−i+1

⌋
mod 2 = 0 then // the ith bit of n is 0

I ← I ∪
{⌈

n2−i
⌉
+ j2 dlog ne−i+1 : 0 ≤ j < 2i−1

}

end if
end while
g̃ ← 12

dlog ne

G
Head← 1
for i = 1 to 2 dlog ne do

if i ∈ I then
continue // expand g by one element by inserting 1G at position i

end if
g̃[i]← g[Head]
Head← Head + 1

end for
return g̃

Algorithm Fold
Require: integers n ≥ 2 and x, vector g ∈ Gn

Ensure: vector g̃ ∈ G dn/2e

g̃ ← gx1 ◦ g2
return g̃

– if n is a power of 2, then n/2 also is and Span (dn/2e,Fold(n, x, g)) =
Fold(n, x, g) = Fold (n, x,Span (n, g))

– if n is even and not a power of 2, note that running Span on
(
n/2, gx1 ◦ g2

)
results in a vector of size 2 dlog(n/2)e with 1G at positions in

{⌈
n2−12−i

⌉
+ j2 dlog(n/2)e−i+1 : 0 ≤ j < 2i−1

}

for Lsb(n/2) ≤ i ≤ blog(n/2)c, i.e., for integers i such that Lsb(n) ≤ i + 1 ≤
blog nc.

On the other hand,
{⌈

n2−i
⌉
+ j2 dlog ne−i+1 : 0 ≤ j < 2i−1

}

=
{⌈

n2−12−i+1
⌉
+ j2 dlog(n/2)e−i+2 : 0 ≤ j < 2 · 2(i−1)−1

}

for any Lsb(n) ≤ i ≤ blog nc such that the ith bit of n is 0. Therefore, applying
Fold to

(
2 dlog ne,Span (n, g)

)
results in a vector of size 2 dlog ne−1 = 2 dlog(n/2)e

76



with 1G inserted in gx1 ◦ g2 at positions
{⌈

n2−12−i
⌉
+ j2 dlog(n/2)e−i+1 : 0 ≤ j < 2(i−1)−1

}

for Lsb(n) ≤ i ≤ blog nc . A change of variables i ← i − 1 then allows to
conclude that Span (n/2,Fold(n, x, g)) = Fold (n, x,Span (n, g))

– if n is odd, write n as 20 + · · · + 2`1 + 2ν2 + · · · + 2ν2+`2 + · · · + 2νk+`k for k > 1
and 0 ≤ `1 < ν2 − 1 < · · · ≤ ν2 + `2 < · · · < νk − 1 < · · · ≤ νk + `k . Then,
dn/2e = 2`1+2ν2−1+ · · ·+2νk+`k−1. One the one hand, running algorithm Span
on input dn/2e and gx1 ◦ g2 =

[
g1 · · · gdn/2e−1 1G

] x
◦

[
gdn/2e · · · gn

]
returns a

vector of size 2 dlog dn/2e e with 1G inserted at positions in
{⌈
dn/2e2−i

⌉
+ j2 dlog dn/2e e−i+1 : 0 ≤ j < 2i−1

}

for i = `1 + 1, . . . , ν2 − 1, . . . , `k−1 + 1, . . . , νk − 1.
On the other hand, running algorithm Span on (n, g) inserts 1G in g at po-

sitions in
{⌈

n2−i
⌉
+ j2 dlog ne−i+1 : 0 ≤ j < 2i−1

}
for i = 1, `1+2, . . . , ν2, . . . , `k−1+

2, . . . , νk . Consequently, running Fold on
(
2 dlog ne, x,Span(n, g)

)
results in a

vector of size 2 dlog ne−1 = 2 dlog dn/2e e with 1G inserted in
[
g1 · · · gdn/2e−1 1G

] x
◦[

gdn/2e · · · gn
]
at positions in

{⌈⌈
n2−i

⌉
2−1

⌉
+ j2 dlog ne−(i−1) : 0 ≤ j < 2(i−1)−1

}

for i = `1 + 2, . . . , ν2, . . . , `k−1 + 2, . . . , νk . Moreover, Lemma A.1 implies that⌈⌈
n2−i

⌉
2−1

⌉
=

⌈
n2−i−1

⌉
=

⌈⌈
n2−1

⌉
2−i

⌉
, and since dlogdn/2ee = dlog ne − 1,

the change of variables i ← i − 1 shows that Span (dn/2e,Fold(n, x, g)) =
Fold

(
2 dlog ne, x,Span(n, g)

)
. ut

77


	Introduction
	Prior Work
	Contributions

	Preliminaries
	Notation
	Hidden-Order-Group Generators and Hardness Assumptions
	Non-interactive Commitments
	Argument Systems
	Interactive Arguments in the Random–Oracle Model.
	Fiat–Shamir Heuristic.


	Integer Commitments
	Damgård–Fujisaki Commitments
	A new Integer-Commitment Scheme
	Correctness & Security.
	Argument System FS.H.
	Arguing Knowledge of Openings.
	Multi-Integer Commitments.


	Succinct Inner-Product Arguments on Integers
	Formal Description
	Relations.
	Main Insights.
	Protocol Algorithms.
	Prover-Communication Complexity.
	Verification via a Single Multi-Exponentiation.

	Completeness and Security
	Challenge-Tree Generators.


	Succinct Arguments for Multi-Integer Commitments
	Succinct Arguments of Openings
	Aggregating Arguments of Openings to Integer Commitments
	Protocol.
	Completeness and Security.

	Shorter Parameters for Integer Commitments
	Succinct Base-Switching Arguments

	Succinct Argument for Diophantine Equations
	Arguments via Polynomial-Degree Reductions
	Reducing Arbitrary Polynomials to Polynomials of Degree at most 4.
	Diophantine Equations as Circuits.

	Protocol
	Main Insights.
	Protocol Algorithms.
	Prover-Communication Complexity.
	Verification Effiency.

	Completeness and Security

	Applications
	Arguing Knowledge of RSA signatures
	Argument of Knowledge of (EC)DSA Signatures
	DSA Signatures.
	ECDSA Signatures.

	Argument of Knowledge of List Permutation
	3-SAT Satisfiability Argument
	Integer-Linear-Programming Satisfiability Argument

	Succinct Inner-Product Argument on Integers
	Verification via a Single Multi-Exponentiation
	Explicit Expression for the Final Bases.
	Reduction to Powers of 2.



