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Abstract. Ring signatures are a cryptographic primitive that allow a
signer to anonymously sign messages on behalf of an ad-hoc group of N
potential signers (the so-called ring). This primitive has attracted signif-
icant research since its introduction by Rivest et al. (ASIACRYPT’01),
but until recently, no construction was known that was both (i) compact,
i.e., the signature size is sub-linear in N , and (ii) in the plain model, i.e.,
secure under standard hardness assumptions without requiring heuristic
or setup assumptions. The first construction in this most desirable set-
ting, where reducing trust in external parties is the primary goal, was
only recently presented by Backes et al. (EUROCRYPT’19).

An interesting generalization of ring signatures are t-out-of-N ring signa-
tures for t ≥ 1, also known as threshold ring (thring) signatures (Bresson
et al., CRYPTO’02). For threshold ring signatures, non-linkable sub-
linear-size constructions are not even known under heuristic or setup
assumptions.

In this work, we propose the first sub-linear thring signatures and prove
them secure in the plain model. While our constructions are inspired by
the template underlying the Backes et al. construction, they require novel
ideas and techniques. Our scheme is non-interactive, and has strong inter-
signer anonymity, meaning that signers do not need to know the other
signers that participate in a threshold signing. We then present a linkable
counterpart to our non-linkable construction. Our thring signatures can
easily be adapted to achieve the recently introduced notions of flexibility
(Okamoto et al., EPRINT’18) as well as claimability and repudiability
(Park and Sealfon, CRYPTO’19).

(Th)Ring signatures and, in particular, their linkable versions have re-
cently drawn significant attention in the field of privacy-friendly cryp-
tocurrencies. We discuss applications that are enabled by our strong
inter-signer anonymity, demonstrating that thring signatures are inter-
esting from a practical perspective also.

? Work partly done while visiting AIT Austrian Institute of Technology, Vienna, Aus-
tria.



1 Introduction

Ring signatures, first introduced by Rivest, Shamir, and Tauman [47], allow a
member of a set (known as the ring) to anonymously sign on behalf of the ring.
A verifier can check that a signature comes from one of the ring members, but
cannot learn who the actual signer is, a property known as (signer) anonymity.
Bresson, Stern, and Szydlo [10] generalized ring signatures to t-out-of-N ring
signatures (aka threshold ring signatures or thring signatures), in which t > 1
distinct members of an ad-hoc set need to participate to produce a signature.

In a ring signature, there is no prescribed method to distribute keys among
members. The ring can be set-up free, where members can join at will by pub-
lishing their public key. Members can sign at will with respect to a ring. Despite
this setting, many ring signature schemes rely on the random oracle model or
need a trusted setup, i.e., a common reference string. The plain model is the most
desirable model for such an ad-hoc primitive as ring signatures, as it avoids any
setup or heuristic assumptions and is based on standard and falsifiable hardness
assumptions. Furthermore, most ring signature schemes are linear in the size of
the ring, being problematic when ring sizes can be large. Recently, BDH+ pre-
sented an elegant construction of the first sub-linear ring signatures in the plain
model in [2].

While the issues of model and signature size appear in ring signatures (and
we detail these in Section 1.3), thring signatures with t > 1 have another issue.
While signers need not interact to create a 1-out-of-N ring signature, this is not
immediately obvious for thring signatures with t > 1. For example, in a list of
1-out-of-N ring signatures, a single signer may sign repeatedly. As such, it is not
easy to show that the signers are distinct can be complicated for existing ring
signatures. Almost all thring signature schemes require that the signers know
each other and that they interact. This raises the practical question of how
potential signers can discover who the others are, or produce a thring signature
without having to reveal their identity.

There are two exceptions that remove interactivity but have other draw-
backs: First, Okamoto, Tso, Yamaguchi, and Okamoto [43] design a linear-sized
scheme in the random oracle model. Here, ring members can create a 1-out-of-N
ring signature themselves, while also showing that they are a new signer. Thus
a list of 1-out-of-N ring signatures forms a threshold ring signature. However,
their solution requires a fully trusted party who issues short-term keys to all
signers, which is a strong assumption for such an ad-hoc distributed primitive.
Second, Liu, Wei, and Wong [35] introduced the linkable ring signatures, which
allows a verifier to publicly check whether two signatures were produced by the
same signer (while still preserving the anonymity property). The authors note
that this could be extended to produce threshold ring signatures. With a list of
1-out-of-N linkable ring signatures on some message, the signature verification
algorithm checks pairwise that no two signatures in the list are linked to the
same ring member. This approach is generic, but only works for linkable thring
signatures, as any signer that participates in two threshold ring signatures be-
comes linkable. Using this approach with the recent sub-linear scheme of BDH+
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in the plain model [2], one obtains a sub-linear sized threshold ring signature
scheme which is linkable; yet, when aiming for non-linkable thring signatures,
it only yields a one-time scheme. Also, it is not obvious how to obtain scoped
linkability.

Relevance of such schemes. Recently, (linkable) ring signatures have drawn
significant attention in the field of privacy-friendly cryptocurrencies, particularly
in Monero3. With a market capitalization of $1.47B4 (at the time of writing),
Monero is the largest privacy-friendly cryptocurrency. In contrast to other ap-
proaches such as Zcash5, Monero focuses on avoiding any kind of trusted setup.
This is closer to the original spirit of cryptocurrencies, whose main goal is to
avoid centralization. Monero recently announced6 that they are planning to in-
troduce threshold ring confidential transactions, for which (linkable) thring sig-
natures are an attractive building block. We expect a boost in the popularity of
threshold ring signatures, as Monero consider them and are actively working on
them [26].

We extend the original whistleblower example from Rivest et al. [47] to the
“parliament’s problem”. Suppose that a member of a national parliament (an
MP) would like to submit a controversial bill for a law. The bill is controversial
enough that the MP could even lose his standing among his own party. However,
if enough other members agree to the bill, it will be submitted for an official law.
The MP cannot use a ring signature because another MP, wishing to attach their
name, can neither add themselves nor submit a new ring signature while still
showing that they are a distinct member. It would not be easy for this MP to
discover other interested parties. Otherwise, a thring signature with interaction
would do. The solution, then, is for the first MP to publish their bill using a
thring signature with strong inter signer anonymity. Now, he need not interact
with other members, and any other MP can add themselves by signing a new
thring signature.

Another potential application is voting. Linkable ring signatures are a possi-
ble solution to e-voting, as shown by Liu and Wei [50]. In voting, nobody should
know for whom a voter cast his vote, but the voter must not be allowed to vote
more than once. A voter registers using their verification key. To cast a vote, she
signs a ring signature. This signature does not reveal the voter’s identity. A ver-
ifier can take all signatures on the ring and tally votes for each candidate. Any
verifier can see valid distinct signatures (and thus valid, distinct votes) without
any auditor needing to carry out additional checks. Because we have the feature
of scoped linkability, it is possible for signers to use the same verification key to
vote for other candidates. For example, say a voter wishes to vote for both mayor
and governor. Votes cast under the scope ‘mayor’ are linkable, so that nobody
can double vote for mayor. The same is true for the scope ‘governor’. A voter
can now vote for both offices separately using the same verification key. Fur-

3 https://getmonero.org/
4 https://coinmarketcap.com/currencies/monero/
5 https://z.cash/
6 https://forum.getmonero.org/73b46fdf
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thermore, because anyone can join the ring, anyone who wants to vote can. As
a result, scoped linkable thring signatures might be a valuable tool for e-voting
schemes in the future.

Besides the applications as described above, we expect threshold ring signa-
tures that have inter-signer anonymity and our new feature of scopable linkability
will extend the scope of applications.

1.1 Our Contribution

Given the limitation of existing thring signatures and also the increasing real
world interest, we construct a thring signature which is simultaneously:

(i) sub-linear in size of the ring,
(ii) in the plain model (i.e., without requiring random oracles or trusted setup,

e.g., a common reference string) from standard assumptions,
(iii) and non-interactive (in particular, where signers need not know each other).

None of those were previously achieved (even in isolation). We elaborate on
the contributions here:

– We present and prove the first construction of thring signatures that both
have sub-linear signature sizes and are in the plain model. Our construction
is instantiable from falsifiable standard assumptions without the need for
the random oracle heuristic or trusted setup assumptions. Our construction
is inspired by the recent results by BDH+ [2]. However, their approach does
not allow for a thring signature scheme as a straightforward extension. We
require novel ideas and techniques, which we review in Section 1.2.

– We create a thring signature scheme in a setting where there is no inter-
action among the mutually anonymous signers. Our scheme also achieves
strong inter-signer anonymity. Every signer locally computes a signature
and the thring signature is just the collection of the individual signatures.
Signers need not know the other signers that participate in a threshold sign-
ing. Previous constructions of thring signatures require rounds of interaction
via reliable broadcast channels, which seems hard to achieve in practice for
such an ad-hoc privacy-preserving primitive. We will discuss our solution in
Section 1.2.

– We adapt the current model of linkability of thring signatures and make this
model more flexible and fine-grained by introducing the concept of a scope
to support scoped linkability.7

To build upon our thring signature scheme, as was also done recently by
BDH+ [2] for ring signatures, we present the first construction of a logarithmic-
size linkable thring signature scheme in the plain model. While linkability
means that any two signatures produced by the same signer are linkable,
scope is more fine-grained, i.e., two signatures are linkable if they have been

7 This is in the vein of scope-exclusive pseudonyms in the context of attribute-based
credential systems (cf. [11]).
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produced on the same scope, but across different scopes signatures cannot
be linked. Scope thereby can be an arbitrary string and can include context
information. Using a scope string fixed in the scheme yields the conventional
notion of linking.

1.2 Overview of Our Techniques

Before we start describing our approach and techniques, we discuss the approach
used by Backes et al. [2] (BDH+ for short). BDH+ is in turn inspired by the ap-
proach to construct linear-size ring signatures in the plain model due to Bender,
Katz, and Morselli [5].

In BDH+, a user i ∈ [N ] generates key pairs (vkiσ, sk
i
σ) and (pki, ski) of

a signature scheme and a public-key encryption scheme, respectively, and sets
the verification and signing key to V Ki := (vkiσ, pk

i) and SK := (skiσ, sk
i). To

produce a signature for message m with respect to ring R = (V K1, . . . , V KN ),
a signer j computes a signature σ on m using skjσ and encrypts σ under pkj

resulting in a ciphertext ct. The signer samples another random ciphertext ct′

(representing a user j′) and generates two hashing keys hk and hk′ of a some-
where perfectly binding (SPB) hashing scheme [44] that are binding at position
j and j′ respectively, and computes the hash of the ring R = (V K1, . . . , V KN )
under both hk and hk′, obtaining hash values h and h′. SPB hashing allows to
collapse a ring R of N verification keys into a ring of just two keys (and mem-
bership witnesses are of size O(log(N)). This is a means to reduce the size of the
witness for the membership proofs. Finally, signer j computes a perfectly sound
NIWI proof π using an OR-statement which proves that either (hk, h) bind to a
key V Kj and that ct encrypts a signature of m for V Kj or (hk′, h′) bind to a key
V Kj′ and that ct′ encrypts a signature of m for V Kj′ . With a NIWI (instead
of a NIZK), we can avoid a common reference string (CRS). Then a signature
has the form Σ = (ct, ct′, hk, hk′, π) and verification is straightforward.

The approach of BDH+ [2] does not allow for a straightforward extension
to logarithmic-size thring signatures in the plain model with non-interactive
signing. For a non-interactive threshold variant, one needs to guarantee that a
specific signer cannot contribute more than one signature to a thring signature,
but at the same time keep other signatures from the same signer unlinkable. Note
that when using the aforementioned compiler from linkable ring signatures, as
soon as a signer issues two signatures, even on different messages, they can be
linked together. This feature contradicts the idea behind real thring signatures.
BDH+ encrypt the conventional signatures (which link to the actual signer)
to allow for anonymity. Therefore, one requires a proof that all the respective
signers are distinct. The signers could additionally prove that they are pairwise
distinct, but the additional quadratic sized proof breaks the logarithmic size
requirement. Also, here at least one signer needs to compute this proof, and
as such needs to collect all other signatures. Such a scheme would not achieve
inter-signer anonymity nor non-interactivity.

Succinct non-interactive zero-knowledge arguments (zk-SNARKs) [28] could
be used to remove this quadratic blow-up to a constant-size proof. However, zk-
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SNARKs again requires setup (CRS) or heuristic assumptions (ROM) as well as
non-falsifiable assumptions and thus would not allow to stay in the plain model.

Our approach. We follow the BDH+ template, but our approach has major
modifications and novel ideas. First, instead of using a signature scheme, we
use a verifiable random function (VRF) [41], inspired by the recent work on (un-
)repudiability and (un-)claimability of ring signatures by Park and Sealfon [45].8

A VRF is a function which outputs a pseudorandom value v and a proof p so
that given the input m, values (v, p) and the corresponding verification key
vk everyone can check correctness of the evaluation. But without knowing a
proof p for some output v, the output is still pseudorandom. So, we reveal v
but encrypt the proof p for our thring construction. Also, for our setting, we
need an assumption called key collision resistance on the VRF, which requires
that if the VRF is evaluated under different (honestly generated) public keys
and the same message, the evaluations will not collide. This is a reasonable
assumption is satisfied by natural VRF candidates such as the Dodis-Yampolskiy
VRF [20]. Our approach now enables non-interactive thring signatures, where
the signatures are a collection of single 1-out-of-N ring signatures. A verifier can
inspect the VRF values for inequality to determine if the signers are distinct.

Suppose that we replace the encrypted signature in BDH+ with a plain VRF
evaluation and the respective encrypted VRF proof and the rest follows the
BDH+ template outlined above.9 Intuitively, anonymity holds as the value v
does not leak the signer (it is pseudorandom) and unforgeability is based on the
unpredictability of the VRF. Now the anonymity proof in BDH+ works because
signatures are encrypted. However, as within the OR language both evaluations
of the VRF are available in plain in the thring signature, a proof strategy along
the lines of BDH+ always runs into a circular problem and thus fails.

We point out that in order for the verifier to check the signature, they need
to know a description of the ring. The input of the VRF includes the description
of the ring. This would indicate that the ring signature must always be linear
in the size of the ring. However, if the ring is known beforehand or has a short
public description then it is not necessary to send the ring with the signature.
Alternatively, it is possible to change the domain of the VRF so as to compute
on the hash of the ring instead (this was also noted by Park and Sealfon [45]).
For simplicity, we include the ring as input everywhere in our scheme.

Thus, our second change is to add another ingredient to the setup. Finally,
we will change the NIWI to include a third OR clause. The latter will allow the
challenger in the anonymity proof to simulate the first two clauses of the OR
language, which then allows to switch the witnesses to random in the anonymity

8 We note that in a concurrent and independent work in [34], Lin and Wang propose a
modification of BDH+ that use VRFs instead of signatures to achieve repudiability.
We note that their ideas do not extend to thring signatures and thus their approach
cannot be directly compared to our work.

9 In the concrete construction we add another evaluation of the VRF in order to
account for the threshold, but this does not change our intuition given below.
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proof. We are in the plain model and cannot use a common reference string
(CRS) which would allow us to embed a simulation trapdoor that we could use
in the anonymity proof. To avoid a CRS and thus still be able to use only NIWI
proofs, we use the following trick. Each signer i adds an extra secret key skiF into
her overall secret key and a commitment to it, i.e., E ← Enc(pki, skiF; r) to the
public key V Ki. Our third clause in the OR language now proves that for two
users i0 and ii in the ring, it holds that F(ski0F ) = ski1F , where F is a one-way
permutation (OWP), i.e., the clause shows that one of the two keys is the image of
the other key under OWP F. For honestly generated keys this relation will never
be satisfied. However, in the simulation we can now set up user-keys in a way that
they satisfy this relationship (without requiring a CRS) such that we can then
use the witness for this clause of the OR proof to switch out the VRF witnesses to
random. Due to how we use the VRF in our construction, we cannot achieve the
strongest notion of anonymity from Bender et al. [5, 6] (i.e., anonymity against
attribution attacks/full key exposure), where the adversary sees all the random
coins for generating all the honest keys. We achieve anonymity with respect to
adversarially chosen keys [5, 6], which is still a strong notion and allows our
proof strategy to work.

Our approach to linkable thring signatures. As mentioned before, we are
interested in scoped linkability so that it is possible to control linking in a fine-
grained way. While using the compiler by Liu et al. [35] on the linkable version
of the BDH+ yields linkable thring signatures, it is not clear how to extend this
to scoped linkability. One would need to fix the scopes beforehand and make the
public keys linear in the number of scopes. Thus, it would not be possible to
support a potential unbounded number of scopes. Apart from these issues, the
“tagging trick” in BDH+ adds significant overhead, as when they unroll their
required JointVerify algorithm in the proof, they obtain 480 clauses, where each
clause is a conjunction of 5 verification statements of a commitment scheme.

Our linkable thring signatures support an unbounded number of scopes and
are a modular extension of our basic thring signatures. We get linkability on a
scope by adding an additional VRF key pair to the user’s keys and use the eval-
uation of the VRF on the scope for linking purposes (recall that fixing the scope
in the scheme yields the conventional notion of linkability). We need to extend
the language of the NIWI used for the OR proof to account for this additional
VRF. For technical reasons, to achieve non-frameability, we need to guarantee
non-malleability for the partial signatures. We use a variant of the folklore tech-
nique of extending the language of the proof system to obtain simulation-sound
NIZKs [48, 49, 27], but use VRFs instead of PRFs or signatures. In particular,
we use an additional VRF to “sign” a verification key of a strongly unforgeable
one-time signature and use the corresponding one-time signing key to sign the
respective partial signature.

Claimability and repudiability. Recently, Park and Sealfon in [45] introduced
the notions of (un-)repudiability and (un-)claimability for ring signatures. Here,
claimability means that a user can prove that she is accountable for a specific
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signature (without requiring her to keep state), while repudiability means that
she can prove that she did not generate a specific signature. The authors show
that previous ring signature schemes do not give an answer either way about
their claimability or repudiability. As such, they are the first to formalize these
definitions. Our constructions satisfy both notions of repudiability and claima-
bility, and we discuss this in more detail in Section C.1.

Flexibility. Okamoto et al. [43] introduced the notion of flexibility, which allows
to update an existing t-out-of-N ring signature to some (t + α)-out-of-N ring
signature, where the α new signers cooperate with a trusted dealer to achieve
this. The way how we construct our threshold ring signatures also allows us to
achieve some kind of flexibility in that new signers can add themselves to an
already-created threshold ring signature at any time and thus the threshold t
can be extended dynamically (cf. Section C.2).

1.3 Related Work

Ring signatures. Ring signatures have been extensively studied and the most
recent work focuses on (1) obtaining efficient logarithmic-size ring signatures
in the random oracle model in discrete-logarithm hard groups [29, 8, 33], (2)
sublinear-size post-quantum constructions in the (quantum) random oracle model
from different assumptions, e.g., [32, 18, 23, 22, 17], (3) schemes from standard
assumptions without random oracles (but a trusted setup) [9, 19], and (4) con-
structions in the plain model, i.e., without assuming random oracles or common
reference string (i.e., without trusted setup). A first construction of linear-size
signatures appears in [5], but for a long time, improvements were made only when
assuming a common reference string (without random oracles) towards signature
size O(

√
N) [13], which was recently further improved to Θ( 3

√
N) in [25]. How-

ever, no progress in the plain model was made. Only recently has there been
a series of works improving on ring signatures in the plain model. Malavolta
and Schröder [39] presented the first practical linear-size ring signatures in the
standard model which can instantiated in bilinear groups under knowledge-of-
exponent assumptions. Backes et al. [3] improved the size to O(

√
N) under fal-

sifiable assumptions, culminating in the first logarithmic-size O(log(N)poly(λ))
ring signatures in the plain model in [2].

Threshold ring signatures. Currently, there exist constructions from general
assumptions [1, 14], classical assumptions [51, 36, 52, 43], and post-quantum
assumptions [16, 12, 40, 7, 46, 30]. However, all thring signatures schemes so far
are (1) at least linear in the size of the ring, (2) in the random oracle model
(except for [52] which uses a common reference string), and (3) require inter-
action between the signers (meaning that signers must know each other). As
already mentioned in the introduction, an exception to the last issue is the re-
cent flexible scheme of Okamoto, Tso, Yamaguchi, and Okamoto [43], in which
ring members can simply create a 1-out-of-N ring signature themselves, while
also showing that they are a new signer. To reach a threshold of t, there needs
to t of these 1-out-of-N ring signatures. Their solution introduces an additional
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party, the dealer, who is fully trusted by everybody and issues short-term keys
to potential signers. It enforces that no signer will be issued more than one of
these short-term keys.

Finally, a very recent, concurrent and independent work in [42] constructs
threshold ring signatures of size O(t) from a concrete traceable ring signatures
with signature size O(1). We note that like our approach, their construction
is also non-interactive and achieves an anonymity notion akin to our strong
inter-signer anonymity. But unlike our goal of constructing threshold ring signa-
tures in the plain model, i.e., without requiring random oracles or trusted setup
and from standard assumptions, their construction requires non-interactive zero-
knowledge arguments of knowledge and thus either a common reference string
or the random oracle heuristic10.

2 Preliminaries

Throughout this paper, we denote the main security parameter by λ. We write
[N ] = {1, . . . , N}, and a = (a1, . . . , aN ). We denote algorithms by A, B, . . . , and
write out ← A(in) to denote that out is assigned the output of the potentially
probabilistic algorithm A with input in; sometimes, we will make the used ran-
dom coins r explicit and write out← A(in; r). A function negl : N→ R is called
negligible, iff it vanishes faster than any inverse polynomial, i.e., ∀k ∈ N ∃n0 ∈
N ∀n > n0 : negl(n) ≤ n−k.

Non-Interactive Witness-Indistinguishable Proof Systems. Feige and
Shamir [24] first introduced witness-indistinguishable proof systems. We recap
the basic notions of non-interactive witness-indistinguishable proofs (NIWIs).

Let R ⊆ X × Y be an effective relation, i.e., X , Y, R are all efficiently
computable. For (x,w) ∈ R, x is a statement, and w is the witness. The language
LR is defined as all statements that have a valid witness inR, i.e., LR := {x | ∃w :
(x,w) ∈ R}.

Definition 1 (Non-interactive Proof System). Let R be an effective rela-
tion and LR be the language accepted by R. A non-interactive proof system for
LR is a pair of algorithms (Prove,Vfy) where:

– π ← Prove(1λ, x,w). On input a statement x and a candidate w, this algo-
rithm outputs a proof π or ⊥.

– b ← Vfy(x, π). Given a statement x and a proof π, this algorithm outputs
either 0 or 1.

We require NIWIs to satisfy the following three properties. First, perfect com-
pleteness guarantees that correct statements can always be successfully proven.
Second, perfect soundness ensures that it is impossible to generate valid proofs
for false statements. Finally, witness indistinguishability says that, given two

10 They also inherently rely on random oracles in other parts of their construction.
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valid witnesses for a statement, no efficient adversary can decide which witness
was used to compute a proof. We refer to App. A.1 for formal definitions.

Finally, following BDH+ [2], we only consider NIWIs with bounded proof-
size. That is, if we require that for any valid proof π generated by Prove(1λ,
x,w), it holds that |π| ≤ |Cx|poly(λ) for a fixed polynomial poly(.), where Cx is
the verification circuit for the statement x, i.e., (x,w) ∈ R iff Cx(w) = 1.

Verifiable Random Functions. A verifiable random function (VRF) is a
pseudo-random function that enables the owner of the secret key to compute
a non-interactively verifiable proof for the correctness of its output. VRFs were
first introduced by Micali et al. [41], and instantiations in the standard model
have, e.g., been proposed by Lysyanskaya [38], Dodis and Yampolskiy [20] as
well as Hofheinz and Jager [31].

Definition 2 (Verifiable Random Function (VRF)). A verifiable random
function is 4-tuple (Gen,Eval,Prove,Vfy) where:

– (vk, sk) ← Gen(1λ). On input the security parameter λ in unary, this PPT
algorithm outputs a public verification key vk and corresponding secret key
sk.

– v ← Eval(sk, x). On input the secret key sk and an input value x ∈ {0, 1}a(λ),
this deterministic algorithm outputs a value v ∈ {0, 1}b(λ).

– p← Prove(sk, x). On input the secret key sk and an input value x, this PPT
algorithm outputs a proof p.

– b ← Vfy(vk, x, v, p). On input a public key pk, an input value x, a value v,
and a proof p, this deterministic algorithm outputs a single bit b.

Here, a(λ) and b(λ) are polynomially bounded and efficiently computable func-
tions in λ.

We require VRFs to satisfy the following six properties. First, complete prov-
ability guarantees that, if an output v and a proof p have been honestly computed
on consistent inputs, then p will verify for v. Second, unique provability ensures
that for all inputs x, a valid proof can only be computed for a unique output
value v. Third, residual pseudorandomness says that no efficient adversary that
sees arbitrarily many VRF evaluations can distinguish outputs on fresh inputs
from uniform. Fourth, residual unpredictability requires that no efficient adver-
sary that sees arbitrarily many VRF evaluations can compute a correct input
and output pair; this is implied by residual pseudorandomness. Fifth, key privacy
requires that no efficient adversary, only having access to an output but not the
corresponding proof, can decide for which public key the output was computed.
Finally, we introduce the notion of key collision resistance which guarantees that
Eval, on input the same message but two different secret keys, will never return
the same output value. We note that all required properties are for instance
satisfied by the Dodis-Yampolskiy VRF [20]. We refer to App. A.2 for formal
definitions.

Somewhere Perfectly Binding Hashing. Somewhere statistically binding
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hashes were first introduced by Hubáček and Wichs [44]. Intuitively, such schemes
allow one to efficiently commit to a vector (or database). Furthermore, one can
generate short openings for individual positions of the vector.

In the original work [44] it was only required that such schemes are sta-
tistically binding at a single position. BDH+ [2] strengthened this to perfectly
binding. Furthermore, they introduced private openings to require a secret hash-
ing key to compute a valid opening.

As shown in [44, 2] SPB hashes with private local openings in the standard
model can be efficiently obtained from any 2-message private information re-
trieval scheme with fully efficient verifier and perfect correctness. Also, we refer
to [2] for DCR and DDH based instantiations of SPB based on [44].

Definition 3 (Somewhere Perfectly Binding (SPB) Hash). A somewhere
perfectly binding hash with private local opening is a tuple of algorithms (Gen,
Hash, Open, Vfy) where:

– (hk, shk) ← Gen(1λ, n, ind). On input the security parameter λ in unary, a
maximum database size n, and an index ind, this PPT algorithm outputs
public hashing key hk and corresponding secret hashing key shk.

– h ← Hash(hk, db). On input a hashing key hk and a database db of size n,
this deterministic algorithm outputs a hash value h.

– τ ← Open(hk, shk, db, j). On input a public and private hashing key hk and
shk, a database db, and index j, this algorithm outputs witness τ .

– b← Vfy(hk, h, j, x, τ). On input a hash key hk, a hash h, an index j, a value
x and witness τ , this algorithm outputs a single bit b.

We require SPBs to satisfy the following three properties. First, correctness
guarantees that for honestly generated keys, hashes, and openings, verification
will allows succeed. Second, somewhere perfectly binding ensures that if for a
specific index ind and value x verification succeeds, all valid openings on this
position must open to x. Finally, index hiding says that no efficient adversary
can infer the index ind from the public hashing key. We refer to App. A.3 for
formal definitions.

Definition 4 (Public Key Encryption). A public key encryption scheme is a
triple (Gen,Enc,Dec) of algorithms over a message space M(λ), ciphertext space
C(λ), and randomness space R(λ):

– (pk, sk) ← Gen(1λ). On input the security parameter λ in unary, this PPT
algorithm computes a public key pk and a corresponding secret key sk.

– ct ← Enc(pk,m). On input a public key pk and a message m ∈ M(λ), this
PPT algorithm outputs a ciphertext ct.

– m ← Dec(sk, ct). On input a secret key sk and a ciphertext ct, this deter-
ministic algorithm outputs a message m.

We require PKE schemes to satisfy the following three properties. First,
perfect correctness guarantees that for honestly generated keys and ciphertexts,
decryption will always yield the original plaintext. Second, IND-CPA security
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ensures that knowing only the public key, it is computationally infeasible to
decide which message is contained in a ciphertext. Finally, key privacy says that
no efficient adversary, not knowing the secret corresponding keys, can decide
for which public key a ciphertext has been computed. We refer to App. A.4 for
formal definitions.

Strong One-Time Signatures. In the following we briefly recall the definition
of strong one-time signature (sOTS) schemes.

Definition 5 (Strong One-Time Signature Scheme). A strong one-time
signature scheme is a triple (Gen,Sign,Vfy) of algorithms over a message space
M(λ):

– (vk, sk) ← Gen(1λ). On input the security parameter λ in unary, this PPT
algorithm computes a verification key pk and a corresponding signing key sk.

– ς ← Sign(sk,m). On input a signing key sk and a message m ∈ M(λ), this
PPT algorithm outputs a signature ς.

– b ← Vfy(vk,m, ς). On input a verification key vk, a message m and a sig-
nature ς, this deterministic algorithm outputs a single bit b.

We require sOTS schemes to satisfy the following two properties. First, correct-
ness guarantees that for honestly generated keys and signatures, verification will
always succeed. Second, strong unforgeability ensures that no efficient adversary
that can obtain one signature for a given key can come up with another valid
signature on any message. We refer to App. A.5 for formal definitions.

Definition 6 (One-Way Permutation). A one-way permutation F is defined
such that:

– y ← F(1λ, x). On input the security parameter λ in unary and an input value
x ∈ {0, 1}λ, this deterministic algorithm computes an output y ∈ {0, 1}λ.

We require OWPs to satisfy the following two properties. First, it must be
easy to compute, meaning that there is a polynomial-time algorithm to evaluate
the function. Second, the need to be hard to invert, guaranteeing that given only
an output value, it is computationally infeasible to find the preimage mapping
to this output. For F to be a permutation, it must be that any y has a unique
preimage x = F−1(y). We refer to App. A.6 for formal definition.

3 Framework and Security Definitions

In this section, we define the syntax for thring signature schemes. Next, we
describe the oracles needed for the security definitions, and finally, the formal
properties and definitions themselves.
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Symbol Meaning

ts Individual threshold of signer s11

t = (ti1 , . . . , ti|S|)

N Number of members of the ring. Indexed by s.

P Ordered list of public keys P = (V K1, . . . , V KN ).

R Subring R ⊆ P .

S Set of signers where S ⊆ [N ].

T Secret keys to signers in S, T = {sks}s∈S .

NS Non-signers where NS ⊆ [N ]

M Message space.

λ Security parameter.

Table 1: Notation used in algorithm.

3.1 Syntax

While our notation is similar to that of Bender et al. [5], we need to extend the
basic ring signature notation to a thring signature. The notation is summarized
in Table 1. Assuming an ordering of all public keys (e.g., lexicographic), we
denote the sequence of all public keys as P = (vk1, vk2, . . . ) as a ring. A subring
is a subsequence R ⊆ P . Regardless of which members are part of the subring, we
always enumerate the subring as R = (vk1, . . . , vkN ). A set of signers is S ⊆ [N ],
where R[S] = {vks}s∈S . In a thring signature scheme, a set of signers S ⊆ [N ]
signs a message in the message space msg ∈ M with respect to a subring R.
The secret keys of signers are denoted as T . Each signer s ∈ S may choose an
individual threshold ts, with the sequence of all individual thresholds denoted
as t. Each signer chooses the minimum number of total signers they require
for a valid signature. These thresholds may be arbitrary, i.e. t does not need
to be fixed in the system parameters. Furthermore, in case of a non-interactive
scheme, each signer may individually decide how many other signers are needed
to let her signature become valid. For the sake of generality our syntax also
considers system parameters pp generated by a Setup algorithm (which in our
security definitions is always assumed to be honestly executed) allowing one to
also model schemes requiring trusted setup in our framework. However, we stress
that our instantiations given in Sec. 4.1 and Sec. 5 do not require such a Setup
and are in the plain model.

Definition 7 (Threshold Ring Signature Scheme). A threshold ring signa-
ture (thring) scheme consists of a 4-tuple of algorithms (Setup,KGen,Sign,Vfy).
A subset of signers S from ring P signs the message msg ∈M with respect to a
subring R and thresholds t.

– pp ← Setup(1λ). On input the security parameter λ in unary, this PPT
algorithm generates public parameters pp. The public parameters are implicit
input to all other algorithms and will be omitted when clear from context.

11 Here and in the following we use the convention that indices used to distinguish
between signers are written as superscripts.
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– (vk, sk)← KGen(pp). On input the public parameters pp, this PPT algorithm
generates a public verification key vk and a corresponding secret key sk for
a signer.

– σ ← Sign(msg, T,R, t). On input a message msg, a set of secret keys T , a
subring R, and a vector of individual thresholds t, this potentially interactive
PPT procedure outputs a signature σ on msg.

– b← Vfy(msg, R, σ, t). On input a message msg, a subring R, a signature σ,
and a verification threshold t, this deterministic algorithm outputs a single
bit b.

3.2 Security Definitions

In this section, we define the security properties for a thring signature scheme:
correctness, unforgeability with respect to insider corruption, and inter-signer
anonymity with respect to adversarial keys. However, we must first describe a set
of oracles. In our security definitions, the adversary may access these oracles in
arbitrary interleaf during the corresponding experiments. All oracles have access
to the following initially empty sequences or sets: P, Pcorr,Lsigners, Q. The first
sequence P is the ring, and Pcorr ⊆ P is the subset of corrupted (or malicious)
members in the ring. The sequence L is the triple of the signer, the public key,
and the private key. The set Q is the set of signing queries.

– OKGen(s). On input a signer s, this oracle first checks whether there exists
(s, ·, ·) ∈ L and returns ⊥ if so. Otherwise, it generates a fresh key pair
(vks, sks)← KGen(pp), adds (s, vks, sks) to L, vks to P , and returns vks to
the adversary.

– OSign(msg, S,R, t). On input a message msg, a list of signers S, a subring
R, and a vector of individual thresholds t, this oracle first checks whether
R ⊆ P and returns ⊥ if this is not the case. The oracle then decomposes R
to S = Scorr t Shon12, where Scorr denotes corrupted users (i.e., corrupted
or registered by A) and Shon denotes honest users.
The oracle then engages in an execution of Sign(msg, T,R, t). The oracle
mimics the behavior of honest parties using the secret keys corresponding
to Shon, and the adversary participates using Scorr. For all honest signers s,
the oracle adds (msg, R, s, ts) to Q.

– OCorrupt(s). On input a signer s, if there exists (s, vks, sks) ∈ Lsigners, the
oracle returns sks to the adversary. The oracle adds vks to Pcorr.

– ORegister(s, vk). On input a signer s and a public key vks, the oracle checks
if there exists (s, ·, ·) ∈ Lsigners and returns ⊥ if so. Otherwise, it adds vks

to Pcorr and (s, vks, ·) to Lsigners.

Correctness. Correctness guarantees that a signature generated by sufficiently
many honest users will always pass the verification algorithm. We note that
in our definition, the verification algorithm will check whether the individual
thresholds are less than or equal to the verification threshold. This supports the
concept of flexibility (ref. Sec. C.2).

12 By t we denote disjoint union.
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Experiment SigForgeA(λ)

pp← Setup(1λ)

(msg∗, σ∗, R∗, t∗)← AOKGen,OCorrupt,OSign(pp)
return 1 if:

Vfy(msg∗, σ∗, R∗, t∗) = 1 and
R∗ ⊆ P and
|U ∪ (R∗ ∩ Pcorr)| < t∗

where U = {V Ks|∃(msg∗, R∗, s, ts) ∈ Q :
ts ≤ t∗}

return 0

Fig. 1: Unforgeability

Experiment AnonymityA(λ)

pp← Setup(1λ)

(st,msg∗, R∗, S∗0 , S
∗
1 , t)← AOKGen,OCorrupt,OSign,ORegister(pp)

b← {0, 1}
σb ← OSign(msg∗, S∗b \ Pcorr, t)
b′ ← AR

∗,t),OKGen,OCorrupt,OSign,ORegister(st, σb)
where OCorrupt and OSign ignore queries involving

users in the set difference of S∗0 and S∗1 , i.e., in
(S∗0 ∪ S∗1 ) \ (S∗0 ∩ S∗1 ).

return a random bit if:
|S∗0 | 6= |S∗1 |, or
S∗0 ∪ S∗1 6⊆ R∗, or
(S∗0 ∩ Pcorr) 6= (S∗1 ∩ Pcorr), or
(msg∗, R∗) has been signed before

return 1 if:
b = b′

return 0

Fig. 2: Inter-signer anonymity

Definition 8 (Correctness). A thring signature scheme is correct if there
exists a negligible function negl(λ) such that for every msg ∈ M, any subring
and ring such that R ⊆ P (with |P | being polynomially bounded in λ), any set
of signers S ⊆ R, any vector of individual thresholds t = (t1, . . . , tN ), and any
verification threshold t such that t ≤ |{i : ti ≤ t}|, it holds that:

Pr

pp← Setup(1λ)
{(vks, sks)← KGen(pp)}s∈|P |
σ ← Sign(msg, T,R, t)

:
R[S] ⊆ P =⇒
Vfy(msg, R, σ, t) ≤ negl(λ)

 = negl(λ)

The scheme is called perfectly correct iff negl(λ) = 0.

Unforgeability. Intuitively, unforgeability guarantees that an adversary who has
corrupted up to t − 1 signers will not be able to generate a valid signature for
threshold t. More precisely, the adversary can adaptively corrupt an arbitrary
number of signers and engage in the signing protocol on arbitrary messages with
honest users with respect to any thresholds and subrings. The adversary finally
outputs a valid message, signature, subring, and threshold msg∗, σ∗, R∗, and t∗.
The adversary wins if (1) he did not request OSign for too many honest parties
on msg∗ and R∗ for thresholds less than t∗, and (2) he corrupted fewer than t∗

members in R.
We note that we can tolerate corrupted parties in our scheme, but not ma-

licious parties. This is due to the fact that we obtain inter-signer anonymity by
having unique signatures. While this requirement is weaker, it is not unusual
among the ring signature definitions (many schemes do not consider malicious
parties). The experiment is described in Fig. 1.

Definition 9 (Unforgeability wrt Insider Corruption). A thring signature
scheme satisfies unforgeability wrt insider corruption if for all PPT adversaries

15



A there exists a negligible function negl(λ) such that Pr[SigForgeA(λ) = 1] ≤
negl(λ).

Anonymity. Anonymity says that it is infeasible to infer from a valid signature
which users contributed to the generation of the signature, or in general to link
a signer across different signatures. In our anonymity notion, we protect honest
signers’ identities even from other signers (inter-signer anonymity). This is true
even if some of the signers in the challenge set use maliciously generated keys.
In the anonymity game, the adversary has access to all the oracles. He then
requests a signature on the sets S∗0 or S∗1 .

We can tolerate malicious keys, even in the challenge sets, so long as both sets
have the same malicious parties. Then the adversary interacts with the oracle
using his malicious parties (if needed) and finally receives a signature. He may
continue to make OSign and OCorrupt requests, but the oracle will not respond
to queries in the set difference between S∗0 and S∗1 . The experiment is in Fig. 2.

In our scheme, users signing the same message msg with respect to the same
subring R but potentially different thresholds are linkable among these signa-
tures. As our scheme is set up to have inter-signer anonymity, if a message-ring
pair has been signed before, it is possible to pinpoint who signed it. We ensure the
threshold by preventing signers from signing twice on the same (msg, R). Thus,
in the challenge phase of the anonymity experiment we require new message-ring
pairs.

Definition 10 (Anonymity wrt adversarial Keys). A threshold ring signa-
ture scheme satisfies inter-signer anonymity with respect to adversarial keys if
for every PPT adversary A there exists a negligible function negl(λ) such that∣∣∣∣Pr[AnonymityA(λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ) .

4 Our Construction TRS

4.1 Overview of TRS

In this section, we provide an overview of our construction. The details of the
algorithms are in Fig. 3.

Our construction uses the following building blocks: (i) a verifiable random
function VRF, (ii) a public key encryption scheme PKE, (iii) a somewhere
perfectly binding hash function SPB, (iv) a one-way permutation F, and (v) a
non-interactive witness indistinguishable proof system NIWI.
Signing. Suppose that t members of a ring R wish to sign a message msg. The
ring is a sequence of public keys which we denote as R = (V K1, . . . , V KN )
and identify a signer index s ∈ [N ]. Then each signer s locally evaluates the
VRF using her private key on the inputs msg||R and ts||msg||R. The latter is
needed because we allow each signer to choose its own threshold. The signer then
encrypts the proofs of these VRF evaluations in ct and ct′. Next, it samples two
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SPB hashing keys hks and hki for i ∈ [N ] where i 6= s, binding at positions s
and i respectively. Next, it calculates hi = Hash(hki, R) and hs = Hash(hks, R).
Then (hks, hs) and (hki, hi) are commitments to V Ki and V Ks respectively. As
in BDH+ [2], this allows us to collapse a ring of size N into two keys. Finally,
the signer calculates a proof on NIWI. Signer s then outputs its signature σs

as a tuple containing the VRF evaluations, the ciphertexts, hashing keys, the
NIWI proof, and its individual threshold. A threshold signature is now a plain
concatenation of many individual signatures, i.e., σ = (σ1, . . . , σt). Verification.
To verify a signature for a target threshold tV , the verifier on σ = (σ1, . . . , σt)
checks each σi for each 1 ≤ i ≤ t. It checks to see if the VRF value is different
than all previously verified signatures. Then the verifier will check if the NIWI
verifies and whether the threshold is less than or equal to his threshold tV . The
verifier will keep track of how many valid signatures it sees in a list LV . At the
end, if LV contains at least tV signatures, the verifier will accept.

NIWI. To calculate a proof for the NIWI, the signer needs to show that one of
the following claims is true:

(i) The computations are correct for signer s, i.e., hks is binding at position
s and commits to R, V Ks and the corresponding secret key was used to
evaluate the VRF on msg||R and ts||msg||R resulting in v and v′, and the
corresponding proofs have been encrypted as ct and ct′ under pks† . This is
the branch for which an honest signer has all necessary keys; OR

(ii) the same computations have been performed correctly for signer i; OR

(iii) the secret keys skF of signer s and i satisfy F(sksF) = skiF, that hks and
hki have been computed for positions s and i, and that the skF are those
corresponding to the public keys of s and i. As discussed in Sec. 1.2 this is
needed in the anonymity proof, as publishing the VRF evaluations in the
plain does no longer allow to use the proof technique of [2], but will never
be satisfied for honest keys.

We denote this language as:

L′ := LR|V K
∨ LR|V K′

∨ LF ,

where R|V K indicates the following relation R for a specific key V K, where
V Ks = (vks, pks† , pk

s
‡ , E). Statements and witnesses for the two relations have

the form:

R|V K : x = (msg, R, t, v, v′, ct, ct′, hk, h)

w = (V Ks, s, p, p′, rct, rct′ , τ)

RF : x = (R, hi0 , hi1 , hki0 , hki1)

w = (i0, i1, V K
i0 , V Ki1 , τ i0 , τ i1 , ski0F , sk

i1
F , rE0

, rE1
)

The relations are then defined as follows:
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(x,w) ∈ R|V K if and only if:

VfySPB(hk, h, s, V K, τ) = 1 ∧
Enc(pks† , p; rct) = ct ∧
Enc(pks† , p

′; rct′) = ct′ ∧
VfyV RF (vks,msg||R, v, p) = 1 ∧
VfyV RF (vks, t||msg||R, v′, p′) = 1

(x,w) ∈ RF if and only if:

F(ski0F ) = ski1F ∧
Enc(pk‡, sk

i0
F ; rE0) = E0 ∧

Enc(pk‡, sk
i1
F ; rE1) = E1 ∧

VfySPB(hki0 , hi0 , i0, V K
i0 , τ i0) = 1 ∧

VfySPB(hki1 , hi1 , i1, V K
i1 , τ i1) = 1

Note that an honest signer does not use its (pk‡, sk‡) for the NIWI proof. As
mentioned above, our final language L′ is the OR of two LR|V K

with respect to
two verification keys V K, and LF . Statements and witnesses for L′ are of the
form:

x =

(
msg R v v′ ct ct′

t hi0 hi1 hki0 hki1

)
w =

V Ki0 V Ki1 i0 i1 τ i0 τ i1

τ p p′ ski0F ski1F
rct rct′ rE0

rE1


Having said this, the formal description of our threshold ring signature scheme
TRS is now given in Fig. 3. Note that, as our instantiation does not rely on any
trusted setup, there is no need for Setup to generate joint parameters.

Key Generation Gen(1λ):

(vk, sk)← GenV RF (1λ);

(pk†, sk†)← GenPKE(1λ);

(pk‡, sk‡)← GenPKE(1λ);

skF ← {0, 1}2λ;
rE ← PKE.R;
E ← Enc(pk‡, skF; rE);
V K := (vk, pk†, pk‡, E);
SK := (sk, sk†, sk‡, rE , V K);
return (V K, SK).

Verification Vfy(msg, R, σ, tV ):

// Parse each signature in the list;

σ = ((v, v′, ct, ct′, hks, hki, π, ti))ti=1;

Sort list by ti;
for i ∈ [t]

h′ := Hash(hks, R);

h′′ := Hash(hki, R);

x := (msg, R, v, v′, ct, ct′, h′, h′′, hks, hki);
b′ ← VfyNIWI(x, π);

if b = 1 ∧ σi.v 6= σk.v ∀k ∈ [i− 1]

LV .append(ti);
endfor
if ∃i ≥ tV : LV [i] ≤ i return 1;
return 0.

Threshold Signing Sign(msg, T,R, t):

// Every signer s ∈ S, |S| ≥ t
v ← Eval(sks,msg||R);
p← Prove(sks,msg||R);
v′ ← Eval(sks, ts||msg||R);
p′ ← Prove(sks, ts||msg||R);
rct, rct′ ← PKE.R;
ct← Enc(pks† , p; rct);
ct′ ← Enc(pks† , p

′; rct′);

(hks, shks)← GenSPB(1λ, N, s);
hs ← Hash(hks, R);
τs ← Open(hks, shks, R, s);

// Pick other ring member i 6= s

i← [N ] \ s;
rE0 , rE1 ← PKE.R;
(hki, shki)← GenSPB(1λ, N, i);
hi := Hash(hki, R);
τ i ← Open(hki, shki, R, i);

// Call on the NIWI for language L′

π ← ProveNIWI(x,w)
σs := (v, v′, ct, ct′, hks, hki, π, ts);

// Every signer s broadcasts the signature

broadcast σs;
// Final threshold ring signature

return σ = {σj}tj=1.

Fig. 3: Our threshold ring signature scheme. For notation refer to Table 1.
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4.2 Security of Our Construction

Thring signatures achieve the security properties of correctness, unforgeability,
and anonymity. In this section, we provide the formal proofs of each property
for the construction TRS.

Theorem 1 (Correctness). If the underlying NIWI, VRF, PKE, and SPB
schemes are correct, and the VRF is key collision free, TRS is correct.

Proof. It can easily be seen that by construction all individual signatures are
valid. What remains to show is that σi.v 6= σj .v for all i 6= j, which follows
directly as otherwise we would have that Eval(ski,msg||R) = Eval(skj ,msg||R)
in contradiction to the assumed key collision freeness. ut

Theorem 2 (Unforgeability). If F is a one-way permutation, VRF has resid-
ual unpredictability and unique provability, NIWI has perfect soundness, SPB
is somewhere perfectly binding and PKE is perfectly correct, then the thring
signature scheme TRS is unforgeable.

To prove unforgeability, we need to show that a forger F who knows up to
t−1 secret keys cannot forge a signature that verifies for t signers. At a high level,
because F needs to provide a valid NIWI proof as part of the signature, and the
NIWI is perfectly sound, we know that the claimed statement must indeed be
true. We can thereby exclude that F knows the witness to RF as no such one will
exist unconditionally in our hybrids. This is why we do not give F access to the
ORegister oracle. Then, as it needs to hold a witness to either R|V K or R|V K′
due to the somewhere perfect binding property of the SPB, we know that the
forgery must have used the identity of a signer who is a member of the ring. Due
to the perfect correctness of the PKE scheme we know that ct (or ct′) contains
a valid proof for the respective VRF. Due to the unique provability of the VRF
we know that such a value must have been generated by an uncorrupted signer,
and then we can give a reduction to the residual unpredictability of the VRF.

Proof. We prove unforgeability via hybrid arguments and a reduction to residual
unforgeability.

H0 to H1: H0 is the real unforgeability experiment SigForge from Figure 1. In
H1, the challenger will pick one index i∗ ahead of time. We abort on an OCorrupt
request of i∗. When the adversary provides a forgery, it must be the case that
he used honest keys (created by OKGen queries) in his chosen ring. Since i∗ was
picked at random, i∗ will be chosen to be part of the forgery’s ring with at least
probability 1

qKG
where qKG is the number of users generated by OKGen. Suppose

that there is an adversary F who who forges in H0 with some probability. Then
the adversary will be able to forge in H1 with the same probability (except with
a loss of 1

qKG
).

H1 to H2: All keys skF generated via OKGen are chosen in a way that for none
of the pairs (skjF, sk

k
F) it holds that either skjF = F(skkF) or skkF = F(skjF).
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Note that RF can now never be satisfied among all the honest keys, in H2

we are at a point where the forgery σ∗ = {(v, v′, ct, ct′, hks, hki, π, ti)}ti=1 needs
to use a witness for R|V K or R|V K′ . Due to symmetry of these both cases let us
w.l.o.g. assume that F uses a witness for R|V K . Now by the perfect soundness
of the NIWI we know that

(msg, R, t, v, v′, ct, ct′, hki0 , hi0) ∈ L|V K .

As the SPB is somewhere perfectly binding, we have that hi0 = Hash(hki0 , R)
and VfySPB(hki0 , hi0 , i0, V K

s0 , τ i0) = 1 implies that R[i0] = V Ki0 . If we have
i0 = i∗, due to the perfect correctness of PKE we have that (pki

∗

† , sk
i∗
† ) are cor-

rect for all messages. Then for p := Dec(ski∗† , ct) and p′ := Dec(ski∗† , ct
′) the VRF

verifications VfyV RF (vki
∗
,msg∗||R∗, v, p) = 1 and VfyV RF (vki

∗
, t∗||msg∗||R∗, v′,

p′) = 1. Finally, due to the unique provability of the VRF we know that the
values (v, p) and (v′, p′) are the unique pairs under vki

∗
corresponding to inputs

msg∗||R∗ and t∗||msg∗||R∗.
Reduction to residual unpredictability. Finally, we present a reduction to
the residual unpredictability A of the VRF, which uses F (as in H2) as a sub-
routine.

– A engages with a challenger CV RF and receives vk which we embed into
V Ki∗ .

– On each request from F : OKGen, OCorrupt, OSign do as inH2. The difference

is for each VRF evaluation at i∗ A queries COEval(sk,·)
V RF . Remember that if F

requests OCorrupt on either i∗ then Abort.
– From a valid forgery σ∗ of F , we obtain p and p′ for inputs msg∗||R∗ and
t∗||msg∗||R∗.

– Output one of (msg∗||R∗, v) and (t∗||msg∗||R∗, v′) as forgery to CV RF .

If F created a valid forgery, then with probability 1
qKG

he picked the index
i∗. As A can break residual unpredictability with at most negligible probability,
we see that F can win in H2 with at most negligible probability as well. By
hybrid argument, we see that F cannot win in H0 either except with negligible
probability.

ut

Theorem 3 (Anonymity). If SPB is index hiding, PKE has key-privacy and
CPA-security, NIWI is computationally witness-indistinguishable, and VRF has
residual pseudorandomness and key-privacy then TRS is anonymous.

Recall the anonymity game 2. In the training phase, the adversary Aanon
queries on OKGen, OSign, OCorrupt, and ORegister. Then in the challenge phase,
Aanon submits a message msg, a subring R, and two signing sets S0, S1 ⊂ R.
The challenger picks one of the signing sets Sb and computes a signature σ. On
σ, Aanon guesses which of S0, S1 signed the message.

For us, t-out-of-N signature is a collection of t ring signatures, and signa-
tures are independent of each other. Thus, it suffices to show anonymity for a
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single signer and one can use a hybrid argument to show anonymity for larger
thresholds. The probability of distinguishing between two sets of signatures is
negligible if distinguishing between two signatures is negligible. Then for the
challenge phase, Aanon will produce two indices s0, s1, message msg, and ring R.

Over a sequence of hybrids, we transform the signature element by element
from one under s0 to a signature under s1. By showing that each hybrid is
computationally indistinguishable from its predecessor, we see that signatures
under s0 and s1 are indistinguishable to Aanon.

We make the various types of changes over the hybrids and justify them in the
proofs by using the following properties: (i) Changes to hk: the SPB is index-hid-
ing. (ii) Changes to ct: the PKE has key-privacy and CPA-security. (iii) Changes
to the witness used for π: the NIWI is computationally witness-indistinguishable.
(iv) Changes to the value v: the VRF has residual pseudorandomness.

Proof. Consider the following hybrids:

H0 to H1: H0 is the real anonymity experiment with challenge bit b = 0.
The challenger knows ahead of time qKG, the number of queries Aanon will
make to OKGen and picks two indices ind0, ind1 ← [qKG] (ind0 6= ind1). If on
either ind0, ind1, Aanon requests OCorrupt (or chooses these for ORegister) then
Abort. Finally, we require that the adversary Aanon picks ind0, ind1 must be the
two indices the challenger picked ahead of time. Because ind0, ind1 were picked
randomly, there is a 1

qKG
probability that these will be the right two indices. An

adversary playing in H1 wins with the same probability as in H0, except for a
multiplicative loss of 1

(qKG)2 . AH: TODO: need to say what the multiplicative

loss is of.

H1 to H2: In this step, the challenger always chooses ind1 as the ‘other index’
when computing the final challenge signature. As ind1 was uniformly random,
this is indistinguishable.

H2 to H3: In this step, for OKGen on ind0, ind1 make sure the secret keys skind0F

and skind1F are such that F(skind0F ) = skind1F holds. This change only affects skind0F

and skind1F . This change affects only skind0F and skind1F , which are hidden in Eind0

and Eind1 , and are never revealed.

H3 to H4: Calculate (v1, p1)← (Eval(skind1 ,msg||R),Prove(skind1 ,msg||R)) and
(v′1, p′1)← (Eval(skind1 , t||msg||R),Prove(skind1 , t||msg||R)),

and τ ind1 = Open(hkind1 , shkind1 , R, indi). Then change the witness w:

H3 w0 = (V K ind0 , V K ind1 , ind0, ind1, τ
ind0 , τ ′ , p , p′ , skind0F , sk′F , rct, rct′)

H4 ŵ0 = (V K ind0 , V K ind1 , ind0, ind1, τ
ind0 , τ ind1 , p1 , p′1 , skind0F , skind1F , rct, rct′)

Note that this only makes changes in the witness of the NIWI. Since the NIWI is
witness indistinguishable, these changes are indistinguishable to any adversary.
We construct AWI which uses Aanon.
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1. AWI activates Aanon. He chooses ind0, ind1.
2. For each query, he answers as the challenger would.
3. On a challenge (s0, s1,msg, R), if s0 = ind0 and s1 = ind1, he calculates

w0, ŵ0 as above and sends to the challenger. He gets back π∗.
4. AWI forwards π∗ as part of the signature to Aanon.
5. AWI outputs the same as Aanon.

We see w0 is the same asH2 and ŵ0 is the same as inH3. IfAanon winsH2 and
H3 with different probabilities, thenAWI can win the witness-indistinguishability
game with the same probability. Thus, H2 and H3 are indistinguishable.

H4 to H5: ct := Enc( pkind0† , p; rct)→ ct1 := Enc( pkind1† , p; rct)

To show that this change is indistinguishable, we construct an adversary to
PKE key privacy APKEKP following the game in 14.

1. APKEKP receives two public keys pk0, pk1 from his challenger.
2. APKEKP activates Aanon. He picks ind0, ind1. APKEKP answers every query as

the challenger would have done, except for KGen at ind0 and ind1, where he
gives pkind0 = pk0 and pkind1 = pk1.

3. Finally, Aanon will request a signature on msg, R.
4. APKEKP computes using skind0 , p ← Prove(skind0 ,msg||R). He sends p to his

challenger.
5. The challenger will pick b ← {0, 1}. If b = 0, returns ct∗ = ct and if b = 1,

returns ct∗ = ct1.
6. APKEKP uses ct∗ for the signature he gives Aanon.
7. Output the same as Aanon.

If the challenger picks pk0, this is the anonymity game as in H3, but if he
picks pk1 then this is the game as in H4. Thus, if Aanon wins H3 and H4 with
different probabilities, then this is the advantage of APKEKP winning the PKE key
privacy game.

H5 to H6: ct
′ := Enc( pkind0† , p′; rct′)→ ct′1 := Enc( pkind1† , p′; rct′)

The argument is identical to the transition from H4 to H5 with a reduction
to PKE key privacy. The only difference is that p′ ← Prove(skind0 , t||msg||R) and
thus we omit details.

H6 to H7: ct
1 := PKE.Enc(pkind1† , p ; rct) → ĉt1 := PKE.Enc(pkind1† , p1 ; rct),

where p1 ← Eval(skind1 ,msg||R).
We construct ACPA which uses Aanon as a subroutine to break CPA security

following 13.
1. ACPA receives pk. ACPA picks ind0, ind1, activates Aanon.
2. For each query by Aanon, ACPA answers as a challenger would, except for

OKGen at ind0, where he gives pkind0† = pk.
3. When Aanon queries on (s0, s1,msg, R) then ACPA calculates both p ←

Eval(skind0 ,msg||R) and p1 ← Eval(skind1 ,msg||R). He gives p, p1 to his chal-
lenger.

4. Challenger flips b← {0, 1}. If b = 0 he encrypts p, if b = 1 he encrypts p1.
He returns ct∗ to ACPA.

5. ACPA gives the signature σ = (v, ct∗, hkind0 , hkind1 , π).
6. ACPA outputs the same as Aanon.
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If the challenger picks p, we are in H4, if p1 then H5. Thus, ACPA wins the
CPA-security game with the same advantage as the difference of Aanon winning
in H4 versus winning in H5.

H7 to H8: ct
′1 := PKE.Enc(pkind1† , p′ ; rct)→ ĉt′1 := PKE.Enc(pkind1† , p′1 ; rct),

where p′1 ← Eval(skind1 , t||msg||R). The argument is identical to the transition
from H6 to H7 and thus we omit details.

H8 to H9: σ = ( v , v′, ĉt1, ĉt′1, hkind0 , hkind1 , π, t)→
σ = ( v1 , v′, ĉt1, ĉt′1, hkind0 , hkind1 , π, t)

where v1 ← Prove(skind1 ,msg||P ).

We show that the change between H8 and H9 is indistinguishable using the
following reduction to the VRF key privacy game 11.

1. AV RFKP gets a vk0, vk1 from his challenger.
2. AV RFKP activates Aanon. AKP picks ind0, ind1.
3. AV RFKP answers every query from Aanon. At index ind0 he sets the VRF

vkind0 = vk0 and at ind1 he sets vkind1 = vk1.
4. On an OSign query for msgi, Ri, at ind0: AV RFKP asks the challenger to return

v ← Eval(vkb,msgi||Ri)
5. When Aanon makes his challenge, (s0, s1,msg, R), then AV RFKP submits

msg||R to the challenger as his challenge and gets back v∗. He uses this
in the signature σ = (v∗, ct, hk, h, π).

If b = 0, then the AV RFKP is answering queries with vkind0 . If b = 1, then AV RFKP

is answering with vkind1 . Due the key privacy property of the VRF, AV RFKP cannot
distinguish between a v from vkind0 and vkind1 . Thus, H8 and H9 are indistin-
guishable.

H9 to H10: σ = (v1, v′ , ĉt1, ĉt′1, hkind0 , hkind1 , π, t) → (v1, v′1 , ĉt1, ĉt′1, hkind0 ,
hkind1 , π, t). The challenger replaces v1 by v′1 ← Prove(skind1 , t||msg||P ). The
argument is as in H8 to H9.

H10 to H11: hk, shk ← GenSPB(1λ, N, ind0 )→ hk1, shk1 ← GenSPB(1λ, N, ind1 ).

Because of the index-hiding property of SPB 12 we can next change the index
for which hk is generated from ind0 to ind1. We construct AIH as an adversary
against SPB index hiding which uses Aanon as a subroutine.

1. AIH picks (N, ind0, ind1, ∅) (where N is the maximum ring size).
2. AIH activates Aanon as a subroutine. On each query AIH answers as the

challenger would.
3. Eventually, Aanon requests a signature on ind0, ind1.
4. AIH produces the signature as described in H10, except for he gives

(N, ind0, ind1) to the challenger. He uses (hk, shk) from the challenger to
create the signature for Aanon.

5. AIH outputs same as Aanon.

If Aanon wins with non-negligibly different probabilities inH10 andH11, then
AIH could win the index hiding experiment. We see then that H10 and H11 must
be indistinguishable.

H11 to H12: Using τ1 ← Open(hk1, shk1, R, ind1), select skind0F , skind1F randomly
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when requested for OKGen and change the witness:

H11 ŵ0 = ( V K ind0 , V K ind1 , ind0, ind1 , τ
ind0 , τ ind1 , p1, p′1, skind0F , skind1F , rct1 , rct′1)

H12 w1 = ( V K ind1 , V K ind0 , ind1, ind0 , τ
ind1 , τ ind0 , p1, p′1, skind1F , skind0F , rct1 , rct′1)

and use to compute π2 ← ProveNIWI(x,w
1). This change is indistinguishable

because NIWI has witness indistinguishability.
In H12, the challenger is returning a signature for ind1. Because each hybrid

is computationally indistinguishable from its predecessor, we see that signatures
under s0 and s1 are indistinguishable to Aanon.

ut

5 (Scoped) Linkable Thring Signatures

We extend the technique that we used to construct TRS to create a linkable
threshold ring signature scheme LTRS. As introduced by Liu et al. [35], linkability
means that given multiple thring signatures for different messages, it is possible
to verify whether there was (at least) one signer contributing to both signatures.
To achieve this, there is a Link algorithm that takes as input two thring signatures
and outputs a bit indicating whether the two signatures are linked.

The security framework and construction presented in the following support
scoped linkability, where two signatures are linkable if they have been produced
by related sets of signers for the same scope (e.g., context information), thus
achieving a more fine-grained notion than plain linkability (which can still be
done by setting the scope to the empty string).

Besides correctness and unforgeability, the standard security requirements for
(scope-)linkable threshold ring signatures are scoped linkability, linkable anonymity,
and non-frameability. Scoped linkability requires that even maliciously generated
signatures need to link. With linkable anonymity, while is possible to see that
two signatures come from the same signer, it is not possible to determine which
signer it is. Finally, non-frameability requires that an adversary, even after seeing
many messages and signatures, cannot generate fresh signatures which will link
to signatures that have been generated by honest parties.

Syntax. A linkable threshold ring signature scheme LTRS is a 5-tuple of algo-
rithms (Setup,KGen,Sign,Vfy, Link). As LTRS is an extension of TRS, Sign and
Vfy take an extra input sc (the scope). Thus, we do not detail the first four
interfaces here. Finally, Link is defined as follows:

– b← Link(σ1, σ2). On input two valid threshold ring signatures for the same
scope, this deterministic algorithm outputs a single bit b.

5.1 Properties and Definitions

In the following we now formally define scoped linkability, linkable anonymity,
and non-frameability.
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Experiment ScopedLinkabilityA(λ, q)

pp← Setup(1λ)
(vks, sks)← KGen(pp) for s ∈ [q]
({(msgi, Ri, σi, ti)}i∈[q+1], sc)←

A({(vks, sks)}s∈[q])
return 1 if:

Vfy(msgi, Ri, σi, ti, sc) = 1 for i ∈ [q + 1]
Ri ⊆ {vk1, . . . , vks} for i ∈ [q + 1]
∀i 6= j ∈ [q + 1] : Link(σi, σj) = 0

return 0

Fig. 4: Scoped Linkability

Experiment FrameabilityA(λ, q)

pp← Setup(1λ)
(vks, sks)← KGen(pp) for s ∈ [q]

(st,msg∗, R∗, σ∗, t∗, sc)← AOCorrupt,OSign({vks}s∈[q])
where σ∗ = (σ∗1 , . . . , σ

∗
n∗)

(msg†, R†, σ†, t†)← A(st, {sks}s∈[q])
where σ† = (σ†1, . . . , σ

†
n†

)

return 1 if:
Vfy(msg∗, R∗, σ∗, t∗, sc) = 1

Vfy(msg†, R†, σ†, t†, sc) = 1

R∗ ∪R† ⊆ P
|R∗ ∩ Pcorr| < t∗

∃i such that σ∗i was not obtained for
(msg∗, R∗) from OSign

R∗ ∩R† ∩ Pcorr = ∅
Link(σ∗, σ†) = 1

return 0

Fig. 5: Non-frameability

Scoped Linkability. Intuitively, scoped linkability guarantees that signatures from
non-disjoint sets of signers for the same scope will link. This is captured by giving
the adversary access to honestly generated keys for a ring of size q (for any q),
and request the adversary to output q + 1 valid signatures for the same scope.
The adversary wins, if none of them link to each other.

Definition 11 (Scoped Linkability). A threshold ring signature scheme sat-
isfies scoped linkability if for every PPT adversary A and every q polynomially
bounded in λ, there exists a negligible function negl(λ) such that

Pr[ScopedLinkabilityA(λ, q) = 1] ≤ negl(λ) .

Non-Frameability. Non-frameability guarantees that no adversary can generate
fresh signatures which will link to signatures that have been generated by hon-
est parties. The adversary has access to OCorrupt and OSign and can receive
arbitrarily many signatures, and finally outputs a strong forgery, i.e., a fresh sig-
nature to a new message and subring. The adversary then learns all secret keys,
and wins if it is able to generate another signature which links to the former
one, as long as no corrupted user was in the subring for both signatures (as this
would allow for trivial attacks).

Definition 12 (Non-Frameability). A threshold ring signature scheme sat-
isfies non-frameability if for every PPT adversary A and every q polynomially
bounded in λ, there exists a negligible function negl(λ) such that

Pr[FrameabilityA(λ, q) = 1] ≤ negl(λ) .

In our definition, we only consider signature schemes where the threshold
signature consists of a list of individual signatures (as is also the case in the
construction). This is because the same message can be signed for the same sub-
ring and scope, but by two disjoint sets of signers. Because of non-interactivity
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and inter-signer anonymity, the individual contributions of the signature cannot
depend on the set of signers, and thus it is inherently possible to combine the
individual contributions to a fresh overall signature by combining parts from
both signatures. This would allow the adversary to trivially win the frameability
experiment, if the winning condition only excluded that the overall challenge
signature σ∗ has not been generated by OSign, while not having a real-world
impact. To overcome this problem, we would either have to drop inter-signer
anonymity or require an interactive process.

Linkable Anonymity. Anonymity is maintained even though the signatures are
linkable. It is not possible to decide which signer in the ring the signatures came
from, only what signatures are linked together. We capture this concept formally
in the Figure 6.

The adversary picks two signing sets S0, S1 that are the same cardinality and
disjoint. We can assume that S0 ∩S1 = ∅ without loss of generality. By ordering
members of each set, we have a correspondence from user ik and jk in S0, S1

respectively. We say a key V Ks
0 ∈ S0 is matched with a key V Ks

1 ∈ S1. Then
in one case, all signature queries with signer ik are signed with ik. Otherwise all
signature queries of ik are signed with jk (and vice versa). Then A can use Link
for any signature gotten from the challenger. If A requested two signatures for
ik then these two signatures will always link, so this is consistent. The challenger
creates two signatures: σ0: where everything is done as expected, and σ1: where
everyone is flipped. In the end, A must decide whether all signatures were signed
according to what he requested, or whether they were all flipped.

Experiment LinkableAnonymityA(λ, q)

pp← Setup(1λ)
(vks, sks)← KGen(pp) for s ∈ [q]
b← {0, 1}
(S0, S1, st)← A({vks}s∈[q])

let S0 = {vki1 , . . . , vkim} and S1 = {vkj1 , . . . , vkjm}
(S∗0 , S

∗
1 ,msg∗, R∗, t∗, sc∗, j, st)← AOSign,OSign′,OCorrupt(st)

where OCorrupt ignores any calls to users in S0 ∪ S1

where OSign′ engages in a signing protocol with the adversary on the given inputs, thereby
mimicking all uncorrupted users

where OSign ignores calls where ∃m with vkim ∈ S or vkjm ∈ S but {vkim , vkjm} 6⊆ S, and
otherwise computes S′ by replacing all signers from S0 by S1 and vice versa, i.e.,
S′ = S \ ({vkim}im∈S ∪ {vkjm}jm∈S) ∪ ({vkjm}im∈S ∪ {vkim}jm∈S), and then engages in
signing protocols with A for signing sets S and S′ (b = 0) or S′ and S (b = 1).

σ∗ ← Sign(msg∗, T ∗j , R
∗, t∗, sc∗)

b′ ← A(st, σ∗)
return a random bit if:

(msg∗, R∗) was queried before, or
(sc∗, S′j) has been queried before for some j ∈ {0, 1}, or
S0 ∩ S1 6= ∅

return 1 if:
b = b′

return 0

Fig. 6: Linkable Anonymity

26



Definition 13 (Linkable Anonymity). A threshold ring signature scheme
satisfies scope-exclusive linkable anonymity if for every PPT adversary A and
every q polynomially bounded in λ, there exists a negligible function negl(λ) such
that ∣∣∣∣Pr[LinkableAnonymityA(λ, q) = 1]− 1

2

∣∣∣∣ ≤ negl(λ) .

5.2 Our Construction

We modify our threshold ring signature TRS to be linkable. Our scheme is mod-
ular in the sense that we need only to add a few elements to TRS to turn it into
a linkable thring signature scheme including the newly introduced concept of a
scope. The full construction can be seen in the Figure 7.

Besides TRS keys, we include two VRF keys (vkL, skL) (for linking) and
(vkmal, skmal) (for achieving non-malleability). For signing, a signer additionally
evaluates the first VRF on the scope sc to get (vL, pL) and as in TRS encrypts
pL into ctL. The evaluation on scope is necessary to allow for scoped linkability.
Then, it creates a key-pair (vksOTS , sksOTS) for a strong one-time signature
(sOTS) scheme. He evaluates another VRF using skmal on vksOTS (i.e., “signs”
the verification key) and encrypts pmal into ctmal. The purpose of the second
VRF is for non-malleability, i.e., sksOTS is used to sign the partial signature
and the final signature also includes the sOTS signature. As before, the signer
evaluates a NIWI, which is discussed subsequently.

NIWI. The NIWI consists of the OR of three different languages:

L′L := (LR|V K
∧ LRLink

) ∨ (LR|V K′
∧ LRLink′ ) ∨ LRF

The relation RF is identical to the one of our thring signatures and R|V K is
a straightforward adaption of the one for thring signatures. We added a new
language for the relationshipRLink, which allows a signer to maintain anonymity
and non-frameability, and as described in the following: RLink(x,w) ⇐⇒

ctL = PKE.Enc(pk†, pL; rL) ∧ ctmal = PKE.Enc(pk†, pmal; rmal) ∧
V RF.Vfy(vkL, sc, vL, pL) = 1 ∧ V RF.Vfy(vkL, vkots, vmal, pmal) = 1

Statements x and witnesses w for L′L are of the form:

x =

msg R v vmal vL
hs hi hks hki vkots
ct ctmal sc ctL ςots

 w =

V Ks V Ks1 s s1 τs τ i

p pmal pL ski0F ski1F
rct rct′ rE0 rE1 rL rmal


5.3 Security of Our Construction

In the following we state the security claims for our (scope) linkable threshold
ring signature scheme. The proofs are along the same lines as those for the
main construction and are therefore omitted; proof sketches can be found in
Appendix B.
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Key Generation Gen(1λ):

(vk, sk)← GenV RF (1λ);

(vkL, skL)← GenV RF (1λ) ;

(vkmal, skmal)← GenV RF (1λ) ;

(pk†, sk†)← GenPKE(1λ);

(pk‡, sk‡)← GenPKE(1λ);

skF ← {0, 1}2λ;
rE ← PKE.R;
E ← Enc(pk‡, skF; rE);

V K := (vk, vkL, vkmal , pk†, pk‡, E);

SK := (sk, skL, skmal , sk†, sk‡, rE , V K);

return (V K, SK).

Verification Vfy(msg, R, σ, tV , sc):

// Parse signature;

σ = (ρ, ς, pksOTS )tj=1;

ρ = (v, v′, vL, vmal , ct, ct
′, ctL, ctmal,

hks, hki, π, tj , scj );

Sort list by ti;
for j ∈ [t]
h′ := Hash(hks, R);

h′′ := Hash(hki, R);

x := (msg, R, v, v′, ct, ct′, ctL,

ctmal , h
′, h′′, hks, hki, sc);

b← VfyNIWI(x, π);

b← b ∧ VfysOTS(pksOTS , ρ, ς);

if b = 1 ∧ σj .v 6= σk.v ∀k ∈ [j − 1]

LV .append(tj);
endfor
if ∃i ≥ tV : LV [i] ≤ i return 1;
return 0

Link Link(σ1, σ2):

Let ti := |σi|, i ∈ {1, 2}
for (j, k) ∈ [t1]× [t2]

if σj1.vL = σk2 .vL return 1
endfor
return 0

Threshold Signing Sign(msg, T,R, t, sc):

// Every signer s ∈ S, |S| ≥ t
v ← Eval(sks,msg||R);
p← Prove(sks,msg||R);
v′ ← Eval(sks, ts||msg||R);
p′ ← Prove(sks, ts||msg||R);

vL ← Eval(sksL, sc);

pL ← Prove(sksL, sc);

(vksOTS , sksOTS)← GensOTS(1λ);

vmal ← Eval(sksmal, vksOTS);

pmal ← Prove(sksmal, vksOTS);

rct, rct′ , rL, rmal ← PKE.R;

ct← Enc(pks† , p; rct);
ct′ ← Enc(pks† , p

′; rct′);

ctL ← Enc(pks† , pL; rL);

ctmal ← Enc(pks† , pmal; rmal);

(hks, shks)← GenSPB(1λ, N, s);
hs ← Hash(hks, R);
τs ← Open(hks, shks, R, s);

// Pick other ring member i 6= s

i← [N ] \ s;
rE0 , rE1 ← PKE.R
(hki, shki1)← GenSPB(1λ, N, i);
hi := Hash(hki, R);
τ i ← Open(hki1 , shki1 , R, i);

// Call on the NIWI for language L′L

π ← ProveNIWI(x,w)
ρ := (v, v′, vL, vmal , ct, ct

′, ctL, ctmal ,

hks, hki, π, ts, sc );

ς ← SignsOTS(sksOTS , ρ);

σs := (ρ, ς, pksOTS );

// Every signer s broadcasts the signature

broadcast σs;
// Final threshold ring signature

return σ = {σi}ti=1.

Fig. 7: Our linkable threshold ring signature scheme. Changes to the non-linkable
version are highlighted in blue.

Theorem 4. If F is a one-way permutation, VRF has residual unpredictability
and unique provability, NIWI has perfect soundness, SPB is somewhere per-
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fectly binding and PKE is perfectly correct, SPB is index hiding then LTRS is
unforgeable.

Theorem 5. If F is a one-way permutation, the NIWI has perfect soundness,
PKE is perfectly correct, SPB is somewhere perfectly binding, VRF has residual
unpredictability and key collision resistance, and sOTS is strongly unforgeable
then LTRS is non-frameable.

Theorem 6. If F is a one-way permutation, the NIWI is computationally witness-
indistinguishable, PKE has key-privacy and CPA-security, and VRF has key
privacy and residual pseudorandomness, then LTRS has linkable anonymity.

Theorem 7. If the NIWI has perfect soundness, SPB is somewhere perfectly
binding, the VRF has unique provability, and PKE is perfectly correct, then
LTRS is linkable.
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25. González, A.: Shorter ring signatures from standard assumptions. In: PKC 2019,
Part I

26. Goodell, B., Noether, S.: Thring signatures and their applications to spender-
ambiguous digital currencies. Cryptology ePrint Archive, Report 2018/774

27. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant
size group signatures. In: ASIACRYPT 2006

28. Groth, J.: On the size of pairing-based non-interactive arguments. In: EURO-
CRYPT 2016, Part II

29. Groth, J., Kohlweiss, M.: One-out-of-many proofs: Or how to leak a secret and
spend a coin. In: EUROCRYPT 2015, Part II

30. Haque, A., Scafuro, A.: Threshold ring signatures:new definitions and post-
quantum security. In: PKC 2020

31. Hofheinz, D., Jager, T.: Verifiable random functions from standard assumptions.
In: TCC 2016-A, Part I

32. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based accumulators: Logarithmic-size ring signatures and group signatures without
trapdoors. In: EUROCRYPT 2016, Part II

33. Libert, B., Peters, T., Qian, C.: Logarithmic-size ring signatures with tight security
from the DDH assumption. In: ESORICS 2018, Part II

34. Lin, H., Wang, M.: Repudiable ring signature: Stronger security and logarithmic-
size. Cryptology ePrint Archive, Report 2019/1269

30



35. Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signa-
ture for ad hoc groups (extended abstract). In: ACISP 04

36. Liu, J.K., Wong, D.S.: On the security models of (threshold) ring signature
schemes. In: ICISC 04

37. Lv, J., Wang, X.: Verifiable ring signature. In: DMS 2003
38. Lysyanskaya, A.: Unique signatures and verifiable random functions from the dh-

ddh separation. In: Annual International Cryptology Conference. Springer
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A Formal Security Definitions for Building Blocks

A.1 Non-Interactive Witness-Indistinguishable Proof Systems

In the following we give provide formal definitions of the security properties that
need to be satisfied by a NIWI.

Definition 14 (Perfect Completeness). For all λ ∈ N and (x,w) ∈ R it
holds that Vfy(x,Prove(1λ, x,w)) = 1.

Definition 15 (Perfect Soundness). For all λ ∈ N, all x /∈ LR, and all
π ∈ {0, 1}∗ it holds that Vfy(x, π) = 0.

Experiment WitnessIndistinguishabilityA(λ,R)

(x,w0,w1, st)← A(1λ,R)
b← {0, 1}
π ← Prove(1λ, x,wb)
b′ ← A(st, π)
return a random bit if:

(x,w0) /∈ R or (x,w1) /∈ R
return 1 if:
b = b′

return 0

Fig. 8: The witness-indistinguishability experiment for non-interactive proof sys-
tems.

Definition 16 (Witness Indistinguishability). A proof system for a rela-
tion R is witness indistinguishable if for every PPT adversary A there exists a
negligible function negl(λ) such that∣∣∣∣Pr[WitnessIndistinguishabilityA(λ,R) = 1]− 1

2

∣∣∣∣ ≤ negl(λ) .

A.2 Verifiable Random Functions

In the following we give provide formal definitions of the security properties that
need to be satisfied by a VRF.

Definition 17 (Complete Provability). A VRF has the complete provability
property, iff for all λ and all x ∈ {0, 1}a(λ) it holds that

Pr[Vfy(vk, x,Eval(sk, x),Prove(sk, x)) = 1 : (vk, sk)← Gen(1λ)] = 1 .

Definition 18 (Unique provability). A VRF has the unique provability prop-
erty, iff for all vk, x ∈ {0, 1}a(λ), v0, v1 ∈ {0, 1}b(λ), p0, p1, where v0 6= v1 there
exists i ∈ {0, 1} such that Vfy(vk, x, vi, pi) = 0.
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Experiment ResidualPseudorandomnessA(λ)

(vk, sk)← Gen(1λ)
b← {0, 1}
(x∗, st)← AOEval(sk,·)(vk)

where OEval, upon input x, adds x to the initially empty set Q and
returns Eval(sk, x)

v0 ← Eval(sk, x∗)

v1 ← {0, 1}b(λ)
b′ ← A(st, vb)
return a random bit if:
x∗ ∈ Q, or

x∗ /∈ {0, 1}a(λ)
return 1 if:
b = b′

return 0

Fig. 9: The residual pseudorandomness experiment for VRFs.

Definition 19 (Residual Pseudorandomness). A VRF has the residual pseu-
dorandomness property, if for every PPT adversary A there exists a negligible
function negl(λ) such that∣∣∣∣Pr[ResidualPseudorandomnessA(λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ) .

Residual pseudorandomness in particular also implies residual unpredictabil-
ity defined next.

Experiment ResidualUnpredictabilityA(λ)

(vk, sk)← Gen(1λ)

(x∗, v∗)← AOEval(sk,·)(vk)
where OEval, upon input x, adds x to the initially empty set Q and

returns Eval(sk, x)
return 1 if:
v∗ = Eval(sk, x∗), and
x∗ /∈ Q

return 0

Fig. 10: The residual unpredictability experiment for VRFs.

Definition 20 (Residual Unpredictability). A VRF has the residual un-
predictability property, if for every PPT adversary A there exists a negligible
function negl(λ) such that

Pr[ResidualUnpredictabilityA(λ) = 1] ≤ negl(λ) .
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Experiment VRFKeyPrivacyA(λ)

(vk0, sk0)← Gen(1λ)

(vk1, sk1)← Gen(1λ)
b← {0, 1}
b′ ← A(vk0, vk1)OEval(skb,·)

where OEval, upon input x, returns Eval(skb, x)
return 1 if:
b = b′

return 0

Fig. 11: The key privacy experiment for VRFs.

Definition 21 (VRF Key Privacy). A VRF has the key privacy property, if
for every PPT adversary A there exists a negligible function negl(λ) such that∣∣∣∣Pr[VRFKeyPrivacyA(λ,R) = 1]− 1

2

∣∣∣∣ ≤ negl(λ) .

Definition 22 (Key Collision Resistance). A VRF has the key collision
resistance property, iff for all λ and all x ∈ {0, 1}a(λ) it holds that

Pr[sk0 6= sk1 ∧ Eval(sk0, x) = Eval(sk1, x) :

(sk0, vk0)← KGen(1λ), (sk1, vk1)← KGen(1λ)] = 0 .

Key collision resistance turns out to be sufficient for the main construction
given in the main body of this paper. However, for certain extensions a stronger
notion also capturing maliciously generated keys needs to be considered.

Definition 23 (Strong Key Collision Resistance). A VRF has the strong
key collision resistance property, iff for all λ and all x ∈ {0, 1}a(λ) it holds that

Pr[vk0 6= vk1 ∧ v0 = v1 :

Vfy(vk0, x, v0, p0) = Vfy(vk1, x, v1, p1) = 1] = 0 .

A.3 Somewhere Perfectly Binding Hashing

In the following we give provide formal definitions of the security properties that
need to be satisfied by an SPB hash.

The first property ensures that if verification succeeds for a specific index
and value, the scheme is perfectly binding at this particular index for this hash
value h.

Definition 24 (Somewhere Perfectly Binding). A SPB hash is somewhere
perfectly binding, if for all λ, all n polynomially bounded in λ, all public hashing
keys hk, all databases db, all indices 1 ≤ ind ≤ n, and all witnesses τ it holds
that:

Pr[Vfy(hk, h, ind, x, τ) = 1 ∧ dbind 6= x : h← Hash(hk, db)] = 0 .
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Experiment IndexHidingA(λ)

(n, ind0, ind1, st)← A(1λ)
b← {0, 1}
(hk, shk)← Gen(1λ, n, indb)
b′ ← A(st, hk)
return 1 if:
b = b′

return 0

Fig. 12: The index hiding experiment.

Note that this definition in particular also covers the case where the public
hashing key has not been honestly generated.

Definition 25 (Index Hiding). A SPB hash is index hiding, if for every PPT
adversary A there exists a negligible function negl(λ) such that∣∣∣∣Pr[IndexHidingA(λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ) .

A.4 Public Key Encryption

In the following we give provide formal definitions of the security properties that
need to be satisfied by a PKE scheme.

Experiment IND− CPAA(λ)

(pk, sk)← Gen(1λ)
(m0,m1, st)← A(pk)
b← {0, 1}
ct← Enc(pk,mb)
b′ ← A(st, ct)
return a random bit if:
{m0,m1} 6⊆M(λ)

return 1 if:
b = b′

return 0

Fig. 13: The IND-CPA experiment.

Definition 26 (IND-CPA). A PKE scheme is IND-CPA secure, if for every
PPT adversary A there exists a negligible function negl(λ) such that∣∣∣∣Pr[IND− CPAA(λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ) .
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Experiment KeyPrivacyA(λ)

(pk0, sk0)← Gen(1λ)

(pk1, sk1)← Gen(1λ)
(m, st)← A(pk)
b← {0, 1}
ct← Enc(pkb,m)
b′ ← A(st, ct)
return a random bit if:
m /∈M(λ)

return 1 if:
b = b′

return 0

Fig. 14: The key privacy experiment.

Definition 27 (PKE Key Privacy [4]). A PKE scheme is key private, if for
every PPT adversary A there exists a negligible function negl(λ) such that∣∣∣∣Pr[KeyPrivacyA(λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ) .

A.5 Strong One-Time Signatures

In the following we give provide a formal definition of the security that need to
be satisfied by a strong one-time signature scheme.

Definition 28 (Strong Unforgeability). A one-time signature scheme is strongly
unforgeable (strongly unforgeable under adaptively chosen message attacks), if
for every PPT adversary A that makes a single query to OSign′ there exists a
negligible function negl(λ) such that Pr[sUF-CMAsOTS

A (1λ) = 1] ≤ negl(λ).

Experiment sUF-CMAsOTS
A (λ)

(vk, sk)← Gen(1λ)
Q ← ∅
(m∗, ς∗)← AOSign′(sk,·)(vk)

where oracle OSign′ on input m:
ς ← OSign(sk,m)
Q := Q∪ {(m, ς)}
return ς

return 1 if:
Vfy(vk,m∗, ς∗) = 1 and
(m∗, ς∗) /∈ Q

return 0

Fig. 15: The strong unforgeability experiment.
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A.6 One-Way Permutations

In the following we give provide formal definitions of the security properties that
need to be satisfied by a one-way permutation.

Experiment InvertA(λ)

x← {0, 1}λ
y ← F(1λ, x)

x∗ ← A(1λ, y)
return 1 if:

y = F(1λ, x∗)
return 0

Fig. 16: The one-wayness experiment.

Definition 29 (One Way). A one-way permutation is hard to invert, if for
every PPT adversary A there exists a negligible function negl(λ) such that

Pr[InvertA(λ) = 1] ≤ negl(λ) .

B Security Proofs for of (Scoped) Linkable Thrings

Proof (of Theorem 5, sketch). At a high level, the adversary A must produce
a signature that links to one of the honest keys in order to win. Suppose that
there is an adversary who can create two signatures that link. Then let σ∗ be
the signature that he outputs in the first part of the experiment, and σ† the
signature that he outputs in the second half. It is sufficient to consider a single
signature in each set, σ∗i and σ†j and denote the corresponding signers as i and
j. By an argument identical to the proof in Theorem 2, we can assume that
RF is not satisfied. Then, due to the fact that the respective keys have been
generated honestly, the perfect soundness of the NIWI, the somewhere perfectly
binding property of the VRF and the perfect correctness of PKE, we know that
we can obtain (pi, p′i, piL, p

i
mal) and (pj , p′j , pjL, p

j
mal) for the values contained in

the signatures. Now, due to the key collision resistance of the VRF, we know
that i = j and due to the residual unpredictability of the VRF we know that
σ∗i must have been generated by querying the signing oracle in the first phase
of the experiment. Since these two signatures, however, are different, and due to
the residual unpredictability of the VRF, we know that pjmal corresponds to an
already queried one-time signing key. As we now, however, have two signatures
under some vksOTS this contradicts the strong unforgeability of sOTS. ut

Proof (of Theorem 6, sketch). In linkable anonymity, the challenger always re-
sponds correctly or with the opposite signer. In b = 0, the first signature is the
‘normal’ one and the second is the ‘flipped’ one. We morph the response from
b = 0 to b = 1 by switching the signers chosen element by element via a sequence
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of hybrids, This proof is similar to the one for anonymity of TRS, but we need to
account for the two extra VRF evaluations (by keeping track of what we decided
vL should be for the signers ind0, ind1 on the various scopes for consistency). ut

Proof (of Theorem 7, sketch). The challenger creates a ring P of q keys. Suppose
A produces q + 1 signatures. All of these signatures verify and Rs ∈ P for all
s ∈ [q + 1] and ∀i 6= j we have Link(σi, σj) = 0.

By an argument identical to the proof in Theorem 2, we can assume that
RF is not satisfied. Then due to the perfect soundness of the NIWI we have
that LR|V K

∧ LRLink
must be true. Thus, for any vksL, s ∈ [q + 1], we have

that V Ks ∈ P because LR|V K
requires that Vfy(hk, h, s, V Ks, τ) = 1 for some

location s in the ring. Because the SPB is somewhere perfectly binding, and
there are only q positions, (by the pigeonhole principle) there must be a position
i in P that A has bound to twice.

Second, LRLink
says Vfy(vkiL, sc, v

s
L, π

s
L) = 1. From LR|V K

, we see that some
sc and vkiL was used twice to create some viL as well as v∗L. However, this con-
tradicts the unique provability of the VRF. ut

C Additional Features and Extensions

In the following we briefly discuss how our threshold ring signature scheme relates
to the recently introduced notions of (un)claimability and (un)repudiability [45]
as well as flexibility [43].

C.1 Claimability and Repudiability

The concepts of (un)claimability and (un)repudiability were recently introduced
by Park and Sealfon (PS for short) [45] (where claimability was already in-
troduced under different names, e.g., in [37, 15]). PS show that previous ring
signature schemes do not give an answer either way about their claimability
or repudiability. They are the first to formalize these definitions and also pro-
vide three constructions: (1) a compiler to obtain claimable ring signatures in
a generic black-box way from any standard ring signature scheme, (2) a con-
struction of repudiable ring signatures from VRFs and ZAPs, i.e., two-message
public coin witness indistinguishable proofs [21], and, (3) an unclaimable scheme
based on the scheme of Brakerski and Kalai [9]. Below we discuss how our thring
signatures can be viewed in the light of claimability and repudiability.

Claimability. A claimable ring signature allows a signer to de-anonymize them-
selves by claiming they produced a signature. While the original ring signature
is anonymous, here a signer needs to be able to show that they were one of the
signing set by revealing some information that only he could have produced to
create the signature, e.g., some randomness that only he could have used. A ring
signature is unclaimable if anyone in the ring can also produce credible signing
randomness for any signature.

Claimability of our thring signatures. Our thring signatures, due to the use of

38



a VRF, naturally achieve claimability. For a given thring signatures a signer
can simply reveal (v, p) and any verifier can verify this and due to the unique
provability and the (strong) key collision resistance will be convinced of the fact
that the signer participated in producing the thring signature. This makes our
thring signature scheme claimable for ‘free’.

Repudiability. A repudiable ring signature allows ring members to prove that
they did not sign a particular message and a scheme is unrepudiable if it is not
possible to do so.

Repudiability of our thring signatures. We can achieve repudiability within our
thring signatures by providing a proof that none of the pairs (v, p) from the VRF
in a thring signature are generated by using the own VRF secret key without
leaking anything beyond, i.e., demonstrating that the VRF evaluated on msg||R
is different from every v value in the thring signature. Since we do not reveal
the VRF output, we include a different NIZK (with a CRS here, which is not
required for the actual thring signatures and only repudiability proofs).

C.2 Flexibility

Okamoto et al. in [43] introduce the concept of flexibility for threshold signa-
ture schemes. It allows signers to gradually upgrade an existing t-out-of-N ring
signature to some (t+ α)-out-of-N ring signature. The α new signers engage in
an interactive protocol with a trusted dealer to compute the updated signature,
and the t previous signers do not need to be involved.

Flexibility of our thring signatures. Our construction and security framework di-
rectly support a non-interactive version of flexibility without requiring a trusted
dealer in that new signers that are members of the ring (but did not sign previ-
ously) can add themselves to an already-created t-out-of-N threshold ring sig-
nature at any time by adding their own their own 1-out-of-N ring signature
including their acceptable threshold. By merging the signatures, one achieves a
(t+ 1)-out-of-N threshold signature, which can also be gradually updated.
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