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Abstract. How to balance user privacy with a law enforcement agency’s need to view their commu-
nications during investigations has always been a delicate and hard to formalize problem. In the age of
analog communication, interception was as simple as “wiretapping” a telephone line. Due to techno-
logical advances, this is now mandated, at least in the context of mobile communications, by laws and
standards pertaining to lawful interception. We introduce a new primitive, called Lawful Interception
Key-Exchange (or LIKE), that guarantees key-security (up to a collision of n�1) authorities, as well as a
series of novel properties, such as non-frameability and honest operator. Our approach is generic enough
to be adapted to a number of use cases, is more privacy preserving than existing implementations and
strikes the right balance between security and exceptional access.

1 Introduction

A fundamental type of service that mobile users require from their operator is the ability to com-
municate with other users, by calls or messaging. In third and fourth-generation networks, the
communication between two users goes via their mobile operators, as described in Figure 1. No-
tably, when Alice initiates a conversation, she establishes a secure channel with her operator via
an authenticated key-exchange protocol called AKA. That operator contacts Bob’s operator, over
yet another secure channel. Finally, Bob’s operator establishes a secure channel with Bob, usually
once more by using the AKA protocol.

Subsequently, the two operators forward all the communication between Alice and Bob.

The security of AKA has been analyzed and proven to be imperfect [4]. However, even a perfectly
secure and forward-secure protocol would not provide end-to-end security for Alice and Bob, since
the operator is privy to all their communications. A solution is for Alice and Bob to first encrypt
their communications with a key exchanged out-of-band. However, that might be impractical and
would require knowledge that a non-expert user does not possess.

To this day, no mobile network offers end-to-end-secure communications as a service, principally
for two reasons. One is billing: the operator must know which type of service is demanded by which
user and towards which user in order to know how to bill its customers. Another reason is lawful
interception.



Fig. 1. Alice communicates with Bob via her operator (left) and Bob’s operator (right). All the established channels
are secure.

Lawful interception (LI) is a legal requirement in many countries and compliance with its
regulations is required by technical specifications. A number of legislations such as CALEA [20]
and the Council Resolution of 17 January 1995 on the lawful interception of telecommunications
[31] stipulate that law enforcement agencies be able to access, under certain conditions, the content
of communications and metadata of mobile users. Baker McKenzie presented a comparison of
surveillance laws in various countries in [26].

Following suit, the 3rd Generation Partnership Project (3GPP) has developed a series of tech-
nical specifications concerning the requirements, the architecture, and the interface of lawful in-
terception (see [1–3] for the most recent documents concerning 5G), which were then adopted
by standardization organizations such as ETSI. The architecture of Lawful Interception, detailed
in [2], contains three important actors: a 3GPP Communication Service Provider (the operator),
a law-enforcement agency (LEA), and the target. The existence of a fourth entity, providing the
LEA with a warrant, can be intuited, but its role is less clear-cut. In a nutshell, LI captures the
fact that legal authorities (such as a court of justice) may enable law-enforcement agencies (such
as the police) to require from the mobile operator the data of any targeted mobile user (say Alice).
This data may include secrets shared between the operator and the user, but also associated meta-
or user data, including past messages, phone calls, communication partners, etc. Usually, to meet
this requirement, the traffic flowing through the operator’s network appears either in plaintext or
is encrypted with a key known to the operator. Thus, in being obliged to (be able to) infringe the
privacy of specific target users, the mobile operator currently infringes the privacy of all its users.

Our present work is motivated by the belief that privacy is precious and ultimately a funda-
mental right. This important realization has fueled many privacy-preserving initiatives, including
the General Data Protection Regulation (GDPR5) and the current international debate on privacy-
preserving contact-tracing apps for COVID19. In the context of mobile communications, we believe
that while lawful interception – when used correctly and within the boundaries of impartial laws
– may be an asset to national security, it should not come at the expense of the privacy of inno-
cent users. Indeed, achieving end-to-end confidentiality even with respect to mobile operators is
an important step towards cryptographically resisting mass-surveillance. Our goal is therefore to
give operators the tools and abilities to protect their users to the fullest possible degree, within the
limits of the law. We restrict ourselves in this paper to the setting in which both our operators are
running their services in the same country (and lawful-interception system).

5 https://gdpr.eu/tag/gdpr/
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Our contributions In this paper we show a way to provide as much user privacy as can be guaranteed
within the boundaries of lawful interception. We rely on a novel primitive, which we call Lawful-
Interception Key Exchange (LIKE, in short), for which we formalize strong security requirements.
As a second contribution, we describe an instantiation of LIKE using standard building blocks. We
prove the security of our scheme in our model.

The LIKE primitive. In Lawful-Interception Key Exchange, after an initial setup and key-generation
step, mobile users such as Alice and Bob can run an authenticated key-exchange protocol in the
presence of their respective operators. This protocol allows (only) the end users to compute session
keys, while the operators output a public value called a session state.

If the key computed by Alice and Bob is then subject to Lawful Interception, the authorities
extract a trapdoor from the session state. Given all the trapdoors, the session key is reconstructed
by an opening algorithm. Operators cannot recover Alice and Bob’s key; their role is to verify the
authenticity and well-formedness of the exchanged messages, and relay them if the verifications are
successful. Else, the operators will abort and the session is halted.

We define the security of LIKE schemes in terms of three strong properties, presented below:

KS Key-security: If at least one authority and both users are honest for a given session, that
session’s key remains indistinguishable from a value picked at random from the key domain
with respect to an adversary that can control all the remaining parties (including the other
authorities and the operator);

NF Non-frameability: The collusion of malicious users, the authorities, and the operator cannot
frame an honest user of participating to a session she has not been a party to;

HO Honest operator: The protocol is designed so that, if an honest operator forwards the session
state of a session it deems correct, then the key recovered by the authorities is the one that the
session transcript should have yielded. In other words, operators can prove that this protocol is
compliant with LI specifications.

Our setup does not require us to trust either the authorities, or the operator. We provide
two guarantees for mobile users (key-security and non-frameability), and one for the operator
and authorities (honest operator). Intuitively, HO ensures both that LI will work correctly for
the authorities, and that an honest operator can prove its protocol to be LI-compliant. On the
other hand, KS and NF protect users from abuse, ensuring the protection of their privacy and the
impossibility of their being framed by the authorities and operators. In particular, our protocol
always protects users from the operator.

The last property –honest operator– is the most subtle. It states that two users cannot bypass
lawful interception if they use keys yielded by this protocol. However, we note that our protocol
does not – and cannot – ensure that Alice and Bob do, in fact, use only the keys provided by
the protocol. Nothing prevents them from encrypting communications with a key they exchanged
out-of-band, for instance. This is not a weakness of our protocol: indeed, Alice and Bob could have
eluded LI in the same way by using the same out-of-band key to encrypt messages over a plaintext
channel.

Our solution. As our second contribution, we present a LIKE scheme, in which we use bilinear
pairings to allow the session key to be computed in two ways: either by the cooperation of a number
of authorities, whose public keys are embedded on one side of the pairing, or by the two users Alice
and Bob, whose contributions are embedded on the other side of the pairing.
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This simple core idea, however, is insufficient to guarantee the strong properties we require.
We allow authorities to be malicious, but this should not allow them to skew results for lawful
interception; as a result, we require them to prove in zero-knowledge they have correctly generated
their keys and trapdoors. Similarly, to ensure the HO property, the users use signatures of knowledge
to prove to the operator that they have correctly generated their input. Finally, a user’s presence or
absence from a protocol should be unforgeable – therefore, each user will sign parts of the transcript
to prove his or her presence.

We prove the security of our scheme based on the hardness of the Bilinear Decisional Diffie
Hellman problem, the unforgeability of our signature scheme, and the security of both our proofs
and signatures of knowledge.

Related work In mobile communications, the AKA secure-channel establishment protocol (intro-
duced in 3G networks) is already meant to provide means of secure communication between the
user and the operator. It is subject to LI requirements which persist through 4G technical spec-
ifications, to 5G documents and standards [1–3]. However, this protocol does not allow direct
end-to-end-secure user-to-user communication. Our LIKE protocol provides much stronger privacy
for users, even with respect to authorities and operators.

Lawful-interception key exchange is also strongly related to key-escrow : namely, a key-exchange
scheme for which the key can be retrieved later by the authorities. Since the proposal of the
Clipper chip in 1993[29] (proven to be flawed [10]), various key-escrow and key-recovery solutions
were proposed [17], both using classical PKIs and in the context of identity-based cryptography. In
our work, we strengthen user privacy beyond regular key-escrow and typical AKE-like key-security
guarantees, considering the (to our best knowledge new) properties of non-frameability and honest
operator.

PKI-based key-escrow schemes abound in the literature, in the context of Voice over IP [5],
instant messaging [35], mobile communications [22], and generic secure-channel establishment [33,
7, 15, 25, 23, 24, 19, 27]. These schemes can be split into two categories, depending on whether the
authorities reconstruct a master secret [5, 23, 24, 19] or a session-specific secret [33, 22, 35, 7, 15, 25,
27]. The former approach requires trust in the authorities performing LI, since the reconstructed
master secret allows to open all key-exchange sessions, rather than only a few targeted ones.

The latter approach is closer to what we achieve here; in fact our goal of key-security is nicely
described by Micali [27]. However, to the best of our knowledge, previously-existing schemes rely on
mobile users (such as Alice and Bob) to send opening shares for their conversation dynamically to
all the authorities. This massively increases complexity and decreases usability, since the authorities
must always be online and store several elements per session (in view of possible ulterior LI). By
contrast, our protocol allows authorities to remain offline until the moment of lawful interception,
putting the burden of storing session states on the operator. This is a reasonable assumption, as it
is what is currently done in mobile networks anyway.

Identity-based alternatives to the schemes described above were also proposed, including [34,
30, 16]. However, in identity-based schemes the key-generation center has access to the keys of the
users. This makes users dependent on the honesty of the key-generation center, which defeats the
purpose of enforcing strong law-enforcement requirements that protect user privacy.

Our work also marginally relates to lines of research that aim to limit mass-surveillance by
making it difficult to recover keys [8, 36]. Our setup also resembles that of reverse firewalls [28]
– which builds on related work pioneered by Young and Yung [37, 18, 21]. Although apparently
similar, the setup of these works is complementary to ours. Kleptography describes ways for users

4



to abuse protocols such that the latter appear to be running normally, while in fact the permits
subliminal information to leak. For instance in key-exchange, a government agency could want
to substitute the implementation of the protocol by one that has a backdoor, to make the key
recoverable even without formally doing LI. We do not address this problem here; instead, we treat
the case in which Alice and Bob pick their input so as to make it hard for the authorities to retrieve
the key even when LI is correctly triggered (the HO property).

2 Preliminaries

The notation x Ð y indicates that the variable x takes a value y and x
$
ÐÝ X indicates that the

variable x is chosen from the uniform distribution on X. We write Apxq Ñ a to express that the
algorithm A, running on input x, outputs a, and PxApxq,Bpyqypzq Ñ pa, bq to express that the
protocol P implements the interactions of Apxq Ñ a and Bpyq Ñ a, where z is an additional public
input of A and B. Let λ be a security parameter.

Definition 1 (BDDH assumption [11]). Let G1 � xg1y, G2 � xg2y, and GT be groups of prime
order p of length λ. Let e : G1 � G2 Ñ GT be a type 3 bilinear map. The Bilinear decisional

Diffie-Hellman problem (BDDH) assumption holds in pG1,G2,GT , eq if, given pa, b, c, d1q
$
ÐÝ pZ�

pq
4,

d0 Ð abc, and β
$
ÐÝ t0, 1u, no PPT adversary A can guess b from pga1 , g

a
2 , g

b
1, g

b
2, g

c
1, g

c
2, epg1, g2q

dβ q
with non-negligible advantage. We denote by AdvBDDHpλq the maximum advantage over all PPT
adversaries.

Definition 2 (Digital signatures). A digital signature scheme DS � pSGen,SSig, SVerq is defined
by three algorithms: SGenp1λq Ñ pPK, SKq; SSigpSK,mq Ñ σ, and SVerpPK,m, σq Ñ b. Let Sig be
an oracle that, on input m, returns SSigpSK,mq. Let A be PPT adversary. We define the following
experiment:

ExpEUF-CMA
DS pAq:

pPK, SKq Ð SGenp1λq; pm,σq Ð ASigp�qpPKq;
Return 1 if pm,σq was not output by Sigp�q and

SVerpPK,m, σq � 1, 0 otherwise.
A digital signature scheme DS is existentially unforgeable against chosen message attacks (EUF-
CMA) if, for all PPT adversaries A, AdvEUF-CMA

DS,A pλq � P
�
ExpEUF-CMA

DS,A pλq � 1
�

is negligible in λ.

We denote by AdvEUF-CMA
DS pλq the maximum advantage over all PPT adversaries.

Signature of Knowledge. Let R be a binary relation and let L be a language such that s P Lô
pDw, ps, wq P Rq. A Non-Interactive Proof of Knowledge (NIPoK) [6] allows a prover to convince
a verifier that he knows a witness w such that ps, wq P R. In this paper, we follow [12] and write
NIPoK tw : pw, sq P Ru for the proof of knowledge of w for the statement s and the relation R. A
signature of knowledge essentially allows one to sign a message and prove in zero-knowledge that
a particular statement holds for the key [13]. In this paradigm, w is a secret key and s is the
corresponding public key.

Definition 3 (Signature of Knowledge). Let R be a binary relation and L be a language such
that s P Lô pDw, ps, wq P Rq. A Signature of Knowledge for L is a pair of algorithms pSoK,SoKverq
with SoKm tw : ps, wq P Ru Ñ π and SoKverpm, s, πq Ñ b, such that:
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– Perfect Zero Knowledge: There exists a polynomial time algorithm Sim, the simulator, such that
Simpm, sq and SoKm tw : ps, wq P Ru follow the same probability distribution.

– Knowledge Extractor: There exists a PPT knowledge extractor Ext and a negligible function εSoK

such that for any algorithm ASimp�,�qpλq having access to a simulator that forges signatures for
chosen instance/message tuples and that outputs a fresh tuple ps, π,mq with SoKverpm, s, πq � 1,
the extractor ExtApλq outputs w such that ps, wq P R having access to Apλq with probability at
least 1� εSoKpλq.

We omit to recall the definition of NIPoK which is the same as SoK without the messages.

3 LIKE protocols

We define lawful-interception (authenticated) key-exchange (LIKE) in terms of two mechanisms:
a three-party AKE protocol featuring two mobile subscribers (which we call users) and a mobile
network operator, and an Extract-and-Open mechanism involving a number of parties (which we
call authorities).

Intuition. Our AKE component allows user Alice, subscribing to operator OA, and Bob, subscribing
to OB, to compute a session key in the presence of those operators. However, OA and OB will not
be able to compute the session key. Instead, they output some auxiliary material which we call
session state, the latter allowing for session authentication and an ulterior key-recovery by a set of
authorities.

In the Extract-and-Open component, each authority uses its secret key to extract a trapdoor
from the operator’s session state. Subsequently the trapdoors are used together to open the session
key.

Formalization. Let USERS be a set of mobile users and OPS be a set of operators, such that each
user is affiliated to precisely one operator. In particular, we equate users with uniquely affiliated
hardware, such as SIM cards, rather than with people. We also consider a set of authorities AUTH
of cardinality n, with elements indexed as Λ1, . . . ,Λn.

Let PARTIES be the set of all participants: USERSYOPSYAUTH. We require that mobile users
have no super-role (they can be neither authorities, nor operators, i.e., , USERS X AUTH � H �
USERSXOPS). The case of operators being authorities is more complicated, and we describe it in
more detail in Section 7. For now, assume that OPS X AUTH � H as well.

Although we formally introduce parties, attributes, and oracles in the next section, we anticipate
a few notations here. For each party P we use a dot notation to refer to attributes of that party
(such as a long-term private or public key). For instance A.PK refers to Alice’s public key and Λi.SK
refers to the secret key of the ith authority. We slightly abuse notation and write OA to indicate
Alice’s operator – in reality, in our scheme we abstract the process of registering to an operator
by allowing two parties to run the protocol in the presence of any two operators they choose to
have. We also assume that Alice and Bob always interact with their respective operators during
the protocol, which can be easily achieved by using, e.g., the standard AKA protocol as an overlay
of ours.

Definition 4. A lawful interception key exchange protocol (LIKE) is defined by the following al-
gorithms:
– Setupp1λq Ñ pp: Takes as input a security parameter in unary notation, and outputs pp, the

public parameters of the system. They become known to all parties.
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– UKeyGenpppq Ñ pU.PK,U.SKq: Takes as input the public parameters pp and outputs a user key
pair pU.PK,U.SKq.

– OKeyGenpppq Ñ pO.PK,O.SKq: Takes as input the public parameters pp and outputs the oper-
ator key pair pO.PK,O.SKq.

– AKeyGenpppq Ñ pΛ.PK,Λ.SKq: Takes as input the public parameters pp and outputs an authority
key pair pΛ.PK,Λ.SKq.

– AKExApA.SKq,OApOA.SKq,OBpOB.SKq,BpB.SKqypPKAÑBq Ñ pkA, sstA, sstB, kBq: An authenti-
cated key-exchange protocol between two mobile subscribers pA,Bq P USERS2, their operators
pOA,OBq P OPS2, such that OA and OB provide active middleware for A and B during the pro-
tocol at all times (A and B never interact directly). Alice, Bob, and their operators each take
as input their own secret key. In addition, each party has access to the set of public parameters
PKAÑB which contains: the public parameters pp, the public keys of Alice and Bob pA.PK,B.PKq,
and a vector of authority public keys APK � pΛi.PKqni�1 with Λi P AUTH for all i. At the end of
the protocol, A (resp. B) returns a session secret key kA (resp. kB) and the operator OA (resp.
OB) returns a (public) session state sstA (resp. sstB). In case of failure, the parties output a
special symbol K instead.

– Verifyppp, sst,A.PK,B.PK,O.PK,APKq Ñ b: Takes as input a session state sst, two user public
keys A.PK and B.PK, the public key of an operator O.PK, a set of public keys of the authorities
APK � pΛi.PKqni�1, outputting a bit b � 1 if the sst was correctly generated and authenticated
by O, and b � 0 otherwise.

– TDGenppp,Λ.SK, sstq Ñ Λ.t: Takes as input an authority secret key Λ.SK and session state sst,
and outputs a trapdoor Λ.t.

– Openppp, sst,APK, T q Ñ k: Takes as input session state sst, a vector of public keys of the
authorities APK � pΛi.PKqni�1, a vector of the corresponding trapdoors T � pΛi.tq

n
i�1 , and

outputs a session secret key k. In case of failure, k may take a special value K.

Definition 5 (Correctness). Let λ a security parameter and n an integer. Run pp Ð Setupp1λq,
pA.PK, A.SKq ÐUKeyGenpppq, pB.PK, B.SKq Ð UKeyGenpppq, pOA.PK,OA.SKq Ð OKeyGenpppq,
pOB.PK, OB.SKq Ð OKeyGenpppq. For all i P J1, nK, pΛi.PK,Λi.SKq Ð AKeyGenpppq. Let APK Ð
pΛi.PKqni�1.Then:

- PKAÑB Ð ppp,A.PK,B.PK,APKq;
- pkA, sstA, sstB, kBq Ð AKExApA.SKq,OApOA.SKq,OBpOB.SKq,BpB.SKqypPKAÑBq;
- bA Ð Verifyppp, sstA,A.PK,B.PK,OA.PK,APKq;
- For all i in J1, nK, Λi.tA Ð TDGenppp,Λi.SK, sstAq;
- k�A Ð Openppp, sstA, pΛi.PKqni�1, pΛi.tAq

n
i�1q;

- bB Ð Verifyppp, sstB,A.PK,B.PK,OB.PK,APKq;
- For all i in J1, nK, Λi.tB Ð TDGenppp,Λi.SK, sstBq;
- k�B Ð Openppp, sstB,APK, pΛi.tBq

n
i�1q.

For any pbA, bB, kA, k
�
A, kB, k

�
Bq generated as above: PrrbA � bB � 1^ kA � k�A � kB � k�Bs � 1.

To use a lawful-interception key-exchange scheme, users like Alice and Bob generate their keys
using UKeyGen, operators generate their keys using OKeyGen, and each authority generates its keys
using AKeyGen. Then, Alice, Bob, and the operators run the protocol AKE using the vector of all
the authority public keys. At the end of this protocol, Alice and Bob share a session secret key
(not known by the operator) that they can use to communicate securely. Each operator returns
a public session state sst, which is heavily protocol-dependent: its main purpose is to encapsulate

7



authenticated session data that will eventually allow the authorities to verify that the protocol was
run correctly, and recover the session key. Finally, any party can check, by using the verification
algorithm Verify, that the session secret key was honestly generated from a valid execution of the
protocol between Alice, Bob and the operators.

The authorities may later retrieve this session secret key. Each authority uses its secret key
and the session state to compute a trapdoor to that key. Before computing it, the authority checks
the soundness of sst using Verify. By using all the trapdoors and the algorithm Open, one retrieves
Alice and Bob’s session key.

Depending on the lawful interception scenario, the Open algorithm may be run by one or multiple
parties (we only require that whoever runs the algorithm possesses all the trapdoors). Our protocol
is versatile and can adapt to any of these cases (see Section 7).

4 Security Model

We proceed to detail the adversarial model and formal security properties required for our new
primitive LIKE. This is an essential contribution of our paper, for the following two reasons: first,
because a formal treatment of such schemes allows us to prove and quantify the security of our
scheme; and secondly, because the properties we formalize are much stronger than the obvious ex-
tension of the key-security properties required in regular authenticated key exchange. In particular,
the properties of honest operator and non-frameability, for instance, are not achievable by schemes
relying on a central key-distribution authority, like [34, 30, 16].

The remainder of this section is structured as follows. First we give the adversarial model,
describing how parties and protocol instances are run. Then we list the oracles which adversaries
can use to manipulate the honest parties. Finally, we describe formal security games for each of the
given properties.

The adversarial model Each of the parties mentioned in Section 3 (the users, operators, and au-
thorities) has a unique role, which is assumed not to change during the course of our security
experiments. Each party P is associated with a number of attributes, listed below.

– (SK, PK): a tuple consisting of a long-term private key SK and a public key PK. These values
may be instantiated to values output by UKeyGen, OKeyGen, or AKeyGen.

– γ: a corruption flag with a bit value, which indicates whether that party has been corrupted by
the adversary or not. This bit is initially set to 0, but may be turned to 1 during the security
game. Afterwards, the bit may no longer be changed to 0.

We continue to use the dot notation in Section 3; thus, e.g., an operator’s corrupt bit is denoted
by O.γ.

Alice, Bob, and their operators run the AKE in sessions. At each new protocol execution, a
new instance of that party is created. Four party instances (one each for Alice, her operator, Bob’s
operator, and Bob himself) run the protocol together to form a session. We denote by πiP the i-th
instance of party P.

Instances of each party automatically have access to the values of the long-term keys of those
parties and their corruption bit. In addition, they keep track of the following attributes.

– sid: a session identifier consisting of a tuple of values (session specific), such as portions of
the public parameters and the randomness. We stress that this attribute stores only the state
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information pertinent to that protocol. This value is internally computable by the parties in-
teracting in the protocol, but without involving any secret value. This attribute is instantiated
to a default value K and may change its value during the protocol’s execution.

– PID: partner identifiers. If P P USERS, then PID P USERS such that P � PID, else P P OPS and
PID P USERS2 such that the two elements of the vector PID are different.

– OID: operator identifiers. If P P USERS then OID P OPS2 such that |OID| � 2 (the operators
are distinct). Else OID P OPS.

– AID: authority identifiers such that AID P AUTHn.
– α: the instance’s accept flag, which is undefined (α � K) until the instance terminates its AKE

execution. If the instance terminates by aborting the protocol, it sets α � 0, else if the protocol
terminates without error, it sets α � 1.

– k: the instance’s session key, first initialized to a special value K. If the protocol terminates
without error, k takes the value returned by the protocol. An operator instance does not have
this attribute (it is replaced by the session state attribute sst defined below).

– sst: a set of variables storing additional state of the instance’s protocol execution. If the protocol
terminates without error, sst takes the value returned by the protocol. User instances do not
have this attribute.

– ρ: the instance’s reveal bit, first initialized to 0 and set to 1 if the adversary reveals a session
key k � K. Operator instances do not have this attribute.

– b: a bit chosen uniformly at random upon the creation of the instance.
– τ : the transcript of the ongoing session, first initialized as K, turning to the ordered list of

messages sent and received by that instance in the order they are sent and received.

We define an auxiliary function IdentifySession(sst, π) that takes as input a session state sst and a
party instance π, and outputs 1 if π took part in the session where sst was created, and 0 otherwise.
This is because during the session opening, the authorities must be able to extract and verify the
session identifier for themselves.

Notice that, unlike in typical authenticated key-exchange protocols, we have two different kind
of parties in this protocol (users and operators), and three types of parties that partner an instance
(as indicated by the attributes PID, OID, and AID). The instance stores mobile user partners in
PID, operator partners in OID, and authorities partnering it in AID.

In addition, notice that IdentifySession and sst are protocol dependent, i.e. they will have a
different instantiation depending on the protocol we analyse.

For our AKE component we require the notion of matching conversation defined as follows:

Definition 6 (Matching instances). For any pi, jq P N2 and pA,Bq P USERS2 such that A � B,
we say that πiA and πjB have matching conversation if all the following conditions hold: πiA.sid � K,

πiA.sid � πjB.sid, and πiA.AID � πjB.AID. If two instances πiA and πjB have matching conversation, we

sometimes say, by abuse of language, that πiA matches πjB.

Oracles. We define the security properties of our novel LIKE primitive in terms of games that an
adversary plays against a challenger (simulating all the honest parties). In order to manipulate the
environment, the adversary will have access to some or all of the oracles presented below. Intuitively,
we give the adversary the ability to register honest or malicious participants (the Register oracle),
initiate new sessions (the NewSession oracle), interact in the AKE protocol (the Send oracle), corrupt
parties (the Corrupt oracle), reveal session keys (the Reveal oracle), or reveal trapdoors towards
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potentially opening the key by the LI process (the RevealTD oracle). Finally, we use a testing
oracle (Test), which will test whether the session key remains indistinguishable from random from
the adversary’s point of view.

For each oracle, we add that they abort if they receive a query that is not well formatted, or if
the challenger does not have enough information to correctly answer the query.

– RegisterpP, role,PKq Ñ KYP.PK: On input a party identity P R USERSYOPSYAUTH, a role
role P tuser, operator, authorityu and a public key PK:
 If role � user (resp. operator, authority), the oracle adds P to the set USERS (resp. OPS,

AUTH).
 If role � user (resp. operator and authority) and PK � K, then it runs UKeyGenpppq Ñ
pP.PK,P.SKq (resp. OKeyGen and AKeyGen).

 If PK � K, it sets the corruption bit γ to 1 for this party, sets P.PK � PK and P.SK � K.
Finally, it returns P.PK.

– NewSessionpP,PID,OID,AIDq Ñ πiP: On input a party P P USERS Y OPS, if P P USERS then
PID,OID and AID must verify that PID P USERS such that P � PID, OID P OPS2 and AID P
AUTH� such that |AID| � 0. If P P OPS then PID,OID and AID verify that PID P USERS2 such
that PID contains two different users, OID P OPS and AID P AUTH� such that |AID| � 0. On
the ith call to this oracle, it returns a new instance πiP with the attributes PID, OID and AID.

– Send(πiP, m)Ñ m1: Sends the message m to the instance πiP and returns a new message m1, as
specified by the protocol AKE. This message can be a special value K in case of failure (if the
instance does not exist, has already rejected the session, the session is finished, the protocol
aborts, m is not well formatted, or P.SK � K).

– Reveal(πiP)Ñ k: For an instance of P P USERS that has accepted the session (α =1), it returns
the session key πiP.k and sets the reveal bit πiP.ρ to 1. For an instance of P P OPS that has
accepted the session (α =1), it returns the session state πiP.sst and sets the reveal bit πiP.ρ to
1. If the session has not been accepted (α � 1), the oracle returns K.

– Corrupt(P)Ñ P.SK: It returns the SK of the party P P USERS Y OPS Y AUTH and sets the
corruption bit P.γ to 1 for this party and any of its instances.

– TestpπiPq Ñ
rk: Can be queried for an instance of P P USERS that has accepted the session

(α � 1). If πiP.b � 0, it returns the session key πiP.k. Otherwise, it returns a randomly sampled
value r from the same domain as πiP.k. If the instance has not accepted the session, it returns
K. If this oracle had been previously queried and had returned a value different from K, it will
return K (this oracle can effectively be queried only once).

– RevealTDpsst,A,B,O, pΛiq
n
i�1, lq Ñ Λl.t: If Verifyppp, sst,A.PK,B.PK,O.PK, pΛi.PKqni�1q � 1,

then it runs Λl.tÐ TDGenppp,Λl.SK, sstq and returns Λl.t, else it returns K.

We emphasize that the operators involved in the session do not contribute to the security of
the key in the traditional AKE sense. Instead, operators verify the soundness of the exchanges and
produce a session state sst; this value then serves to prove to the authorities that the operator
outputting correctly arbitrated the protocol from its point of view. We do not require the operators
to agree on sst, and perform the opening procedure on a single operator at a time (since this is
what would happen in most real-life situations). If one operator validates, but the other operator
aborts the protocol, then ultimately the session will not take place.

Security games We define the security for LIKE protocols in terms of three properties: key-security
(KS), non-frameability (NF), and honest operator (HO).
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ExpKS
LIKE,Apλq:

pp Ð Setupp1λq;

OKS Ð

"
Registerp�, �, �q,NewSessionp�, �, �q, Sendp�, �q,
Revealp�q,RevealTDp�, �q,Corruptp�, �q,Testp�q

*
;

pi,P, dq Ð AOKSpλ, ppq;
If πiP.k is fresh and πiP.b � d, then return 1;

Else b1
$
ÐÝ t0, 1u, return b1.

Table 1. The key-security (KS) experiment.

Key-security. Our KS game is an extension of the standard notion of AKE security [9]. The
adversary has access to all the oracles presented above (subject to the definition of key-freshness
defined below). Its goal is to distinguish the real key used by Alice and Bob from a key picked
randomly from the same domain.

We give the adversary considerably more power than in traditional 2-party AKE games. The
attacker can adaptively corrupt all but the two users targeted in the challenge, all the operators,
and all but one of the authorities. The adversary may also register illegitimate users and learn all
but one of the trapdoors involved in any session.

In other words, this definition only allows the key to be known by the parties having computed it
(Alice and Bob), and by the collusion of all the authorities (LI). We rule out these two circumstances
by the following notion of key freshness. All other (collusions of) parties should fail to distinguish
the real session key from a random one.

Definition 7 (Key freshness). Let πjP be the j-th instance of a party P P USERS and denote by

A a PPT adversary against a LIKE scheme. We parse πjP.PID as P1 and πjP.AID as pΛiq
n
i�1. We say

that πjP.k is fresh if all the following conditions hold:

– P has accepted in session j pπjP.α � 1q, P remained uncorrupted pP.γ � 0q up to the moment

when πjP.α became 1, and the session key remains unrevealed pπjP.ρ � 0q.

– if πjP matches some πkP1 for k P N, then P1 has accepted in session k pπkP1 .α � 1q, P1 was
uncorrupted pP1.γ � 0q up to when πkP1 .α became 1, and the session key remains unrevealed
pπkP1 .ρ � 0q.

– if no πkP1 matches πjP, P1 is uncorrupted (P1.γ � 0).

– there exists l P J1, nK such that A has never queried RevealTD on input psst,A,B, pΛ1
iq
n1
i�1, l

1q
such that:
 Λl is uncorrupted (Λl.γ � 0) and Λl � Λ1

l1;

 IdentifySessionpsst, πjPq � 1.

In this game, the adversary eventually outputs an instance for which it guesses its test bit
b. This instance must be key-fresh with respect to Definition 7. More formally, we consider the
following key-security game:

Definition 8. We define the advantage of an adversary A in the ExpKS
LIKE,Apλq experiment in Ta-

ble 1 as:

AdvKS
LIKE,Apλq :�

���P �ExpKS
LIKE,Apλq � 1

�
�

1

2

���.
A lawful interception authenticated key-exchange scheme LIKE is key-secure if for all PPT adver-
saries A the advantage AdvKS

LIKE,Apλq is negligible as a function of the security parameter λ.
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ExpNF
LIKE,Apλq:

pp Ð Setupp1λq;

ONF Ð

"
Registerp�, �, �q,NewSessionp�, �, �q,Sendp�, �q,
Revealp�q,RevealTDp�, �q,Corruptp�, �q

*
;

psst,Pq Ð AONFpλ, ppq;
If D pA,Bq P USERS2, n P N, O P OPS and pΛiq

n
i�1 P AUTHn s.t.:

Verifyppp, sst,A.PK,B.PK,O.PK, pΛi.PKqni�1q � 1 and
P P tA,Bu and
P.γ � 0 and
@i, if πiP �� K then IdentifySessionpsst, πiPq � 0 or πiP.α � 0,

Then return 1,
Else return 0.

Table 2. The non-frameability (NF) experiment.

ExpHO
LIKE,Apλq:

pp Ð Setupp1λq;

OHO Ð

"
Registerp�, �, �q,NewSessionp�, �, �q, Sendp�, �q,
Revealp�q,RevealTDp�, �q,Corruptp�, �q

*
;

pj, sst,A,B,O, pΛi,Λi.tq
n
i�1q Ð AOHOpλ, ppq;

If O.γ = 1 then return K;
If Verifyppp, sst,A.PK,B.PK,O.PK, pΛi.PKqni�1q � 0 then return K;

If IdentifySessionpsst, πjO.sidq � 0 then return K;
k� Ð Openppp, sst, pΛi.PKqni�1, pΛi.tq

n
i�1q;

Return pk�, π
j
O, tPi.PKuqri�1qq.

Table 3. The honest-operator HO experiment. Here, qr denotes the number of queries to the Register oracle, and Pi
denotes the party input as the i-th such query.

Non-Frameability. In this game, the adversary attempts to frame a target user P� of taking part
in an AKE session (corresponding to session state sst) in which P� never took part or which P�

never accepted. The adversary is allowed to corrupt all parties in the system apart from P�. More
formally, we consider the following security experiment.

Definition 9. The advantage of an adversary A in the non-frameability experiment ExpNF
LIKE,Apλq

in Table 2 is defined as:

AdvNF
LIKE,Apλq � P

�
ExpNF

LIKE,Apλq � 1
�
.

A lawful interception authenticated key-exchange scheme LIKE is non-frameable if for all PPT
adversaries A, the advantage AdvNF

LIKE,Apλq is negligible as a function of the security parameter λ.

Honest Operator. The HO game captures the fact that honest operators have the power of
aborting sessions if the messages exchanged are not well-formed or authentic. The adversary aims
to forge a valid session state for which the operators have not aborted, but for which the authorities
would Open to another key than that computed by Alice and Bob. The attacker can corrupt all
the parties except for the operator which is assumed to eventually approve the session state, and
it can even provide trapdoors.

Ideally, we would like LIKE schemes to guarantee that if the (honest) operator deems a session to
be correctly run, then the extracted key (output by the experiment in Table 3) will be the one used
by Alice and Bob. However, malicious participants Alice and Bob could run a protocol perfectly
and then use a different key (which they might exchange out of band) to encrypt messages. This
is inherent to secure-channel establishment when the participants are malicious. The best an LIKE
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protocol can guarantee is that the extracted key is the one that would have resulted from an honest
run of the protocol whose session state is given. We express this in terms of a key extractor.

Intuitively, given as input an operator instance and a set of public keys, the extractor outputs
the key k that should have been output by the partnered instances running that session, if they
were honest.

Definition 10 (Key extractor). For any LIKE, a key extractor Extractp�, �q is a deterministic
unbounded algorithm such that, for any users A and B, operators OA and OB, and set of n au-
thorities pΛiq

n
i�1, any set tpp, A.PK, A.SK,B.PK, B.SK, OA.PK, OA.SK, OB.PK, OB.SK, k, sst,

APK � pΛi.PKqni�1, pΛi.SKqni�1, τA, τBu generated as follows:

pp Ð Setuppλq; pA.PK,A.SKq Ð UKeyGenpppq; pB.PK,B.SKq Ð UKeyGenpppq;
pOA.PK,OA.SKq Ð OKeyGenpppq;
pOB.PK,OB.SKq Ð OKeyGenpppq;
For all i P J1, nK, pΛi.PK,Λi.SKq Ð AKeyGenpppq;
pk, sstA, sstB, kq Ð AKExApA.SKq,OApOA.SKq,OBpOB.SKq,BpB.SKqyppp,A.PK,B.PK,APKq;
τA is the transcript of the execution yielding sstA from OA’s point of view;
τB is the transcript of the execution yielding sstB from OB’s point of view;

it holds that:

– tOA.PK,OB.PK,A.PK,B.PKu Y tΛi.PKuni�1 � PPK,
– for any oracle instance πOA

such that πOA
.τ � τA, πOA

.PID � pA,Bq, πOA
.AID � pΛiq

n
i�1, and

πOA
.sst � sst, we have: PrrExtractpπOA

,PPKq � ks � 1.
– for any oracle instance πOB

such that πOB
.τ � τB, πOB

.PID � pA,Bq, πOB
.AID � pΛiq

n
i�1, and

πOB
.sst � sst, we have: PrrExtractpπOB

,PPKq � ks � 1.

We stress the fact that our extractor is unbounded – indeed it must be so, or otherwise the
property of key-security would be violated (the extractor would allow the operator to find the
session key).

Definition 11. For any lawful interception key-exchange scheme LIKE that admits a key extractor
Extract the advantage of an adversary A in the honest-operator game ExpHO

LIKE,Apλq in Table 3 is
defined as:

AdvHO
LIKE,Apλq � P

�
pk�, πO,PPKq Ð ExpHO

LIKE,Apλq; k Ð ExtractpπO,PPKq :
k �� K ^ k� �� K
^ k �� k�

�
.

A LIKE scheme is honest-operator secure if, for all adversaries running in time polynomial in
λ, the value AdvHO

LIKE,Apλq is negligible as a function of λ.

5 Our protocol

To instantiate our LIKE scheme, we will need the following primitives (for which some background
is given in Section 2):

– A signature scheme DS � pSGen,SSig, SVerq;
– A non-interactive zero-knowledge proof of knowledge pNIPoK,NIPoKverq for a cyclic group G1 �
xg1y allowing to prove knowledge of the discrete logarithm of a value y � gx1 for some private
witness x. We denote this as NIPoK tx : y � gx1u.
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– A signature of knowledge scheme pSoK, SoKverq allowing to prove the knowledge of a discrete
logarithm in a second cyclic group G2 � xg2y.

– A non-interactive zero-knowledge proof of knowledge pNIPoK,NIPoKverq for two groups G1 �
xg1y and GT � xgT y of same order p allowing to prove knowledge of the discrete logarithm
of two values y1 � gx1 and yT � gxT for some private witness x. We denote this by NIPoK
tx : y1 � gx1 ^ yT � gxT u.

The proof and the signature of knowledge of a discrete logarithm can be instantiated with Schnorr’s
protocol [32]. This protocol consists in three passes: a commitment, a challenge and a response.
The Fiat-Shamir heuristic allows to change Schnorr’s protocol into a non-interactive proof by using
the hash of the statement concatenated with the commitment as challenge, and into a signature of
knowledge by adding the message in this hash [13]. The proof of the discrete logarithm equality can
be instantiated with The Fiat-Shamir heuristic applied on the protocol of Chaum and Pedersen [14].

Our scheme follows the syntax in Section 3. We divide its presentation in four main components:
(a) setup and key generation, (b) authenticated key-exchange, (c) public verification, and (d) lawful
interception.

Setup and key generation. This part instantiates the four following algorithms of the LIKE
syntax presented in Section 3.

– Setupp1λq: Based on λ, choose G1 � xg1y, G2 � xg2y, and GT , three groups of prime order p of
length λ, e : G1 � G2 Ñ GT a type 2 bilinear mapping, and output pp � p1λ,G1,G2,GT , e, p,
g1, g2q.

– UKeyGenpppq: Run pU.PK,U.SKq Ð SGenp1λq and return pU.PK,U.SKq.
– OKeyGenpppq: Run pO.PK,O.SKq Ð SGenp1λq and return pO.PK,O.SKq.

– AKeyGenpppq: Pick Λ.SK
$
ÐÝ Z�

p , compute Λ.pk Ð gΛ.SK
1 and Λ.ni Ð NIPoK

!
Λ.SK : Λ.pk � gΛ.SK

1

)
,

set Λ.PK Ð pΛ.pk, Λ.niq and return pΛ.PK,Λ.SKq.

The setup algorithm is run only once, to generate the groups required to instantiate our bilinear
pairing. The users and operators generate signature keys, to be used with our digital-signature
scheme DS in the authenticated key-exchange step. Authorities not only generate a private and
public key-pair, but have to prove (in zero-knowledge) that they know the private key. This prevents
attacks in which one or multiple authorities try to “annihilate” the contribution of one or more
of the authorities and break key security. We explain the role of this proof in more detail after
presenting the rest of our scheme. All key-generation algorithms are run only once per party.

Authenticated key exchange. Every time two users communicate, they run the the AKE compo-
nent of our LIKE syntax, AKExApA.SKq,OApOA.SKq,OBpOB.SKq,BpB.SKqy ppp,A.PK,B.PK,APKq.

We depict the protocol in more detail in Figure 2. For readability we abbreviate the picture and
“merge” OA and OB. Notice particularly that the operators’ roles are very similar to one another,
and neither OA, nor OB will learn the keys established by the end points.

In Figure 2, all the parties involved in the protocol (namely Alice, Bob, and their respective
operators) will verify the public keys of the n authorities and abort if their associated NIZK proofs
of knowledge are not correct. Clearly, however, if one user (say Alice) has already performed this
step for a given authority, it can, in practice, skip the verification of its zero-knowledge proof during
a specific future session.

The heart of the protocol is the exchange between Alice and Bob. Alice generates a secret x
and sends X1 � gx1 , X2 � gx2 to Bob, with an associated signature of knowledge linking this key
share to ω. Bob proceeds in the same manner, sampling a secret y and sending to Alice Y � gy2 and
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Alice: ApA.SKq Operator: OPpOP.SKq where P P tA,Bu Bob: BpB.SKq

precomputation: all participant parse APK as pΛi.pk,Λi.niqni�1; verify all Λi.ni (if failure, abort); ω Ð A}B}pΛiqni�1; Λ.pk Ð
n±

i�1
Λi.pk

x
$
ÐÝ Z�p ;X1 Ð gx1 ;X2 Ð gx2 ; y

$
ÐÝ Z�p ;Y Ð gy2 ;

niX Ð SoKω
 
x : X2 � gx2

(
; niY Ð SoKω

 
y : Y � gy2

(
;

mX Ð pX1}X2}niXq;
mXÝÝÝÝÝÝÝÝÑ Verify niX (if failure, abort); mY Ð pY }niY q;

If epX1, g2q �� epg1, X2q abort;
mXÝÝÝÝÝÝÝÝÑ Verify niX (if failure, abort);

if epX1, g2q �� epg1, X2q, abort;

Verify σ1
Y , niY (if failure, abort);

pmY ,σ
1
Y q

ÐÝÝÝÝÝÝÝÝ Verify σ1
Y , niY (if failure, abort);

pmY ,σ
1
Y q

ÐÝÝÝÝÝÝÝÝ σ1
Y Ð SSigpB.SK, ω}mX}mY q;

σX Ð SSigpA.SK, ω}mX}mY }σ
1
Y q;

σXÝÝÝÝÝÝÝÝÑ Verify σX (if failure, abort);
σXÝÝÝÝÝÝÝÝÑ Verify σX (if failure, abort);

If P � OB send σ2
Y to OA

σ2
YÐÝÝÝÝÝÝÝÝ σ2

Y Ð SSigpB.SK, ω}mX}mY }σ
1
Y }σXq;

Verify σ2
Y (if failure, abort);

mÐ pω}mX}mY }σ
1
Y }σX}σ2

Y q;
σpO,Pq Ð SSigpOP.SK,mq;

Return k Ð e pΛ.pk, Y qx; Return sstP Ð pm}σpO,Pqq; Return k1 Ð e pΛ.pk, X2q
y ;

Fig. 2. The AKE component of our LIKE construction, with both operators OA and OB under a single heading (for
readability). Unless specified, each operator runs in turn each line of the protocol, then forwards the message to the
next participant or else aborts. Exceptionally, the only message not forwarded OA to Alice is marked in the dashed
box.

a signature of knowledge. The two parties also send to each other a signature over the transcript,
thus authenticating each other and verifying the integrity of the conversation.

The two operators sit in between the two users. They verify the messages that they receive; if
the message is correct, they forward it. If not, they abort the protocol. An exception is Bob’s last
message, which is verified by both operators, but does not reach Alice. The two operators check
the signatures of knowledge, the digital signatures and the fact that the two values sent by Alice
share the same discrete logarithm (by doing one pairing computation).

Given the public value Y , the public keys of the authorities, and her private exponent x, Alice
computes her session key as a bilinear map applied on the product of all the public keys of the
authorities and Bob’s value Y , all raised to her secret x: k � ep

±n
i�1 Λi.pk, Y qx. Due to bilinearity,

this is equal to ep
±n
i�1 Λi.pk, gy2q

x � ep
±n
i�1 Λi.pk, gx2 q

y � ep
±n
i�1 Λi.pk, X2q

y, which is what Bob
computes on his end. This indicates the correctness of our scheme with respect to the endpoints.

The operator’s output is the session state sst, the signed session transcript from the their point
of view.

Verification. We instantiate Verify as follows:

– Verifyppp, sst,A.PK,B.PK,O.PK,APKq Ñ b: Parse APK as a set pΛi.PKqni�1 and parse each Λi.PK
as pΛi.pk,Λi.niq, set ω Ð A}B}pΛiq

n
i�1. Parse sst as ω1}mX}mY }σ

1
Y }σX}σ

2
Y }σO, mX as X1}X2}

niX and mY as Y }niY . if:
 For all i P J1, nK, NIPoKverpΛi.pk,Λi.niq � 1;
 epX1, g2q � epg1, X2q;
 SoKverpω, pg2, X2q, niXq � 1;
 SoKverpω, pg2, Y q, niY q � 1;
 SVerpB.PK, σ1Y , ω}mX}mY q � 1;
 SVerpA.PK, σX , ω}mX}mY }σ

1
Y q � 1;

 SVerpB.PK, σ2Y , ω}mX}mY }σ
1
Y }σXq � 1;

 SVerpO.PK, σO, ω}mX}mY }σ
1
Y }σX}σ

2
Y q � 1;

then the algorithm returns 1, else it returns 0.
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Intuitively, one verifies that Alice and Bob participated in the session by verifying their signa-
tures. The same can be said about the operator that output sst (which could be either OA or OB),
whose final signature is verifiable with its public key. In addition, the verification algorithm per-
forms the checks required by the protocol from the operator: verifying the proofs presented by the
authorities, checking that X1 and X2 contain the same discrete logarithm (epX1, g2q � epg1, X2q),
and verifying all the signatures of knowledge.

Lawful Interception. As presented in Section 3, lawful interception for our protocol follows
an extract-and-open strategy. We employ two algorithms, one run by each authority in order to
generate a trapdoor, and the other run by one or a multitude of parties, cumulatively in possession
of all the trapdoors for a given session.
– TDGenppp,Λ.SK, sstq: Parse sst as pω}mX}mY }σ

1
Y }σX }σ2Y }σOq. Compute Λ.t1 Ð epX1, Y q

Λ.SK,

Λ.t2 Ð NIPoK
!

Λ.SK : Λ.PK � gΛ.SK
1 ^ Λ.t1 � epX1, Y q

Λ.SK
)

and Λ.tÐ pΛ.t1,Λ.t2q, and returns

Λ.t.
– Openppp, sst,APK, T q: Parse T as pΛi.tq

n
i�1, parse sst as A}B}pΛiq

n
i�1}mX}mY }σ

1
Y }σX}σ

2
Y }σO,

mX as X1}X2}niX and mY as Y }niY , APK as pΛi.pkq
n
i�1, parse each Λi.PK as pΛi.pk,Λi.niq, each

Λi.t as pΛi.t1,Λi.t2q and verify the non-interactive proof of knowledge with the corresponding
algorithm: NIPoKverppg1,Λi.pk, pX1, Y q,Λi.t1q,Λi.t2q; if any verification fails, the Open algorithm
returns K. Compute k Ð

±n
i�1pΛi.t1q and return it.

Informally, each authority Λi generates as trapdoor the value Λi.t1 � epX1, Y q
Λi.SK � epg1, g

xy
2 q.

In order to recover the session key (by means of the Open algorithm), all the trapdoors from
Λ1.t1 to Λn.t1 are multiplied. We obtain

±n
i�1 Λ1.ti �

±n
i�1 epg

x
1 , g

y
2q

Λi.SK � epg1, g
xy
2 q

°n
i�1 Λi.SK �

epg
°n
i�1 Λi.SK

1 , gx�y2 q � ep
±n
i�1 Λi.PK, X2q

y. We now recognize the key as computed by Bob. Our
scheme is correct with respect to LI.

Complexity. In our key exchange protocol, each party runs in linear time in the number of au-
thorities. This complexity is due to the verification of the zero-knowledge proof for each authority
public key, and the computation of the product of these public keys. We stress that the parties can
pre-computed the proofs verifications and the product, moreover, while the parties run the protocol
for the same authority set, they have not to recompute this, meaning that in practice, our protocol
is in constant time most of the time. Finally, we note that the trapdoor generation algorithm also
runs in constant time.

6 Proofs

We show that the LIKE scheme we propose in Section 5 has the non-frameability, key-security
and honest operator properties defined in Section 4. We provide proof sketches, followed by the
full proofs. However, we first provide an insight into the role of some of our less-obvious building
blocks, namely the proofs and signatures of knowledge.

Insight: proofs and signatures of knowledge. During the protocol, Alice and Bob use the two
signatures of knowledge on the public parameters of the session (denoted ω): SoKω tx : X2 � gx2u
and SoKω ty : Y � gy2u. In the absence of these proofs, the adversary could recover the key of
an honest session through the following attack. Let X1, X2, Y be the values honestly generated
by the users in the targeted session. Choose two random values r and s, run the protocol using
X 1

1 Ð Xr
1 , X 1

2 Ð Xr
2 and Y 1 Ð Y s for two corrupted users and the same set of authorities, obtain

the corresponding sst, and run the RevealTD oracle on sst for each authority. Using the algorithm
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Open, the adversary obtains: k1 �
±n
i�1pX

1
1, Y

1
2q

Λi.SK �
�±n

i�1pX1, Y2q
Λi.SK

�r�s
. It can then compute

the targeted key as k � pk1q1{r�s. However, this attack cannot be done by the adversary if it must
prove its knowledge of the discrete logarithm of X 1

2 and Y 1. Moreover, it cannot reuse X2 and Y
together with the signature of the honest user, since that signature uses the identity of the users
as a message.

Each authority public key Λ.pk must be coupled with a proof of knowledge of the corresponding

secret key NIPoK
!

Λ.SK : Λ.pk � gΛ.SK
1

)
. Without this proof, an authority Λj in the set pΛiq

n
i�1

could pick a random r and compute: Λj .pk � gr1{
�±n

i�1;i ��j Λi.pk
	
. In this case, the secret key

computed by Alice will be: k � e

�
n±
i�1

Λi.pk, Y


x
� epgr1, g

y
2q
x � epX1, Y q

r. Then the dishonest

authority can discover the key by computing epX1, Y q
r. This attack is not possible if the authority

must prove the knowledge of its secret key.

Finally, the proof NIPoKtΛ.SK : Λ.PK � gΛ.SK
1 ^ Λ.t1 � epX1, Y q

Λ.SKu, which is a part of the
trapdoor generated by an authority, ensures that the trapdoor has been correctly formed. This
is essential for the honest-operator property: without this proof, the authority can output a fake
trapdoor, thus distorting the output of the algorithm Open. Proofs. We proceed with the formal

security statements and proofs. In the following, we define sid :� X2}Y (see Figure 2).

We define the algorithm IdentifySessionpsst, πjPq for some party P and integer j as follows. Parsing
sst as:

A}B}pΛiq
n
i�1}X1}X2}niX}Y }niY }σ

1
Y }σX}σ

2
Y }σO,

the algorithm IdentifySessionpsst, πjPq returns 1 iff:

– X2}Y � πiP.sid,

– if πjP plays the role of Alice then P � A and πjP.PID � B, else πjP.PID � A and P � B, and

– πjP.AID � pΛiq
n
i�1.

Theorem 1. If our protocol is instantiated with an EUF-CMA signature scheme DS, and with
extractable and zero-knowledge proofs/signature of knowledge, and if the BDDH assumption holds,
then our protocol is key-secure. Moreover, for all PPT adversaries A doing at most qr queries to
the oracle Register, qns queries to the oracle NewSession, qs queries to the oracle Send and qt queries
to the oracle RevealTD, we have:

AdvKS
LIKE,Apλq ¤

q2s
p
� qns � q

2
r �

�
AdvEUF-CMA

DS pλq � qns � qr��
p2 � qt � qsq � εSoKpλq � qr � εNIPoKpλq � AdvBDDHpλq

		
.

Proof sketch. We begin by proving that the adversary has a negligible probability of winning the
key-security experiment by querying the oracle Test on an instance that matches no other instance.
Notably, if the tested instance does not abort the protocol, the adversary will have to break the
EUF-CMA of the signature scheme to generate the expected signatures without using a matching
session.

Thus, the targeted instance must have a matching one. By key-freshness, A must test a key
generated by two honest users, such that the trapdoor of at least one honest authority has never
been queried to the oracle RevealTD. We prove (by a reduction) that A can only win by breaking
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the BDDH assumption. Let pW�, X�, Y�,W
1
�, X

1
�, Y

1
�, Z�q be a BDDH instance. We set W� as the

part of the public key Λ.pk of the honest authority, and we set X2 as X 1
�, X1 as X� and Y as

Y 1
� for the session that matches the tested instance. Then, we build the key as follows, where

Λ is the honest authority: k Ð Z�
±n
i�1;Λi ��Λ epX�, Y

1
�q

Λi.SK. To compute the secret keys of the
authorities controlled by the adversary, we run the extractor on the proofs of knowledge of the
discrete logarithm of the public keys Λi.PK. If Z� is a random value, k will be random for the
adversary, else Z� � epX�, Y

1
�q

Λ.SK. Moreover, we simulate the oracle RevealTD on sessions with
values X and Y chosen by the adversary by using the extractor on the signatures of knowledge of
their discrete logarithms.

Proof. (Th.1: Key-security). We will show that AdvKS
LIKE,Apλq is negligible for any PPT adversary

A, and thus our LIKE scheme is key-secure, by the following sequence of games:
Game G0: This game is the same as ExpKS

LIKE,Apλq.
Game G1: This game is similar to G0, but aborts if the Send oracle returns twice the same element as
X2 or Y . An abort only happens if two out of the qs queried instances choose the same randomness
from G2 (which is of size p), yielding:

|P rA wins G0s � P rA wins G1s | ¤ q2s {p.

Let πi�P�
denote a tested instance. Excluding collisions for X2 and Y implies that πi�P�

now has at

most one matching instance. Indeed, suppose two or more instances matching πi�P�
exist. We parse

πi�P�
.sid as Z0}Z1 where Zi (for i P t0, 1u) was generated by πi�P�

.

By Def. 6, all instances matching πi�P�
must sample the same Z1�i P G2 – impossible after G1. .

Game G2: Let Pi be the i-th party instantiated by Register. Game G2 proceeds as G1 except that

it begins by choosing pu, v, wq
$
ÐÝ J1, qnsK � J1, qrK2. If the adversary returns pi�,P�, d�q such that,

given P1
� Ð πi�P�

.PID, we have i� � u or P� � Pv or P1
� � Pw , then G2 aborts, returning a random

bit. The adversary increases its winning advantage by a factor equalling the probability of guessing
correctly:

|P rA wins G1s � 1{2| ¤ qns � q
2
r |P rA wins G2s � 1{2|.

Game G3: Let pi�,P�, d�q be the adversary’s test session, guessed by G2. Let P1
� Ð πi�P�

.PID. Game

G3 works as G2, except that, if there exists no πkP1
�

matching πi�P�
, the experiment aborts and returns

a random bit. We claim that for any adversary A:

|P rA wins G2s � P rA wins G3s | ¤ AdvEUF-CMA
DS pλq.

Assume to the contrary that there exists an adversary A that wins G2 with probability εApλq by
returning a guess pi�,P�, d�q such that, setting P1

� Ð πi�P�
.PID, no k P N exists such that πi�P�

and

πkP1
�

match. Game G2 demands P1
� Ð Pw (guessed by G2); key-freshness (Def. 7) requires Pw to be

uncorrupted and ending in an accepting state. We use A to build a PPT adversary B that breaks
the EUF-CMA security of DS with non-negligible probability. B receives the verification key P̂K,
initializes LS ÐH, and faithfully simulates G2 to A, except for A’s following queries:
Oracle RegisterpP, role,PKq: If P � Pw with P.PK � K, then B sets P.PK Ð P̂K.
Oracle Send(πiP, m): There are two particular cases: P � Pw and P � P�. If P � Pw, then B queries
its Sigp�q oracle to answer A’s queries. Depending on the role of Pw and the protocol step, B runs
one of: σ1Y Ð Sigpω}mX}mY q, σX Ð Sigpω}mX}mY }σ

1
Y q, or σ2Y Ð Sigpω}mX}mY }σ

1
Y }σXq. Here,
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if Pw is the initiator, ω � Pw}Pw.PID}pΛlq
n
l�1; else ω � Pw.PID}Pw}pΛlq

n
l�1. Moreover, mX � X1}

X2}niX and mY � Y }niY . The message/signature pairs are stored in LS . Since sid � X2}Y , the
elements X2 and Y , the identities Pw and πiPw .PID, and the set of authorities πiPw .AID � pΛlq

n
l�1

are parts of the message signed in σX , σ1Y and σ2Y .

If P � P�, i � i�, and πiP.PID � Pw, if SVerpPw.PK, σ2Y ,MY q � 1 for MY Ð ω}mX}mY }σ
1
Y }σX ,

and pMY , σ
2
Y q R LS , B aborts the game and returns pMY , σ

2
Y q; else, if SVerpPw.PK, σX ,MXq � 1

for MX Ð ω}mX}mY }σ
1
Y and pMX , σXq R LS , B aborts the game and returns pMX , σXq.

Oracle Corrupt(P): If P � Pw, B aborts (due to G2).
B wins if it sends its challenger a message/signature pair pM,σq R LS such that SVerpP̂K, σ,Mq � 1
with P̂K � Pw.PK. We first argue that A must query Send on input P � P�, i � i�, and πiP.PID �
Pw, on message MY � ω}mX}mY }σ

1
Y }σX such that SVerpPw.PK, σ2Y ,MY q � 1, or on message

MX Ð ω}mX}mY }σ
1
Y such that SVerpPw.PK, σX ,MXq � 1. Indeed, if A does not, the (honest)

target instance πi�P�
rejects.

Now we can assume that A has queried Send either with σX or with σY as above. We have two
cases: the submitted message/signature pair is in LS , or it is not. If the latter happens, clearly B
wins. Assume that the former happens, i.e., the signature σ2Y or σX are in LS (generated by B’s
oracle). We recall that by assumption A’s challenge instance has no matching instance, i.e., there
exists no πjPw such that πjPw .sid � K or πjPw .sid � πi�P�

.sid, and πjPw .AID � πi�P�
.AID. However, if

πjPw .sid � πi�P�
.sid, or πjPw .AID � πi�P�

.AID, then the signature is generated for the fresh message and
A would win.

Thus, AdvEUF-CMA
DS,B pλq � εApλq, concluding the proof.

After G2, G3, either a unique instance πrPw exists, matching πi�P�
or the experiment returns a

random bit.

Game G4: Game G4 runs as G3 except that it begins by picking r
$
ÐÝ J1, qnsK (a guess for the match-

ing instance). If A returns pi�,P�, d�q such that πi�P�
and πrPw do not match, then the experiment

returns a random bit. The advantage of A on G4 increases w.r.t. that in G3 by a factor equalling
the correct guessing probability :

|P rA wins G3s � 1{2| ¤ qns|P rA wins G4s � 1{2|.

Game G5: Game G5 proceeds as G4, except that it begins by picking l
$
ÐÝ J1, qrK. If the l-th party

queried to the oracle Register is not authority, or, if it is an authority (we will denote it Λl),
and is either corrupted, or RevealTD is called on the query psst,A,B, pΛ1

iq
n1
i�1, l

1q such that Λl � Λ1
l1

and IdentifySessionpsst, πuPv .sidq � 1, then the experiment aborts by returning a random bit. By key-
freshness (Def. 7), if no index l exists such that Λl is uncorrupted (Λl.γ � 0) and RevealTD has never
been called on the query psst,A,B, pΛ1

iq
n1
i�1, l

1q such that Λl � Λ1
l1 and IdentifySessionpsst, πjP.sidq � 1,

then the experiment returns a random bit. Thus, the advantage of A in G5 is superior to that in
G4 by a factor equalling the guessing probability:

|P rA wins G4s � 1{2| ¤ qns|P rA wins G5s � 1{2|.

Game G6: Let Ext denote the knowledge extractor of the signature of knowledge. This game is the
same as G5 except that it begins by initializing Lr s Ð H and:

– each time that the Send oracle generates an element d
$
ÐÝ Z�

p and D Ð gd2 together with a

signature of knowledge niD Ð SoKω

 
d : D � gd2

(
, it sets LrpD,ω, σDqs Ð d;
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– each time that the oracles Send or RevealTD verify a valid signature of knowledge SoKverpω
, pg2, Dq, niDq � 1 in a query sending by A such that LrpD,ω, σDqs � K, it runs the key
extractor Extpλq on A in order to extract the witness d that matches the proof niD. If gd2 � D
then the experiment aborts by returning a random bit, else it sets LrpD,ω, σDqs Ð d.

The difference between G5 and G6 is the possibility of the extractor failing when it is called. Since
RevealTD requires 2 calls (for the verification of sst) and Send, one at each query, it holds that:

|P rA wins G5s � P rA wins G6s | ¤ p2 � qt � qsq � εSoKpλq.

Game G7: Let Ext denote the extractor of the NIZK proof of knowledge NIPoK
 
d : D � gd1

(
. Game

G7 runs as G6, except it begins by initializing an empty list L1r s Ð H and:
– Honest authority: if Register generates pΛ.PK,Λ.SKq for an authority Λ, it sets L1rΛ.PKs Ð Λ.SK;
– Malicious authority: if Register receives a query pΛ, role,PKq with role � authority and

PK � K, it sets PK Ð Λ.PK and parses PK as pΛ.pk,Λ.niq. If NIPoKverppg1,Λ.pkq,Λ.niq � 1,
then G7 runs the extractor Extpλq on A to extract the witness Λ.SK for Λ.ni. If gΛ.SK

1 � Λ.pk
then the experiment aborts by returning a random bit, else it sets L1rΛ.PKs Ð Λ.SK.

Once more, the difference between the games is the possibility that Ext fails in at least one of the
calls to the registration oracle, yielding:

|P rA wins G6s � P rA wins G7s | ¤ qr � εNIPoKpλq.

Finally, we claim that:

|P rA wins G7s � 1{2| ¤ AdvBDDH
A pλq.

We prove this claim by reduction. Assume that A wins G7 with non-negligible probability εApλq.
We show how to build an algorithm B that breaks the BDDH problem with probability εApλq.

In what follows, SimNIPoK denotes the simulator of the proofs of knowledge and SimSoK is the
simulator of the signature of knowledge. For readability, if the context is clear, we use the same
notation for the simulators of the two proof of knowledge systems we use to instantiate our scheme.

B plays the BDDH in the setting pG1 � xg1y,G2 � xg2y,GT , e, pq and receives pŴ , X̂, Ŷ , Ŵ 1,
X̂ 1, Ŷ 1, Ẑq from its challenger. Then B sets pp Ð p1λ,G1,G2,GT , e, p, g1, g2q, it runs Apppq and
simulates G7 to A as in the real game except for following cases.
Oracle RegisterpP, role,PKq Ñ P.PK: On the l-th query, if role � authority or PK � K, B
aborts and returns a random bit (this is a faithful simulation since G5), else it sets Λl Ð P ;
Λl.pk Ð Ŵ ; Λl.ni Ð SimNIPoKpg1, Ŵ q; Λl.PK Ð pΛl.pk,Λl.niq and returns Λl.PK.
Oracle Send(πiP, m): If P � P� and i � i� (challenge instance, guessed in G3), or if P � Pw and
i � r (unique matching instance, guessed in G4), then we distinguish two cases:
– P plays the role of Alice: then B proceeds as in G7 except for generating pX1, X2, niXq by setting
X2 Ð X̂ 1, X1 Ð X̂ and by running niX Ð SimSoKpω, pg2, X̂

1qq, where ω � pPv}Pw}π
i
Pv
.AIDq.

– P plays the role of Bob: then B proceeds as in G7 except for generating pY, niY q by setting
Y Ð Ŷ 1 and by running niY Ð SimSoKpω, pg2, Ŷ

1qq, where ω � pPw}Pv}π
i
Pw
.AIDq.

At the end of the protocol, the oracle does not compute k and sets πiP.k Ð K.

Oracle TestpπiPq: If P � P� and i � i�, parsing πiP.AID as pΛ1
jq
n
j�1, B sets AuthSet Ð

!
Λ1
j

)n
j�1

ztΛlu,

it computes: rk Ð �±
ΛPAuthSet epX̂, Ŷ

1qL
1rΛ.PKs

	
� Ẑ, and returns it. Note that if B’s challenge bit is

0, then Ẑ � epX̂, Ŷ 1qΛl.SK for Λl.SK such that gΛl.SK
1 � Λl.pk, so rk is the real key expected for πi�P�

.

20



If, however, the challenge bit of B is 1, then Ẑ is a random value.
Oracle RevealTDpsst,A,B,O, pΛ1

iq
n
i�1, l

1q:

– if IdentifySessionpsst, πi�P�
q � 1 and Λ1

l1 � Λl (challenge instance, honest authority), then B aborts
returning a random bit, as for key freshness;

– if IdentifySessionpsst, πi�P�
q � 1 and Λ1

l1 � Λl (challenge instance, other authority), then B knows

the secret key of Λ1
l1 . It acts as in G7 except that it computes Λ1

l1 .t1 Ð epX̂, Ŷ 1qL
1rΛ1

l1
.PKs, Λ1

l1 .t2 Ð
SimNIPoKpg1,Λ

1
l1 .pk, gT ,Λ

1
l1 .t1q and Λ1

l1 .tÐ pΛ1
l1 .t1,Λ

1
l1 .t2q;

– if IdentifySessionpsst, πi�P�
q � 1 and Λ1

l1 � Λl (non-challenge session, honest authority), then

B parses sst as pω1}mX}mY }σ
1
Y }σX}σ

2
Y }σOq, mX as X1}X2}niX and mY as Y }niY , and sets

ω Ð A}B}pΛ1
iq
n
i�1. Note that here, IdentifySessionpsst, πuPvq � 1 implies that X2}Y � X̂ 1}Ŷ 1,

or A}B � P�}Pw (or A}B � Pw}P� depending on who plays the role of Alice and Bob), or
pΛ1
iq
n
i�1 � πi�P�

.AID. It acts as in G7 except that:

 if A}B}pΛ1
iq
n
i�1 � P�}Pw}π

i�
P�
.AID (or Pw}P�}π

r
Pw
.AID, if P� plays the role of Bob), then

B computes Λl.t1 Ð epΛl.pk, XqLrpY,ω,σY qs; Λ.t2 Ð SimNIPoKpg1,Λl.pk, gT ,Λl.t1q and Λl.t Ð
pΛl.t1,Λl.t2q. Here, LrpY, ω, σY qs is always defined since ω � P�}Pw}π

i�
P�
.AID (or Pw}P�}

πrPw .AID if P� plays the role of Bob).

 if A}B}pΛ1
iq
n
i�1 � P�}Pw}π

i�
P�
.AID (or Pw}P�}π

r
Pw
.AID, if P� plays the role of Bob) and

X2 � X̂ 1, then Y � Ŷ 1, and B computes Λl.t1 Ð epΛl.pk, X̂ 1qLrpY,ω,σY qs; Λ.t2 Ð SimNIPoKpg1,
Λl.pk, gT ,Λl.t1q and Λl.tÐ pΛl.t1,Λl.t2q. In this case, LrpY, ω, σY qs is always defined because
Y � Ŷ 1.

 else if A}B}pΛ1
iq
n
i�1 � P�}Pw}π

i�
P�
.AID (or Pw}P�}π

r
Pw
.AID, if P� plays the role of Bob)

and Y � Ŷ 1, then X2 � X̂ 1, and B computes Λ1
l1 .t1 Ð epΛl.pk, Ŷ 1qLrpX2,ω,σXqs; Λ.t2 Ð

SimNIPoKpg1,Λl.pk, gT ,Λl.t1q and Λl.t Ð pΛl.t1,Λl.t2q. In this case, LrpX2, ω, σY qs is always
defined because X2 � X̂ 1.

At the end of the game, B forwards the bit b� received from A. The game is perfectly simulated for
A, and B wins its BDDH challenge with the same probability as A wins G7, which concludes the
proof of the claim. Finally, by composing the probability of all the games, we obtain the bound of
AdvKS

LIKE,Apλq.

Theorem 2. If our protocol is instantiated with an EUF-CMA signature scheme DS, then our
protocol is non-frameable. Moreover, for all PPT adversaries A, doing at most qr queries to the
oracle Register, we have:

AdvNF
LIKE,Apλq ¤ qr � AdvEUF-CMA

DS pλq.

Proof sketch. To win the non-frameability experiment, the adversary has to build a valid session
state sst for a given user, containing a valid signature of this user. We prove this theorem by
reduction: assuming that an adversary is able to break the non-frameability, since this adversary
generates a valid signature for a user, we can use it to break the EUF-CMA security.

Proof. (Th2. Non-frameability).
We use the following sequence of games.

Game G0: The original game ExpNF
LIKE,Apλq.

Game G1: We denote by Pi the i-th party instantiated by Register. Game G1 runs as G0 except that

it begins by picking u
$
ÐÝ J1, qrK. If A returns psst,Pq such that P � Pu, then G1 aborts and returns
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0. The advantage of A on G1 increases w.r.t. that in G0 by a factor equalling the probability of
correctly guessing u:

P rA wins G0s ¤ qr � P rA wins G1s .

We prove that P rA wins G1s ¤ AdvEUF-CMA
DS pλq by reduction. Assume there exists an adversary A

that wins G1 with probability εApλq by returning psst�,P�q such that D pA,Bq P USERS2, O P OPS,
n P N and pΛiq

n
i�1 P AUTHn such that:

– P� � Pu; P� P tA,Bu; P�.γ � 0;
– Verifyppp, sst�,A.PK,B.PK,O.PK, pΛi.PKqni�1q � 1;
– @i, if πiP�

� K then IdentifySessionpsst�, π
i
P�
q � 0 or πiP�

.α � 0.
We build a PPT adversary B breaking the EUF-CMA security of DS with non-negligible probability.
B receives the verification key P̂K from its challenger, initializes a set LS Ð H, then it simulates
G1 to A as in the real game, except in the following situations:
Oracle RegisterpP, role,PKq: If P � P� (as guessed before) and PK � K, B sets P�.PK Ð P̂K.
Oracle Send(πiP, m): If P � P�, B simulates the oracle faithfully except it uses its Sigp�q oracle to
produce signatures. Depending on the role of P� and the protocol step, it runs either σ1Y Ð Sigpω}
mX}mY q, σX Ð Sigpω}mX}mY }σ

1
Y q or σ2Y Ð Sigpω}mX}mY }σ

1
Y }σXq, where ω � A}B}pΛiq

n
i�1,

mX � X1}X2}niX and mY � Y }niY . The message/signature pairs are stored in LS .
Since sid � X2}Y , then X2, Y , A � P�, B � πiP�

.PID (or A � πiP�
.PID, B � P�, depending on

who plays the role of Alice and Bob), and pΛiq
n
i�1 � πiP�

.AID are parts of the messages signed in

σX , σ1Y , and σ2Y .

Oracle Corrupt(P): If P � P�, then B aborts.
We parse sst� as ω1}mX}mY }σ

1
Y }σX}σ

2
Y }σO, mX as X1}X2}niX and mY as Y }niY . For read-

ability, we denote by MX the value ω1}X1}X2}niX}Y }niY }σ
1
Y , and MY the value MX}σX . If

Verifyppp, sst�,A.PK,B.PK,O.PK, pΛi.PKqni�1q � 1, we have that SVerpA.PK, σX ,MXq � 1 and
SVerpB.PK, σ2Y ,MY q � 1.

If @i, πiP�
� K, then IdentifySessionpsst�, π

i
P�
q � 0 or πiP�

.α � 0. Thus the oracle Send never

outputs valid σX or σ2Y by using the Sigp�q oracle on messages matching the session identifier sid �
X2}Y , the identities A, B, and pΛiq

n
i�1 together. We have two cases. If P� � A, then pMX , σXq R LS .

If P� � B, then pMY , σ
2
Y q R LS . Finally, if P� � A, then B returns pMX , σXq. If P� � B, then B

returns pMY , σ
2
Y q.

The experiment is perfectly simulated for A, and if A wins, then B returns a fresh and valid
signature. Thus AdvEUF-CMA

DS,B pλq � εApλq, concluding the proof of the theorem.

Theorem 3. If our protocol is instantiated with an EUF-CMA signature scheme DS and with
extractable and zero-knowledge proofs/signature of knowledge, then our protocol is honest-operator.
Moreover, for all PPT adversaries A doing at most qr queries to the oracle Register, we have:

AdvHO
LIKE,Apλq ¤ qr � εNIPoKpλq � AdvEUF-CMA

DS pλq.

Proof sketch. The first step of the HO proof is to design a key extractor, which takes in input
a session state sst, brute-forces the discrete logarithm of Bob’s Y , then computes the key as Bob
would: k � e p

±n
i�1 Λi.pk, X2q

y . Our goal is to prove that this is the key the authorities would
retrieve.

We first show (by reduction) that the adversary can only build by itself a valid sst (that may
match a fake authority set) with negligible probability. Namely, if an adversary can output valid
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signatures for an honest operator, then we can use it to break the EUF-CMA of the signature
scheme.

Moreover, for any authority Λ and any values X1 and Y , the proof of knowledge of a trapdoor
ensures that gΛ.SK

1 � Λ.pk and Λ.t1 � epX1, Y q
Λ.SK, which implies that Λ.t1 � epΛ.pk, X2q

y and:
k� �

±n
i�1 Λi.t1 � e p

±n
i�1 Λi.pk, X2q

y . Thus, to win the HO experiment (and return a key such that
k �� k�), the adversary must produce a proof on a false statement, which happens with negligible
probability.

Proof. (Th3. Honest operator). For this proof, we first describe the (deterministic, unbounded)
key-extractor algorithm ExtractpπO,PPKq which, given as input an operator instance πO and a set
of public keys, outputs the same key k as the (honest) instances of Alice and Bob.

ExtractpπO,PPKq works as follows:

– Parse πO.τ as pmX ,m
1
X , pmY , σ

1
Y q, pm

1
Y , σ

1
Y 1q, σX , σ

1
X , σ

2
Y , σOq if O is the operator of Alice,

pmX ,m
1
X , pmY , σ

1
Y q, pm

1
Y , σ

1
Y 1q, σX , σ

1
X , σ

2
Y , σ

12
Y , σOq otherwise, mX as pX1}X2}niXq, mY as pY }

niY q, πO.PID as pA,Bq and πO.AID as pΛiq
n
i�1,

– Set y � 0. While gy2 � Y , do y � y � 1. Output y (which exists, since Y P G2).
– For all i P J1, nK, if Λi.PK R PPK then abort, else parse each Λi.PK as pΛi.pk,Λi.niq.
– Compute k Ð e p

±n
i�1 Λi.pk, X2q

y and return k.

This extractor is correct because k is computed exactly as for Bob in the real protocol.

Informally, in the HO security game, the adversary aims to output a session state sst and a
series of trapdoors such that piq Verify accepts the session state and piiq when applied to sst and
the trapdoors, Open returns a key matching the one extracted from Extract on the corresponding
operator instance. The adversary can corrupt all users and all authorities, but not the operator.
We use the following sequence of games:

Game G0: The original game ExpHO
LIKE,Apλq:

Game G1: Let Oi be the i-th oracle party output by Register. Game G1 runs as G0 except that it

begins by picking u
$
ÐÝ J1, qrK. If A returns pj�, sst�,A�,B�,O�, pΛ�,i,Λ�,i.tq

n
i�1q such that Ou � O�,

then the experiment returns 0. The advantage of A on G1 will be minored by the advantage of G0

multiplied by the probability of guessing correctly the operator O�:

|P rA wins G0s � 1{2| ¤ qr|P rA wins G1s � 1{2|.

Game G2: Let pj�, sst�,A�,B�,O�, pΛ�,i,Λ�,i.tq
n
i�1q be the guess of the adversary. Game G2 runs as

G1, except that if for all k P N, πkO�
.sid �� sid� or πkO�

.PID � pA�,B�q or πkO�
.AID � pΛ�,iq

n
i�1, then

G2 aborts and returns 0. For any adversary A,

|P rA wins G0s � P rA wins G1s | ¤ AdvEUF-CMA
DS pλq.

We prove this claim by reduction. Assume that there exists A winning G1 with probability εApλq
by returning a guess pj�, sst�,A�,B�,O�, pΛ�,i,Λ�,i.tq

n
i�1q such that for all k P N, πkO�

.sid � sid�
or πkO�

.PID � pA�,B�q or πkO�
.AID � pΛ�,iq

n
i�1. We recall that if A wins G0, then O�.γ � 0 and

Verifyppp, sst�,A�.PK,B�.PK,O�.PK, pΛ�,i.PKqni�1q � 1. Moreover, according to the rules of G1, if
O� � Ou then the experiment returns 0. We build a PPT adversary B that breaks the EUF-CMA
security of DS with non-negligible advantage. B receives the verification key P̂K, initializes an empty
set LS ÐH, and then simulates G0 to Apppq faithfully, except in the following situations:
Oracle RegisterpP, role,PKq: If the u-th registration query has role � operator), or PK � K
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then B aborts (as required since G1). Else B sets Ou Ð P and sets Ou.PK Ð P̂K.
Oracle Send(πiP, m): If P � Ou, then B simulates this oracle faithfully, except that it queries its
Sigp�q oracle to produce signatures, storing the message/signature pairs in LS . B sets MO Ð ω}
mX}mY }σ

1
Y }σX}σ

2
Y , runs σO Ð SigpMOq, stores pMO, σOq in LS , and sets sst Ð pMO}σOq.

Oracle Corrupt(P): If P � Ou, then B aborts.
Finally, A returns pj�, sst�,A�,B�,O�, pΛ�,i,Λ�,i.tq

n
i�1q, B parses sst� as pω�}m�,X}m�,Y }σ

1
�,Y }

σ�,X}σ
2
�,Y }σ�,Oq and returns pm�, σ�q = pω�}m�,X}m�,Y }σ

1
�,Y }σ�,X}σ

2
�,Y , σ�,Oq.

Note that G1 is perfectly simulated for A by B. If for all k P N, πkO�
.sid � sid� or πkO�

.PID �

pA�,B�q or πkO�
.AID � pΛ�,iq

n
i�1, then sst� was not returned by Send on an oracle instance, so

pm�, σ�q R LS . Moreover, if A wins G1, Verifyppp, sst�,A�.PK,B�.PK,O�.PK, pΛ�,i.PKqni�1q � 1,
implying that SVerpO�.PK, ω�}m�,X}m�,Y }σ

1
�,Y }σ�,X}σ

2
�,Y , σ�,Oq � 1, so σ� is a valid signature on

m� for the key P̂K. We also have that O� � Ou.
Finally, if A wins G0 such that for all k P N, πkO�

.sid � sid� or πkO�
.PID � pA�,B�q or πkO�

.AID �

pΛ�,iq
n
i�1, then B wins his game. Then, AdvEUF-CMA

DS,B pλq � εApλq, concluding the proof.

Game G3: In this game, Ext denotes the knowledge extractor of NIPoK
 
d : D1 � gd1 ^D2 � gdT

(
.

Let pj�, sst�,A�,B�,O�, pΛ�,i,Λ�,i.tq
n
i�1q be the guess of the adversary. Game G3 runs as G2 except

that:
– G3 begins by initializing an empty list Lr s Ð H.
– Each time it runs RevealTDpsst,A,B,O, pΛiq

n
i�1, lq Ñ Λl.t to the adversary, G3 sets LrΛl.ts Ð

Λl.SK.
– After the guess of the adversary, it sets ω� Ð A�}B�}pΛ�,iq

n
i�1, it parses the session state sst�

as pω1�}m�,X}m�,Y }σ
1
�,Y }σ�,X}σ

2
�,Y }σ�,Oq, m�,X as X�,1}X�,2}ni�,X and m�,Y as Y�}ni�,Y .

– For each i P J1, nK such that LrΛ�,i.ts � K, it parses Λ�,i.PK as pΛ�,i.pk,Λ�,i.niq and Λ�,i.t as
pΛ�,i.t1,Λ�,i.t2q. If 1 Ð NIPoKverppg1,Λ�,i.pk, epX�,1, Y�q,Λ�,i.t1q, Λ�,i.t2q, then it runs Extpλq on
A in order to extract the witness w for the proof Λ�,i.t2 and sets LrΛ�,i.ts Ð w. Else, G3 aborts

and returns 0. If g
LrΛ�,i.ts
1 � Λ�,i.pk or epX�,1, Y�q

LrΛ�,i.ts � Λ�,i.t1, then G3 aborts and returns
0.

The two games only differ if the extractor Ext fails on a valid proof of knowledge generated by A,
in any of the (at most) qr calls to the extractor. Hence:

|P rA wins G1s � P rA wins G2s | ¤ qr � εNIPoKpλq.

Finally, we show that P rA wins G2s � 0. Assume that an adversary A wins G2 with non-zero
probability. We parse πj�O�

.τ as pmX ,m
1
X , pmY , σ

1
Y q, pm

1
Y , σ

1
Y 1q, σX , σ

1
X , σ

2
Y q, mX as pX1}X2}niXq,

mY as pY }niY q, π
j�
O�
.PID as pA,Bq and πj�O�

.AID as pΛiq
n
i�1. On the other hand, we parse sst� as

pω�}m�,X}m�,Y }σ
1
�,Y }σ�,X}σ

2
�,Y }σ�,Oq, ω� as A�}B�}pΛ�,iq

n
i�1, m�,X as X�,1}X�,2}ni�,X and m�,Y

as Y�}ni�,Y . According to the rules of the game G1, π
j�
O�
.sid � sid� and πj�O�

.PID � pA�,B�q and

πj�O�
.AID � pΛ�,iq

n
i�1, which implies that we have X�,1 � X1, X�,2 � X2, Y� � Y , and ω� � A}

B}pΛiq
n
i�1. By definition, Extract returns k � e p

±n
i�1 Λi.pk, X2q

y , where Y � gy2 . We recall that
epX1, g2q � epg1, X2q.

On the other hand, the algorithm Openppp, sst�, pΛ�,i.tq
n
i�1, pΛ�,i.PKqni�1q returns:

k��
±n
i�1pΛ�,i.t1q �

±n
i�1 epX�,1, Y�q

LrΛ�,i.ts �
±n
i�1 epX1, Y q

LrΛ�,i.ts �
±n
i�1 epX1, g

y
2q

LrΛ�,i.ts

�
±n
i�1 epX1, g2q

y�LrΛ�,i.ts �
±n
i�1 epg1, X2q

y�LrΛ�,i.ts �
±n
i�1 epg

LrΛ�,i.ts
1 , X2q

y �
�

±n
i�1 epΛ�,i.pk, X2q

y �
±n
i�1 epΛi.pk, X2q

y � e p
±n
i�1 Λi.pk, X2q

y � k,
which implies that k� � k with probability 1, so A cannot win the game. This concludes the proof.

24



7 Using our protocol

In this section we explore how our generic setup can be tailored to a number of different Lawful
Interception requirements and scenarios. This highly depends on the roles of the entities involved:
the operator, the authorities, and the entity that establishes a warrant, which we call a judge for
simplicity. This is a gross simplification of the legal process, however, at the level of abstraction
that we consider the matter, we only need that the entity’s key be associated with that specific
protocol instance.

The role of the authorities Lawful interception may involve multiple authorities: court of law, law-
enforcement agencies, and/or other administrative agencies (including city halls, government, etc.).
For this scenario, we assume the operator is not an authority. We call an authority privileged if
it is allowed to view the output of the opening algorithm. We explicitly assume that authorities
behave honestly in the dissemination of their trapdoors, specifically: (i) no authorities disseminates
its trapdoor to a non-authority; (ii) no privileged authority disseminates its trapdoor to a non-
privileged authority.

Fig. 3. An overview of the opening procedure for the case of n privileged authorities (left) and that of ` out of n
privileged authorities (right). The circle and lock denote a secure channel shared by the parties within the circle.

Since privileged authorities are the only entities that must see sensitive data, such as the recon-
structed key and the communication contents it unlocks, they are more computationally involved in
key recovery. Take the case of n out of n privileged entities. To protect user privacy, they must first
exchange their trapdoors over a secure channel (otherwise, an adversary may gain the trapdoors
and open the key itself). Then, each authority must perform the opening procedure, involving the
verification of the soundness of the trapdoors and possibly the session state.

Unprivileged authorities have a much lighter computational burden, while also being essential
to the LI process. As long as there is at least one privileged authority, the only thing unprivileged
authorities must do is broadcast their trapdoors. In the case of 1 out of n privileged authorities, the
privileged party receives all the trapdoors, then computes its own, and finally opens the key within
a secure environment. For ` out of n privileged parties with 1   `   n, the privileged authorities
receive the trapdoors of unprivileged parties, then exchange their own privileged trapdoors over
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a secure channel. Finally, each privileged party runs the opening algorithm. This is also visible in
Figure 3.

The role of the operator In some cases, the operator could also play the role of an authority.
Apart from participating in the authenticated key-exchange, it will need to generate a trapdoor
and potentially take part in the opening process. A näıve solution would be to have the operator use
its operator credentials when it plays its part as an authority; however, they may have a different
format, and we opt for having the operator using two distinct sets of credentials for its roles, as
depicted in Figure 4. For the operator, the following steps are modified:
– Key generation: The operator runs AKeyGen in addition to OKeyGen to get its credentials.
– AKE: The operator uses its operator credentials only in the course of the AKE protocol sessions

between any two users.
– Trapdoor generation: Unlike in our original case, the operator will now also need to generate

trapdoors for lawful interception, using only its authority credentials.
– Opening: Depending on whether the operator should have access or not to the output of the

opening algorithm, the operator must also take part in the opening of the session key.
As the two credentials are independent, the operator’s participation in the opening procedure
reveals no information about its operator credentials, and vice-versa.

Fig. 4. When the operator is also an authority, it generates two pairs of independent credentials, using its operator
credentials for AKE (left-hand side) and its authority credentials for the opening of sessions (right-hand side).

The role of the judge We can consider three types of involvement from the judge: no judge (no
warrants are needed), implicit judge (provides warrant to each authority, but takes no part in the
opening), and explicit judge (provides warrants and takes part in the opening). We consider a case
in which the operator is not an authority, and there is a single privileged authority (i.e., only one
authority can learn the output of the opening algorithm). If the privileged participant is the judge,
we find ourselves in the third case (explicit judge).
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– No judge: The judge has no bearing on the setup of the protocol and may not be one of the
authorities.

– Explicit judge: At the other extreme is the case of the explicit judge. Without loss of generality,
we assume that the judge is Λ1. The protocol is run as in the case of 1 privileged authority.

– Implicit judge: An intermediate case, in where judge must generate warrants authorizing
LI, but it is not necessarily an authority. This case can be treated in two ways. The simplest
solution is to consider the judge an unprivileged authority and run the protocol as indicated
earlier. Then, LI cannot take place if the judge does not authorize it, but the judge does not
learn the output of the opening protocol. A more complicated scenario is that in which the judge
specifically does not take part in the protocol. In that case, our protocol must be composed with
a different component, which provides guarantees with respect to the exact legal dependencies
between the judge, its warrant, and the authorities. We consider this latter approach as possible
future work.

8 Conclusion

Our paper is motivated by the observation that lawful interception does not imply that mobile users
have to forgo their privacy with respect to mobile operators. To reconcile the two requirements, we
introduce Lawful-Interception Key Exchange (LIKE), a new primitive that augments user privacy
without harming LI. LIKE guarantees that Alice’s and Bob’s secure channel remains secure except
with respect to: Alice, Bob, or a collusion of n legitimate authorities. Neither the operator, nor a
collusion of less than n maliciously-behaving authorities can break that privacy. In addition, users
are guaranteed the impossibility of being framed of wrong-doing, even if all the authorities and
operators worked together. Finally, both the operator and the authorities are guaranteed that the
LI procedure will reveal the key that Alice and Bob should have computed in any given session.

Our instantiated primitive relies on a digital signature scheme and NIZK proofs and signatures
of knowledge for discrete logarithm. We embed the long-term credentials of the authorities on one
side of a pairing, Alice and Bob’s ephemeral DH elements on the other, and rely on the hardness of
the BDDH problem. Contrary to existing secret-sharing approaches, in our solution the authorities
do not need to store shares to Alice’s and Bob’s randomness for each session (which scales badly
and is unreasonable given the retroactive effect of LI laws). Instead, the burden of storage rests
with the operator, as is currently the case. We require no trusted party; in fact our three properties
assume that the users, operators, and authorities may misbehave (in turn or concomitantly). Our
protocol is versatile and its extract-and-open LI mechanism can be used in various configurations
of authorities, judges, and operators.

A guarantee not provided by our protocol is against malicious users who run the protocol
correctly, but then use a different key (exchanged by other means) to encrypt their communication.
This is not a weakness of our scheme, but rather an inevitability as long as parallel means of
exchanging keys (not subject to LI) exist.

Another limitation of our work is the fact that it only works for domestic mobile communica-
tions, where both operators are subject to the same set of authorities. It is not obvious how to
extend our protocol to embed two independent sets of authority keys into the session state without
risking two different conversations taking place. This extension is left as future work.
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4. Stéphanie Alt, Pierre-Alain Fouque, Gilles Macario-Rat, Cristina Onete, and Benjamin Richard. A cryptographic
analysis of UMTS/LTE AKA. In Proceedings of ACNS, volume 9696 of LNCS. Springer, 2015.

5. Abdullah Azfar. Implementation and performance of threshold cryptography for multiple escrow agents in voip.
In Proceedings of SPIT/IPC, pages 143–150, 2011.

6. Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In CRYPTO ’92, volume 740 of LNCS.
Springer, 1992.

7. Mihir Bellare and Shafi Goldwasser. Verifiable partial key escrow. In CCS ’97. ACM, 1997.
8. Mihir Bellare and Ronald L. Rivest. Translucent cryptography - an alternative to key escrow, and its implemen-

tation via fractional oblivious transfer. J. Cryptology, 12(2), 1999.
9. Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In CRYPTO ’93, volume 773 of

LNCS. Springer, 1993.
10. Matt Blaze. Protocol failure in the escrowed encryption standard. In CCS ’94. ACM, 1994.
11. Xavier Boyen. The uber-assumption family. In Pairing 2008. Springer, 2008.
12. Jan Camenisch and Markus Stadler. Efficient group signature schemes for large groups (extended abstract). In

CRYPTO ’97, volume 1294 of LNCS. Springer, 1997.
13. Melissa Chase and Anna Lysyanskaya. On signatures of knowledge. In CRYPTO, volume 4117 of LNCS. Springer,

2006.
14. David Chaum and Torben P. Pedersen. Wallet databases with observers. In CRYPTO ’92, volume 740 of LNCS,

pages 89–105. Springer, 1992.
15. Liqun Chen, Dieter Gollmann, and Chris J. Mitchell. Key escrow in mutually mistrusting domains. In Proceedings

of Security Protocols, pages 139–153, 1996.
16. M. Chen. Escrowable identity-based authenticated key agreement in the standard model. In Chinese Electronics

Journal, volume 43, pages 1954–1962, 10 2015.
17. Dorothy E. Denning and Dennis K. Branstad. A taxonomy for key escrow encryption systems. Commun. ACM,

39(3), 1996.
18. Yvo Desmedt. Abuses in cryptography and how to fight them. In CRYPTO ’88, volume 403 of Lecture Notes in

Computer Science. Springer, 1988.
19. Qiang Fan, Mingjian Zhang, and Yue Zhang. Key escrow scheme with the cooperation mechanism of multiple

escrow agents. 2012.
20. FCC. Communications assistance for law enforcement act. P.L. 103414, 47 U.S.C. 1001-1010, 1994.
21. Joe Kilian and Frank Thomson Leighton. Fair cryptosystems, revisited: A rigorous approach to key-escrow

(extended abstract). In CRYPTO ’95, volume 963 of LNCS. Springer, 1995.
22. Byung-Rae Lee, Kyung-Ah Chang, and Tai-Yun Kim. A secure and efficient key escrow protocol for mobile

communications. In Computational Science - ICCS 2001, volume 2073 of LNCS. Springer, 2001.
23. Yu Long, Zhenfu Cao, and Kefei Chen. A dynamic threshold commercial key escrow scheme based on conic.

Appl. Math. Comput., 171(2):972–982, 2005.
24. Yu Long, Kefei Chen, and Shengli Liu. Adaptive chosen ciphertext secure threshold key escrow scheme from

pairing. Informatica, Lith. Acad. Sci., 17(4):519–534, 2006.
25. Keith M. Martin. Increasing efficiency of international key escrow in mutually mistrusting domains. In Proceedings

of Cryptography and Coding, volume 1355 of LNCS, pages 221–232. Springer, 1997.

28



26. Baker McKenzie. 2017 Surveillance Law Comparison Guide. 2017. Available at https://tmt.bakermckenzie.com/-
/media/minisites/tmt/files/2017 surveillance law.pdf.

27. Silvio Micali. Fair public-key cryptosystems. In CRYPTO ’92, volume 740 of LNCS. Springer, 1992.
28. Ilya Mironov and Noah Stephens-Davidowitz. Cryptographic reverse firewalls. In EUROCRYPT, volume 9057,

pages 657–686. Springer, 2015.
29. Crypto Museum. Clipper chip. Available at https://www.cryptomuseum.com/crypto/usa/clipper.htm.
30. Liang Ni, Gongliang Chen, and Jianhua Li. Escrowable identity-based authenticated key agreement protocol

with strong security. Comput. Math. Appl., 65(9):1339–1349, 2013.
31. Council of the EU. Council resolution of 17 january 1995 on the lawful interception of telecommunications.

Official Journal C 329 , 04/11/1996 P. 0001 - 0006, Jan 1995.
32. Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In CRYPTO ’89, volume 435 of

LNCS, pages 239–252. Springer, 1989.
33. Adi Shamir. Partial key escrow: A new approach to software key escrow. Presented at Key Escrow Conference,

1995.
34. Adi Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO, pages 47–53, 1984.
35. Zhen Wang, Zhaofeng Ma, Shoushan Luo, and Hongmin Gao. Key escrow protocol based on a tripartite authen-

ticated key agreement and threshold cryptography. IEEE Access, 7:149080–149096, 2019.
36. Charles V. Wright and Mayank Varia. Crypto crumple zones: Enabling limited access without mass surveillance.

In Proceedings of EuroS&P 2018. IEEE, 2018.
37. Adam L. Young and Moti Yung. Kleptography from standard assumptions and applications. In Proceedings of

SCN, pages 271–290, 2010.

29


