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Abstract In this paper we introduce a novel method for constructing an efficient linkable ring signature without
a trusted setup in a group where decisional Diffie-Hellman problem is hard and no bilinear pairings exist. Our
linkable ring signature is logarithmic in the size of the signer anonymity set, its verification complexity is linear
in the anonymity set size and logarithmic in the signer threshold. A range of the recently proposed setup-free
logarithmic size signatures is based on the commitment-to-zero proving system by Groth and Kohlweiss or on the
Bulletproofs inner-product compression method by Bünz et al. In contrast, we construct our signature from scratch
using the Lin2-Xor and Lin2-Selector lemmas that we formulate and prove here. With these lemmas we construct an
n-move public coin special honest verifier zero-knowledge membership proof protocol and instantiate the protocol
in the form of a general-purpose setup-free signer-ambiguous linkable ring signature in the random oracle model.
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1 INTRODUCTION
In simple words, the problem is to sign a message m in such a way as to convince a verifier that someone out

of a group of possible signers has actually signed the message, without revealing the signer identity. A group of
signers is called a ring. It could be required that L signers sign a message, L is a threshold in this case.

As an extension, it could be required that every signer can sign only once, in this case the signature is called
linkable. It is also desirable that the signature size and verification complexity are to be minimal.

An effective solution to this problem plays a role in cryptographic applications, for instance, in the telecommu-
nication and peer-to-peer distributed systems.

A formal notion of ring signatures and the early yet efficient schemes are presented in the works of Rivest,
Shamir, and Tauman [15], Abe, Ohkubo, and Suzuki [1], Liu, Wei, and Wong [13], an example of a system that
uses linkable ring signatures is, for instance, CryptoNote [17]. Nice properties of the schemes are that there is no
trusted setup process and no selected entities in them, an actual signer is able to frequently change its anonymity
set without ever notifying the other participants about this.

The schemes in [1, 13] and other linkable ring signature schemes can be instantiated with a prime-order cyclic
group under the discrete logarithm problem hardness (DL) assumption. Scheme security and the signer anonymity
are usually, e.g., as in [13], reduced to one of the stronger hardness assumptions, for instance, to the decisional
Diffie-Hellman (DDH) assumption in the random oracle model (ROM).

All these signatures have sizes that grow linearly in the signer anonymity set size. Their verification complexities
are linear, too.

Recent works by Tsz Hon Yuen, Shi feng Sun, Joseph K. Liu, Man Ho Au, Muhammed F. Esgin, Qingzhao
Zhang, and Dawu Gu [18], Sarang Noether [14], Benjamin E. Diamond [2], Russell W. F. Lai, Viktoria Ronge,
Tim Ruffing, Dominique Schröder, Sri Aravinda Krishnan Thyagarajan, and Jiafan Wang [12], William Black and
Ryan Henry [3], and others show that under the common assumptions for a prime-order cyclic group where the DL
is hard and, maybe, with some rather natural assumptions about the participating public keys, it’s possible to build
a setup-free linkable ring signature with logarithmic size.

As another line of solutions, in the works of Jens Groth [9], Daira Hopwood, Sean Bowe, Taylor Hornby,
and Nathan Wilcox [11] and some others it is shown that signer-ambiguous signatures with asymptotically lower
sizes and verification complexities can be built at the cost of requiring a trusted setup or bilinear pairings to the
prime-order group. However, this line of solutions is out of the scope of our current work.

In this paper we construct a setup-free logarithmic-size linkable ring signature scheme over a prime-order cyclic
group without bilinear pairings under the DDH assumption in the ROM.
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1.1 CONTRIBUTION
1.1.1 LIN2-XOR AND LIN2-SELECTOR LEMMAS

We formulate and prove Lin2-Xor lemma that allows for committing to exactly one pair of elements out of two
pairs of elements.

Using the Lin2-Xor lemma as a disjunction unit, we formulate and prove Lin2-Selector lemma that allows for
committing to exactly one pair of elements out of many pairs of elements.

The Lin2-Selector lemma provides a pure n-move public coin protocol that, being successfully played between
any prover and an honest verifier, convinces the verifier that the prover knows an opening (k0, k1, s) of a commitment
Z , where the commitment Z has a form

Z = k0Ps + k1Qs,

where the pair (Ps,Qs), s ∈ [0, N − 1], is taken from a publicly known set of element pairs
{(

Pj,Q j

)}N−1
j=0 such that

there is no known discrete logarithm relationship between any elements in the set.
We show, that the amount of data transmitted from a prover to a verifier during the Lin2-Selector protocol

execution is logarithmic in the size of the publicly known set of element pairs.
With the Lin2-Selector lemma, no additional proof is required for that the commitment has the form k0Ps+k1Qs .

Once the lemma’s pure n-move public coin protocol is successfully completed, the verifier is convinced of both the
form Z = k0Ps + k1Qs and the prover’s knowledge of (k0, k1, s).

The Lin2-Xor and Lin2-Selector lemmas are proven for a prime-order group under the DL hardness assumption.

1.1.2 L2S SET MEMBERSHIP PROOF PROTOCOL
We construct an n-move public coin set membership proof protocol, called L2S protocol, on the base of the

Lin2-Selector lemma pure n-move public coin protocol.
The L2S protocol inherits the properties of the Lin2-Selector lemma pure protocol and, thus, convinces a

verifier that a commitment Z = k0Ps + k1Qs is built over a member (Ps,Qs) of a set of element pairs with unknown
discrete logarithm relationship between the elements from all the pairs.

We prove the L2S protocol is complete and sound under theDL, special honest verifier zero-knowledge (sHVZK)
under the DDH.

1.1.3 SIGNER-AMBIGUOUS ML2SLNKSIG LINKABLE RING SIGNATURE
Using the L2S membership proof protocol we construct a non-interactive zero-knowledge many-out-of-

many mL2SHPoM membership proof scheme and, consequently, construct a many-out-of-many mL2SLnkSig
logarithmic-size linkable ring signature.

Compared to the setup-free log-size linkable ring signature schemes proposed in [18, 14, 2, 12], that originate
from the ideas of Jens Groth and Markulf Kohlweiss [10], Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew
Poelstra, Pieter Wuille, and Greg Maxwell [5], our signature scheme is constructed on a basis different from [10,
5].

A parallel can be drawn with the work of Jens Groth andMarkulf Kohlweiss [10]. A mechanism resembling the
Kronecker’s delta is introduced in [10] for selecting an anonymity set member without revealing it. Our signature
uses the Lin2-Selector lemma exactly in the same role. There is a difference in the anonymity sets: the anonymity
sets in [10] lay in a plain built over the homomorphic commitment generators, whereas the anonymity sets for the
Lin2-Selector lemma protocol are sets of orthogonal generators.

Requiring the anonymity sets to be the sets of orthogonal generators for the mL2SHPoM scheme, we completely
drop this limitation for the mL2SLnkSig signature scheme.

We present our mL2SLnkSig signature scheme as a general-purpose log-size solution for the linkable ring
signature problem, when the anonymity set is allowed to be an arbitrary set of distinct public keys.

The mL2SLnkSig signature is signer-ambiguous under the DDH in the ROM, it keeps this property even for
the cases when relationship between the public keys is known to an adversary.

1.2 METHOD OVERVIEW
1.2.1 LIN2 LEMMA

In a nutshell, firstly we formulate and prove a helper lemma, that connects Z to the P and Q in the equation

w(P + cQ) = Z + rH,

where Z,H, P,Q are fixed elements of a primary-order group where DL is hard, c is a verifier’s challenge, r is a
prover’s reply, and w is a non-zero scalar known to the prover.
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The lemma states that if no discrete logarithm relationship between P and Q is known, if the prover is able to
reply with a scalar r to a random challenge c and, in addition to this, if it is able to show that the above equation
holds for some known to it and possibly secret w, then the scalars a and b in the equality

Z = aP + bQ

are certainly known to the prover.

1.2.2 LIN2-XOR LEMMA
Next, we consider a linear combination R of four fixed primary-order group elements P1, Q1, P2, Q2 with

unknown discrete logarithm relationship to each other

R = c20 (c10P1 + c11Q2) + c21 (c12P2 + c13Q2) ,

where c11, c13, c21 are random scalars, and c10, c12, c20 are always equal to 1. That is, reducing the constant
coefficients, we consider the following linear combination

R = (P1 + c11Q2) + c21 (P2 + c13Q2) .

It appears that if a prover demonstrates a pair of fixed elements (Z,H1) at the beginning of a protocol, receives
a pair of random challenges (c11, c13) from a verifier, replies with a scalar r1 and with an element H2, receives a
random challenge c21 after that, replies with a scalar r2, and finally shows that the equation

wR = Z + r1H1 + r2H2

holds for some secretly known non-zero scalar w, then Z has the following property: it equals to exactly one
of (aP1 + bQ1) and (aP2 + bQ2) for some known to the prover scalars a, b. We formulate this property and the
necessary conditions as Lin2-Xor lemma. The key condition is that (Z,H1) are to be chosen without knowing the
(c11, c13, c21), and (r1,H2) are to be chosen without knowing c21.

In other words, the Lin2-Xor lemma states that the above protocol successfully completes only if the prover
knows scalars a and b such that

(Z = aP1 + bQ1) ⊕ (Z = aP2 + bQ2).

After the Lin2-Xor lemma protocol successful completion the verifier is convinced that Z is a linear combination
of either (P1, Q1) or (P2, Q2). There exists no possibility for Z to be, for instance, a linear combination of all the
four elements, e.g., to be Z = aP1 + bP2 + dQ1 + eQ2 with known to the prover non-zero a, b, d, e.

Moreover, after the protocol successful completion the verifier is convinced that H1 is also a linear combination
of either (P1, Q1) or (P2, Q2), that is, H1 possesses a similar property:

(H1 = f P1 + gQ1) ⊕ (H1 = f P2 + gQ2)

for some known to the prover f , g.

1.2.3 COROLLARY OF LIN2-XOR LEMMA
As a corollary we get that if the Lin2-Xor lemma protocol is successfully completed, then the verifier is

convinced that the prover knows some secret scalar x such that

(Z + r1H1 = x(P1 + c11Q1)) ⊕ (Z + r1H1 = x(P2 + c13Q2)).

1.2.4 LIN2-SELECTOR LEMMA
It appears that the Lin2-Xor lemma can be ‘stacked’, i.e., applied a number of times to an arbitrary number of

fixed orthogonal elements. We assume the number of elements is a power of 2.
For instance, for eight fixed orthogonal elements P1, Q1, P2, Q2, P3, Q3, P4, Q4 and for two fixed elements

Z,H1:

R = ((P1 + c11Q1) + c21 (P2 + c13Q2)) + c31 ((P3 + c11Q3) + c23 (P4 + c13Q4)) ,

wR = Z + r1H1 + r2H2 + r3H3,

where the (c11, c13) is the first challenge and the (r1,H2) is the first reply, the (c21, c23) is the second challenge and
the (r2,H3) is the second reply, the c31 is the third challenge and the r3 is the third reply, Lin2-Selector lemma
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provides a method to convince verifier that Z is exactly one of (aP1 + bQ1), (aP2 + bQ2), (aP3 + bQ3), (aP4 + bQ4)
for some known to prover a, b.

Namely, applying the Lin2-Xor lemma and its corollary we can find that exactly one equality of the following
two

(Z + r1H1 + r2H2) = x((P1 + c11Q1) + c21(P2 + c13Q2)),

(Z + r1H1 + r2H2) = x((P3 + c11Q3) + c23(P4 + c13Q4))

holds for some known to the prover x. Applying the Lin2-Xor lemma to that equality that holds, suppose, to the
first one, we find that Z is exactly one of (aP1 + bQ1), (aP2 + bQ2) for some known to the prover a, b. The same is
for the case if the second equality holds.

For a set of 2n−1 pairs
{(

Pj,Q j

)}2n−1−1
j=0 , the Lin2-Selector lemma provides a general method and a protocol for

constructing R such that
wR = Z +

∑
i=1...n

riHi,

where the verifier is convinced that Z = k0Ps + k1Qs for some known to prover s ∈
[
0, 2n−1 − 1

]
, k0, k1. The

actual s can be made indistinguishable by keeping the scalars k0 and k1 in secret.

1.2.5 PURE PROTOCOLS AND SOUNDNESS
Overall, the following three lemmas: Lin2, Lin2-Xor, and Lin2-Selector have similar structure of their premises

and conclusions in our work.
The structure is: a premise declares necessary assumptions about the publicly seen values and defines, as we

call it, a pure protocol. A conclusion is that of, if the assumptions hold and the protocol is successfully completed,
then verifier is convinced that prover knows some secret values.

A pure protocol specifies what the verifier has to do in detail, however, it doesn’t specify the same for the prover.
It describes only what the prover has to reply to the verifier without specifying how it prepares the replies. With
this structure we are able to prove the pure protocol soundness, i.e., that the successful protocol completion implies
the prover’s knowledge of the secret values. The Lin2, Lin2-Xor, and Lin2-Selector lemmas provide the proofs of
soundness for their pure protocols.

We don’t consider completeness and zero-knowledge for the pure protocols, as these properties depend on how
the prover prepares the replies. If a pure protocol soundness is proven, then a derived protocol defining prover’s
behavior in details inherits the soundness. Once the prover’s behavior is completely defined in the derived protocol,
we consider completeness and zero-knowledge for it.

1.2.6 SOUNDNESS PROOFS FOR THE PURE PROTOCOLS
We assume the prover and verifier are probabilistic polynomial-time Turing machines equipped with a common

tape, where they write their conversation transcript.
When we prove soundness for a pure protocol, the verifier is assumed honest, whereas the prover is regarded

as having a dishonest subroutine, that with overwhelming probability produces acceptable replies to the uniformly
random challenges, such that the protocol completes successfully.

To prove soundness for the Lin2 lemma protocol we suppose that the secret values in question are not known to
the prover. We consider two successful Lin2 lemma protocol transcripts, one of which is that of the prover-verifier
conversation, and the other one is that the prover obtains itself by calling the dishonest subroutine for another set of
challenges taken from its random tape. We demonstrate a polynomial-time algorithm that extracts the secret values
in question from these two transcripts using known to the prover information. Thus, we show that even not knowing
these values the prover is capable of getting them in polynomial time once it is able to successfully complete the
protocol. Therefore, the protocol is sound.

We use the same method for the Lin2-Xor lemma protocol, with the only difference that we don’t demonstrate a
polynomial-time extractor algorithm, we gradually find which values can be obtained by the prover in polynomial
time and finally show that the values in question are among them. That is, we prove that a polynomial-time extactor
can be built by the prover.

For the Lin2-Selector lemma protocol we do the same using the Lin2 and Lin2-Xor lemmas. Thus we prove
the protocol soundness.

1.2.7 L2S MEMBERSHIP PROTOCOL, ML2SLNKSIG SIGNATURE
We construct L2S set membership proof protocol on top of the Lin2-Selector lemma pure protocol and prove

that the L2S protocol is complete and sound, obtaining the soundness directly from the Lin2-Selector lemma.
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Next, we analyze L2S protocol transcript and show that all its entries have distributions indistinguishable from
independent and uniform randomness, except for one entry which is a linear combination of the other entries. From
this, we show that the protocol is sHVZK using the definition and method by Ronald Cramer, Ivan Damgård, and
Berry Schoenmakers [6] and, consequently, that it doesn’t reveal any information beyond the fact of membership.
This allows us to build a signer-ambiguous signature on its base.

The L2S protocol is efficient, it requires transmitting one Z and n (ri,Hi) pairs, and computing one multi-
exponentiation for 2n summands when calculating R during verification. Overall, in all schemes and protocols in
this paper the value R is calculated only once during verification.

Using the Fiat-Shamir heuristic, we turn the L2S protocol to the mL2SHPoM non-intaractive many-out-of-many
proof of membership scheme and to the mL2SLnkSig many-out-of-many linkable ring signature scheme with a
linking tag in the form x−1Hpoint (P), where P = xG and Hpoint is a hash function on the group elements.

While the mL2SHPoM proof of membership scheme requires all elements of its anonymity set to be orthogonal
to each other, the mL2SLnkSig scheme removes this limitation by ‘lifting’ the anonymity set to an orthogonal set
of images of an Hpoint-based hash function and then applying the mL2SHPoM to that orthogonal set.

2 PRELIMINARIES
• Let G be a cyclic group of prime order in which the discrete logarithm problem is hard, and let F be a scalar
field of G. The field F is finite, of the same order as G.

• Let lowercase italic letters and words a, b, sum, . . . denote scalars in F. Sometimes indices and apostrophes
are appended: a12, b′, sp1 , sum1, . . . . Also, lowercase italic letters and words can be used to designate
integers used as indices, e.g., i, j1, idx1, . . . , this usage is clear from the context.

• Let uppercase italic letters and words A, B, X , P, H, . . . denote the elements of G. Indices and apostrophes
can be appended: A1, B′, X12, P11, Zp

0 , . . .. Also, uppercase italic letters denote sets and, sometimes,
integers, that is clear from the context. The letters N and M are reserved for integer powers of 2.

• Let 0 denote the zero element of G and also denote the zero scalar in F, it’s easy to distinguish its meaning
from the context.

• Let G be a generator of G. As G is a prime-order group, any non-zero element A is a generator of G, hence
we assume G is an a-priory chosen element.

2.1 A NOTE ABOUT CONTEXT
All definitions and lemmas below are given in the context of a game between Prover and Verifier, unless

otherwise stated.
During the game Prover tries to convince Verifier that certain facts are true. For the sake of this, Prover may

disclose some information to Verifier, the latter may pick some, e.g., random, challenges, send them to Prover and
get some values back from it.

The game may contain a number of subsequent protocols. That is, Prover and Verifier may execute protocols
between each other a number of times, so that Verifier gradually becomes convinced of the facts.

A protocol can be translated to a non-interactive scheme using the Fiat-Shamir heuristic in the ROM. We start
with proving the lemmas in the interactive setting, next they are turned into the non-interactive setting with the
Fiat-Shamir heuristic.

2.2 DEFINITIONS
2.2.1 SECURITY PARAMETER

We assume security parameter λ is equal to the logarithm of cardinality of F. The cardinalities of F and G are
equal to each other, so λ is equal to the logarithm of cardinality of G

We omit mentioning λ in the protocols, implying polynomial time is a polynomial time in λ everywhere.

2.2.2 SETS AND VECTORS

Sets are assumed having cardinalities that are polynomial in λ everywhere, of course, excluding the G and F.
Vectors are ordered sets.

Sets are denoted by uppercase italic letters or curly brackets. Vectors of scalars or elements are denoted using
either square brackets [] or arrows over italic lowercase or uppercase letters, respectively: ®x, ®X .

Brackets can be omitted where it is not ambiguous, e.g., if S = {B1, B2, . . . , Bn}, then the sequence B1, B2, . . .,
Bn represents the same set S.
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2.2.3 KNOWN AND UNKNOWN DISCRETE LOGARITHM RELATIONSHIP
For any two elements A and B, the notation

A ∼ B

designates the fact of a known discrete logarithm relationship between A and B, that is, in the equation A = xB the
scalar x is known or can be efficiently calculated.

The term “efficiently calculated” means that a probabilistic polynomial-time algorithm (PPT) solving the
problem with non-negligible probability can be demonstrated. As all sets in our paper have polynomial cardinality,
and as all proofs have polynomial number of steps, we consider the terms “efficiently calculated” and “known” as
carrying the same meaning elsewhere.

If calculating x in the equation A = xB is hard, then a discrete logarithm relationship between A and B is
unknown, this fact is designated as

A !∼ B.

For any A and B, both A ∼ B and A !∼ B never hold. It’s not required for the statements A ∼ B and A !∼ B to
obey the law of excluded middle, the only assumed law and implication are:

• (not (A ∼ B and A !∼ B)), meaning that it’s not possible to know and not to know x in the A = xB
simultaneously.

• (not A ∼ B)⇒ A !∼ B, meaning that if knowing x in the A = xB leads to a contradiction, then the discrete
logarithm relationship between A and B is unknown.

Using the law and implication, if we can obtain a contradiction by guessing A ∼ B, then we obtain A !∼ B and
(not A ∼ B). We can’t obtain anything by guessing A !∼ B.

Thus, the denotations A ∼ B and A !∼ B together with the above law and implication for them provide a
shorthand for the common way of reasoning about the knowledge of the discrete logarithm relationship. That is,
instead of writing, e.g., “suppose, x in the A = xB is known, then . . . this is a contradiction, hence, solving A = xB
is hard”, we write

(A ∼ B⇒ . . .⇒ Contradiction) ⇒ A !∼ B.

For any element A and any finite number of elements B1, B2, . . ., Bn, let’s denote as

A = lin (B1, B2, . . ., Bn)

the following fact: the scalars x1, x2, . . ., xn in the equation

A = x1B1 + x2B2 + . . . + xnBn.

can be efficiently calculated. Let’s call this a known discrete logarithm relationship of A to B1, B2, . . ., Bn.
If calculating x1, x2, . . ., xn in the equation A = x1B1 + x2B2 + . . . + xnBn is hard, let’s call this an unknown

discrete logarithm relationship of A to B1, B2, . . ., Bn and designate it as

A != lin (B1, B2, . . ., Bn) .

For any elements A, B1, B2, . . ., Bn, both A = lin (B1, B2, . . ., Bn) and A != lin (B1, B2, . . ., Bn) never hold. The
law and implication for these statements are similar to those for A ∼ B and A !∼ B:

• (not (A = lin (B1, B2, . . ., Bn) and A != lin (B1, B2, . . ., Bn)))
• (not A = lin (B1, B2, . . ., Bn))⇒ A != lin (B1, B2, . . ., Bn)

Also, for any elements A and B:

A = lin (B) is equivalent to A ∼ B,

and A != lin (B) is equivalent to A !∼ B.

2.2.4 ORTHOGONAL SETS
For any set S = {B1, B2, . . ., Bn} of non-zero elements, we denote the following fact as

ort (S)

and call it an unknown discrete logarithm of each element in the set to the other elements in the set: for each
element Bi ∈ S holds: Bi != lin (S\ {Bi}).

For any S, ort (S) means that no element in S can be expressed by means of other elements in S. So, as a
shorthand, we call S a set of independent, or orthogonal, elements in this case.
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2.2.5 EVIDENCE

Let’s call a valid proof of a fact provided by Prover to Verifier as an evidence of the fact. Thus, the game’s goal
is for Prover to convince Verifier of facts using evidences.

For instance, if x in the relation A = xB is known to Prover, we write this fact as A ∼ B for Prover. An evidence
of this fact can be simply x that Prover provides to Verifier, so that the later can check that A = xB. Also, it
can be another acceptable way to convince Verifier of Prover’s knowledge of x in the A ∼ B, e.g., an appropriate
sigma-protocol or a Schnorr signature (s, c) where sB + cA = R and c is an output of a pre-agreed ideal hash
function on input (B, A, R).

The term ‘evidence’ is introduced to distinguish between the facts themselves and proofs of facts that Prover
provides to Verifier and the latter checks and accepts. That is, for instance, we write

• simply (A ∼ B and C !∼D), when the fact is that x in A = xB is known to both Prover and Verifier and y in
C = yD is hard to compute for both of them,

• (A ∼ B and C !∼D) for Prover, when the fact is that x in A = xB is known to Prover and computing y in
C = yD is hard for Prover,

• evidence of (A ∼ B and C !∼D), when there is a known to Verifier acceptable proof for the fact that x in
A = xB is known to Prover and calculating y in C = yD is hard for Prover.

For all protocols below, if an evidence doesn’t pass Verifier’s check in a protocol, the protocol is assumed exited
by error. For some protocols we define the function Verif instead, that returns 0 or a non-zero value. If 0 is returned,
it means that a protocol immediately exits by error. If non-zero is returned, it means the protocol continues.

We call a protocol itself an evidence of a fact under certain conditions, if the protocol successful completion
under these conditions implies that Verifier is convinced that the fact holds on the Prover’s side.

2.2.6 FIXED ELEMENTS

Let’s call an element A fixed if it is not changed during the game. An element A is fixed for a protocol, if it is
not changed during its execution.

Prover can convince Verifier that A is fixed in different ways, e.g., by revealing A at the beginning of the protocol
or, if A = xB, by revealing x and B at the beginning.

2.2.7 RANDOM CHOICE

We use only uniform random choice of scalars over F everywhere and call it simply ‘random choice’. The
probability for a randomly chosen scalar to be zero is assumed to be negligible.

2.2.8 NEGLIGIBLE PROBABILITY AND CONTRADICTIONS

We assume probability to be negligible if its inverse is exponential in the security parameter λ. Consequently,
if by implications we get a statement that holds with the negligible probability, we assume the statement does not
hold.

The same is applied to contradictions: if we have an assumption and its implication such that the implication
holds with the negligible probability, we get a contradiction. For example, (assumption holds)⇒ (c = c′, where c
and c′ are chosen uniformly and independently at random)⇒ Contradiction.

2.2.9 DECOY SETS AND THEIR CARDINALITY

We call the anonymity set as a decoy set. One entry of a decoy set belongs to an actual signer. We don’t restrict
the actual signer to own only one entry in the set, it may own all decoys.

An adversary may own any number of entries in a decoy set, usually except for the one that the actual signer
signs with. Also, an adversary may know a relationship between some entries in a decoy set without owning them.

Decoy set cardinalities are assumed polynomial in λ, that is, cardinality of a decoy set is assumed to be much
less than the cardinality of F. An algorithm that goes through all entries of a decoy set is assumed to run in a
polynomial time.

We use the terms ‘ring’ and simply ‘set’ as the synonyms to ‘decoy set’, assuming the following semantic
difference: ‘decoy sets’ are usually parts of low-level protocols, ‘set’ is used when talking about a set membership
proof, ‘ring’is related to a ring signature.
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2.2.10 LINEAR COMBINATIONS
The terms ‘linear combination’ and ‘weighted sum’ that we apply to sums of elements multiplied by scalars are

interchangeable, they both mean a sum

a1B1 + a2B2 + . . . + anBn.

The scalars in the sum are sometimes called ‘weights’, although they don’t carry any additional meaning except
for being multipliers for the elements. That is, for instance, the weights aren’t required to be comparable.

2.2.11 INDEX PAIRS
Index pairs for the scalars and elements are usually written without separating commas: a12, ci1, ci j , . . .. To

avoid ambiguity, when a two digit number is used as a single index, it is put into curly brackets, e.g., X(12).
The separating comma and brackets are used for the case when an index pair is a compound expression, e.g.,

c1,(j+1), ci,(2j+1), c(2i),(2j+1).

2.2.12 UNIQUENESS
We call a vector as unique under certain conditions, when there can be efficiently calculated exactly one vector

satisfying the conditions. Calculating a different vector satisfying these conditions is hard. Two vectors are called
different if they have at least one position with different items.

For instance, the statement

®x is unique for the expression A =
∑

i=1...n
xiBi

means that the scalar vector ®x is efficiently computable and it’s hard to calculate a different vector ®y such that the
expression holds for it.

3 PRELIMINARY LEMMAS
NotLin lemma:
For any three non-zero A, B, C: if A != lin (B,C), then all three statements hold:

a) For any D and any known e: D = lin (B,C) ⇒ (A + eD) != lin (B,C).
b) For any T : (for some known e: (A + eT) = lin (B,C))⇒ T != lin (B,C).
c) Both hold: A !∼ B and A !∼C

Proof:
a) Suppose (A + eD) = lin (B,C), then by definition of lin(), x, y, w, z are provided such that: (A+eD = xB+yC
⇒ A + e (wB + zC) = xB + yC ⇒ A = (x − ew) B + (y − ez)C ⇒ A = lin (B,C) ⇒ Contradiction) ⇒
(A + eD) != lin (B,C)

b) Suppose T = lin (B,C), then by definition of lin(), x, y, w, z are provided such that: (A + eT = xB + yC
⇒ A + e (wB + zC) = xB + yC ⇒ A = (x − ew) B + (y − ez)C ⇒ A = lin (B,C) ⇒ Contradiction) ⇒
T != lin (B,C)

c) Suppose A ∼ B, then by definition of A ∼ B, x is provided such that A = xB. That is, by definition of lin(),
(A = lin (B,C) ⇒ Contradiction)⇒ A !∼ B. Likewise, A !∼C.

OrtUniqueRepresentation lemma:
For any element A and any vector ®B = [Bi]

n
i=1 of non-zero elements: if ort

(
®B
)
and A = lin

(
®B
)
, then the vector

®x = [xi]ni=1 of scalars, such that
A =

∑
i=1...n

xiBi,

is unique.

Proof: Suppose ®x is not unique, that is, A has one more representation ®y, then subtracting both representations
we get

0 =
∑

i=1...n
ziBi,

where ®z = ®x − ®y has at least one non-zero scalar.
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Suppose zj is non-zero, then moving zjBj to the left part and dividing by zj we get

Bj =
∑

i=1...n,i,j

(
zi/zj

)
Bi .

This means that Bj = lin
(
®B\

{
Bj

})
, however Bj != lin

(
®B\

{
Bj

})
by definition of the ort

(
®B
)
⇒ Contradiction.

OrtReduction lemma:
For any set of non-zero elements S, any two elements Bj, Bk ∈ S, any two non-zero scalars a, b:

ort (S) ⇒ ort
({ (

aBj + bBk

)}
∪

(
S\

({
Bj

}
∪ {Bk}

) ) )
.

Proof: Suppose the opposite, that is,
(
aBj + bBk

)
= lin

(
S\

({
Bj

}
∪ {Bk}

) )
⇒ moving Bk to the right: aBj =

lin
(
S\

{
Bj

})
⇒ dividing by a: Bj = lin

(
S\

{
Bj

})
⇒ Contradiction to the definition of ort (S).

ZeroRepresentation lemma:
For any ®B = [Bi]

n
i=1 and any ®x = [xi]

n
i=1: if ort

(
®B
)
and 0 =

∑
i=1...n xiBi , then ®x = ®0.

Proof: By the OrtUniqueRepresentation lemma, ®y = ®0 is unique for 0 =
∑

i=1...n yiBi , hence ®x = ®y = ®0.

OrtDisjunction lemma:
For any set of non-zero elements S, any vector of subsets [Si |Si ⊂ S]ni=0 such that for any j, k ∈ [0, n], j , k:
Sj ∩ Sk = ∅, for any vector of non-zero elements [Yi |Yi = lin (Si)]ni=0:

ort (S) ⇒ ort
(
[Yi]ni=0

)
.

Proof: Suppose the opposite, that is, by definition of lin() there is a vector of known scalars [xi]ni=0, where at least
one xi is non-zero, such that the weighted sum of [Yi]ni=0 with weights [xi]ni=0 is zero:

0 =
∑

i=0...n
xiYi .

By definition of lin(), each Yi is a weighted sum of elements from S, and, as Sj ∩ Sk = ∅, each element from S
participates in no more than one of these sums.

Hence, we have a representation of the zero element as a weighted sum of elements from S, where at least one
weight is non-zero. This contradicts the ZeroRepresentation lemma. Thus, ort

(
[Yi]ni=0

)
.

Informally, theOrtDisjunction lemma states that a set of elements built as linear combinations of not-intersecting
parts of an orthogonal set is an orthogonal set.

Lin2 lemma:
For any four non-zero fixed elements P, Q, Z , H such that P !∼Q, the following protocol (Table 1) is an evidence
of (Z = lin (P,Q) and H = lin (P,Q)):

Table 1: Lin2 lemma protocol.

Prover returns a non-zero scalar r and an evidence
of (P + cQ) ∼ (Z + rH)

Verifier picks a non-zero random scalar c and sends
it to Prover

Verifier checks (Z + rH) , 0, r , 0
Verifier checks the evidence (P + cQ) ∼ (Z + rH)

Proof: Note, the protocol is not claimed to be a sigma-protocol. We have to prove only that (Verifier succeeds
in checking (P + cQ) ∼ (Z + rH) where (Z + rH) , 0)⇒ (Prover knows a, b, x, y, such that: Z = aP + bQ and
H = xP + yQ).

As (P + cQ) ∼ (Z + rH) for Prover and (Z + rH) , 0, Prover knows t such that P + cQ = tZ + trH. Suppose
t = 0⇒ P + cQ = 0⇒ P ∼ Q⇒ Contradiction to P !∼Q⇒ t , 0.

Finding Z from the P + cQ = tZ + trH:

Z = (P + cQ) /t − rH.
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For another challenge c′:
Z = (P + c′Q) /t ′ − r ′H,

where r ′ and t ′ correspond to the (P + c′Q) ∼ (Z + r ′H).
Eliminating Z: (P + cQ) /t − rH = (P + c′Q) /t ′ − r ′H⇒

(1/t − 1/t ′) P + (c/t − c′/t ′)Q + (r ′ − r)H = 0.

Suppose (r ′ − r) = 0. We have two possibilities with this assumption: (1/t − 1/t ′) = (c/t − c′/t ′) = 0 or
(1/t − 1/t ′) P + (c/t − c′/t ′)Q = 0.
(1/t − 1/t ′) = (c/t − c′/t ′) = 0⇒ (c = c′) ⇒ Contradiction, as c is a random choice.
(1/t − 1/t ′) P + (c/t − c′/t ′)Q = 0 ⇒ P ∼ Q ⇒ Contradiction to P !∼Q, as P ∼ Q and P !∼Q can’t hold

together. Hence, (r ′ − r) , 0.
Finding H from the equation with the eliminated Z:

H = (1/t − 1/t ′) /(r ′ − r) P + (c/t − c′/t ′) /(r ′ − r)Q.

Thus, H = xP + yQ, where

x = (1/t − 1/t ′) /(r ′ − r) ,

y = (c/t − c′/t ′) /(r ′ − r) .

Prover is able to efficiently calculate these x and y from the two successful transcripts and, hence, H = lin (P,Q)
for Prover.

Finding Z = aP + bQ from Z = (P + cQ) /t − rH:

Z = (1/t) P + (c/t)Q − r (1/t − 1/t ′) /(r ′ − r) P − r (c/t − c′/t ′) /(r ′ − r)Q

⇒

a =1/t − r(1/t − 1/t ′)/(r ′ − r),

b =c/t − r(c/t − c′/t ′)/(r ′ − r).

⇒ Z = lin (P,Q) for Prover.
Thus, (Z = lin (P,Q) and H = lin (P,Q)) for Prover.

4 LIN2-XOR LEMMA AND ITS COROLLARY
Lin2-Xor lemma:
For any four non-zero fixed elements P1, Q1P2, Q2, such that ort (P1,Q1P2,Q2), and for any two non-zero fixed
elements Z,H1, the following protocol (Table 2) is an evidence of that exactly one of the following a) and b) holds
on the Prover’s side:

a) Z = lin (P1,Q1) and H1 = lin (P1,Q1)

b) Z = lin (P2,Q2) and H1 = lin (P2,Q2)

Table 2: Lin2-Xor lemma protocol.

Prover returns a non-zero scalar r1 and a non-zero
element H2

Prover returns a non-zero scalar r2 and
an evidence of
(P1 + c11Q1 + c2P2 + c2c13Q2) ∼ (Z + r1H1 + r2H2)

Verifier picks two non-zero random scalars c11, c13
and sends them to Prover

Verifier checks
(Z + r1H1) , 0, r1 , 0, H2 , 0

Verifier picks a non-zero random scalar c2 and sends
it to Prover

Verifier checks (Z + r1H1 + r2H2) , 0, r2 , 0
Verifier checks the evidence
(P1 + c11Q1 + c2P2 + c2c13Q2) ∼ (Z + r1H1 + r2H2)
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Table 3: Lin2-Xor lemma to Lin2 lemma protocol expressions substitution.

Lin2-Xor lemma expressions Lin2 lemma expressions

c2 c
r2 r
(P1 + c11Q1) P
(P2 + c13Q2) Q
(Z + r1H1) Z
H2 H
(Z + r1H1) = lin (P1 + c11Q1, P2 + c13Q2) Z = lin (P,Q)

Proof: Applying the OrtReductionLemma two times, ort (P1,Q1P2,Q2) ⇒ ort ((P1 + c11Q1) , (P2 + c13Q2)) ⇒
by definition of ort(), (P1 + c11Q1) !∼ (P2 + c13Q2).

Let’s move the first two steps of the Lin2-Xor lemma protocol to its premise. After this, we get exactly the
premise, protocol and conclusion of the Lin2 lemma with the shown expression substitution (Table 3). Thus, by
the conclusion of the Lin2 lemma, Verifier has an evidence of

(Z + r1H1) = lin (P1 + c11Q1, P2 + c13Q2)

Rewriting this evidence using definition of lin(), we get

(Z + r1H1) = a (P1 + c11Q1) + b (P2 + c13Q2) , (*)

where Verifier is convinced that the scalars a and b are known to Prover. Also, Verifier is convinced that at least
one of a and b is non-zero, as (Z + r1H1) , 0.

For another challenge
(
c′11, c

′
13

)
, reply r ′1, and scalars a′, b′ known to Prover:(

Z + r ′1H1
)
= a′

(
P1 + c′11Q1

)
+ b′

(
P2 + c′13Q2

)
,

where at least one of a′ and b′ is non-zero.
Excluding H1 from both equations and extracting Z:

(a (P1 + c11Q1) + b (P2 + c13Q2) − Z) /r1 =
(
a′

(
P1 + c′11Q1

)
+ b′

(
P2 + c′13Q2

)
− Z

)
/r ′1 ⇒(

r1 − r ′1
)

Z = r1a′
(
P1 + c′11Q1

)
+ r1b′

(
P2 + c′13Q2

)
− r ′1a (P1 + c11Q1) − r ′1b (P2 + c13Q2) .

We can assume r1 , r ′1, as r1 = r ′1 for different random challenges immediately leads to contradiction, so we can
divide by (r1 − r ′1):

Z =
( (

r1a′ − r ′1a
)

P1 +
(
r1a′c′11 − r ′1ac11

)
Q1 +

(
r1b′ − r ′1b

)
P2 +

(
r1b′c′13 − r ′1bc13

)
Q2

)
/
(
r1 − r ′1

)
That is, extracting the weights of P1, Q1, P2, Q2, we have:

Z = k1P1 + k2Q1 + k3P2 + k4Q2,

where 
k1 =

(
r1a′ − r ′1a

)
/
(
r1 − r ′1

)
k2 =

(
r1a′c′11 − r ′1ac11

)
/
(
r1 − r ′1

)
k3 =

(
r1b′ − r ′1b

)
/
(
r1 − r ′1

)
k4 =

(
r1b′c′13 − r ′1bc13

)
/
(
r1 − r ′1

) (**)

Verifier is convinced that Prover knows the scalars k1, k2, k3, k4, as it is convinced that all scalars at the
right-hand sides of the above equalities are known to Prover. Moreover, as ort (P1,Q1, P2,Q2) and as Z , P1, Q1, P2,
Q2 are fixed by premise, by the OrtUniqueRepresentation lemma Verifier is convinced that the scalars k1, k2, k3,
k4 are constants. At least one of k1, k2, k3, k4 is non-zero, as the opposite contradicts to the premise of non-zero Z .

With these properties, the system of equalities (**) implies that Verifier is convinced that the following
conjunction of four statements holds:

∧

((k1 , 0) ∧ (k3 , 0)) ⇒ Contradiction
((k1 , 0) ∧ (k4 , 0)) ⇒ Contradiction
((k2 , 0) ∧ (k3 , 0)) ⇒ Contradiction
((k2 , 0) ∧ (k4 , 0)) ⇒ Contradiction

(***)
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Here is the proof for the first statement in (***). Suppose k1 , 0. From the first equality in (**):(
r1 − r ′1

)
k1 =

(
r1a′ − r ′1a

)
⇒

r1 (a′ − k1) = r ′1 (a − k1) ⇒

(a′ − k1) /r ′1 = (a − k1) /r1

As the right-hand side of this equality depends only on the first transcript, and the left-hand side depends only on
the second one, Verifier is convinced that both sides are equal to some constant q known to Prover:

(a′ − k1) /r ′1 = q and (a − k1) /r1 = q ⇒

a′ = qr ′1 + k1 and a = qr1 + k1 (****)

Let t = (k2/k1). Dividing the equality for k2 by the equality for k1 in (**):

t
(
r1a′ − r ′1a

)
=

(
r1a′c′11 − r ′1ac11

)
⇒

r ′1a (c11 − t) = r1a′
(
c′11 − t

)
⇒

a (c11 − t) /r1 = a′
(
c′11 − t

)
/r ′1

As the right-hand side of this equality depends only on the first transcript, and the left-hand side depends only on
the second one, Verifier is convinced that both sides are equal to some constant w known to Prover:

a (c11 − t) /r1 = w and a′
(
c′11 − t

)
/r ′1 = w ⇒

wr1 = a (c11 − t) and wr ′1 = a′
(
c′11 − t

)
The constant w is non-zero, as the opposite immediately leads to a = 0 and a′ = 0, and, consequently, to a
contradiction with k1 , 0.
Using the expression for a from (****), we find r1 from the above equality for wr1:

wr1 = (qr1 + k1) (c11 − t) ⇒

r1 (w − q (c11 − t)) = k1 (c11 − t) ⇒

r1 = k1 (c11 − t) /(w − q (c11 − t)) ⇒

r1 = k1/((w/(c11 − t)) − q) (*****)

Note, as the expressions (w − q(c11 − t)) and (c11 − t) above contain only the randomness c11 and the constants
w , 0, t, q, the probabilities for each of them to be zero are negligible, so we can divide by them.

Thus, according to (*****), Verifier is convinced that if k1 , 0, then r1 is expressed through the constants
known to Prover and through the challenge c11.

Suppose k3 , 0. Likewise, using the equalities for k3 and k4 from (**), Verifier is convinced that

r1 = k3/((u/(c13 − s)) − p) (******)

for some constants u , 0, s, p known to Prover.
If k1 , 0 and k3 , 0 is the case, then, according to the (*****) and (******), r1 gets completely expressed

through each of the two independent randomnesses c11 and c13. That is, excluding r1 from (*****) and (******),
Verifier is convinced that Prover is able to express the randomness c11 through the randomness c13, that contradicts
to the independence of them. Thus, Verifier is convinced in the first statement in (***).

To prove the second statement in (***), we rewrite the system (**) as
k1 =

(
r1a′ − r ′1a

)
/
(
r1 − r ′1

)
k2 =

(
r1a′c′11 − r ′1ac11

)
/
(
r1 − r ′1

)
k3 =

(
r1d ′e′13 − r ′1de13

)
/
(
r1 − r ′1

)
k4 =

(
r1d ′ − r ′1d

)
/
(
r1 − r ′1

) , where


d = bc13
d ′ = b′c′13
e13 = (1/c13)
e′13 = (1/c

′
13)

(*******)

The rewritten system (*******) is exactly the system (**), where k3 and k4 have swapped places. Moreover, the
system (*******) carries the same properties as the system (**). Hence, using the equalities for k3 and k4 from
(*******), Verifier is convinced that

r1 = k4/((u′/(e13 − s′)) − p′)

for some constants u′ , 0, s′, p′ known to Prover. From this, Verifier obtains a contradiction for the case if k1 , 0
and k4 , 0. Thus, the second statement in (***) is proven.
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Likewise, swapping k1 and k2 in (**) the same way as it has been done for k3 and k4, the third and fourth
statements in (***) are proven.

Recalling Z = k1P1 + k2Q1 + k3P2 + k4Q2, where the k1, k2, k3, k4 are known to Prover, the conjunction (***)
implies that, by the definitions of evidence and lin(), Verifier has an evidence of

either Z = lin (P1,Q1) or Z = lin (P2,Q2), never both.

Likewise, Verifier has an evidence of

either H1 = lin (P1,Q1) or H1 = lin (P2,Q2), never both.

It’s not possible that (Z = lin (P1,Q1) and H1 = lin (P2,Q2)), now we prove it. Suppose (Z = lin (P1,Q1) and
H1 = lin (P2,Q2)), then, by definition of lin(), Prover knows z1, z2, h1, h2: (Z = z1P1+z2Q1 and H1 = h1P2+h2Q2).
Hence, (*) rewrites as

z1P1 + z2Q1 + r1 (h1P2 + h2Q2) = a (P1 + c11Q1) + b (P2 + c13Q2) .

By the OrtUniqueRepresentation lemma: (z1 = a and z2 = ac11)⇒ (z2/z1 = c11). However, z1, z2 are constants, as
the Z , P1, Q1P2, Q2 are fixed by the premise. Hence, z2/z1 can’t be equal to the random choice c11, contradiction.
Likewise, the case of (Z = lin (P2,Q2) and H1 = lin (P1,Q1)) is not possible.

Hence, either (Z = lin (P1,Q1) and H1 = lin (P1,Q1)) or (Z = lin (P2,Q2) and H1 = lin (P2,Q2)), never both.
That is, exactly one of a) and b) holds.

Corollary of Lin2-Xor lemma:
If premise of the Lin2-Xor lemma is met and its protocol is successfully completed, then Verifier is convinced that
exactly one of the following a) or b) holds for Prover:

a) (Z + r1H1) ∼ (P1 + c11Q1) and (Z + r1H1) !∼ (P2 + c13Q2)

b) (Z + r1H1) ∼ (P2 + c13Q2) and (Z + r1H1) !∼ (P1 + c11Q1)

Proof: If (Z = lin (P1,Q1) and H1 = lin (P1,Q1)) for Prover, then by definition of lin():

(Z + r1H1) = lin (P1,Q1) for Prover.

At the same time, according to (*), Verifier is convinced that Prover knows a, b in

(Z + r1H1) = a (P1 + c11Q1) + b (P2 + c13Q2) .

Combining both, by the OrtUniqueRepresentation lemma, definition of lin() and definition of ‘∼’:

(Z + r1H1) ∼ (P1 + c11Q1) for Prover.

Suppose, (Z + r1H1) ∼ (P2 + c13Q2) holds for Prover simultaneously with the above. This is a contradiction to
theOrtUniqueRepresentation lemma, as the (Z + r1H1) gets two representations: a (P1 + c11Q1) and b (P2 + c13Q2),
where a and b are known to Prover. Hence, (Z + r1H1) !∼ (P2 + c13Q2) for Prover. Thus, we have proven that the
case a) of the Lin2-Xor lemma implies the case a) of this corollary:

(Z + r1H1) ∼ (P1 + c11Q1) and (Z + r1H1) !∼ (P2 + c13Q2) .

Likewise, the case b) of the Lin2-Xor lemma implies the case b) of this corollary:

(Z + r1H1) ∼ (P2 + c13Q2) and (Z + r1H1) !∼ (P1 + c11Q1) .

5 LIN2-SELECTOR LEMMA
5.1 PRELIMINARY DEFINITIONS AND LEMMAS
5.1.1 RSUM

Let’s rewrite the R = P1 + c11Q1 + c2P2 + c2c13Q2 sum that we considered in the Lin2-Xor lemma as the
following tree structure (see Figure 1), renaming P1, Q1, P2, Q2 as X0, X1, X2, X3:

Informally, this tree structure is evaluated to R recursively, each node performs summation and each arrow
performs multiplication by its tag. If all arrow tags are known, then R is easily evaluated as a multi-exponent sum
of four summands.

Let’s generalize this structure. For instance, for
[
Xj

]15
j=0 it will look as in Figure 2:

This is the sum R = X0 + c11X1 + c21X2 + c21c13X3 + c31X4 + c31c11X5 + c31c23X6 + c31c23c13X7 + c41X8 +
c41c11X9 + c41c21X(10) + c41c21c13X(11) + c41c33X(12) + c41c33c11X(13) + c41c33c23X(14) + c41c33c23c13X(15).
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X0 X1 X2 X3

+ +

+
R =

1 c21

1 c11 1 c13

Figure 1: Rsum for four elements.

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X(10) X(11) X(12) X(13) X(14) X(15)

+ + + + + + + +

+ + + +

+ +

+
R =

1 c41

1 c31 1 c33

1 c21 1 c23 1 c21 1 c23

1 c11 1 c13 1 c11 1 c13 1 c11 1 c13 1 c11 1 c13

Figure 2: Rsum for sixteen elements.

Rsum definition:
We call the above tree structure as Rsum and, formally, define it recursively as follows.

For any n > 0, for N = 2n, a vector of N elements
[
Xj

]N−1
j=0 , a vector of 2-tuples of scalars [(ci1, ci3)]n−1

i=1 , a

scalar cn1, let Rsum
(
n, N,

[
Xj

]N−1
j=0 , [(ci1, ci3)]

n−1
i=1 , cn1

)
be an element, such that:



Rsum
(
n, N,

[
Xj

]N−1
j=0 , [(ci1, ci3)]

n−1
i=1 , cn1

)
=

Rsum
(
n − 1, N/2,

[
Xj

]N/2−1
j=0 , [(ci1, ci3)]n−2

i=1 , c(n−1),1

)
+

cn1 Rsum
(
n − 1, N/2,

[
Xj

]N−1
j=N/2, [(ci1, ci3)]

n−2
i=1 , c(n−1),3

)
Rsum

(
1, 2,

[
Xj

]2k+1
j=2k, [], c

)
= X(2k) + cX(2k+1), where k ∈ [0, (N/2) − 1] .

Informally, for n > 1, Rsum
(
n, N,

[
Xj

]N−1
j=0 , [(ci1, ci3)]

n−1
i=1 , cn1

)
is a weighted sum of its left and right subtrees

with the weights 1 and cn1, respectively. The subtrees are the weighted sums of their left and right subtrees, and
so on. For n = 1, the Rsum’s are leaves and are calculated directly as weighted sums of two elements, with the
weights 1, c11 or 1, c13.

Rsum property:
This property follows from the definitions of Rsum and lin():

Rsum
(
n, N,

[
Xj

]N−1
j=0 , [(ci1, ci3)]

n−1
i=1 , cn1

)
= lin

( [
Xj

]N−1
j=0

)
.
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5.2 LIN2-SELECTOR LEMMA
Lin2-Selector lemma:
For any n > 1 and N = 2n, any vector of non-zero fixed elements

[
Xj

]N−1
j=0 such that ort

( [
Xj

]N−1
j=0

)
holds, for any

non-zero fixed element Z , a vector of n non-zero elements [Hi]
n
i=1 where H1 is fixed, and for a vector of non-zero

scalars [ri]ni=1, the following protocol (Table 4) is an evidence of Z = lin
(
X(2s), X(2s+1)

)
for some known to Prover

s ∈ [0, N/2 − 1]:

Table 4: Lin2-Selector lemma protocol.

Prover returns a non-zero scalar ri and a non-zero
element Hi+1

empty

Prover returns a non-zero scalar rn and an evidence
of

Rsum
(
n, N,

[
Xj

]N−1
j=0 , [(ci1, ci3)]

n−1
i=1 , cn

)
∼(

Z +
∑

i=1...n
riHi

)

Verifier picks two non-zero random scalars ci1, ci3
and sends them to Prover

Verifier checks
(Z +

∑
j=1...i rjHj) , 0, ri , 0,Hi+1 , 0

Verifier increments i = i + 1
If (i < n), then Verifier goes to the step above:
Otherwise, Verifier goes to the step below:

Verifier picks a non-zero random scalar cn and
sends it to Prover

Verifier checks (Z +
∑

i=1...n riHi) , 0, rn , 0
Verifier checks the evidence

Rsum
(
n, N,

[
Xj

]N−1
j=0 , [(ci1, ci3)]

n−1
i=1 , cn

)
∼(

Z +
∑

i=1...n
riHi

)

Prover and Verifier share a variable i with assigned value i = 1

Proof: We prove this lemma by induction for every n starting from 2, where n is an integer equal to the logarithm
of the

[
Xj

]N−1
j=0 vector size.

For the induction base case, n = 2, we have exactly the premise of the Lin2-Xor lemma. That is, there are four
elements X0, X1, X2, X3 and also there is one round of the ci1, ci3 pair generation, where i = 1.

As
Rsum

(
2, 4,

[
Xj

]3
j=0, [(ci1, ci3)]

1
i=1, cn

)
= X0 + c11X1 + c21X2 + c21c13X3,

Verifier has an evidence of

(X0 + c11X1 + c21X2 + c21c13X3) ∼ (Z + r1H1 + r2H2)

in the last step of the protocol.
By the conclusion of the Lin2-Xor lemma, thus, Verifier has an evidence that exactly one of the following holds

for Prover
Z = lin (X0, X1) and Z = lin (X2, X3) ,

that is, an evidence of Z = lin
(
X(2s), X(2s+1)

)
, s ∈ [0, 1]. The base case is proven.

The induction hypothesis is that the lemma holds for n = m > 1. Let’s prove it for n = (m + 1) from the
hypothesis. For the sake of this, let’s write the lemma premise, protocol and conclusion for n = (m + 1) unwinding
the last round of the ci1, ci3 challenge pair generation, where i = m:

For n = (m + 1) > 2 and N = 2n = 2 (2m) = 2M , for any vector of non-zero fixed elements
[
Xj

]2M−1
j=0 ,

such that ort
( [

Xj

]2M−1
j=0

)
holds, any non-zero fixed element Z , a vector of (m + 1) non-zero elements [Hi]

m+1
i=1

where H1 is fixed, and a vector of non-zero scalars [ri]m+1
i=1 , the following protocol (Table 5) is an evidence of

Z = lin
(
X(2s), X(2s+1)

)
, s ∈ [0, M − 1]:
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Table 5: Lin2-Selector lemma protocol for n = (m + 1).

Prover returns a non-zero scalar ri and a non-zero
element Hi+1

empty

Prover returns a non-zero scalar rm and a non-zero
element Hm+1

Prover returns a non-zero scalar rm+1 and an
evidence of

Rsum(m + 1, 2M,
[
Xj

]2M−1
j=0 , [(ci1, ci3)]mi=1, cm+1) ∼©«Z +

∑
i=1...(m+1)

riHi
ª®¬

Verifier picks two non-zero random scalars ci1, ci3
and sends them to Prover

Verifier checks
(Z +

∑
j=1...i rjHj) , 0, ri , 0,Hi+1 , 0

Verifier increments i = i + 1
If (i < m), then Verifier goes to the step above:
Otherwise, Verifier goes to the step below:

Verifier picks two non-zero random scalars cm1, cm3
and sends them to Prover

Verifier checks
(Z +

∑
j=1...m rjHj) , 0, rm , 0,Hm+1 , 0

Verifier picks a non-zero random scalar cm+1 and
sends it to Prover

Verifier checks (Z +
∑

i=1...(m+1) riHi) , 0, rm+1 , 0
Verifier checks the evidence

Rsum(m + 1, 2M,
[
Xj

]2M−1
j=0 , [(ci1, ci3)]mi=1, cm+1) ∼©«Z +

∑
i=1...(m+1)

riHi
ª®¬

Prover and Verifier share a variable i with assigned value i = 1

Let the Rsum
(
m + 1, 2M,

[
Xj

]2M−1
j=0 , [(ci1, ci3)]mi=1, cm+1

)
be rewritten by the definition of the Rsum as a sum of

four Rsum’s Y0, Y1, Y2, Y3:

Rsum
(
m + 1, 2M,

[
Xj

]2M−1
j=0 , [(ci1, ci3)]mi=1, cm+1

)
= Rsum

(
m, M,

[
Xj

]M−1
j=0 , [(ci1, ci3)]

m−1
i=1 , cm1

)
+ cm+1 Rsum

(
m, M,

[
Xj

]2M−1
j=M

, [(ci1, ci3)]m−1
i=1 , cm3

)
= Rsum

(
m − 1, M/2,

[
Xj

]M/2−1
j=0 , [(ci1, ci3)]m−2

i=1 , c(m−1),1

)
+ cm1 Rsum

(
m − 1, M/2,

[
Xj

]M−1
j=M/2, [(ci1, ci3)]

m−2
i=1 , c(m−1),3

)
+ cm+1 Rsum

(
m − 1, M/2,

[
Xj

]3M/2−1
j=M

, [(ci1, ci3)]m−2
i=1 , c(m−1),1

)
+ cm+1cm3 Rsum

(
m − 1, M/2,

[
Xj

]2M−1
j=3M/2, [(ci1, ci3)]

m−2
i=1 , c(m−1),3

)
= Y0 + cm1Y1 + cm+1Y2 + cm+1cm3Y3,

where: 

Y0 = Rsum
(
m − 1, M/2,

[
Xj

]M/2−1
j=0 , [(ci1, ci3)]m−2

i=1 , c(m−1),1

)
Y1 = Rsum

(
m − 1, M/2,

[
Xj

]M−1
j=M/2, [(ci1, ci3)]

m−2
i=1 , c(m−1),3

)
Y2 = Rsum

(
m − 1, M/2,

[
Xj

]3M/2−1
j=M

, [(ci1, ci3)]m−2
i=1 , c(m−1),1

)
Y3 = Rsum

(
m − 1, M/2,

[
Xj

]2M−1
j=3M/2, [(ci1, ci3)]

m−2
i=1 , c(m−1),3

)
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By the Rsum property,

Y0 = lin
( [

Xj

]M/2−1
j=0

)
, Y1 = lin

( [
Xj

]M−1
j=M/2

)
,

Y2 = lin
( [

Xj

]3M/2−1
j=M

)
, Y3 = lin

( [
Xj

]2M−1
j=3M/2

)
.

As the subsets
[
Xj

]M/2−1
j=0 ,

[
Xj

]M−1
j=M/2,

[
Xj

]3M/2−1
j=M

,
[
Xj

]2M−1
j=3M/2 of the set

[
Xj

]2M−1
j=0 don’t intersect pairwise, and

as ort
( [

Xj

]2M−1
j=0

)
by the premise, we have ort (Y0,Y1,Y2,Y3) by the OrtDisjunction lemma. Thus, the evidence in

the last step of the protocol rewrites as follows:

Y0 + cm1Y1 + cm+1Y2 + cm+1cm3Y3 ∼
©«Z +

∑
i=1...(m+1)

riHi
ª®¬ .

Defining element F: F = Z +
∑

i=1...(m−1)
riHi , the evidence rewrites

Y0 + cm1Y1 + cm+1Y2 + cm+1cm3Y3 ∼ (F + rmHm + rm+1Hm+1) .

Now, let’s look at the step where Verifier picks the challenges cm1, cm3. At that moment, all ci1, ci3 and ri for
i < m are already returned by Prover and thus are fixed. Hence, at that moment Y0, Y1, Y2, Y3 and F are fixed. In
addition to this, at that moment Hm is already returned by Prover and thus is fixed.

Hence, having the evidence of (Y0 + cm1Y1 + cm+1Y2 + cm+1cm3Y3) ∼ (F + rmHm + rm+1Hm+1) in the last step,
we have the premise and the protocol of the Lin2-Xor lemma here. Namely, we have the fixed Y0, Y1, Y2, Y3, F, Hm

and ort (Y0,Y1,Y2,Y3). Verifier picks the challenges cm1, cm3, Prover replies with rm and Hm+1, Verifier picks cm+1,
Prover replies with rm+1 and with the evidence of (Y0 + cm1Y1 + cm+1Y2 + cm+1cm3Y3) ∼ (F + rmHm + rm+1Hm+1).

Hence, if Verifier successfully completes the protocol for n = (m + 1), that is, if Verifier accepts that

Rsum
(
m + 1, 2M,

[
Xj

]2M−1
j=0 , [(ci1, ci3)]mi=1, cm+1

)
∼

©«Z +
∑

i=1...(m+1)
riHi

ª®¬ ,
then it accepts that

Y0 + cm1Y1 + cm+1Y2 + cm+1cm3Y3 ∼ (F + rmHm + rm+1Hm+1) ,

and, then, the protocol of the Lin2-Xor lemma is successfully completed, and, by the Corollary of Lin2-Xor lemma,
exactly one of the following a) and b) holds for Prover:

a) (F + rmHm) ∼ (Y0 + cm1Y1)

b) (F + rmHm) ∼ (Y2 + cm3Y3)
Here we can rewrite Y0 + cm1Y1 and Y2 + cm3Y12 using the definitions of Y0, Y1, Y2, Y3 and the definition of Rsum as

Y0 + cm1Y1 = Rsum
(
m − 1, M/2,

[
Xj

]M/2−1
j=0 , [(ci1, ci3)]m−2

i=1 , c(m−1),1

)
+ cm1 Rsum

(
m − 1, M/2,

[
Xj

]M−1
j=M/2, [(ci1, ci3)]

m−2
i=1 , c(m−1),3

)
= Rsum

(
m, M,

[
Xj

]M−1
j=0 , [(ci1, ci3)]

m−1
i=1 , cm1

)
Y2 + cm3Y3 = Rsum

(
m − 1, M/2,

[
Xj

]3M/2−1
j=M

, [(ci1, ci3)]m−2
i=1 , c(m−1),1

)
+ cm3 Rsum

(
m − 1, M/2,

[
Xj

]2M−1
j=3M/2, [(ci1, ci3)]

m−2
i=1 , c(m−1),3

)
= Rsum

(
m, M,

[
Xj

]2M−1
j=M

, [(ci1, ci3)]m−1
i=1 , cm3

)
Thus, using the definition of F and the two above equalities, inserting rmHm into the sum, we obtain that exactly
one of the following a) or b) holds for Prover:

a)

(
Z +

∑
i=1...m

riHi

)
∼ Rsum

(
m, M,

[
Xj

]M−1
j=0 , [(ci1, ci3)]

m−1
i=1 , cm1

)
b)

(
Z +

∑
i=1...m

riHi

)
∼ Rsum

(
m, M,

[
Xj

]2M−1
j=M

, [(ci1, ci3)]m−1
i=1 , cm3

)
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If a) holds, then, renaming cm1 to be cm, the premise and protocol of this lemma for the case n = m are met, and,
by the induction hypothesis, Verifier has an evidence of

Z = lin
(
X(2s), X(2s+1)

)
, s ∈ [0, M/2 − 1].

If b) holds, then, renaming cm3 to be cm, the premise and protocol of this lemma for the case n = m are met, and,
by the induction hypothesis, Verifier has an evidence of

Z = lin
(
X(2s), X(2s+1)

)
, s ∈ [M/2, M − 1].

Putting it all together, from the induction hypothesis for n = m, we have obtained, for n = (m + 1), that if the
premise and protocol of this lemma are met, then Verifier has exactly one of the two evidences,(

Z = lin
(
X(2s), X(2s+1)

)
, s ∈ [0, M/2 − 1]

)
or

(
Z = lin

(
X(2s), X(2s+1)

)
, s ∈ [M/2, M − 1]

)
.

Unifying the intervals for s, we obtain, that Verifier has an evidence of

Z = lin
(
X(2s), X(2s+1)

)
, s ∈ [0, M − 1].

That is, recalling M = 2m = 2m+1/2, we have obtained the conclusion of this lemma for n = (m + 1).
Thus, the lemma is proven for all n > 1.

6 L2S MEMBERSHIP PROOF
We construct a proof of membership (PoM) protocol called L2S. Verifier is provided with an element Z , and,

upon successful completion of all steps of the protocol, Verifier is convinced that Z is a commitment to a pair of
elements from a publicly known set of element pairs, such that Prover knows an opening for Z .

We prove that the L2S protocol is complete, sound, special honest verifier zero-knowledge, and no possibility
exists for identifying a pair in the set that the element Z corresponds to.

6.1 COM2 COMMITMENT
Com2 definition:
Given a vector ®X =

[
Xj

]N−1
j=0 of N = 2n elements, n > 0, such that ort

(
®X
)
holds, two scalars k0, k1, and an integer

index s ∈ [0, N/2 − 1], let’s define Com2
(
k0, k1, s, ®X

)
as an element (k0X2s + k1X2s+1). That is,

Com2
(
k0, k1, s, ®X

)
= k0X2s + k1X2s+1

A 3-tuple (k0, k1, s) is an opening to the Com2
(
k0, k1, s, ®X

)
.

Knowing ®X , a Com2 commitment Z over ®X , and the scalars k0, k1 of its opening, it’s possible to efficiently
calculate the index s by iterating through ®X and checking if Z = k0X2s + k1X2s+1.

By the OrtUniqueRepresentation lemma, if Z has a (k0, k1, s) opening over ®X , then the opening (k0, k1, s) is
unique.

We call a Com2 commitment as a commitment to a member-pair. A set of member-pairs
[
Xj

]N−1
j=0 is called a

decoy set.

6.2 L2S MEMBERSHIP PROOF PROTOCOL
We define L2S PoM protocol as four procedures

L2S = {DecoySetGen,ComGen, InteractionProcedure,Verif} ,

where:
• DecoySetGen (n), where n > 1, is an arbitrary function that returns an element vector ®X =

[
Xj

]N−1
j=0 of

N = 2n elements such that ort
(
®X
)
holds. Each element in the generated ®X has a distribution that is

independent of the distributions of other elements in the same ®X and is indistinguishable from the uniform
randomness. Two vectors generated by the DecoySetGen may have a non-empty intersection.
For any DecoySetGen implementation choice, the returned vector ®X orthogonality, independence of the
element distributions of each other within the vector and their uniform randomness are to be guaranteed.
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• ComGen
(
®X
)
is an arbitrary function that returns a pair ((k0, k1, s) , Z), where k0 is non-zero and chosen

uniformly at random, k1 is arbitrary, s ∈ [0, N/2 − 1], and Z = Com2
(
k0, k1, s, ®X

)
.

For anyComGen implementation choice, the independence and randomuniformity of k0 distribution together
with Z = Com2

(
k0, k1, s, ®X

)
and k0 , 0 are to be guaranteed.

• InteractionProcedure is depicted in Table 6. It starts with Prover having an opening (k0, k1, s) and Verifier
having a commitment Z .

On completion of the InteractionProcedure, Verifier has a tuple
(
[(ci1, ci3)]n−1

i=1 , cn, Z, [(ri,Hi)]
n
i=1, c,T, t

)
that contains Z together with all the challenges and replies occurred during the Prover and Verifier interaction.

• Verif function is shown in Table 7. It takes the tuple that Verifier has upon completion of the Interaction-
Procedure together with the decoy set from the DecoySetGen. It returns 1 or 0, meaning the verification is
completed successfully or failed.

Overall, the L2S protocol steps are the following:
• A decoy set ®X is generated using same implementation of the L2S.DecoySetGen at both Prover’s and
Verifier’s sides.

• Prover gets an opening (k0, k1, s) from the L2S.ComGen. At the same time, Verifier gets some element Z .
• All steps of the L2S.InteractionProcedure are performed between the Prover and Verifier. On completion
of the L2S.InteractionProcedure Verifier has a tuple

(
[(ci1, ci3)]n−1

i=1 , cn, Z, [(ri,Hi)]
n
i=1, c,T, t

)
.

• Verifier calls the L2S.Verif for the decoy set and tuple obtained above. Iff the L2S.Verif returns 1,
then the L2S protocol is completed successfully. As we prove below, the successful completion means
Z = Com2

(
k0, k1, s, ®X

)
.

Note, the InvertLastBit function used in the L2S.InteractionProcedure takes an unsigned integer and returns this
integer with inverted least significant bit in its binary representation. That is, it is defined as

InvertLastBit (i) = (2 (i//2) + (i + 1)%2) , where the // and % are the quotient and remainder operators.

We use the InvertLastBit for the binary tree indexes, to switch between the left and right subtrees of a tree node.

6.2.1 PROOF OF THE RELATION BETWEEN R AND W

Now, we show that
Rsum

(
n, N,

[
Xj

]N−1
j=0 , [(ci1, ci3)]

n−1
i=1 , cn

)
= xW,

where x = a/w is calculated on the Prover’s side.
The expression [

Yj

]M−1
j=0 =

[
Xj

]N−1
j=0 , where M = N,

at the beginning of the Prover’s part of the L2S.InteractionProcedure lets all Yj’s be Xj’s.
Next, down the protocol execution flow, when i = 1, the expression[

Yj

]M−1
j=0 =

[ (
Y(2j) + ci,((2j+1)%4)Y(2j+1)

)
/e

]M−1
j=0 , where M = N/2,

lets the Yj’s vector contain N/2 Rsum’s

Rsum
(
1, 2, [Xt ]

2j+1
t=2j , [], c1,((2j+1)%4)

)
,

each divided by the common factor e, which is equal to 1 for i = 1. The variable a accumulates the common factor,
that is, remains to be 1.

When i = 2, the expression[
Yj

]M−1
j=0 =

[ (
Y(2j) + ci,((2j+1)%4)Y(2j+1)

)
/e

]M−1
j=0 , where M = N/4,

lets the Yj’s vector contain N/4 Rsum’s:

Rsum
(
2, 4, [Xt ]

4(j+1)−1
t=4j ,

[ (
cd,1, cd,3

) ]1
d=1, c2,((2j+1)%4)

)
divided by the common factor c2,(s%4) simultaneously accumulated in a. Note, for all s′: cs′,0 = cs′,2 = 1.
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Table 6: L2S.InteractionProcedure.

Prover:
(k0, k1, s), where k0 , 0, s ∈ [0, N/2 − 1]

w = k0
k = k1/w
M = N[
Yj

]M−1
j=0 =

[
Xj

]N−1
j=0

(z, h) = (2s, 2s + 1)
a = 1
q← random, non-zero
H1 = wYh/q H1

(ci0, ci2) = (1, 1)
(e, g) = (ci,(z%4), ci,(h%4))

ri = q((g/e) − k) ri
k = 0
a = ea

M = M/2[
Yj

]M−1
j=0 =

[ (
Y(2j) + ci,((2j+1)%4)Y(2j+1)

)
/e

]M−1
j=0

z = (z//2)
h = InvertLastBit(z)
q← random, non-zero
Hi+1 = wYh/q Hi+1

(cn0, cn1) = (1, cn)
(e, g) = (cn,z, cn,h)
rn = q (g/e) rn
a = ea
x = a/w
q← random, non-zero
W = (k0X2s + k1X2s+1) +

∑
i=1...n riHi

T = qW T

t = q − xc t

Verifier:
Z

(ci1, ci3) ← random, non-zero

i = i + 1
If (i < n), then:
Otherwise:

cn ← random, non-zero

c← random, non-zero

Verifier has a tuple:(
[(ci1, ci3)]n−1

i=1 , cn, Z, [(ri,Hi)]
n
i=1, c,T, t

)

Prover and Verifier common parameters:
• n, N = 2n, where n > 1

• a set of elements
[
Xj

]N−1
j=0 = DecoySetGen(n)

• a shared variable i with assigned value i = 1
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Table 7: L2S.Verif function.

Input: n,
[
Xj

]N−1
j=0 ,

(
[(ci1, ci3)]n−1

i=1 , cn, Z, [(ri,Hi)]
n
i=1, c,T, t

)
, where N = 2n, n > 1

S = Z
For i = 1 . . . n:

If (ri == 0 or Hi == 0) then return 0
S = S + riHi

If S == 0 then return 0
W = S

R = Rsum
(
n, N,

[
Xj

]N−1
j=0 , [(ci1, ci3)]

n−1
i=1 , cn

)
If (tW + cR) == T then return 1
Else return 0.

When i = 3, the expression[
Yj

]M−1
j=0 =

[ (
Y(2j) + ci,((2j+1)%4)Y(2j+1)

)
/e

]M−1
j=0 , where M = N/8,

lets the Yj’s vector contain N/8 Rsum’s:

Rsum
(
3, 8, [Xt ]

8(j+1)−1
t=8j ,

[ (
cd,1, cd,3

) ]2
d=1, c3,((2j+1)%4)

)
divided by the common factor c2,(s%4)c3,((s//2)%4). The variable a contains the common factor c2,(s%4)c3,((s//2)%4).

And so on, until i = n. At that moment Yj’s vector contains 2 Rsum’s representing the left and right subtrees of
the root, both divided by a, where a is the product of all challenges on the path from the pair with index s to the
root.

At the same time, from the beginning, Prover composes Hi’s and ri’s using the Yj’s.
When i = 1, Prover sends to Verifier:

H1 = wX(2s+1)/q, where q is random,
r1 = q

(
c1,((2s+1)%4) − k

)
, where q is the same and k = k1/w,

so that (Z + r1H1) = w Rsum
(
1, 2, [Xt ]

2s+1
t=2s , [], c1,((2s+1)%4)

)
.

Next, Prover reshuffles q, sets h = InvertLastBit (s) and sends:

H2 = w Rsum
(
1, 2, [Xt ]

2h+1
t=2h , [], c1,((2h+1)%4)

)
/q

When i = 2, Prover sets k = 0 and sends:

r2 = q
(
c2,(h%4)/c2,(s%4)

)
,

so that

(Z + r1H1 + r2H2) = w Rsum
(
1, 2, [Xt ]

2s+1
t=2s , [], c1,((2s+1)%4)

)
+

w(c2,(h%4)/c2,(s%4))Rsum
(
1, 2, [Xt ]

2h+1
t=2h , [], c1,((2h+1)%4)

)
=

w Rsum
(
2, 4, [Xt ]

4((s//2)+1)−1
t=4(s//2) ,

[ (
cd,1, cd,3

) ]1
d=1, c2,((2(s//2)+1)%4)

)
/c2,(s%4)

Next, Prover reshuffles q, sets h = InvertLastBit (s//2) and sends:

H3 = w Rsum
(
2, 4, [Xt ]

4(h+1)−1
t=4h ,

[ (
cd,1, cd,3

) ]1
d=1, c2,((2h+1)%4)

)
/(c2,(s%4)q)

When i = 3, Prover sends:
r3 = q

(
c3,(h%4)/c3,((s//2)%4)

)
,

so that

(Z + r1H1 + r2H2 + r3H3) = w Rsum
(
2, 4, [Xt ]

4((s//2)+1)−1
t=4(s//2) ,

[ (
cd,1, cd,3

) ]1
d=1, c2,((2(s//2)+1)%4)

)
/c2,(s%4)+

w(c3,(h%4)/c3,((s//2)%4))Rsum
(
2, 4, [Xt ]

4(h+1)−1
t=4h ,

[ (
cd,1, cd,3

) ]1
d=1, c2,((2h+1)%4)

)
/c2,(s%4) =

w Rsum
(
2, 4, [Xt ]

8((s//4)+1)−1
t=8(s//4) ,

[ (
cd,1, cd,3

) ]2
d=1, c3,((2(s//4)+1)%4)

)
/(c2,(s%4)c3,((s//2)%4))
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And so on, until i = n and

W = (Z + r1H1 + r2H2 + . . . + rnHn) = w Rsum
(
n, N,

[
Xj

]N−1
j=0 , [(ci1, ci3)]

n−1
i=1 , cn

)
/a

Thus, Rsum
(
n, N,

[
Xj

]N−1
j=0 , [(ci1, ci3)]

n−1
i=1 , cn

)
= xW .

6.2.2 PROOF THAT CORRECT OPENING LETS L2S.VERIF RETURN 1
The (T, c, t) part of the L2S.Verif input is the Schnorr identification scheme [16] initial message, challenge and

reply for the relation R = xW .
If Z = Com2

(
k0, k1, s,

[
Xj

]N−1
j=0

)
, then the values of W calculated on the Prover’s side and in the L2S.Verif are

identical, as in both places W is calculated by the same formula with the same [(ri,Hi)]
n
i=1 and Z .

As proven in 6.2.1, Rsum
(
n, N,

[
Xj

]N−1
j=0 , [(1, ci1, ci3)]

n−1
i=1 , cn

)
= xW . Thus, on the Prover’s side xW is equal to

R used in the L2S.Verif. As the Schnorr identification scheme [16] is complete, this implies (tW + cR) == T .
Hence, Z = Com2

(
k0, k1, s,

[
Xj

]N−1
j=0

)
implies L2S.Verif returns 1.

6.3 LS2 PROTOCOL PROPERTIES
6.3.1 COMPLETENESS

As proven in 6.2.2, if Z on Verifier’s input is equal to the commitment Com2
(
k0, k1, s,

[
Xj

]N−1
j=0

)
, where the

opening (k0, k1, s) is the Prover’s input, then the L2S.Verif returns 1. This means that the LS2 protocol is complete.

6.3.2 SOUNDNESS
The L2S.InteractionProcedure with the subsequent call to the L2S.Verif meets the Lin2-Selector lemma

protocol.
If the L2S.Verif returns 1, then (tW + cR) == T , and, as the Schnorr identification scheme is sound, Verifier

has an evidence of W ∼ R, that is, an evidence of

Rsum
(
n, N,

[
Xj

]N−1
j=0 , [(ci1, ci3)]

n−1
i=1 , cn

)
∼

(
Z +

∑
i=1...n

riHi

)
.

Thus, by the Lin2-Selector lemma, if the L2S.Verif returns 1, then Verifier is convinced that Z = lin
(
X(2s), X(2s+1)

)
for some member-pair

(
X(2s), X(2s+1)

)
, where s ∈ [0, N/2 − 1].

That is, using the definitions of lin() and Com2, if theL2S.Verif returns 1, then Verifier is convinced that Prover
knows an opening (k0, k1, s) of the commitment Z such that Z = Com2

(
k0, k1, s,

[
Xj

]N−1
j=0

)
, where s corresponds

to a member-pair in the decoy set. Thus, the LS2 protocol is sound.

6.3.3 STRUCTURE AND VIEW OF THE L2S PROVER-VERIFIER PUBLIC TRANSCRIPT
The LS2 protocol Prover-Verifier public transcript is the following tuple(

[(ci1, ci3)]n−1
i=1 , cn, Z, [(ri,Hi)]

n
i=1, c,T, t

)
.

The itemsT and t in the transcript are related to the Schnorr id scheme, they are distributed uniformly at random.
However, they are not independent.

Here we are interested only in the transcripts that Verifier accepts, that is, in those for which (tW + cR) == T .
The W and R are calculated from the publicly visible elements and scalars(

Z, [(ri,Hi)]
n
i=1

)
and

( [
Xj

]N−1
j=0 , [(ci1, ci3)]

n−1
i=1 , cn

)
,

respectively. Thus, the element T is a linear combination of the variables seen for anyone. Hence, we exclude T
from our consideration: for any transcript accepted by Verifier the itemT carries no information and can be restored
from the other items of the transcript and elements of the decoy set.

All the challenges are independent and uniformly random. All ri’s are independent and uniformly random, too,
as each ri is obfuscated by the private multiplier q, which is reshuffled for each ri .

The random multiplier q is reduced in the products riHi . These products represent Rsum’s, i.e., the subtree
sums at heights i. That is, for each height i, the element (Z + r1H1 + . . . + ri−1Hi−1) corresponds to a subtree that
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the index s belongs to. At the same time, the element riHi corresponds to a complimentary subtree that the index s
doesn’t belong to. The height i = 1 is the only exclusion from this, as Z has a fraction k1/k0 of its complimentary
subtree, nevertheless, this difference has no effect on the transcript item independencies and uniformities.

All the elements Z , r1H1, . . . , riHi are obfuscated by the multiplier w. The multiplier w is private and uniformly
random, as w = k0, where k0 is uniformly random by the definition of L2S.ComGen. By the definition of Rsum,
each riHi is a linear combination of the elements from the

[
Xj

]N−1
j=0 with efficiently computable scalar coefficients.

Moreover, all riHi’s depend on the different non-intersecting subsets of the
[
Xj

]N−1
j=0 .

Using the terms introduced in [4], the riHi’s and Z are linearly independent degree 2 polynomials of a private
set of the independent and random uniform scalars{

{w} ∪
{
discrete logarithms of

[
Xj

]N−1
j=0

}}
.

The coefficients of these polynomials are efficiently computable from the [(ci1, ci3)]n−1
i=1 , cn, and k1. Thus, reducing

the question of the riHi’s distributions to the (P,Q)-DDH problem [4], we have

P =
{[

Xj

]N−1
j=0

}
and Q =

{
{Z} ∪ {riHi}

n
i=1

}
,

Span (P) ∩ Span (Q) = ∅.

By the (P,Q)-DDH assumption, the distributions of all the riHi’s and Z are indistinguishable from {eiG}n+1
i=1 , where

all the ei’s are independent and uniformly random.
As the DDH assumption implies the (P,Q)-DDH [4] for our polynomials in the above sets P and Q, we have

all the riHi’s and Z distributed independently and uniformly at random under the DDH. We have proven this for
any conversation transcript between honest Prover and Verifier over any fixed decoy set

[
Xj

]N−1
j=0 generated by the

L2S.DecoySetGen. For readability, we omit the word ‘indistinguishable’, reserving it for the distributions.
For all honest conversation transcripts over all really used and possibly intersecting decoy sets, we reduce the

question to the same (P,Q)-DDH problem with

P = ∅ and Q = ∪all transcripts TR with their decoy sets

{
{Z} ∪ {riHi}

n
i=1 ∪

[
Xj

]N−1
j=0

}
TR
,

Span (P) ∩ Span (Q) = ∅,

where the private set of the independent and random uniform scalars is

∪all transcripts TR with their decoy sets

{
{w} ∪

{
discrete logarithms of

[
Xj

]N−1
j=0

}}
TR
.

By requiring w to be chosen independently and uniformly at random for each transcript, meaning same Z is
never used in any two different conversations, we obtain that all the riHi’s and Z’s publicly seen across all the
accepted transcripts are distributed independently and uniformly at random under the DDH. Their distributions are
independent of each other and of the distributions of the elements Xj’s of decoy sets.

Thus, we conclude, that all items, except for the items T , of all honest L2S conversation transcripts have
independent and random uniform distributions under the DDH, provided that the input commitments Z are never
reused. That is, the input commitments are to be generated anew with the L2S.ComGen for each conversation.

As for the transcript items T , each honest transcript item T is efficiently computable from the other items
of the transcript. Overall, the items T carry no information in honest transcripts, they serve only to distinguish
honest transcripts, i.e. the proofs that Verifier accepts, from the transcripts where Prover tries to dishonestly prove
knowledge of opening, that Verifier rejects.

6.3.4 SPECIAL HONEST VERIFIER ZERO-KNOWLEDGE
We show the L2S protocol is sHVZK following the definition by Ronald Cramer, Ivan Damgård, and Berry

Schoenmakers [6]. We use a natural extrapolation of the sHVZK definition to the n-round public-coin protocols:
we require a simulated transcript to be indistinguishable from the space of honest conversation transcripts with the
same challenges.

Having the random independence property proven for the transcript items in 6.3.3, it’s easy to build a simulator,
that for any given challenges and for any given input Z generates a simulated transcript that Verifier accepts, and
no PPT algorithm is able to distinguish it from the space of honest transcripts with the same challenges.

The simulator acts as follows:
• It takes an empty L2S transcript placeholder and puts the given input Z and challenges [(ci1, ci3)]n−1

i=1 , cn in
their places.
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• It independently generates random uniform scalars and puts them in the places of scalars in the placeholder.
• It independently generates random uniform scalars and puts their exponents in the places of elements in the
placeholder, except for the place of element T .

• It takes the values [(ci1, ci3)]n−1
i=1 , cn, Z , [(ri,Hi)]

n
i=1, c, t from the already filled in places of the placeholder,

obtains
[
Xj

]N−1
j=0 by calling L2S.DecoySetGen, calculates

R = Rsum
(
n, N,

[
Xj

]N−1
j=0 , [(ci1, ci3)]

n−1
i=1 , cn

)
,

W = Z +
∑

i=1...n
riHi,

and puts value (tW + cR) in the place of T .
Thus, the simulated transcript is ready. Verifier accepts it, as it passes the (tW + cR) == T check in the L2S.Verif.
Not mentioning the other checks in theL2S.Verif that are also passed with overwhelming probability as the checked
values are uniformly random.

Suppose, there exists a PPT algorithm that distinguishes with non-negligible probability the simulated transcript
from the space of honest transcripts with the same challenges. As proven in 6.3.3, the space contains the transcripts
with all items having distributions indistinguishable from the distributions of the items of the simulated transcript,
except for the item T . However, T is calculated the same way from the same sources for honest and for simulated
transcripts, hence the algorithm is not able to distinguish the transcripts by T’s. Hence, we have that the PPT
algorithm is able to distinguish indistinguishable distributions, contradiction.

We have proven the L2S protocol is sHVZK under the DDH, provided that the input commitments Z are
generated anew with the L2S.ComGen for each Prover-Verifier conversation.

6.3.5 INDISTINGUISHABILITY OF THE MEMBER-PAIR INDEX
Here we prove, that the member-pair index s in the opening (k0, k1, s) of the input commitment Z can not be

distinguished from a honest conversation transcript.
Suppose, there exists a PPT algorithm that distinguishes s with non-negligible probability from a honest Prover-

Verifier conversation transcript. Applying the algorithm to all transcripts in the honest transcript space, we obtain a
partitioning of the space where each partition with non-negligible probability distinguishes some information about
the actual values of s in it. However, according to 6.3.3 the space entries contain only the items indistinguishable
from the independent and uniform randomness, with the exclusion of the items T that carry no information. Thus,
we have the algorithm that distinguishes with non-negligible probability some information about the actual values
of s from the independent and uniform randomness, that is a contradiction.

We have proven the member-pair index s in the L2S proof of membership protocol is indistinguishable under
the DDH, as long as the input commitments Z are generated anew with the L2S.ComGen for each Prover-Verifier
conversation.

6.3.6 NOTE ABOUT SPECIAL SOUNDNESS
Wehave already proven the properties that we need for further consideration in this paper. Anyway, interestingly,

there exists a possibility to prove special soundness for the L2S protocol for the case if k1 = 0, extrapolating the
definition of special soundness by R.Cramer et al. [6] to n-round protocols.

The extrapolation is that in addition to the 3-round protocol special soundness definition in [6] we require the
first message of an n-round protocol to contain a commitment of the Prover’s random tape state. Thus, two honest
Prover-Verifier conversation transcripts produced with different challenges and with the same first Prover’s message
represent two conversations where the Prover’s random tape is fixed and the Verifier’s random tape is reshuffled.
For the 3-round protocols the extrapolated definition reduces exactly to the special soundness definition in [6].

To comply with this definition, the L2S protocol is extended with the first message containing Prover’s random
tape commitment, that Prover sends to Verifier at the beginning of the conversation. The random tape commitment
serves only to ensure equality of the random values used by Prover internally in two conversations, it can be, for
instance, a hash of the Prover’s random tape. Thus, the first message carries no information about the (k0, k1, s),
where the k0 is the witness w, the k1 is guaranteed to be always zero by some other means, and the s is an auxiliary
scalar that can be obtained in polynomial time from w.

With this extension, let’s build a PPT witness extractor for the L2S protocol. The extractor acts as following
(sketch):

• It runs N/2 parallel guesses about s. For each guess:
– It extracts x for the relation R = xW using the Schnorr id witness extractor.
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– From x it finds w as w = (a/x), where a is known for a guess.
• One of the parallel guesses ends up with w successfully found. Thus, the witness is extracted.

7 L2S PROTOCOL EXTENSIONS
7.1 IL2S PROTOCOL, SHVZK FOR NON-RANDOM INPUT

As shown in 6.3.4, the L2S is sHVZK under the DDH, provided that the scalar k0 in the Prover’s input (k0, k1, s)
has independent and randomly uniform distribution. To remove this restriction and to allow the protocol to keep
the sHVZK property for any input commitment distribution, including the cases when a linear relationship between
different input commitments is known to an adversary, we extend the L2S protocol with an input randomization. Of
course, as the input commitments are publicly seen in the transcripts, the adversary is still able to track the known
relationships between them, however, with the sHVZK the adversary is not able to obtain any information beyond
that from the transcripts.

The idea of the input randomization is that right at the beginning of the L2S.InteractionProcedure Prover
multiplies the opening-commitment pair ((k0, k1, s) , Z) by a private random uniform scalar f and supports Verifier
with an evidence of (Z ∼ f Z) in the form of Schnorr id tuple. Next, the L2S.InteractionProcedure is run for the
multiplied by f opening and commitment:

((k0, k1, s) , Z) ← (( f k0, f k1, s) , f Z) .

We define iL2S protocol as four procedures

iL2S = {DecoySetGen=L2S.DecoySetGen,ComGen, InteractionProcedure,Verif} ,

where
• ComGen

(
®X
)
is an arbitrary function that returns a pair ((k0, k1, s) , Z0), where k0 is arbitrary non-zero, k1

is arbitrary, s ∈ [0, N/2 − 1], and Z0 = Com2
(
k0, k1, s, ®X

)
.

For any ComGen implementation choice, the k0 , 0 and Z0 = Com2
(
k0, k1, s, ®X

)
are to be guaranteed.

• iL2S.InteractionProcedure is depicted in Table 8. It starts with Prover having (k0, k1, s), k0 , 0, and
Verifier having Z0.
On completion of the iL2S.InteractionProcedure, Verifier has two tuples: (Z0, c0,T0, t0) and(
[(ci1, ci3)]n−1

i=1 , cn, Z, [(ri,Hi)]
n
i=1, c,T, t

)
, that contain the initial input as Z0 and the randomized input as Z

together with all the challenges and replies occurred during the Prover and Verifier interaction.
• iL2S.Verif function is shown in Table 9. It takes the two tuples from the iL2S.InteractionProcedure
together with the decoy set from the DecoySetGen and returns 1 or 0.

The steps for the iL2S protocol are the same as for the L2S protocol.

7.1.1 IL2S PROTOCOL COMPLETENESS, SOUNDNESS AND SHVZK
As the Schnorr id and the L2S protocols are complete and sound, the iL2S protocol is complete and sound.
The iL2S protocol is sHVZK. To prove this, we repeat the same steps as those for the L2S sHVZK proof in

6.3.4 with the only two additions:
• As the (Z0, c0,T0, t0) tuple is put at the beginning of the public Prover-Verifier transcript and as Z in the
transcript becomes Z = f Z0, it’s necessary to determine the distributions of them:

– c0 is an independent and randomly uniform honest Verifier’s challenge.
– Z has independent and random uniform distribution, as f in the equation Z = f Z0 is private, indepen-
dent, and uniformly random.

– t0 is independent and uniformly random, as it is obfuscated by the private independent and randomly
uniform scalar q in t0 = q − f c0.

– Z0 is independent of the other items in the transcript, however, it is not uniformly random.
– T0 is not independent, it is evaluated as T0 = (t0Z0 + c0Z) from the items (Z0, Z, c0, t0).

Thus, all T0’s can be excluded from consideration, as they carry no information. We get to conclusion, that
the iL2S transcript contains two dependent items: T0 and T , that are evaluated from the other items. It
contains the input commitments as Z0, and there is no item, except for T0, distinguishably dependent on Z0
in the transcript. All the other items are independent and uniformly random.
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Table 8: iL2S.InteractionProcedure.

Prover:

(k0, k1, s), where k0 , 0

s – secret index, s ∈ [0, N/2 − 1]

Z0 = Com2
(
k0, k1, s,

[
Xj

]N−1
j=0

)
f ← random, non-zero

Z = f Z0 Z

(k0, k1, s) = ( f k0, f k1, s)

q← random, non-zero

T0 = qZ0 T0

t0 = q − f c0 t0

Verifier:

Z0

c0← random, non-zero

Verifier has two tuples:

(Z0, c0,T0, t0),(
[(ci1, ci3)]n−1

i=1 , cn, Z, [(ri,Hi)]
n
i=1, c,T, t

)
Run L2S.InteractionProcedure for the new (k0, k1, s) and Z

Prover and Verifier common parameters:
– n, N = 2n, where n > 1

– a set of elements
[
Xj

]N−1
j=0 = DecoySetGen(n)

Table 9: iL2S.Verif function.

Input: n,
[
Xj

]N−1
j=0 , where N = 2n, n > 1,

(Z0, c0,T0, t0),(
[(ci1, ci3)]n−1

i=1 , cn, Z, [(ri,Hi)]
n
i=1, c,T, t

)
If (t0Z0 + c0Z) == T0 then continue
Else return 0

Run L2S.Verif for the
n,

[
Xj

]N−1
j=0 ,

(
[(ci1, ci3)]n−1

i=1 , cn, Z, [(ri,Hi)]
n
i=1, c,T, t

)
• iL2S simulator puts the input commitment in the place of Z0 and fills in all the other places, except for the ones
of T0 and T , with the independent and uniformly random values. It puts the evaluated values (t0Z0 + c0Z)
and (tW + cR) in the places of T0 and T , respectively.

7.2 ML2S PROTOCOL
Aparallel version of the iL2Sprotocol is a protocol that runsmultiple instances of the iL2S.InteractionProcedure

in parallel and thus proves membership for multiple commitments at once. We call it mL2S protocol.
The mL2S protocol is four procedures

mL2S = {DecoySetGen=L2S.DecoySetGen,ComGen=iL2S.ComGen,MapInteractionProcedure, JoinVerif} ,

where:
• mL2S.MapInteractionProcedure is depicted in Table 10. It starts with Prover having L openings[(

kp
0 , kp

1 , s
p
)
|kp

0 , 0
]L
p=1

and Verifier having L commitments
[
Zp

0
]L
p=1.
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On completion of the mL2S.InteractionProcedure, Verifier has L tuples:((
Zp

0 , c0,T
p
0 , t

p
0

)
,
(
[(ci1, ci3)]n−1

i=1 , cn, Zp,
[ (

rpi ,H
p
i

) ]n
i=1, c,T

p, tp
))L

p=1
,

that contain the outputs of L iL2S.InteractionProcedure parallel runs with the common decoy set and
challenges.

Table 10: mL2S.MapInteractionProcedure.

Prover and Verifier common parameters:
• L

• n, N = 2n, where n > 1

Prover: Verifier:[(
kp

0 , kp
1 , s

p
)
|kp

0 , 0
]L
p=1

[
Zp

0
]L
p=1

For each p ∈ [1, L]: run iL2S.InteractionProcedure using n,
(
kp

0 , kp
1 , s

p
)
as arguments for Prover,

and n, Zp
0 as arguments for Verifier.

All the parallel iL2S.InteractionProcedure instances share the same decoy set[
Xj

]N−1
j=0 = DecoySetGen (n) and same Verifier’s challenges c0, [(ci1, ci3)]n−1

i=1 , cn, c
Verifier has L tuples:[((

Zp
0 , c0,T

p
0 , t

p
0

)
,
(
[(ci1, ci3)]n−1

i=1 , cn, Zp,[ (
rpi ,H

p
i

) ]n
i=1, c,T

p, tp
))]L

p=1

• mL2S.JoinVerif function is shown inTable 11. It takes the L tuples from themL2S.MapInteractionProcedure
together with the decoy set from the DecoySetGen and returns 1 or 0.

Table 11: mL2S.JoinVerif function.

Input: L, n,
[
Xj

]N−1
j=0 , where N = 2n, n > 1,((

Zp
0 , c0,T

p
0 , t

p
0

)
,
(
[(ci1, ci3)]n−1

i=1 , cn, Zp,
[ (

rpi ,H
p
i

) ]n
i=1, c,T

p, tp
))L

p=1

R = Rsum
(
n, N,

[
Xj

]N−1
j=0 , [(ci1, ci3)]

n−1
i=1 , cn

)
For each p ∈ [1, L]: run iL2S.Verif using n,

[
Xj

]N−1
j=0 and(

Zp
0 , c0,T

p
0 , t

p
0

)
,
(
[(ci1, ci3)]n−1

i=1 , cn, Zp,
[ (

rpi ,H
p
i

) ]n
i=1, c,T

p, tp
)
as arguments.

Inside each iL2S.Verif call, within nested L2S.Verif call, use the calculated above R for the
iL2S.Verif.L2S.Verif.R

Return 0 if one of the iL2S.Verif calls returns 0. Otherwise, return 1.

ThemL2S.JoinVerif performs L verifications in parallel. As all theRsum’s R inside the nested iL2S.Verif.L2S.Verif
calls are the same, the mL2S.JoinVerif performs their calculation only once, at the beginning, and uses the
calculated value

R = Rsum
(
n, N,

[
Xj

]N−1
j=0 , [(ci1, ci3)]

n−1
i=1 , cn

)
for them.

The steps for themL2S protocol are identical to the steps of the iL2S protocol, with the only difference in that the
parallel procedure versions are used instead of the sequential ones:

MapInteractionProcedure→ InteractionProcedure,
JoinVerif→ Verif

7.2.1 ML2S PROTOCOL COMPLETENESS, SOUNDNESS AND SHVZK
ThemL2S protocol completeness and soundness immediately follow from the completeness and soundness of

the iL2S protocol.
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The mL2S protocol is sHVZK. To prove this, we repeat the same steps as for the iL2S sHVZK proof in 7.1.1
and, consequently, as for the L2S sHVZK proof in 6.3.4 with the only addition below.

The space of honestmL2S transcripts is the space of honest iL2S transcripts with the only difference in that it is
partitioned by themL2S proof. Each partition contains iL2S transcripts with the same challenges. Nevertheless, all
their items, except for those challenges and Z0, T0, T discussed above, are distributed independently and uniformly
at random. Hence, the honest mL2S transcript space reveals no information beyond the information accessible
from the input commitments and partitioning per se.

A simulator for the mL2S protocol runs L iL2S protocol simulators in parallel, and, after completion, the
simulated transcript contains L indistinguishable from the honest iL2S simulated transcripts. Thus, an mL2S
simulated transcript is indistinguishable from an honest mL2S transcript.

7.2.2 ML2S PROTOCOL COMPLEXITIES
Recalling the mL2S transcript((

Zp
0 , c0,T

p
0 , t

p
0

)
,
(
[(ci1, ci3)]n−1

i=1 , cn, Zp,
[ (

rpi ,H
p
i

) ]n
i=1, c,T

p, tp
))L

p=1
,

where all data except for the initial elements Zp
0 ’s and challenges are transmitted, the amount of data transmitted

from Prover to Verifier is shown in Table 12.

Table 12: mL2S transmitted data amount.

G F

mL2S L (n + 3) L (n + 2)

The R = Rsum
(
n, N,

[
Xj

]N−1
j=0 , [(ci1, ci3)]

n−1
i=1 , cn

)
calculation, performed only once for all L verifications,

requires only one multi-exponentiation for n summands. This is seen from the Rsum recursive definition in 5.1.1
that can be unwound, so that all the scalar coefficients for the elements from the

[
Xj

]N−1
j=0 are calculated as the

scalar-scalar multiplications and, after that, a single multi-exponentiation of the elements from the
[
Xj

]N−1
j=0 to their

respective coefficients is performed.
The mL2S verification complexity is shown in Table 13, where N = 2n:

Table 13: mL2S verification complexity.

multi-exp(N) single-exp
mL2S 1 nL + 3L + 1

8 ML2S-BASED NON-INTERACTIVE POM AND SIGNATURE
Having an interactive honest verifier zero-knowledge interactive PoM protocol, it’s possible to turn it to a

non-interactive zero-knowledge PoM scheme using the Fiat-Shamir heuristic in the ROM [8].
We create a non-interactive zero-knowledge PoM scheme on the base of the mL2S. After that, we construct a

signer-ambiguous linkable ring signature scheme on the base of the created PoM scheme.
As the mL2S requires an orthogonal decoy set with element distributions indistinguishable from independent

uniform randomness, we employ a ‘point-to-point’ hash function Hpoint(. . . ) defined below.

8.1 PRELIMINARIES
Elliptic curve points and elements, point definition:
We assume the prime-order group G is instantiated with an elliptic curve point group of the same order, so that
the curve points represent the elements of G hereinafter. Thus, we use the term ‘points’ instead of ‘elements’, they
become equivalent below.

Any to scalar hash function Hscalar(. . . ) definition:
We call Hscalar(. . . ) an ideal hash function that accepts any number of arguments of any type, i.e., the arguments
are scalars in F and points in G. It returns a scalar from F. The function is sensitive to its arguments order.

Point to point hash function Hpoint(. . . ) definition:
We call Hpoint(. . . ) an ideal hash function that accepts a points in G and returns a point in G.
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Ideal hash functions and random oracles:

We use the term ‘ideal hash function’ as a shorthand for the term ‘cryptographic hash function that is indifferentiable
from a random oracle’. For theHscalar it can be, for instance, SHA-3. For theHpoint it can be, for instance, function
described in [7].

Integers n, N , L:

We assume the integers n, N , L have the following meaning hereinafter:
• N > 2 is a number of decoys, N is a power of 2 each time, N/2 is the number of decoy pairs
• n = log2 (N)

• L is a threshold for signature: 0 < L < (N/2 + 1). For membership proof, L is any number: 0 < L

Decoy vector as a vector of pairs:

The procedure mL2S.DecoySetGen in 7.2 returns a decoy vector
[
Xj

]N−1
j=0 . We reshape this vector to be a vector

of pairs
[ (

Pj,Q j

) ]N/2−1
j=0 below.

Thus, the vector
[
Xj

]N−1
j=0 becomes a flattened view of the

[ (
Pj,Q j

) ]N/2−1
j=0 , where for any s ∈ [0, N/2 − 1]:

Ps = X2s,Qs = X2s+1. We write
[
Xj

]N−1
j=0 = Flatten

( [ (
Pj,Q j

) ]N/2−1
j=0

)
for this.

Procedure substitution and lambda function:

To denote procedure substitution, we use the notion of lambda functions. For instance, if we have a Sheme =
{. . . , ProcedureB}, where the ProcedureB is defined as taking X and returning Hpoint (X), then, if we use the
Schemewithin another scheme andwant theProcedureB to return

(
X +Hpoint (X)

)
, wewrite: Sheme.ProcedureB =

λ (X) .
(
X +Hpoint (X)

)
.

8.2 NIZK PROOF OF MEMBERSHIP BASED ON THE ML2S
We construct a non-interactive zero-knowledge proof for the following statement: given two vectors of points[

Bj

]N/2−1
j=0 and [Ap]Lp=1, Prover knows a vector of scalar-integer pairs[

(vp, sp) |Ap = vpHpoint (Bsp ) , sp ∈ [0, N/2 − 1]
]L
p=1.

That is, for each point Ap from the [Ap]Lp=1 Prover knows a scalar vp , such that (Ap/vp) is a member of[
Hpoint

(
Bj

) ]N/2−1
j=0 .

Note, the sp’s are not required to be different, that is, only membership is going to be proved.

8.2.1 PROOF DATA STRUCTURE
For L = 1 the proof data structure transmitted from Prover to Verifier is

σ =
(
Z0,T0, Z, t0, [(ri,Hi)]

n
i=1,T, t

)
Essentially, this data structure is a part of themL2S transcript that is interactively transmitted from Prover to Verifier
for each of L parallel membership proofs. The only exclusion is Z0, which the mL2S Verifier knows beforehand.

For any L, the proof data transmitted from Prover to Verifier is L instances of σ, that is, [σp]Lp=1.

8.2.2 ML2SHPOM NON-INTERACTIVE SCHEME
The abbreviation mL2SHPoM stands for the mL2S-based hashed proof of membership scheme, i.e., the

aforementioned non-interactive proof, that we create. The mL2SHPoM is seven procedures:

mL2SHPoM = {PreimageSetGen,HashPoint,GetImageSet,MemberSetGen,GetDecoySet,GetProof,Verif} ,

where:
• mL2SHPoM.PreimageSetGen returns a vector

[
Bj

]N/2−1
j=0 of arbitrary points, the points in the returned

vector are only required to be unequal to each other.
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• mL2SHPoM.HashPoint takes a point B and returns a point-hash of B. An implementation is shown in
Listing 1, although this implementation can be changed.
The only requirement for the HashPoint is that any its implementation be an ideal point-to-point hash
function.

Listing 1: mL2SHPoM.HashPoint initial implementation.
Input: B
Output: A point-hash of B
Procedure:

Return Hpoint(B)

• mL2SHPoM.GetImageSet maps the HashPoint to the pre-image set and returns a set of images. Imple-
mentation is in Listing 2.

Listing 2: mL2SHPoM.GetImageSet implementation.
Input: none

Output: image set
[
Pj

]N/2−1
j=0

, HashPoint mapped to the pre-images

Procedure:[
Bj

]N/2−1
j=0

= PreimageSetGen()[
Pj

]N/2−1
j=0

=
[
HashPoint

(
Bj

) ]N/2−1
j=0

Return
[
Pj

]N/2−1
j=0

• mL2SHPoM.MemberSetGen returns a vector [Ap]Lp=1 of points that are going to be proven members of the
image set returned by the GetImageSet multiplied by some scalar coefficients known to Prover.

• mL2SHPoM.GetDecoySet returns a decoy set
[
Xj

]N−1
j=0 for use in the proof. Even elements of the

[
Xj

]N−1
j=0

are elements of the image set, while odd elements are composed in such a way, so the possibility of knowledge
of linear relationship between them and the elements of the member set together with the elements of the
image set is excluded. Implementation is in Listing 3.

Listing 3: mL2SHPoM.GetDecoySet implementation.
Input: none

Output: decoy set
[
Xj

]N−1
j=0

Procedure:[
Pj

]N/2−1
j=0

= GetImageSet()

[Ap]Lp=1 = MemberSetGen()[
Bj

]N/2−1
j=0

= PreimageSetGen()

Qshift = Hscalar
(
[Ap]Lp=1,

[
Pj

]N/2−1
j=0

)
G[

Qj
]N/2−1
j=0

=
[
Hpoint

(
Qshift + Bj

) ]N/2−1
j=0[

Xj
]N−1
j=0
= Flatten

( [ (
Pj, Qj

) ]N/2−1
j=0

)
Return

[
Xj

]N−1
j=0

• mL2SHPoM.GetProof takes a vector of private pairs [(vp, sp)]Lp=1 together with a public scalar seed e
and returns a vector [σp]Lp=1, that is, returns a non-interactive proof, or 0 on error. The GetProof is the
mL2S.MapInteractionProcedure translated to non-interactive setting. Specification is in Listing 4.

Listing 4: mL2SHPoM.GetProof specification.
Input: [(vp, sp)]Lp=1 --private keys
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e --scalar seed

Output: [σp]Lp=1 or 0 --proof, vector of σ’s on success,

--0 on failure
Procedure:

• Let
[
Xj

]N−1
j=0
= GetDecoySet()

• Let [Ap]Lp=1 = MemberSetGen()
• Ensure the private keys correspond to the member set elements:

For p = 1 . . . L:
If Ap , vpX2sp then Return 0

• Let
[ (
kp0, k

p
1, s
p
) ]L
p=1
= [(vp, 0, sp)]Lp=1

•
[
Zp0

]L
p=1
= [Ap]Lp=1

• Run all L iL2S.InteractionProcedure’s in parallel with the[ (
kp0, k

p
1, s
p
) ]L
p=1
and

[
Zp0

]L
p=1
as arguments. Stop all them at the point,

where the first challenge c0 is to be obtained. At that moment

the values
[ (
Zp0, T

p
0, Z
p
) ]L
p=1
are already calculated.

• Calculate e = Hscalar
(
e,

[
Xj

]N−1
j=0
,
[ (
Zp0, T

p
0, Z
p
) ]L
p=1

)
• Let c0 = e
• Continue all the L parallel procedures to the point, where the

challenge tuple (c11, c13) is to be obtained. At that moment the[
tp0

]L
p=1
and

[
Hp1

]L
p=1
are already calculated.

• Calculate e = Hscalar
(
e,

[
tp0

]L
p=1
,
[
Hp1

]L
p=1

)
• Let (c11, c13) = (e, Hscalar (e))
• Continue all the L parallel procedures to the point, where the

challenge tuple (c21, c23) is to be obtained. At that moment the[
rp1

]L
p=1
and

[
Hp2

]L
p=1
are already calculated.

• Calculate e = Hscalar
(
e,

[
rp1

]L
p=1
,
[
Hp2

]L
p=1

)
• Let (c21, c23) = (e, Hscalar (e))

• And so on..., until all values
[(
Zp0, T

p
0, Z
p, tp0,

[ (
rpi, H

p
i

) ]n
i=1
, Tp, tp

)]L
p=1
and(

c0, [(ci1, ci3)]
n−1
i=1, cn, c

)
are calculated.

• Let [σp]Lp=1 =
[(
Zp0, T

p
0, Z
p, tp0,

[ (
rpi, H

p
i

) ]n
i=1
, Tp, tp

)]L
p=1

• Return [σp]Lp=1

• mL2SHPoM.Verif takes a proof generated by the GetProof and returns 0 or 1. It is the mL2S.JoinVerif
translated to non-interactive setting. Specification is in Listing 5.

Listing 5: mL2SHPoM.Verif specification.
Input: [σp]Lp=1 -- proof, a vector of σ’s

e -- scalar seed, same as used for GetProof call
Output: 0 or 1 -- verification is failed or completed ok
Procedure:

• Let
[
Xj

]N−1
j=0
= GetDecoySet()

• Extract the values of
[ (
Zp0, T

p
0, Z
p
) ]L
p=1
from the [σp]Lp=1

• Calculate e = Hscalar
(
e,

[
Xj

]N−1
j=0
,
[ (
Zp0, T

p
0, Z
p
) ]L
p=1

)
• Let c0 = e

• Extract the values of
[
tp0

]L
p=1
and

[
Hp1

]L
p=1
from the [σp]Lp=1

• Calculate e = Hscalar
(
e,

[
tp0

]L
p=1
,
[
Hp1

]L
p=1

)
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• Let (c11, c13) = (e, Hscalar (e))

• Extract the values of
[
rp1

]L
p=1
and

[
Hp2

]L
p=1
from the [σp]Lp=1

• Calculate e = Hscalar
(
e,

[
rp1

]L
p=1
,
[
Hp2

]L
p=1

)
• Let (c21, c23) = (e, Hscalar (e))

• And so on..., until all values
(
c0, [(ci1, ci3)]

n−1
i=1, cn, c

)
are restored. At

this moment all values of
[(
Zp0, T

p
0, Z
p, tp0,

[ (
rpi, H

p
i

) ]n
i=1
, Tp, tp

)]L
p=1
are

extracted from the [σp]Lp=1.

• For p = 1 . . . L:
If

(
tp0Z

p
0 + c0Z

p
)
, Tp0 then Return 0

• Calculate R = Rsum
(
n, N,

[
Xj

]N−1
j=0
, [(ci1, ci3)]

n−1
i=1, cn

)
• For p = 1 . . . L:

Let S = Zp

For i = 1 . . . n:
S = S + rpiH

p
i

If (S == 0) or (rpi == 0) or (H
p
i == 0) then Return 0

W = S
If (tpW + cR) , Tp then Return 0

• Return 1

Overall, the mL2SHPoM non-interactive proof scheme works in the following scenario:
• Prover andVerifier agree on the scheme implementation, particularly, on thePreimageSetGen andHashPoint
functions.

• Knowing a set of private keys [(vp, sp)]Lp=1 that connect the elements of the member set [Ap]Lp=1 returned by
the MemberSetGen to the elements of the image set

[
Pj

]N/2−1
j=0 returned by the GetImageSet, Prover calls

the GetProof using a seed e and obtains a proof [σp]Lp=1.

• Prover sends the proof [σp]Lp=1 and the seed e to Verifier.

• Verifier extracts
[
Zp

0
]L
p=1 from the [σp]Lp=1. The set

[
Zp

0
]L
p=1 is exactly the set [Ap]Lp=1 returned by the

MemberSetGen on Prover’s side.

• Verifier calls Verif for the [σp]Lp=1 and e. If 1 is returned, then Verifier is convinced that Prover knows the
private keys that connect each element of the set

[
Zp

0
]L
p=1 to an element of the

[
Pj

]N/2−1
j=0 .

8.2.3 ML2SHPOM COMPLETENESS, SOUNDNESS AND ZERO-KNOWLEDGE

The procedures of the mL2SHPoM scheme meet the mL2S procedures translated to non-interactive setting
with the Fiat-Shamir heuristic. ThemL2SHPoM scheme inherits the completeness and soundness from themL2S.

As the mL2S is honest verifier zero-knowledge, the mL2SHPoM scheme, where Verifier restores the random
challenges from the transcript and, thus, is not able to cheat, is zero-knowledge.

8.2.4 ML2SHPOM COMPLEXITIES

The mL2SHPoM proof size, recalling the proof is [σp]Lp=1, is shown in Table 14. The scalar seed is not
accounted, as it can have any value agreed between Prover and Verifier, e.g., be fixed as e = 0.

Table 14: mL2SHPoM proof size.

G F

mL2SHPoM L(n + 4) L(n + 2)

The mL2SHPoM verification complexity is shown in Table 15, where N = 2n. We use the same optimization
for the Rsum calculation, as in the mL2S. The scalar-scalar multiplications and Hscalar calls are assumed taking a
negligible amount of the computational time.
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Table 15: mL2SHPoM verification complexity.

multi-exp(N) single-exp Hpoint
mL2SHPoM 1 nL + 3L + 2 N

8.3 LINKABLE RING SIGNATURE BASED ON THE ML2SHPOM
We construct mL2SLnkSig linkable ring signature scheme on the base of the mL2SHPoM scheme.

8.3.1 REALIZATION IDEA

The idea is the following: suppose, we have a ring of public keys
[
Bj

]N/2−1
j=0 and want to prove knowledge of L

private keys [
(bp, sp) |bpG = Bsp , sp ∈ [0, N/2 − 1] , ∀i, j : si , s j

]L
p=1.

Also, we want to detect the cases when a private key (b, _) participates in different proofs. Defining I as
Hpoint (B) /b, we have a set[

Ip |bp Ip = Hpoint (Bsp ) , sp ∈ [0, N/2 − 1] , ∀i, j : si , s j
]L
p=1.

Using the mL2SHPoM and defining the pre-image set as
[
Bj

]N/2−1
j=0 and member set as [Ip]Lp=1 in it, we obtain a

proof and convince Verifier that

∀I ∈ [Ip]Lp=1∃B ∈
[
Bj

]N/2−1
j=0 : I ∼ Hpoint (B) .

This is not enough, so we take another instance of themL2SHPoM and define the pre-image set as
[
Bj

]N/2−1
j=0 , the

member set as [(G + Ip)]Lp=1, and PointHash as another ideal point-to-point hash function λ (B) .
(
B +Hpoint (B)

)
in it. From this, we obtain another proof and convince Verifier that

∀ (G + I) ∈ [(G + Ip)]Lp=1∃B ∈
[
Bj

]N/2−1
j=0 : (G + I) ∼

(
B +Hpoint (B)

)
.

Thus, Verifier is convinced of

∀I ∈ [Ip]Lp=1∃
(
B ∈

[
Bj

]N/2−1
j=0 , B′ ∈

[
Bj

]N/2−1
j=0 , b, b′

)
: bI = Hpoint (B) and b′ (G + I) =

(
B′ +Hpoint (B′)

)
.

From this, Verifier is convinced that

(b′(bG + bI) = (bB′ + bHpoint(B′))) ⇒

(b′(bG +Hpoint(B)) = (bB′ + bHpoint(B′))) ⇒

(b′Hpoint(B) − bHpoint(B′) = (bB′ − bb′G)).

This equality, by definition of ideal hash function, can hold only if B = B′ and b = b′. Hence, Verifier is convinced
that

∀I ∈ [Ip]Lp=1∃
(
B ∈

[
Bj

]N/2−1
j=0 , b

)
:
(
bI = Hpoint (B) and b (G + I) =

(
B +Hpoint (B)

) )
⇒(

B = bG and I = Hpoint (B) /b
)
.

That is, after accepting both proofs, Verifier is convinced that each point I maps one-to-one to a point B in a subset
of the ring, such that Prover knows b in the equality B = bG, and I is equal to Hpoint (B) /b.

Here I is a linking tag, as it is uniquely bound to a point B from the ring. The linking tag hides b, and any
accepted proof that uses B as an actual signer public key implies disclosure of I. Also, I is called a key-image for
B.

8.3.1.1 Optimized signature idea

The above idea implies running the mL2SHPoM scheme twice. The optimization below is about running it only
once. So, we have to convince Verifier that

∀I ∈ [Ip]Lp=1∃
(
B ∈

[
Bj

]N/2−1
j=0 , b

)
:
(
B = bG and I = Hpoint (B) /b

)
.
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For the sake of this, we separate G from I in the member set and B from Hpoint (B) in the image set using random
weighting.

That is, we take a random factor z as a hash of the input parameters, namely, as a hash of all B’s and I’s, and
multiply all I’s andHpoint (B)’s by it in the proof. Next, with a single run of themL2SHPoM we convince Verifier
that

∀ (G + zI) ∈ [(G + zIp)]Lp=1∃B ∈
[
Bj

]N/2−1
j=0 : (G + zI) ∼

(
B + zHpoint (B)

)
.

From this, Verifier is convinced of

∀I ∈ [Ip]Lp=1∃
(
B ∈

[
Bj

]N/2−1
j=0 , b

)
:
(
B = bG and I = Hpoint (B) /b

)
.

Thus, the signature size is now equal to the size of onemL2SHPoM proof. The signature verification complexity
is equal to the mL2SHPoM proof verification complexity plus L exponentiations for checking the points zI in the
member set and plus N/2 exponentiations for calculating the points zHpoint (B) in the image set.

We further optimize the N/2 exponentiations for the zHpoint (B)’s: we redefine the mL2SHPoM.PointHash
as λ (B) .

(
B + zHpoint (B)

)
and let the returned point

(
B + zHpoint (B)

)
be lazily evaluated. That is, internally, the

mL2SHPoM.PointHash (B) becomes returning a 3-tuple
(
B, z,Hpoint (B)

)
that evaluates to

(
B + zHpoint (B)

)
only

where the evaluation result is actually consumed. We strictly define a law that regulates the meaning of the phrase
‘evaluation result is actually consumed’ for it. The law is the following:

• a 3-tuple
(
B, z,Hpoint (B)

)
doesn’t evaluate to

(
B + zHpoint (B)

)
when it is moved to or from a vector or

another data structure.

• a 3-tuple
(
B, z,Hpoint (B)

)
doesn’t evaluate to

(
B + zHpoint (B)

)
when the latter participates, directly or within

a vector, as an argument to the Hscalar. The Hscalar takes a hash of the 3-tuple in this case.

• a 3-tuple
(
B, z,Hpoint (B)

)
evaluates in a special way to

(
B + zHpoint (B)

)
when the latter participates, directly

or within a vector, as an argument to the Rsum. In this case, the Rsum calculation is performed as a weighted
sum multi-exponentiation, where all weights are calculated prior to the exponentiations. That is, for each
lazy

(
B, z,Hpoint (B)

)
entry, instead of immediate evaluation of the

(
B + zHpoint (B)

)
the weights for the B

and Hpoint (B) are calculated and, then, a single multi-exponentiation for all entries is performed.

• a 3-tuple
(
B, z,Hpoint (B)

)
evaluates to

(
B + zHpoint (B)

)
for all the other cases.

With this law for the lazy evaluation we have the same values for the points and scalars as in the mL2SHPoM
scheme without the lazy evaluation, except for the values of the challenges that still remain indistinguishable from
the values generated by a random oracle. The challenges become the Hscalar hashes of the decoy set

[
Xj

]N−1
j=0 (and

of the other parameters to the Hscalar), where even entries of the
[
Xj

]N−1
j=0 are not evaluated to points and taken as

hashes of the 3-tuples instead. As this is performed in the same way on both the Prover’s and Verifier’s sides, and
as z’s are the same for all such 3-tuples, the challenges restored in the Verif remain equal to the challenges used in
the GetProof.

Thus, the optimized mL2SHPoM scheme remains complete, sound and zero-knowledge. The N/2 additional
exponentiations required for the zHpoint (B)’s calculation on the Verifier’s side move under the single multi-
exponentiation for the R = Rsum

(
n, N,

[
Xj

]N−1
j=0 , [(ci1, ci3)]

n−1
i=1 , cn

)
in the Verif. The verification complexity for

the updated mL2SHPoM is shown in Table 16.

Table 16: Optimized mL2SHPoM verification complexity.

multi-exp(3N/2) single-exp Hpoint
mL2SHPoM 1 nL + 4L + 2 N

8.3.2 ML2SLNKSIG LINKABLE SIGNATURE

Using the idea from 8.3.1.1 we define mL2SLnkSig linkable signature scheme as four procedures

mL2SLnkSig = {RingGen, Sign,Verif, Link} ,

where:
• mL2SLnkSig.RingGen returns a vector

[
Bj

]N/2−1
j=0 of arbitrary points. These points are only required to be

unequal to each other. This procedure contract is the same as for the mL2SHPoM.PreimageSetGen.
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• mL2SLnkSig.Sign takes an actual signer’s vector of private keys[
(bp, sp) |bpG = Bsp , sp ∈ [0, N/2 − 1] , ∀i, j : si , s j

]L
p=1, a scalar message m and returns a signature(

z, [σp]Lp=1

)
on success or 0 on failure. Implementation is shown in Listing 6.

Listing 6: mL2SLnkSig.Sign implementation.
Input: [(bp, sp)]Lp=1 -- private keys

m -- message

Output:
(
z, [σp]Lp=1

)
or 0 -- signature on success,

-- 0 on failure
Procedure:[

Bj
]N/2−1
j=0

= RingGen()

[Ip]Lp=1 =
[
Hpoint (bpG) /bp

]L
p=1

z = Hscalar
(
m,

[
Bj

]N/2−1
j=0

, [Ip]Lp=1

)
mL2SHPoM.PreimageSetGen = λ.

( [
Bj

]N/2−1
j=0

)
mL2SHPoM.HashPoint = λ (X) .

(
X + zHpoint (X)

)
mL2SHPoM.MemberSetGen = λ.

(
[G + zIp]Lp=1

)
e = Hscalar (z)

proof = mL2SHPoM.GetProof
(
[(1/bp, sp)]Lp=1, e

)
If proof == 0 then Return 0

[σp]Lp=1 = proof

Return
(
z, [σp]Lp=1

)
• mL2SLnkSig.Verif takes a scalar message m, a signature generated by the Sign and returns 0 or [Ip]Lp=1,
meaning failed or successful verification completion. When [Ip]Lp=1 is returned, it contains the key-images
used in the signature. Implementation is in Listing 7.

Listing 7: mL2SLnkSig.Verif implementation.
Input: m -- message(
z, [σp]Lp=1

)
-- signature

Output: [Ip]Lp=1 or 0 -- key-images [Ip]Lp=1 on successful ,

-- 0 on failed verification
Procedure:[

Bj
]N/2−1
j=0

= RingGen()[
Zp0

]L
p=1
= [σp.Z0]

L
p=1 -- extract all Z0’s from the proof

[Ip]Lp=1 =
[ (
Zp0 − G

)
/z

]L
p=1

-- find all key-images [Ip]Lp=1 from Z0’s

z′ = Hscalar
(
m,

[
Bj

]N/2−1
j=0

, [Ip]Lp=1

)
If z , z′ then Return 0 -- check that z was honestly generated

mL2SHPoM.PreimageSetGen = λ.
( [
Bj

]N/2−1
j=0

)
mL2SHPoM.HashPoint = λ (X) .

(
X + zHpoint (X)

)
mL2SHPoM.MemberSetGen = λ.

( [
Zp0

]L
p=1

)
e = Hscalar (z)

If mL2SHPoM.Verif
(
[σp]Lp=1, e

)
== 0 then Return 0

Return [Ip]Lp=1

• mL2SLnkSig.Link takes a pair
( [

Ip0
]L
p=1,

[
Ip1

]L
p=1

)
of key-image sets returned by two successful Verif
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calls. It returns 1 or 0, meaning the corresponding signatures are linked or not-linked. Implementation is in
Listing 8.

Listing 8: mL2SLnkSig.Link implementation.

Input:
( [
Ip0

]L
p=1
,
[
Ip1

]L
p=1

)
-- two key-image sets from two signatures

Output: 0 or 1 -- 0 means the signatures are not-linked,
-- 1 means the signatures are linked

Procedure:
For j = 1 . . . L:

If Ij0 ∈
[
Ip1

]L
p=1
then Return 1

Return 0

A scenario for the mL2SLnkSig signature is as follows:
• Prover and Verifier agree on the mL2SLnkSig.RingGen to return the same public key ring

[
Bj

]N/2−1
j=0 on

the both sides.
• Prover signs a message m with L private keys [(bp, sp)]Lp=1 by calling the mL2SLnkSig.Sign and obtains a

signature
(
z, [σp]Lp=1

)
.

• Verifier takes the message and the signature and calls mL2SLnkSig.Verif for them. Iff the call returns
[Ip]Lp=1, then the Verifier is convinced that Prover signed the message m with the private keys corresponding
to some L public keys in the ring and that the vector [Ip]Lp=1 contains their key-images. Note, iff Prover signs
with a repeating private key, then the vector of key-images contains repeated entries.

• Having performed the above steps two times, Verifier is convinced that two messages were actually signed.
Also, Verifier has two vectors

[
Ip0

]L
p=1 and

[
Ip1

]L
p=1 returned by the mL2SLnkSig.Verif. Verifier calls

mL2SLnkSig.Link for them and, iff it returns 1, the Verifier is convinced that there is at least one common
private key used for both signatures.

8.3.3 ML2SLNKSIG SCHEME COMPLETENESS, SOUNDNESS AND SIGNER-AMBIGUITY
The mL2SLnkSig scheme inherits completeness and soundness from the mL2SHPoM. As the mL2SHPoM

scheme is zero-knowledge, that is proven in 8.2.3, and as the key-images of the form Hpoint (bG) /b reveal no
information about the keys used, which follows from [13] where the same key-image form is proven revealing no
information, it is not possible to distinguish signers from the signatures.

The only distinguishable thing about the signers is the case when two or more signatures are signed by a
common signer, i.e., the case when the mL2SLnkSig.Link returns 1. Even revealing the fact of common signers,
the signatures don’t reveal any further information about them. Thus, the mL2SLnkSig signature scheme is
linkable, complete, sound and signer-ambiguous under the DDH.

Note, the mL2SLnkSig signature doesn’t impose any requirements on the public keys used in its ring, except
for that the public keys are to be different. Even knowing a relationship between the public keys, an adversary has
no advantage, as the ideal hash function mL2SLnkSig.HashPoint breaks any known relationship between them.
Hence, we call the mL2SLnkSig a general-purpose linkable signature.

8.3.4 ML2SLNKSIG COMPLEXITIES
ThemL2SLnkSig signature size is the size of its internalmL2SHPoM proof plus the size of one scalar z. The

mL2SLnkSig verification complexity is explained in 8.3.1.1. The size and verification complexity are shown in
Tables 17, 18, respectively.

Table 17: mL2SLnkSig signature size.

G F

mL2SLnkSig L(n + 4) L(n + 2) + 1

Recalling N commonly denotes a ring size, whereas we use N to denote the internal decoy set size, which is
two times larger than the ring size, in Table 19 we provide the same data as in Tables 17, 18 in the common terms.
Also, in Table 19 we assume the size of a point from G is equal to the size of a scalar from F.
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Table 18: mL2SLnkSig verification complexity.

multi-exp(3N/2) single-exp Hpoint
mL2SLnkSig 1 nL + 4L + 2 N

Table 19: mL2SLnkSig signature size and verification complexity, where:
• N is the ring size
• L is the threshold
• mexp(3N) is the multi-exponentiation of 3N summands
• Hpt(2N) is 2N calls to the Hpoint

Size Verification complexity
mL2SLnkSig 2L · log2 N + 8L + 1 mexp(3N) + L · log2 N + 5L + 2 +Hpt(2N)

8.3.5 COMPARISON TO THE RECENTLY PROPOSED LOG-SIZE SCHEMES

For the comparison we refer to the work of Sarang Noether [14], where proof sizes and verification complexities
for some of the recently proposed top-performative schemes are shown in Tables 1, 2 [14].

A direct performance comparison of ourmL2SLnkSig signature to the schemes analyzed in [14] is not possible
due to the following reasons:

• The linkable signature schemes analyzed in [14] includes a proof for a sum of homomorphic commitments
as well, whereas our scheme is just a linkable signature.

• Our linkable signature operates with the linking tags of the form x−1Hpoint (xG), whereas, for instance,
Triptych-2 scheme from [14] operates with the linking tags of the form x−1H. An additional analysis of the
supported security models is probably needed here to compare.

Nevertheless, assuming anHpoint call is about ten times faster than an exponentiation, we can see that, for instance,
for big N’s our signature asymptotic is not far from the RingCT 3.0 and from the Triptych-2 asymptotics

mexp (3N) +Hpt (2N) vs. mexp (4N) and vs. mexp (2N) , respectively.

Although, we have to acknowledge the RingCT 3.0 and the Triptych-2 provide asymptotically better verification
time.

The size comparison for the big N’s depends on the threshold L: 2L · log2 N vs. 2 · log2 (L · N) for the RingCT
3.0, and vs. (L + 3) · log2 N for the Tryptich-2.

Various protocols may scale differently under the real-world conditions. Our mL2SLnkSig signature is a
general-purpose protocol, so a more elaborated comparison can be made in the future with respect to an application
in a particular domain.

Worth to mention, we consider the use of the linking tag form x−1Hpoint (xG) as an advantage of our signature,
as it provides independent random uniform distribution of the tag values regardless of the distribution of the private
key values.

We provide a couple of notes below regarding possible modifications to our signature that include a proof
for the homomorphic commitment sum and a better verification time. Our estimation is that the homomorphic
commitment sum proof will not change the mL2SLnkSig verification time asymptotic for big N’s. Also, we
estimate themL2SLnkSig can be optimized, so that its verification will take asymptotically mexp (3D)+Hpt (2D)
time only, where D is a number of distinct public keys in a batch of signatures.

9 POSSIBLE EXTENSION NOTES
9.1 PROOF FOR A SUM OF HOMOMORPHIC COMMITMENTS

It seems not difficult to append a simultaneous proof for the homomorphic commitment sum to themL2SLnkSig
linkable signature scheme.

Assuming the homomorphic commitments are built using distinct generators G1 and G2, it’s possible to add
them to the elements of the ring. To separate them back from the L proven members, it would require to extract the
parts proportional to G1 and G2 along with the parts proportional to G and to Hpoint (B).
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9.2 BATCH VERIFICATION
The mL2SLnkSig signature verification time grows almost linearly in the ring size RingN due to the need of

calculating R = Rsum
(
n, N,

[
Xj

]N−1
j=0 , [(ci1, ci3)]

n−1
i=1 , cn1

)
. This calculation reduces to a multi-exponentiation of

3RingN summands with weights composed as multiplications of the scalars from the ([(ci1, ci3)]n−1
i=1 , cn1) and the

scalar z. That is, the verification time is asymptotically 3RingN/lg (3RingN).
Suppose, we have d signatures with the ring sizes RingN each. Suppose, they have totally DistinctN dis-

tinct elements in the rings. A question is: is it possible to make the verification time asymptotic to be
3DistinctN/lg (3DistinctN) instead of (3d)RingN/lg (3RingN) for this case? Here we have two problems:

• To combine all the Schnorr proofs of R ∼ W in the signatures together.
• To combine all the signatures R’s into a single multi-exponentiation of 3DistinctN summands. The problem
is about the odd part of the internal decoy set, which has different counterparts for the same points in different
rings.

An intuition is that the first problem can be solved using random weighting, whereas the second problem is solvable
with defining the odd part in another way, so that the orthogonality will be kept safe and, at the same time, each
point will have a counterpart unchangeable among the decoy sets, that will allow to combine the R’s together into
3DistinctN summands.

10 CONCLUSION
We have formulated and proven the Lin2-Xor lemma for a primary-order group without bilinear parings,

requiring only the discrete logarithm assumption for the group. We have formulated and proven the Lin2-Selector
lemma as a generalization of the Lin2-Xor lemma.

These two lemmas allowed us to develop a novel efficient method for convincing a verifier that a given element
is a commitment to a linear combination of elements in a pair from a set of orthogonal element pairs.

Using the Lin2-Selector lemma we have built a proof of membership protocol called L2S. We have proven the
L2S protocol is complete, sound and zero-knowledge under the decisional Diffie-Hellman assumption.

On the base of the L2S protocol, with the Fiat-Shamir heuristic in the random oracle model we have constructed
a non-interactive logarithmic-size zero-knowledge proof of membership scheme called mL2SHPoM.

Using the mL2SHPoM scheme, under the decisional Diffie-Hellman assumption in the random oracle model,
we have constructed a setup-free general-purpose logarithmic-size linkable ring signature called mL2SLnkSig that
provides signer-ambiguity for a wide range of anonymity sets, including the sets with known to an adversary
relationships between elements.
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